301
|
Kartsogiannis V, Ng KW. Cell lines and primary cell cultures in the study of bone cell biology. Mol Cell Endocrinol 2004; 228:79-102. [PMID: 15541574 DOI: 10.1016/j.mce.2003.06.002] [Citation(s) in RCA: 145] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2003] [Accepted: 06/12/2003] [Indexed: 12/13/2022]
Abstract
Bone is a metabolically active and highly organized tissue consisting of a mineral phase of hydroxyapatite and amorphous calcium phosphate crystals deposited in an organic matrix. Bone has two main functions. It forms a rigid skeleton and has a central role in calcium and phosphate homeostasis. The major cell types of bone are osteoblasts, osteoclasts and chondrocytes. In the laboratory, primary cultures or cell lines established from each of these different cell types provide valuable information about the processes of skeletal development, bone formation and bone resorption, leading ultimately, to the formulation of new forms of treatment for common bone diseases such as osteoporosis.
Collapse
|
302
|
Harrison JR, Huang YF, Wilson KA, Kelly PL, Adams DJ, Gronowicz GA, Clark SH. Col1a1 promoter-targeted expression of p20 CCAAT enhancer-binding protein beta (C/EBPbeta), a truncated C/EBPbeta isoform, causes osteopenia in transgenic mice. J Biol Chem 2004; 280:8117-24. [PMID: 15598659 DOI: 10.1074/jbc.m410076200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
CCAAT enhancer-binding protein (C/EBP) transcription factors regulate adipocyte differentiation, and recent evidence suggests that osteoblasts and adipocytes share a common pluripotent progenitor in bone marrow. However, little is known about the role of C/EBP transcription factors in the control of osteoblast differentiation or function. In this study, the function of C/EBP transcription factors was disrupted in osteoblast lineage cells by overexpressing a naturally occurring dominant negative C/EBP isoform. Expression of FLp20C/EBPbeta was driven by a 3.6-kb Col1a1 promoter/first intron construct, and four transgenic (TG) mouse lines were established. Northern blotting and reverse transcription-PCR indicated that the transgene was targeted to bone, with lower levels of expression in lung, skin, and adipose tissue. TG mice from two lines showed reduced body weight compared with wild type littermates. All TG lines showed evidence of osteopenia, ranging from mild to severe, as evidenced by reduced trabecular bone volume. Severely affected lines also showed reduced cortical bone width. Dynamic histomorphometry demonstrated an associated decrease in mineral apposition and bone formation rates. Long bones and calvariae of TG mice showed reduced COL1A1 and osteocalcin mRNA levels and increased bone sialoprotein mRNA, consistent with an inhibition of terminal osteoblast differentiation. Ex vivo analysis of primary osteoblast differentiation showed similar effects on marker expression and reduced expression of the mature osteoblast marker Col2.3-green fluorescent protein, demonstrating a cell-autonomous effect of the transgene. These data suggested that C/EBP transcription factors may be important determinants of osteoblast function and bone mass.
Collapse
Affiliation(s)
- John R Harrison
- Department of Orthodontics, University of Connecticut Health Center, Farmington, Connecticut 06030, USA.
| | | | | | | | | | | | | |
Collapse
|
303
|
Cooper MS. Sensitivity of bone to glucocorticoids. Clin Sci (Lond) 2004; 107:111-23. [PMID: 15113280 DOI: 10.1042/cs20040070] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2004] [Revised: 04/14/2004] [Accepted: 04/28/2004] [Indexed: 11/17/2022]
Abstract
Glucocorticoids are used widely in a range of medical specialities, but their main limitation is an adverse impact on bone. Although physicians are increasingly aware of these deleterious effects, the marked variation in susceptibility between individuals makes it difficult to predict who will develop skeletal complications with these drugs. Although the mechanisms underlying the adverse effects on bone remain unclear, the most important effect appears to be a rapid and substantial decrease in bone formation. This review will examine recent studies that quantify the risk of fracture with glucocorticoids, the mechanisms that underlie this increase in risk and the potential basis for differences in individual sensitivity. An important determinant of glucocorticoid sensitivity appears to be the presence of glucocorticoid-metabolizing enzymes within osteoblasts and this may enable improved estimates of risk and generate new approaches to the development of bone-sparing anti-inflammatory drugs.
Collapse
Affiliation(s)
- Mark S Cooper
- Division of Medical Sciences, University of Birmingham, Queen Elizabeth Hospital, Edgbaston, Birmingham B15 2TH, UK.
| |
Collapse
|
304
|
Kalajzic I, Braut A, Guo D, Jiang X, Kronenberg MS, Mina M, Harris MA, Harris SE, Rowe DW. Dentin matrix protein 1 expression during osteoblastic differentiation, generation of an osteocyte GFP-transgene. Bone 2004; 35:74-82. [PMID: 15207743 DOI: 10.1016/j.bone.2004.03.006] [Citation(s) in RCA: 165] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2004] [Revised: 03/01/2004] [Accepted: 03/08/2004] [Indexed: 11/26/2022]
Abstract
Our previous studies have demonstrated that promoter-green fluorescent protein (GFP) transgenes can be used to identify and isolate populations of cells at the preosteoblastic stage (pOBCol3.6GFP) and at the mature osteoblastic stage (pOBCol2.3GFP) in living primary bone cell cultures. This strategy forms the basis for appreciating the cellular heterogeneity of lineage and relating gene function to cell differentiation. A weakness of this approach was the lack of a selective marker for late osteoblasts and mature osteocytes in the mineralized matrix. In this study, we have examined the expression of DMP-1 mRNA in murine marrow stromal and calvarial osteoblast cultures, and in bone, and calvaria in vivo. Furthermore, we have generated transgenic mice utilizing a mouse DMP1 cis-regulatory system to drive GFP as a marker for living osteocytes. Transgene expression was directed to mineralized tissues and showed a high correlation with the expression of the endogenous gene. Osteocyte-restricted expression of GFP was observed in histological sections of femur and calvaria and in primary cell cultures. Generation of this transgenic model will facilitate studies of gene expression and biological functions in these terminally differentiated bone cells.
Collapse
Affiliation(s)
- I Kalajzic
- Department of Genetics and Developmental Biology, University of Connecticut Health Center, Farmington 06030, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
305
|
Zhang Y, Wang Y, Li X, Zhang J, Mao J, Li Z, Zheng J, Li L, Harris S, Wu D. The LRP5 high-bone-mass G171V mutation disrupts LRP5 interaction with Mesd. Mol Cell Biol 2004; 24:4677-84. [PMID: 15143163 PMCID: PMC416395 DOI: 10.1128/mcb.24.11.4677-4684.2004] [Citation(s) in RCA: 139] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2004] [Accepted: 02/24/2004] [Indexed: 01/08/2023] Open
Abstract
The mechanism by which the high-bone-mass (HBM) mutation (G171V) of the Wnt coreceptor LRP5 regulates canonical Wnt signaling was investigated. The mutation was previously shown to reduce DKK1-mediated antagonism, suggesting that the first YWTD repeat domain where G171 is located may be responsible for DKK-mediated antagonism. However, we found that the third YWTD repeat, but not the first repeat domain, is required for DKK1-mediated antagonism. Instead, we found that the G171V mutation disrupted the interaction of LRP5 with Mesd, a chaperone protein for LRP5/6 that is required for transport of the coreceptors to cell surfaces, resulting in fewer LRP5 molecules on the cell surface. Although the reduction in the number of cell surface LRP5 molecules led to a reduction in Wnt signaling in a paracrine paradigm, the mutation did not appear to affect the activity of coexpressed Wnt in an autocrine paradigm. Together with the observation that osteoblast cells produce autocrine canonical Wnt, Wnt7b, and that osteocytes produce paracrine DKK1, we think that the G171V mutation may cause an increase in Wnt activity in osteoblasts by reducing the number of targets for paracrine DKK1 to antagonize without affecting the activity of autocrine Wnt.
Collapse
Affiliation(s)
- Yazhou Zhang
- Department of Genetics and Developmental Biology, University of Connecticut Health Center, 263 Farmington Ave., Farmington, CT 06410, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
306
|
Gorski JP, Wang A, Lovitch D, Law D, Powell K, Midura RJ. Extracellular Bone Acidic Glycoprotein-75 Defines Condensed Mesenchyme Regions to be Mineralized and Localizes with Bone Sialoprotein during Intramembranous Bone Formation. J Biol Chem 2004; 279:25455-63. [PMID: 15004029 DOI: 10.1074/jbc.m312408200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bone acidic glycoprotein-75 is expressed very early during in vivo models of intramembranous bone formation, highly enriched in condensing osteogenic mesenchyme after marrow ablation and the osteoprogenitor layer of tibial periosteum. Bone sialoprotein accumulates within bone acidic glycoprotein-75-enriched matrix areas at a later stage in both models. Decalcification of initial sites of mineralization consistently revealed focal immunostaining for bone acidic glycoprotein-75 underneath these sites suggesting that mineralization occurs within bone acidic glycoprotein-75-enriched matrix areas. Ultrastructural immunolocalization of bone acidic glycoprotein-75 does not support a direct association with banded collagen fibrils, but rather suggests it is a component of a separate, amorphous scaffold occupying interfibrillar spaces. Double immunogold labeling demonstrated that a sizeable proportion of bone sialoprotein particles were located within a 50-nm radius of bone acidic glycoprotein-75. These results define bone acidic glycoprotein-75 as the earliest bone-restricted, extracellular marker of osteogenic mesenchyme. Based on this early bone-restricted expression pattern and a previously documented propensity of bone acidic glycoprotein-75 to form supramolecular complexes through self-association, bone acidic glycoprotein-75 may serve a key structural role in setting boundary limits of condensing osteogenic mesenchyme.
Collapse
Affiliation(s)
- Jeff P Gorski
- Division of Biochemistry and Molecular Biology, School of Biological Sciences, School of Dentistry, University of Missouri-Kansas City, Kansas City, Missouri 64108, USA.
| | | | | | | | | | | |
Collapse
|
307
|
Uyama Y, Yagami K, Hatori M, Kakuta S, Nagumo M. Recombinant human bone morphogenetic protein-2 promotes Indian hedgehog-mediated osteo-chondrogenic differentiation of a human chondrocytic cell line in vivo and in vitro. Differentiation 2004; 72:32-40. [PMID: 15008824 DOI: 10.1111/j.1432-0436.2004.07201001.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We examined osteo-chondrogenic differentiation of a human chondrocytic cell line (USAC) by rhBMP-2 in vivo and in vitro. USAC was established from a transplanted tumor to athymic mouse derived from an osteogenic sarcoma of the mandible. USAC usually shows chondrocytic phenotypes in vivo and in vitro. rhBMP-2 up-regulated not only the mRNA expression of types II and X collagen, but also the mRNA expression of osteocalcin and Cbfa1 in USAC cells in vitro. In vivo experimental cartilaginous tissue formation was prominent in the chamber with rhBMP-2 when compared with the chamber without rhBMP-2. USAC cells implanted with rhBMP-2 often formed osteoid-like tissues surrounded by osteoblastic cells positive for type I collagen. rhBMP up-regulated Ihh, and the expression of Ihh was well correlated with osteo-chondrogenic cell differentiation. These results suggest that rhBMP-2 promotes chondrogenesis and also induces osteogenic differentiation of USAC cells in vivo and in vitro through up-regulation of Ihh.
Collapse
Affiliation(s)
- Yohei Uyama
- Second Department of Oral and Maxillofacial Surgery, School of Dentistry, Showa University, 2-1-1, Kitasenzoku, Ohta-ku, Tokyo, 145-8515, Japan.
| | | | | | | | | |
Collapse
|
308
|
Visnjic D, Kalajzic Z, Rowe DW, Katavic V, Lorenzo J, Aguila HL. Hematopoiesis is severely altered in mice with an induced osteoblast deficiency. Blood 2004; 103:3258-64. [PMID: 14726388 DOI: 10.1182/blood-2003-11-4011] [Citation(s) in RCA: 547] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We previously reported a transgenic mouse model expressing herpesvirus thymidine kinase (TK) gene under the control of a 2.3-kilobase fragment of the rat collagen alpha1 type I promoter (Col2.3 Delta TK). This construct confers lineage-specific expression in developing osteoblasts, allowing the conditional ablation of osteoblast lineage after treatment with ganciclovir (GCV). After GCV treatment these mice have profound alterations on bone formation leading to a progressive bone loss. In addition, treated animals also lose bone marrow cellularity. In this report we characterized hematopoietic parameters in GCV-treated Col2.3 Delta TK mice, and we show that after treatment transgenic animals lose lymphoid, erythroid, and myeloid progenitors in the bone marrow, followed by decreases in the number of hematopoietic stem cells (HSCs). Together with the decrease in bone marrow hematopoiesis, active extramedullary hematopoiesis was observed in the spleen and liver, as measured by an increase in peripheral HSCs and active primary in vitro hematopoiesis. After withdrawal of GCV, osteoblasts reappeared in the bone compartment together with a recovery of medullary and decrease in extramedullary hematopoiesis. These observations directly demonstrate the role of osteoblasts in hematopoiesis and provide a model to study the interactions between the mesenchymal and hematopoietic compartments in the marrow.
Collapse
Affiliation(s)
- Dora Visnjic
- Department of Genetics and Developmental Biolgoy, University of Connecticut Health Center, Farmington, CT 06030, USA
| | | | | | | | | | | |
Collapse
|
309
|
Xiao L, Liu P, Sobue T, Lichtler A, Coffin JD, Hurley MM. Effect of overexpressing fibroblast growth factor 2 protein isoforms in osteoblastic ROS 17/2.8 cells. J Cell Biochem 2003; 89:1291-301. [PMID: 12898525 DOI: 10.1002/jcb.10589] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Fibroblast growth factor-2 (FGF-2) is made by osteoblasts and modulates their function. There are high molecular weight (HMW) protein isoforms of FGF-2 that have nuclear localization sequences and a low molecular weight (LMW) 18 kDa FGF-2 protein that is exported from cells. Since FGF-2 is a trophic factor and potent mitogen for osteoblasts, the goal of this study was to utilize targeted overexpression of FGF-2 as a novel means of assessing different FGF-2 isoforms on osteoblastic cell viability and proliferation. Either LMW or HMW human Fgf2 cDNAs were cloned downstream of 3.6 kb alpha1(I)-collagen 5' regulatory elements (Col 3.6). A set of expression vectors, called Col3.6-Fgf2 isoforms-IRES-GFPsaph, capable of concurrently overexpressing either LMW or HMW FGF-2 isoforms concomitant with GFPsaph from a single bicistronic mRNA were built. Viable cell number in ROS 17/2.8 cells stably transfected with Vector (Col3.6-IRES-GFPsaph) versus each of the Col3.6-Fgf2-IRES-GFPsaph constructs were compared. In the presence of 1 or 10% serum, DNA synthesis was increased in cells expressing any isoform of FGF-2 compared with vector. However, cells transfected with HMW isoform had augmented DNA synthesis in 1 or 10% serum compared with cells expressing either ALL or LMW FGF-2 isoforms. A neutralizing FGF-2 antibody significantly reduced the mitogenic response in cells harboring ALL or the LMW FGF-2 isoforms but did not block the mitogenic effect of cells harboring the HMW isoforms. In summary, overexpression of any isoform of FGF-2 protein increased viable cell number and OB proliferation in the presence of low or high concentrations of serum. However, the HMW/nuclear isoforms preferentially mediate augmented OB proliferation. We conclude that differential expression of FGF-2 proteins isoforms is important in modulating OB function.
Collapse
Affiliation(s)
- L Xiao
- Department of Medicine, University of Connecticut Health Center, Farmington, Connecticut 06030, USA
| | | | | | | | | | | |
Collapse
|
310
|
Kalajzic I, Kalajzic Z, Hurley MM, Lichtler AC, Rowe DW. Stage specific inhibition of osteoblast lineage differentiation by FGF2 and noggin. J Cell Biochem 2003; 88:1168-76. [PMID: 12647299 DOI: 10.1002/jcb.10459] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Fibroblast growth factor 2 (FGF2) and noggin are two unrelated ligands of two distinctly different signaling pathways that have a similar inhibitory effect on osteoblast differentiation. Because of their differences, we postulated that they probably acted at a different stage within the osteoprogenitor differentiation pathway. This study was performed on primary murine bone cell cultures under conditions where alkaline phosphatase (AP) and type I collagen expression (Col1a1) were observed by day 7 (preosteoblast stage), followed by bone syaloprotein (BSP) at day 11 (early osteoblast) and osteocalcin (OC) by day 15-18 (mature osteoblast stage). FGF2 completely inhibited expression of AP and the mRNA transcript for Col1a1, while noggin showed only a partial inhibition of these markers of preosteoblast differentiation. However, the markers of differentiated osteoblasts (BSP and OC) were completely inhibited in both the FGF2 and noggin treated cultures, suggesting that noggin acts at later point in the osteoprogenitor differentiation pathway than FGF2. To further verify that the inhibition was occurring at a different stage of osteoblasts development, primary cultures derived from transgenic mice harboring segments of the collagen promoter driving green fluorescent protein (GFP) that activate at different levels of osteoblast differentiation were analyzed. Consistent with the endogenous markers, pOBCol3.6GFP and pOBCOL2.3GFP transgene activity was completely inhibited by continuous addition of FGF2, while noggin showed partial inhibition of pOBCol3.6GFP and complete inhibition of the pOBCol2.3GFP transgene. Upon removal of either agent, endogenous and GFP markers of osteoblast differentiation reappeared although at a different temporal pattern. This work demonstrates that FGF2 and noggin can reversibly modulate osteoblast lineage differentiation at different maturational stages. These agents may be useful to enrich for and maintain a population of osteoprogenitor cells at a defined stage of differentiation.
Collapse
Affiliation(s)
- I Kalajzic
- Department of Genetics and Developmental Biology, University of Connecticut Health Center, Farmington, Connecticut 06030, USA
| | | | | | | | | |
Collapse
|
311
|
Abstract
Previous studies have shown that terminal differentiation of odontoblasts is accompanied by dramatic increases in type I collagen synthesis. Recently transgenic mice in which green fluorescent protein (GFP) expression is under the control of the rat 3.6 (pOBCol3.6GFPtpz) and 2.3 (pOBCol2.3GFPemd) Col1a1 promoter fragments were generated. Our analysis of these GFP-expressing transgenic mice shows that the 2.3-kb promoter fragment directs strong expression of GFP only to bones and teeth, whereas the 3.6-kb fragment of promoter directs strong expression of GFP in bone and tooth, as well as in other type I collagen producing tissues. Our observations of incisors in these transgenic mice show high levels of GFP expression in functional odontoblasts and in differentiated osteoblasts. These observations show that expression of GFP reporter genes closely follow the patterns of expression of alpha 1(I) collagen in various tissues including odontoblasts.
Collapse
Affiliation(s)
- A Braut
- Department of Pediatric Dentistry, University of Connecticut Health Center, Farmington, Connecticut, USA
| | | | | | | | | | | |
Collapse
|
312
|
Kalajzic Z, Liu P, Kalajzic I, Du Z, Braut A, Mina M, Canalis E, Rowe DW. Directing the expression of a green fluorescent protein transgene in differentiated osteoblasts: comparison between rat type I collagen and rat osteocalcin promoters. Bone 2002; 31:654-60. [PMID: 12531558 DOI: 10.1016/s8756-3282(02)00912-2] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The osteocalcin (OC) and a 2.3 kb fragment of the collagen promoter (Col2.3) have been used to restrict transgenic expression of a variety of proteins to bone. Transgenic mice carrying a green fluorescent protein (GFP) gene driven by each promoter were generated. Strong GFP expression was detected in OC-GFP mice in a few osteoblastic cells lining the endosteal bone surface and in scattered osteocytes within the bone matrix in long bones from 1-day-old to 6-month-old transgenic animals. Similar findings were noted in the forming tooth in which only individual odontoblasts expressed GFP without detectable expression from the dental pulp. This limited pattern of OC-GFP-positive cells contrasts with the uniform expression in the Col2.3GFP mice in which large proportion of osteoblasts, odontoblasts, and osteocytes strongly expressed the transgene. To assess transgene expression during in vitro differentiation, marrow stromal cell and neonatal calvarial osteoblast cultures were analyzed. The activity of both transgenes was restricted to mineralized nodules but the number of positive cells was lower in the OC-GFP-derived cultures. The different temporal and spatial pattern of each transgene in vivo and in vitro reveals potential advantages and disadvantages of these two transgene models.
Collapse
Affiliation(s)
- Z Kalajzic
- Department of Genetics and Developmental Biology, University of Connecticut Health Center, Farmington, Connecticut 06030, USA
| | | | | | | | | | | | | | | |
Collapse
|
313
|
Kalajzic I, Terzic J, Rumboldt Z, Mack K, Naprta A, Ledgard F, Gronowicz G, Clark SH, Rowe DW. Osteoblastic response to the defective matrix in the osteogenesis imperfecta murine (oim) mouse. Endocrinology 2002; 143:1594-601. [PMID: 11956140 DOI: 10.1210/endo.143.5.8807] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
This work examines the cellular pathophysiology associated with the weakened bone matrix found in a murine model of osteogenesis imperfecta murine (oim). Histomorphometric analysis of oim/oim bone showed significantly diminished bone mass, and the osteoblast and osteoclast histomorphometric parameters were increased in the oim/oim mice, compared with wild-type (+/+) mice. To assess osteoblast activity, a rat Col1a1 promoter linked to the chloramphenicol acetyltransferase reporter transgene was bred into the oim model. At 8 d and 1 month of age, no difference in transgene activity between oim and control mice was observed. However, at 3 months of age, chloramphenicol acetyl transferase activity was elevated in oim/oim;Tg/Tg, compared with +/+;Tg/Tg and oim/+;Tg/Tg. High levels of urinary pyridinoline crosslinks in the oim/oim;Tg/Tg mice were present at all ages, reflecting continuing high bone resorption. Our data portray a state of ineffective osteogenesis in which the mutant mouse never accumulates a normal quantity of bone matrix. However, it is only after the completion of the rapid growth phase that the high activity of the oim/oim osteoblast can compensate for the high rate of bone resorption. This relationship between bone formation and resorption may explain why the severity of osteogenesis imperfecta decreases after puberty is completed. The ability to quantify high bone turnover and advantages of using a transgene that reflects osteoblast lineage activity make this a useful model for studying interventions designed to improve the bone strength in osteogenesis imperfecta.
Collapse
Affiliation(s)
- I Kalajzic
- Department of Genetics and Developmental Biology, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT 06030, USA
| | | | | | | | | | | | | | | | | |
Collapse
|