301
|
Bharathi R, Ganesh SS, Harini G, Vatsala K, Anushikaa R, Aravind S, Abinaya S, Selvamurugan N. Chitosan-based scaffolds as drug delivery systems in bone tissue engineering. Int J Biol Macromol 2022; 222:132-153. [PMID: 36108752 DOI: 10.1016/j.ijbiomac.2022.09.058] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/19/2022] [Accepted: 09/07/2022] [Indexed: 11/25/2022]
Abstract
The bone tissue engineering approach for treating large bone defects becomes necessary when the tissue damage surpasses the threshold of the inherent regenerative ability of the human body. A myriad of natural biodegradable polymers and scaffold fabrication techniques have emerged in the last decade. Chitosan (CS) is especially attractive as a bone scaffold material to support cell attachment and proliferation and mineralization of the bone matrix. The primary amino groups in CS are responsible for properties such as controlled drug release, mucoadhesion, in situ gelation, and transfection. CS-based smart drug delivery scaffolds that respond to environmental stimuli have been reported to have a localized sustained delivery of drugs in the large bone defect area. This review outlines the recent advances in the fabrication of CS-based scaffolds as a pharmaceutical carrier to deliver drugs such as antibiotics, growth factors, nucleic acids, and phenolic compounds for bone tissue regeneration.
Collapse
Affiliation(s)
- R Bharathi
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - S Shree Ganesh
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - G Harini
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Kumari Vatsala
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - R Anushikaa
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - S Aravind
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - S Abinaya
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - N Selvamurugan
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India.
| |
Collapse
|
302
|
Topographic Orientation of Scaffolds for Tissue Regeneration: Recent Advances in Biomaterial Design and Applications. Biomimetics (Basel) 2022; 7:biomimetics7030131. [PMID: 36134935 PMCID: PMC9496066 DOI: 10.3390/biomimetics7030131] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 08/30/2022] [Accepted: 09/08/2022] [Indexed: 11/17/2022] Open
Abstract
Tissue engineering to develop alternatives for the maintenance, restoration, or enhancement of injured tissues and organs is gaining more and more attention. In tissue engineering, the scaffold used is one of the most critical elements. Its characteristics are expected to mimic the native extracellular matrix and its unique topographical structures. Recently, the topographies of scaffolds have received increasing attention, not least because different topographies, such as aligned and random, have different repair effects on various tissues. In this review, we have focused on various technologies (electrospinning, directional freeze-drying, magnetic freeze-casting, etching, and 3-D printing) to fabricate scaffolds with different topographic orientations, as well as discussed the physicochemical (mechanical properties, porosity, hydrophilicity, and degradation) and biological properties (morphology, distribution, adhesion, proliferation, and migration) of different topographies. Subsequently, we have compiled the effect of scaffold orientation on the regeneration of vessels, skin, neural tissue, bone, articular cartilage, ligaments, tendons, cardiac tissue, corneas, skeletal muscle, and smooth muscle. The compiled information in this review will facilitate the future development of optimal topographical scaffolds for the regeneration of certain tissues. In the majority of tissues, aligned scaffolds are more suitable than random scaffolds for tissue repair and regeneration. The underlying mechanism explaining the various effects of aligned and random orientation might be the differences in “contact guidance”, which stimulate certain biological responses in cells.
Collapse
|
303
|
V. K. AD, Ray S, Arora U, Mitra S, Sionkowska A, Jaiswal AK. Dual drug delivery platforms for bone tissue engineering. Front Bioeng Biotechnol 2022; 10:969843. [PMID: 36172012 PMCID: PMC9511792 DOI: 10.3389/fbioe.2022.969843] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 08/23/2022] [Indexed: 11/22/2022] Open
Abstract
The dual delivery platforms used in bone tissue engineering provide supplementary bioactive compounds that include distinct medicines and growth factors thereby aiding enhanced bone regeneration. The delivery of these compounds can be adjusted for a short or prolonged time based on the requirement by altering various parameters of the carrier platform. The platforms thus used are fabricated to mimic the niche of the bone microenvironment, either in the form of porous 3D structures, microspheres, or films. Thus, this review article focuses on the concept of dual drug delivery platform and its importance, classification of various platforms for dual drug delivery specific to bone tissue engineering, and finally highlights the foresight into the future direction of these techniques for better clinical applications.
Collapse
Affiliation(s)
- Anupama Devi V. K.
- Tissue Engineering Group, Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore, India
- School of Bio Sciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore, India
| | - Sarbajit Ray
- School of Bio Sciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore, India
| | - Udita Arora
- School of Bio Sciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore, India
| | - Sunrito Mitra
- School of Bio Sciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore, India
| | | | - Amit Kumar Jaiswal
- Tissue Engineering Group, Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore, India
- *Correspondence: Amit Kumar Jaiswal,
| |
Collapse
|
304
|
Gharacheh H, Guvendiren M. Cell-Laden Composite Hydrogel Bioinks with Human Bone Allograft Particles to Enhance Stem Cell Osteogenesis. Polymers (Basel) 2022; 14:polym14183788. [PMID: 36145933 PMCID: PMC9503810 DOI: 10.3390/polym14183788] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/01/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022] Open
Abstract
There is a growing demand for bone graft substitutes that mimic the extracellular matrix properties of the native bone tissue to enhance stem cell osteogenesis. Composite hydrogels containing human bone allograft particles are particularly interesting due to inherent bioactivity of the allograft tissue. Here, we report a novel photocurable composite hydrogel bioink for bone tissue engineering. Our composite bioink is formulated by incorporating human allograft bone particles in a methacrylated alginate formulation to enhance adult human mesenchymal stem cell (hMSC) osteogenesis. Detailed rheology and printability studies confirm suitability of our composite bioinks for extrusion-based 3D bioprinting technology. In vitro studies reveal high cell viability (~90%) for hMSCs up to 28 days of culture within 3D bioprinted composite scaffolds. When cultured within bioprinted composite scaffolds, hMSCs show significantly enhanced osteogenic differentiation as compared to neat scaffolds based on alkaline phosphatase activity, calcium deposition, and osteocalcin expression.
Collapse
Affiliation(s)
- Hadis Gharacheh
- Otto H. York Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - Murat Guvendiren
- Otto H. York Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
- Correspondence:
| |
Collapse
|
305
|
Saunders WB, Dejardin LM, Soltys-Niemann EV, Kaulfus CN, Eichelberger BM, Dobson LK, Weeks BR, Kerwin SC, Gregory CA. Angle-stable interlocking nailing in a canine critical-sized femoral defect model for bone regeneration studies: In pursuit of the principle of the 3R’s. Front Bioeng Biotechnol 2022; 10:921486. [PMID: 36118571 PMCID: PMC9479202 DOI: 10.3389/fbioe.2022.921486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 07/19/2022] [Indexed: 11/29/2022] Open
Abstract
Introduction: Critical-sized long bone defects represent a major therapeutic challenge and current treatment strategies are not without complication. Tissue engineering holds much promise for these debilitating injuries; however, these strategies often fail to successfully translate from rodent studies to the clinical setting. The dog represents a strong model for translational orthopedic studies, however such studies should be optimized in pursuit of the Principle of the 3R’s of animal research (replace, reduce, refine). The objective of this study was to refine a canine critical-sized femoral defect model using an angle-stable interlocking nail (AS-ILN) and reduce total animal numbers by performing imaging, biomechanics, and histology on the same cohort of dogs. Methods: Six skeletally mature hounds underwent a 4 cm mid-diaphyseal femoral ostectomy followed by stabilization with an AS-ILN. Dogs were assigned to autograft (n = 3) or negative control (n = 3) treatment groups. At 6, 12, and 18 weeks, healing was quantified by ordinal radiographic scoring and quantified CT. After euthanasia, femurs from the autograft group were mechanically evaluated using an established torsional loading protocol. Femurs were subsequently assessed histologically. Results: Surgery was performed without complication and the AS-ILN provided appropriate fixation for the duration of the study. Dogs assigned to the autograft group achieved radiographic union by 12 weeks, whereas the negative control group experienced non-union. At 18 weeks, median bone and soft tissue callus volume were 9,001 mm3 (range: 4,939–10,061) for the autograft group and 3,469 mm3 (range: 3,085–3,854) for the negative control group. Median torsional stiffness for the operated, autograft treatment group was 0.19 Nm/° (range: 0.19–1.67) and torque at failure was 12.0 Nm (range: 1.7–14.0). Histologically, callus formation and associated endochondral ossification were identified in the autograft treatment group, whereas fibrovascular tissue occupied the critical-sized defect in negative controls. Conclusion: In a canine critical-sized defect model, the AS-ILN and described outcome measures allowed refinement and reduction consistent with the Principle of the 3R’s of ethical animal research. This model is well-suited for future canine translational bone tissue engineering studies.
Collapse
Affiliation(s)
- W. B. Saunders
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A & M University, College Station, TX, United States
- *Correspondence: W. B. Saunders,
| | - L. M. Dejardin
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI, United States
| | - E. V. Soltys-Niemann
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A & M University, College Station, TX, United States
| | - C. N. Kaulfus
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A & M University, College Station, TX, United States
| | - B. M. Eichelberger
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A & M University, College Station, TX, United States
| | - L. K. Dobson
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A & M University, College Station, TX, United States
| | - B. R. Weeks
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A & M University, College Station, TX, United States
| | - S. C. Kerwin
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A & M University, College Station, TX, United States
| | - C. A. Gregory
- Department of Molecular and Cellular Medicine, Institute for Regenerative Medicine, School of Medicine, Texas A & M Health Science Center, College Station, TX, United States
| |
Collapse
|
306
|
Gholijani A, Tavanafar S, Zareifard N, Vojdani Z, Namavar MR, Emami A, Talaei-Khozani T. In Situ Casting of Platelet Rich Plasma/SiO2/Alginate for Bone Tissue Engineering Application in Rabbit Mandible Defect Model. JOURNAL OF DENTISTRY (SHIRAZ, IRAN) 2022; 23:349-360. [PMID: 36588966 PMCID: PMC9789338 DOI: 10.30476/dentjods.2021.90677.1513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Revised: 05/08/2021] [Accepted: 07/31/2021] [Indexed: 01/03/2023]
Abstract
Statement of the Problem The administration of both platelet rich plasma (PRP) and silicon dioxide (SiO2) to the bone defects accelerates bone repair and regeneration. Appli-cation of both of them may show synergistic regenerative effects. Purpose Our objective was to evaluate the possible synergistic osteogenic effects of PRP and SiO2 by injecting them using an ad hoc device. Materials and Method In this experimental study, PRP/SiO2 scaffolds were fabricated by in situ casting method with the help of CaCl2 as the gelation factor and alginate as the stroma; and then, the biodegradability and spatial arrangement were assessed. The injecta-ble scaffold was introduced into the 40 rabbit mandibular defects by an ad hoc two-channel injecting device. Five defects received PRP/SiO2/alginate as the treatment; the other sets of defects were treated by PRP/alginate, SiO2/alginate, and the last five defects served as the control groups by getting only alginate injections. The osteogenicity of the scaffolds was evaluated by radiological and histological procedures; they were then compared with each other. Analysis of variance and least significant difference tests were used to analyze the data. Results The SiO2-treated group showed a significant higher bone area compared to PRP/ SiO2-treated groups on day 40 (p= 0.013). The number of osteocytes was higher in SiO2-treated than the control groups on both 20 and 40 days (p= 0.032 and 0.022, respectively). The number of osteoclast was also higher in SiO2-treated than PRP-treated group (p= 0.028). In addition, the cells of this group had just started to create Haversian systems in newly formed bone tissues. Conclusion Silica demonstrated a superior osteogenic activity over PRP in both short and long term periods. Evidently, they showed no synergistic regenerative effects. Our ad hoc device was efficiently capable of inserting the scaffolds into the injured sites with no diffi-culties or complications.
Collapse
Affiliation(s)
- Amin Gholijani
- Student, Tissue Engineering Lab, Dept. of Anatomy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saeid Tavanafar
- Dept. of Oral and Maxillofacial Surgery, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nehleh Zareifard
- Morphometry and Stereology Research Center, Shiraz Medical School, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Vojdani
- Student, Tissue Engineering Lab, Dept. of Anatomy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Reza Namavar
- Morphometry and Stereology Research Center, Shiraz Medical School, Shiraz University of Medical Sciences, Shiraz, Iran,
Dept. of Anatomy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Asrin Emami
- Student, Tissue Engineering Lab, Dept. of Anatomy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Tahere Talaei-Khozani
- Student, Tissue Engineering Lab, Dept. of Anatomy, Shiraz University of Medical Sciences, Shiraz, Iran,
Morphometry and Stereology Research Center, Shiraz Medical School, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
307
|
Pazhouhnia Z, Beheshtizadeh N, Namini MS, Lotfibakhshaiesh N. Portable hand-held bioprinters promote in situ tissue regeneration. Bioeng Transl Med 2022; 7:e10307. [PMID: 36176625 PMCID: PMC9472017 DOI: 10.1002/btm2.10307] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 02/17/2022] [Accepted: 02/20/2022] [Indexed: 12/17/2022] Open
Abstract
Three-dimensional bioprinting, as a novel technique of fabricating engineered tissues, is positively correlated with the ultimate goal of regenerative medicine, which is the restoration, reconstruction, and repair of lost and/or damaged tissue function. The progressive trend of this technology resulted in developing the portable hand-held bioprinters, which could be used quite easily by surgeons and physicians. With the advent of portable hand-held bioprinters, the obstacles and challenges of utilizing statistical bioprinters could be resolved. This review attempts to discuss the advantages and challenges of portable hand-held bioprinters via in situ tissue regeneration. All the tissues that have been investigated by this approach were reviewed, including skin, cartilage, bone, dental, and skeletal muscle regeneration, while the tissues that could be regenerated via this approach are targeted in the authors' perspective. The design and applications of hand-held bioprinters were discussed widely, and the marketed printers were introduced. It has been prospected that these facilities could ameliorate translating the regenerative medicine science from the bench to the bedside actively.
Collapse
Affiliation(s)
- Zahra Pazhouhnia
- Department of Tissue EngineeringSchool of Advanced Technologies in Medicine, Tehran University of Medical SciencesTehranIran
- Regenerative Medicine group (REMED)Universal Scientific Education and Research Network (USERN)TehranIran
| | - Nima Beheshtizadeh
- Department of Tissue EngineeringSchool of Advanced Technologies in Medicine, Tehran University of Medical SciencesTehranIran
- Regenerative Medicine group (REMED)Universal Scientific Education and Research Network (USERN)TehranIran
| | - Mojdeh Salehi Namini
- Department of Tissue EngineeringSchool of Advanced Technologies in Medicine, Tehran University of Medical SciencesTehranIran
- Regenerative Medicine group (REMED)Universal Scientific Education and Research Network (USERN)TehranIran
| | - Nasrin Lotfibakhshaiesh
- Department of Tissue EngineeringSchool of Advanced Technologies in Medicine, Tehran University of Medical SciencesTehranIran
- Regenerative Medicine group (REMED)Universal Scientific Education and Research Network (USERN)TehranIran
| |
Collapse
|
308
|
Adewale P, Yancheshmeh MS, Lam E. Starch modification for non-food, industrial applications: Market intelligence and critical review. Carbohydr Polym 2022; 291:119590. [DOI: 10.1016/j.carbpol.2022.119590] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/20/2022] [Accepted: 05/05/2022] [Indexed: 12/15/2022]
|
309
|
Conrad B, Yang F. Hydroxyapatite-coated gelatin microribbon scaffolds induce rapid endogenous cranial bone regeneration in vivo. BIOMATERIALS ADVANCES 2022; 140:213050. [PMID: 35917686 DOI: 10.1016/j.bioadv.2022.213050] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/25/2022] [Accepted: 07/24/2022] [Indexed: 06/15/2023]
Abstract
Hydroxyapatite (HA) has a composition similar to mineral bone and has been used for coating macroporous scaffolds to enhance bone formation. However, previous macroporous scaffolds did not support minimally invasive delivery. Our lab has reported on gelatin-based microribbon (μRB) shaped hydrogels, which combine injectability with macroporosity and support cranial bone formation in an immunocompromised mouse model. However, gelatin alone was not sufficient to support cranial bone formation in immunocompetent animals. To overcome this challenge, here we evaluated two methods to incorporate HA into gelatin μRB scaffolds using either modified simulated body fluid (mSBF) or commercially available HA nanoparticles (HAnp). HA incorporation and distribution were characterized using scanning electron microscopy and energy-dispersive X-ray spectroscopy. While both methods enhanced MSC osteogenesis and mineralization, the mSBF method led to undesirable reduction in mechanical properties. HAnp-coated μRB scaffolds were further evaluated in an immunocompetent mouse cranial defect model. Acellular HAnp-coated gelatin μRB scaffolds induced rapid and robust endogenous cranial bone regeneration as shown by MicroCT imaging and histology. Co-delivery with exogenous MSCs led to later bone resorption accompanied by increased osteoclast activity. In summary, our results demonstrate the promise of gelatin μRBs with HAnps as a promising therapy for cranial bone regeneration without the need for exogenous cells or growth factors.
Collapse
Affiliation(s)
- Bogdan Conrad
- Program of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, 240 Pasteur Dr., Biomedical Innovation Building 1200, Palo Alto, CA 94304, United States of America.
| | - Fan Yang
- Departments of Orthopaedic Surgery and Bioengineering Stanford University, 240 Pasteur Dr., Biomedical Innovation Building 1200, Palo Alto, CA 94304, United States of America.
| |
Collapse
|
310
|
Koo Y, Kim GH. Bioprinted hASC-laden collagen/HA constructs with meringue-like macro/micropores. Bioeng Transl Med 2022; 7:e10330. [PMID: 36176624 PMCID: PMC9472008 DOI: 10.1002/btm2.10330] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 03/11/2022] [Accepted: 04/04/2022] [Indexed: 11/18/2022] Open
Abstract
Extrusion-based bioprinting is one of the most effective methods for fabricating cell-laden mesh structures. However, insufficient cellular activities within the printed cylindrical cell-matrix blocks, inducing low cell-to-cell interactions due to the disturbance of the matrix hydrogel, remain to be addressed. Hence, various sacrificial materials or void-forming methods have been used; however, most of them cannot solve the problem completely or require complicated fabricating procedures. Herein, we suggest a bioprinted cell-laden collagen/hydroxyapatite (HA) construct comprising meringue-like porous cell-laden structures to enhance osteogenic activity. A porous bioink is generated using a culinary process, i.e., the whipping method, and the whipping conditions, such as the material concentration, time, and speed, are selected appropriately. The constructs fabricated using the meringue-like bioink with MG63 cells and human adipose stem cells exhibit outstanding metabolic and osteogenic activities owing to the synergistic effects of the efficient cell-to-cell interactions and HA stimulation released from the porous structure. The in vitro cellular responses indicate that the meringue-like collagen bioink for achieving an extremely porous cell-laden construct can be a highly promising cell-laden material for various tissue regeneration applications.
Collapse
Affiliation(s)
- YoungWon Koo
- Department of Biomechatronic Engineering, College of Biotechnology and BioengineeringSungkyunkwan University (SKKU)SuwonRepublic of Korea
| | - Geun Hyung Kim
- Department of Biomechatronic Engineering, College of Biotechnology and BioengineeringSungkyunkwan University (SKKU)SuwonRepublic of Korea
- Biomedical Institute for Convergence at SKKU (BICS)Sungkyunkwan UniversitySuwonRepublic of Korea
| |
Collapse
|
311
|
Lee SH, Jeon S, Qu X, Kang MS, Lee JH, Han DW, Hong SW. Ternary MXene-loaded PLCL/collagen nanofibrous scaffolds that promote spontaneous osteogenic differentiation. NANO CONVERGENCE 2022; 9:38. [PMID: 36029392 PMCID: PMC9420163 DOI: 10.1186/s40580-022-00329-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 08/17/2022] [Indexed: 05/31/2023]
Abstract
Conventional bioinert bone grafts often have led to failure in osseointegration due to low bioactivity, thus much effort has been made up to date to find alternatives. Recently, MXene nanoparticles (NPs) have shown prominent results as a rising material by possessing an osteogenic potential to facilitate the bioactivity of bone grafts or scaffolds, which can be attributed to the unique repeating atomic structure of two carbon layers existing between three titanium layers. In this study, we produced MXene NPs-integrated the ternary nanofibrous matrices of poly(L-lactide-co-ε-caprolactone, PLCL) and collagen (Col) decorated with MXene NPs (i.e., PLCL/Col/MXene), as novel scaffolds for bone tissue engineering, via electrospinning to explore the potential benefits for the spontaneous osteogenic differentiation of MC3T3-E1 preosteoblasts. The cultured cells on the physicochemical properties of the nanofibrous PLCL/Col/MXene-based materials revealed favorable interactions with the supportive matrices, highly suitable for the growth and survival of preosteoblasts. Furthermore, the combinatorial ternary material system of the PLCL/Col/MXene nanofibers obviously promoted spontaneous osteodifferentiation with positive cellular responses by providing effective microenvironments for osteogenesis. Therefore, our results suggest that the unprecedented biofunctional advantages of the MXene-integrated PLCL/Col nanofibrous matrices can be expanded to a wide range of strategies for the development of effective scaffolds in bone tissue regeneration.
Collapse
Affiliation(s)
- Seok Hyun Lee
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan, 46241, Republic of Korea
| | - Sangheon Jeon
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan, 46241, Republic of Korea
| | - Xiaoxiao Qu
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan, 46241, Republic of Korea
| | - Moon Sung Kang
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan, 46241, Republic of Korea
| | - Jong Ho Lee
- Daan Korea Corporation, Seoul, 06252, Republic of Korea
| | - Dong-Wook Han
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan, 46241, Republic of Korea.
- BIO-IT Fusion Technology Research Institute, Pusan National University, Busan, 46241, Republic of Korea.
| | - Suck Won Hong
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan, 46241, Republic of Korea.
- Engineering Research Center for Color-Modulated Extra-Sensory Perception Technology, Pusan National University, Busan, 46241, Republic of Korea.
| |
Collapse
|
312
|
Salah M, Naini FB. Exosomes in craniofacial tissue reconstruction. Maxillofac Plast Reconstr Surg 2022; 44:27. [PMID: 35999408 PMCID: PMC9399332 DOI: 10.1186/s40902-022-00357-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 08/09/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Mesenchymal stem cell (MSC) therapy gained interest among scientists following the discovery of its therapeutic potential. However, their clinical use has been hindered due to their immunogenicity and tumorigenicity. Relatively recently, it has been unveiled that the mechanism by which MSC promote healing is by secreting exosomes. This raised the interest in developing cell-free therapy, avoiding the obstacles that deterred the translation of MSC therapy into clinical practice. REVIEW This comprehensive narrative review summarises the current understanding of exosome biogenesis and content. Moreover, the existing research on exosome use in bone tissue engineering is discussed. CONCLUSIONS Exosome-based therapy may provide excellent potential in the field of bone tissue engineering and craniofacial reconstructive surgery. Further investigation is required before the technology can be translated into clinical practice.
Collapse
Affiliation(s)
- Muhja Salah
- Centre for Additive Manufacturing, University of Nottingham, Nottingham, UK
| | - Farhad B Naini
- Kingston and St George's University Hospitals, London, UK.
| |
Collapse
|
313
|
Chitosan-Based Biomaterials for Bone Tissue Engineering Applications: A Short Review. Polymers (Basel) 2022; 14:polym14163430. [PMID: 36015686 PMCID: PMC9416295 DOI: 10.3390/polym14163430] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 08/17/2022] [Accepted: 08/22/2022] [Indexed: 12/16/2022] Open
Abstract
Natural bone tissue is composed of calcium-deficient carbonated hydroxyapatite as the inorganic phase and collagen type I as the main organic phase. The biomimetic approach of scaffold development for bone tissue engineering application is focused on mimicking complex bone characteristics. Calcium phosphates are used in numerous studies as bioactive phases to mimic natural bone mineral. In order to mimic the organic phase, synthetic (e.g., poly(ε-caprolactone), polylactic acid, poly(lactide-co-glycolide acid)) and natural (e.g., alginate, chitosan, collagen, gelatin, silk) biodegradable polymers are used. However, as materials obtained from natural sources are accepted better by the human organism, natural polymers have attracted increasing attention. Over the last three decades, chitosan was extensively studied as a natural polymer suitable for biomimetic scaffold development for bone tissue engineering applications. Different types of chitosan-based biomaterials (e.g., molded macroporous, fiber-based, hydrogel, microspheres and 3D-printed) with specific properties for different regenerative applications were developed due to chitosan's unique properties. This review summarizes the state-of-the-art of biomaterials for bone regeneration and relevant studies on chitosan-based materials and composites.
Collapse
|
314
|
Zhao Y, Zhao S, Ma Z, Ding C, Chen J, Li J. Chitosan-Based Scaffolds for Facilitated Endogenous Bone Re-Generation. Pharmaceuticals (Basel) 2022; 15:ph15081023. [PMID: 36015171 PMCID: PMC9414235 DOI: 10.3390/ph15081023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/07/2022] [Accepted: 08/10/2022] [Indexed: 02/07/2023] Open
Abstract
Facilitated endogenous tissue engineering, as a facile and effective strategy, is emerging for use in bone tissue regeneration. However, the development of bioactive scaffolds with excellent osteo-inductivity to recruit endogenous stem cells homing and differentiation towards lesion areas remains an urgent problem. Chitosan (CS), with versatile qualities including good biocompatibility, biodegradability, and tunable physicochemical and biological properties is undergoing vigorously development in the field of bone repair. Based on this, the review focus on recent advances in chitosan-based scaffolds for facilitated endogenous bone regeneration. Initially, we introduced and compared the facilitated endogenous tissue engineering with traditional tissue engineering. Subsequently, the various CS-based bone repair scaffolds and their fabrication methods were briefly explored. Furthermore, the functional design of CS-based scaffolds in bone endogenous regeneration including biomolecular loading, inorganic nanomaterials hybridization, and physical stimulation was highlighted and discussed. Finally, the major challenges and further research directions of CS-based scaffolds were also elaborated. We hope that this review will provide valuable reference for further bone repair research in the future.
Collapse
Affiliation(s)
- Yao Zhao
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Sinuo Zhao
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Zhengxin Ma
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Chunmei Ding
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
- Correspondence: (C.D.); (J.C.); (J.L.)
| | - Jingdi Chen
- Marine College, Shandong University, Weihai 264209, China
- Correspondence: (C.D.); (J.C.); (J.L.)
| | - Jianshu Li
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Med-X Center for Materials, Sichuan University, Chengdu 610041, China
- Correspondence: (C.D.); (J.C.); (J.L.)
| |
Collapse
|
315
|
Ghasroldasht MM, Mastrogiacomo M, Akbarian F, Rezaeian A. Polyurethane and polyurethane/hydroxyapatite scaffold in a three-dimensional culture system. Cell Biol Int 2022; 46:2041-2049. [PMID: 35971683 DOI: 10.1002/cbin.11878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 07/18/2022] [Accepted: 07/27/2022] [Indexed: 11/10/2022]
Abstract
Designing a new scaffold with an optimal ability of osteogenesis differentiation is a significant step bone tissue engineering along with the growing demands for bone craft in recent decades. Herein, we used Polyurethane (PU), a novel biocompatible and flexible polymer, and Hydroxyapatite (HA), the major component of human hard tissues matrix for developing new scaffolds and analyzing the in vitro osteogenic differentiation potential of human adipose-derived mesenchymal stem cells (Ad-MSCs) in basal and induction media. Gene expression analysis was performed to evaluate the expression level of four osteogenic differentiation genes. MTT assays were also done to assess the attachment and proliferation of the cells after 7 and 21 days of seeding to scaffolds. The expression level of RUNX2 was increased in seeded cells on PU/HA scaffolds compared with the PU. Cellular adhesion and proliferation of the Ad-MSCs were higher in PU/HA than PU scaffolds according to the histology analysis. The PU and PU/HA scaffolds supported the attachment, proliferation, and differentiation of Ad-MSCs, and they are suitable candidates for producing constructs in bone regeneration. However, further in-vitro and in-vivo studies on these scaffolds are needed to introduce an appropriate candidate for clinical bone regeneration.
Collapse
Affiliation(s)
| | | | - Fahimeh Akbarian
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Atefeh Rezaeian
- Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| |
Collapse
|
316
|
Gabetti S, Masante B, Cochis A, Putame G, Sanginario A, Armando I, Fiume E, Scalia AC, Daou F, Baino F, Salati S, Morbiducci U, Rimondini L, Bignardi C, Massai D. An automated 3D-printed perfusion bioreactor combinable with pulsed electromagnetic field stimulators for bone tissue investigations. Sci Rep 2022; 12:13859. [PMID: 35974079 PMCID: PMC9381575 DOI: 10.1038/s41598-022-18075-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 08/04/2022] [Indexed: 11/19/2022] Open
Abstract
In bone tissue engineering research, bioreactors designed for replicating the main features of the complex native environment represent powerful investigation tools. Moreover, when equipped with automation, their use allows reducing user intervention and dependence, increasing reproducibility and the overall quality of the culture process. In this study, an automated uni-/bi-directional perfusion bioreactor combinable with pulsed electromagnetic field (PEMF) stimulation for culturing 3D bone tissue models is proposed. A user-friendly control unit automates the perfusion, minimizing the user dependency. Computational fluid dynamics simulations supported the culture chamber design and allowed the estimation of the shear stress values within the construct. Electromagnetic field simulations demonstrated that, in case of combination with a PEMF stimulator, the construct can be exposed to uniform magnetic fields. Preliminary biological tests on 3D bone tissue models showed that perfusion promotes the release of the early differentiation marker alkaline phosphatase. The histological analysis confirmed that perfusion favors cells to deposit more extracellular matrix (ECM) with respect to the static culture and revealed that bi-directional perfusion better promotes ECM deposition across the construct with respect to uni-directional perfusion. Lastly, the Real-time PCR results of 3D bone tissue models cultured under bi-directional perfusion without and with PEMF stimulation revealed that the only perfusion induced a ~ 40-fold up-regulation of the expression of the osteogenic gene collagen type I with respect to the static control, while a ~ 80-fold up-regulation was measured when perfusion was combined with PEMF stimulation, indicating a positive synergic pro-osteogenic effect of combined physical stimulations.
Collapse
Affiliation(s)
- Stefano Gabetti
- PolitoBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
- Interuniversity Center for the Promotion of the 3Rs Principles in Teaching and Research, Turin, Italy
| | - Beatrice Masante
- PolitoBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Andrea Cochis
- Laboratory of Biomedical Materials, Center for Translational Research on Autoimmune and Allergic Disease-CAAD, Department of Health Sciences, University of Piemonte Orientale UPO, Novara, Italy
| | - Giovanni Putame
- PolitoBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
- Interuniversity Center for the Promotion of the 3Rs Principles in Teaching and Research, Turin, Italy
| | - Alessandro Sanginario
- Department of Electronics and Telecommunications, Politecnico di Torino, Turin, Italy
| | - Ileana Armando
- PolitoBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
- Department of Information Engineering, University of Brescia, Brescia, Italy
| | - Elisa Fiume
- Department of Applied Science and Technology, Politecnico di Torino, Turin, Italy
| | - Alessandro Calogero Scalia
- Laboratory of Biomedical Materials, Center for Translational Research on Autoimmune and Allergic Disease-CAAD, Department of Health Sciences, University of Piemonte Orientale UPO, Novara, Italy
| | - Farah Daou
- Laboratory of Biomedical Materials, Center for Translational Research on Autoimmune and Allergic Disease-CAAD, Department of Health Sciences, University of Piemonte Orientale UPO, Novara, Italy
| | - Francesco Baino
- Department of Applied Science and Technology, Politecnico di Torino, Turin, Italy
| | | | - Umberto Morbiducci
- PolitoBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
- Interuniversity Center for the Promotion of the 3Rs Principles in Teaching and Research, Turin, Italy
| | - Lia Rimondini
- Laboratory of Biomedical Materials, Center for Translational Research on Autoimmune and Allergic Disease-CAAD, Department of Health Sciences, University of Piemonte Orientale UPO, Novara, Italy
| | - Cristina Bignardi
- PolitoBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
- Interuniversity Center for the Promotion of the 3Rs Principles in Teaching and Research, Turin, Italy
| | - Diana Massai
- PolitoBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy.
- Interuniversity Center for the Promotion of the 3Rs Principles in Teaching and Research, Turin, Italy.
| |
Collapse
|
317
|
Design Strategies and Biomimetic Approaches for Calcium Phosphate Scaffolds in Bone Tissue Regeneration. Biomimetics (Basel) 2022; 7:biomimetics7030112. [PMID: 35997432 PMCID: PMC9397031 DOI: 10.3390/biomimetics7030112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/05/2022] [Accepted: 08/07/2022] [Indexed: 11/16/2022] Open
Abstract
Bone is a complex biologic tissue, which is extremely relevant for various physiological functions, in addition to movement, organ protection, and weight bearing. The repair of critical size bone defects is a still unmet clinical need, and over the past decades, material scientists have been expending efforts to find effective technological solutions, based on the use of scaffolds. In this context, biomimetics which is intended as the ability of a scaffold to reproduce compositional and structural features of the host tissues, is increasingly considered as a guide for this purpose. However, the achievement of implants that mimic the very complex bone composition, multi-scale structure, and mechanics is still an open challenge. Indeed, despite the fact that calcium phosphates are widely recognized as elective biomaterials to fabricate regenerative bone scaffolds, their processing into 3D devices with suitable cell-instructing features is still prevented by insurmountable drawbacks. With respect to biomaterials science, new approaches maybe conceived to gain ground and promise for a substantial leap forward in this field. The present review provides an overview of physicochemical and structural features of bone tissue that are responsible for its biologic behavior. Moreover, relevant and recent technological approaches, also inspired by natural processes and structures, are described, which can be considered as a leverage for future development of next generation bioactive medical devices.
Collapse
|
318
|
In Vitro and In Vivo Analysis of the Effects of 3D-Printed Porous Titanium Alloy Scaffold Structure on Osteogenic Activity. BIOMED RESEARCH INTERNATIONAL 2022; 2022:8494431. [PMID: 35996542 PMCID: PMC9392592 DOI: 10.1155/2022/8494431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/13/2022] [Accepted: 08/04/2022] [Indexed: 01/02/2023]
Abstract
The effect of titanium scaffold geometry on the bone regeneration ability of the scaffold remains unclear. Here, selective laser melting as a 3D printing technology was used to create porous titanium alloy scaffolds with two unit structures: a hollow hexagonal prism (group A) and a hollow triangular prism (group B). The structures and morphologies of the scaffolds were characterized before mechanical properties were simulated. Cell adhesion behaviors, osteoblast activity and proliferation, and alkaline phosphatase (ALP) activity were evaluated, in addition to in vivo testing in an animal model. The results showed that the two scaffolds made of Ti6Al4V had compression moduli similar to that of human cortical bone (116.91 ± 0.01 and 174.29 ± 2.21 MPa vs. 89–164 MPa). The two scaffolds were nontoxic to cells and had good biocompatibility, while group A scaffolds facilitated cell adhesion. The number of cells increased gradually in culture. The ALP activity of cells on group A scaffolds demonstrated higher osteogenic ability than that of group B scaffolds. The in vivo tests showed that all scaffolds retained their shape well after implantation, and no obvious inflammatory reaction or infection in surrounding tissues was found. Based on fluorescence staining, mature new bone formation was found at week 12. Group A scaffolds showed better bone integration ability compared with group B scaffolds. The percentage of new bone area in group A (7.5%) was higher than that in group B (6.5%). This research suggests that the hollow hexagonal prism structure of porous scaffolds can promote osteogenic differentiation and osseointegration better than the triangular prism structure.
Collapse
|
319
|
Martinez JS, Peterson S, Hoel CA, Erno DJ, Murray T, Boyd L, Her JH, Mclean N, Davis R, Ginty F, Duclos SJ, Davis BM, Parthasarathy G. High resolution DLP stereolithography to fabricate biocompatible hydroxyapatite structures that support osteogenesis. PLoS One 2022; 17:e0272283. [PMID: 35939440 PMCID: PMC9359536 DOI: 10.1371/journal.pone.0272283] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 07/16/2022] [Indexed: 11/29/2022] Open
Abstract
Lithography based additive manufacturing techniques, specifically digital light processing (DLP), are considered innovative manufacturing techniques for orthopaedic implants because of their potential for construction of complex geometries using polymers, metals, and ceramics. Hydroxyapatite (HA) coupons, printed using DLP, were evaluated for biological performance in supporting viability, proliferation, and osteogenic differentiation of the human cell line U2OS and human mesenchymal stem cells (MSCs) up to 35 days in culture to determine feasibility for future use in development of complex scaffold geometries. Contact angle, profilometry, and scanning electron microscopy (SEM) measurements showed the HA coupons to be hydrophilic, porous, and having micro size surface roughness, all within favourable cell culture ranges. The study found no impact of leachable and extractables form the DLP printing process. Cells seeded on coupons exhibited morphologies comparable to conventional tissue culture polystyrene plates. Cell proliferation rates, as determined by direct cell count and the RealTime-GloTM MT Cell Viability Assay, were similar on HA coupons and standard tissue culture polystyrene plates). Osteogenic differentiation of human MSCs on HA coupons was confirmed using alkaline phosphatase, Alizarin Red S and von Kossa staining. The morphology of MSCs cultured in osteogenic medium for 14 to 35 days was similar on HA coupons and tissue culture polystyrene plates, with osteogenic (geometric, cuboidal morphology with dark nodules) and adipogenic (lipid vesicles and deposits) features. We conclude that the DLP process and LithaBone HA400 slurry are biocompatible and are suitable for osteogenic applications. Coupons served as an effective evaluation design in the characterization and visualization of cell responses on DLP printed HA material. Results support the feasibility of future technical development for 3D printing of sophisticated scaffold designs, which can be constructed to meet the mechanical, chemical, and porosity requirements of an artificial bone scaffold.
Collapse
Affiliation(s)
| | - Sara Peterson
- GE Research, Niskayuna, New York, United States of America
| | | | - Daniel J. Erno
- GE Research, Niskayuna, New York, United States of America
| | - Tony Murray
- GE Research, Niskayuna, New York, United States of America
| | - Linda Boyd
- GE Research, Niskayuna, New York, United States of America
| | - Jae-Hyuk Her
- GE Research, Niskayuna, New York, United States of America
| | - Nathan Mclean
- GE Research, Niskayuna, New York, United States of America
| | - Robert Davis
- GE Research, Niskayuna, New York, United States of America
| | - Fiona Ginty
- GE Research, Niskayuna, New York, United States of America
| | | | - Brian M. Davis
- GE Research, Niskayuna, New York, United States of America
| | | |
Collapse
|
320
|
Appana Dalavi P, Prabhu A, M S, Chatterjee K, Venkatesan J. Casein-Coated Molybdenum Disulfide Nanosheets Augment the Bioactivity of Alginate Microspheres for Orthopedic Applications. ACS OMEGA 2022; 7:26092-26106. [PMID: 35936459 PMCID: PMC9352227 DOI: 10.1021/acsomega.2c00995] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 07/06/2022] [Indexed: 05/27/2023]
Abstract
Defects and disorders of the bone due to disease, trauma, or abnormalities substantially affect a person's life quality. Research in bone tissue engineering is motivated to address these clinical needs. The present study demonstrates casein-mediated liquid exfoliation of molybdenum disulfide (MoS2) and its coupling with alginate to create microspheres to engineer bone graft substitutes. Casein-exfoliated nano-MoS2 was chemically characterized using different analytical techniques. The UV-visible spectrum of nano-MoS2-2 displayed strong absorption peaks at 610 and 668 nm. In addition, the XPS spectra confirmed the presence of the molybdenum (Mo, 3d), sulfur (S, 2p), carbon (C, 1s), oxygen (O, 1s), and nitrogen (N, 1s) elements. The exfoliated MoS2 nanosheets were biocompatible with the MG-63, MC3T3-E1, and C2C12 cells at 250 μg/mL concentration. Further, microspheres were created using alginate, and they were characterized physiochemically and biologically. Stereomicroscopic images showed that the microspheres were spherical with an average diameter of 1 ± 0.2 mm. The dispersion of MoS2 in the alginate matrix was uniform. The alginate-MoS2 microspheres promoted apatite formation in the SBF (simulated body fluid) solution. Moreover, the alginate-MoS2 was biocompatible with MG-63 cells and promoted cell proliferation. Higher alkaline phosphatase activity and mineralization were observed on the alginate-MoS2 with the MG-63 cells. Hence, the developed alginate-MoS2 microsphere could be a potential candidate for a bone graft substitute.
Collapse
Affiliation(s)
- Pandurang Appana Dalavi
- Biomaterials
Research Laboratory, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India
| | - Ashwini Prabhu
- Biomaterials
Research Laboratory, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India
| | - Sajida M
- Biomaterials
Research Laboratory, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India
| | - Kaushik Chatterjee
- Department
of Materials Engineering, Indian Institute
of Science, Bangalore 560012, India
| | - Jayachandran Venkatesan
- Biomaterials
Research Laboratory, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India
| |
Collapse
|
321
|
Makuku R, Werthel JD, Zanjani LO, Nabian MH, Tantuoyir MM. New frontiers of tendon augmentation technology in tissue engineering and regenerative medicine: a concise literature review. J Int Med Res 2022; 50:3000605221117212. [PMID: 35983666 PMCID: PMC9393707 DOI: 10.1177/03000605221117212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Tissue banking programs fail to meet the demand for human organs and tissues for
transplantation into patients with congenital defects, injuries, chronic
diseases, and end-stage organ failure. Tendons and ligaments are among the most
frequently ruptured and/or worn-out body tissues owing to their frequent use,
especially in athletes and the elderly population. Surgical repair has remained
the mainstay management approach, regardless of scarring and adhesion formation
during healing, which then compromises the gliding motion of the joint and
reduces the quality of life for patients. Tissue engineering and regenerative
medicine approaches, such as tendon augmentation, are promising as they may
provide superior outcomes by inducing host-tissue ingrowth and tendon
regeneration during degradation, thereby decreasing failure rates and morbidity.
However, to date, tendon tissue engineering and regeneration research has been
limited and lacks the much-needed human clinical evidence to translate most
laboratory augmentation approaches to therapeutics. This narrative review
summarizes the current treatment options for various tendon pathologies, future
of tendon augmentation, cell therapy, gene therapy, 3D/4D bioprinting,
scaffolding, and cell signals.
Collapse
Affiliation(s)
- Rangarirai Makuku
- Center for Orthopedic Trans-Disciplinary Applied Research (COTAR), School of Medicine, 48439Tehran University of Medical Sciences, Tehran, Iran.,Department of Orthopedic Surgery, Hospital Ambroise Pare, Boulogne-Billancourt, France
| | - Jean-David Werthel
- Department of Orthopedic and Trauma Surgery, Shariati Hospital, 48439Tehran University of Medical Sciences, Tehran, Iran
| | - Leila Oryadi Zanjani
- Center for Orthopedic Trans-Disciplinary Applied Research (COTAR), School of Medicine, 48439Tehran University of Medical Sciences, Tehran, Iran.,Department of Orthopedic Surgery, Hospital Ambroise Pare, Boulogne-Billancourt, France
| | - Mohammad Hossein Nabian
- Center for Orthopedic Trans-Disciplinary Applied Research (COTAR), School of Medicine, 48439Tehran University of Medical Sciences, Tehran, Iran.,Department of Orthopedic Surgery, Hospital Ambroise Pare, Boulogne-Billancourt, France
| | - Marcarious M Tantuoyir
- Center for Orthopedic Trans-Disciplinary Applied Research (COTAR), School of Medicine, 48439Tehran University of Medical Sciences, Tehran, Iran.,Department of Orthopedic Surgery, Hospital Ambroise Pare, Boulogne-Billancourt, France.,Biomedical Engineering Unit, University of Ghana Medical Centre, Accra, Ghana
| |
Collapse
|
322
|
Camacho-Alonso F, Tudela-Mulero MR, Navarro JA, Buendía AJ, Mercado-Díaz AM. Use of buccal fat pad-derived stem cells cultured on bioceramics for repair of critical-sized mandibular defects in healthy and osteoporotic rats. Clin Oral Investig 2022; 26:5389-5408. [PMID: 35524820 PMCID: PMC9381637 DOI: 10.1007/s00784-022-04506-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 04/14/2022] [Indexed: 11/19/2022]
Abstract
OBJECTIVE To compare new bone formation in mandibular symphysis critical-sized bone defects (CSBDs) in healthy and osteoporotic rats filled with bioceramics (BCs) with or without buccal fat pad mesenchymal stem cells (BFPSCs). MATERIALS AND METHODS Thirty-two adult female Sprague-Dawley rats were randomized to two groups (n = 16 per group): group 1 healthy and group 2 osteoporotic (with bilateral ovariectomy). The central portion of the rat mandibular symphysis was used as a physiological CSBD. In each group, eight defects were filled with BC (hydroxyapatite 60% and β-tricalcium phosphate 40%) alone and eight with BFPSCs cultured on BC. The animals were sacrificed at 4 and 8 weeks, and the mandibles were processed for micro-computed tomography to analyze radiological union and bone mineral density (BMD); histological analysis of the bone union; and immunohistochemical analysis, which included immunoreactivity of vascular endothelial growth factor (VEGF) and bone morphogenetic protein 2 (BMP-2). RESULTS In both groups, CSBDs filled with BC + BFPSCs showed greater radiological bone union, BMD and histological bone union, and more VEGF and BMP-2 positivity, compared with CSBDs treated with BC alone at 4 and 8 weeks. CONCLUSIONS The application of BFPSCs cultured on BCs improves bone regeneration in CSBDs compared with BCs alone in healthy and osteoporotic rats. CLINICAL RELEVANCE Our results may aid bone regeneration of maxillofacial CSBDs of both healthy and osteoporotic patients, but further studies are necessary.
Collapse
Affiliation(s)
- Fabio Camacho-Alonso
- Department of Oral Surgery, University of Murcia, Murcia, Spain.
- Oral Surgery Teaching Unit, University Dental Clinic, Morales Meseguer Hospital (2Nd Floor), Marqués de los Vélez s/n, 30008, Murcia, Spain.
| | | | - J A Navarro
- Department of Histology and Pathological Anatomy, University of Murcia, Murcia, Spain
| | - A J Buendía
- Department of Histology and Pathological Anatomy, University of Murcia, Murcia, Spain
| | | |
Collapse
|
323
|
Makar LE, Nady N, Abd El-Fattah A, Shawky N, Kandil SH. Unmodified Gum Arabic/Chitosan/Nanohydroxyapatite Nanocomposite Hydrogels as Potential Scaffolds for Bone Regeneration. Polymers (Basel) 2022; 14:polym14153052. [PMID: 35956568 PMCID: PMC9370697 DOI: 10.3390/polym14153052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/22/2022] [Accepted: 07/25/2022] [Indexed: 02/07/2023] Open
Abstract
In this work, physical cross-linking was used to create nanocomposite hydrogels composed of unmodified gum arabic (GA), chitosan (Ch), and natural nanohydroxyapatite (nHA), using an acrylic acid (AA) solvent. Different GA/chitosan contents (15%, 25%, and 35% of the used AA) as well as different nHA contents (2, 5, and 10 wt.%), were used and studied. The natural nHA and the fabricated GA/Ch/nHA nanocomposite hydrogels were characterized using different analysis techniques. Using acrylic acid solvent produced novel hydrogels with compressive strength of 15.43–22.20 MPa which is similar to that of natural cortical bone. The addition of natural nHA to the hydrogels resulted in a significant improvement in the compressive strength of the fabricated hydrogels. In vitro studies of water absorption and degradation—and in vivo studies—confirmed that the nanocomposite hydrogels described here are biodegradable, biocompatible, and facilitate apatite formation while immersed in the simulated body fluid (SBF). In light of these findings, the GA/Ch/nHA nanocomposite hydrogels are recommended for preparing bioactive nanoscaffolds for testing in bone regeneration applications.
Collapse
Affiliation(s)
- Lara E. Makar
- Department of Materials Science, Institute of Graduate Studies and Research, Alexandria University, El-Shatby, Alexandria 21526, Egypt; (A.A.E.-F.); (S.H.K.)
- Correspondence: or (L.E.M.); (N.N.); Tel.: +20-1227289592 (L.E.M.); +20-1090918521 (N.N.)
| | - Norhan Nady
- Polymeric Materials Research Department, City of Scientific Research and Technological Applications (SRTA-City), Alexandria 21934, Egypt
- Correspondence: or (L.E.M.); (N.N.); Tel.: +20-1227289592 (L.E.M.); +20-1090918521 (N.N.)
| | - Ahmed Abd El-Fattah
- Department of Materials Science, Institute of Graduate Studies and Research, Alexandria University, El-Shatby, Alexandria 21526, Egypt; (A.A.E.-F.); (S.H.K.)
- Department of Chemistry, College of Science, University of Bahrain, Sakhir P.O. Box 32038, Bahrain
| | - Neivin Shawky
- Oral and Maxillofacial Surgery Department, Faculty of Dentistry, Alexandria University, Champollion Street—Azarita, Alexandria 21526, Egypt;
| | - Sherif H. Kandil
- Department of Materials Science, Institute of Graduate Studies and Research, Alexandria University, El-Shatby, Alexandria 21526, Egypt; (A.A.E.-F.); (S.H.K.)
| |
Collapse
|
324
|
Margiana R, Markov A, Zekiy AO, Hamza MU, Al-Dabbagh KA, Al-Zubaidi SH, Hameed NM, Ahmad I, Sivaraman R, Kzar HH, Al-Gazally ME, Mustafa YF, Siahmansouri H. Clinical application of mesenchymal stem cell in regenerative medicine: a narrative review. Stem Cell Res Ther 2022; 13:366. [PMID: 35902958 PMCID: PMC9330677 DOI: 10.1186/s13287-022-03054-0] [Citation(s) in RCA: 169] [Impact Index Per Article: 56.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 07/18/2022] [Indexed: 12/16/2022] Open
Abstract
The multipotency property of mesenchymal stem cells (MSCs) has attained worldwide consideration because of their immense potential for immunomodulation and their therapeutic function in tissue regeneration. MSCs can migrate to tissue injury areas to contribute to immune modulation, secrete anti-inflammatory cytokines and hide themselves from the immune system. Certainly, various investigations have revealed anti-inflammatory, anti-aging, reconstruction, and wound healing potentials of MSCs in many in vitro and in vivo models. Moreover, current progresses in the field of MSCs biology have facilitated the progress of particular guidelines and quality control approaches, which eventually lead to clinical application of MSCs. In this literature, we provided a brief overview of immunoregulatory characteristics and immunosuppressive activities of MSCs. In addition, we discussed the enhancement, utilization, and therapeutic responses of MSCs in neural, liver, kidney, bone, heart diseases, and wound healing.
Collapse
Affiliation(s)
- Ria Margiana
- Department of Anatomy, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia.,Master's Programme Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia.,Dr. Soetomo General Academic Hospital, Surabaya, Indonesia
| | - Alexander Markov
- Tyumen State Medical University, Tyumen, Russian Federation.,Tyumen Industrial University, Tyumen, Russian Federation
| | - Angelina O Zekiy
- Department of Prosthetic Dentistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | | | | | | | - Noora M Hameed
- Anesthesia Techniques, Al-Nisour University College, Baghdad, Iraq
| | - Irshad Ahmad
- Department of Medical Rehabilitation Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - R Sivaraman
- Department of Mathematics, Dwaraka Doss Goverdhan Doss Vaishnav College, Arumbakkam, University of Madras, Chennai, India
| | - Hamzah H Kzar
- Veterinary Medicine College, Al-Qasim Green University, Al-Qasim, Iraq
| | | | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, 41001, Iraq
| | - Homayoon Siahmansouri
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
325
|
Ho ML, Hsu CJ, Wu CW, Chang LH, Chen JW, Chen CH, Huang KC, Chang JK, Wu SC, Shao PL. Enhancement of Osteoblast Function through Extracellular Vesicles Derived from Adipose-Derived Stem Cells. Biomedicines 2022; 10:biomedicines10071752. [PMID: 35885057 PMCID: PMC9312889 DOI: 10.3390/biomedicines10071752] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/06/2022] [Accepted: 07/18/2022] [Indexed: 11/16/2022] Open
Abstract
Adipose-derived stem cells (ADSCs) are a type of mesenchymal stem cell that is investigated in bone tissue engineering (BTE). Osteoblasts are the main cells responsible for bone formation in vivo and directing ADSCs to form osteoblasts through osteogenesis is a research topic in BTE. In addition to the osteogenesis of ADSCs into osteoblasts, the crosstalk of ADSCs with osteoblasts through the secretion of extracellular vesicles (EVs) may also contribute to bone formation in ADSC-based BTE. We investigated the effect of ADSC-secreted EVs (ADSC-EVs) on osteoblast function. ADSC-EVs (size ≤ 1000 nm) were isolated from the culture supernatant of ADSCs through ultracentrifugation. The ADSC-EVs were observed to be spherical under a transmission electron microscope. The ADSC-EVs were positive for CD9, CD81, and Alix, but β-actin was not detected. ADSC-EV treatment did not change survival but did increase osteoblast proliferation and activity. The 48 most abundant known microRNAs (miRNAs) identified within the ADSC-EVs were selected and then subjected to gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. The GO analysis revealed that these miRNAs are highly relevant to skeletal system morphogenesis and bone development. The KEGG analysis indicated that these miRNAs may regulate osteoblast function through autophagy or the mitogen-activated protein kinase or Ras-related protein 1 signaling pathway. These results suggest that ADSC-EVs enhance osteoblast function and can contribute to bone regeneration in ADSC-based BTE.
Collapse
Affiliation(s)
- Mei-Ling Ho
- Orthopaedic Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung 80787, Taiwan; (M.-L.H.); (C.-W.W.); (L.-H.C.); (J.-W.C.); (C.-H.C.); (J.-K.C.)
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80787, Taiwan
- Department of Physiology, College of Medicine, Kaohsiung Medical University, Kaohsiung 80787, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80787, Taiwan
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung 804201, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan
| | - Chin-Jung Hsu
- Department of Orthopedics, China Medical University Hospital, Taichung 404332, Taiwan;
- School of Chinese Medicine, China Medical University, Taichung 406040, Taiwan
| | - Che-Wei Wu
- Orthopaedic Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung 80787, Taiwan; (M.-L.H.); (C.-W.W.); (L.-H.C.); (J.-W.C.); (C.-H.C.); (J.-K.C.)
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80787, Taiwan
| | - Ling-Hua Chang
- Orthopaedic Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung 80787, Taiwan; (M.-L.H.); (C.-W.W.); (L.-H.C.); (J.-W.C.); (C.-H.C.); (J.-K.C.)
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80787, Taiwan
| | - Jhen-Wei Chen
- Orthopaedic Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung 80787, Taiwan; (M.-L.H.); (C.-W.W.); (L.-H.C.); (J.-W.C.); (C.-H.C.); (J.-K.C.)
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80787, Taiwan
| | - Chung-Hwan Chen
- Orthopaedic Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung 80787, Taiwan; (M.-L.H.); (C.-W.W.); (L.-H.C.); (J.-W.C.); (C.-H.C.); (J.-K.C.)
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80787, Taiwan
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80787, Taiwan
- Department of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung 80787, Taiwan
- Department of Orthopedics, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University, Kaohsiung 80787, Taiwan
- Division of Adult Reconstruction Surgery, Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80787, Taiwan
- Program in Biomedical Engineering, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Kui-Chou Huang
- Department of Orthopedics, Asia University Hospital, Taichung 413505, Taiwan;
- Department of Occupational Therapy, Asia University, Taichung 41354, Taiwan
| | - Je-Ken Chang
- Orthopaedic Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung 80787, Taiwan; (M.-L.H.); (C.-W.W.); (L.-H.C.); (J.-W.C.); (C.-H.C.); (J.-K.C.)
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80787, Taiwan
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80787, Taiwan
| | - Shun-Cheng Wu
- Orthopaedic Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung 80787, Taiwan; (M.-L.H.); (C.-W.W.); (L.-H.C.); (J.-W.C.); (C.-H.C.); (J.-K.C.)
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80787, Taiwan
- Post-Baccalaureate Program in Nursing, Asia University, Taichung 41354, Taiwan
- Correspondence: (S.-C.W.); (P.-L.S.); Tel.: +(886)-7-3121101 (ext. 2553) (S.-C.W.); +(886)-7-3121101 (ext. 20030) (P.-L.S.)
| | - Pei-Lin Shao
- Department of Nursing, Asia University, Taichung 41354, Taiwan
- Correspondence: (S.-C.W.); (P.-L.S.); Tel.: +(886)-7-3121101 (ext. 2553) (S.-C.W.); +(886)-7-3121101 (ext. 20030) (P.-L.S.)
| |
Collapse
|
326
|
Mekcha P, Wongpairojpanich J, Thammarakcharoen F, Suwanprateeb J, Buranawat B. Customized 3D printed nanohydroxyapatite bone block grafts for implant sites: a case series. J Prosthodont Res 2022; 67:311-320. [PMID: 35858803 DOI: 10.2186/jpr.jpr_d_22_00037] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
PATIENTS A case series of 12 patients (mean age, 53.5 years) with horizontal ridge deficiencies had augmentations with customized 3D printed nanohydroxyapatite (3DHA) block grafts prior to implant placement. 3DHA graft materials were fabricated to fit the individual patient defects using DICOMs from CBCT images obtained from each patient. The CBCT images were then converted into the STL file format and 3DHA was reconstructed by 3D printing. Surgical bone augmentation consisted of 3DHA incorporating concentrated growth factors (CGFs) and platelet-rich fibrin (PRF) membrane. At 6 months, a bone biopsy and implantation were performed. The primary outcome was horizontal bone gain after 6 months. The secondary outcomes included information on the clinical outcomes, dimensions, and histomorphometric results. DISCUSSION The 3DHA block graft was successful in 10 of 12 patients. Graft adjustment was not required. All 3DHA adapted and fit well at all defect sites. Maximum mean horizontal bone gains were 3.06 ± 1.02 and 3.56 ± 0.23 mm from the DICOMs and STL data sets, respectively. The volume gain was 229.8 ± 82.96 mm3. A low pain score after surgery was reported of 1.41 ± 0.51, while the healing index score increased with a maximum mean of 4.7 ± 0.67. Thirteen implants were placed with good primary stability (ISQ = 65 ± 4.08), without additional guided bone regeneration. Histomorphometric analysis revealed that new bone formation, bone tissue, residual grafts, and connective tissue were 28.6 ± 1.88, 30.48 ± 4.81, 19.82 ± 4.07, and 20.81 ± 4.41%, respectively. CONCLUSIONS A customized 3DHA block graft is a viable treatment option for primary implant-site augmentation.
Collapse
Affiliation(s)
- Pichaya Mekcha
- Department of Implantology, Faculty of Dentistry, Thammasat University, Thailand
| | | | - Faungchat Thammarakcharoen
- Biofunctional Materials and Devices Research Group, National Metal and Materials Technology Center, National Science and Technology Development Agency, Thailand
| | - Jintamai Suwanprateeb
- Biofunctional Materials and Devices Research Group, National Metal and Materials Technology Center, National Science and Technology Development Agency, Thailand
| | - Borvornwut Buranawat
- Department of Implantology, Faculty of Dentistry, Thammasat University, Thailand
| |
Collapse
|
327
|
Tan XH, Liu L, Mitryashkin A, Wang Y, Goh JCH. Silk Fibroin as a Bioink - A Thematic Review of Functionalization Strategies for Bioprinting Applications. ACS Biomater Sci Eng 2022; 8:3242-3270. [PMID: 35786841 DOI: 10.1021/acsbiomaterials.2c00313] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Bioprinting is an emerging tissue engineering technique that has attracted the attention of researchers around the world, for its ability to create tissue constructs that recapitulate physiological function. While the technique has been receiving hype, there are still limitations to the use of bioprinting in practical applications, much of which is due to inappropriate bioink design that is unable to recapitulate complex tissue architecture. Silk fibroin (SF) is an exciting and promising bioink candidate that has been increasingly popular in bioprinting applications because of its processability, biodegradability, and biocompatibility properties. However, due to its lack of optimum gelation properties, functionalization strategies need to be employed so that SF can be effectively used in bioprinting applications. These functionalization strategies are processing methods which allow SF to be compatible with specific bioprinting techniques. Previous literature reviews of SF as a bioink mainly focus on discussing different methods to functionalize SF as a bioink, while a comprehensive review on categorizing SF functional methods according to their potential applications is missing. This paper seeks to discuss and compartmentalize the different strategies used to functionalize SF for bioprinting and categorize the strategies for each bioprinting method (namely, inkjet, extrusion, and light-based bioprinting). By compartmentalizing the various strategies for each printing method, the paper illustrates how each strategy is better suited for a target tissue application. The paper will also discuss applications of SF bioinks in regenerating various tissue types and the challenges and future trends that SF can take in its role as a bioink material.
Collapse
Affiliation(s)
- Xuan Hao Tan
- Department of Biomedical Engineering, College of Engineering and Design, National University of Singapore, 15 Kent Ridge Crescent, E7-06-03, Singapore 119276, Singapore.,Integrative Sciences and Engineering Programme, National University of Singapore, University Hall, Tan Chin Tuan Wing, #05-03, 21 Lower Kent Ridge Road, Singapore 119077, Singapore
| | - Ling Liu
- Department of Biomedical Engineering, College of Engineering and Design, National University of Singapore, 15 Kent Ridge Crescent, E7-06-03, Singapore 119276, Singapore
| | - Alexander Mitryashkin
- Department of Biomedical Engineering, College of Engineering and Design, National University of Singapore, 15 Kent Ridge Crescent, E7-06-03, Singapore 119276, Singapore
| | - Yunyun Wang
- Department of Biomedical Engineering, College of Engineering and Design, National University of Singapore, 15 Kent Ridge Crescent, E7-06-03, Singapore 119276, Singapore
| | - James Cho Hong Goh
- Department of Biomedical Engineering, College of Engineering and Design, National University of Singapore, 15 Kent Ridge Crescent, E7-06-03, Singapore 119276, Singapore.,Integrative Sciences and Engineering Programme, National University of Singapore, University Hall, Tan Chin Tuan Wing, #05-03, 21 Lower Kent Ridge Road, Singapore 119077, Singapore.,Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, NUHS Tower Block, Level 11, 1E Kent Ridge Road, Singapore 119288, Singapore
| |
Collapse
|
328
|
Győrgy R, Kostoglou M, Mantalaris A, Georgiadis MC. Development of a multi-scale model to simulate Mesenchymal Stem Cell osteogenic differentiation within hydrogels in a rotating wall bioreactor. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
329
|
Suvarnapathaki S, Wu X, Zhang T, Nguyen MA, Goulopoulos AA, Wu B, Camci-Unal G. Oxygen generating scaffolds regenerate critical size bone defects. Bioact Mater 2022; 13:64-81. [PMID: 35224292 PMCID: PMC8843972 DOI: 10.1016/j.bioactmat.2021.11.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/30/2021] [Accepted: 11/01/2021] [Indexed: 12/12/2022] Open
Abstract
Recent innovations in bone tissue engineering have introduced biomaterials that generate oxygen to substitute vasculature. This strategy provides the immediate oxygen required for tissue viability and graft maturation. Here we demonstrate a novel oxygen-generating tissue scaffold with predictable oxygen release kinetics and modular material properties. These hydrogel scaffolds were reinforced with microparticles comprised of emulsified calcium peroxide (CaO2) within polycaprolactone (PCL). The alterations of the assembled materials produced constructs within 5 ± 0.81 kPa to 34 ± 0.9 kPa in mechanical strength. The mass swelling ratios varied between 11% and 25%. Our in vitro and in vivo results revealed consistent tissue viability, metabolic activity, and osteogenic differentiation over two weeks. The optimized in vitro cell culture system remained stable at pH 8-9. The in vivo rodent models demonstrated that these scaffolds support a 70 mm3 bone volume that was comparable to the native bone and yielded over 90% regeneration in critical size cranial defects. Furthermore, the in vivo bone remodeling and vascularization results were validated by tartrate-resistant acid phosphatase (TRAP) and vascular endothelial growth factor (VEGF) staining. The promising results of this work are translatable to a repertoire of regenerative medicine applications including advancement and expansion of bone substitutes and disease models.
Collapse
Affiliation(s)
- Sanika Suvarnapathaki
- Biomedical Engineering and Biotechnology Program, University of Massachusetts Lowell, One University Avenue, Lowell, MA, 01854, USA
- Department of Chemical Engineering, University of Massachusetts Lowell, One University Avenue, Lowell, MA, 01854, USA
| | - Xinchen Wu
- Biomedical Engineering and Biotechnology Program, University of Massachusetts Lowell, One University Avenue, Lowell, MA, 01854, USA
- Department of Chemical Engineering, University of Massachusetts Lowell, One University Avenue, Lowell, MA, 01854, USA
| | - Tengfei Zhang
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medicine University, Beijing, 100069, China
| | - Michelle A. Nguyen
- Department of Chemical Engineering, University of Massachusetts Lowell, One University Avenue, Lowell, MA, 01854, USA
| | - Anastasia A. Goulopoulos
- Department of Chemical Engineering, University of Massachusetts Lowell, One University Avenue, Lowell, MA, 01854, USA
| | - Bin Wu
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medicine University, Beijing, 100069, China
| | - Gulden Camci-Unal
- Department of Chemical Engineering, University of Massachusetts Lowell, One University Avenue, Lowell, MA, 01854, USA
- Department of Surgery, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA, 01605, USA
| |
Collapse
|
330
|
Silva CA, Fernandes MM, Ribeiro C, Lanceros-Mendez S. Two- and three-dimensional piezoelectric scaffolds for bone tissue engineering. Colloids Surf B Biointerfaces 2022; 218:112708. [DOI: 10.1016/j.colsurfb.2022.112708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 06/17/2022] [Accepted: 07/15/2022] [Indexed: 11/28/2022]
|
331
|
Mehnath S, Muthuraj V, Jeyaraj M. Biomimetic and osteogenic natural HAP coated three dimensional implant for orthopaedic application. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111387] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
332
|
Moghanian A, Cecen B, Nafisi N, Miri Z, Rosenzweig DH, Miri AK. Review of Current Literature for Vascularized Biomaterials in Dental Repair. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
333
|
Baawad A, Dhameri S, Park J, Murphy K, Kim DS. Rheological properties and decomposition rates of Gellan gum/hyaluronic acid/β-tricalcium phosphate mixtures. Int J Biol Macromol 2022; 211:15-25. [PMID: 35537591 DOI: 10.1016/j.ijbiomac.2022.05.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 05/02/2022] [Accepted: 05/04/2022] [Indexed: 11/05/2022]
Abstract
The effects of β-tricalcium phosphate (TCP) on the mixture of low acyl gellan gum (LA-GAGR) and hyaluronic acid (HA) were investigated for the rheological properties and decomposition rates. All the tested mixture samples exhibited shear-thinning and typical viscoelastic behaviors. The sample made with 1.0% TCP and 0.30% LA-GAGR had the highest viscosity and loss and storage moduli and displayed gel-like behavior with the highest swelling capacity. The same mixture also exhibited the lowest average cumulative decomposition rate. High concentrations of LA-GAGR and TCP increased the degree of cross-linking of the polysaccharides, and as a result, the mixture was more elastic and less fluidic and decomposed slower. The samples prepared by gradual mixing of LA-GAGR and TCP decomposed slower than the sample prepared by sudden mixing, which indicates the well-dispersed TCP enhanced cross-linking of the polymers. This study demonstrates the possible applicability of natural polysaccharide-based shear-thinning gels for biomedical applications.
Collapse
Affiliation(s)
- Abdullah Baawad
- Department of Chemical Engineering, University of Toledo, Toledo, OH 43606, USA
| | - Sulaiman Dhameri
- Department of Chemical Engineering, University of Toledo, Toledo, OH 43606, USA
| | - Joshua Park
- Department of Chemical Engineering, University of Toledo, Toledo, OH 43606, USA
| | - Kelsey Murphy
- Department of Chemical Engineering, University of Toledo, Toledo, OH 43606, USA
| | - Dong-Shik Kim
- Department of Chemical Engineering, University of Toledo, Toledo, OH 43606, USA.
| |
Collapse
|
334
|
Osouli-Bostanabad K, Masalehdan T, Kapsa RMI, Quigley A, Lalatsa A, Bruggeman KF, Franks SJ, Williams RJ, Nisbet DR. Traction of 3D and 4D Printing in the Healthcare Industry: From Drug Delivery and Analysis to Regenerative Medicine. ACS Biomater Sci Eng 2022; 8:2764-2797. [PMID: 35696306 DOI: 10.1021/acsbiomaterials.2c00094] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Three-dimensional (3D) printing and 3D bioprinting are promising technologies for a broad range of healthcare applications from frontier regenerative medicine and tissue engineering therapies to pharmaceutical advancements yet must overcome the challenges of biocompatibility and resolution. Through comparison of traditional biofabrication methods with 3D (bio)printing, this review highlights the promise of 3D printing for the production of on-demand, personalized, and complex products that enhance the accessibility, effectiveness, and safety of drug therapies and delivery systems. In addition, this review describes the capacity of 3D bioprinting to fabricate patient-specific tissues and living cell systems (e.g., vascular networks, organs, muscles, and skeletal systems) as well as its applications in the delivery of cells and genes, microfluidics, and organ-on-chip constructs. This review summarizes how tailoring selected parameters (i.e., accurately selecting the appropriate printing method, materials, and printing parameters based on the desired application and behavior) can better facilitate the development of optimized 3D-printed products and how dynamic 4D-printed strategies (printing materials designed to change with time or stimulus) may be deployed to overcome many of the inherent limitations of conventional 3D-printed technologies. Comprehensive insights into a critical perspective of the future of 4D bioprinting, crucial requirements for 4D printing including the programmability of a material, multimaterial printing methods, and precise designs for meticulous transformations or even clinical applications are also given.
Collapse
Affiliation(s)
- Karim Osouli-Bostanabad
- Biomaterials, Bio-engineering and Nanomedicine (BioN) Lab, Institute of Biomedical and Biomolecular, Sciences, School of Pharmacy and Biomedical Sciences, University of Portsmouth, White Swan Road, Portsmouth PO1 2DT, United Kingdom
| | - Tahereh Masalehdan
- Department of Materials Engineering, Institute of Mechanical Engineering, University of Tabriz, Tabriz 51666-16444, Iran
| | - Robert M I Kapsa
- Biomedical and Electrical Engineering, School of Engineering, RMIT University, Melbourne, Victoria 3000, Australia.,Department of Medicine, St Vincent's Hospital Melbourne, University of Melbourne, Fitzroy, Victoria 3065, Australia
| | - Anita Quigley
- Biomedical and Electrical Engineering, School of Engineering, RMIT University, Melbourne, Victoria 3000, Australia.,Department of Medicine, St Vincent's Hospital Melbourne, University of Melbourne, Fitzroy, Victoria 3065, Australia
| | - Aikaterini Lalatsa
- Biomaterials, Bio-engineering and Nanomedicine (BioN) Lab, Institute of Biomedical and Biomolecular, Sciences, School of Pharmacy and Biomedical Sciences, University of Portsmouth, White Swan Road, Portsmouth PO1 2DT, United Kingdom
| | - Kiara F Bruggeman
- Laboratory of Advanced Biomaterials, Research School of Chemistry and the John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory 2601, Australia.,Research School of Electrical, Energy and Materials Engineering, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Stephanie J Franks
- Laboratory of Advanced Biomaterials, Research School of Chemistry and the John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Richard J Williams
- Institute of Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Waurn Ponds, Victoria 3216, Australia
| | - David R Nisbet
- Laboratory of Advanced Biomaterials, Research School of Chemistry and the John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory 2601, Australia.,The Graeme Clark Institute, The University of Melbourne, Melbourne, Victoria 3010, Australia.,Department of Biomedical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Melbourne, Victoria 3010, Australia
| |
Collapse
|
335
|
Synthesis, Structure-Property Evaluation and Biological Assessment of Supramolecular Assemblies of Bioactive Glass with Glycyrrhizic Acid and Its Monoammonium Salt. MATERIALS 2022; 15:ma15124197. [PMID: 35744255 PMCID: PMC9230998 DOI: 10.3390/ma15124197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/07/2022] [Accepted: 06/10/2022] [Indexed: 11/17/2022]
Abstract
Medical nutrients obtained from plants have been used in traditional medicine since ancient times, owning to the protective and therapeutic properties of plant extracts and products. Glycyrrhizic acid is one of those that, apart from its therapeutic effect, may contribute to stronger bones, inhibiting bone resorption and improving the bone structure and biomechanical strength. In the present study, we investigated the effect of a bioactive glass (BG) addition to the structure–property relationships of supramolecular assemblies formed by glycyrrhizic acid (GA) and its monoammonium salt (MSGA). FTIR spectra of supramolecular assemblies evidenced an interaction between BG components and hydroxyl groups of MSGA and GA. Moreover, it was revealed that BG components may interact and bond to the carboxyl groups of MSGA. In order to assess their biological effects, BG, MSGA, and their supramolecular assemblies were introduced to a culture of human bone-marrow-derived mesenchymal stromal cells (BMSCs). Both the BG and MSGA had positive influence on BMSC growth, viability, and osteogenic differentiation—these positive effects were most pronounced when BG1d-BG and MSGA were introduced together into cell culture in the form of MSGA:BG assemblies. In conclusion, MSGA:BG assemblies revealed a promising potential as a candidate material intended for application in bone defect reconstruction and bone tissue engineering approaches.
Collapse
|
336
|
Application Progress of Modified Chitosan and Its Composite Biomaterials for Bone Tissue Engineering. Int J Mol Sci 2022; 23:ijms23126574. [PMID: 35743019 PMCID: PMC9224397 DOI: 10.3390/ijms23126574] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/30/2022] [Accepted: 06/08/2022] [Indexed: 12/28/2022] Open
Abstract
In recent years, bone tissue engineering (BTE), as a multidisciplinary field, has shown considerable promise in replacing traditional treatment modalities (i.e., autografts, allografts, and xenografts). Since bone is such a complex and dynamic structure, the construction of bone tissue composite materials has become an attractive strategy to guide bone growth and regeneration. Chitosan and its derivatives have been promising vehicles for BTE owing to their unique physical and chemical properties. With intrinsic physicochemical characteristics and closeness to the extracellular matrix of bones, chitosan-based composite scaffolds have been proved to be a promising candidate for providing successful bone regeneration and defect repair capacity. Advances in chitosan-based scaffolds for BTE have produced efficient and efficacious bio-properties via material structural design and different modifications. Efforts have been put into the modification of chitosan to overcome its limitations, including insolubility in water, faster depolymerization in the body, and blood incompatibility. Herein, we discuss the various modification methods of chitosan that expand its fields of application, which would pave the way for future applied research in biomedical innovation and regenerative medicine.
Collapse
|
337
|
Subash A, Basanth A, Kandasubramanian B. Biodegradable polyphosphazene – hydroxyapatite composites for bone tissue engineering. INT J POLYM MATER PO 2022. [DOI: 10.1080/00914037.2022.2082426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Alsha Subash
- Department of Metallurgical and Materials Engineering, Nano Surface Texturing Laboratory, Defence Institute of Advanced Technology (DU), Ministry of Defence, Pune, Maharashtra, India
| | - Abina Basanth
- Biopolymer Science, CIPET: Institute of Plastics Technology (IPT), Kochi, India
| | - Balasubramanian Kandasubramanian
- Department of Metallurgical and Materials Engineering, Nano Surface Texturing Laboratory, Defence Institute of Advanced Technology (DU), Ministry of Defence, Pune, Maharashtra, India
| |
Collapse
|
338
|
Facile Fabrication of Transparent and Opaque Albumin Methacryloyl Gels with Highly Improved Mechanical Properties and Controlled Pore Structures. Gels 2022; 8:gels8060367. [PMID: 35735711 PMCID: PMC9222780 DOI: 10.3390/gels8060367] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/24/2022] [Accepted: 05/31/2022] [Indexed: 12/12/2022] Open
Abstract
For porous protein scaffolds to be employed in tissue-engineered structures, the development of cost-effective, macroporous, and mechanically improved protein-based hydrogels, without compromising the original properties of native protein, is crucial. Here, we introduced a facile method of albumin methacryloyl transparent hydrogels and opaque cryogels with adjustable porosity and improved mechanical characteristics via controlling polymerization temperatures (room temperature and −80 °C). The structural, morphological, mechanical, and physical characteristics of both porous albumin methacryloyl biomaterials were investigated using FTIR, CD, SEM, XRD, compression tests, TGA, and swelling behavior. The biodegradation and biocompatibility of the various gels were also carefully examined. Albumin methacryloyl opaque cryogels outperformed their counterpart transparent hydrogels in terms of mechanical characteristics and interconnecting macropores. Both materials demonstrated high mineralization potential as well as good cell compatibility. The solvation and phase separation owing to ice crystal formation during polymerization are attributed to the transparency of hydrogels and opacity of cryogels, respectively, suggesting that two fully protein-based hydrogels could be used as visible detectors/sensors in medical devices or bone regeneration scaffolds in the future.
Collapse
|
339
|
Laser Sintering Approaches for Bone Tissue Engineering. Polymers (Basel) 2022; 14:polym14122336. [PMID: 35745911 PMCID: PMC9229946 DOI: 10.3390/polym14122336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/30/2022] [Accepted: 06/06/2022] [Indexed: 11/17/2022] Open
Abstract
The adoption of additive manufacturing (AM) techniques into the medical space has revolutionised tissue engineering. Depending upon the tissue type, specific AM approaches are capable of closely matching the physical and biological tissue attributes, to guide tissue regeneration. For hard tissue such as bone, powder bed fusion (PBF) techniques have significant potential, as they are capable of fabricating materials that can match the mechanical requirements necessary to maintain bone functionality and support regeneration. This review focuses on the PBF techniques that utilize laser sintering for creating scaffolds for bone tissue engineering (BTE) applications. Optimal scaffold requirements are explained, ranging from material biocompatibility and bioactivity, to generating specific architectures to recapitulate the porosity, interconnectivity, and mechanical properties of native human bone. The main objective of the review is to outline the most common materials processed using PBF in the context of BTE; initially outlining the most common polymers, including polyamide, polycaprolactone, polyethylene, and polyetheretherketone. Subsequent sections investigate the use of metals and ceramics in similar systems for BTE applications. The last section explores how composite materials can be used. Within each material section, the benefits and shortcomings are outlined, including their mechanical and biological performance, as well as associated printing parameters. The framework provided can be applied to the development of new, novel materials or laser-based approaches to ultimately generate bone tissue analogues or for guiding bone regeneration.
Collapse
|
340
|
Guo K, Zhao H, Chen G, Zhang Y, Wang Y, Huo L, Sun S, Wei W. PAP Polypeptide Promotes Osteogenesis in Jaw Bone Defect Repair by Inhibiting Inflammatory Reactions. Front Bioeng Biotechnol 2022; 10:916330. [PMID: 35721849 PMCID: PMC9201685 DOI: 10.3389/fbioe.2022.916330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 05/12/2022] [Indexed: 11/13/2022] Open
Abstract
Jaw defects are common in oral and maxillofacial diseases and require surgical repair in extreme cases. Given the limitations in availability and efficacy of autologous bone grafts or allografts, great effort has been made in finding suitable, biocompatible, and effective artificial bone materials. Considering the key role of inflammation in bone resorption, we sought to identify a polypeptide with anti-inflammatory and bone-promoting effects. Rat bone marrow-derived mesenchymal cells (BMSCs) were treated with lipopolysaccharide (LPS) to induce an inflammatory environment, and 1,538 differentially abundant polypeptides were identified using mass spectrometry. Based on mass spectrometry signal intensity, multiple of difference, and structural stability, PAP was screened out as the polypeptide with the lowest abundance in the inflammatory condition. PAP showed no cytotoxicity to BMSCs with increasing concentrations. PAP (10 μM) also increased alkaline phosphatase activity and mRNA expression of Ocn, Bmp2, and Runx2 in a concentration-dependent manner, which confirmed that it can promote osteogenic induction of rat BMSCs. Moreover, PAP reduced LPS-induced expression of inflammatory cytokines (TNF-α, IL-1β, IL-6) and reactive oxygen species and inhibited polarization of RAW 264.7 macrophages to the inflammatory type. Finally, a skull defect mouse model was established, and mice were injected with LPS and/or PAP. Micro-CT, histological analysis, and immunohistochemical staining showed that PAP significantly reduced the number of LPS-induced bone resorption pits and maintained bone integrity. Overall, the polypeptide PAP screened using LPS stimulation of BMSCs is not cytotoxic and can inhibit the inflammatory reaction process to promote osteogenesis. This study thus provides a basis for development of PAP as a new osteogenic material in the repair of jaw defects.
Collapse
Affiliation(s)
- Ke Guo
- Department of Stomatology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haoming Zhao
- Department of Stomatology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guokun Chen
- Shandong Key Laboratory of Oral Tissue Regeneration and Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ying Zhang
- Department of Stomatology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Wang
- Nursing Department, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liang Huo
- Department of Oral Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Liang Huo, ; Shoufu Sun, ; Wenjia Wei,
| | - Shoufu Sun
- Department of Stomatology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Liang Huo, ; Shoufu Sun, ; Wenjia Wei,
| | - Wenjia Wei
- Department of Stomatology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Liang Huo, ; Shoufu Sun, ; Wenjia Wei,
| |
Collapse
|
341
|
Nikakhtar Y, Shafiei SS, Fathi-Roudsari M, Asadi-Eydivand M, ShiraliPour F. Preparation and characterization of electrospun polycaprolactone/brushite scaffolds to promote osteogenic differentiation of mesenchymal stem cells. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2022; 33:1102-1122. [PMID: 35144516 DOI: 10.1080/09205063.2022.2041786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 12/19/2021] [Accepted: 02/10/2022] [Indexed: 06/14/2023]
Abstract
Bone tissue engineering aims to develop effective strategies for repairing or replacing damaged bone tissue. In this study, composite scaffolds consisting of dicalcium phosphate dihydrate (DCDP, brushite) as a bone phase mineral precursor with different weight percentages (0%, 1%, 3%, 5%, and 10%) in combination with polycaprolactone (PCL) were fabricated by electrospinning technique. The morphology and mechanical behavior of scaffolds were characterized using scanning electron microscopy and tensile strength test, respectively. The bioactivity of scaffolds was assessed in simulated body fluid. Adhesion, viability, proliferation, and differentiation of mesenchymal stem cells derived from the human bone marrow on scaffolds were investigated using electron microscopy, MTT assay, live-dead assay, alizarin red staining, alkaline phosphatase activity and, gene expression analysis by real-time PCR. The results showed that the scaffold containing 3 wt. % of DCDP had the highest tensile strength (15.35 MPa). Furthermore, cells seeded on scaffolds showed over 80% viability after 1, 3, 7 days of incubation. Also, the results showed that the addition of DCDP to the PCL significantly increased the alkaline phosphatase activity. The osteocalcin gene expression in the composite scaffold showed a 6.1-fold increase compared to the pure PCL scaffold. It is concluded that electrospun PCL scaffolds containing DCDP with optimum concentration can be a proper candidate for bone tissue engineering applications.
Collapse
Affiliation(s)
- Yeganeh Nikakhtar
- Department of Stem Cell and Regenerative Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Seyedeh Sara Shafiei
- Department of Stem Cell and Regenerative Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Mehrnoush Fathi-Roudsari
- Department of Stem Cell and Regenerative Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Mitra Asadi-Eydivand
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Faeze ShiraliPour
- Department of Stem Cell and Regenerative Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| |
Collapse
|
342
|
Ansari MAA, Golebiowska AA, Dash M, Kumar P, Jain PK, Nukavarapu SP, Ramakrishna S, Nanda HS. Engineering biomaterials to 3D-print scaffolds for bone regeneration: practical and theoretical consideration. Biomater Sci 2022; 10:2789-2816. [PMID: 35510605 DOI: 10.1039/d2bm00035k] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
There are more than 2 million bone grafting procedures performed annually in the US alone. Despite significant efforts, the repair of large segmental bone defects is a substantial clinical challenge which requires bone substitute materials or a bone graft. The available biomaterials lack the adequate mechanical strength to withstand the static and dynamic loads while maintaining sufficient porosity to facilitate cell in-growth and vascularization during bone tissue regeneration. A wide range of advanced biomaterials are being currently designed to mimic the physical as well as the chemical composition of a bone by forming polymer blends, polymer-ceramic and polymer-degradable metal composites. Transforming these novel biomaterials into porous and load-bearing structures via three-dimensional printing (3DP) has emerged as a popular manufacturing technique to develop engineered bone grafts. 3DP has been adopted as a versatile tool to design and develop bone grafts that satisfy porosity and mechanical requirements while having the ability to form grafts of varied shapes and sizes to meet the physiological requirements. In addition to providing surfaces for cell attachment and eventual bone formation, these bone grafts also have to provide physical support during the repair process. Hence, the mechanical competence of the 3D-printed scaffold plays a key role in the success of the implant. In this review, we present various recent strategies that have been utilized to design and develop robust biomaterials that can be deployed for 3D-printing bone substitutes. The article also reviews some of the practical, theoretical and biological considerations adopted in the 3D-structure design and development for bone tissue engineering.
Collapse
Affiliation(s)
- Mohammad Aftab Alam Ansari
- Biomedical Engineering and Technology Lab, Mechanical engineering discipline, PDPM Indian Institute of Information Technology, Design & Manufacturing Jabalpur, India.
- FFF Laboratory, Mechanical engineering discipline, PDPM Indian Institute of Information Technology, Design & Manufacturing Jabalpur, India.
- International Centre for Sustainable and Net Zero Technologies, PDPM-Indian Institute of Information Technology Design and Manufacturing (IIITDM) Jabalpur, Dumna Airport Road, Jabalpur-482005, MP, India
| | - Aleksandra A Golebiowska
- Biomedical Engineering, Materials Science & Engineering, and Orthopaedic Surgery, University of Connecticut, 260 Glenbrook Road, Unit 3247 Storrs, CT, 06269, USA
| | - Madhusmita Dash
- School of Minerals, Metallurgical and Materials Engineering, Indian Institute of Technology Bhubaneswar, Arugul, Khurdha 752050, Odisha, India
- International Centre for Sustainable and Net Zero Technologies, PDPM-Indian Institute of Information Technology Design and Manufacturing (IIITDM) Jabalpur, Dumna Airport Road, Jabalpur-482005, MP, India
| | - Prasoon Kumar
- Biodesign and Medical device laboratory, Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, 769008, Odisha, India.
| | - Prashant Kumar Jain
- FFF Laboratory, Mechanical engineering discipline, PDPM Indian Institute of Information Technology, Design & Manufacturing Jabalpur, India.
| | - Syam P Nukavarapu
- Biomedical Engineering, Materials Science & Engineering, and Orthopaedic Surgery, University of Connecticut, 260 Glenbrook Road, Unit 3247 Storrs, CT, 06269, USA
| | - Seeram Ramakrishna
- Centre for Nanofibers and Nanotechnology, Department of Mechanical Engineering, National University of Singapore, Engineering Drive 3, Singapore 117587, Singapore
| | - Himansu Sekhar Nanda
- Biomedical Engineering and Technology Lab, Mechanical engineering discipline, PDPM Indian Institute of Information Technology, Design & Manufacturing Jabalpur, India.
- International Centre for Sustainable and Net Zero Technologies, PDPM-Indian Institute of Information Technology Design and Manufacturing (IIITDM) Jabalpur, Dumna Airport Road, Jabalpur-482005, MP, India
| |
Collapse
|
343
|
Kopf S, Åkesson D, Skrifvars M. Textile Fiber Production of Biopolymers – A Review of Spinning Techniques for Polyhydroxyalkanoates in Biomedical Applications. POLYM REV 2022. [DOI: 10.1080/15583724.2022.2076693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Sabrina Kopf
- Swedish Centre for Resource Recovery, Faculty of Textiles, Engineering and Business, University of Borås, Borås, Sweden
| | - Dan Åkesson
- Swedish Centre for Resource Recovery, Faculty of Textiles, Engineering and Business, University of Borås, Borås, Sweden
| | - Mikael Skrifvars
- Swedish Centre for Resource Recovery, Faculty of Textiles, Engineering and Business, University of Borås, Borås, Sweden
| |
Collapse
|
344
|
Bone Mineralization in Electrospun-Based Bone Tissue Engineering. Polymers (Basel) 2022; 14:polym14102123. [PMID: 35632005 PMCID: PMC9146582 DOI: 10.3390/polym14102123] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/15/2022] [Accepted: 05/20/2022] [Indexed: 02/06/2023] Open
Abstract
Increasing the demand for bone substitutes in the management of bone fractures, including osteoporotic fractures, makes bone tissue engineering (BTE) an ideal strategy for solving the constant shortage of bone grafts. Electrospun-based scaffolds have gained popularity in BTE because of their unique features, such as high porosity, a large surface-area-to-volume ratio, and their structural similarity to the native bone extracellular matrix (ECM). To imitate native bone mineralization through which bone minerals are deposited onto the bone matrix, a simple but robust post-treatment using a simulated body fluid (SBF) has been employed, thereby improving the osteogenic potential of these synthetic bone grafts. This study highlights recent electrospinning technologies that are helpful in creating more bone-like scaffolds, and addresses the progress of SBF development. Biomineralized electrospun bone scaffolds are also reviewed, based on the importance of bone mineralization in bone regeneration. This review summarizes the potential of SBF treatments for conferring the biphasic features of native bone ECM architectures onto electrospun-based bone scaffolds.
Collapse
|
345
|
Taghizadehjahed M, Sepahdar A, Rabiee N, Nazbar A, Farzad-Mohajeri S, Dehghan MM, Shokrgozar MA, Majidi M, Mardjanmehr SH, Aminianfar H, Akbari Javar H, Bonakdar S. Comparison of engineered cartilage based on BMSCs and chondrocytes seeded on PVA-PPU scaffold in a sheep model. J Biomed Mater Res B Appl Biomater 2022; 110:2411-2421. [PMID: 35587251 DOI: 10.1002/jbm.b.35087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/26/2022] [Accepted: 04/30/2022] [Indexed: 11/11/2022]
Abstract
In this study, polyvinyl alcohol hydrogel chains were crosslinked by polyurethane in order to synthesize a suitable substrate for cartilage lesions. The substrate was fully characterized, and in vitro and in vivo investigations were conducted based on a sheep model. In vitro tests were performed based on the chondrocyte cells with the Alcian Blue and safranin O staining in order to prove the presence of proteoglycan on the surface of the synthesized substrate, which has been secreted by cultures of chondrocytes. Furthermore, the expression of collagen type I, collagen type II, aggrecan, and Sox9 was presented in the chondrocyte cultures on the synthesized substrate through RT-PCR. In addition, the H&E analysis and other related tests demonstrated the formation of neocartilage tissue in a sheep model. The results were found to be promising for cartilage tissue engineering and verified that the isolated chondrocyte cultures on the synthesized substrate retain their original composition.
Collapse
Affiliation(s)
- Masoud Taghizadehjahed
- Department of Surgery and Radiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Asma Sepahdar
- Department of Pharmaceutical Biomaterials, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Navid Rabiee
- Department of Physics, Sharif University of Technology, Tehran, Iran.,National Cell Bank Department, Pasteur Institute of Iran, Tehran, Iran.,School of Engineering, Macquarie University, Sydney, New South Wales, Australia
| | - Abolfazl Nazbar
- National Cell Bank Department, Pasteur Institute of Iran, Tehran, Iran
| | - Saeed Farzad-Mohajeri
- Department of Surgery and Radiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.,Institute of Biomedical Research, University of Tehran, Tehran, Iran
| | - Mohammad Mehdi Dehghan
- Department of Surgery and Radiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.,Institute of Biomedical Research, University of Tehran, Tehran, Iran
| | | | - Mohammad Majidi
- National Cell Bank Department, Pasteur Institute of Iran, Tehran, Iran.,Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | | | - Hamid Akbari Javar
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Shahin Bonakdar
- National Cell Bank Department, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
346
|
Venkatesan J, Murugan SS, Ad P, Dgv Y, Seong GH. Alginate-based Composites Microspheres: Preparations and Applications for Bone Tissue Engineering. Curr Pharm Des 2022; 28:1067-1081. [PMID: 35593346 DOI: 10.2174/1381612828666220518142911] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 01/19/2022] [Indexed: 11/22/2022]
Abstract
Alginate-based biomaterials have been extensively studied for bone tissue engineering. Scaffolds, microspheres, and hydrogels can be developed using alginate, which is biocompatible, biodegradable, and able to deliver growth factors and drugs. Alginate microspheres can be produced using crosslinking, microfluidic, three-dimensional printing, extrusion, and emulsion methods. The sizes of the alginate microspheres range from 10 µm to 4 mm. This review describes the chemical characterization and mechanical assessment of alginate-based microspheres. Combinations of alginate with hydroxyapatite, chitosan, collagen, polylactic acid, polycaprolactone, and bioglass were discussed for bone tissue repair and regeneration. In addition, alginate combinations with bone morphogenetic proteins, vascular endothelial growth factor, transforming growth factor beta-3, other growth factors, cells, proteins, drugs, and osteoinductive drugs were analyzed for tissue engineering applications. Furthermore, the biocompatibility of developed alginate microspheres was discussed for different cell lines. Finally, alginate microsphere-based composites with stem cell interaction for bone tissue regeneration were presented. In the present review, we have assessed the preclinical research on in vivo models of alginate-based microspheres for bone tissue repair and regeneration. Overall, alginate-based microspheres are potential candidates for graft substitutes and the treatment of various bone-related diseases.
Collapse
Affiliation(s)
- Jayachandran Venkatesan
- Department of Bionano Engineering, Center for Bionano Intelligence Education and Research, Hanyang University, ERICA, Ansan 426-791, South Korea.,Biomaterials Research Laboratory, Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangaluru, 575018, India
| | - Sesha Subramanian Murugan
- Department of Bionano Engineering, Center for Bionano Intelligence Education and Research, Hanyang University, ERICA, Ansan 426-791, South Korea
| | - Pandurang Ad
- Department of Bionano Engineering, Center for Bionano Intelligence Education and Research, Hanyang University, ERICA, Ansan 426-791, South Korea
| | - Yashaswini Dgv
- Department of Bionano Engineering, Center for Bionano Intelligence Education and Research, Hanyang University, ERICA, Ansan 426-791, South Korea
| | - Gi Hun Seong
- Biomaterials Research Laboratory, Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangaluru, 575018, India
| |
Collapse
|
347
|
Siamwala JH, Macias BR, Healey R, Bennett B, Hargens AR. Spaceflight-Associated Vascular Remodeling and Gene Expression in Mouse Calvaria. Front Physiol 2022; 13:893025. [PMID: 35634164 PMCID: PMC9139491 DOI: 10.3389/fphys.2022.893025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 04/26/2022] [Indexed: 11/21/2022] Open
Abstract
Astronauts suffer from a loss of bone mass at a rate of 1.5% per month from lower regions of the body during the course of long-duration (>30 days) spaceflight, a phenomenon that poses important risks for returning crew. Conversely, a gain in bone mass may occur in non-load bearing regions of the body as related to microgravity-induced cephalad fluid shift. Representing non-load bearing regions with mouse calvaria and leveraging the STS-131 (15-day) and BION-M1 (30-day) flights, we examined spatial and temporal calvarial vascular remodeling and gene expression related to microgravity exposure compared between spaceflight (SF) and ground control (GC) cohorts. We examined parasagittal capillary numbers and structures in calvaria from 16 to 23 week-old C57BL/6 female mice (GC, n = 4; SF, n = 5) from STS-131 and 19–20 week-old C57BL/6 male mice (GC, n = 6; SF, n = 6) from BION-M1 using a robust isolectin-IB4 vessel marker. We found that the vessel diameter reduces significantly in mice exposed to 15 days of spaceflight relative to control. Capillarization increases by 30% (SF vs. GC, p = 0.054) in SF mice compared to GC mice. The vessel numbers and diameter remain unchanged in BION-M1 mice calvarial section. We next analyzed the parietal pro-angiogenic (VEGFA) and pro-osteogenic gene (BMP-2, DMP1, RUNX2 and OCN) expression in BION-M1 mice using quantitative RT-PCR. VEGFA gene expression increased 15-fold while BMP-2 gene expression increased 11-fold in flight mice compared to GC. The linkage between vascular morphology and gene expression in the SF conditions suggests that angiogenesis may be important in the regulation of pathological bone growth in non-weight bearing regions of the body. Short-duration microgravity-mediated bone restructuring has implications in planning effective countermeasures for long-duration flights and extraterrestrial human habitation.
Collapse
Affiliation(s)
- Jamila H. Siamwala
- Department of Orthopedic Surgery, University of California, San Diego, San Diego, CA, United States
- Department of Molecular Physiology, Pharmacology and Biotechnology, Brown University, Providence, RI, United States
- Vascular Research Laboratory, Providence Veterans Affairs Medical Center, Providence, RI, United States
- *Correspondence: Jamila H. Siamwala,
| | - Brandon R. Macias
- Department of Orthopedic Surgery, University of California, San Diego, San Diego, CA, United States
- KBRwyle, Houston, TX, United States
| | - Robert Healey
- Department of Orthopedic Surgery, University of California, San Diego, San Diego, CA, United States
| | - Brett Bennett
- Association of Spaceflight Professionals, St. Petersburg, FL, United States
| | - Alan R. Hargens
- Department of Orthopedic Surgery, University of California, San Diego, San Diego, CA, United States
| |
Collapse
|
348
|
Cross-Linking Agents for Electrospinning-Based Bone Tissue Engineering. Int J Mol Sci 2022; 23:ijms23105444. [PMID: 35628254 PMCID: PMC9141772 DOI: 10.3390/ijms23105444] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/09/2022] [Accepted: 05/11/2022] [Indexed: 12/17/2022] Open
Abstract
Electrospun nanofibers are promising bone tissue scaffolds that support bone healing due to the body’s structural similarity to the extracellular matrix (ECM). However, the insufficient mechanical properties often limit their potential in bone tissue regeneration. Cross-linking agents that chemically interconnect as-spun electrospun nanofibers are a simple but effective strategy for improving electrospun nanofibers’ mechanical, biological, and degradation properties. To improve the mechanical characteristic of the nanofibrous bone scaffolds, two of the most common types of cross-linking agents are used to chemically crosslink electrospun nanofibers: synthetic and natural. Glutaraldehyde (GTA) is a typical synthetic agent for electrospun nanofibers, while genipin (GP) is a natural cross-linking agent isolated from gardenia fruit extracts. GP has gradually gained attention since GP has superior biocompatibility to synthetic ones. In recent studies, much more progress has been made in utilizing crosslinking strategies, including citric acid (CA), a natural cross-linking agent. This review summarizes both cross-linking agents commonly used to improve electrospun-based scaffolds in bone tissue engineering, explains recent progress, and attempts to expand the potential of this straightforward method for electrospinning-based bone tissue engineering.
Collapse
|
349
|
Ahn WB, Lee YB, Ji YH, Moon KS, Jang HS, Kang SW. Decellularized Human Adipose Tissue as an Alternative Graft Material for Bone Regeneration. Tissue Eng Regen Med 2022; 19:1089-1098. [PMID: 35551635 PMCID: PMC9478008 DOI: 10.1007/s13770-022-00451-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 03/04/2022] [Accepted: 03/07/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Tissue engineering approaches to treat damaged bone include various tissue transplants such as autologous, allogeneic, and xenografts. Artificial materials have been widely introduced to meet the demand for graft materials, but insufficiency in supply is still not resolved. In this study, human adipose tissue, easily obtained from the human body, was harvested, and the tissue was decellularized to fabricate a decellularized human adipose tissue matrix (DM) as an alternative graft material. METHODS Human adipose tissue was obtained via liposuction. The obtained fresh adipose tissue sample was cut into pieces then put into decellularization solution (1% antibiotic-antimycotic solution and 1% phenylmethanesulphonyl fluoride). Lipids were further removed via treatment in isopropanol. The sample was then subjected to another enzymatic digestion and lipid removal processes. The obtained decellularized adipose tissue matrix was lyophilized to form a graft material in disc shape. RESULTS Decellularization was confirmed by nuclear staining methods and detection of RNA and DNA via PCR. Bone morphogenetic protein 2 (BMP2)-loaded DM showed the ability to form new bone tissue when implanted in subcutaneous tissue. In recovery of a mouse calvarial defect model, BMP2-loaded DM exhibited similar levels of bone tissue regeneration efficiency compared with a well-defined commercial product, BMP2-loaded CollaCote®. CONCLUSION The DM developed in this study is expected to address the problem of insufficient supply of graft materials and contribute to the treatment of bone defects of critical size as an alternative bone graft material with preserved extracellular matrix components.
Collapse
Affiliation(s)
- Woo Beom Ahn
- Department of Medicine, Graduate School of Medicine, Korea University, Seoul, 02841, Republic of Korea
| | - Yu Bin Lee
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea
| | - Yi-Hwa Ji
- Department of Dentistry, Korea University Ansan Hospital, Ansan, 15355, Republic of Korea
| | - Kyoung-Sik Moon
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea
| | - Hyon-Seok Jang
- Department of Dentistry, Korea University Ansan Hospital, Ansan, 15355, Republic of Korea.
| | - Sun-Woong Kang
- Research Group for Biomimetic Advanced Technology, Korea Institute of Toxicology, Daejoen, 34114, Republic of Korea.
- Human and Environmental Toxicology Program, University of Science and Technology, Daejeon, 34114, Republic of Korea.
| |
Collapse
|
350
|
Morphological and Biological Evaluations of Human Periodontal Ligament Fibroblasts in Contact with Different Bovine Bone Grafts Treated with Low-Temperature Deproteinisation Protocol. Int J Mol Sci 2022; 23:ijms23095273. [PMID: 35563664 PMCID: PMC9101062 DOI: 10.3390/ijms23095273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/24/2022] [Accepted: 05/05/2022] [Indexed: 12/04/2022] Open
Abstract
Several types of deproteinised bovine bone mineral (DBBM) are available on the market, and each one is obtained with a thermic and chemical process that can differ, achieving different results. Currently, several protocols using low temperature are suggested to reduce the possible particle crystallisation during the production process. This study aimed to evaluate the biomorphological reaction of periodontal fibroblast cultures in contact with different DBBM particles treated with a low-temperature protocol (Thermagen®) and without exposure to sodium hydroxide (NaOH). Morphological evaluation was performed using light, confocal laser, and scanning electron microscopy, and the biological reaction in terms of proliferation was performed using an XTT proliferation assay at 24 h (T1), 72 h (T2), and 7 days (T3). The morphological analysis highlighted how the presence of the materials stimulated a change in the morphology of the cells into a polygonal shape, surface reactions with the thickening of the membrane, and expression of actin. In particular, the morphological changes were appreciable from T1, with a progressive increase in the considered morphological characteristics at T2 and T3 follow-ups. The proliferation assay showed a statistical significance between the different experimental materials and the negative control in T2 and T3 follow-ups. The post hoc analysis did not reveal any differences between the materials. In conclusion, the grafts obtained with the low-temperature extractions protocol and not exposed to NaOH solution showed positive morphological reactions with no differences in the sizes of particles.
Collapse
|