301
|
Abstract
Microglia are a subset of tissue macrophages that constitute the major immune cell type of the central nervous system. These cells have long been known to change their morphology and functions in response to various neurological insults. Recently, a plethora of unbiased transcriptomics studies have revealed that across a broad spectrum of neurodegeneration-like disease models, microglia adopt a similar activation signature and perform similar functions. Despite these commonalities in response, the role of microglia has been described as both positive and negative in different murine disease models. In humans, genetic association studies have revealed strong connections between microglia genes and various neurodegenerative diseases, and mechanistic investigations of these mutations have added another layer of complexity. Here, we provide an overview of studies that have built a case for a common microglial response to neurodegeneration and discuss pathways that may be important to initiate and sustain this response; delineate the multifaceted functions of activated microglia spanning different diseases; and discuss insights from studying genes associated with disease in humans. We argue that strong evidence causally links activated microglia function to neurodegeneration and discuss what seems to be a conflict between mouse models and human genetics.
Collapse
Affiliation(s)
- Wilbur M Song
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, United States
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, United States.
| |
Collapse
|
302
|
Abstract
Microglia differentiate from progenitors that infiltrate the nascent CNS during early embryonic development. They then remain in this unique immune-privileged environment throughout life. Multiple immune mechanisms, which we collectively refer to as microglial checkpoints, ensure efficient and tightly regulated microglial responses to perturbations in the CNS milieu. Such mechanisms are essential for proper CNS development and optimal physiological function. However, in chronic disease or aging, when a robust immune response is required, such checkpoint mechanisms may limit the ability of microglia to protect the CNS. Here we survey microglial checkpoint mechanisms and their roles in controlling microglial function throughout life and in disease, and discuss how they may be targeted therapeutically.
Collapse
|
303
|
Disease-Associated Microglia: A Universal Immune Sensor of Neurodegeneration. Cell 2018; 173:1073-1081. [DOI: 10.1016/j.cell.2018.05.003] [Citation(s) in RCA: 880] [Impact Index Per Article: 125.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 04/17/2018] [Accepted: 04/29/2018] [Indexed: 11/18/2022]
|
304
|
Janda E, Boi L, Carta AR. Microglial Phagocytosis and Its Regulation: A Therapeutic Target in Parkinson's Disease? Front Mol Neurosci 2018; 11:144. [PMID: 29755317 PMCID: PMC5934476 DOI: 10.3389/fnmol.2018.00144] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 04/09/2018] [Indexed: 12/12/2022] Open
Abstract
The role of phagocytosis in the neuroprotective function of microglia has been appreciated for a long time, but only more recently a dysregulation of this process has been recognized in Parkinson’s disease (PD). Indeed, microglia play several critical roles in central nervous system (CNS), such as clearance of dying neurons and pathogens as well as immunomodulation, and to fulfill these complex tasks they engage distinct phenotypes. Regulation of phenotypic plasticity and phagocytosis in microglia can be impaired by defects in molecular machinery regulating critical homeostatic mechanisms, including autophagy. Here, we briefly summarize current knowledge on molecular mechanisms of microglia phagocytosis, and the neuro-pathological role of microglia in PD. Then we focus more in detail on the possible functional role of microglial phagocytosis in the pathogenesis and progression of PD. Evidence in support of either a beneficial or deleterious role of phagocytosis in dopaminergic degeneration is reported. Altered expression of target-recognizing receptors and lysosomal receptor CD68, as well as the emerging determinant role of α-synuclein (α-SYN) in phagocytic function is discussed. We finally discuss the rationale to consider phagocytic processes as a therapeutic target to prevent or slow down dopaminergic degeneration.
Collapse
Affiliation(s)
- Elzbieta Janda
- Department of Health Sciences, Magna Graecia University, Catanzaro, Italy
| | - Laura Boi
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Anna R Carta
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| |
Collapse
|
305
|
Deletion of plasma Phospholipid Transfer Protein (PLTP) increases microglial phagocytosis and reduces cerebral amyloid-β deposition in the J20 mouse model of Alzheimer's disease. Oncotarget 2018; 9:19688-19703. [PMID: 29731975 PMCID: PMC5929418 DOI: 10.18632/oncotarget.24802] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 02/27/2018] [Indexed: 01/22/2023] Open
Abstract
Plasma phospholipid transfer protein (PLTP) binds and transfers a number of amphipathic compounds, including phospholipids, cholesterol, diacylglycerides, tocopherols and lipopolysaccharides. PLTP functions are relevant for many pathophysiological alterations involved in neurodegenerative disorders (especially lipid metabolism, redox status, and immune reactions), and a significant increase in brain PLTP levels was observed in patients with Alzheimer's disease (AD) compared to controls. To date, it has not been reported whether PLTP can modulate the formation of amyloid plaques, i.e. one of the major histopathological hallmarks of AD. We thus assessed the role of PLTP in the AD context by breeding PLTP-deficient mice with an established model of AD, the J20 mice. A phenotypic characterization of the amyloid pathology was conducted in J20 mice expressing or not PLTP. We showed that PLTP deletion is associated with a significant reduction of cerebral Aβ deposits and astrogliosis, which can be explained at least in part by a rise of Aβ clearance through an increase in the microglial phagocytic activity and the expression of the Aβ-degrading enzyme neprilysin. PLTP arises as a negative determinant of plaque clearance and over the lifespan, elevated PLTP activity could lead to a higher Aβ load in the brain.
Collapse
|
306
|
Sevenich L. Brain-Resident Microglia and Blood-Borne Macrophages Orchestrate Central Nervous System Inflammation in Neurodegenerative Disorders and Brain Cancer. Front Immunol 2018; 9:697. [PMID: 29681904 PMCID: PMC5897444 DOI: 10.3389/fimmu.2018.00697] [Citation(s) in RCA: 157] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 03/21/2018] [Indexed: 01/09/2023] Open
Abstract
Inflammation is a hallmark of different central nervous system (CNS) pathologies. It has been linked to neurodegenerative disorders as well as primary and metastatic brain tumors. Microglia, the brain-resident immune cells, are emerging as a central player in regulating key pathways in CNS inflammation. Recent insights into neuroinflammation indicate that blood-borne immune cells represent an additional critical cellular component in mediating CNS inflammation. The lack of experimental systems that allow for discrimination between brain-resident and recruited myeloid cells has previously halted functional analysis of microglia and their blood-borne counterparts in brain malignancies. However, recent conceptual and technological advances, such as the generation of lineage tracing models and the identification of cell type-specific markers provide unprecedented opportunities to study the cellular functions of microglia and macrophages by functional interference. The use of different “omic” strategies as well as imaging techniques has significantly increased our knowledge of disease-associated gene signatures and effector functions under pathological conditions. In this review, recent developments in evaluating functions of brain-resident and recruited myeloid cells in neurodegenerative disorders and brain cancers will be discussed and unique or shared cellular traits of microglia and macrophages in different CNS disorders will be highlighted. Insight from these studies will shape our understanding of disease- and cell-type-specific effector functions of microglia or macrophages and will open new avenues for therapeutic intervention that target aberrant functions of myeloid cells in CNS pathologies.
Collapse
Affiliation(s)
- Lisa Sevenich
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
| |
Collapse
|
307
|
Sekiya M, Wang M, Fujisaki N, Sakakibara Y, Quan X, Ehrlich ME, De Jager PL, Bennett DA, Schadt EE, Gandy S, Ando K, Zhang B, Iijima KM. Integrated biology approach reveals molecular and pathological interactions among Alzheimer's Aβ42, Tau, TREM2, and TYROBP in Drosophila models. Genome Med 2018; 10:26. [PMID: 29598827 PMCID: PMC5875009 DOI: 10.1186/s13073-018-0530-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 03/12/2018] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Cerebral amyloidosis, neuroinflammation, and tauopathy are key features of Alzheimer's disease (AD), but interactions among these features remain poorly understood. Our previous multiscale molecular network models of AD revealed TYROBP as a key driver of an immune- and microglia-specific network that was robustly associated with AD pathophysiology. Recent genetic studies of AD further identified pathogenic mutations in both TREM2 and TYROBP. METHODS In this study, we systematically examined molecular and pathological interactions among Aβ, tau, TREM2, and TYROBP by integrating signatures from transgenic Drosophila models of AD and transcriptome-wide gene co-expression networks from two human AD cohorts. RESULTS Glial expression of TREM2/TYROBP exacerbated tau-mediated neurodegeneration and synergistically affected pathways underlying late-onset AD pathology, while neuronal Aβ42 and glial TREM2/TYROBP synergistically altered expression of the genes in synaptic function and immune modules in AD. CONCLUSIONS The comprehensive pathological and molecular data generated through this study strongly validate the causal role of TREM2/TYROBP in driving molecular networks in AD and AD-related phenotypes in flies.
Collapse
Affiliation(s)
- Michiko Sekiya
- 0000 0004 1791 9005grid.419257.cDepartment of Alzheimer’s Disease Research, National Center for Geriatrics and Gerontology, 7-430 Morioka-cho, Obu, Aichi 474-8511 Japan
| | - Minghui Wang
- 0000 0001 0670 2351grid.59734.3cDepartment of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, Room 8-111, Box 1498, New York, NY 10029 USA ,0000 0001 0670 2351grid.59734.3cIcahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY USA
| | - Naoki Fujisaki
- 0000 0004 1791 9005grid.419257.cDepartment of Alzheimer’s Disease Research, National Center for Geriatrics and Gerontology, 7-430 Morioka-cho, Obu, Aichi 474-8511 Japan ,0000 0001 0728 1069grid.260433.0Department of Experimental Gerontology, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Japan
| | - Yasufumi Sakakibara
- 0000 0004 1791 9005grid.419257.cDepartment of Alzheimer’s Disease Research, National Center for Geriatrics and Gerontology, 7-430 Morioka-cho, Obu, Aichi 474-8511 Japan
| | - Xiuming Quan
- 0000 0004 1791 9005grid.419257.cDepartment of Alzheimer’s Disease Research, National Center for Geriatrics and Gerontology, 7-430 Morioka-cho, Obu, Aichi 474-8511 Japan
| | - Michelle E. Ehrlich
- 0000 0001 0670 2351grid.59734.3cDepartment of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, Room 8-111, Box 1498, New York, NY 10029 USA ,0000 0001 0670 2351grid.59734.3cDepartment of Neurology, Alzheimer’s Disease Research Center, Icahn School of Medicine at Mount Sinai, New York, NY USA ,0000 0001 0670 2351grid.59734.3cDepartment of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Philip L. De Jager
- 0000 0001 2285 2675grid.239585.0Center for translational & Computational Neuroimmunology, Department of Neurology, The Neurological Institute of New York, Columbia University Medical Center, New York, NY USA ,grid.66859.34Broad Institute, Cambridge, MA USA
| | - David A. Bennett
- 0000 0001 0705 3621grid.240684.cRush Alzheimer’s Disease Research Center and Department of Neurology, Rush University Medical Center, 1750 W. Congress Parkway, Chicago, IL 60612 USA
| | - Eric E. Schadt
- 0000 0001 0670 2351grid.59734.3cDepartment of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, Room 8-111, Box 1498, New York, NY 10029 USA ,0000 0001 0670 2351grid.59734.3cIcahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY USA
| | - Sam Gandy
- 0000 0001 0670 2351grid.59734.3cDepartment of Neurology, Alzheimer’s Disease Research Center, Icahn School of Medicine at Mount Sinai, New York, NY USA ,0000 0001 0670 2351grid.59734.3cDepartment of Psychiatry and Alzheimer’s Disease Research Center, Icahn School of Medicine at Mount Sinai, New York, NY USA ,0000 0004 5907 0628grid.480949.8Center for NFL Neurological Care, Department of Neurology, New York, NY USA ,0000 0004 0420 1184grid.274295.fJames J. Peters VA Medical Center, 130 West Kingsbridge Road, New York, NY USA
| | - Kanae Ando
- 0000 0001 1090 2030grid.265074.2Department of Biological Sciences, Graduate School of Science and Engineering, Tokyo Metropolitan University, Tokyo, Japan
| | - Bin Zhang
- Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, Room 8-111, Box 1498, New York, NY, 10029, USA. .,Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, USA. .,Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, One Gustave L Levy Place, New York, NY, USA.
| | - Koichi M. Iijima
- 0000 0004 1791 9005grid.419257.cDepartment of Alzheimer’s Disease Research, National Center for Geriatrics and Gerontology, 7-430 Morioka-cho, Obu, Aichi 474-8511 Japan ,0000 0001 0728 1069grid.260433.0Department of Experimental Gerontology, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Japan
| |
Collapse
|
308
|
Cheng Q, Danao J, Talreja S, Wen P, Yin J, Sun N, Li CM, Chui D, Tran D, Koirala S, Chen H, Foltz IN, Wang S, Sambashivan S. TREM2-activating antibodies abrogate the negative pleiotropic effects of the Alzheimer's disease variant Trem2R47H on murine myeloid cell function. J Biol Chem 2018; 293:12620-12633. [PMID: 29599291 DOI: 10.1074/jbc.ra118.001848] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 03/23/2018] [Indexed: 12/28/2022] Open
Abstract
Triggering receptor expressed on myeloid cells 2 (TREM2) is an orphan immune receptor expressed on cells of myeloid lineage such as macrophages and microglia. The rare variant R47H TREM2 is associated with an increased risk for Alzheimer's disease, supporting the hypothesis that TREM2 loss of function may exacerbate disease progression. However, a complete knockout of the TREM2 gene in different genetic models of neurodegenerative diseases has been reported to result in both protective and deleterious effects on disease-related end points and myeloid cell function. Here, we describe a Trem2R47H transgenic mouse model and report that even in the absence of additional genetic perturbations, this variant clearly confers a loss of function on myeloid cells. The Trem2R47H variant-containing myeloid cells exhibited subtle defects in survival and migration and displayed an unexpected dysregulation of cytokine responses in a lipopolysaccharide challenge environment. These subtle phenotypic defects with a gradation in severity across genotypes were confirmed in whole-genome RNA-Seq analyses of WT, Trem2-/-, and Trem2R47H myeloid cells under challenge conditions. Of note, TREM2-activating antibodies that boost proximal signaling abrogated survival defects conferred by the variant and also modulated migration and cytokine responses in an antibody-, ligand-, and challenge-dependent manner. In some instances, these antibodies also boosted WT myeloid cell function. Our studies provide a first glimpse into the boost in myeloid cell function that can be achieved by pharmacological modulation of TREM2 activity that can potentially be ameliorative in neurodegenerative diseases such as Alzheimer's disease.
Collapse
Affiliation(s)
- Qingwen Cheng
- From the Department of Discovery Research, Amgen, San Francisco, California 94080
| | - Jean Danao
- From the Department of Discovery Research, Amgen, San Francisco, California 94080
| | - Santosh Talreja
- From the Department of Discovery Research, Amgen, San Francisco, California 94080
| | - Paul Wen
- the Department of Discovery Research, Amgen, Thousand Oaks, California 91320, and
| | - Jun Yin
- From the Department of Discovery Research, Amgen, San Francisco, California 94080
| | - Ning Sun
- the Department of Discovery Research, Amgen, Thousand Oaks, California 91320, and
| | - Chi-Ming Li
- From the Department of Discovery Research, Amgen, San Francisco, California 94080
| | - Danny Chui
- the Department of Discovery Research, Amgen, Burnaby, British Columbia V5A IV7, Canada
| | - David Tran
- the Department of Discovery Research, Amgen, Thousand Oaks, California 91320, and
| | - Samir Koirala
- the Department of Discovery Research, Amgen, Thousand Oaks, California 91320, and
| | - Hang Chen
- From the Department of Discovery Research, Amgen, San Francisco, California 94080
| | - Ian N Foltz
- the Department of Discovery Research, Amgen, Burnaby, British Columbia V5A IV7, Canada
| | - Songli Wang
- From the Department of Discovery Research, Amgen, San Francisco, California 94080
| | - Shilpa Sambashivan
- From the Department of Discovery Research, Amgen, San Francisco, California 94080,
| |
Collapse
|
309
|
Zhong L, Wang Z, Wang D, Wang Z, Martens YA, Wu L, Xu Y, Wang K, Li J, Huang R, Can D, Xu H, Bu G, Chen XF. Amyloid-beta modulates microglial responses by binding to the triggering receptor expressed on myeloid cells 2 (TREM2). Mol Neurodegener 2018; 13:15. [PMID: 29587871 PMCID: PMC5870375 DOI: 10.1186/s13024-018-0247-7] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 03/20/2018] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND TREM2 is an innate immune receptor specifically expressed in microglia. Coding variations in TREM2 have been reported to increase the risk for Alzheimer's disease (AD) and other neurodegenerative diseases. While multiple studies support a role for TREM2 in microglial recruitment to amyloid plaques, the chemoattractant factor modulating TREM2-dependent microglial responses has not been defined. METHODS Potential binding of oligomeric amyloid-β 1-42 (oAβ1-42) to TREM2 was tested by complementary approaches including solid phase binding, surface plasmon resonance and immunoprecipitation assays. The ability of oAβ1-42 to activate TREM2 signaling pathways was examined by analyzing the phosphorylation of Syk and Akt in primary microglia as well as TREM2-mediated signaling in a reporter cell system. Lastly, the functional outcome of oAβ1-42-TREM2 interaction was tested by examining impacts on microglial migration in vitro and clustering around oAβ1-42-bearing brain areas in vivo. RESULTS We found that oAβ1-42 bound to TREM2 with high affinity and activated TREM2-dependent signaling pathway. Neither monomeric nor scrambled Aβ bound to TREM2 supporting a specific interaction between oAβ and TREM2. The disease-associated mutations of TREM2 reduced its binding affinity to oAβ1-42. Furthermore, we identified several positively charged amino acids within residues 31-91 of TREM2 that were crucial for its interaction with oAβ1-42. Importantly, oAβ1-42 promoted microglial migration in vitro and clustering in vivo in a TREM2-dependent manner. CONCLUSIONS Our data establish a critical link between oAβ1-42, a major pathological component of AD, and TREM2, a strong genetic risk factor for AD expressed in microglia, and suggest that such interaction contributes to the pathogenic events in AD by modulating microglial responses.
Collapse
Affiliation(s)
- Li Zhong
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Medical College, Xiamen University, Xiamen, 361102, China
| | - Zongqi Wang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Medical College, Xiamen University, Xiamen, 361102, China
| | - Daxin Wang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Medical College, Xiamen University, Xiamen, 361102, China
| | - Zhe Wang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Medical College, Xiamen University, Xiamen, 361102, China
| | - Yuka A Martens
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Linbei Wu
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Medical College, Xiamen University, Xiamen, 361102, China
| | - Ying Xu
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Medical College, Xiamen University, Xiamen, 361102, China
| | - Kai Wang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Medical College, Xiamen University, Xiamen, 361102, China
| | - Jianguo Li
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Medical College, Xiamen University, Xiamen, 361102, China
| | - Ruizhi Huang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Medical College, Xiamen University, Xiamen, 361102, China
| | - Dan Can
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Medical College, Xiamen University, Xiamen, 361102, China
| | - Huaxi Xu
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Medical College, Xiamen University, Xiamen, 361102, China
- Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA
| | - Guojun Bu
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Medical College, Xiamen University, Xiamen, 361102, China.
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA.
| | - Xiao-Fen Chen
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Medical College, Xiamen University, Xiamen, 361102, China.
- Shenzhen Research Institute of Xiamen University, Shenzhen, 518063, China.
| |
Collapse
|
310
|
Abstract
Alzheimer's disease (AD), the main form of dementia in the elderly, is the most common progressive neurodegenerative disease characterized by rapidly progressive cognitive dysfunction and behavior impairment. AD exhibits a considerable heritability and great advances have been made in approaches to searching the genetic etiology of AD. In AD genetic studies, methods have developed from classic linkage-based and candidate-gene-based association studies to genome-wide association studies (GWAS) and next generation sequencing (NGS). The identification of new susceptibility genes has provided deeper insights to understand the mechanisms underlying AD. In addition to searching novel genes associated with AD in large samples, the NGS technologies can also be used to shed light on the 'black matter' discovery even in smaller samples. The shift in AD genetics between traditional studies and individual sequencing will allow biomaterials of each patient as the central unit of genetic studies. This review will cover genetic findings in AD and consequences of AD genetic findings. Firstly, we will discuss the discovery of mutations in APP, PSEN1, PSEN2, APOE, and ADAM10. Then we will summarize and evaluate the information obtained from GWAS of AD. Finally, we will outline the efforts to identify rare variants associated with AD using NGS.
Collapse
|
311
|
Bekris LM, Khrestian M, Dyne E, Shao Y, Pillai JA, Rao SM, Bemiller SM, Lamb B, Fernandez HH, Leverenz JB. Soluble TREM2 and biomarkers of central and peripheral inflammation in neurodegenerative disease. J Neuroimmunol 2018; 319:19-27. [PMID: 29685286 DOI: 10.1016/j.jneuroim.2018.03.003] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 03/08/2018] [Accepted: 03/08/2018] [Indexed: 01/22/2023]
Abstract
Alzheimer's disease (AD) has been genetically and pathologically associated with neuroinflammation. Triggering receptor expressed on myeloid cells 2 (TREM2) is a microglial receptor involved in innate immunity. TREM2 rare protein coding genetic variants have been linked to AD. A soluble TREM2 (sTREM2) cleavage product is elevated in AD. It is unclear whether there is a relationship between elevated sTREM2 and markers of inflammation. The hypothesis of this investigation was that central and peripheral inflammation play a role in sTREM2 levels in AD. A consistent association of peripheral or central markers of inflammation and CSF sTREM2 levels was not found, suggesting a limited impact of general inflammation on sTREM2 levels. An association between peripheral sTREM2 levels and CSF sTREM2, as well as an association between CSF sTREM2 and a marker of blood brain barrier integrity, was observed in AD, suggesting a potential role of peripheral TREM2 in central TREM2 biology.
Collapse
Affiliation(s)
- L M Bekris
- Cleveland Clinic, Genomic Medicine Institute, Cleveland, OH, United States.
| | - M Khrestian
- Cleveland Clinic, Genomic Medicine Institute, Cleveland, OH, United States
| | - E Dyne
- Kent State University, Departoment of Biomedicine, Kent, OH, United States
| | - Y Shao
- Cleveland Clinic, Genomic Medicine Institute, Cleveland, OH, United States
| | - J A Pillai
- Cleveland Clinic, Lou Ruvo Center for Brain Health, Cleveland, OH, United States
| | - S M Rao
- Cleveland Clinic, Lou Ruvo Center for Brain Health, Cleveland, OH, United States
| | - S M Bemiller
- Indiana University, Department of Neuroscience, Indianapolis, IN, United States
| | - B Lamb
- Indiana University, Department of Neuroscience, Indianapolis, IN, United States
| | - H H Fernandez
- Cleveland Clinic, Center for Neurological Restoration, Cleveland, OH, United States
| | - J B Leverenz
- Cleveland Clinic, Lou Ruvo Center for Brain Health, Cleveland, OH, United States
| |
Collapse
|
312
|
Ulrich JD, Ulland TK, Mahan TE, Nyström S, Nilsson KP, Song WM, Zhou Y, Reinartz M, Choi S, Jiang H, Stewart FR, Anderson E, Wang Y, Colonna M, Holtzman DM. ApoE facilitates the microglial response to amyloid plaque pathology. J Exp Med 2018; 215:1047-1058. [PMID: 29483128 PMCID: PMC5881464 DOI: 10.1084/jem.20171265] [Citation(s) in RCA: 200] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 12/28/2017] [Accepted: 02/07/2018] [Indexed: 01/22/2023] Open
Abstract
Increasing evidence suggests that apoE influences the innate immune response in neurodegeneration. Here, Ulrich et al. report that apoE influences amyloid plaque morphology and the microglial response to amyloid plaques, along with plaque-associated neuronal toxicity. One of the hallmarks of Alzheimer’s disease is the presence of extracellular diffuse and fibrillar plaques predominantly consisting of the amyloid-β (Aβ) peptide. Apolipoprotein E (ApoE) influences the deposition of amyloid pathology through affecting the clearance and aggregation of monomeric Aβ in the brain. In addition to influencing Aβ metabolism, increasing evidence suggests that apoE influences microglial function in neurodegenerative diseases. Here, we characterize the impact that apoE has on amyloid pathology and the innate immune response in APPPS1ΔE9 and APPPS1-21 transgenic mice. We report that Apoe deficiency reduced fibrillar plaque deposition, consistent with previous studies. However, fibrillar plaques in Apoe-deficient mice exhibited a striking reduction in plaque compaction. Hyperspectral fluorescent imaging using luminescent conjugated oligothiophenes identified distinct Aβ morphotypes in Apoe-deficient mice. We also observed a significant reduction in fibrillar plaque–associated microgliosis and activated microglial gene expression in Apoe-deficient mice, along with significant increases in dystrophic neurites around fibrillar plaques. Our results suggest that apoE is critical in stimulating the innate immune response to amyloid pathology.
Collapse
Affiliation(s)
- Jason D Ulrich
- Department of Neurology, Washington University School of Medicine, St. Louis, MO.,Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO.,Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO
| | - Tyler K Ulland
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| | - Thomas E Mahan
- Department of Neurology, Washington University School of Medicine, St. Louis, MO.,Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO.,Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO
| | - Sofie Nyström
- Department of Chemistry, IFM, Linköping University, Linköping, Sweden
| | - K Peter Nilsson
- Department of Chemistry, IFM, Linköping University, Linköping, Sweden
| | - Wilbur M Song
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| | - Yingyue Zhou
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| | - Mariska Reinartz
- Department of Neurology, Washington University School of Medicine, St. Louis, MO.,Radboud University Nijmegen, Nijmegen, Netherlands
| | - Seulah Choi
- Department of Neurology, Washington University School of Medicine, St. Louis, MO.,Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO.,Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO
| | - Hong Jiang
- Department of Neurology, Washington University School of Medicine, St. Louis, MO.,Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO.,Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO
| | - Floy R Stewart
- Department of Neurology, Washington University School of Medicine, St. Louis, MO.,Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO.,Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO
| | - Elise Anderson
- Department of Neurology, Washington University School of Medicine, St. Louis, MO.,Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO.,Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO
| | - Yaming Wang
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO.,Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| | - David M Holtzman
- Department of Neurology, Washington University School of Medicine, St. Louis, MO .,Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO.,Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
313
|
Condello C, Yuan P, Grutzendler J. Microglia-Mediated Neuroprotection, TREM2, and Alzheimer's Disease: Evidence From Optical Imaging. Biol Psychiatry 2018; 83:377-387. [PMID: 29169609 PMCID: PMC5767550 DOI: 10.1016/j.biopsych.2017.10.007] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 10/05/2017] [Accepted: 10/06/2017] [Indexed: 12/19/2022]
Abstract
Recent genetic studies have provided overwhelming evidence of the involvement of microglia-related molecular networks in the pathophysiology of Alzheimer's disease (AD). However, the precise mechanisms by which microglia alter the course of AD neuropathology remain poorly understood. Here we discuss current evidence of the neuroprotective functions of microglia with a focus on optical imaging studies that have revealed a role of these cells in the encapsulation of amyloid deposits ("microglia barrier"). This barrier modulates the degree of plaque compaction, amyloid fibril surface area, and insulation from adjacent axons thereby reducing neurotoxicity. We discuss findings implicating genetic variants of the microglia receptor, triggering receptor expressed on myeloid cells 2, in the increased risk of late onset AD. We provide evidence that increased AD risk may be at least partly mediated by deficient microglia polarization toward amyloid deposits, resulting in ineffective plaque encapsulation and reduced plaque compaction, which is associated with worsened axonal pathology. Finally, we propose possible avenues for therapeutic targeting of plaque-associated microglia with the goal of enhancing the microglia barrier and potentially reducing disease progression.
Collapse
Affiliation(s)
- Carlo Condello
- Institute for Neurodegenerative Diseases, Weill Institute for Neurosciences, University of California, San Francisco, CA 94158, USA,Department of Neurology, University of California, San Francisco, CA 94158, USA
| | - Peng Yuan
- Department of Biology, Stanford University, Palo Alto, CA 94305, USA
| | - Jaime Grutzendler
- Department of Neurology, Yale School of Medicine, New Haven, Connecticut; Department of Neuroscience, Yale School of Medicine, New Haven, Connecticut.
| |
Collapse
|
314
|
Pimenova AA, Raj T, Goate AM. Untangling Genetic Risk for Alzheimer's Disease. Biol Psychiatry 2018; 83:300-310. [PMID: 28666525 PMCID: PMC5699970 DOI: 10.1016/j.biopsych.2017.05.014] [Citation(s) in RCA: 158] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 05/15/2017] [Accepted: 05/15/2017] [Indexed: 01/01/2023]
Abstract
Alzheimer's disease (AD) is a genetically heterogeneous neurodegenerative disorder caused by fully penetrant single gene mutations in a minority of cases, while the majority of cases are sporadic or show modest familial clustering. These cases are of late onset and likely result from the interaction of many genes and the environment. More than 30 loci have been implicated in AD by a combination of linkage, genome-wide association, and whole genome/exome sequencing. We have learned from these studies that perturbations in endolysosomal, lipid metabolism, and immune response pathways substantially contribute to sporadic AD pathogenesis. We review here current knowledge about functions of AD susceptibility genes, highlighting cells of the myeloid lineage as drivers of at least part of the genetic component in late-onset AD. Although targeted resequencing utilized for the identification of causal variants has discovered coding mutations in some AD-associated genes, a lot of risk variants lie in noncoding regions. Here we discuss the use of functional genomics approaches that integrate transcriptomic, epigenetic, and endophenotype traits with systems biology to annotate genetic variants, and to facilitate discovery of AD risk genes. Further validation in cell culture and mouse models will be necessary to establish causality for these genes. This knowledge will allow mechanism-based design of novel therapeutic interventions in AD and promises coherent implementation of treatment in a personalized manner.
Collapse
Affiliation(s)
- Anna A Pimenova
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York; Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Towfique Raj
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York; Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Alison M Goate
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York; Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, New York.
| |
Collapse
|
315
|
Satoh JI, Kino Y, Yanaizu M, Saito Y. Alzheimer's disease pathology in Nasu-Hakola disease brains. Intractable Rare Dis Res 2018; 7:32-36. [PMID: 29552443 PMCID: PMC5849622 DOI: 10.5582/irdr.2017.01088] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Nasu-Hakola disease (NHD) is a rare autosomal recessive disorder, characterized by progressive presenile dementia and formation of multifocal bone cysts, caused by genetic mutations of either triggering receptor expressed on myeloid cells 2 (TREM2) or TYRO protein tyrosine kinase binding protein (TYROBP), alternatively named DNAX-activation protein 12 (DAP12), both of which are expressed on microglia in the brain and form the receptor-adaptor complex that chiefly recognizes anionic lipids. TREM2 transmits the signals involved in microglial survival, proliferation, chemotaxis, and phagocytosis. A recent study indicated that a loss of TREM2 function causes greater amounts of amyloid-β (Aβ) deposition in the hippocampus of a mouse model of Alzheimer's disease (AD) owing to a dysfunctional response of microglia to amyloid plaques, suggesting that TREM2 facilitates Aβ clearance by microglia. TREM2/DAP12-mediated microglial response limits diffusion and toxicity of amyloid plaques by forming a protective barrier. However, the levels of Aβ deposition in postmortem brains of NHD, where the biological function of the TREM2/DAP12 signaling pathway is completely lost, remain to be investigated. By immunohistochemistry, we studied the expression of Aβ and phosphorylated tau (p-tau) in the frontal cortex and the hippocampus of five NHD cases. Although we identified several small Aβ-immunoreactive spheroids, amyloid plaques were almost undetectable in NHD brains. We found a small number of p-tau-immunoreactive neurofibrillary tangle (NFT)-bearing neurons in NHD brains. Because AD pathology is less evident in NHD than the full-brown AD, it does not play an active role in the development of NHD.
Collapse
Affiliation(s)
- Jun-ichi Satoh
- Department of Bioinformatics and Molecular Neuropathology, Meiji Pharmaceutical University, Tokyo, Japan
- Address correspondence to: Dr. Jun-ichi Satoh, Department of Bioinformatics and Molecular Neuropathology, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo, Japan. E-mail:
| | - Yoshihiro Kino
- Department of Bioinformatics and Molecular Neuropathology, Meiji Pharmaceutical University, Tokyo, Japan
| | - Motoaki Yanaizu
- Department of Bioinformatics and Molecular Neuropathology, Meiji Pharmaceutical University, Tokyo, Japan
| | - Yuko Saito
- Department of Laboratory Medicine, National Center Hospital, NCNP, Tokyo, Japan
| |
Collapse
|
316
|
Kang SS, Kurti A, Baker KE, Liu CC, Colonna M, Ulrich JD, Holtzman DM, Bu G, Fryer JD. Behavioral and transcriptomic analysis of Trem2-null mice: not all knockout mice are created equal. Hum Mol Genet 2018; 27:211-223. [PMID: 29040522 PMCID: PMC5886290 DOI: 10.1093/hmg/ddx366] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 08/31/2017] [Accepted: 09/21/2017] [Indexed: 01/08/2023] Open
Abstract
It is clear that innate immune system status is altered in numerous neurodegenerative diseases. Human genetic studies have demonstrated that triggering receptor expressed in myeloid cells 2 (TREM2) coding variants have a strong association with Alzheimer's disease (AD) and other neurodegenerative diseases. To more thoroughly understand the impact of TREM2 in vivo, we studied the behavioral and cognitive functions of wild-type (WT) and Trem2-/- (KO) mice during basal conditions and brain function in the context of innate immune stimulation with peripherally administered lipopolysaccharide (LPS). Early markers of neuroinflammation preceded Aif1 and Trem2 upregulation that occurred at later stages (24-48 h post-LPS). We performed a transcriptomic study of these cohorts and found numerous transcripts and pathways that were altered in Trem2-/- mice both at baseline and 48 h after LPS challenge. Importantly, our transcriptome analysis revealed that our Trem2-/- mouse line (Velocigene allele) results in exaggerated Treml1 upregulation. In contrast, aberrantly high Treml1 expression was absent in the Trem2 knockout line generated by the Colonna lab and the Jackson Labs CRISPR/Cas9 Trem2 knockout line. Notably, removal of the floxed neomycin selection cassette ameliorated aberrant Treml1 expression, validating the artifactual nature of Treml1 expression in the original Trem2-/- Velocigene line. Clearly further studies are needed to decipher whether the Treml1 transcriptional artifact is functionally meaningful, but our data indicate that caution is warranted when interpreting functional studies with this particular line. Additionally, our results indicate that other Velocigene alleles or targeting strategies with strong heterologous promoters need to carefully consider downstream genes.
Collapse
Affiliation(s)
- Silvia S Kang
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Aishe Kurti
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Kelsey E Baker
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Chia-Chen Liu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University, St. Louis, MO 63110, USA
| | - Jason D Ulrich
- Department of Neurology, Washington University, St. Louis, MO 63110, USA
| | - David M Holtzman
- Department of Neurology, Washington University, St. Louis, MO 63110, USA
| | - Guojun Bu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
- Neurobiology of Disease Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL 32224, USA
| | - John D Fryer
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
- Neurobiology of Disease Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL 32224, USA
| |
Collapse
|
317
|
Song WM, Joshita S, Zhou Y, Ulland TK, Gilfillan S, Colonna M. Humanized TREM2 mice reveal microglia-intrinsic and -extrinsic effects of R47H polymorphism. J Exp Med 2018; 215:745-760. [PMID: 29321225 PMCID: PMC5839761 DOI: 10.1084/jem.20171529] [Citation(s) in RCA: 188] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 11/07/2017] [Accepted: 12/18/2017] [Indexed: 12/20/2022] Open
Abstract
The R47H variant of the microglia gene TREM2 has been linked to a significantly higher risk of Alzheimer’s disease. In this study, Song et al. generate human TREM2-expressing mice and demonstrate that R47H leads to a decreased microglia number and activation as well as a decreased presence of soluble TREM2 on neurons and plaques in a mouse model of Alzheimer’s disease. Alzheimer’s disease (AD) is a neurodegenerative disease that causes late-onset dementia. The R47H variant of the microglial receptor TREM2 triples AD risk in genome-wide association studies. In mouse AD models, TREM2-deficient microglia fail to proliferate and cluster around the amyloid-β plaques characteristic of AD. In vitro, the common variant (CV) of TREM2 binds anionic lipids, whereas R47H mutation impairs binding. However, in vivo, the identity of TREM2 ligands and effect of the R47H variant remain unknown. We generated transgenic mice expressing human CV or R47H TREM2 and lacking endogenous TREM2 in the 5XFAD AD model. Only the CV transgene restored amyloid-β–induced microgliosis and microglial activation, indicating that R47H impairs TREM2 function in vivo. Remarkably, soluble TREM2 was found on neurons and plaques in CV- but not R47H-expressing 5XFAD brains, although in vitro CV and R47H were shed similarly via Adam17 proteolytic activity. These results demonstrate that TREM2 interacts with neurons and plaques duing amyloid-β accumulation and R47H impairs this interaction.
Collapse
Affiliation(s)
- Wilbur M Song
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, MO
| | - Satoru Joshita
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, MO.,Department of Medicine, Division of Gastroenterology and Hepatology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Yingyue Zhou
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, MO
| | - Tyler K Ulland
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, MO
| | - Susan Gilfillan
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, MO
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, MO
| |
Collapse
|
318
|
Tay TL, Béchade C, D'Andrea I, St-Pierre MK, Henry MS, Roumier A, Tremblay ME. Microglia Gone Rogue: Impacts on Psychiatric Disorders across the Lifespan. Front Mol Neurosci 2018; 10:421. [PMID: 29354029 PMCID: PMC5758507 DOI: 10.3389/fnmol.2017.00421] [Citation(s) in RCA: 156] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 12/04/2017] [Indexed: 12/21/2022] Open
Abstract
Microglia are the predominant immune response cells and professional phagocytes of the central nervous system (CNS) that have been shown to be important for brain development and homeostasis. These cells present a broad spectrum of phenotypes across stages of the lifespan and especially in CNS diseases. Their prevalence in all neurological pathologies makes it pertinent to reexamine their distinct roles during steady-state and disease conditions. A major question in the field is determining whether the clustering and phenotypical transformation of microglial cells are leading causes of pathogenesis, or potentially neuroprotective responses to the onset of disease. The recent explosive growth in our understanding of the origin and homeostasis of microglia, uncovering their roles in shaping of the neural circuitry and synaptic plasticity, allows us to discuss their emerging functions in the contexts of cognitive control and psychiatric disorders. The distinct mesodermal origin and genetic signature of microglia in contrast to other neuroglial cells also make them an interesting target for the development of therapeutics. Here, we review the physiological roles of microglia, their contribution to the effects of environmental risk factors (e.g., maternal infection, early-life stress, dietary imbalance), and their impact on psychiatric disorders initiated during development (e.g., Nasu-Hakola disease (NHD), hereditary diffuse leukoencephaly with spheroids, Rett syndrome, autism spectrum disorders (ASDs), and obsessive-compulsive disorder (OCD)) or adulthood (e.g., alcohol and drug abuse, major depressive disorder (MDD), bipolar disorder (BD), schizophrenia, eating disorders and sleep disorders). Furthermore, we discuss the changes in microglial functions in the context of cognitive aging, and review their implication in neurodegenerative diseases of the aged adult (e.g., Alzheimer’s and Parkinson’s). Taking into account the recent identification of microglia-specific markers, and the availability of compounds that target these cells selectively in vivo, we consider the prospect of disease intervention via the microglial route.
Collapse
Affiliation(s)
- Tuan Leng Tay
- Institute of Neuropathology, University of Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Catherine Béchade
- INSERM UMR-S 839, Paris, France.,Sorbonne Universités, Université Pierre et Marie Curie (UPMC), Paris, France.,Institut du Fer à Moulin, Paris, France
| | - Ivana D'Andrea
- INSERM UMR-S 839, Paris, France.,Sorbonne Universités, Université Pierre et Marie Curie (UPMC), Paris, France.,Institut du Fer à Moulin, Paris, France
| | | | - Mathilde S Henry
- Axe Neurosciences, CRCHU de Québec-Université Laval, Québec, QC, Canada
| | - Anne Roumier
- INSERM UMR-S 839, Paris, France.,Sorbonne Universités, Université Pierre et Marie Curie (UPMC), Paris, France.,Institut du Fer à Moulin, Paris, France
| | - Marie-Eve Tremblay
- Axe Neurosciences, CRCHU de Québec-Université Laval, Québec, QC, Canada.,Département de Médecine Moléculaire, Université Laval, Québec, QC, Canada
| |
Collapse
|
319
|
Weinhard L, d'Errico P, Leng Tay T. Headmasters: Microglial regulation of learning and memory in health and disease. AIMS MOLECULAR SCIENCE 2018. [DOI: 10.3934/molsci.2018.1.63] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
320
|
Hansen DV, Hanson JE, Sheng M. Microglia in Alzheimer's disease. J Cell Biol 2017; 217:459-472. [PMID: 29196460 PMCID: PMC5800817 DOI: 10.1083/jcb.201709069] [Citation(s) in RCA: 1299] [Impact Index Per Article: 162.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 11/05/2017] [Accepted: 11/14/2017] [Indexed: 12/15/2022] Open
Abstract
Hansen et al. review the potential dual helpful and harmful roles of microglia in the development and progression of Alzheimer’s disease. Proliferation and activation of microglia in the brain, concentrated around amyloid plaques, is a prominent feature of Alzheimer’s disease (AD). Human genetics data point to a key role for microglia in the pathogenesis of AD. The majority of risk genes for AD are highly expressed (and many are selectively expressed) by microglia in the brain. There is mounting evidence that microglia protect against the incidence of AD, as impaired microglial activities and altered microglial responses to β-amyloid are associated with increased AD risk. On the other hand, there is also abundant evidence that activated microglia can be harmful to neurons. Microglia can mediate synapse loss by engulfment of synapses, likely via a complement-dependent mechanism; they can also exacerbate tau pathology and secrete inflammatory factors that can injure neurons directly or via activation of neurotoxic astrocytes. Gene expression profiles indicate multiple states of microglial activation in neurodegenerative disease settings, which might explain the disparate roles of microglia in the development and progression of AD pathology.
Collapse
Affiliation(s)
- David V Hansen
- Department of Neuroscience, Genentech, Inc., South San Francisco, CA
| | - Jesse E Hanson
- Department of Neuroscience, Genentech, Inc., South San Francisco, CA
| | - Morgan Sheng
- Department of Neuroscience, Genentech, Inc., South San Francisco, CA
| |
Collapse
|
321
|
Haure-Mirande JV, Audrain M, Fanutza T, Kim SH, Klein WL, Glabe C, Readhead B, Dudley JT, Blitzer RD, Wang M, Zhang B, Schadt EE, Gandy S, Ehrlich ME. Deficiency of TYROBP, an adapter protein for TREM2 and CR3 receptors, is neuroprotective in a mouse model of early Alzheimer's pathology. Acta Neuropathol 2017; 134:769-788. [PMID: 28612290 PMCID: PMC5645450 DOI: 10.1007/s00401-017-1737-3] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 05/21/2017] [Accepted: 06/02/2017] [Indexed: 01/28/2023]
Abstract
Conventional genetic approaches and computational strategies have converged on immune-inflammatory pathways as key events in the pathogenesis of late onset sporadic Alzheimer’s disease (LOAD). Mutations and/or differential expression of microglial specific receptors such as TREM2, CD33, and CR3 have been associated with strong increased risk for developing Alzheimer’s disease (AD). DAP12 (DNAX-activating protein 12)/TYROBP, a molecule localized to microglia, is a direct partner/adapter for TREM2, CD33, and CR3. We and others have previously shown that TYROBP expression is increased in AD patients and in mouse models. Moreover, missense mutations in the coding region of TYROBP have recently been identified in some AD patients. These lines of evidence, along with computational analysis of LOAD brain gene expression, point to DAP12/TYROBP as a potential hub or driver protein in the pathogenesis of AD. Using a comprehensive panel of biochemical, physiological, behavioral, and transcriptomic assays, we evaluated in a mouse model the role of TYROBP in early stage AD. We crossed an Alzheimer’s model mutant APPKM670/671NL/PSEN1Δexon9(APP/PSEN1) mouse model with Tyrobp−/− mice to generate AD model mice deficient or null for TYROBP (APP/PSEN1; Tyrobp+/− or APP/PSEN1; Tyrobp−/−). While we observed relatively minor effects of TYROBP deficiency on steady-state levels of amyloid-β peptides, there was an effect of Tyrobp deficiency on the morphology of amyloid deposits resembling that reported by others for Trem2−/− mice. We identified modulatory effects of TYROBP deficiency on the level of phosphorylation of TAU that was accompanied by a reduction in the severity of neuritic dystrophy. TYROBP deficiency also altered the expression of several AD related genes, including Cd33. Electrophysiological abnormalities and learning behavior deficits associated with APP/PSEN1 transgenes were greatly attenuated on a Tyrobp-null background. Some modulatory effects of TYROBP on Alzheimer’s-related genes were only apparent on a background of mice with cerebral amyloidosis due to overexpression of mutant APP/PSEN1. These results suggest that reduction of TYROBP gene expression and/or protein levels could represent an immune-inflammatory therapeutic opportunity for modulating early stage LOAD, potentially leading to slowing or arresting the progression to full-blown clinical and pathological LOAD.
Collapse
Affiliation(s)
| | - Mickael Audrain
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Tomas Fanutza
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Soong Ho Kim
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - William L Klein
- Department of Biochemistry, Northwestern University, Chicago, IL, 60611, USA
| | - Charles Glabe
- Department of Biochemistry and Molecular Biology, University of California at Irvine, Irvine, CA, 92697, USA
| | - Ben Readhead
- Department of Genetics and Genomic Sciences, Icahn Institute of Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Joel T Dudley
- Department of Genetics and Genomic Sciences, Icahn Institute of Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Robert D Blitzer
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Minghui Wang
- Department of Genetics and Genomic Sciences, Icahn Institute of Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Bin Zhang
- Department of Genetics and Genomic Sciences, Icahn Institute of Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Eric E Schadt
- Department of Genetics and Genomic Sciences, Icahn Institute of Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Sam Gandy
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Department of Psychiatry and Alzheimer's Disease Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| | - Michelle E Ehrlich
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
322
|
Abstract
Microglial cell function is implicated in the etiology of Alzheimer's disease by human genetics. In this issue of Immunity, Krasemann et al. (2017) describe a gene expression signature associated with an APOE- and TREM2-dependent response of microglia to brain tissue damage that accumulates in aging and disease, defining an axis that might be amenable to therapeutic targeting.
Collapse
Affiliation(s)
- Anna A Pimenova
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Ronald M. Loeb Center for Alzheimer's disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Edoardo Marcora
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Ronald M. Loeb Center for Alzheimer's disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alison M Goate
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Ronald M. Loeb Center for Alzheimer's disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
323
|
Walter J, Kemmerling N, Wunderlich P, Glebov K. γ-Secretase in microglia - implications for neurodegeneration and neuroinflammation. J Neurochem 2017; 143:445-454. [PMID: 28940294 DOI: 10.1111/jnc.14224] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 08/16/2017] [Accepted: 09/18/2017] [Indexed: 12/13/2022]
Abstract
γ-Secretase is an intramembrane cleaving protease involved in the generation of the Alzheimer's disease (AD)-associated amyloid β peptide (Aβ). γ-Secretase is ubiquitously expressed in different organs, and also in different cell types of the human brain. Besides the involvement in the proteolytic generation of Aβ from the amyloid precursor protein, γ-secretase cleaves many additional protein substrates, suggesting pleiotropic functions under physiological and pathophysiological conditions. Microglia exert important functions during brain development and homeostasis in adulthood, and accumulating evidence indicates that microglia and neuroinflammatory processes contribute to the pathogenesis of neurodegenerative diseases. Recent studies demonstrate functional implications of γ-secretase in microglia, suggesting that alterations in γ-secretase activity could contribute to AD pathogenesis by modulation of microglia and related neuroinflammatory processes during neurodegeneration. In this review, we discuss the involvement of γ-secretase in the regulation of microglial functions, and the potential relevance of these processes under physiological and pathophysiological conditions. This article is part of the series "Beyond Amyloid".
Collapse
Affiliation(s)
- Jochen Walter
- Department of Neurology, University of Bonn, Bonn, Germany
| | | | | | | |
Collapse
|
324
|
Differential contribution of microglia and monocytes in neurodegenerative diseases. J Neural Transm (Vienna) 2017; 125:809-826. [PMID: 29063348 DOI: 10.1007/s00702-017-1795-7] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 10/03/2017] [Indexed: 12/12/2022]
Abstract
Neuroinflammation is a hallmark of neurodegenerative diseases including Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS). Microglia, the innate immune cells of the CNS, are the first to react to pathological insults. However, multiple studies have also demonstrated an involvement of peripheral monocytes in several neurodegenerative diseases. Due to the different origins of these two cell types, it is important to distinguish their role and function in the development and progression of these diseases. In this review, we will summarize and discuss the current knowledge of the differential contributions of microglia and monocytes in the common neurodegenerative diseases AD, PD, and ALS, as well as multiple sclerosis, which is now regarded as a combination of inflammatory processes and neurodegeneration. Until recently, it has been challenging to differentiate microglia from monocytes, as there were no specific markers. Therefore, the recent identification of specific molecular signatures of both cell types will help to advance our understanding of their differential contribution in neurodegenerative diseases.
Collapse
|
325
|
The TREM2-APOE Pathway Drives the Transcriptional Phenotype of Dysfunctional Microglia in Neurodegenerative Diseases. Immunity 2017; 47:566-581.e9. [PMID: 28930663 DOI: 10.1016/j.immuni.2017.08.008] [Citation(s) in RCA: 1873] [Impact Index Per Article: 234.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 07/06/2017] [Accepted: 08/17/2017] [Indexed: 12/12/2022]
Abstract
Microglia play a pivotal role in the maintenance of brain homeostasis but lose homeostatic function during neurodegenerative disorders. We identified a specific apolipoprotein E (APOE)-dependent molecular signature in microglia from models of amyotrophic lateral sclerosis (ALS), multiple sclerosis (MS), and Alzheimer's disease (AD) and in microglia surrounding neuritic β-amyloid (Aβ)-plaques in the brains of people with AD. The APOE pathway mediated a switch from a homeostatic to a neurodegenerative microglia phenotype after phagocytosis of apoptotic neurons. TREM2 (triggering receptor expressed on myeloid cells 2) induced APOE signaling, and targeting the TREM2-APOE pathway restored the homeostatic signature of microglia in ALS and AD mouse models and prevented neuronal loss in an acute model of neurodegeneration. APOE-mediated neurodegenerative microglia had lost their tolerogenic function. Our work identifies the TREM2-APOE pathway as a major regulator of microglial functional phenotype in neurodegenerative diseases and serves as a novel target that could aid in the restoration of homeostatic microglia.
Collapse
|
326
|
Bemiller SM, McCray TJ, Allan K, Formica SV, Xu G, Wilson G, Kokiko-Cochran ON, Crish SD, Lasagna-Reeves CA, Ransohoff RM, Landreth GE, Lamb BT. TREM2 deficiency exacerbates tau pathology through dysregulated kinase signaling in a mouse model of tauopathy. Mol Neurodegener 2017; 12:74. [PMID: 29037207 PMCID: PMC5644120 DOI: 10.1186/s13024-017-0216-6] [Citation(s) in RCA: 201] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 10/09/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Genetic variants of the Triggering Receptor Expressed on Myeloid Cells-2 (TREM2) confer increased risk of developing late-onset Alzheimer's Disease (LOAD) and other neurodegenerative disorders. Recent studies provided insight into the multifaceted roles of TREM2 in regulating extracellular β-amyloid (Aβ) pathology, myeloid cell accumulation, and inflammation observed in AD, yet little is known regarding the role of TREM2 in regulating intracellular microtubule associated protein tau (MAPT; tau) pathology in neurodegenerative diseases and in AD, in particular. RESULTS Here we report that TREM2 deficiency leads to accelerated and exacerbated hyperphosphorylation and aggregation of tau in a humanized mouse model of tauopathy. TREM2 deficiency also results, indirectly, in dramatic widespread dysregulation of neuronal stress kinase pathways. CONCLUSIONS Our results suggest that deficiency of microglial TREM2 leads to heightened tau pathology coupled with widespread increases in activated neuronal stress kinases. These findings offer new insight into the complex, multiple roles of TREM2 in regulating Aβ and tau pathologies.
Collapse
Affiliation(s)
- Shane M Bemiller
- Department of Neurosciences, The Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA.
- Kent State University, School of Biomedical Sciences, Kent, OH, USA.
- Indiana University School of Medicine Stark Neuroscience Research Institute, Indianapolis, IN, USA.
| | - Tyler J McCray
- Indiana University School of Medicine Stark Neuroscience Research Institute, Indianapolis, IN, USA
| | - Kevin Allan
- Department of Neurosciences, Case Western Reserve University, Cleveland, USA
| | - Shane V Formica
- Department of Neurosciences, The Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
| | - Guixiang Xu
- Department of Neurosciences, The Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
- Indiana University School of Medicine Stark Neuroscience Research Institute, Indianapolis, IN, USA
| | - Gina Wilson
- Department of Neurosciences, Northeastern Ohio Medical University, Rootstown, OH, USA
| | - Olga N Kokiko-Cochran
- Department of Neurosciences, The Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
- Department of Neurosciences, The Ohio State University, Columbus, OH, USA
| | - Samuel D Crish
- Department of Neurosciences, Northeastern Ohio Medical University, Rootstown, OH, USA
| | | | | | - Gary E Landreth
- Indiana University School of Medicine Stark Neuroscience Research Institute, Indianapolis, IN, USA
- Department of Neurosciences, Case Western Reserve University, Cleveland, USA
| | - Bruce T Lamb
- Department of Neurosciences, The Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA.
- Indiana University School of Medicine Stark Neuroscience Research Institute, Indianapolis, IN, USA.
| |
Collapse
|
327
|
Let's make microglia great again in neurodegenerative disorders. J Neural Transm (Vienna) 2017; 125:751-770. [PMID: 29027011 DOI: 10.1007/s00702-017-1792-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 09/18/2017] [Indexed: 12/12/2022]
Abstract
All of the common neurodegenerative disorders-Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis and prion diseases-are characterized by accumulation of misfolded proteins that trigger activation of microglia; brain-resident mononuclear phagocytes. This chronic form of neuroinflammation is earmarked by increased release of myriad cytokines and chemokines in patient brains and biofluids. Microglial phagocytosis is compromised early in the disease process, obfuscating clearance of abnormal proteins. This review identifies immune pathologies shared by the major neurodegenerative disorders. The overarching concept is that aberrant innate immune pathways can be targeted for return to homeostasis in hopes of coaxing microglia into clearing neurotoxic misfolded proteins.
Collapse
|
328
|
TREM2 deficiency attenuates neuroinflammation and protects against neurodegeneration in a mouse model of tauopathy. Proc Natl Acad Sci U S A 2017; 114:11524-11529. [PMID: 29073081 PMCID: PMC5663386 DOI: 10.1073/pnas.1710311114] [Citation(s) in RCA: 339] [Impact Index Per Article: 42.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common cause of dementia and is a major public health problem for which there is currently no disease-modifying treatment. There is an urgent need for greater understanding of the molecular mechanisms underlying neurodegeneration in patients to create better therapeutic options. Recently, genetic studies uncovered novel AD risk variants in the microglial receptor, triggering receptor expressed on myeloid cells 2 (TREM2). Previous studies suggested that loss of TREM2 function worsens amyloid-β (Aβ) plaque-related toxicity. In contrast, we observe TREM2 deficiency mitigates neuroinflammation and protects against brain atrophy in the context of tau pathology. These findings indicate dual roles for TREM2 and microglia in the context of amyloid versus tau pathology, which are important to consider for potential treatments targeting TREM2. Variants in the gene encoding the triggering receptor expressed on myeloid cells 2 (TREM2) were recently found to increase the risk for developing Alzheimer’s disease (AD). In the brain, TREM2 is predominately expressed on microglia, and its association with AD adds to increasing evidence implicating a role for the innate immune system in AD initiation and progression. Thus far, studies have found TREM2 is protective in the response to amyloid pathology while variants leading to a loss of TREM2 function impair microglial signaling and are deleterious. However, the potential role of TREM2 in the context of tau pathology has not yet been characterized. In this study, we crossed Trem2+/+ (T2+/+) and Trem2−/− (T2−/−) mice to the PS19 human tau transgenic line (PS) to investigate whether loss of TREM2 function affected tau pathology, the microglial response to tau pathology, or neurodegeneration. Strikingly, by 9 mo of age, T2−/−PS mice exhibited significantly less brain atrophy as quantified by ventricular enlargement and preserved cortical volume in the entorhinal and piriform regions compared with T2+/+PS mice. However, no TREM2-dependent differences were observed for phosphorylated tau staining or insoluble tau levels. Rather, T2−/−PS mice exhibited significantly reduced microgliosis in the hippocampus and piriform cortex compared with T2+/+PS mice. Gene expression analyses and immunostaining revealed microglial activation was significantly attenuated in T2−/−PS mice, and there were lower levels of inflammatory cytokines and astrogliosis. These unexpected findings suggest that impairing microglial TREM2 signaling reduces neuroinflammation and is protective against neurodegeneration in the setting of pure tauopathy.
Collapse
|
329
|
Rehker J, Rodhe J, Nesbitt RR, Boyle EA, Martin BK, Lord J, Karaca I, Naj A, Jessen F, Helisalmi S, Soininen H, Hiltunen M, Ramirez A, Scherer M, Farrer LA, Haines JL, Pericak-Vance MA, Raskind WH, Cruchaga C, Schellenberg GD, Joseph B, Brkanac Z. Caspase-8, association with Alzheimer's Disease and functional analysis of rare variants. PLoS One 2017; 12:e0185777. [PMID: 28985224 PMCID: PMC5630132 DOI: 10.1371/journal.pone.0185777] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 09/19/2017] [Indexed: 12/30/2022] Open
Abstract
The accumulation of amyloid beta (Aβ) peptide (Amyloid cascade hypothesis), an APP protein cleavage product, is a leading hypothesis in the etiology of Alzheimer's disease (AD). In order to identify additional AD risk genes, we performed targeted sequencing and rare variant burden association study for nine candidate genes involved in the amyloid metabolism in 1886 AD cases and 1700 controls. We identified a significant variant burden association for the gene encoding caspase-8, CASP8 (p = 8.6x10-5). For two CASP8 variants, p.K148R and p.I298V, the association remained significant in a combined sample of 10,820 cases and 8,881 controls. For both variants we performed bioinformatics structural, expression and enzymatic activity studies and obtained evidence for loss of function effects. In addition to their role in amyloid processing, caspase-8 and its downstream effector caspase-3 are involved in synaptic plasticity, learning, memory and control of microglia pro-inflammatory activation and associated neurotoxicity, indicating additional mechanisms that might contribute to AD. As caspase inhibition has been proposed as a mechanism for AD treatment, our finding that AD-associated CASP8 variants reduce caspase function calls for caution and is an impetus for further studies on the role of caspases in AD and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Jan Rehker
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, United States of America
| | - Johanna Rodhe
- Department of Oncology-Pathology, Cancer Centrum Karolinska, Karolinska Institutet, Stockholm, Sweden
| | - Ryan R. Nesbitt
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, United States of America
| | - Evan A. Boyle
- Department of Genetics, Stanford University, CA, United States of America
| | - Beth K. Martin
- Department of Genome Sciences, University of Washington, Seattle, WA, United States of America
| | - Jenny Lord
- Department of Psychiatry, Washington University, St. Louis, MO, United States of America
| | - Ilker Karaca
- Department of Psychiatry and Psychotherapy, University of Bonn, Bonn, Germany
| | - Adam Naj
- Department of Biostatistics and Epidemiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States of America
| | - Frank Jessen
- Department of Psychiatry and Psychotherapy, University of Bonn, Bonn, Germany
- Department of Psychiatry and Psychotherapy, University of Cologne, Cologne, Germany
- German Center for Neurodegenerative Diseases, Bonn, Germany
| | - Seppo Helisalmi
- Institute of Clinical Medicine–Neurology, University of Eastern Finland, Kuopio, Finland
| | - Hilkka Soininen
- Institute of Clinical Medicine–Neurology, University of Eastern Finland, Kuopio, Finland
- Department of Neurology, Kuopio University Hospital, Kuopio, Finland
| | - Mikko Hiltunen
- Department of Neurology, Kuopio University Hospital, Kuopio, Finland
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Alfredo Ramirez
- Department of Psychiatry and Psychotherapy, University of Bonn, Bonn, Germany
- Department of Psychiatry and Psychotherapy, University of Cologne, Cologne, Germany
- Institute of Human Genetics, University of Bonn, Bonn, Germany
| | - Martin Scherer
- Department of Primary Medical Care, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Lindsay A. Farrer
- Departments of Medicine (Biomedical Genetics), Neurology, Ophthalmology, Epidemiology, and Biostatistics, Boston University, Boston, MA, United States of America
| | - Jonathan L. Haines
- Department of Epidemiology and Biostatistics, Case Western Reserve University, Cleveland, OH, United States of America
- Institute for Computational Biology, Case Western Reserve University, Cleveland, OH, United States of America
| | - Margaret A. Pericak-Vance
- The John P. Hussman Institute for Human Genomics, University of Miami, Miami, FL, United States of America
- Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami, Miami, FL, United States of America
| | - Wendy H. Raskind
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, United States of America
- Department of Medicine, University of Washington, Seattle, WA, United States of America
| | - Carlos Cruchaga
- Department of Psychiatry, Washington University, St. Louis, MO, United States of America
| | - Gerard D. Schellenberg
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States of America
| | - Bertrand Joseph
- Department of Oncology-Pathology, Cancer Centrum Karolinska, Karolinska Institutet, Stockholm, Sweden
| | - Zoran Brkanac
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, United States of America
- * E-mail:
| |
Collapse
|
330
|
Microglia emerge as central players in brain disease. Nat Med 2017; 23:1018-1027. [PMID: 28886007 DOI: 10.1038/nm.4397] [Citation(s) in RCA: 1180] [Impact Index Per Article: 147.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 07/26/2017] [Indexed: 02/07/2023]
Abstract
There has been an explosion of new findings recently giving us insights into the involvement of microglia in central nervous system (CNS) disorders. A host of new molecular tools and mouse models of disease are increasingly implicating this enigmatic type of nervous system cell as a key player in conditions ranging from neurodevelopmental disorders such as autism to neurodegenerative disorders such as Alzheimer's disease and chronic pain. Contemporaneously, diverse roles are emerging for microglia in the healthy brain, from sculpting developing neuronal circuits to guiding learning-associated plasticity. Understanding the physiological functions of these cells is crucial to determining their roles in disease. Here we focus on recent developments in our rapidly expanding understanding of the function, as well as the dysfunction, of microglia in disorders of the CNS.
Collapse
|
331
|
Kizuka Y, Kitazume S, Taniguchi N. N -glycan and Alzheimer's disease. Biochim Biophys Acta Gen Subj 2017; 1861:2447-2454. [DOI: 10.1016/j.bbagen.2017.04.012] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 04/27/2017] [Accepted: 04/27/2017] [Indexed: 12/14/2022]
|
332
|
Thornton P, Sevalle J, Deery MJ, Fraser G, Zhou Y, Ståhl S, Franssen EH, Dodd RB, Qamar S, Gomez Perez‐Nievas B, Nicol LSC, Eketjäll S, Revell J, Jones C, Billinton A, St George‐Hyslop PH, Chessell I, Crowther DC. TREM2 shedding by cleavage at the H157-S158 bond is accelerated for the Alzheimer's disease-associated H157Y variant. EMBO Mol Med 2017; 9:1366-1378. [PMID: 28855301 PMCID: PMC5623839 DOI: 10.15252/emmm.201707673] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
We have characterised the proteolytic cleavage events responsible for the shedding of triggering receptor expressed on myeloid cells 2 (TREM2) from primary cultures of human macrophages, murine microglia and TREM2-expressing human embryonic kidney (HEK293) cells. In all cell types, a soluble 17 kDa N-terminal cleavage fragment was shed into the conditioned media in a constitutive process that is inhibited by G1254023X and metalloprotease inhibitors and siRNA targeting ADAM10. Inhibitors of serine proteases and matrix metalloproteinases 2/9, and ADAM17 siRNA did not block TREM2 shedding. Peptidomimetic protease inhibitors highlighted a possible cleavage site, and mass spectrometry confirmed that shedding occurred predominantly at the H157-S158 peptide bond for both wild-type and H157Y human TREM2 and for the wild-type murine orthologue. Crucially, we also show that the Alzheimer's disease-associated H157Y TREM2 variant was shed more rapidly than wild type from HEK293 cells, possibly by a novel, batimastat- and ADAM10-siRNA-independent, sheddase activity. These insights offer new therapeutic targets for modulating the innate immune response in Alzheimer's and other neurological diseases.
Collapse
Affiliation(s)
- Peter Thornton
- Neuroscience, Innovative Medicines and Early DevelopmentAstraZenecaGranta ParkCambridgeUK
| | - Jean Sevalle
- Tanz Centre for Research in Neurodegenerative DiseasesUniversity of TorontoTorontoONCanada
| | - Michael J Deery
- Cambridge Centre for ProteomicsUniversity of CambridgeCambridgeUK
| | - Graham Fraser
- Neuroscience, Innovative Medicines and Early DevelopmentAstraZenecaGranta ParkCambridgeUK
| | - Ye Zhou
- Tanz Centre for Research in Neurodegenerative DiseasesUniversity of TorontoTorontoONCanada
| | - Sara Ståhl
- AstraZeneca Translational Sciences CentreKarolinska InstitutetStockholmSweden
| | - Elske H Franssen
- Neuroscience, Innovative Medicines and Early DevelopmentAstraZenecaGranta ParkCambridgeUK
| | - Roger B Dodd
- Department of Clinical NeurosciencesCambridge Institute for Medical ResearchUniversity of CambridgeCambridgeUK,MedImmune LimitedGranta ParkCambridgeUK
| | - Seema Qamar
- Department of Clinical NeurosciencesCambridge Institute for Medical ResearchUniversity of CambridgeCambridgeUK
| | | | | | - Susanna Eketjäll
- Cardiovascular and Metabolic Diseases, Innovative Medicines and Early DevelopmentAstraZeneca, ICMCHuddingeSweden
| | | | | | - Andrew Billinton
- Neuroscience, Innovative Medicines and Early DevelopmentAstraZenecaGranta ParkCambridgeUK
| | - Peter H St George‐Hyslop
- Tanz Centre for Research in Neurodegenerative DiseasesUniversity of TorontoTorontoONCanada,Department of Clinical NeurosciencesCambridge Institute for Medical ResearchUniversity of CambridgeCambridgeUK
| | - Iain Chessell
- Neuroscience, Innovative Medicines and Early DevelopmentAstraZenecaGranta ParkCambridgeUK
| | - Damian C Crowther
- Neuroscience, Innovative Medicines and Early DevelopmentAstraZenecaGranta ParkCambridgeUK
| |
Collapse
|
333
|
Hernandez MX, Jiang S, Cole TA, Chu SH, Fonseca MI, Fang MJ, Hohsfield LA, Torres MD, Green KN, Wetsel RA, Mortazavi A, Tenner AJ. Prevention of C5aR1 signaling delays microglial inflammatory polarization, favors clearance pathways and suppresses cognitive loss. Mol Neurodegener 2017; 12:66. [PMID: 28923083 PMCID: PMC5604420 DOI: 10.1186/s13024-017-0210-z] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 09/12/2017] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Pharmacologic inhibition of C5aR1, a receptor for the complement activation proinflammatory fragment, C5a, suppressed pathology and cognitive deficits in Alzheimer's disease (AD) mouse models. To validate that the effect of the antagonist was specifically via C5aR1 inhibition, mice lacking C5aR1 were generated and compared in behavior and pathology. In addition, since C5aR1 is primarily expressed on cells of the myeloid lineage, and only to a lesser extent on endothelial cells and neurons in brain, gene expression in microglia isolated from adult brain at multiple ages was compared across all genotypes. METHODS C5aR1 knock out mice were crossed to the Arctic AD mouse model, and characterized for pathology and for behavior performance in a hippocampal dependent memory task. CX3CR1GFP and CCR2RFP reporter mice were bred to C5aR1 sufficient and knockout wild type and Arctic mice to enable sorting of microglia (GFP-positive, RFP-negative) isolated from adult brain at 2, 5, 7 and 10 months of age followed by RNA-seq analysis. RESULTS A lack of C5aR1 prevented behavior deficits at 10 months, although amyloid plaque load was not altered. Immunohistochemical analysis showed no CCR2+ monocytes/macrophages near the plaques in the Arctic brain with or without C5aR1. Microglia were sorted from infiltrating monocytes (GFP and RFP-positive) for transcriptome analysis. RNA-seq analysis identified inflammation related genes as differentially expressed, with increased expression in the Arctic mice relative to wild type and decreased expression in the Arctic/C5aR1KO relative to Arctic. In addition, phagosomal-lysosomal gene expression was increased in the Arctic mice relative to wild type but further increased in the Arctic/C5aR1KO mice. A decrease in neuronal complexity was seen in hippocampus of 10 month old Arctic mice at the time that correlates with the behavior deficit, both of which were rescued in the Arctic/C5aR1KO. CONCLUSIONS These data are consistent with microglial polarization in the absence of C5aR1 signaling reflecting decreased induction of inflammatory genes and enhancement of degradation/clearance pathways, which is accompanied by preservation of CA1 neuronal complexity and hippocampal dependent cognitive function. These results provide links between microglial responses and loss of cognitive performance and, combined with the previous pharmacological approach to inhibit C5aR1 signaling, support the potential of this receptor as a novel therapeutic target for AD in humans.
Collapse
Affiliation(s)
- Michael X Hernandez
- Department of Pathology and Laboratory Medicine, School of Medicine, University of California, Irvine, CA, USA
| | - Shan Jiang
- Department of Developmental and Cell Biology, University of California, Irvine, CA, USA
| | - Tracy A Cole
- Department of Neurobiology and Behavior, University of California, Irvine, CA, USA
- Present Address: Ionis Pharmaceuticals Inc., Carlsbad, CA, 92010, USA
| | - Shu-Hui Chu
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, USA
| | - Maria I Fonseca
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, USA
| | - Melody J Fang
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, USA
| | - Lindsay A Hohsfield
- Department of Neurobiology and Behavior, University of California, Irvine, CA, USA
| | - Maria D Torres
- Department of Neurobiology and Behavior, University of California, Irvine, CA, USA
| | - Kim N Green
- Department of Neurobiology and Behavior, University of California, Irvine, CA, USA
| | - Rick A Wetsel
- Research Center for Immunology and Autoimmune Diseases, Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas-Houston, Houston, TX, USA
| | - Ali Mortazavi
- Department of Developmental and Cell Biology, University of California, Irvine, CA, USA
| | - Andrea J Tenner
- Department of Pathology and Laboratory Medicine, School of Medicine, University of California, Irvine, CA, USA.
- Department of Neurobiology and Behavior, University of California, Irvine, CA, USA.
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, USA.
| |
Collapse
|
334
|
Abstract
Microglia are brain-resident myeloid cells that mediate key functions to support the CNS. Microglia express a wide range of receptors that act as molecular sensors, which recognize exogenous or endogenous CNS insults and initiate an immune response. In addition to their classical immune cell function, microglia act as guardians of the brain by promoting phagocytic clearance and providing trophic support to ensure tissue repair and maintain cerebral homeostasis. Conditions associated with loss of homeostasis or tissue changes induce several dynamic microglial processes, including changes of cellular morphology, surface phenotype, secretory mediators, and proliferative responses (referred to as an "activated state"). Activated microglia represent a common pathological feature of several neurodegenerative diseases, including Alzheimer's disease (AD). Cumulative evidence suggests that microglial inflammatory activity in AD is increased while microglial-mediated clearance mechanisms are compromised. Microglia are perpetually engaged in a mutual interaction with the surrounding environment in CNS; thus, diverse microglial reactions at different disease stages may open new avenues for therapeutic intervention and modification of inflammatory activities. In this Review, the role of microglia in the pathogenesis of AD and the modulation of microglia activity as a therapeutic modality will be discussed.
Collapse
Affiliation(s)
- Heela Sarlus
- Department of Neurodegenerative Diseases and Gerontopsychiatry, University of Bonn, Bonn, Germany.,Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany
| | - Michael T Heneka
- Department of Neurodegenerative Diseases and Gerontopsychiatry, University of Bonn, Bonn, Germany.,Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany.,Department of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
335
|
Cuello AC. Early and Late CNS Inflammation in Alzheimer's Disease: Two Extremes of a Continuum? Trends Pharmacol Sci 2017; 38:956-966. [PMID: 28867259 DOI: 10.1016/j.tips.2017.07.005] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 07/19/2017] [Accepted: 07/21/2017] [Indexed: 11/16/2022]
Abstract
In 1990 it was reported that individuals receiving NSAIDs (non-steroidal anti-inflammatory drugs) showed a markedly reduced prevalence of Alzheimer's disease (AD) compared to the overall population. Large epidemiological studies corroborated this assertion and provoked numerous prospective AD clinical trials with a variety of NSAIDs, all of which demonstrated lack of efficacy. It is postulated that the explanation for the success of NSAIDS in preventing AD onset when given at preclinical stages, and for their failure when administered after AD clinical presentation, lies in the changing nature of central nervous system (CNS) inflammation in the decades-long continuum of AD pathology. Early disease-aggravating CNS inflammation might start decades before the presentation of severe cognitive impairments or dementia, and the nature of this process will co-evolve with the neuropathological progression from preclinical to clinical AD stages. This early CNS inflammation should be considered a promising therapeutic target as we continue searching for an unequivocal diagnosis of AD preclinical stages.
Collapse
Affiliation(s)
- A Claudio Cuello
- McGill University Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada.
| |
Collapse
|
336
|
Dual roles of Aβ in proliferative processes in an amyloidogenic model of Alzheimer's disease. Sci Rep 2017; 7:10085. [PMID: 28855626 PMCID: PMC5577311 DOI: 10.1038/s41598-017-10353-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 08/08/2017] [Indexed: 12/20/2022] Open
Abstract
Alzheimer’s disease is a major neurodegenerative disorder that leads to severe cognitive deficits in the elderly population. Over the past two decades, multiple studies have focused on elucidating the causative factors underlying memory defects in Alzheimer’s patients. In this regard, new evidence linking Alzheimer’s disease-related pathology and neuronal stem cells suggests that hippocampal neurogenesis impairment is an important factor underlying these cognitive deficits. However, because of conflicting results, the impact of Aβ pathology on neurogenesis/gliogenesis remains unclear. Here, we investigated the effect of Aβ on neuronal and glial proliferation by using an APP/PS1 transgenic model and in vitro assays. Specifically, we showed that neurogenesis is affected early in the APP/PS1 hippocampus, as evidenced by a significant decrease in the proliferative activity due to a reduced number of both radial glia-like neural stem cells (type-1 cells) and intermediate progenitor cells (type-2 cells). Moreover, we demonstrated that soluble Aβ from APP/PS1 mice impairs neuronal cell proliferation using neurosphere cultures. On the other hand, we showed that oligomeric Aβ stimulates microglial proliferation, whereas no effect was observed on astrocytes. These findings indicate that Aβ has a differential effect on hippocampal proliferative cells by inhibiting neuronal proliferation and triggering the formation of microglial cells.
Collapse
|
337
|
TREM2 Maintains Microglial Metabolic Fitness in Alzheimer's Disease. Cell 2017; 170:649-663.e13. [PMID: 28802038 DOI: 10.1016/j.cell.2017.07.023] [Citation(s) in RCA: 825] [Impact Index Per Article: 103.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 05/26/2017] [Accepted: 07/14/2017] [Indexed: 12/22/2022]
Abstract
Elevated risk of developing Alzheimer's disease (AD) is associated with hypomorphic variants of TREM2, a surface receptor required for microglial responses to neurodegeneration, including proliferation, survival, clustering, and phagocytosis. How TREM2 promotes such diverse responses is unknown. Here, we find that microglia in AD patients carrying TREM2 risk variants and TREM2-deficient mice with AD-like pathology have abundant autophagic vesicles, as do TREM2-deficient macrophages under growth-factor limitation or endoplasmic reticulum (ER) stress. Combined metabolomics and RNA sequencing (RNA-seq) linked this anomalous autophagy to defective mammalian target of rapamycin (mTOR) signaling, which affects ATP levels and biosynthetic pathways. Metabolic derailment and autophagy were offset in vitro through Dectin-1, a receptor that elicits TREM2-like intracellular signals, and cyclocreatine, a creatine analog that can supply ATP. Dietary cyclocreatine tempered autophagy, restored microglial clustering around plaques, and decreased plaque-adjacent neuronal dystrophy in TREM2-deficient mice with amyloid-β pathology. Thus, TREM2 enables microglial responses during AD by sustaining cellular energetic and biosynthetic metabolism.
Collapse
|
338
|
Jay TR, von Saucken VE, Landreth GE. TREM2 in Neurodegenerative Diseases. Mol Neurodegener 2017; 12:56. [PMID: 28768545 PMCID: PMC5541421 DOI: 10.1186/s13024-017-0197-5] [Citation(s) in RCA: 292] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 07/20/2017] [Indexed: 12/12/2022] Open
Abstract
TREM2 variants have been identified as risk factors for Alzheimer's disease (AD) and other neurodegenerative diseases (NDDs). Because TREM2 encodes a receptor exclusively expressed on immune cells, identification of these variants conclusively demonstrates that the immune response can play an active role in the pathogenesis of NDDs. These TREM2 variants also confer the highest risk for developing Alzheimer's disease of any risk factor identified in nearly two decades, suggesting that understanding more about TREM2 function could provide key insights into NDD pathology and provide avenues for novel immune-related NDD biomarkers and therapeutics. The expression, signaling and function of TREM2 in NDDs have been extensively investigated in an effort to understand the role of immune function in disease pathogenesis and progression. We provide a comprehensive review of our current understanding of TREM2 biology, including new insights into the regulation of TREM2 expression, and TREM2 signaling and function across NDDs. While many open questions remain, the current body of literature provides clarity on several issues. While it is still often cited that TREM2 expression is decreased by pro-inflammatory stimuli, it is now clear that this is true in vitro, but inflammatory stimuli in vivo almost universally increase TREM2 expression. Likewise, while TREM2 function is classically described as promoting an anti-inflammatory phenotype, more than half of published studies demonstrate a pro-inflammatory role for TREM2, suggesting that its role in inflammation is much more complex. Finally, these components of TREM2 biology are applied to a discussion of how TREM2 impacts NDD pathologies and the latest assessment of how these findings might be applied to immune-directed clinical biomarkers and therapeutics.
Collapse
Affiliation(s)
- Taylor R. Jay
- Department of Neurosciences, Case Western Reserve University, School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106 USA
| | - Victoria E. von Saucken
- Department of Neurosciences, Case Western Reserve University, School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106 USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, 320 W 15th Street, Indianapolis, IN 46202 USA
| | - Gary E. Landreth
- Department of Neurosciences, Case Western Reserve University, School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106 USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, 320 W 15th Street, Indianapolis, IN 46202 USA
| |
Collapse
|
339
|
Effect of high fat diet on phenotype, brain transcriptome and lipidome in Alzheimer's model mice. Sci Rep 2017; 7:4307. [PMID: 28655926 PMCID: PMC5487356 DOI: 10.1038/s41598-017-04412-2] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 05/15/2017] [Indexed: 02/01/2023] Open
Abstract
We examined the effect of chronic high fat diet (HFD) on amyloid deposition and cognition of 12-months old APP23 mice, and correlated the phenotype to brain transcriptome and lipidome. HFD significantly increased amyloid plaques and worsened cognitive performance compared to mice on normal diet (ND). RNA-seq results revealed that in HFD mice there was an increased expression of genes related to immune response, such as Trem2 and Tyrobp. We found a significant increase of TREM2 immunoreactivity in the cortex in response to HFD, most pronounced in female mice that correlated to the amyloid pathology. Down-regulated by HFD were genes related to neuron projections and synaptic transmission in agreement to the significantly deteriorated neurite morphology and cognition in these mice. To examine the effect of the diet on the brain lipidome, we performed Shotgun Lipidomics. While there was no difference in the total amounts of phospholipids of each class, we revealed that the levels of 24 lipid sub-species in the brain were significantly modulated by HFD. Network visualization of correlated lipids demonstrated overall imbalance with most prominent effect on cardiolipin molecular sub-species. This integrative approach demonstrates that HFD elicits a complex response at molecular, cellular and system levels in the CNS.
Collapse
|
340
|
Yeh FL, Hansen DV, Sheng M. TREM2, Microglia, and Neurodegenerative Diseases. Trends Mol Med 2017; 23:512-533. [DOI: 10.1016/j.molmed.2017.03.008] [Citation(s) in RCA: 300] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Revised: 02/15/2017] [Accepted: 03/26/2017] [Indexed: 01/17/2023]
|
341
|
Kober DL, Brett TJ. TREM2-Ligand Interactions in Health and Disease. J Mol Biol 2017; 429:1607-1629. [PMID: 28432014 DOI: 10.1016/j.jmb.2017.04.004] [Citation(s) in RCA: 182] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 04/06/2017] [Accepted: 04/10/2017] [Indexed: 01/04/2023]
Abstract
The protein triggering receptor expressed on myeloid cells-2 (TREM2) is an immunomodulatory receptor with a central role in myeloid cell activation and survival. In recent years, the importance of TREM2 has been highlighted by the identification of coding variants that increase risk for Alzheimer's disease and other neurodegenerative diseases. Animal studies have further shown the importance of TREM2 in neurodegenerative and other inflammatory disease models including chronic obstructive pulmonary disease, multiple sclerosis, and stroke. A mechanistic understanding of TREM2 function remains elusive, however, due in part to the absence of conclusive information regarding the identity of endogenous TREM2 ligands. While many TREM2 ligands have been proposed, their physiological role and mechanism of engagement remain to be determined. In this review, we highlight the suggested roles of TREM2 in these diseases and the recent advances in our understanding of TREM2 and discuss putative TREM2-ligand interactions and their potential roles in signaling during health and disease. We develop a model based on the TREM2 structure to explain how different TREM2 ligands might interact with the receptor and how disease risk variants may alter ligand interactions. Finally, we propose future experimental directions to establish the role and importance of these different interactions on TREM2 function.
Collapse
Affiliation(s)
- Daniel L Kober
- Molecular Microbiology and Microbial Pathogenesis Program, Washington University School of Medicine, St. Louis, MO 63110, USA; Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Tom J Brett
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
342
|
Ulrich JD, Ulland TK, Colonna M, Holtzman DM. Elucidating the Role of TREM2 in Alzheimer’s Disease. Neuron 2017; 94:237-248. [DOI: 10.1016/j.neuron.2017.02.042] [Citation(s) in RCA: 247] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Revised: 02/21/2017] [Accepted: 02/22/2017] [Indexed: 12/20/2022]
|
343
|
Jendresen C, Årskog V, Daws MR, Nilsson LNG. The Alzheimer's disease risk factors apolipoprotein E and TREM2 are linked in a receptor signaling pathway. J Neuroinflammation 2017; 14:59. [PMID: 28320424 PMCID: PMC5360024 DOI: 10.1186/s12974-017-0835-4] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 03/07/2017] [Indexed: 11/19/2022] Open
Abstract
Background Triggering receptor expressed on myeloid cells 2 (TREM2) and apolipoprotein E (APOE) are genetically linked to Alzheimer’s disease. Here, we investigated whether human ApoE mediates signal transduction through human and murine TREM2 and sought to identify a TREM2-binding domain in human ApoE. Methods To investigate cell signaling through TREM2, a cell line was used which expressed an NFAT-inducible β-galactosidase reporter and human or murine TREM2, fused to CD8 transmembrane and CD3ζ intracellular signaling domains. ELISA-based binding assays were used to determine binding affinities of human ApoE isoforms to human TREM2 and to identify a TREM2-binding domain in ApoE. Results ApoE was found to be an agonist to human TREM2 with EC50 in the low nM range, and to murine TREM2 with reduced potency. In the reporter cells, TREM2 expression was lower than in nontransgenic mouse brain. Human ApoE isoforms ε2, ε3, and ε4 bound to human TREM2 with Kd in the low nM range. The binding was displaced by an ApoE-mimetic peptide (amino acids 130–149). Conclusions An ApoE-mediated dose-dependent signal transduction through TREM2 in reporter cells was demonstrated, and a TREM2-binding region in ApoE was identified. The relevance of an ApoE-TREM2 receptor signaling pathway to Alzheimer’s disease is discussed. Electronic supplementary material The online version of this article (doi:10.1186/s12974-017-0835-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Charlotte Jendresen
- Department of Pharmacology, Institute of Clinical Medicine, University of Oslo and Oslo University Hospital, Postboks 1057 Blindern, 0316, Oslo, Norway
| | - Vibeke Årskog
- Department of Pharmacology, Institute of Clinical Medicine, University of Oslo and Oslo University Hospital, Postboks 1057 Blindern, 0316, Oslo, Norway
| | - Michael R Daws
- Division of Anatomy, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Lars N G Nilsson
- Department of Pharmacology, Institute of Clinical Medicine, University of Oslo and Oslo University Hospital, Postboks 1057 Blindern, 0316, Oslo, Norway.
| |
Collapse
|
344
|
Colonna M, Butovsky O. Microglia Function in the Central Nervous System During Health and Neurodegeneration. Annu Rev Immunol 2017; 35:441-468. [PMID: 28226226 DOI: 10.1146/annurev-immunol-051116-052358] [Citation(s) in RCA: 1722] [Impact Index Per Article: 215.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Microglia are resident cells of the brain that regulate brain development, maintenance of neuronal networks, and injury repair. Microglia serve as brain macrophages but are distinct from other tissue macrophages owing to their unique homeostatic phenotype and tight regulation by the central nervous system (CNS) microenvironment. They are responsible for the elimination of microbes, dead cells, redundant synapses, protein aggregates, and other particulate and soluble antigens that may endanger the CNS. Furthermore, as the primary source of proinflammatory cytokines, microglia are pivotal mediators of neuroinflammation and can induce or modulate a broad spectrum of cellular responses. Alterations in microglia functionality are implicated in brain development and aging, as well as in neurodegeneration. Recent observations about microglia ontogeny combined with extensive gene expression profiling and novel tools to study microglia biology have allowed us to characterize the spectrum of microglial phenotypes during development, homeostasis, and disease. In this article, we review recent advances in our understanding of the biology of microglia, their contribution to homeostasis, and their involvement in neurodegeneration. Moreover, we highlight the complexity of targeting microglia for therapeutic intervention in neurodegenerative diseases.
Collapse
Affiliation(s)
- Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri 63110;
| | - Oleg Butovsky
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115;
| |
Collapse
|