301
|
Abstract
Background Many traditional biological concepts continue to be debated by biologists, scientists and philosophers of science. The specific objective of this brief reflection is to offer an alternative vision to the definition of life taking as a starting point the traits common to all living beings. Results and Conclusions Thus, I define life as a process that takes place in highly organized organic structures and is characterized by being preprogrammed, interactive, adaptative and evolutionary. If life is the process, living beings are the system in which this process takes place. I also wonder whether viruses can be considered living things or not. Taking as a starting point my definition of life and, of course, on what others have thought about it, I am in favor of considering viruses as living beings. I base this conclusion on the fact that viruses satisfy all the vital characteristics common to all living things and on the role they have played in the evolution of species. Finally, I argue that if there were life elsewhere in the universe, it would be very similar to what we know on this planet because the laws of physics and the composition of matter are universal and because of the principle of the inexorability of life.
Collapse
|
302
|
Samanta B. Structural evolution of SLA promoter in mosquito-borne flaviviruses: A sequence-structure based phylogenetic framework. Virology 2021; 562:110-120. [PMID: 34311294 DOI: 10.1016/j.virol.2021.07.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 07/05/2021] [Accepted: 07/15/2021] [Indexed: 11/18/2022]
Abstract
All the flaviviruses have a Y-shaped stem-loop secondary structure known as the SLA element, and the structural features of this element are crucial to initiating the infection cycle. The present study particularly investigated how flaviviruses retained the common core SLA element secondary structure during the species evolution by selecting mosquito-borne flaviviruses (MBFVs) as a case study. The detailed search of nucleotide substitutions in species-wise consensus SLA secondary structure models suggested that the compensatory and hemi-compensatory base changes in the helices are crucial to preserving the common core secondary structure. In contrast to the coding region-based phylogeny, the SLA sequence-structure-based phylogenetic tree revealed an intriguing evolutionary relationship among MBFVs. Overall, this paper demonstrated for the first time the efficacy of RNA secondary structures as a phylogenetic marker to study the RNA virus evolution.
Collapse
Affiliation(s)
- Brajogopal Samanta
- Department of Microbiology and FST, GITAM Institute of Science, GITAM (Deemed to be University), Rushikonda, Visakhapatnam, 530045, Andhra Pradesh, India.
| |
Collapse
|
303
|
Abstract
The Severe acute respiratory syndrome coronavirus (SARS-CoV) and SARS-CoV-2 originated in bats and adapted to infect humans. Several SARS-CoV-2 strains have been identified. Genetic variation is fundamental to virus evolution and, in response to selection pressure, is manifested as the emergence of new strains and species adapted to different hosts or with novel pathogenicity. The combination of variation and selection forms a genetic footprint on the genome, consisting of the preferential accumulation of mutations in particular areas. Properties of betacoronaviruses contributing to variation and the emergence of new strains and species are beginning to be elucidated. To better understand their variation, we profiled the accumulation of mutations in all species in the genus Betacoronavirus, including SARS-CoV-2 and two other species that infect humans: SARS-CoV and Middle East respiratory syndrome coronavirus (MERS-CoV). Variation profiles identified both genetically stable and variable areas at homologous locations across species within the genus Betacoronavirus. The S glycoprotein is the most variable part of the genome and is structurally disordered. Other variable parts include proteins 3 and 7 and ORF8, which participate in replication and suppression of antiviral defense. In contrast, replication proteins in ORF1b are the least variable. Collectively, our results show that variation and structural disorder in the S glycoprotein is a general feature of all members of the genus Betacoronavirus, including SARS-CoV-2. These findings highlight the potential for the continual emergence of new species and strains with novel biological properties and indicate that the S glycoprotein has a critical role in host adaptation. IMPORTANCE Natural infection with SARS-CoV-2 and vaccines triggers the formation of antibodies against the S glycoprotein, which are detected by antibody-based diagnostic tests. Our analysis showed that variation in the S glycoprotein is a general feature of all species in the genus Betacoronavirus, including three species that infect humans: SARS-CoV, SARS-CoV-2, and MERS-CoV. The variable nature of the S glycoprotein provides an explanation for the emergence of SARS-CoV-2, the differentiation of SARS-CoV-2 into strains, and the probability of SARS-CoV-2 repeated infections in people. Variation of the S glycoprotein also has important implications for the reliability of SARS-CoV-2 antibody-based diagnostic tests and the design and deployment of vaccines and antiviral drugs. These findings indicate that adjustments to vaccine design and deployment and to antibody-based diagnostic tests are necessary to account for S glycoprotein variation.
Collapse
|
304
|
Identifying SARS-CoV-2 antiviral compounds by screening for small molecule inhibitors of nsp13 helicase. Biochem J 2021; 478:2405-2423. [PMID: 34198322 PMCID: PMC8286831 DOI: 10.1042/bcj20210201] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/05/2021] [Accepted: 05/10/2021] [Indexed: 12/16/2022]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic, which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a global public health challenge. While the efficacy of vaccines against emerging and future virus variants remains unclear, there is a need for therapeutics. Repurposing existing drugs represents a promising and potentially rapid opportunity to find novel antivirals against SARS-CoV-2. The virus encodes at least nine enzymatic activities that are potential drug targets. Here, we have expressed, purified and developed enzymatic assays for SARS-CoV-2 nsp13 helicase, a viral replication protein that is essential for the coronavirus life cycle. We screened a custom chemical library of over 5000 previously characterized pharmaceuticals for nsp13 inhibitors using a fluorescence resonance energy transfer-based high-throughput screening approach. From this, we have identified FPA-124 and several suramin-related compounds as novel inhibitors of nsp13 helicase activity in vitro. We describe the efficacy of these drugs using assays we developed to monitor SARS-CoV-2 growth in Vero E6 cells.
Collapse
|
305
|
Rezaei S, Sefidbakht Y, Uskoković V. Tracking the pipeline: immunoinformatics and the COVID-19 vaccine design. Brief Bioinform 2021; 22:6313266. [PMID: 34219142 DOI: 10.1093/bib/bbab241] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/23/2021] [Accepted: 06/04/2021] [Indexed: 12/23/2022] Open
Abstract
With the onset of the COVID-19 pandemic, the amount of data on genomic and proteomic sequences of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) stored in various databases has exponentially grown. A large volume of these data has led to the production of equally immense sets of immunological data, which require rigorous computational approaches to sort through and make sense of. Immunoinformatics has emerged in the recent decades as a field capable of offering this approach by bridging experimental and theoretical immunology with state-of-the-art computational tools. Here, we discuss how immunoinformatics can assist in the development of high-performance vaccines and drug discovery needed to curb the spread of SARS-CoV-2. Immunoinformatics can provide a set of computational tools to extract meaningful connections from the large sets of COVID-19 patient data, which can be implemented in the design of effective vaccines. With this in mind, we represent a pipeline to identify the role of immunoinformatics in COVID-19 treatment and vaccine development. In this process, a number of free databases of protein sequences, structures and mutations are introduced, along with docking web servers for assessing the interaction between antibodies and the SARS-CoV-2 spike protein segments as most commonly considered antigens in vaccine design.
Collapse
Affiliation(s)
- Shokouh Rezaei
- Protein Research Center at Shahid Beheshti University, Tehran, Iran
| | - Yahya Sefidbakht
- Protein Research Center at Shahid Beheshti University, Tehran, Iran
| | - Vuk Uskoković
- Founder of the biotech startup, TardigradeNano, and formerly a Professor at University of Illinois in Chicago, Chapman University, and University of California in Irvine
| |
Collapse
|
306
|
Abstract
Any disease that spreads quickly and crossed the geographical barrier is termed as pandemic. After the initial occurrence of Covid-19 from China, World Health Organization had declared novel corona viral outbreak as pandemic on March, 2020. Since then, COVID-19 continued to devastate people all around the world. Human civilization has witnessed one of its greatest crises by facing 180 million of confirmed cases with 38.9 lakh deaths across the world till end of June 2021. India alone contributes 30 million of positive cases and has lost 3.92 lakh valuable lives (data as on 24th of June 2021 from CSSEGIS and Data (http://github.com/CSSEGISandData/COVID-19); (the number increases in each day). Bio-medical experts from all around the world are working tirelessly to limit the disease and find potential cures for this viral infection. Vaccination is the most effective strategy to prevent the spread of any viral disease. Virologists have developed some effective vaccines, but production or supply lags far behind the present demand across the globe. Plant-derived vaccines (PDVs) based on modified virus like particles (VLPs) can be a feasible alternative in this case. A summarized account about the efficacy of the first plant-derived Covid 19 vaccine, CoVLP is discussed. PDVs and VLPs are also reviewed briefly, along with their benefits and drawbacks.
Collapse
|
307
|
Mohammadi E, Shafiee F, Shahzamani K, Ranjbar MM, Alibakhshi A, Ahangarzadeh S, Beikmohammadi L, Shariati L, Hooshmandi S, Ataei B, Javanmard SH. Novel and emerging mutations of SARS-CoV-2: Biomedical implications. Biomed Pharmacother 2021; 139:111599. [PMID: 33915502 PMCID: PMC8062574 DOI: 10.1016/j.biopha.2021.111599] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/18/2021] [Accepted: 03/27/2021] [Indexed: 12/31/2022] Open
Abstract
Coronavirus disease-19 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The SARS-CoV-2 virus strains has geographical diversity associated with diverse severity, mortality rate, and response to treatment that were characterized using phylogenetic network analysis of SARS-CoV-2 genomes. Although, there is no explicit and integrative explanation for these variations, the genetic arrangement, and stability of SARS-CoV-2 are basic contributing factors to its virulence and pathogenesis. Hence, understanding these features can be used to predict the future transmission dynamics of SARS-CoV-2 infection, drug development, and vaccine. In this review, we discuss the most recent findings on the mutations in the SARS-CoV-2, which provide valuable information on the genetic diversity of SARS-CoV-2, especially for DNA-based diagnosis, antivirals, and vaccine development for COVID-19.
Collapse
Affiliation(s)
- Elmira Mohammadi
- Applied Physiology Research Center, Cardiovascular Research Institute, Department of Physiology, Isfahan University of Medical Sciences, Isfahan, Iran; Core Research Facilities, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fatemeh Shafiee
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Kiana Shahzamani
- Isfahan Gastroenterology and Hepatology Research Center (lGHRC), Isfahan University of medical sciences, Isfahan, Iran
| | - Mohammad Mehdi Ranjbar
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education, and Extension Organization (AREEO), Karaj, Iran
| | - Abbas Alibakhshi
- Molecular Medicine Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Shahrzad Ahangarzadeh
- Infectious Diseases and Tropical Medicine Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Leila Beikmohammadi
- Department of Biochemistry, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Laleh Shariati
- Department of Biochemistry, Erasmus University Medical Center, Rotterdam, The Netherlands; Stem Cell and Regenerative Medicine Center of Excellence, Tehran University of Medical Sciences, 14155-6559 Tehran, Iran
| | - Soodeh Hooshmandi
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Behrooz Ataei
- Infectious Diseases and Tropical Medicine Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | | |
Collapse
|
308
|
Griffin GD. Does Covera-19 know 'when to hold 'em or 'when to fold 'em? A translational thought experiment. TRANSLATIONAL MEDICINE COMMUNICATIONS 2021; 6:12. [PMID: 34226878 PMCID: PMC8243045 DOI: 10.1186/s41231-021-00090-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 04/19/2021] [Indexed: 05/09/2023]
Abstract
The function of proteins depends on their structure. The structural integrity of proteins is dynamic and depends on interacting nearby neighboring moieties that influence their properties and induce folding and structural changes. The conformational changes induced by these nearby neighbors in the micro-environmental milieu at that moment are guided by chemical or electrical bonding attractions. There are few literature references that describe the potential for environmental milieu changes to disfavor SARS-CoV-2 attachment to a receptor for survival outside of a host. There are many studies on the effects of pH (acid and base balance) supporting its importance for protein structure and function, but few focus on pH role in extracellular or intracellular protein or actionable requirements of Covera-19. 'Fold 'em or Hold 'em' is seen by the various functions and effects of furin as it seeks an acidic milieu for action or compatible amino acid sequences which is currently aided by its histidine component and the structural changes of proteins as they enter or exit the host. Questions throughout the text are posed to focus on current thoughts as reviewing applicable COVID-19 translational research science in order to understand the complexities of Covid-19. The pH needs of COVID-19 players and its journey through the human host and environment as well as some efficacious readily available repurposed drugs and out-of-the box and easily available treatments are reviewed.
Collapse
Affiliation(s)
- Gerald Dieter Griffin
- Adjunct Faculty, School of Pharmacy & Health Sciences, University of the Pacific, Stockton, CA USA
- Adjunct Faculty, School of Pharmacy & Health Sciences, The University of the Pacific, 123 Forest Ave, Pacific Grove, CA 93950 USA
| |
Collapse
|
309
|
Castonguay N, Zhang W, Langlois MA. Meta-Analysis and Structural Dynamics of the Emergence of Genetic Variants of SARS-CoV-2. Front Microbiol 2021; 12:676314. [PMID: 34267735 PMCID: PMC8276313 DOI: 10.3389/fmicb.2021.676314] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 05/27/2021] [Indexed: 12/18/2022] Open
Abstract
The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in late December 2019 in Wuhan, China, and is the causative agent for the worldwide COVID-19 pandemic. SARS-CoV-2 is a positive-sense single-stranded RNA virus belonging to the betacoronavirus genus. Due to the error-prone nature of the viral RNA-dependent polymerase complex, coronaviruses are known to acquire new mutations at each cycle of genome replication. This constitutes one of the main factors driving the evolution of its relatively large genome and the emergence of new genetic variants. In the past few months, the identification of new B.1.1.7 (United Kingdom), B.1.351 (South Africa), and P.1 (Brazil) variants of concern (VOC) has highlighted the importance of tracking the emergence of mutations in the SARS-CoV-2 genome that impact transmissibility, virulence, and immune and neutralizing antibody escape. Here we analyzed the appearance and prevalence trajectory over time of mutations that appeared in all SARS-CoV-2 genes from December 2019 to April 2021. The goal of the study was to identify which genetic modifications are the most frequent and study the dynamics of their propagation, their incorporation into the consensus sequence, and their impact on virus biology. We also analyzed the structural properties of the spike glycoprotein of the B.1.1.7, B.1.351, and P.1 variants for its binding to the host receptor ACE2. This study offers an integrative view of the emergence, disappearance, and consensus sequence integration of successful mutations that constitute new SARS-CoV-2 variants and their impact on neutralizing antibody therapeutics and vaccines.
Collapse
Affiliation(s)
- Nicolas Castonguay
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Wandong Zhang
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, ON, Canada
| | - Marc-André Langlois
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- uOttawa Center for Infection, Immunity and Inflammation (CI3), Ottawa, ON, Canada
| |
Collapse
|
310
|
Hu C, Shen M, Han X, Chen Q, Li L, Chen S, Zhang J, Gao F, Wang W, Wang Y, Li T, Li S, Huang J, Wang J, Zhu J, Chen D, Wu Q, Tao K, Pang D, Jin A. Identification of Cross-Reactive CD8 + T Cell Receptors with High Functional Avidity to a SARS-CoV-2 Immunodominant Epitope and Its Natural Mutant Variants. Genes Dis 2021; 9:216-229. [PMID: 34222571 PMCID: PMC8240504 DOI: 10.1016/j.gendis.2021.05.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 05/31/2021] [Indexed: 02/07/2023] Open
Abstract
Despite the growing knowledge of T cell responses in COVID-19 patients, there is a lack of detailed characterizations for T cell-antigen interactions and T cell functions. Here, with a predicted peptide library from SARS-CoV-2 S and N proteins, we found that specific CD8+ T cell responses were identified in over 75% of COVID-19 convalescent patients (15/20) and an epitope from the N protein, N361-369 (KTFPPTEPK), was the most dominant epitope from our selected peptide library. Importantly, we discovered 2 N361-369-specific T cell receptors (TCRs) with high functional avidity that were independent of the CD8 co-receptor. These TCRs exhibited complementary cross-reactivity to several presently reported N361-369 mutant variants, as to the wild-type epitope. Further, the natural functions of these TCRs in the cytotoxic immunity against SARS-CoV-2 were determined with dendritic cells (DCs) and the lung organoid model. We found that the N361-369 epitope could be normally processed and endogenously presented by these different types of antigen presenting cells, to elicit successful activation and effective cytotoxicity of CD8+ T cells ex vivo. Our study evidenced potential mechanisms of cellular immunity to SARS-CoV-2, and illuminated potential ways of viral clearance in COVID-19 patients. These results indicate that utilizing CD8-independent TCRs against SARS-CoV-2-associated antigens may provide functional superiority that is beneficial for the adoptive cell immunotherapies based on natural or genetically engineered T cells. Additionally, this information is highly relevant for the development of the next-generation vaccines with protections against continuously emerged SARS-CoV-2 mutant strains.
Collapse
Affiliation(s)
- Chao Hu
- Department of Immunology, College of Basic Medicine, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, PR China.,Chongqing Key Laboratory of Cancer Immunology Translational Medicine, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, PR China
| | - Meiying Shen
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, 150 Haping Road, Nangang District, Harbin, Heilongjiang Province, 150081, PR China
| | - Xiaojian Han
- Department of Immunology, College of Basic Medicine, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, PR China.,Chongqing Key Laboratory of Cancer Immunology Translational Medicine, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, PR China
| | - Qian Chen
- Department of Immunology, College of Basic Medicine, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, PR China.,Chongqing Key Laboratory of Cancer Immunology Translational Medicine, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, PR China
| | - Luo Li
- Department of Immunology, College of Basic Medicine, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, PR China.,Chongqing Key Laboratory of Cancer Immunology Translational Medicine, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, PR China
| | - Siyin Chen
- Department of Immunology, College of Basic Medicine, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, PR China.,Chongqing Key Laboratory of Cancer Immunology Translational Medicine, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, PR China
| | - Jing Zhang
- Department of Immunology, College of Basic Medicine, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, PR China.,Chongqing Key Laboratory of Cancer Immunology Translational Medicine, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, PR China
| | - Fengxia Gao
- Department of Immunology, College of Basic Medicine, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, PR China.,Chongqing Key Laboratory of Cancer Immunology Translational Medicine, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, PR China
| | - Wang Wang
- Department of Immunology, College of Basic Medicine, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, PR China.,Chongqing Key Laboratory of Cancer Immunology Translational Medicine, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, PR China
| | - Yingming Wang
- Department of Immunology, College of Basic Medicine, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, PR China.,Chongqing Key Laboratory of Cancer Immunology Translational Medicine, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, PR China
| | - Tingting Li
- Department of Immunology, College of Basic Medicine, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, PR China.,Chongqing Key Laboratory of Cancer Immunology Translational Medicine, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, PR China
| | - Shenglong Li
- Department of Immunology, College of Basic Medicine, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, PR China.,Chongqing Key Laboratory of Cancer Immunology Translational Medicine, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, PR China
| | - Jingjing Huang
- Department of Immunology, College of Basic Medicine, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, PR China.,Chongqing Key Laboratory of Cancer Immunology Translational Medicine, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, PR China
| | - Jianwei Wang
- Department of Immunology, College of Basic Medicine, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, PR China.,Chongqing Key Laboratory of Cancer Immunology Translational Medicine, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, PR China
| | - Ju Zhu
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, 400016, PR China
| | - Dan Chen
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, 400016, PR China
| | - Qingchen Wu
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, 400016, PR China
| | - Kun Tao
- Department of Immunology, College of Basic Medicine, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, PR China.,Chongqing Key Laboratory of Cancer Immunology Translational Medicine, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, PR China
| | - Da Pang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, 150 Haping Road, Nangang District, Harbin, Heilongjiang Province, 150081, PR China
| | - Aishun Jin
- Department of Immunology, College of Basic Medicine, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, PR China.,Chongqing Key Laboratory of Cancer Immunology Translational Medicine, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, PR China
| |
Collapse
|
311
|
Hassan MM, Sharmin S, Hong J, Lee HS, Kim HJ, Hong ST. T cell epitopes of SARS-CoV-2 spike protein and conserved surface protein of Plasmodium malariae share sequence homology. Open Life Sci 2021; 16:630-640. [PMID: 34222663 PMCID: PMC8231468 DOI: 10.1515/biol-2021-0062] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 04/18/2021] [Accepted: 05/27/2021] [Indexed: 11/15/2022] Open
Abstract
Since its emergence in late 2019, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been spreading remarkably fast worldwide. Effective countermeasures require the rapid development of data and tools to monitor its spread and better understand immunogenic profile. However, limited information is available about the tools and target of the immune responses to SARS-CoV-2. In this study, we excogitated a new approach for analyzing phylogenetic relationships by using the whole prototype proteome sequences. Phylogenetic analysis on the whole prototype proteome sequences showed that SARS-CoV-2 was a direct descendant of Bat-CoV and was closely related to Pangolin-CoV, Bat-SL-CoV, and SARS-CoV. The pairwise comparison of SARS-CoV-2 with Bat-CoV showed an unusual replacement of the motif consisting of seven amino acids (NNLDSKV) within the spike protein of SARS-CoV-2. The replaced motif in the spike protein of SARS-CoV-2 was found in 12 other species, including a conserved surface protein of a malaria-causing pathogen, Plasmodium malariae. We further identified the T and B cell epitope sequence homology of SARS-CoV-2 spike protein with conserved surface protein of P. malariae using the Immune Epitope Database and Analysis Resource (IEDB). The shared immunodominant epitopes may provide immunity against SARS-CoV-2 infection to those previously infected with P. malariae.
Collapse
Affiliation(s)
- Md Mehedi Hassan
- Department of Biomedical Sciences and Institute for Medical Science, Jeonbuk National University Medical School, Jeonju, Jeonbuk 54907, South Korea.,JINIS BDRD Institute, JINIS Biopharmaceuticals Inc., 224 Wanjusandan 6-Ro, Bongdong, Wanju, Jeonbuk 55315, South Korea
| | - Shirina Sharmin
- Department of Biomedical Sciences and Institute for Medical Science, Jeonbuk National University Medical School, Jeonju, Jeonbuk 54907, South Korea
| | - Jinny Hong
- SNJ Pharma Inc., 1124 West Carson St. MRL Bldg 3F, BioLabs LA in The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA 90502, United States of America
| | - Hoi-Seon Lee
- Department of Bioenvironmental Chemistry, Jeonbuk National University, Jeonju, Jeonbuk 54896, South Korea
| | - Hyeon-Jin Kim
- JINIS BDRD Institute, JINIS Biopharmaceuticals Inc., 224 Wanjusandan 6-Ro, Bongdong, Wanju, Jeonbuk 55315, South Korea.,SNJ Pharma Inc., 1124 West Carson St. MRL Bldg 3F, BioLabs LA in The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA 90502, United States of America
| | - Seong-Tshool Hong
- Department of Biomedical Sciences and Institute for Medical Science, Jeonbuk National University Medical School, Jeonju, Jeonbuk 54907, South Korea
| |
Collapse
|
312
|
Zhao LP, Lybrand TP, Gilbert PB, Hawn TR, Schiffer JT, Stamatatos L, Payne TH, Carpp LN, Geraghty DE, Jerome KR. Tracking SARS-CoV-2 Spike Protein Mutations in the United States (2020/01 - 2021/03) Using a Statistical Learning Strategy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.06.15.448495. [PMID: 34159336 PMCID: PMC8219100 DOI: 10.1101/2021.06.15.448495] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The emergence and establishment of SARS-CoV-2 variants of interest (VOI) and variants of concern (VOC) highlight the importance of genomic surveillance. We propose a statistical learning strategy (SLS) for identifying and spatiotemporally tracking potentially relevant Spike protein mutations. We analyzed 167,893 Spike protein sequences from US COVID-19 cases (excluding 21,391 sequences from VOI/VOC strains) deposited at GISAID from January 19, 2020 to March 15, 2021. Alignment against the reference Spike protein sequence led to the identification of viral residue variants (VRVs), i.e., residues harboring a substitution compared to the reference strain. Next, generalized additive models were applied to model VRV temporal dynamics, to identify VRVs with significant and substantial dynamics (false discovery rate q-value <0.01; maximum VRV proportion > 10% on at least one day). Unsupervised learning was then applied to hierarchically organize VRVs by spatiotemporal patterns and identify VRV-haplotypes. Finally, homology modelling was performed to gain insight into potential impact of VRVs on Spike protein structure. We identified 90 VRVs, 71 of which have not previously been observed in a VOI/VOC, and 35 of which have emerged recently and are durably present. Our analysis identifies 17 VRVs ∼91 days earlier than their first corresponding VOI/VOC publication. Unsupervised learning revealed eight VRV-haplotypes of 4 VRVs or more, suggesting two emerging strains (B1.1.222 and B.1.234). Structural modeling supported potential functional impact of the D1118H and L452R mutations. The SLS approach equally monitors all Spike residues over time, independently of existing phylogenic classifications, and is complementary to existing genomic surveillance methods.
Collapse
Affiliation(s)
- Lue Ping Zhao
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center; Seattle, WA, USA
| | - Terry P. Lybrand
- Quintepa Computing LLC; Nashville, TN, USA
- Department of Chemistry; Department of Pharmacology, Vanderbilt University; Nashville, TN, USA
| | - Peter B. Gilbert
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center; Seattle, WA, USA
| | - Thomas R. Hawn
- Department of Medicine, University of Washington School of Medicine; Seattle, WA, USA
- Department of Global Health, University of Washington; Seattle, WA, USA
| | - Joshua T. Schiffer
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center; Seattle, WA, USA
- Department of Medicine, University of Washington School of Medicine; Seattle, WA, USA
| | - Leonidas Stamatatos
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center; Seattle, WA, USA
- Department of Global Health, University of Washington; Seattle, WA, USA
| | - Thomas H. Payne
- Department of Medicine, University of Washington School of Medicine; Seattle, WA, USA
| | - Lindsay N. Carpp
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center; Seattle, WA, USA
| | - Daniel E. Geraghty
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle; WA, USA
| | - Keith R. Jerome
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center; Seattle, WA, USA
| |
Collapse
|
313
|
Zhu C, He G, Yin Q, Zeng L, Ye X, Shi Y, Xu W. Molecular biology of the SARs-CoV-2 spike protein: A review of current knowledge. J Med Virol 2021; 93:5729-5741. [PMID: 34125455 PMCID: PMC8427004 DOI: 10.1002/jmv.27132] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 06/03/2021] [Indexed: 12/15/2022]
Abstract
The global coronavirus disease 2019 (COVID‐19) pandemic, caused by the severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2), has led to an unprecedented worldwide public health emergency. Despite the concerted efforts of the scientific field, by April 25, 2021, SARS‐CoV‐2 had spread to over 192 countries/regions, causing more than 146 million confirmed cases including 31 million deaths. For now, an established treatment for patients with COVID‐19 remains unavailable. The key to tackling this pandemic is to understand the mechanisms underlying its infectivity and pathogenicity. As a predominant focus, the coronavirus spike (S) protein is the key determinant of host range, infectivity, and pathogenesis. Thereby comprehensive understanding of the sophisticated structure of SARS‐CoV‐2 S protein may provide insights into possible intervention strategies to fight this ongoing global pandemic. Herein, we summarize the current knowledge of the molecular structural and functional features of SARS‐CoV‐2 S protein as well as recent updates on the cell entry mechanism of the SARS‐CoV‐2, paving the way for exploring more structure‐guided strategies against SARS‐CoV‐2.
Collapse
Affiliation(s)
- Chaogeng Zhu
- Translational Medicine Laboratory of Pancreatic Diseases, Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Guiyun He
- Department of Ophthalmology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Qinqin Yin
- Department of Ophthalmology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Lin Zeng
- Institute of Translational Medicine, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Xiangli Ye
- Department of Medical Laboratory Science, School of Medicine, Hunan Normal University, Changsha, China
| | - Yongzhong Shi
- Institute of Translational Medicine, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Wei Xu
- Institute of Translational Medicine, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| |
Collapse
|
314
|
Kelta Wabalo E, Dukessa Dubiwak A, Welde Senbetu M, Sime Gizaw T. Effect of Genomic and Amino Acid Sequence Mutation on Virulence and Therapeutic Target of Severe Acute Respiratory Syndrome Coronavirus-2 (SARS COV-2). Infect Drug Resist 2021; 14:2187-2192. [PMID: 34163183 PMCID: PMC8214021 DOI: 10.2147/idr.s307374] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 05/26/2021] [Indexed: 01/08/2023] Open
Abstract
The COVID-19 pandemic is caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). It is one of the RNA coronaviruses which share the highest mutation rates of RNA viruses when compared with that of their hosts. The collective mutation rate of RNA viruses is up to a million times higher than their hosts and is correlated with enhanced virulence of viruses. The RNA, genomic material of SARS-CoV-2, has the capacity of showing amplified fast changes as the infection spreads. These changes were frequently observed in genes for spike glycoprotein, nucleocapsid, ORF1ab, and ORF8, together with RNA dependent RNA polymerase. In contrast, genes for envelope, membrane, ORF6, ORF7a and ORF7b showed no observable changes in terms of amino acid substitutions. Mutated SARS COV-2 at these particular sites has been associated with viral infectivity, false laboratory results and viral genome mutation and interferes with therapeutic targets. Interferences with therapeutic targets is frequently observed in genes for RdRp. Additionally, mutated viral genes for RdRp render slow fidelity of RdRp protein, resulting in a high mutation rate. Such a high mutation rate might allow new virulent forms of the virus to emerge and influence the disease profile. This review aimed to elaborate on the effect of genomic and amino acid sequence mutations on the virulence and therapeutic targets of SARS COV-2. To achieve this objective, multiple literatures have been reviewed.
Collapse
Affiliation(s)
- Endriyas Kelta Wabalo
- Department of Biomedical Sciences, Faculty of Medical Sciences, Institute of Health, Jimma University, Jimma, Ethiopia
| | - Abebe Dukessa Dubiwak
- Department of Biomedical Sciences, Faculty of Medical Sciences, Institute of Health, Jimma University, Jimma, Ethiopia
| | - Mengistu Welde Senbetu
- Department of Biomedical Sciences, Faculty of Medical Sciences, Institute of Health, Jimma University, Jimma, Ethiopia
| | - Tariku Sime Gizaw
- Department of Biomedical Sciences, Faculty of Medical Sciences, Institute of Health, Jimma University, Jimma, Ethiopia
| |
Collapse
|
315
|
Fayad N, Abi Habib W, Kandeil A, El-Shesheny R, Kamel MN, Mourad Y, Mokhbat J, Kayali G, Goldstein J, Abdallah J. SARS-CoV-2 Variants in Lebanon: Evolution and Current Situation. BIOLOGY 2021; 10:531. [PMID: 34198622 PMCID: PMC8232177 DOI: 10.3390/biology10060531] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 05/30/2021] [Accepted: 06/08/2021] [Indexed: 12/18/2022]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has seen a worldwide spread since its emergence in 2019, including to Lebanon, where 534,968 confirmed cases (8% of the population) and 7569 deaths have been reported as of 14 May 2021. With the genome sequencing of strains from various countries, several classification systems were established via genome comparison. For instance, the GISAID clades classification highlights key mutations in the encoded proteins that could potentially affect the virus' infectivity and transmission rates. In this study, 58 genomes of Lebanese SARS-CoV-2 strains were analyzed, 28 of which were sequenced for this study, and 30 retrieved from the GISAID and GenBank databases. We aimed to classify these strains, establish their phylogenetic relationships, and extract the mutations causing amino acid substitutions within, particularly, the structural proteins. The sequenced Lebanese SARS-COV-2 strains were classified into four GISAID clades and 11 Pango lineages. Moreover, 21 uncommon mutations in the structural proteins were found in the newly sequenced strains, underlining interesting combinations of mutations in the spike proteins. Hence, this study constitutes an observation and description of the current SARS-CoV-2 genetic and clade situation in Lebanon according to the available sequenced strains.
Collapse
Affiliation(s)
- Nancy Fayad
- School of Pharmacy, Lebanese American University, P.O. Box 36, Byblos, Lebanon; (N.F.); (W.A.H.)
| | - Walid Abi Habib
- School of Pharmacy, Lebanese American University, P.O. Box 36, Byblos, Lebanon; (N.F.); (W.A.H.)
| | - Ahmed Kandeil
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza 12622, Egypt; (A.K.); (R.E.-S.); (M.N.K.)
| | - Rabeh El-Shesheny
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza 12622, Egypt; (A.K.); (R.E.-S.); (M.N.K.)
- St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Mina Nabil Kamel
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza 12622, Egypt; (A.K.); (R.E.-S.); (M.N.K.)
| | - Youmna Mourad
- Al Hadi Laboratory and IVF Center, P.O. Box 44, Beirut, Lebanon;
| | - Jacques Mokhbat
- School of Medicine, Lebanese American University, P.O. Box 36, Byblos, Lebanon;
| | - Ghazi Kayali
- Human Link, Dubai 971, United Arab Emirates;
- Department of Epidemiology, Human Genetics, and Environmental Sciences, University of Texas, Houston, TX 77030, USA
| | - Jimi Goldstein
- Human Link, Dubai 971, United Arab Emirates;
- School of Engineering and Technology, University of Hertfordshire, Hatfield, Hertfordshire AL10 9AB, UK
| | - Jad Abdallah
- School of Pharmacy, Lebanese American University, P.O. Box 36, Byblos, Lebanon; (N.F.); (W.A.H.)
| |
Collapse
|
316
|
Betti M, Bragazzi N, Heffernan J, Kong J, Raad A. Could a New COVID-19 Mutant Strain Undermine Vaccination Efforts? A Mathematical Modelling Approach for Estimating the Spread of B.1.1.7 Using Ontario, Canada, as a Case Study. Vaccines (Basel) 2021; 9:592. [PMID: 34204918 PMCID: PMC8227606 DOI: 10.3390/vaccines9060592] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 12/23/2022] Open
Abstract
Infections represent highly dynamic processes, characterized by evolutionary changes and events that involve both the pathogen and the host. Among infectious agents, viruses, such as Severe Acute Respiratory Syndrome-related Coronavirus type 2 (SARS-CoV-2), the infectious agent responsible for the currently ongoing Coronavirus disease 2019 (COVID-2019) pandemic, have a particularly high mutation rate. Taking into account the mutational landscape of an infectious agent, it is important to shed light on its evolution capability over time. As new, more infectious strains of COVID-19 emerge around the world, it is imperative to estimate when these new strains may overtake the wild-type strain in different populations. Therefore, we developed a general-purpose framework to estimate the time at which a mutant variant is able to take over a wild-type strain during an emerging infectious disease outbreak. In this study, we used COVID-19 as a case-study; however, the model is adaptable to any emerging pathogen. We devised a two-strain mathematical framework to model a wild- and a mutant-type viral population and fit cumulative case data to parameterize the model, using Ontario as a case study. We found that, in the context of under-reporting and the current case levels, a variant strain was unlikely to dominate until March/April 2021. The current non-pharmaceutical interventions in Ontario need to be kept in place longer even with vaccination in order to prevent another outbreak. The spread of a variant strain in Ontario will likely be observed by a widened peak of the daily reported cases. If vaccine efficacy is maintained across strains, then it is still possible to achieve high levels of immunity in the population by the end of 2021. Our findings have important practical implications in terms of public health as policy- and decision-makers are equipped with a mathematical tool that can enable the estimation of the take-over of a mutant strain of an emerging infectious disease.
Collapse
Affiliation(s)
- Mattew Betti
- Department of Mathematics and Computer Science, Mount Allison University, Sackville, NB E4L 1E2, Canada
| | - Nicola Bragazzi
- Department of Mathematics and Statistics, York University, Toronto, ON M3J 1P3, Canada; (N.B.); (J.H.); (J.K.); (A.R.)
- Laboratory for Industrial and Applied Mathematics, York University, Toronto, ON M3J 1P3, Canada
| | - Jane Heffernan
- Department of Mathematics and Statistics, York University, Toronto, ON M3J 1P3, Canada; (N.B.); (J.H.); (J.K.); (A.R.)
- Centre for Disease Modeling, York University, Toronto, ON M3J 1P3, Canada
| | - Jude Kong
- Department of Mathematics and Statistics, York University, Toronto, ON M3J 1P3, Canada; (N.B.); (J.H.); (J.K.); (A.R.)
- Centre for Disease Modeling, York University, Toronto, ON M3J 1P3, Canada
| | - Angie Raad
- Department of Mathematics and Statistics, York University, Toronto, ON M3J 1P3, Canada; (N.B.); (J.H.); (J.K.); (A.R.)
- Centre for Disease Modeling, York University, Toronto, ON M3J 1P3, Canada
| |
Collapse
|
317
|
Norouzi M, Norouzi S, Ruggiero A, Khan MS, Myers S, Kavanagh K, Vemuri R. Type-2 Diabetes as a Risk Factor for Severe COVID-19 Infection. Microorganisms 2021; 9:1211. [PMID: 34205044 PMCID: PMC8229474 DOI: 10.3390/microorganisms9061211] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 05/22/2021] [Accepted: 05/31/2021] [Indexed: 01/08/2023] Open
Abstract
The current outbreak caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), termed coronavirus disease 2019 (COVID-19), has generated a notable challenge for diabetic patients. Overall, people with diabetes have a higher risk of developing different infectious diseases and demonstrate increased mortality. Type 2 diabetes mellitus (T2DM) is a significant risk factor for COVID-19 progression and its severity, poor prognosis, and increased mortality. How diabetes contributes to COVID-19 severity is unclear; however, it may be correlated with the effects of hyperglycemia on systemic inflammatory responses and immune system dysfunction. Using the envelope spike glycoprotein SARS-CoV-2, COVID-19 binds to angiotensin-converting enzyme 2 (ACE2) receptors, a key protein expressed in metabolic organs and tissues such as pancreatic islets. Therefore, it has been suggested that diabetic patients are more susceptible to severe SARS-CoV-2 infections, as glucose metabolism impairments complicate the pathophysiology of COVID-19 disease in these patients. In this review, we provide insight into the COVID-19 disease complications relevant to diabetes and try to focus on the present data and growing concepts surrounding SARS-CoV-2 infections in T2DM patients.
Collapse
Affiliation(s)
- Mahnaz Norouzi
- Department of Genetics, Faculty of Sciences, Shahid Chamran University of Ahvaz, Ahvaz 61355, Iran;
| | - Shaghayegh Norouzi
- School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology University, Melbourne, VIC 3083, Australia
| | - Alistaire Ruggiero
- Department of Pathology, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA; (A.R.); (K.K.)
| | - Mohammad S. Khan
- Center for Precision Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA;
| | - Stephen Myers
- College of Health and Medicine, School of Health Sciences, University of Tasmania, Hobart, TAS 7005, Australia;
| | - Kylie Kavanagh
- Department of Pathology, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA; (A.R.); (K.K.)
- College of Health and Medicine, School of Health Sciences, University of Tasmania, Hobart, TAS 7005, Australia;
| | - Ravichandra Vemuri
- Department of Pathology, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA; (A.R.); (K.K.)
| |
Collapse
|
318
|
Noureddine FY, Chakkour M, El Roz A, Reda J, Al Sahily R, Assi A, Joma M, Salami H, Hashem SJ, Harb B, Salami A, Ghssein G. The Emergence of SARS-CoV-2 Variant(s) and Its Impact on the Prevalence of COVID-19 Cases in the Nabatieh Region, Lebanon. Med Sci (Basel) 2021; 9:medsci9020040. [PMID: 34199617 PMCID: PMC8293406 DOI: 10.3390/medsci9020040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/12/2021] [Accepted: 05/20/2021] [Indexed: 12/21/2022] Open
Abstract
Background: An outbreak of an unknown respiratory illness caused by a novel coronavirus, SARS-CoV-2, emerged in the city of Wuhan in Hubei Province, China, in December 2019 and was referred to as coronavirus disease-2019 (COVID-19). Soon after, it was declared as a global pandemic by the World Health Organization (WHO) in March 2020. SARS-CoV-2 mainly infects the respiratory tract with different outcomes ranging from asymptomatic infection to severe critical illness leading to death. Different SARS-CoV-2 variants are emerging of which three have raised concerns worldwide due to their high transmissibility among populations. Objective: To study the prevalence of COVID-19 in the region of Nabatieh-South Lebanon during the past year and assess the presence of SARS-CoV-2 variants and their effect on the spread of infection during times of lockdown. Methods: In our study, 37,474 nasopharyngeal swab samples were collected and analyzed for the detection of SARS-CoV-2 virus in suspected patients attending a tertiary health care center in South Lebanon during the period between 16 March 2020 and 21 February 2021. Results: The results demonstrated a variation in the prevalence rates ranging from less than 1% during full lockdown of the country to 8.4% upon easing lockdown restrictions and reaching 27.5% after the holidays and 2021 New Year celebrations. Interestingly, a new variant(s) appeared starting January 2021 with a significant positive association between the prevalence of positive tests and the percentage of the variant(s). Conclusions: Our results indicate that the lockdown implemented by the Lebanese officials was an effective intervention to contain COVID-19 spread. Our study also showed that lifting lockdown measures during the holidays, which allowed indoor crowded gatherings to occur, caused a surge in COVID-19 cases and rise in the mortality rates nationwide. More importantly, we confirmed the presence of a highly transmissible SARS-CoV-2 variant(s) circulating in the Lebanese community from at least January 2021 onwards.
Collapse
Affiliation(s)
- Fatima Y. Noureddine
- Medical Analysis Laboratory, Molecular Genetics Unit, Sheikh Ragheb Harb University Hospital (SRHUH), Nabatieh P.O. Box 1700, Lebanon; (F.Y.N.); (J.R.); (R.A.S.); (A.A.); (M.J.); (H.S.); (S.J.H.)
| | - Mohamed Chakkour
- Department of Biology, Faculty of Arts and Sciences, American University of Beirut, Beirut P.O. Box 11-0236, Lebanon;
| | - Ali El Roz
- Department of Biology, Faculty of Sciences, Lebanese University, Nabatieh P.O. Box 6573/14, Lebanon;
| | - Jana Reda
- Medical Analysis Laboratory, Molecular Genetics Unit, Sheikh Ragheb Harb University Hospital (SRHUH), Nabatieh P.O. Box 1700, Lebanon; (F.Y.N.); (J.R.); (R.A.S.); (A.A.); (M.J.); (H.S.); (S.J.H.)
| | - Reem Al Sahily
- Medical Analysis Laboratory, Molecular Genetics Unit, Sheikh Ragheb Harb University Hospital (SRHUH), Nabatieh P.O. Box 1700, Lebanon; (F.Y.N.); (J.R.); (R.A.S.); (A.A.); (M.J.); (H.S.); (S.J.H.)
| | - Ali Assi
- Medical Analysis Laboratory, Molecular Genetics Unit, Sheikh Ragheb Harb University Hospital (SRHUH), Nabatieh P.O. Box 1700, Lebanon; (F.Y.N.); (J.R.); (R.A.S.); (A.A.); (M.J.); (H.S.); (S.J.H.)
| | - Mohamed Joma
- Medical Analysis Laboratory, Molecular Genetics Unit, Sheikh Ragheb Harb University Hospital (SRHUH), Nabatieh P.O. Box 1700, Lebanon; (F.Y.N.); (J.R.); (R.A.S.); (A.A.); (M.J.); (H.S.); (S.J.H.)
| | - Hassan Salami
- Medical Analysis Laboratory, Molecular Genetics Unit, Sheikh Ragheb Harb University Hospital (SRHUH), Nabatieh P.O. Box 1700, Lebanon; (F.Y.N.); (J.R.); (R.A.S.); (A.A.); (M.J.); (H.S.); (S.J.H.)
| | - Sadek J. Hashem
- Medical Analysis Laboratory, Molecular Genetics Unit, Sheikh Ragheb Harb University Hospital (SRHUH), Nabatieh P.O. Box 1700, Lebanon; (F.Y.N.); (J.R.); (R.A.S.); (A.A.); (M.J.); (H.S.); (S.J.H.)
| | - Batoul Harb
- Medical administration, SRHUH, Nabatieh P.O. Box 1700, Lebanon;
| | - Ali Salami
- Department of Mathematics, Faculty of Sciences, Lebanese University, Nabatieh P.O. Box 6573/14, Lebanon
- Correspondence: (A.S.); (G.G.); Tel.: +961-7-761-980 (A.S. & G.G.)
| | - Ghassan Ghssein
- Medical Analysis Laboratory, Molecular Genetics Unit, Sheikh Ragheb Harb University Hospital (SRHUH), Nabatieh P.O. Box 1700, Lebanon; (F.Y.N.); (J.R.); (R.A.S.); (A.A.); (M.J.); (H.S.); (S.J.H.)
- Department of Biology, Faculty of Sciences, Lebanese University, Nabatieh P.O. Box 6573/14, Lebanon;
- Department of Laboratory Sciences, Faculty of Nursing and Health Sciences, Islamic University of Lebanon, Khalde P.O. Box 30014, Lebanon
- Correspondence: (A.S.); (G.G.); Tel.: +961-7-761-980 (A.S. & G.G.)
| |
Collapse
|
319
|
Welsh J. Coronavirus Variants-Will New mRNA Vaccines Meet the Challenge? ENGINEERING (BEIJING, CHINA) 2021; 7:712-714. [PMID: 33898075 PMCID: PMC8053359 DOI: 10.1016/j.eng.2021.04.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
|
320
|
Rodríguez-Carlos A, Jacobo-Delgado YM, Santos-Mena AO, Rivas-Santiago B. Modulation of cathelicidin and defensins by histone deacetylase inhibitors: A potential treatment for multi-drug resistant infectious diseases. Peptides 2021; 140:170527. [PMID: 33744370 DOI: 10.1016/j.peptides.2021.170527] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 02/26/2021] [Accepted: 03/09/2021] [Indexed: 12/12/2022]
Abstract
Infectious diseases are an important growing public health problem, which perspective has worsened due to the increasing number of drug-resistant strains in the last few years. Although diverse solutions have been proposed, one viable solution could be the use of immune system modulators. The induction of the immune response can be increased by histone deacetylase inhibitors (iHDAC), which in turn modulate the chromatin and increase the activation of different cellular pathways and nuclear factors such as STAT3, HIF-1α NF-kB, C/EBPα and, AP-1. These pathways are capable to promote several immune response-related molecules including those with antimicrobial properties such as antimicrobial peptides (AMPs) that lead to the elimination of pathogens including multi drug-resistant strains.
Collapse
Affiliation(s)
- Adrián Rodríguez-Carlos
- Medical Research Unit-Zacatecas, Mexican Institute for Social Security-IMSS, Zacatecas, Mexico
| | | | - Alan O Santos-Mena
- Medical Research Unit-Zacatecas, Mexican Institute for Social Security-IMSS, Zacatecas, Mexico
| | - Bruno Rivas-Santiago
- Medical Research Unit-Zacatecas, Mexican Institute for Social Security-IMSS, Zacatecas, Mexico.
| |
Collapse
|
321
|
Mengist HM, Kombe Kombe AJ, Mekonnen D, Abebaw A, Getachew M, Jin T. Mutations of SARS-CoV-2 spike protein: Implications on immune evasion and vaccine-induced immunity. Semin Immunol 2021; 55:101533. [PMID: 34836774 PMCID: PMC8604694 DOI: 10.1016/j.smim.2021.101533] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 11/09/2021] [Accepted: 11/16/2021] [Indexed: 02/04/2023]
Abstract
Responsible for more than 4.9 million deaths so far, COVID-19, caused by SARS-CoV-2, is instigating devastating effects on the global health care system whose impacts could be longer for the years to come. Acquiring a comprehensive knowledge of host-virus interaction is critical for designing effective vaccines and/or drugs. Understanding the evolution of the virus and the impact of genetic variability on host immune evasion and vaccine efficacy is helpful to design novel strategies to minimize the effects of the emerging variants of concern (VOC). Most vaccines under development and/or in current use target the spike protein owning to its unique function of host receptor binding, relatively conserved nature, potent immunogenicity in inducing neutralizing antibodies, and being a good target of T cell responses. However, emerging SARS-CoV-2 strains are exhibiting variability on the spike protein which could affect the efficacy of vaccines and antibody-based therapies in addition to enhancing viral immune evasion mechanisms. Currently, the degree to which mutations on the spike protein affect immunity and vaccination, and the ability of the current vaccines to confer protection against the emerging variants attracts much attention. This review discusses the implications of SARS-CoV-2 spike protein mutations on immune evasion and vaccine-induced immunity and forward directions which could contribute to future studies focusing on designing effective vaccines and/or immunotherapies to consider viral evolution. Combining vaccines derived from different regions of the spike protein that boost both the humoral and cellular wings of adaptive immunity could be the best options to cope with the emerging VOC.
Collapse
Affiliation(s)
- Hylemariam Mihiretie Mengist
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Arnaud John Kombe Kombe
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science & Technology of China, Hefei, Anhui, 230027, China
| | - Daniel Mekonnen
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science & Technology of China, Hefei, Anhui, 230027, China
| | - Abtie Abebaw
- Department of Medical Laboratory Science, College of Health Science, Debre Markos University, Debre Markos, 269, Ethiopia
| | - Melese Getachew
- Department of Clinical Pharmacy, College of Health Science, Debre Markos University, Debre Markos, 269, Ethiopia
| | - Tengchuan Jin
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China; Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science & Technology of China, Hefei, Anhui, 230027, China; CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Science, Shanghai, 200031, China.
| |
Collapse
|
322
|
Matyášek R, Řehůřková K, Berta Marošiová K, Kovařík A. Mutational Asymmetries in the SARS-CoV-2 Genome May Lead to Increased Hydrophobicity of Virus Proteins. Genes (Basel) 2021; 12:826. [PMID: 34072181 PMCID: PMC8227412 DOI: 10.3390/genes12060826] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/21/2021] [Accepted: 05/25/2021] [Indexed: 12/23/2022] Open
Abstract
The genomic diversity of SARS-CoV-2 has been a focus during the ongoing COVID-19 pandemic. Here, we analyzed the distribution and character of emerging mutations in a data set comprising more than 95,000 virus genomes covering eight major SARS-CoV-2 lineages in the GISAID database, including genotypes arising during COVID-19 therapy. Globally, the C>U transitions and G>U transversions were the most represented mutations, accounting for the majority of single-nucleotide variations. Mutational spectra were not influenced by the time the virus had been circulating in its host or medical treatment. At the amino acid level, we observed about a 2-fold excess of substitutions in favor of hydrophobic amino acids over the reverse. However, most mutations constituting variants of interests of the S-protein (spike) lead to hydrophilic amino acids, counteracting the global trend. The C>U and G>U substitutions altered codons towards increased amino acid hydrophobicity values in more than 80% of cases. The bias is explained by the existing differences in the codon composition for amino acids bearing contrasting biochemical properties. Mutation asymmetries apparently influence the biochemical features of SARS CoV-2 proteins, which may impact protein-protein interactions, fusion of viral and cellular membranes, and virion assembly.
Collapse
Affiliation(s)
| | | | | | - Aleš Kovařík
- Laboratory of Molecular Epigenetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 61265 Brno, Czech Republic; (R.M.); (K.Ř.); (K.B.M.)
| |
Collapse
|
323
|
Akkiz H. Implications of the Novel Mutations in the SARS-CoV-2 Genome for Transmission, Disease Severity, and the Vaccine Development. Front Med (Lausanne) 2021; 8:636532. [PMID: 34026780 PMCID: PMC8137987 DOI: 10.3389/fmed.2021.636532] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 03/25/2021] [Indexed: 12/15/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative virus of the coronavirus disease 2019 (COVID-19), has been identified in China in late December 2019. SARS-CoV-2 is an enveloped, positive-sense, single-stranded RNA betacoronavirus of the Coronaviridae family. Coronaviruses have genetic proofreading mechanism that corrects copying mistakes and thus SARS-CoV-2 genetic diversity is extremely low. Despite lower mutation rate of the virus, researchers have detected a total of 12,706 mutations in the SARS-CoV-2 genome, the majority of which were single nucleotide polymorphisms. Sequencing data revealed that the SARS-CoV-2 accumulates two-single nucleotide mutations per month in its genome. Recently, an amino acid aspartate (D) to glycine (G) (D614G) mutation due to an adenine to guanine nucleotide change at position 23,403 at the 614th amino-acid position of the spike protein in the original reference genotype has been identified. The SARS-CoV-2 viruses that carry the spike protein D614G mutation have become dominant variant around the world. The D614G mutation has been found to be associated with 3 other mutations in the spike protein. Clinical and pseudovirus experimental studies have demonstrated that the spike protein D614G mutation alters the virus phenotype. However, the impact of the mutation on the rate of transmission between people, disease severity and the vaccine and therapeutic development remains unclear. Three variants of SARS-CoV-2 have recently been identified. They are B.1.1.7 (UK) variant, B.1.351 (N501Y.V2, South African) variant and B.1.1.28 (Brazilian) variant. Epidemiological data suggest that they have a higher transmissibility than the original variant. There are reports that some vaccines are less efficacious against the B.1.351 variant. This review article discusses the effects of novel mutations in the SARS-CoV-2 genome on transmission, clinical outcomes and vaccine development.
Collapse
Affiliation(s)
- Hikmet Akkiz
- Department of Gastroenterology and Hepatology, The University of Çukurova, Adana, Turkey
| |
Collapse
|
324
|
Correlations Between Covid 19 Symptoms and Risk of Pulmonary Embolism. ARS MEDICA TOMITANA 2021. [DOI: 10.2478/arsm-2021-0016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Abstract
The World Health Organization (WHO) declares COVID 19 pandemic in March 2020. Each pandemic wave had different clinical and biological characteristics, the expression of the disease being correlated with the dominant viral variant. Patients with COVID 19 have a pro-coagulant status, which predisposes them to thromboembolic complications.
The current study aims to systematize the symptoms of COVID 19 and to highlight its relationship with the suspicion and confirmation of the diagnosis of pulmonary thromboembolism.
We performed a descriptive retrospective study on patients with COVID 19 for a period of 4 months (September-December 2021). During this period, 183 were hospitalized with COVID 19 and 53 were enrolled in the study. Incidence of COVID 19 was 63% (33) in men and 37% for women. The average age of women was 68 years compared to men where the average age was 61 years. We observed a higher incidence of the disease in men in the 41–60 age group (39% of all men), while, in women, the most affected age group was 61–80 years (60% of all women). Pulmonary thromboembolism (PE) was diagnosed by pulmonary artery angiography, with an incidence of 57% in the study group affecting 60% of women and 55% of men.
The symptoms are dominated by fever, cough and dyspnea. Fever was present in 65% of women and 55% of men, cough was present in 65% of women and 79% of men, while dyspnea involved 40% of women and 42% of men.
In conclusion, PE was a common complication in COVID patients that contributed to adverse outcome and higher mortality. The symptoms were not specific to minor forms of the disease.
Collapse
|
325
|
Devnath P, Masud H. Nipah virus: a potential pandemic agent in the context of the current severe acute respiratory syndrome coronavirus 2 pandemic. New Microbes New Infect 2021; 41:100873. [PMID: 33758670 PMCID: PMC7972828 DOI: 10.1016/j.nmni.2021.100873] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 02/23/2021] [Accepted: 03/12/2021] [Indexed: 02/06/2023] Open
Abstract
For centuries, zoonotic diseases have been responsible for various outbreaks resulting in the deaths of millions of people. The best example of this is the current coronavirus disease 2019 (COVID-19) pandemic. Like severe acute respiratory syndrome coronavirus, Nipah virus is another deadly virus which has caused several outbreaks in the last few years. Though it causes a low number of infections, disease severity results in a higher death rate. In the context of the recent COVID-19 pandemic, we speculate that many countries will be unable to deal with the sudden onset of such a viral outbreak. Thus, further research and attention to the virus are needed to address future outbreaks.
Collapse
Affiliation(s)
- P. Devnath
- Department of Microbiology, Faculty of Sciences, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - H.M.A.A. Masud
- Department of Microbiology, Faculty of Biological Sciences, University of Chittagong, Chattogram, Bangladesh
| |
Collapse
|
326
|
Van Egeren D, Novokhodko A, Stoddard M, Tran U, Zetter B, Rogers M, Pentelute BL, Carlson JM, Hixon M, Joseph-McCarthy D, Chakravarty A. Risk of rapid evolutionary escape from biomedical interventions targeting SARS-CoV-2 spike protein. PLoS One 2021; 16:e0250780. [PMID: 33909660 PMCID: PMC8081162 DOI: 10.1371/journal.pone.0250780] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 04/14/2021] [Indexed: 12/19/2022] Open
Abstract
The spike protein receptor-binding domain (RBD) of SARS-CoV-2 is the molecular target for many vaccines and antibody-based prophylactics aimed at bringing COVID-19 under control. Such a narrow molecular focus raises the specter of viral immune evasion as a potential failure mode for these biomedical interventions. With the emergence of new strains of SARS-CoV-2 with altered transmissibility and immune evasion potential, a critical question is this: how easily can the virus escape neutralizing antibodies (nAbs) targeting the spike RBD? To answer this question, we combined an analysis of the RBD structure-function with an evolutionary modeling framework. Our structure-function analysis revealed that epitopes for RBD-targeting nAbs overlap one another substantially and can be evaded by escape mutants with ACE2 affinities comparable to the wild type, that are observed in sequence surveillance data and infect cells in vitro. This suggests that the fitness cost of nAb-evading mutations is low. We then used evolutionary modeling to predict the frequency of immune escape before and after the widespread presence of nAbs due to vaccines, passive immunization or natural immunity. Our modeling suggests that SARS-CoV-2 mutants with one or two mildly deleterious mutations are expected to exist in high numbers due to neutral genetic variation, and consequently resistance to vaccines or other prophylactics that rely on one or two antibodies for protection can develop quickly -and repeatedly- under positive selection. Predicted resistance timelines are comparable to those of the decay kinetics of nAbs raised against vaccinal or natural antigens, raising a second potential mechanism for loss of immunity in the population. Strategies for viral elimination should therefore be diversified across molecular targets and therapeutic modalities.
Collapse
Affiliation(s)
- Debra Van Egeren
- Department of Systems Biology, Harvard Medical School, Boston, MA, United States of America
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, United States of America
- Stem Cell Program, Boston Children's Hospital, Boston, MA, United States of America
| | - Alexander Novokhodko
- Department of Mechanical Engineering, University of Washington, Seattle, WA, United States of America
| | | | - Uyen Tran
- Fractal Therapeutics, Cambridge, MA, United States of America
| | - Bruce Zetter
- Vascular Biology Program, Boston Children's Hospital, Boston, MA, United States of America
| | - Michael Rogers
- Vascular Biology Program, Boston Children's Hospital, Boston, MA, United States of America
| | - Bradley L Pentelute
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, United States of America
| | | | - Mark Hixon
- Mark S. Hixon Consulting, LLC, San Diego, CA, United States of America
| | | | | |
Collapse
|
327
|
Cassedy A, Parle-McDermott A, O’Kennedy R. Virus Detection: A Review of the Current and Emerging Molecular and Immunological Methods. Front Mol Biosci 2021; 8:637559. [PMID: 33959631 PMCID: PMC8093571 DOI: 10.3389/fmolb.2021.637559] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 02/01/2021] [Indexed: 12/14/2022] Open
Abstract
Viruses are ubiquitous in the environment. While many impart no deleterious effects on their hosts, several are major pathogens. This risk of pathogenicity, alongside the fact that many viruses can rapidly mutate highlights the need for suitable, rapid diagnostic measures. This review provides a critical analysis of widely used methods and examines their advantages and limitations. Currently, nucleic-acid detection and immunoassay methods are among the most popular means for quickly identifying viral infection directly from source. Nucleic acid-based detection generally offers high sensitivity, but can be time-consuming, costly, and require trained staff. The use of isothermal-based amplification systems for detection could aid in the reduction of results turnaround and equipment-associated costs, making them appealing for point-of-use applications, or when high volume/fast turnaround testing is required. Alternatively, immunoassays offer robustness and reduced costs. Furthermore, some immunoassay formats, such as those using lateral-flow technology, can generate results very rapidly. However, immunoassays typically cannot achieve comparable sensitivity to nucleic acid-based detection methods. Alongside these methods, the application of next-generation sequencing can provide highly specific results. In addition, the ability to sequence large numbers of viral genomes would provide researchers with enhanced information and assist in tracing infections.
Collapse
Affiliation(s)
- A. Cassedy
- School of Biotechnology, Dublin City University, Dublin, Ireland
| | | | - R. O’Kennedy
- School of Biotechnology, Dublin City University, Dublin, Ireland
- Hamad Bin Khalifa University, Doha, Qatar
- Qatar Foundation, Doha, Qatar
| |
Collapse
|
328
|
Molecular Dynamic Simulation Search for Possible Amphiphilic Drug Discovery for Covid-19. Molecules 2021; 26:molecules26082214. [PMID: 33921378 PMCID: PMC8069104 DOI: 10.3390/molecules26082214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/31/2021] [Accepted: 04/02/2021] [Indexed: 11/17/2022] Open
Abstract
To determine whether quaternary ammonium (k21) binds to Severe Acute Respiratory Syndrome–Coronavirus 2 (SARS-CoV-2) spike protein via computational molecular docking simulations, the crystal structure of the SARS-CoV-2 spike receptor-binding domain complexed with ACE-2 (PDB ID: 6LZG) was downloaded from RCSB PD and prepared using Schrodinger 2019-4. The entry of SARS-CoV-2 inside humans is through lung tissues with a pH of 7.38–7.42. A two-dimensional structure of k-21 was drawn using the 2D-sketcher of Maestro 12.2 and trimmed of C18 alkyl chains from all four arms with the assumption that the core moiety k-21 was without C18. The immunogenic potential of k21/QA was conducted using the C-ImmSim server for a position-specific scoring matrix analyzing the human host immune system response. Therapeutic probability was shown using prediction models with negative and positive control drugs. Negative scores show that the binding of a quaternary ammonium compound with the spike protein’s binding site is favorable. The drug molecule has a large Root Mean Square Deviation fluctuation due to the less complex geometry of the drug molecule, which is suggestive of a profound impact on the regular geometry of a viral protein. There is high concentration of Immunoglobulin M/Immunoglobulin G, which is concomitant of virus reduction. The proposed drug formulation based on quaternary ammonium to characterize affinity to the SARS-CoV-2 spike protein using simulation and computational immunological methods has shown promising findings.
Collapse
|
329
|
Al-Hatamleh MAI, Hatmal MM, Alshaer W, Rahman ENSEA, Mohd-Zahid MH, Alhaj-Qasem DM, Yean CY, Alias IZ, Jaafar J, Ferji K, Six JL, Uskoković V, Yabu H, Mohamud R. COVID-19 infection and nanomedicine applications for development of vaccines and therapeutics: An overview and future perspectives based on polymersomes. Eur J Pharmacol 2021; 896:173930. [PMID: 33545157 PMCID: PMC7857087 DOI: 10.1016/j.ejphar.2021.173930] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 01/23/2021] [Accepted: 01/29/2021] [Indexed: 12/16/2022]
Abstract
The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), which emerged in December 2019 and caused the coronavirus disease 2019 (COVID-19) pandemic, took the world by surprise with an unprecedented public health emergency. Since this pandemic began, extraordinary efforts have been made by scientists to understand the pathogenesis of COVID-19, and to fight the infection by providing various preventive, diagnostic and treatment opportunities based on either novel hypotheses or past experiences. Despite all the achievements, COVID-19 continues to be an accelerating health threat with no specifically approved vaccine or therapy. This review highlights the recent advances in COVID-19 infection, with a particular emphasis on nanomedicine applications that can help in the development of effective vaccines or therapeutics against COVID-19. A novel future perspective has been proposed in this review based on utilizing polymersome nano-objects for effectively suppressing the cytokine storm, which may reduce the severity of COVID-19 infection.
Collapse
Affiliation(s)
- Mohammad A I Al-Hatamleh
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, 16150, Kelantan, Malaysia
| | - Ma'mon M Hatmal
- Department of Medical Laboratory Sciences, Faculty of Applied Health Sciences, The Hashemite University, P.O. Box 330127, Zarqa, 13133, Jordan
| | - Walhan Alshaer
- Cell Therapy Center (CTC), The University of Jordan, Amman, 11942, Jordan
| | - Engku Nur Syafirah E A Rahman
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, 16150, Kelantan, Malaysia
| | - Manali Haniti Mohd-Zahid
- Department of Chemical Pathology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, 16150, Kelantan, Malaysia
| | | | - Chan Yean Yean
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, 16150, Kelantan, Malaysia; Hospital Universiti Sains Malaysia, Kubang Kerian, 16150, Kelantan, Malaysia
| | - Iskandar Z Alias
- Department of Chemical Pathology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, 16150, Kelantan, Malaysia; Hospital Universiti Sains Malaysia, Kubang Kerian, 16150, Kelantan, Malaysia
| | - Juhana Jaafar
- Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai, 81310, Johor, Malaysia
| | - Khalid Ferji
- Université de Lorraine, CNRS, LCPM, F-5400, Nancy, France
| | - Jean-Luc Six
- Université de Lorraine, CNRS, LCPM, F-5400, Nancy, France
| | | | - Hiroshi Yabu
- WPI-Advanced Institute for Materials Research (AIMR), Tohoku University, 2-1-1, Katahira, Aoba-Ku, Sendai, 980-8577, Japan
| | - Rohimah Mohamud
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, 16150, Kelantan, Malaysia; Hospital Universiti Sains Malaysia, Kubang Kerian, 16150, Kelantan, Malaysia.
| |
Collapse
|
330
|
Kaur N, Singh R, Dar Z, Bijarnia RK, Dhingra N, Kaur T. Genetic comparison among various coronavirus strains for the identification of potential vaccine targets of SARS-CoV2. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2021; 89:104490. [PMID: 32745811 PMCID: PMC7395230 DOI: 10.1016/j.meegid.2020.104490] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/10/2020] [Accepted: 07/29/2020] [Indexed: 02/07/2023]
Abstract
On-going pandemic pneumonia outbreak COVID-19 has raised an urgent public health issue worldwide impacting millions of people with a continuous increase in both morbidity and mortality. The causative agent of this disease is identified and named as SARS-CoV2 because of its genetic relatedness to SARS-CoV species that was responsible for the 2003 coronavirus outbreak. The immense spread of the disease in a very small period demands urgent development of therapeutic and prophylactic interventions for the treatment of SARS-CoV2 infected patients. A plethora of research is being conducted globally on this novel coronavirus strain to gain knowledge about its origin, evolutionary history, and phylogeny. This review is an effort to compare genetic similarities and diversifications among coronavirus strains, which can hint towards the susceptible antigen targets of SARS-CoV2 to come up with the potential therapeutic and prophylactic interventions for the prevention of this public threat.
Collapse
Affiliation(s)
- Navpreet Kaur
- Department of Biophysics, Panjab University, Chandigarh, India
| | - Rimaljot Singh
- Department of Biophysics, Panjab University, Chandigarh, India
| | - Zahid Dar
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | | | - Neelima Dhingra
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Tanzeer Kaur
- Department of Biophysics, Panjab University, Chandigarh, India.
| |
Collapse
|
331
|
Dos Santos WG. Impact of virus genetic variability and host immunity for the success of COVID-19 vaccines. Biomed Pharmacother 2021; 136:111272. [PMID: 33486212 PMCID: PMC7802525 DOI: 10.1016/j.biopha.2021.111272] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/09/2020] [Accepted: 12/26/2020] [Indexed: 01/08/2023] Open
Abstract
Coronavirus disease 19 (COVID-19) continues to challenge most scientists in the search of an effective way to either prevent infection or to avoid spreading of the disease. As result of global efforts some advances have been reached and we are more prepared today than we were at the beginning of the pandemic, however not enough to stop the transmission, and many questions remain unanswered. The possibility of reinfection of recovered individuals, the duration of the immunity, the impact of SARS-CoV-2 mutations in the spreading of the disease as well as the degree of protection that a potential vaccine could have are some of the issues under debate. A number of vaccines are under development using different platforms and clinical trials are ongoing in different countries, but even if they are licensed it will need time until reach a definite conclusion about their real safety and efficacy. Herein we discuss the different strategies used in the development of COVID-19 vaccines, the questions underlying the type of immune response they may elicit, the consequences that new mutations may have in the generation of sub-strains of SARS-CoV-2 and their impact and challenges for the efficacy of potential vaccines in a scenario postpandemic.
Collapse
Affiliation(s)
- Wagner Gouvêa Dos Santos
- Laboratory of Genetics and Molecular Biology, Department of Biomedicine, Academic Unit of Health Sciences, Federal University of Jataí-UFJ, BR 364, km 195, nº 3800, CEP 75801-615, Jataí, GO, Brazil.
| |
Collapse
|
332
|
Jafari Porzani S, Konur O, Nowruzi B. Cyanobacterial natural products as sources for antiviral drug discovery against COVID-19. J Biomol Struct Dyn 2021; 40:7629-7644. [PMID: 33749496 DOI: 10.1080/07391102.2021.1899050] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The recent Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), positive-sense RNA viruses, originated from Wuhan City in December 2019 and propagated widely globally. Hence, the disease caused by this virus has been declared as a global pandemic by the WHO. As of 18th February 2021, at least seven different vaccines across three platforms have been rolled out in countries and more than 200 additional vaccine candidates have been in development, of which more than 60 are at the stage of the clinical development. So far, Most of the approved vaccine manufacturers are Pfizer, AstraZeneca, and Serum Institute of India, which have been finalized by WHO. Synthetic drug-associated complications have evoked scientific attention for natural product-based drugs. There has been a surge in the antiviral compounds from natural resources along with some therapies. Cyanobacteria are the fruitful reservoir of many metabolites like sulfated polysaccharides and lectins that possess strong antiviral activities and immunity boosting effects. However, the research in this field has been relatively under-developed. The current research highlights important features of cyanobacterial antiviral biomaterials, benefits and drawbacks of cyanobacterial drugs, challenges, future perspectives as well as overview of drugs against COVID-19. In addition, we have described mutated variants and transmission rate of coronaviruses. The current research suggests that cyanobacterial species and their extracts have promising applications as potentially antiviral drug biomaterials against COVID-19.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Samaneh Jafari Porzani
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Ozcan Konur
- Formerly, Ankara Yildirim Beyazit University, Ankara, Turkey
| | - Bahareh Nowruzi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
333
|
Liu L, Hu J, Hou Y, Tao Z, Chen Z, Chen K. Pit latrines may be a potential risk in rural China and low-income countries when dealing with COVID-19. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 761:143283. [PMID: 33162149 PMCID: PMC7598438 DOI: 10.1016/j.scitotenv.2020.143283] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/23/2020] [Accepted: 10/24/2020] [Indexed: 05/17/2023]
Abstract
According to the latest reports, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which caused coronavirus disease 2019 (COVID-19), was successfully isolated from the excreta (stool and urine) of COVID-19 patients, suggesting SARS-CoV-2 could be transmitted through excreta contaminated water. As pit latrines and the use of untreated excreta as fertilizer were common in rural China, we surveyed 27 villages of Jiangxi and Hubei provinces and found that pit latrines could be a potential source of SARS-CoV-2 water pollution. Recently, bats have been widely recognized as the source of SARS-CoV-2. There were many possible intermediate hosts of SARS-CoV-2, including pangolin, snake, bird and fish, but which one was still not clear exactly. Here, we proposed a hypothesis to illustrate the mechanism that SARS-CoV-2 might spread from the excreta of infected humans in pit latrines to potential animal hosts, thus becoming a sustainable source of infection in rural China. Therefore, we believe that abolishing pit latrines and banning the use of untreated excreta as fertilizer can improve the local living environment and effectively prevent COVID-19 and other potential waterborne diseases that could emanate from the excreta of infected persons. Although this study focused on rural areas in China, the results could also be applied to low-income countries, especially in Africa.
Collapse
Affiliation(s)
- Lilong Liu
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junyi Hu
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yaxin Hou
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhen Tao
- Department of Radiation Oncology and Cyberknife Center, Tianjin Medical University Cancer institute & Hospital, Tianjin, China
| | - Zhaohui Chen
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ke Chen
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
334
|
Cruz-González A, Muñoz-Velasco I, Cottom-Salas W, Becerra A, Campillo-Balderas JA, Hernández-Morales R, Vázquez-Salazar A, Jácome R, Lazcano A. Structural analysis of viral ExoN domains reveals polyphyletic hijacking events. PLoS One 2021; 16:e0246981. [PMID: 33730017 PMCID: PMC7968707 DOI: 10.1371/journal.pone.0246981] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 02/24/2021] [Indexed: 12/15/2022] Open
Abstract
Nidoviruses and arenaviruses are the only known RNA viruses encoding a 3’-5’ exonuclease domain (ExoN). The proofreading activity of the ExoN domain has played a key role in the growth of nidoviral genomes, while in arenaviruses this domain partakes in the suppression of the host innate immune signaling. Sequence and structural homology analyses suggest that these proteins have been hijacked from cellular hosts many times. Analysis of the available nidoviral ExoN sequences reveals a high conservation level comparable to that of the viral RNA-dependent RNA polymerases (RdRp), which are the most conserved viral proteins. Two highly preserved zinc fingers are present in all nidoviral exonucleases, while in the arenaviral protein only one zinc finger can be identified. This is in sharp contrast with the reported lack of zinc fingers in cellular ExoNs, and opens the possibility of therapeutic strategies in the struggle against COVID-19.
Collapse
Affiliation(s)
- Adrián Cruz-González
- Facultad de Ciencias, Universidad Nacional Autónoma de México, México City, México
| | - Israel Muñoz-Velasco
- Facultad de Ciencias, Universidad Nacional Autónoma de México, México City, México
| | - Wolfgang Cottom-Salas
- Facultad de Ciencias, Universidad Nacional Autónoma de México, México City, México
- Escuela Nacional Preparatoria, Plantel 8 Miguel E. Schulz, Universidad Nacional Autónoma de México, México City, México
| | - Arturo Becerra
- Facultad de Ciencias, Universidad Nacional Autónoma de México, México City, México
| | | | | | - Alberto Vázquez-Salazar
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, California, United States of America
| | - Rodrigo Jácome
- Facultad de Ciencias, Universidad Nacional Autónoma de México, México City, México
- * E-mail: (AL); (RJ)
| | - Antonio Lazcano
- Facultad de Ciencias, Universidad Nacional Autónoma de México, México City, México
- El Colegio Nacional, México City, México
- * E-mail: (AL); (RJ)
| |
Collapse
|
335
|
Ertas YN, Mahmoodi M, Shahabipour F, Jahed V, Diltemiz SE, Tutar R, Ashammakhi N. Role of biomaterials in the diagnosis, prevention, treatment, and study of corona virus disease 2019 (COVID-19). EMERGENT MATERIALS 2021; 4:35-55. [PMID: 33748672 PMCID: PMC7962632 DOI: 10.1007/s42247-021-00165-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 01/12/2021] [Indexed: 05/02/2023]
Abstract
Recently emerged novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the resulting corona virus disease 2019 (COVID-19) led to urgent search for methods to prevent and treat COVID-19. Among important disciplines that were mobilized is the biomaterials science and engineering. Biomaterials offer a range of possibilities to develop disease models, protective, diagnostic, therapeutic, monitoring measures, and vaccines. Among the most important contributions made so far from this field are tissue engineering, organoids, and organ-on-a-chip systems, which have been the important frontiers in developing tissue models for viral infection studies. Also, due to low bioavailability and limited circulation time of conventional antiviral drugs, controlled and targeted drug delivery could be applied alternatively. Fortunately, at the time of writing this paper, we have two successful vaccines and new at-home detection platforms. In this paper, we aim to review recent advances of biomaterial-based platforms for protection, diagnosis, vaccination, therapeutics, and monitoring of SARS-CoV-2 and discuss challenges and possible future research directions in this field.
Collapse
Affiliation(s)
- Yavuz Nuri Ertas
- Department of Biomedical Engineering, Erciyes University, Kayseri, Turkey
- ERNAM-Nanotechnology Research and Application Center, Erciyes University, Kayseri, Turkey
| | - Mahboobeh Mahmoodi
- Department of Bioengineering, Henry Samueli School of Engineering, University of California, Los Angeles, CA USA
- Department of Biomedical Engineering, Yazd Branch, Islamic Azad University, Yazd, Iran
| | - Fahimeh Shahabipour
- National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, Iran
- Skin Research Center, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Vahid Jahed
- Biomedical Engineering Division, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| | | | - Rumeysa Tutar
- Department of Chemistry, Faculty of Engineering, Istanbul University-Cerrahpasa, Avcilar, Istanbul, Turkey
| | - Nureddin Ashammakhi
- Department of Bioengineering, Henry Samueli School of Engineering, University of California, Los Angeles, CA USA
- Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI USA
| |
Collapse
|
336
|
The Worldwide Search for the New Mutations in the RNA-Directed RNA Polymerase Domain of SARS-CoV-2. MACEDONIAN VETERINARY REVIEW 2021. [DOI: 10.2478/macvetrev-2020-0036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an RNA virus, responsible for the current pandemic outbreak. In total, 200 genomes of the SARS-CoV-2 strains from four host organisms have been analyzed. To investigate the presence of the new mutations in the RNA-directed RNA Polymerase (RdRp) of SARS-CoV-2, we analyzed sequences isolated from different hosts, with particular emphasis on human isolates. We performed a search for the new mutations of the RdRp proteins and study how those newly identified mutations could influence RdRp protein stability. Our results revealed 25 mutations in Rhinolophus sinicus, 1 in Mustela lutreola, 6 in Homo sapiens, and none in Mus musculus RdRp proteins of the SARS-CoV-2 isolates. We found that P323L is the most common stabilising radical mutation in human isolates. Also, we described several unique mutations, specific for studied hosts. Therefore, our data suggest that new and emerging variants of the SARS-CoV-2 RdRp have to be considered for the development of effective therapeutic agents and treatments.
Collapse
|
337
|
Reshamwala SMS, Likhite V, Degani MS, Deb SS, Noronha SB. Mutations in SARS-CoV-2 nsp7 and nsp8 proteins and their predicted impact on replication/transcription complex structure. J Med Virol 2021; 93:4616-4619. [PMID: 33433004 PMCID: PMC8012999 DOI: 10.1002/jmv.26791] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 12/18/2020] [Accepted: 01/08/2021] [Indexed: 01/06/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) RNA‐dependent RNA polymerase (RdRp) has been identified to be a mutation hot spot, with the P323L mutation being commonly observed in viral genomes isolated from North America. RdRp forms a complex with nonstructural proteins nsp7 and nsp8 to form the minimal replication/transcription machinery required for genome replication. As mutations in RdRp may affect formation of the RdRp–nsp7–nsp8 supercomplex, we analyzed viral genomes to identify mutations in nsp7 and nsp8 protein sequences. Based on in silico analysis of predicted structures of the supercomplex comprising of native and mutated proteins, we demonstrate that specific mutations in nsp7 and nsp8 proteins may have a role in stabilization of the replication/transcription complex.
Collapse
Affiliation(s)
- Shamlan M S Reshamwala
- DBT-ICT Centre for Energy Biosciences, Institute of Chemical Technology, Mumbai, Maharashtra, India
| | - Vishakha Likhite
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, Maharashtra, India
| | - Mariam S Degani
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, Maharashtra, India
| | - Shalini S Deb
- DBT-ICT Centre for Energy Biosciences, Institute of Chemical Technology, Mumbai, Maharashtra, India
| | - Santosh B Noronha
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
| |
Collapse
|
338
|
Kumar M, Mazumder P, Mohapatra S, Kumar Thakur A, Dhangar K, Taki K, Mukherjee S, Kumar Patel A, Bhattacharya P, Mohapatra P, Rinklebe J, Kitajima M, Hai FI, Khursheed A, Furumai H, Sonne C, Kuroda K. A chronicle of SARS-CoV-2: Seasonality, environmental fate, transport, inactivation, and antiviral drug resistance. JOURNAL OF HAZARDOUS MATERIALS 2021; 405:124043. [PMID: 33268203 PMCID: PMC7536132 DOI: 10.1016/j.jhazmat.2020.124043] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 09/11/2020] [Accepted: 09/17/2020] [Indexed: 05/08/2023]
Abstract
In this review, we present the environmental perspectives of the viruses and antiviral drugs related to SARS-CoV-2. The present review paper discusses occurrence, fate, transport, susceptibility, and inactivation mechanisms of viruses in the environment as well as environmental occurrence and fate of antiviral drugs, and prospects (prevalence and occurrence) of antiviral drug resistance (both antiviral drug resistant viruses and antiviral resistance in the human). During winter, the number of viral disease cases and environmental occurrence of antiviral drug surge due to various biotic and abiotic factors such as transmission pathways, human behaviour, susceptibility, and immunity as well as cold climatic conditions. Adsorption and persistence critically determine the fate and transport of viruses in the environment. Inactivation and disinfection of virus include UV, alcohol, and other chemical-base methods but the susceptibility of virus against these methods varies. Wastewater treatment plants (WWTPs) are major reserviors of antiviral drugs and their metabolites and transformation products. Ecotoxicity of antiviral drug residues against aquatic organisms have been reported, however more threatening is the development of antiviral resistance, both in humans and in wild animal reservoirs. In particular, emergence of antiviral drug-resistant viruses via exposure of wild animals to high loads of antiviral residues during the current pandemic needs further evaluation.
Collapse
Affiliation(s)
- Manish Kumar
- Discipline of Earth Science, Indian Institute of Technology Gandhinagar, Gujarat 382 355, India.
| | - Payal Mazumder
- Centre for the Environment, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Sanjeeb Mohapatra
- Environmnetal Science and Engineering Department, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Alok Kumar Thakur
- Discipline of Earth Science, Indian Institute of Technology Gandhinagar, Gujarat 382 355, India
| | - Kiran Dhangar
- Discipline of Earth Science, Indian Institute of Technology Gandhinagar, Gujarat 382 355, India
| | - Kaling Taki
- Discipline of Civil Engineering, Indian Institute of Technology Gandhinagar, Gujarat 382 355, India
| | - Santanu Mukherjee
- Discipline of Earth Science, Indian Institute of Technology Gandhinagar, Gujarat 382 355, India
| | - Arbind Kumar Patel
- Discipline of Earth Science, Indian Institute of Technology Gandhinagar, Gujarat 382 355, India
| | - Prosun Bhattacharya
- Department of Sustainable Development, Environmental Science and Engineering, KTH Royal Institute of Technology, Teknikringen 10B, SE-10044 Stockholm, Sweden
| | - Pranab Mohapatra
- Discipline of Civil Engineering, Indian Institute of Technology Gandhinagar, Gujarat 382 355, India
| | - Jörg Rinklebe
- Laboratory of Soil- and Groundwater-Management, School of Architecture and Civil Engineering, University of Wuppertal, Wuppertal 42285, Germany; Department of Environment, Energy and Geoinformatics, University of Sejong, Seoul, South Korea
| | - Masaaki Kitajima
- Division of Environmental Engineering, Hokkaido University, Hokkaido 060-8628, Japan
| | - Faisal I Hai
- Wollongong, Strategic Water Infrastructure Laboratory, School of Civil, Mining and Environmental Engineering, University of Wollongong, NSW 2522, Australia
| | - Anwar Khursheed
- Department of Civil Engineering, King Saud University, Riyadh, Saudi Arabia
| | - Hiroaki Furumai
- Research Centre for Water Environment Technology, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Christian Sonne
- Department of Bioscience, Aarhus University, Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark
| | - Keisuke Kuroda
- Department of Environmental and Civil Engineering, Toyama Prefectural University, Toyama 9390398, Japan
| |
Collapse
|
339
|
Abdullahi IN, Emeribe AU, Adekola HA, Abubakar SD, Dangana A, Shuwa HA, Nwoba ST, Mustapha JO, Haruna MT, Olowookere KA, Animasaun OS, Ugwu CE, Onoja SO, Gadama AS, Mohammed M, Daneji IM, Amadu DO, Ghamba PE, Onukegbe NB, Shehu MS, Isomah C, Babayo A, Ahmad AEF. Leveraging on the genomics and immunopathology of SARS-CoV-2 for vaccines development: prospects and challenges. Hum Vaccin Immunother 2021; 17:620-637. [PMID: 32936732 PMCID: PMC7993231 DOI: 10.1080/21645515.2020.1812313] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 08/10/2020] [Accepted: 08/11/2020] [Indexed: 12/13/2022] Open
Abstract
The incidence and case-fatality rates (CFRs) of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection, the etiological agent for Coronavirus Disease 2019 (COVID-19), have been rising unabated. Even though the entire world has been implementing infection prevention and control measures, the pandemic continues to spread. It has been widely accepted that preventive vaccination strategies are the public health measures for countering this pandemic. This study critically reviews the latest scientific advancement in genomics, replication pattern, pathogenesis, and immunopathology of SARS-CoV-2 infection and how these concepts could be used in the development of vaccines. We also offer a detailed discussion on the anticipated potency, efficacy, safety, and pharmaco-economic issues that are and will be associated with candidate COVID-19 vaccines.
Collapse
Affiliation(s)
- Idris Nasir Abdullahi
- Department of Medical Laboratory Science, Faculty of Allied Health Sciences, College of Medical Sciences, Ahmadu Bello University, Zaria, Nigeria
| | - Anthony Uchenna Emeribe
- Department of Medical Laboratory Science, Faculty of Allied Medical Sciences, University of Calabar, Calabar, Nigeria
| | | | - Sharafudeen Dahiru Abubakar
- Department of Medical Laboratory Science, Faculty of Allied Health Sciences, College of Medical Sciences, Ahmadu Bello University, Zaria, Nigeria
| | - Amos Dangana
- Department of Medical Laboratory Services, University of Abuja Teaching Hospital, Gwagwalada, Abuja, Nigeria
| | - Halima Ali Shuwa
- Lydia Becker Institute of Immunology, Manchester Collaborative Center for Inflammation Research, Faculty of Biology, Medicine and Health, The University of Manchester, UK
| | | | - Jelili Olaide Mustapha
- Biological Sciences Department, Faculty of Science, University of Alberta, Edmonton, Canada
| | | | - Kafayat Adepeju Olowookere
- Department of Medical Laboratory Services, Ladoke Akintola University of Technology Teaching Hospital, Ogbomoso, Nigeria
| | - Olawale Sunday Animasaun
- Nigeria Field Epidemiology and Laboratory Training Programme, African Field Epidemiology Network, Abuja, Nigeria
| | - Charles Egede Ugwu
- Department of Medical Laboratory Science, Ebonyi State University, Abakaliki, Nigeria
| | | | - Abdullahi Sani Gadama
- Department of Medical Microbiology and Parasitology, Faculty of Clinical Sciences, Bayero University, Kano, Nigeria
| | - Musa Mohammed
- Department of Medicine, Immunology Unit, Ahmadu Bello University, Zaria, Nigeria
| | - Isa Muhammad Daneji
- Department of Medical Microbiology and Parasitology, Faculty of Clinical Sciences, Bayero University, Kano, Nigeria
| | - Dele Ohinoyi Amadu
- Department of Medical Microbiology and Parasitology, University of Ilorin Teaching Hospital, Ilorin, Nigeria
| | - Peter Elisha Ghamba
- WHO National Polio Reference Laboratory, University of Maiduguri Teaching Hospital, Maiduguri, Nigeria
| | | | - Muhammad Sagir Shehu
- Medical Laboratory Department, College of Health Technology, Ningi, Bauchi State, Nigeria
| | - Chiladi Isomah
- Medical Laboratory Science Department, Rivers State University, Port Harcourt, Nigeria
| | - Adamu Babayo
- Department of Medical Microbiology and Parasitology, Faculty of Clinical Sciences, Bayero University, Kano, Nigeria
| | - Abdurrahman El-Fulaty Ahmad
- Department of Medical Laboratory Science, Faculty of Allied Health Sciences, College of Medical Sciences, Ahmadu Bello University, Zaria, Nigeria
| |
Collapse
|
340
|
Al Awaidy ST, Asghar RJ, Omais S, Salman M, Zaraket H. Implications of the Emerging SARS-CoV-2 Variant: Caution is the Key. Oman Med J 2021; 36:e235. [PMID: 33768966 PMCID: PMC7961681 DOI: 10.5001/omj.2021.107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 01/30/2021] [Indexed: 12/19/2022] Open
Affiliation(s)
| | | | - Saad Omais
- Department of Biology, Faculty of Arts and Sciences, American University of Beirut, Beirut, Lebanon
| | - Muhammad Salman
- Public Health Laboratory Division, National Institutes of Health, Islamabad, Pakistan
| | - Hassan Zaraket
- Department of Experimental Pathology, Immunology and Microbiology, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
341
|
Villa TG, Abril AG, Sánchez S, de Miguel T, Sánchez-Pérez A. Animal and human RNA viruses: genetic variability and ability to overcome vaccines. Arch Microbiol 2021; 203:443-464. [PMID: 32989475 PMCID: PMC7521576 DOI: 10.1007/s00203-020-02040-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 06/29/2020] [Accepted: 09/12/2020] [Indexed: 02/06/2023]
Abstract
RNA viruses, in general, exhibit high mutation rates; this is mainly due to the low fidelity displayed by the RNA-dependent polymerases required for their replication that lack the proofreading machinery to correct misincorporated nucleotides and produce high mutation rates. This lack of replication fidelity, together with the fact that RNA viruses can undergo spontaneous mutations, results in genetic variants displaying different viral morphogenesis, as well as variation on their surface glycoproteins that affect viral antigenicity. This diverse viral population, routinely containing a variety of mutants, is known as a viral 'quasispecies'. The mutability of their virions allows for fast evolution of RNA viruses that develop antiviral resistance and overcome vaccines much more rapidly than DNA viruses. This also translates into the fact that pathogenic RNA viruses, that cause many diseases and deaths in humans, represent the major viral group involved in zoonotic disease transmission, and are responsible for worldwide pandemics.
Collapse
Affiliation(s)
- T G Villa
- Department of Microbiology, Faculty of Pharmacy, University of Santiago de Compostela, 5706, Santiago de Compostela, Spain.
| | - Ana G Abril
- Department of Microbiology, Faculty of Pharmacy, University of Santiago de Compostela, 5706, Santiago de Compostela, Spain
| | - S Sánchez
- Department of Microbiology, Faculty of Pharmacy, University of Santiago de Compostela, 5706, Santiago de Compostela, Spain
| | - T de Miguel
- Department of Microbiology, Faculty of Pharmacy, University of Santiago de Compostela, 5706, Santiago de Compostela, Spain
| | - A Sánchez-Pérez
- Sydney School of Veterinary Science, Faculty of Science, University of Sydney, Sydney, NSW, 2006, Australia
| |
Collapse
|
342
|
Sarkar R, Mitra S, Chandra P, Saha P, Banerjee A, Dutta S, Chawla-Sarkar M. Comprehensive analysis of genomic diversity of SARS-CoV-2 in different geographic regions of India: an endeavour to classify Indian SARS-CoV-2 strains on the basis of co-existing mutations. Arch Virol 2021; 166:801-812. [PMID: 33464421 PMCID: PMC7814186 DOI: 10.1007/s00705-020-04911-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 10/21/2020] [Indexed: 01/24/2023]
Abstract
Accumulation of mutations within the genome is the primary driving force in viral evolution within an endemic setting. This inherent feature often leads to altered virulence, infectivity and transmissibility, and antigenic shifts to escape host immunity, which might compromise the efficacy of vaccines and antiviral drugs. Therefore, we carried out a genome-wide analysis of circulating SARS-CoV-2 strains to detect the emergence of novel co-existing mutations and trace their geographical distribution within India. Comprehensive analysis of whole genome sequences of 837 Indian SARS-CoV-2 strains revealed the occurrence of 33 different mutations, 18 of which were unique to India. Novel mutations were observed in the S glycoprotein (6/33), NSP3 (5/33), RdRp/NSP12 (4/33), NSP2 (2/33), and N (1/33). Non-synonymous mutations were found to be 3.07 times more prevalent than synonymous mutations. We classified the Indian isolates into 22 groups based on their co-existing mutations. Phylogenetic analysis revealed that the representative strains of each group were divided into various sub-clades within their respective clades, based on the presence of unique co-existing mutations. The A2a clade was found to be dominant in India (71.34%), followed by A3 (23.29%) and B (5.36%), but a heterogeneous distribution was observed among various geographical regions. The A2a clade was highly predominant in East India, Western India, and Central India, whereas the A2a and A3 clades were nearly equal in prevalence in South and North India. This study highlights the divergent evolution of SARS-CoV-2 strains and co-circulation of multiple clades in India. Monitoring of the emerging mutations will pave the way for vaccine formulation and the design of antiviral drugs.
Collapse
Affiliation(s)
- Rakesh Sarkar
- Division of Virology, National Institute of Cholera and Enteric Diseases, P-33, C.I.T. Road, Scheme-XM, Beliaghata, Kolkata, West Bengal, 700010, India
| | - Suvrotoa Mitra
- Division of Virology, National Institute of Cholera and Enteric Diseases, P-33, C.I.T. Road, Scheme-XM, Beliaghata, Kolkata, West Bengal, 700010, India
| | - Pritam Chandra
- Division of Virology, National Institute of Cholera and Enteric Diseases, P-33, C.I.T. Road, Scheme-XM, Beliaghata, Kolkata, West Bengal, 700010, India
| | - Priyanka Saha
- Division of Virology, National Institute of Cholera and Enteric Diseases, P-33, C.I.T. Road, Scheme-XM, Beliaghata, Kolkata, West Bengal, 700010, India
| | - Anindita Banerjee
- Division of Virology, National Institute of Cholera and Enteric Diseases, P-33, C.I.T. Road, Scheme-XM, Beliaghata, Kolkata, West Bengal, 700010, India
| | - Shanta Dutta
- Division of Virology, National Institute of Cholera and Enteric Diseases, P-33, C.I.T. Road, Scheme-XM, Beliaghata, Kolkata, West Bengal, 700010, India
| | - Mamta Chawla-Sarkar
- Division of Virology, National Institute of Cholera and Enteric Diseases, P-33, C.I.T. Road, Scheme-XM, Beliaghata, Kolkata, West Bengal, 700010, India.
| |
Collapse
|
343
|
Fitzpatrick AH, Rupnik A, O'Shea H, Crispie F, Keaveney S, Cotter P. High Throughput Sequencing for the Detection and Characterization of RNA Viruses. Front Microbiol 2021; 12:621719. [PMID: 33692767 PMCID: PMC7938315 DOI: 10.3389/fmicb.2021.621719] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 01/20/2021] [Indexed: 12/12/2022] Open
Abstract
This review aims to assess and recommend approaches for targeted and agnostic High Throughput Sequencing of RNA viruses in a variety of sample matrices. HTS also referred to as deep sequencing, next generation sequencing and third generation sequencing; has much to offer to the field of environmental virology as its increased sequencing depth circumvents issues with cloning environmental isolates for Sanger sequencing. That said however, it is important to consider the challenges and biases that method choice can impart to sequencing results. Here, methodology choices from RNA extraction, reverse transcription to library preparation are compared based on their impact on the detection or characterization of RNA viruses.
Collapse
Affiliation(s)
- Amy H. Fitzpatrick
- Food Biosciences, Teagasc Food Research Centre, Fermoy, Ireland
- Shellfish Microbiology, Marine Institute, Oranmore, Ireland
- Biological Sciences, Munster Technological University, Cork, Ireland
| | | | - Helen O'Shea
- Biological Sciences, Munster Technological University, Cork, Ireland
| | - Fiona Crispie
- Food Biosciences, Teagasc Food Research Centre, Fermoy, Ireland
| | | | - Paul Cotter
- Food Biosciences, Teagasc Food Research Centre, Fermoy, Ireland
| |
Collapse
|
344
|
Abstract
The frequent outbreaks of life-threatening RNA viruses, including the ongoing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), pose tremendous challenges to humanity. The author proposes that creating a more alkaline extracellular environment that is unsuitable for the fusion between the envelope of SARS-CoV-2 and the host cell membrane is a promising method to prevent the entry of coronaviruses into human cells. The alkaline environment could be achieved by exposing the general public to water-clustered negative air ions (NAIs), both indoors and outdoors, to induce a gradual increase in the pH of the human body. Previous studies have demonstrated that there are no harmful effects of high-concentration NAIs on human health.
Collapse
Affiliation(s)
- Bin Wang
- Department of Chemistry, Marshall University, Huntington, WV 25755, USA.,Department of Chemistry, Marshall University, Huntington, WV 25755, USA
| |
Collapse
|
345
|
Wakita M, Idei M, Saito K, Horiuchi Y, Yamatani K, Ishikawa S, Yamamoto T, Igawa G, Hinata M, Kadota K, Kurosawa T, Takahashi S, Saito T, Misawa S, Akazawa C, Naito T, Miida T, Takahashi K, Ai T, Tabe Y. Comparison of the clinical performance and usefulness of five SARS-CoV-2 antibody tests. PLoS One 2021; 16:e0246536. [PMID: 33556086 PMCID: PMC7870088 DOI: 10.1371/journal.pone.0246536] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 01/21/2021] [Indexed: 12/23/2022] Open
Abstract
We examined the usefulness of five COVID-19 antibody detection tests using 114 serum samples at various time points from 34 Japanese COVID-19 patients. We examined Elecsys Anti-SARS-CoV-2 from Roche, and four immunochromatography tests from Hangzhou Laihe Biotech, Artron Laboratories, Chil, and Nadal. In the first week after onset, Elecsys had 40% positivity in Group S (severe cases) but was negative in Group M (mild-moderate cases). The immunochromatography kits showed 40–60% and 0–8% positivity in Groups S and M, respectively. In the second week, Elecsys showed 75% and 50% positivity, and the immunochromatography tests showed 5–80% and 50–75% positivity in Groups S and M, respectively. After the third week, Elecsys showed 100% positivity in both groups. The immunochromatography kits showed 100% positivity in Group S. In Group M, positivity decreased to 50% for Chil and 75–89% for Artron and Lyher. Elecsys and immunochromatography kits had 91–100% specificity. Elecsys had comparable chronological change of cut-off index values in the two groups from the second week to the sixth week. The current SARS-CoV-2 antibody detection tests do not provide meaningful interpretation of severity and infection status. Its use might be limited to short-term epidemiological studies.
Collapse
Affiliation(s)
- Mitsuru Wakita
- Department of Clinical Laboratory, Juntendo University Hospital, Tokyo, Japan
| | - Mayumi Idei
- Department of Clinical Laboratory Medicine, Juntendo University Faculty of Medicine, Tokyo, Japan
- Medical Technology Innovation Center, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Kaori Saito
- Department of Clinical Laboratory Medicine, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Yuki Horiuchi
- Department of Clinical Laboratory Medicine, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Kotoko Yamatani
- Department of Clinical Laboratory Medicine, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Suzuka Ishikawa
- Tokyo Medical and Dental University School of Health Care Sciences, Tokyo, Japan
| | - Takamasa Yamamoto
- Department of Clinical Laboratory, Juntendo University Hospital, Tokyo, Japan
| | - Gene Igawa
- Department of Clinical Laboratory, Juntendo University Hospital, Tokyo, Japan
| | - Masanobu Hinata
- Department of Clinical Laboratory, Juntendo University Hospital, Tokyo, Japan
| | - Katsuhiko Kadota
- Emergency and Disaster Medicine, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Taro Kurosawa
- Department of Gastroenterology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Sho Takahashi
- Department of Gastroenterology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Takumi Saito
- Department of Internal Medicine and Rheumatology, Juntendo University School of Medicine, Tokyo, Japan
| | - Shigeki Misawa
- Department of Clinical Laboratory, Juntendo University Hospital, Tokyo, Japan
| | - Chihiro Akazawa
- Intractable Disease Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Toshio Naito
- Department of General Medicine, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Takashi Miida
- Department of Clinical Laboratory Medicine, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Kazuhisa Takahashi
- Department of Respiratory Medicine, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Tomohiko Ai
- Department of Clinical Laboratory Medicine, Juntendo University Faculty of Medicine, Tokyo, Japan
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- * E-mail: ,
| | - Yoko Tabe
- Department of Clinical Laboratory Medicine, Juntendo University Faculty of Medicine, Tokyo, Japan
- Department of Next Generation Hematology Laboratory Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
346
|
Villoutreix BO, Calvez V, Marcelin AG, Khatib AM. In Silico Investigation of the New UK (B.1.1.7) and South African (501Y.V2) SARS-CoV-2 Variants with a Focus at the ACE2-Spike RBD Interface. Int J Mol Sci 2021; 22:1695. [PMID: 33567580 PMCID: PMC7915722 DOI: 10.3390/ijms22041695] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/03/2021] [Accepted: 02/04/2021] [Indexed: 12/24/2022] Open
Abstract
SARS-CoV-2 exploits angiotensin-converting enzyme 2 (ACE2) as a receptor to invade cells. It has been reported that the UK and South African strains may have higher transmission capabilities, eventually in part due to amino acid substitutions on the SARS-CoV-2 Spike protein. The pathogenicity seems modified but is still under investigation. Here we used the experimental structure of the Spike RBD domain co-crystallized with part of the ACE2 receptor, several in silico methods and numerous experimental data reported recently to analyze the possible impacts of three amino acid replacements (Spike K417N, E484K, N501Y) with regard to ACE2 binding. We found that the N501Y replacement in this region of the interface (present in both the UK and South African strains) should be favorable for the interaction with ACE2, while the K417N and E484K substitutions (South African strain) would seem neutral or even unfavorable. It is unclear if the N501Y substitution in the South African strain could counterbalance the K417N and E484K Spike replacements with regard to ACE2 binding. Our finding suggests that the UK strain should have higher affinity toward ACE2 and therefore likely increased transmissibility and possibly pathogenicity. If indeed the South African strain has a high transmission level, this could be due to the N501Y replacement and/or to substitutions in regions located outside the direct Spike-ACE2 interface but not so much to the K417N and E484K replacements. Yet, it should be noted that amino acid changes at Spike position 484 can lead to viral escape from neutralizing antibodies. Further, these amino acid substitutions do not seem to induce major structural changes in this region of the Spike protein. This structure-function study allows us to rationalize some observations made for the UK strain but raises questions for the South African strain.
Collapse
Affiliation(s)
- Bruno O. Villoutreix
- Integrative Computational Pharmacology and Data Mining, INSERM UMR 1141, NeuroDiderot, Robert-Debré Hospital, 75019 Paris, France
| | - Vincent Calvez
- Sorbonne Université, INSERM 1136, Institut Pierre Louis d’Epidémiologie et de Santé Publique, AP-HP, Hôpitaux Universitaires Pitié-Salpêtrière-Charles Foix, Laboratoire de Virologie, F75013 Paris, France; (V.C.); (A.-G.M.)
| | - Anne-Geneviève Marcelin
- Sorbonne Université, INSERM 1136, Institut Pierre Louis d’Epidémiologie et de Santé Publique, AP-HP, Hôpitaux Universitaires Pitié-Salpêtrière-Charles Foix, Laboratoire de Virologie, F75013 Paris, France; (V.C.); (A.-G.M.)
| | - Abdel-Majid Khatib
- Université de Bordeaux, INSERM, LAMC, U1029, F-33600 Pessac, France
- Institut Bergonié, 33000 Bordeaux, France
| |
Collapse
|
347
|
Bhatta M, Nandi S, Dutta S, Saha MK. Coronavirus (SARS-CoV-2): a systematic review for potential vaccines. Hum Vaccin Immunother 2021; 18:1865774. [PMID: 33545014 PMCID: PMC8920137 DOI: 10.1080/21645515.2020.1865774] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
COVID-19 is an international public health emergency in need of effective and safe vaccines for SARS-CoV-2. A systematic review has been done to analyze the availability, development and status of new COVID-19 vaccine candidates as well as the status of vaccines for other diseases that might be effective against SARS-CoV-2 infection. PubMed, MEDLINE, EMBASE, Science Direct, Google Scholar, Cochrane library, ClinicalTrials.gov, Web of Science and different trial registries were searched for currently available and probable future vaccines. Articles and ongoing clinical trials are included to ascertain the availability and developmental approaches of new vaccines that could limit the present and future outbreaks. Pharmaceutical companies and institutions are at different stages of developing new vaccines, and extensive studies and clinical trials are still required.
Collapse
Affiliation(s)
- Mihir Bhatta
- Division of Virology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Srijita Nandi
- Division of Virology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Shanta Dutta
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Malay Kumar Saha
- Division of Virology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| |
Collapse
|
348
|
Troyano-Hernáez P, Reinosa R, Holguín Á. Evolution of SARS-CoV-2 Envelope, Membrane, Nucleocapsid, and Spike Structural Proteins from the Beginning of the Pandemic to September 2020: A Global and Regional Approach by Epidemiological Week. Viruses 2021; 13:v13020243. [PMID: 33557213 PMCID: PMC7913946 DOI: 10.3390/v13020243] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/30/2021] [Accepted: 02/01/2021] [Indexed: 01/25/2023] Open
Abstract
Monitoring acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genetic diversity and emerging mutations in this ongoing pandemic is crucial for understanding its evolution and assuring the performance of diagnostic tests, vaccines, and therapies against coronavirus disease (COVID-19). This study reports on the amino acid (aa) conservation degree and the global and regional temporal evolution by epidemiological week for each residue of the following four structural SARS-CoV-2 proteins: spike, envelope, membrane, and nucleocapsid. All, 105,276 worldwide SARS-CoV-2 complete and partial sequences from 117 countries available in the Global Initiative on Sharing All Influenza Data (GISAID) from 29 December 2019 to 12 September 2020 were downloaded and processed using an in-house bioinformatics tool. Despite the extremely high conservation of SARS-CoV-2 structural proteins (>99%), all presented aa changes, i.e., 142 aa changes in 65 of the 75 envelope aa, 291 aa changes in 165 of the 222 membrane aa, 890 aa changes in 359 of the 419 nucleocapsid aa, and 2671 changes in 1132 of the 1273 spike aa. Mutations evolution differed across geographic regions and epidemiological weeks (epiweeks). The most prevalent aa changes were D614G (81.5%) in the spike protein, followed by the R203K and G204R combination (37%) in the nucleocapsid protein. The presented data provide insight into the genetic variability of SARS-CoV-2 structural proteins during the pandemic and highlights local and worldwide emerging aa changes of interest for further SARS-CoV-2 structural and functional analysis.
Collapse
|
349
|
Dinesh DC, Tamilarasan S, Rajaram K, Bouřa E. Antiviral Drug Targets of Single-Stranded RNA Viruses Causing Chronic Human Diseases. Curr Drug Targets 2021; 21:105-124. [PMID: 31538891 DOI: 10.2174/1389450119666190920153247] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 08/08/2019] [Accepted: 08/08/2019] [Indexed: 02/08/2023]
Abstract
Ribonucleic acid (RNA) viruses associated with chronic diseases in humans are major threats to public health causing high mortality globally. The high mutation rate of RNA viruses helps them to escape the immune response and also is responsible for the development of drug resistance. Chronic infections caused by human immunodeficiency virus (HIV) and hepatitis viruses (HBV and HCV) lead to acquired immunodeficiency syndrome (AIDS) and hepatocellular carcinoma respectively, which are one of the major causes of human deaths. Effective preventative measures to limit chronic and re-emerging viral infections are absolutely necessary. Each class of antiviral agents targets a specific stage in the viral life cycle and inhibits them from its development and proliferation. Most often, antiviral drugs target a specific viral protein, therefore only a few broad-spectrum drugs are available. This review will be focused on the selected viral target proteins of pathogenic viruses containing single-stranded (ss) RNA genome that causes chronic infections in humans (e.g. HIV, HCV, Flaviviruses). In the recent past, an exponential increase in the number of available three-dimensional protein structures (>150000 in Protein Data Bank), allowed us to better understand the molecular mechanism of action of protein targets and antivirals. Advancements in the in silico approaches paved the way to design and develop several novels, highly specific small-molecule inhibitors targeting the viral proteins.
Collapse
Affiliation(s)
| | - Selvaraj Tamilarasan
- Section of Microbial Biotechnology, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Kaushik Rajaram
- Department of Microbiology, Central University of Tamil Nadu, Thiruvarur, India
| | - Evžen Bouřa
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
350
|
Azad GK. The molecular assessment of SARS-CoV-2 Nucleocapsid Phosphoprotein variants among Indian isolates. Heliyon 2021; 7:e06167. [PMID: 33553784 PMCID: PMC7848562 DOI: 10.1016/j.heliyon.2021.e06167] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 09/05/2020] [Accepted: 01/28/2021] [Indexed: 11/28/2022] Open
Abstract
Coronavirus disease- 2019 (COVID-19) has rapidly become a major threat to humans due to its high infection rate and deaths caused worldwide. This disease is caused by an RNA virus, Severe Acquired Respiratory Syndrome -Corona Virus-2 (SARS-CoV-2). This class of viruses have a high rate of mutation than DNA viruses that enables them to adapt and also evade host immune system. Here, we compared the first known Nucleocapsid Phosphoprotein (N protein) sequence of SARS-CoV-2 from China with the sequences from Indian COVID-19 patients to understand, if this virus is also mutating, as it is spreading to new locations. Our data revealed twenty mutations present among Indian isolates. Out of these, mutation at six positions led to changes in the secondary structure of N protein. Further, we also show that these mutations are primarily destabilising the protein structure. The candidate mutations identified in this study may help to speed up the understanding of variations occurring in SARS-CoV-2.
Collapse
|