301
|
Bai Y, Xuan J, Jia S, Ziemann U. TMS of parietal and occipital cortex locked to spontaneous transient large-scale brain states enhances natural oscillations in EEG. Brain Stimul 2023; 16:1588-1597. [PMID: 37827359 DOI: 10.1016/j.brs.2023.10.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 07/07/2023] [Accepted: 10/09/2023] [Indexed: 10/14/2023] Open
Abstract
BACKGROUND Fluctuating neuronal network states influence brain responses to transcranial magnetic stimulation (TMS). Our previous studies revealed that transient spontaneous bihemispheric brain states in the EEG, driven by oscillatory power, information flow and regional domination, modify cortical EEG responses to TMS. However, the impact of ongoing fluctuations of large-scale brain network states on TMS-EEG responses has not been explored. OBJECTIVES To determine the effects of large-scale brain network states on TMS-EEG responses. METHODS Resting-state EEG and structural MRI from 24 healthy subjects were recorded to infer large-scale brain states. TMS-EEG was acquired with TMS at state-related targets, identified by the spatial distribution of state activation power from resting-state EEG. TMS-induced oscillations were measured by event-related spectral perturbations (ERSPs), and classified with respect to the brain states preceding the TMS pulses. State-locked ERSPs with TMS at specific state-related targets and during state activation were compared with state-unlocked ERSPs. RESULTS Intra-individual comparison of ERSPs by threshold free cluster enhancement (TFCE) revealed that posterior and visual state-locked TMS, respectively, increased beta and alpha responses to TMS of parietal and occipital cortex compared to state-unlocked TMS. Also, the peak frequencies of ERSPs were increased with state-locked TMS. In addition, inter-individual correlation analyses revealed that posterior and visual state-locked TMS-induced oscillation power (ERSP clusters identified by TFCE) positively correlated with state-dependent oscillation power preceding TMS. CONCLUSIONS Spontaneous transient large-scale brain network states modify TMS-induced natural oscillations in specific brain regions. This significantly extends our knowledge on the critical importance of instantaneous state on explaining the brain's varying responsiveness to external perturbation.
Collapse
Affiliation(s)
- Yang Bai
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China; Rehabilitation Medicine Clinical Research Center of Jiangxi Province, 330006, Jiangxi, China; Department of Neurology & Stroke, University of Tübingen, Tübingen, Germany; Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.
| | - Jie Xuan
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Shihang Jia
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Ulf Ziemann
- Department of Neurology & Stroke, University of Tübingen, Tübingen, Germany; Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
302
|
Neel ML, Jeanvoine A, Key A, Stark AR, Norton ES, Relland LM, Hay K, Maitre NL. Behavioral and neural measures of infant responsivity increase with maternal multisensory input in non-irritable infants. Brain Behav 2023; 13:e3253. [PMID: 37786238 PMCID: PMC10636412 DOI: 10.1002/brb3.3253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 08/29/2023] [Accepted: 09/06/2023] [Indexed: 10/04/2023] Open
Abstract
INTRODUCTION Parents often use sensory stimulation during early-life interactions with infants. These interactions, including gazing, rocking, or singing, scaffold child development. Previous studies have examined infant neural processing during highly controlled sensory stimulus presentation paradigms. OBJECTIVE In this study, we investigated infant behavioral and neural responsiveness during a mother-child social interaction during which the mother provided infant stimulation with a progressive increase in the number of sensory modalities. METHODS We prospectively collected and analyzed video-coded behavioral interactions and electroencephalogram (EEG) frontal asymmetry (FAS) from infants (n = 60) at 2-4 months born at ≥ 34 weeks gestation. As the number of sensory modalities progressively increased during the interaction, infant behaviors of emotional connection in facial expressiveness, sensitivity to mother, and vocal communication increased significantly. Conversely, infant FAS for the entire cohort did not change significantly. However, when we accounted for infant irritability, both video-coded behaviors and EEG FAS markers of infant responsiveness increased across the interaction in the non-irritable infants. The non-irritable infants (49%) demonstrated positive FAS, indicating readiness to engage with, rather than to withdraw from, multisensory but not unisensory interactions with their mothers. RESULTS These results suggest that multisensory input from mothers is associated with greater infant neural approach state and highlight the importance of infant behavioral state during neural measures of infant responsiveness.
Collapse
Affiliation(s)
- Mary Lauren Neel
- Department of Pediatrics & NeonatologyEmory University School of Medicine & Children's Healthcare of AtlantaAtlanta, GAUSA
| | - Arnaud Jeanvoine
- The Abigail Wexner Research Institute at Nationwide Children's HospitalColumbus, OHUSA
| | | | - Ann R. Stark
- Department of Pediatrics & NeonatologyBeth Israel Deaconess Medical Center & Harvard Medical SchoolBoston, MAUSA
| | | | - Lance M. Relland
- The Abigail Wexner Research Institute at Nationwide Children's HospitalColumbus, OHUSA
- Department of Anesthesiology & Pain MedicineNationwide Children's Hospital & The Ohio State UniversityColumbus, OHUSA
| | - Krystal Hay
- The Abigail Wexner Research Institute at Nationwide Children's HospitalColumbus, OHUSA
| | - Nathalie L. Maitre
- Department of Pediatrics & NeonatologyEmory University School of Medicine & Children's Healthcare of AtlantaAtlanta, GAUSA
| |
Collapse
|
303
|
Huang Y, Deng Y, Kong L, Zhang X, Wei X, Mao T, Xu Y, Jiang C, Rao H. Vigilant attention mediates the association between resting EEG alpha oscillations and word learning ability. Neuroimage 2023; 281:120369. [PMID: 37690592 DOI: 10.1016/j.neuroimage.2023.120369] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 09/05/2023] [Accepted: 09/08/2023] [Indexed: 09/12/2023] Open
Abstract
Individuals exhibit considerable variability in their capacity to learn and retain new information, including novel vocabulary. Prior research has established the importance of vigilance and electroencephalogram (EEG) alpha rhythm in the learning process. However, the interplay between vigilant attention, EEG alpha oscillations, and an individual's word learning ability (WLA) remains elusive. To address this knowledge gap, here we conducted two experiments with a total of 140 young and middle-aged adults who underwent resting EEG recordings prior to completing a paired-associate word learning task and a psychomotor vigilance test (PVT). The results of both experiments consistently revealed significant positive correlations between WLA and resting EEG alpha oscillations in the occipital and frontal regions. Furthermore, the association between resting EEG alpha oscillations and WLA was mediated by vigilant attention, as measured by the PVT. These findings provide compelling evidence supporting the crucial role of vigilant attention in linking EEG alpha oscillations to an individual's learning ability.
Collapse
Affiliation(s)
- Yan Huang
- Center for Magnetic Resonance Imaging Research & Key Laboratory of Brain-Machine Intelligence for Information Behavior (Ministry of Education and Shanghai), School of Business and Management, Shanghai International Studies University, Shanghai, China; School of Foreign Languages, East China University of Science and Technology, Shanghai, China
| | - Yao Deng
- Center for Magnetic Resonance Imaging Research & Key Laboratory of Brain-Machine Intelligence for Information Behavior (Ministry of Education and Shanghai), School of Business and Management, Shanghai International Studies University, Shanghai, China
| | - Lingda Kong
- Institute of Corpus, Shanghai International Studies University, Shanghai, China
| | - Xiumei Zhang
- Center for Magnetic Resonance Imaging Research & Key Laboratory of Brain-Machine Intelligence for Information Behavior (Ministry of Education and Shanghai), School of Business and Management, Shanghai International Studies University, Shanghai, China
| | - Xiaobao Wei
- School of Foreign Languages, East China University of Science and Technology, Shanghai, China
| | - Tianxin Mao
- Center for Magnetic Resonance Imaging Research & Key Laboratory of Brain-Machine Intelligence for Information Behavior (Ministry of Education and Shanghai), School of Business and Management, Shanghai International Studies University, Shanghai, China
| | - Yong Xu
- Center for Magnetic Resonance Imaging Research & Key Laboratory of Brain-Machine Intelligence for Information Behavior (Ministry of Education and Shanghai), School of Business and Management, Shanghai International Studies University, Shanghai, China
| | - Caihong Jiang
- Center for Magnetic Resonance Imaging Research & Key Laboratory of Brain-Machine Intelligence for Information Behavior (Ministry of Education and Shanghai), School of Business and Management, Shanghai International Studies University, Shanghai, China.
| | - Hengyi Rao
- Center for Magnetic Resonance Imaging Research & Key Laboratory of Brain-Machine Intelligence for Information Behavior (Ministry of Education and Shanghai), School of Business and Management, Shanghai International Studies University, Shanghai, China; Center for Functional Neuroimaging, Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
304
|
Wang J, Guo X, Xing Z, Wang G, Wang J, Hu J, Sun J, Li C, Tong S, Hong X. EEG correlates of anticipatory attention and target processing in children and adults during visual spatial attention. Physiol Behav 2023; 271:114341. [PMID: 37660775 DOI: 10.1016/j.physbeh.2023.114341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/28/2023] [Accepted: 08/07/2023] [Indexed: 09/05/2023]
Abstract
The ability of attentional orienting has been suggested to keep developing throughout childhood. Electroencephalography (EEG) studies have shown that 6-10 year old children exhibit lateralized alpha-band (8-13 Hz) activity and event-related potentials (ERPs) that are classic markers of spatial attentional orienting in adults. However, the lack of a direct comparison of these EEG correlates between children and adults in the same experiment made it difficult to evaluate developmental effects on neural activity throughout attentional stages. This study aimed to directly compare cue-related alpha activity and ERPs for the anticipatory attention stage and target-related ERPs for the target processing stage between healthy children and adults. Participants, including 19 children (6-10 years) and 23 adults (18-34 years), successfully completed a visual spatial attention task, although children responded more slowly and less consistently than adults. Both age groups exhibited significant cue-related alpha lateralization and ERPs (EDAN, ADAN, and LDAP) during anticipatory attention and significant attentional modulation of target-related N1 during target processing. However, no significant difference was found in the magnitude of attentional modulation of these EEG correlates between children and adults. These findings suggest that the neural underpinnings of anticipatory attention and target processing during visual spatial attention could have been largely developed in 6-10 year old children.
Collapse
Affiliation(s)
- Jiaqi Wang
- School of Biomedical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Xiaoli Guo
- School of Biomedical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Ziping Xing
- School of Biomedical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Guanghai Wang
- Department of Developmental and Behavioral Pediatrics, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Jingyi Wang
- School of Biomedical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Jingyi Hu
- School of Biomedical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Junfeng Sun
- School of Biomedical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Chunbo Li
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 Wan Ping Nan Road, Shanghai 200030, China; CAS Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Chinese Academy of Science, Shanghai 200030, China; Institute of Psychology and Behavioral Science, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Shanbao Tong
- School of Biomedical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| | - Xiangfei Hong
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 Wan Ping Nan Road, Shanghai 200030, China.
| |
Collapse
|
305
|
Sklenarova B, Chladek J, Macek M, Brazdil M, Chrastina J, Jurkova T, Burilova P, Plesinger F, Zatloukalova E, Dolezalova I. Entropy in scalp EEG can be used as a preimplantation marker for VNS efficacy. Sci Rep 2023; 13:18849. [PMID: 37914788 PMCID: PMC10620210 DOI: 10.1038/s41598-023-46113-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 10/27/2023] [Indexed: 11/03/2023] Open
Abstract
Vagus nerve stimulation (VNS) is a therapeutic option in drug-resistant epilepsy. VNS leads to ≥ 50% seizure reduction in 50 to 60% of patients, termed "responders". The remaining 40 to 50% of patients, "non-responders", exhibit seizure reduction < 50%. Our work aims to differentiate between these two patient groups in preimplantation EEG analysis by employing several Entropy methods. We identified 59 drug-resistant epilepsy patients treated with VNS. We established their response to VNS in terms of responders and non-responders. A preimplantation EEG with eyes open/closed, photic stimulation, and hyperventilation was found for each patient. The EEG was segmented into eight time intervals within four standard frequency bands. In all, 32 EEG segments were obtained. Seven Entropy methods were calculated for all segments. Subsequently, VNS responders and non-responders were compared using individual Entropy methods. VNS responders and non-responders differed significantly in all Entropy methods except Approximate Entropy. Spectral Entropy revealed the highest number of EEG segments differentiating between responders and non-responders. The most useful frequency band distinguishing responders and non-responders was the alpha frequency, and the most helpful time interval was hyperventilation and rest 4 (the end of EEG recording).
Collapse
Affiliation(s)
- B Sklenarova
- Brno Epilepsy Center, First Department of Neurology, Member of ERN-Epicar, St. Anne's University Hospital and Faculty of Medicine, Masaryk University, Pekařská 53, 602 00, Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| | - J Chladek
- Brno Epilepsy Center, First Department of Neurology, Member of ERN-Epicar, St. Anne's University Hospital and Faculty of Medicine, Masaryk University, Pekařská 53, 602 00, Brno, Czech Republic
- Institute of Scientific Instruments, Czech Academy of Sciences, Brno, Czech Republic
- Behavioral and Social Neuroscience Research Group, CEITEC-Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - M Macek
- Institute of Scientific Instruments, Czech Academy of Sciences, Brno, Czech Republic
| | - M Brazdil
- Brno Epilepsy Center, First Department of Neurology, Member of ERN-Epicar, St. Anne's University Hospital and Faculty of Medicine, Masaryk University, Pekařská 53, 602 00, Brno, Czech Republic
- Behavioral and Social Neuroscience Research Group, CEITEC-Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - J Chrastina
- Brno Epilepsy Center, Department of Neurosurgery, St. Anne's University Hospital and Masaryk University, Brno, Czech Republic
| | - T Jurkova
- Institute of Biostatistics and Analyses, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - P Burilova
- Department of Health Sciences, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - F Plesinger
- Institute of Scientific Instruments, Czech Academy of Sciences, Brno, Czech Republic
| | - E Zatloukalova
- Brno Epilepsy Center, First Department of Neurology, Member of ERN-Epicar, St. Anne's University Hospital and Faculty of Medicine, Masaryk University, Pekařská 53, 602 00, Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| | - I Dolezalova
- Brno Epilepsy Center, First Department of Neurology, Member of ERN-Epicar, St. Anne's University Hospital and Faculty of Medicine, Masaryk University, Pekařská 53, 602 00, Brno, Czech Republic.
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic.
| |
Collapse
|
306
|
Lalancette E, Charlebois-Poirier AR, Agbogba K, Knoth IS, Côté V, Perreault S, Lippé S. Time-frequency analyses of repetition suppression and change detection in children with neurofibromatosis type 1. Brain Res 2023; 1818:148512. [PMID: 37499730 DOI: 10.1016/j.brainres.2023.148512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 06/26/2023] [Accepted: 07/24/2023] [Indexed: 07/29/2023]
Abstract
Children with neurofibromatosis type 1 (NF1) are at increased risk of developing cognitive problems, including attention deficits and learning difficulties. Alterations in brain response to repetition and change have been evidenced in other genetic conditions associated with cognitive dysfunctions. Whether the integrity of these fundamental neural responses is compromised in school-aged children with NF1 is still unknown. In this study, we examined the repetition suppression (RS) and change detection responses in children with NF1 (n = 36) and neurotypical controls (n = 41) aged from 4 to 13 years old, using a simple sequence of vowels. We performed time-frequency analyses to compare spectral power and phase synchronization between groups, in the theta, alpha and beta frequency bands. Correlational analyses were performed between the neural responses and the level of intellectual functioning, as well as with behavioral symptoms of comorbid neurodevelopmental disorders measured through parental questionnaires. Children with NF1 showed preserved RS, but increased spectral power in the change detection response. Correlational analyses performed with measures of change detection revealed a negative association between the alpha-band spectral power and symptoms of inattention and hyperactivity. These findings suggest atypical neural response to change in children with NF1. Further studies should be conducted to clarify the interaction with comorbid neurodevelopmental disorders and the possible role of altered inhibitory mechanisms in this enhanced neural response.
Collapse
Affiliation(s)
- Eve Lalancette
- Department of Psychology, University of Montreal, Marie Victorin Building, 90 Vincent-D'Indy Avenue, Montreal, Quebec H2V 2S9, Canada; CHU Sainte-Justine Research Center, 3175 Côte Ste-Catherine, Montreal, Qc. H3T 1C5, Canada.
| | - Audrey-Rose Charlebois-Poirier
- Department of Psychology, University of Montreal, Marie Victorin Building, 90 Vincent-D'Indy Avenue, Montreal, Quebec H2V 2S9, Canada; CHU Sainte-Justine Research Center, 3175 Côte Ste-Catherine, Montreal, Qc. H3T 1C5, Canada.
| | - Kristian Agbogba
- CHU Sainte-Justine Research Center, 3175 Côte Ste-Catherine, Montreal, Qc. H3T 1C5, Canada
| | - Inga Sophia Knoth
- CHU Sainte-Justine Research Center, 3175 Côte Ste-Catherine, Montreal, Qc. H3T 1C5, Canada.
| | - Valérie Côté
- Department of Psychology, University of Montreal, Marie Victorin Building, 90 Vincent-D'Indy Avenue, Montreal, Quebec H2V 2S9, Canada; CHU Sainte-Justine Research Center, 3175 Côte Ste-Catherine, Montreal, Qc. H3T 1C5, Canada
| | - Sébastien Perreault
- Department of Neurosciences, Division of Child Neurology, CHU Sainte-Justine, 3175 Côte Ste-Catherine, Montreal, Qc. H3T 1C5, Canada.
| | - Sarah Lippé
- Department of Psychology, University of Montreal, Marie Victorin Building, 90 Vincent-D'Indy Avenue, Montreal, Quebec H2V 2S9, Canada; CHU Sainte-Justine Research Center, 3175 Côte Ste-Catherine, Montreal, Qc. H3T 1C5, Canada.
| |
Collapse
|
307
|
Liu D, Zhang D, Wang L, Wang J. Semantic segmentation of autonomous driving scenes based on multi-scale adaptive attention mechanism. Front Neurosci 2023; 17:1291674. [PMID: 37928734 PMCID: PMC10620498 DOI: 10.3389/fnins.2023.1291674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 10/06/2023] [Indexed: 11/07/2023] Open
Abstract
Introduction Semantic segmentation is a crucial visual representation learning task for autonomous driving systems, as it enables the perception of surrounding objects and road conditions to ensure safe and efficient navigation. Methods In this paper, we present a novel semantic segmentation approach for autonomous driving scenes using a Multi-Scale Adaptive Mechanism (MSAAM). The proposed method addresses the challenges associated with complex driving environments, including large-scale variations, occlusions, and diverse object appearances. Our MSAAM integrates multiple scale features and adaptively selects the most relevant features for precise segmentation. We introduce a novel attention module that incorporates spatial, channel-wise and scale-wise attention mechanisms to effectively enhance the discriminative power of features. Results The experimental results of the model on key objectives in the Cityscapes dataset are: ClassAvg:81.13, mIoU:71.46. The experimental results on comprehensive evaluation metrics are: AUROC:98.79, AP:68.46, FPR95:5.72. The experimental results in terms of computational cost are: GFLOPs:2117.01, Infer. Time (ms):61.06. All experimental results data are superior to the comparative method model. Discussion The proposed method achieves superior performance compared to state-of-the-art techniques on several benchmark datasets demonstrating its efficacy in addressing the challenges of autonomous driving scene understanding.
Collapse
Affiliation(s)
- Danping Liu
- School of Advanced Manufacturing Engineering, Hefei University, Hefei, China
| | - Dong Zhang
- State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun, China
| | - Lei Wang
- School of Advanced Manufacturing Engineering, Hefei University, Hefei, China
| | - Jun Wang
- School of Advanced Manufacturing Engineering, Hefei University, Hefei, China
| |
Collapse
|
308
|
Tichelman NL, Foerges AL, Elmenhorst EM, Lange D, Hennecke E, Baur DM, Beer S, Kroll T, Neumaier B, Bauer A, Landolt HP, Aeschbach D, Elmenhorst D. A genetic variation in the adenosine A2A receptor gene contributes to variability in oscillatory alpha power in wake and sleep EEG and A 1 adenosine receptor availability in the human brain. Neuroimage 2023; 280:120345. [PMID: 37625500 DOI: 10.1016/j.neuroimage.2023.120345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 07/25/2023] [Accepted: 08/22/2023] [Indexed: 08/27/2023] Open
Abstract
The EEG alpha rhythm (∼ 8-13 Hz) is one of the most salient human brain activity rhythms, modulated by the level of attention and vigilance and related to cerebral energy metabolism. Spectral power in the alpha range in wakefulness and sleep strongly varies among individuals based on genetic predisposition. Knowledge about the underlying genes is scarce, yet small studies indicated that the variant rs5751876 of the gene encoding A2A adenosine receptors (ADORA2A) may contribute to the inter-individual variation. The neuromodulator adenosine is directly linked to energy metabolism as product of adenosine tri-phosphate breakdown and acts as a sleep promoting molecule by activating A1 and A2A adenosine receptors. We performed sleep and positron emission tomography studies in 59 healthy carriers of different rs5751876 alleles, and quantified EEG oscillatory alpha power in wakefulness and sleep, as well as A1 adenosine receptor availability with 18F-CPFPX. Oscillatory alpha power was higher in homozygous C-allele carriers (n = 27, 11 females) compared to heterozygous and homozygous carriers of the T-allele (n(C/T) = 23, n(T/T) = 5, 13 females) (F(18,37) = 2.35, p = 0.014, Wilk's Λ = 0.487). Furthermore, a modulatory effect of ADORA2A genotype on A1 adenosine receptor binding potential was found across all considered brain regions (F(18,40) = 2.62, p = 0.006, Wilk's Λ = 0.459), which remained significant for circumscribed occipital region of calcarine fissures after correction for multiple comparisons. In female participants, a correlation between individual differences in oscillatory alpha power and A1 receptor availability was observed. In conclusion, we confirmed that a genetic variant of ADORA2A affects individual alpha power, while a direct modulatory effect via A1 adenosine receptors in females is suggested.
Collapse
Affiliation(s)
- Naemi L Tichelman
- Forschungszentrum Jülich, Institute of Neuroscience and Medicine (INM-2), Wilhelm-Johnen-Strasse, Jülich, North Rhine-Westphalia 52428, Germany
| | - Anna L Foerges
- Forschungszentrum Jülich, Institute of Neuroscience and Medicine (INM-2), Wilhelm-Johnen-Strasse, Jülich, North Rhine-Westphalia 52428, Germany; RWTH Aachen University, Department of Neurophysiology, Institute of Zoology (Bio-II), Worringerweg 3, Aachen, North Rhine-Westphalia 52074, Germany
| | - Eva-Maria Elmenhorst
- German Aerospace Center, Institute of Aerospace Medicine, Linder Höhe, Cologne, North Rhine-Westphalia 51147, Germany; Institute for Occupational, Social and Environmental Medicine, Medical Faculty, RWTH Aachen University, Aachen, North Rhine-Westphalia 52074, Germany
| | - Denise Lange
- German Aerospace Center, Institute of Aerospace Medicine, Linder Höhe, Cologne, North Rhine-Westphalia 51147, Germany
| | - Eva Hennecke
- German Aerospace Center, Institute of Aerospace Medicine, Linder Höhe, Cologne, North Rhine-Westphalia 51147, Germany
| | - Diego M Baur
- University of Zurich, Institute of Pharmacology & Toxicology, Winterthurerstrasse 190, Zurich 8057, Switzerland and Sleep & Health Zurich, University Center of Competence, University of Zurich, Zurich, Switzerland
| | - Simone Beer
- Forschungszentrum Jülich, Institute of Neuroscience and Medicine (INM-2), Wilhelm-Johnen-Strasse, Jülich, North Rhine-Westphalia 52428, Germany
| | - Tina Kroll
- Forschungszentrum Jülich, Institute of Neuroscience and Medicine (INM-2), Wilhelm-Johnen-Strasse, Jülich, North Rhine-Westphalia 52428, Germany
| | - Bernd Neumaier
- Forschungszentrum Jülich, Institute of Neuroscience and Medicine (INM-5), Wilhelm-Johnen-Strasse, Jülich, North Rhine-Westphalia 52428, Germany
| | - Andreas Bauer
- Forschungszentrum Jülich, Institute of Neuroscience and Medicine (INM-2), Wilhelm-Johnen-Strasse, Jülich, North Rhine-Westphalia 52428, Germany
| | - Hans-Peter Landolt
- University of Zurich, Institute of Pharmacology & Toxicology, Winterthurerstrasse 190, Zurich 8057, Switzerland and Sleep & Health Zurich, University Center of Competence, University of Zurich, Zurich, Switzerland
| | - Daniel Aeschbach
- German Aerospace Center, Institute of Aerospace Medicine, Linder Höhe, Cologne, North Rhine-Westphalia 51147, Germany; Harvard Medical School, Division of Sleep Medicine, Suite BL-438, 221 Longwood Avenue, Boston, Massachusetts 02115, United States of America; Rheinische Friedrich-Wilhelms-Universität Bonn, Institute of Experimental Epileptology and Cognition Research, University of Bonn Medical Center, Sigmund-Freud Str. 25, Bonn, North Rhine-Westphalia 53127, Germany
| | - David Elmenhorst
- Forschungszentrum Jülich, Institute of Neuroscience and Medicine (INM-2), Wilhelm-Johnen-Strasse, Jülich, North Rhine-Westphalia 52428, Germany; Rheinische Friedrich-Wilhelms-Universität Bonn, Division of Medical Psychology, Venusberg-Campus 1, Bonn, North Rhine-Westphalia 53127, Germany; University Hospital Cologne, Multimodal Neuroimaging Group, Department of Nuclear Medicine, Kerpener Strasse 62, Cologne, North Rhine-Westphalia 50937, Germany.
| |
Collapse
|
309
|
Zhang Z, Ma F, Guo T. Proactive and reactive language control in bilingual language production revealed by decoding sustained potentials and electroencephalography oscillations. Hum Brain Mapp 2023; 44:5065-5078. [PMID: 37515386 PMCID: PMC10502638 DOI: 10.1002/hbm.26433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 07/04/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Adopting highly sensitive multivariate electroencephalography (EEG) and alpha-band decoding analyses, the present study investigated proactive and reactive language control during bilingual language production. In a language-switching task, Chinese-English bilinguals were asked to name pictures based on visually presented cues. EEG and alpha-band decoding accuracy associated with switch and non-switch trials were used as indicators for inhibition over the non-target language. Multivariate EEG decoding analyses showed that the decoding accuracy in L1 but not in L2, was above chance level shortly after cue onset. In addition, alpha-band decoding results showed that the decoding accuracy in L1 rose above chance level in an early time window and a late time window locked to the stimulus. Together, these asymmetric patterns of decoding accuracy indicate that both proactive and reactive attentional control over the dominant L1 are exerted during bilingual word production, with a possibility of overlap between two control mechanisms. We addressed theoretical implications based on these findings for bilingual language control models.
Collapse
Affiliation(s)
- Zhaoqi Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain ResearchBeijing Normal UniversityBeijingChina
| | - Fengyang Ma
- School of EducationUniversity of CincinnatiCincinnatiOhioUSA
| | - Taomei Guo
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain ResearchBeijing Normal UniversityBeijingChina
| |
Collapse
|
310
|
Rominger C, Perchtold-Stefan CM, Fink A. The Experience of Meaningful Coincidences Is Associated with Stronger Alpha Power Increases during an Eyes-closed Resting Condition: A Bayesian Replication Approach. J Cogn Neurosci 2023; 35:1681-1692. [PMID: 37432751 DOI: 10.1162/jocn_a_02033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
Recognizing and perceiving meaningful patterns in an ever-changing environment is fundamental to (human) beings. Apophenia, patternicity, and the propensity to perceive meaningful coincidences might result from the human brain working as a prediction machine that constantly matches sensory information to prior expectations. The propensity for Type I errors varies between people and, at its extreme, is associated with symptoms of schizophrenia. However, on a nonclinical level seeing meaning in randomness might be benevolent and was found to be associated with creativity and openness. However, hardly any neuroscientific investigation has examined EEG patterns of the propensity to experience meaningful coincidences in this manner. We hypothesized deviations in brain functions as one potential reason why some people experience more meaning in random arrangements than others. The gating by inhibition theory suggests that alpha power increases represent basic control mechanisms of sensory processes during varying task requirements. We found that people perceiving more meaningful coincidences had higher alpha power during an eyes-closed versus eyes-opened condition compared with people experiencing less meaningful coincidences. This indicates deviations in the sensory inhibition mechanism of the brain, which are critically relevant for higher cognitive functions. Applying Bayesian statistics, we replicated this finding in another independent sample.
Collapse
|
311
|
Qiu N, Zhang B, Allenmark F, Nasemann J, Tsai SY, Müller HJ, Shi Z. Long-term (statistically learnt) and short-term (inter-trial) distractor-location effects arise at different pre- and post-selective processing stages. Psychophysiology 2023; 60:e14351. [PMID: 37277926 DOI: 10.1111/psyp.14351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 04/24/2023] [Accepted: 04/30/2023] [Indexed: 06/07/2023]
Abstract
A salient distractor interferes less with visual search if it appears at a location where it is likely to occur, referred to as distractor-location probability cueing. Conversely, if the current target appears at the same location as a distractor on the preceding trial, search is impeded. While these two location-specific "suppression" effects reflect long-term, statistically learnt and short-term, inter-trial adaptations of the system to distractors, it is unclear at what stage(s) of processing they arise. Here, we adopted the additional-singleton paradigm and examined lateralized event-related potentials (L-ERPs) and lateralized alpha (8-12 Hz) power to track the temporal dynamics of these effects. Behaviorally, we confirmed both effects: reaction times (RTs) interference was reduced for distractors at frequent versus rare (distractor) locations, and RTs were delayed for targets that appeared at previous distractor versus non-distractor locations. Electrophysiologically, the statistical-learning effect was not associated with lateralized alpha power during the pre-stimulus period. Rather, it was seen in an early N1pc referenced to the frequent distractor location (whether or not a distractor or a target occurred there), indicative of a learnt top-down prioritization of this location. This early top-down influence was systematically modulated by (competing) target- and distractor-generated bottom-up saliency signals in the display. In contrast, the inter-trial effect was reflected in an enhanced SPCN when the target was preceded by a distractor at its location. This suggests that establishing that an attentionally selected item is a task-relevant target, rather than an irrelevant distractor, is more demanding at a previously "rejected" distractor location.
Collapse
Affiliation(s)
- Nan Qiu
- General and Experimental Psychology, Department of Psychology, Ludwig Maximilian University of Munich, Munich, Germany
| | - Bei Zhang
- General and Experimental Psychology, Department of Psychology, Ludwig Maximilian University of Munich, Munich, Germany
| | - Fredrik Allenmark
- General and Experimental Psychology, Department of Psychology, Ludwig Maximilian University of Munich, Munich, Germany
| | - Jan Nasemann
- General and Experimental Psychology, Department of Psychology, Ludwig Maximilian University of Munich, Munich, Germany
| | - Shao-Yang Tsai
- General and Experimental Psychology, Department of Psychology, Ludwig Maximilian University of Munich, Munich, Germany
| | - Hermann J Müller
- General and Experimental Psychology, Department of Psychology, Ludwig Maximilian University of Munich, Munich, Germany
| | - Zhuanghua Shi
- General and Experimental Psychology, Department of Psychology, Ludwig Maximilian University of Munich, Munich, Germany
| |
Collapse
|
312
|
Li S, Cheng S, Shangguan C, Su X, Li X. Forgive or complain: Interpersonal distance modulates reactive attitudes and neural responses toward wrongdoers. Biol Psychol 2023; 183:108653. [PMID: 37536652 DOI: 10.1016/j.biopsycho.2023.108653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/23/2023] [Accepted: 07/31/2023] [Indexed: 08/05/2023]
Abstract
While the effect of interpersonal distance on forgiveness has been investigated over the past few years, it remains unclear whether this facilitating effect holds even when measured implicitly. Meanwhile, though cognitive control and the corresponding prefrontal cortex play a prominent role in forgiveness processing, the neural mechanism underlying forgiveness toward varied wrongdoers is largely unexplored. Here, forty-two participants initially underwent noise offense either from their friend or stranger, followed by a word identification test to examine their implicit attitude, during which they were presented with word-name combinations and required to categorize forgive- or complain-label words while ignoring the names of their friends or strangers below. A shorter reaction time reflects more congruence with one's implicit attitude. Electroencephalogram was recorded during the word identification test. Behaviorally, while individuals reacted faster to forgive-friend relative to complain-friend pairings, no such reaction bias was found for the stranger-wrongdoer, which suggests that individuals were more inclined to forgive someone close. Regarding the EEG/ERP results, forgive-friend elicited lower alpha oscillation and more negative frontal alpha asymmetry (FAA) value than complain-friend combinations, suggesting increased and dominant activity in the right prefrontal network during forgiveness toward friends. Whereas complain- relative to forgive-stranger combinations elicited larger P3 amplitudes, suggesting a neural encoding bias to information associated with complaints about stranger-wrongdoer. These multimodal findings provide evidence for the benefits of closeness in forgiveness and shed light on the neural mechanisms underlying forgiveness toward different types of wrongdoers.
Collapse
Affiliation(s)
- Sijin Li
- School of Psychology, Shenzhen University, Shenzhen 518060, China
| | - Si Cheng
- School of Psychology, Shenzhen University, Shenzhen 518060, China
| | - Chenyu Shangguan
- College of Education Science and Technology, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Xianling Su
- College of Education, Shanghai Normal University, Shanghai 200234, China
| | - Xu Li
- College of Education, Shanghai Normal University, Shanghai 200234, China.
| |
Collapse
|
313
|
Weise A, Hartmann T, Parmentier F, Weisz N, Ruhnau P. Involuntary shifts of spatial attention contribute to distraction-Evidence from oscillatory alpha power and reaction time data. Psychophysiology 2023; 60:e14353. [PMID: 37246813 DOI: 10.1111/psyp.14353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 02/18/2023] [Accepted: 05/06/2023] [Indexed: 05/30/2023]
Abstract
Imagine you are focusing on the traffic on a busy street to ride your bike safely when suddenly you hear the siren of an ambulance. This unexpected sound involuntarily captures your attention and interferes with ongoing performance. We tested whether this type of distraction involves a spatial shift of attention. We measured behavioral data and magnetoencephalographic alpha power during a cross-modal paradigm that combined an exogenous cueing task and a distraction task. In each trial, a task-irrelevant sound preceded a visual target (left or right). The sound was usually the same animal sound (i.e., standard sound). Rarely, it was replaced by an unexpected environmental sound (i.e., deviant sound). Fifty percent of the deviants occurred on the same side as the target, and 50% occurred on the opposite side. Participants responded to the location of the target. As expected, responses were slower to targets that followed a deviant compared to a standard. Crucially, this distraction effect was mitigated by the spatial relationship between the targets and the deviants: responses were faster when targets followed deviants on the same versus different side, indexing a spatial shift of attention. This was further corroborated by a posterior alpha power modulation that was higher in the hemisphere ipsilateral (vs. contralateral) to the location of the attention-capturing deviant. We suggest that this alpha power lateralization reflects a spatial attention bias. Overall, our data support the contention that spatial shifts of attention contribute to deviant distraction.
Collapse
Affiliation(s)
- Annekathrin Weise
- CCNS and Division of Physiological Psychology, Paris Lodron University of Salzburg, Salzburg, Austria
- Department of Psychology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Thomas Hartmann
- CCNS and Division of Physiological Psychology, Paris Lodron University of Salzburg, Salzburg, Austria
| | - Fabrice Parmentier
- Neuropsychology & Cognition Group, Department of Psychology and Institute of Health Sciences (iUNICS), University of the Balearic Islands, Palma, Spain
- Balearic Islands Health Research Institute (IdISBa), Palma, Spain
- Department of Psychology, University of Western Australia, Perth, Western Australia, Australia
| | - Nathan Weisz
- CCNS and Division of Physiological Psychology, Paris Lodron University of Salzburg, Salzburg, Austria
- Neuroscience Institute, Christian Doppler University Hospital, Paracelsus Medical University, Salzburg, Austria
| | - Philipp Ruhnau
- School of Psychology, University of Central Lancashire, Preston, UK
| |
Collapse
|
314
|
Pomper U, Curetti LZ, Chait M. Neural dynamics underlying successful auditory short-term memory performance. Eur J Neurosci 2023; 58:3859-3878. [PMID: 37691137 PMCID: PMC10946728 DOI: 10.1111/ejn.16140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/18/2023] [Accepted: 08/19/2023] [Indexed: 09/12/2023]
Abstract
Listeners often operate in complex acoustic environments, consisting of many concurrent sounds. Accurately encoding and maintaining such auditory objects in short-term memory is crucial for communication and scene analysis. Yet, the neural underpinnings of successful auditory short-term memory (ASTM) performance are currently not well understood. To elucidate this issue, we presented a novel, challenging auditory delayed match-to-sample task while recording MEG. Human participants listened to 'scenes' comprising three concurrent tone pip streams. The task was to indicate, after a delay, whether a probe stream was present in the just-heard scene. We present three key findings: First, behavioural performance revealed faster responses in correct versus incorrect trials as well as in 'probe present' versus 'probe absent' trials, consistent with ASTM search. Second, successful compared with unsuccessful ASTM performance was associated with a significant enhancement of event-related fields and oscillatory activity in the theta, alpha and beta frequency ranges. This extends previous findings of an overall increase of persistent activity during short-term memory performance. Third, using distributed source modelling, we found these effects to be confined mostly to sensory areas during encoding, presumably related to ASTM contents per se. Parietal and frontal sources then became relevant during the maintenance stage, indicating that effective STM operation also relies on ongoing inhibitory processes suppressing task-irrelevant information. In summary, our results deliver a detailed account of the neural patterns that differentiate successful from unsuccessful ASTM performance in the context of a complex, multi-object auditory scene.
Collapse
Affiliation(s)
- Ulrich Pomper
- Ear InstituteUniversity College LondonLondonUK
- Faculty of PsychologyUniversity of ViennaViennaAustria
| | | | - Maria Chait
- Ear InstituteUniversity College LondonLondonUK
| |
Collapse
|
315
|
Lewis AG, Schoffelen JM, Bastiaansen M, Schriefers H. Is beta in agreement with the relatives? Using relative clause sentences to investigate MEG beta power dynamics during sentence comprehension. Psychophysiology 2023; 60:e14332. [PMID: 37203219 DOI: 10.1111/psyp.14332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 03/20/2023] [Accepted: 04/27/2023] [Indexed: 05/20/2023]
Abstract
There remains some debate about whether beta power effects observed during sentence comprehension reflect ongoing syntactic unification operations (beta-syntax hypothesis), or instead reflect maintenance or updating of the sentence-level representation (beta-maintenance hypothesis). In this study, we used magnetoencephalography to investigate beta power neural dynamics while participants read relative clause sentences that were initially ambiguous between a subject- or an object-relative reading. An additional condition included a grammatical violation at the disambiguation point in the relative clause sentences. The beta-maintenance hypothesis predicts a decrease in beta power at the disambiguation point for unexpected (and less preferred) object-relative clause sentences and grammatical violations, as both signal a need to update the sentence-level representation. While the beta-syntax hypothesis also predicts a beta power decrease for grammatical violations due to a disruption of syntactic unification operations, it instead predicts an increase in beta power for the object-relative clause condition because syntactic unification at the point of disambiguation becomes more demanding. We observed decreased beta power for both the agreement violation and object-relative clause conditions in typical left hemisphere language regions, which provides compelling support for the beta-maintenance hypothesis. Mid-frontal theta power effects were also present for grammatical violations and object-relative clause sentences, suggesting that violations and unexpected sentence interpretations are registered as conflicts by the brain's domain-general error detection system.
Collapse
Affiliation(s)
- Ashley Glen Lewis
- Neurobiology of Language Department, Max Planck Institute for Psycholinguistics, Nijmegen, the Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| | - Jan-Mathijs Schoffelen
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| | - Marcel Bastiaansen
- Academy for Leisure and Events, Breda University of Applied Sciences, Breda, the Netherlands
- Department of Cognitive Neuropsychology, School of Social and Behavioural Sciences, Tilburg University, Tilburg, the Netherlands
| | - Herbert Schriefers
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| |
Collapse
|
316
|
Griffiths BJ, Jensen O. Gamma oscillations and episodic memory. Trends Neurosci 2023; 46:832-846. [PMID: 37550159 DOI: 10.1016/j.tins.2023.07.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 06/20/2023] [Accepted: 07/16/2023] [Indexed: 08/09/2023]
Abstract
Enhanced gamma oscillatory activity (30-80 Hz) accompanies the successful formation and retrieval of episodic memories. While this co-occurrence is well documented, the mechanistic contributions of gamma oscillatory activity to episodic memory remain unclear. Here, we review how gamma oscillatory activity may facilitate spike timing-dependent plasticity, neural communication, and sequence encoding/retrieval, thereby ensuring the successful formation and/or retrieval of an episodic memory. Based on the evidence reviewed, we propose that multiple, distinct forms of gamma oscillation can be found within the canonical gamma band, each of which has a complementary role in the neural processes listed above. Further exploration of these theories using causal manipulations may be key to elucidating the relevance of gamma oscillatory activity to episodic memory.
Collapse
Affiliation(s)
| | - Ole Jensen
- Centre for Human Brain Health, University of Birmingham, Birmingham, UK
| |
Collapse
|
317
|
Wang H, Zheng H, Yang Y, Fong KNK, Long J. Cortical Contributions to Imagined Power Grip Task: An EEG-Triggered TMS Study. IEEE Trans Neural Syst Rehabil Eng 2023; 31:3813-3822. [PMID: 37729574 DOI: 10.1109/tnsre.2023.3317813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Previous studies have demonstrated that motor imagery leads to desynchronization in the alpha rhythm within the contralateral primary motor cortex. However, the underlying electrophysiological mechanisms responsible for this desynchronization during motor imagery remain unclear. To examine this question, we conducted an investigation using EEG in combination with noninvasive transcranial magnetic stimulation (TMS) during index finger abduction (ABD) and power grip imaginations. The TMS was administered employing diverse coil orientations to selectively stimulate corticospinal axons, aiming to target both early and late synaptic inputs to corticospinal neurons. TMS was triggered based on the alpha power levels, categorized in 20th percentile bins, derived from the individual alpha power distribution during the imagined tasks of ABD and power grip. Our analysis revealed negative correlations between alpha power and motor evoked potential (MEP) amplitude, as well as positive correlations with MEP latency across all coil orientations for each imagined task. Furthermore, we conducted functional network analysis in the alpha band to explore network connectivity during imagined index finger abduction and power grip tasks. Our findings indicate that network connections were denser in the fronto-parietal area during imagined ABD compared to power grip conditions. Moreover, the functional network properties demonstrated potential for effectively classifying between these two imagined tasks. These results provide functional evidence supporting the hypothesis that alpha oscillations may play a role in suppressing MEP amplitude and latency during imagined power grip. We propose that imagined ABD and power grip tasks may activate different populations and densities of axons at the cortical level.
Collapse
|
318
|
Tosoni A, Capotosto P, Baldassarre A, Spadone S, Sestieri C. Neuroimaging evidence supporting a dual-network architecture for the control of visuospatial attention in the human brain: a mini review. Front Hum Neurosci 2023; 17:1250096. [PMID: 37841074 PMCID: PMC10571720 DOI: 10.3389/fnhum.2023.1250096] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/14/2023] [Indexed: 10/17/2023] Open
Abstract
Neuroimaging studies conducted in the last three decades have distinguished two frontoparietal networks responsible for the control of visuospatial attention. The present review summarizes recent findings on the neurophysiological mechanisms implemented in both networks and describes the evolution from a model centered on the distinction between top-down and bottom-up attention to a model that emphasizes the dynamic interplay between the two networks based on attentional demands. The role of the dorsal attention network (DAN) in attentional orienting, by boosting behavioral performance, has been investigated with multiple experimental approaches. This research effort allowed us to trace a distinction between DAN regions involved in shifting vs. maintenance of attention, gather evidence for the modulatory influence exerted by the DAN over sensory cortices, and identify the electrophysiological correlates of the orienting function. Simultaneously, other studies have contributed to reframing our understanding of the functions of the ventral attention network (VAN) and its relevance for behavior. The VAN is not simply involved in bottom-up attentional capture but interacts with the DAN during reorienting to behaviorally relevant targets, exhibiting a general resetting function. Further studies have confirmed the selective rightward asymmetry of the VAN, proposed a functional dissociation along the anteroposterior axis, and suggested hypotheses about its emergence during the evolution of the primate brain. Finally, novel models of network interactions explain the expression of complex attentional functions and the emergence and restorations of symptoms characterizing unilateral spatial neglect. These latter studies emphasize the importance of considering patterns of network interactions for understanding the consequences of brain lesions.
Collapse
Affiliation(s)
- Annalisa Tosoni
- Department of Neuroscience, Imaging and Clinical Sciences (DNISC) and ITAB, Institute for Advanced Biomedical Technologies, G. d’Annunzio University of Chieti-Pescara, Chieti, Italy
| | | | | | | | | |
Collapse
|
319
|
Güntekin B, Alptekin S, Yıldırım E, Aktürk T, Uzunlar H, Çalışoğlu P, Ada FE, Atay E, Ceran Ö. Immature event-related alpha dynamics in children compared with the young adults during inhibition shown by day-night stroop task. Front Hum Neurosci 2023; 17:1218559. [PMID: 37822709 PMCID: PMC10562703 DOI: 10.3389/fnhum.2023.1218559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 09/12/2023] [Indexed: 10/13/2023] Open
Abstract
Introduction Inhibitory control develops gradually from infancy to childhood and improves further during adolescence as the brain matures. Related previous studies showed the indispensable role of task-related alpha power during inhibition both in children and young adults. Nonetheless, none of the studies have been able to investigate the direct differences in brain responses between children and young adults when confronted with a stimulus that should be inhibited. Because, unlike event-related designs, task-related designs involve continuous tasks over a certain period, which precludes the possibility of making such a comparison. Accordingly, by employing event-related design, the present study first time in the literature, aimed to analyze the event-related alpha phase locking and event-related alpha synchronization/ desynchronization to differentiate the inhibitory processes in children compared to young adults. Methods Twenty children between the ages of 6 to 7 years and 20 healthy young adult subjects between the ages of 18 to 30 years were included in the study. Day-night Stroop task was applied to all subjects during 18-channel EEG recordings. Event-related time-frequency analysis was performed with the complex Morlet Wavelet Transform for the alpha frequency band (8-13 Hz). Event related spectral perturbation (ERSP) in three different time windows (0-200 ms, 200-400 ms, 400-600 ms) and Event-related phase locking in the early time window (0-400 ms) was calculated. Results The children had increased alpha power in early and late time windows but decreased alpha phase locking in the early time windows compared to young adults. There were also topological differences between groups; while young adults had increased alpha phase-locking in frontal and parietal electrode sites, children had increased occipital alpha power and phase locking. Discussion The shift in event-related alpha power observed from posterior to anterior regions with age may suggest a progressive maturation of the frontal areas involved in inhibitory processes from childhood to adulthood. The results of the present study showed that children and young adults had different EEG oscillatory dynamics during inhibitory processes at alpha frequency range.
Collapse
Affiliation(s)
- Bahar Güntekin
- Department of Biophysics, School of Medicine, Istanbul Medipol University, Istanbul, Türkiye
- Research Institute for Health Sciences and Technologies (SABITA), Neuroscience Research Center, Clinical Electrophysiology, Neuroimaging and Neuromodulation Lab, Istanbul Medipol University, Istanbul, Türkiye
| | - Simay Alptekin
- Research Institute for Health Sciences and Technologies (SABITA), Neuroscience Research Center, Clinical Electrophysiology, Neuroimaging and Neuromodulation Lab, Istanbul Medipol University, Istanbul, Türkiye
- Department of Neuroscience, Graduate School of Health Sciences, Istanbul Medipol University, Istanbul, Türkiye
| | - Ebru Yıldırım
- Research Institute for Health Sciences and Technologies (SABITA), Neuroscience Research Center, Clinical Electrophysiology, Neuroimaging and Neuromodulation Lab, Istanbul Medipol University, Istanbul, Türkiye
- Program of Electroneurophysiology, Vocational School, Istanbul Medipol University, Istanbul, Türkiye
| | - Tuba Aktürk
- Research Institute for Health Sciences and Technologies (SABITA), Neuroscience Research Center, Clinical Electrophysiology, Neuroimaging and Neuromodulation Lab, Istanbul Medipol University, Istanbul, Türkiye
- Program of Electroneurophysiology, Vocational School, Istanbul Medipol University, Istanbul, Türkiye
| | - Hakan Uzunlar
- Department of Neuroscience, Graduate School of Health Sciences, Istanbul Medipol University, Istanbul, Türkiye
| | - Pervin Çalışoğlu
- Department of Neuroscience, Graduate School of Health Sciences, Istanbul Medipol University, Istanbul, Türkiye
| | - Figen Eroğlu Ada
- Department of Psychology, Humanities and Social Sciences, Istanbul Medipol University, Istanbul, Türkiye
| | - Enver Atay
- Department of Pediatrics, School of Medicine, Istanbul Medipol University, Istanbul, Türkiye
| | - Ömer Ceran
- Department of Pediatrics, School of Medicine, Istanbul Medipol University, Istanbul, Türkiye
| |
Collapse
|
320
|
Perellón-Alfonso R, Oblak A, Kuclar M, Škrlj B, Pileckyte I, Škodlar B, Pregelj P, Abellaneda-Pérez K, Bartrés-Faz D, Repovš G, Bon J. Dense attention network identifies EEG abnormalities during working memory performance of patients with schizophrenia. Front Psychiatry 2023; 14:1205119. [PMID: 37817830 PMCID: PMC10560761 DOI: 10.3389/fpsyt.2023.1205119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 09/04/2023] [Indexed: 10/12/2023] Open
Abstract
Introduction Patients with schizophrenia typically exhibit deficits in working memory (WM) associated with abnormalities in brain activity. Alterations in the encoding, maintenance and retrieval phases of sequential WM tasks are well established. However, due to the heterogeneity of symptoms and complexity of its neurophysiological underpinnings, differential diagnosis remains a challenge. We conducted an electroencephalographic (EEG) study during a visual WM task in fifteen schizophrenia patients and fifteen healthy controls. We hypothesized that EEG abnormalities during the task could be identified, and patients successfully classified by an interpretable machine learning algorithm. Methods We tested a custom dense attention network (DAN) machine learning model to discriminate patients from control subjects and compared its performance with simpler and more commonly used machine learning models. Additionally, we analyzed behavioral performance, event-related EEG potentials, and time-frequency representations of the evoked responses to further characterize abnormalities in patients during WM. Results The DAN model was significantly accurate in discriminating patients from healthy controls, ACC = 0.69, SD = 0.05. There were no significant differences between groups, conditions, or their interaction in behavioral performance or event-related potentials. However, patients showed significantly lower alpha suppression in the task preparation, memory encoding, maintenance, and retrieval phases F(1,28) = 5.93, p = 0.022, η2 = 0.149. Further analysis revealed that the two highest peaks in the attention value vector of the DAN model overlapped in time with the preparation and memory retrieval phases, as well as with two of the four significant time-frequency ROIs. Discussion These results highlight the potential utility of interpretable machine learning algorithms as an aid in diagnosis of schizophrenia and other psychiatric disorders presenting oscillatory abnormalities.
Collapse
Affiliation(s)
- Ruben Perellón-Alfonso
- Faculty of Medicine and Health Sciences, and Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Aleš Oblak
- University Psychiatric Clinic Ljubljana, Ljubljana, Slovenia
| | - Matija Kuclar
- Department of Psychiatry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Blaž Škrlj
- Jožef Stefan Institute, Ljubljana, Slovenia
| | - Indre Pileckyte
- Center for Brain and Cognition, Pompeu Fabra University, Barcelona, Spain
| | - Borut Škodlar
- University Psychiatric Clinic Ljubljana, Ljubljana, Slovenia
- Department of Psychiatry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Peter Pregelj
- University Psychiatric Clinic Ljubljana, Ljubljana, Slovenia
- Department of Psychiatry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Kilian Abellaneda-Pérez
- Faculty of Medicine and Health Sciences, and Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Institut Guttmann, Institut Universitari de Neurorehabilitació Adscrit a la UAB, Barcelona, Spain
| | - David Bartrés-Faz
- Faculty of Medicine and Health Sciences, and Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Grega Repovš
- Department of Psychology, Faculty of Arts, University of Ljubljana, Ljubljana, Slovenia
| | - Jurij Bon
- University Psychiatric Clinic Ljubljana, Ljubljana, Slovenia
- Department of Psychiatry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
321
|
Arutiunian V, Arcara G, Buyanova I, Buivolova O, Davydova E, Pereverzeva D, Sorokin A, Tyushkevich S, Mamokhina U, Danilina K, Dragoy O. Event-Related Desynchronization of MEG Alpha-Band Oscillations during Simultaneous Presentation of Audio and Visual Stimuli in Children with Autism Spectrum Disorder. Brain Sci 2023; 13:1313. [PMID: 37759914 PMCID: PMC10526124 DOI: 10.3390/brainsci13091313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 09/07/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Alpha-band (8-12 Hz) event-related desynchronization (ERD) or a decrease in alpha power in electro- and magnetoencephalography (EEG and MEG) reflects the involvement of a neural tissue in information processing. It is known that most children with autism spectrum disorder (ASD) have difficulties in information processing, and, thus, investigation of alpha oscillations is of particular interest in this population. Previous studies have demonstrated alterations in this neural activity in individuals with ASD; however, little is known about alpha ERD during simultaneous presentation of auditory and visual stimuli in children with and without ASD. As alpha oscillations are intimately related to attention, and attention deficit is one of the common co-occurring conditions of ASD, we predict that children with ASD can have altered alpha ERD in one of the sensory domains. In the present study, we used MEG to investigate alpha ERD in groups of 20 children with ASD and 20 age-matched typically developing controls. Simple amplitude-modulated tones were presented together with a fixation cross appearing on the screen. The results showed that children with ASD had a bilateral reduction in alpha-band ERD in the auditory but not visual cortex. Moreover, alterations in the auditory cortex were associated with a higher presence of autistic traits measured in behavioral assessment.
Collapse
Affiliation(s)
- Vardan Arutiunian
- Center for Child Health, Behavior and Development, Seattle Children’s Research Institute, 1920 Terry Ave., Seattle, WA 98101, USA
| | - Giorgio Arcara
- IRCCS San Camillo Hospital, 70 Via Alberoni, Lido, 30126 Venice, Italy;
| | - Irina Buyanova
- Center for Language and Brain, HSE University, 3 Krivokolenny Pereulok, 101000 Moscow, Russia; (I.B.); (O.B.); (O.D.)
| | - Olga Buivolova
- Center for Language and Brain, HSE University, 3 Krivokolenny Pereulok, 101000 Moscow, Russia; (I.B.); (O.B.); (O.D.)
| | - Elizaveta Davydova
- Federal Resource Center for ASD, Moscow State University of Psychology and Education, 19 Architectora Vlasova Str., 117335 Moscow, Russia; (E.D.); (D.P.); (A.S.); (S.T.); (U.M.); (K.D.)
- Chair of Differential Psychology and Psychophysiology, Moscow State University of Psychology and Education, 2A Shelepikhinaskaya Naberezhnaya, 123290 Moscow, Russia
| | - Darya Pereverzeva
- Federal Resource Center for ASD, Moscow State University of Psychology and Education, 19 Architectora Vlasova Str., 117335 Moscow, Russia; (E.D.); (D.P.); (A.S.); (S.T.); (U.M.); (K.D.)
| | - Alexander Sorokin
- Federal Resource Center for ASD, Moscow State University of Psychology and Education, 19 Architectora Vlasova Str., 117335 Moscow, Russia; (E.D.); (D.P.); (A.S.); (S.T.); (U.M.); (K.D.)
- Haskins Laboratories, 300 George St., New Haven, CT 06511, USA
| | - Svetlana Tyushkevich
- Federal Resource Center for ASD, Moscow State University of Psychology and Education, 19 Architectora Vlasova Str., 117335 Moscow, Russia; (E.D.); (D.P.); (A.S.); (S.T.); (U.M.); (K.D.)
| | - Uliana Mamokhina
- Federal Resource Center for ASD, Moscow State University of Psychology and Education, 19 Architectora Vlasova Str., 117335 Moscow, Russia; (E.D.); (D.P.); (A.S.); (S.T.); (U.M.); (K.D.)
| | - Kamilla Danilina
- Federal Resource Center for ASD, Moscow State University of Psychology and Education, 19 Architectora Vlasova Str., 117335 Moscow, Russia; (E.D.); (D.P.); (A.S.); (S.T.); (U.M.); (K.D.)
- Scientific Research and Practical Center of Pediatric Psychoneurology, 74 Michurinskiy Prospekt, 119602 Moscow, Russia
| | - Olga Dragoy
- Center for Language and Brain, HSE University, 3 Krivokolenny Pereulok, 101000 Moscow, Russia; (I.B.); (O.B.); (O.D.)
- Institute of Linguistics, Russian Academy of Sciences, 1/1 Bolshoy Kislovsky Ln, 125009 Moscow, Russia
| |
Collapse
|
322
|
Jensen M, Hyder R, Westner BU, Højlund A, Shtyrov Y. Speech comprehension across time, space, frequency, and age: MEG-MVPA classification of intertrial phase coherence. Neuropsychologia 2023; 188:108602. [PMID: 37270028 DOI: 10.1016/j.neuropsychologia.2023.108602] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 04/24/2023] [Accepted: 05/31/2023] [Indexed: 06/05/2023]
Abstract
Language is a key part of human cognition, essential for our well-being at all stages of our lives. Whereas many neurocognitive abilities decline with age, for language the picture is much less clear, and how exactly speech comprehension changes with ageing is still unknown. To investigate this, we employed magnetoencephalography (MEG) and recorded neuromagnetic brain responses to auditory linguistic stimuli in healthy participants of younger and older age using a passive task-free paradigm and a range of different linguistic stimulus contrasts, which enabled us to assess neural processing of spoken language at multiple levels (lexical, semantic, morphosyntactic). Using machine learning-based classification algorithms to scrutinise intertrial phase coherence of MEG responses in cortical source space, we found that patterns of oscillatory neural activity diverged between younger and older participants across several frequency bands (alpha, beta, gamma) for all tested linguistic information types. The results suggest multiple age-related changes in the brain's neurolinguistic circuits, which may be due to both healthy ageing in general and compensatory processes in particular.
Collapse
Affiliation(s)
- Mads Jensen
- Center of Functionally Integrative Neuroscience (CFIN), Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Research Unit for Robophilosophy and Integrative Social Robotics, School of Culture and Society, Aarhus University, Aarhus, Denmark; Interacting Minds Centre, School of Culture and Society, Aarhus University, Aarhus, Denmark.
| | - Rasha Hyder
- Center of Functionally Integrative Neuroscience (CFIN), Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, United Kingdom
| | - Britta U Westner
- Radboud University, Donders Centre for Cognition, Nijmegen, the Netherlands
| | - Andreas Højlund
- Center of Functionally Integrative Neuroscience (CFIN), Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Linguistics, Cognitive Science and Semiotics, School of Communication and Culture, Aarhus University, Aarhus, Denmark
| | - Yury Shtyrov
- Center of Functionally Integrative Neuroscience (CFIN), Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
323
|
Tarasi L, Martelli ME, Bortoletto M, di Pellegrino G, Romei V. Neural Signatures of Predictive Strategies Track Individuals Along the Autism-Schizophrenia Continuum. Schizophr Bull 2023; 49:1294-1304. [PMID: 37449308 PMCID: PMC10483460 DOI: 10.1093/schbul/sbad105] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
BACKGROUND AND HYPOTHESIS Humans develop a constellation of different representations of the external environment, even in the face of the same sensory exposure. According to the Bayesian framework, these differentiations could be grounded in a different weight assigned to prior knowledge vs. new external inputs in predictive inference. Since recent advances in computational psychiatry suggest that autism (ASD) and schizophrenia (SSD) lie on the two diametric poles of the same predictive continuum, the adoption of a specific inferential style could be routed by dispositional factors related to autistic and schizotypal traits. However, no studies have directly investigated the role of ASD-SSD dimension in shaping the neuro-behavioral markers underlying perceptual inference. STUDY DESIGN We used a probabilistic detection task while simultaneously recording EEG to investigate whether neurobehavioral signatures related to prior processing were diametrically shaped by ASD and SSD traits in the general population (n = 80). RESULTS We found that the position along the ASD-SSD continuum directed the predictive strategies adopted by the individuals in decision-making. While proximity to the positive schizotypy pole was associated with the adoption of the predictive approach associated to the hyper-weighting of prior knowledge, proximity to ASD pole was related to strategies that favored sensory evidence in decision-making. CONCLUSIONS These findings revealed that the weight assigned to prior knowledge is a marker of the ASD-SSD continuum, potentially useful for identifying individuals at-risk of developing mental disorders and for understanding the mechanisms contributing to the onset of symptoms observed in ASD and SSD clinical forms.
Collapse
Affiliation(s)
- Luca Tarasi
- Dipartimento di Psicologia, Alma Mater Studiorum – Università di Bologna, Centro Studi e Ricerche in Neuroscienze Cognitive, Campus di Cesena, via Rasi e Spinelli, 176, 47521 Cesena, Italy
| | - Maria Eugenia Martelli
- Dipartimento di Psicologia, Alma Mater Studiorum – Università di Bologna, Centro Studi e Ricerche in Neuroscienze Cognitive, Campus di Cesena, via Rasi e Spinelli, 176, 47521 Cesena, Italy
| | - Marta Bortoletto
- Laboratorio di Neurofisiologia, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, via pilastroni, 4, 25125 Brescia, Italy
| | - Giuseppe di Pellegrino
- Dipartimento di Psicologia, Alma Mater Studiorum – Università di Bologna, Centro Studi e Ricerche in Neuroscienze Cognitive, Campus di Cesena, via Rasi e Spinelli, 176, 47521 Cesena, Italy
| | - Vincenzo Romei
- Dipartimento di Psicologia, Alma Mater Studiorum – Università di Bologna, Centro Studi e Ricerche in Neuroscienze Cognitive, Campus di Cesena, via Rasi e Spinelli, 176, 47521 Cesena, Italy
- Facultad de Lenguas y Educación, Universidad Antonio de Nebrija, Madrid, 28015, Spain
| |
Collapse
|
324
|
Boo YJ, Kim DW, Park JY, Kim BS, Chang JW, Kang JI, Kim SJ. Altered prefrontal beta oscillatory activity during removal of information from working memory in obsessive-compulsive disorder. BMC Psychiatry 2023; 23:645. [PMID: 37667294 PMCID: PMC10478376 DOI: 10.1186/s12888-023-05149-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 08/28/2023] [Indexed: 09/06/2023] Open
Abstract
BACKGROUND Obsessive-compulsive disorder (OCD) is related to working memory impairment. Since patients with OCD have difficulty controlling their obsessive thoughts, removal of irrelevant information might be important in the pathophysiology of OCD. However, little is known about brain activity during the removal of information from working memory in patients with OCD. Our goal was to explore potential deficits in inhibitory function related to working memory processes in patients with OCD. METHODS Sixteen OCD patients and 20 healthy controls (HCs) were recruited. We compared in prefrontal alpha and beta band activity derived from magnetoencephalography (MEG) between patients with OCD and HCs during multiple phases of information processing associated with working memory, especially in post-trial period of the visuospatial working memory task (the delayed matching-to-sample task), which is presumed to be related to the information removal process of working memory. RESULTS Prefrontal post-trial beta power change (presumed to occur at high levels during the post-trial period) exhibited significant reductions in patients with OCD compared to HCs. In addition, the post-trial beta power change was negatively correlated with Obsessive-Compulsive Inventory-Revised total scores in patients with OCD. CONCLUSIONS These findings suggest that impairment in the removal of information from working memory might be a key mechanism underlying the inability of OCD patients to rid themselves of their obsessions.
Collapse
Affiliation(s)
- Young Jun Boo
- Department of Psychiatry, Graduate School, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Do-Won Kim
- Department of Biomedical Engineering, College of Engineering Sciences, Chonnam National University, 50 Daehak-ro, Yeosu, Republic of Korea
- School of Healthcare and Biomedical Engineering, College of Engineering Sciences, Chonnam National University, 50 Daehak-ro, Yeosu, Republic of Korea
| | - Jin Young Park
- Department of Psychiatry, Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul, Republic of Korea
- Department of Psychiatry, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin, Republic of Korea
| | - Bong Soo Kim
- Department of Neurosurgery, Brain Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jin Woo Chang
- Department of Neurosurgery, Brain Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jee In Kang
- Department of Psychiatry, Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul, Republic of Korea.
| | - Se Joo Kim
- Department of Psychiatry, Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul, Republic of Korea.
| |
Collapse
|
325
|
Zebarjadi N, Levy J. Neural shifts in alpha rhythm's dual functioning during empathy maturation. Brain Behav 2023; 13:e3110. [PMID: 37334437 PMCID: PMC10498088 DOI: 10.1002/brb3.3110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 06/20/2023] Open
Abstract
INTRODUCTION Empathy is a social-cognitive process that operates by relying mainly on the suppression of the cortical alpha rhythm. This phenomenon has been evidenced in dozens of electrophysiological studies targeting adult human subjects. Yet, recent neurodevelopmental studies indicated that at a younger age, empathy involves reversed brain responses (e.g., alpha enhancement patterns). In this multimodal study, we capture neural activity at the alpha range, and hemodynamic response and target subjects at approximately 20 years old as a unique time window in development that allows investigating both low-alpha suppression and high-alpha enhancement. We aim to further investigate the functional role of low-alpha power suppression and high-alpha power enhancement during empathy development. METHODS Brain data from 40 healthy individuals were recorded in two consecutive sessions of magnetoencephalography (MEG) and functional magnetic resonance imaging (fMRI) while subjects perceived vicarious physical pain or no pain. RESULTS MEG revealed that the alpha pattern shift during empathy happens in an all-or-none pattern: power enhancement before 18 and suppression after 18 years of age. Additionally, MEG and fMRI highlight a correspondence between high-alpha power increase and blood-oxygen-level-dependent (BOLD) decrease before 18, but low-alpha power decrease and BOLD increase after 18. Importantly, this neurodevelopmental transition was not revealed by four other measures: self-reported (a) ratings of the task stimuli, (b) ratings of naturalistic vignettes of vicarious pain, (c) trait empathy, or neural data from (d) a control neuroimaging task. DISCUSSION Findings suggest that at the critical age of around 18, empathy is underpinned by an all-or-none transition from high-alpha power enhancement and functional inhibition to low-alpha power suppression and functional activation in particular brain regions, possibly indicating a marker of maturation in empathic ability. This work advances a recent neurodevelopmental line of studies and provides insight into the functional maturation of empathy at the coming of age.
Collapse
Affiliation(s)
- Niloufar Zebarjadi
- Department of Neuroscience and Biomedical EngineeringAalto UniversityEspooFinland
| | - Jonathan Levy
- Department of Neuroscience and Biomedical EngineeringAalto UniversityEspooFinland
- Baruch Ivcher School of PsychologyReichman UniversityHerzliyaIsrael
| |
Collapse
|
326
|
Menétrey MQ, Herzog MH, Pascucci D. Pre-stimulus alpha activity modulates long-lasting unconscious feature integration. Neuroimage 2023; 278:120298. [PMID: 37517573 DOI: 10.1016/j.neuroimage.2023.120298] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/28/2023] [Accepted: 07/26/2023] [Indexed: 08/01/2023] Open
Abstract
Pre-stimulus alpha (α) activity can influence perception of shortly presented, low-contrast stimuli. The underlying mechanisms are often thought to affect perception exactly at the time of presentation. In addition, it is suggested that α cycles determine temporal windows of integration. However, in everyday situations, stimuli are usually presented for periods longer than ∼100 ms and perception is often an integration of information across space and time. Moving objects are just one example. Hence, the question is whether α activity plays a role also in temporal integration, especially when stimuli are integrated over several α cycles. Using electroencephalography (EEG), we investigated the relationship between pre-stimulus brain activity and long-lasting integration in the sequential metacontrast paradigm (SQM), where two opposite vernier offsets, embedded in a stream of lines, are unconsciously integrated into a single percept. We show that increases in α power, even 300 ms before the stimulus, affected the probability of reporting the first offset, shown at the very beginning of the SQM. This effect was mediated by the systematic slowing of the α rhythm that followed the peak in α power. No phase effects were found. Together, our results demonstrate a cascade of neural changes, following spontaneous bursts of α activity and extending beyond a single moment, which influences the sensory representation of visual features for hundreds of milliseconds. Crucially, as feature integration in the SQM occurs before a conscious percept is elicited, this also provides evidence that α activity is linked to mechanisms regulating unconscious processing.
Collapse
Affiliation(s)
- Maëlan Q Menétrey
- Laboratory of Psychophysics, Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| | - Michael H Herzog
- Laboratory of Psychophysics, Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - David Pascucci
- Laboratory of Psychophysics, Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
327
|
Benjamin AS, Kording KP. A role for cortical interneurons as adversarial discriminators. PLoS Comput Biol 2023; 19:e1011484. [PMID: 37768890 PMCID: PMC10538760 DOI: 10.1371/journal.pcbi.1011484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/31/2023] [Indexed: 09/30/2023] Open
Abstract
The brain learns representations of sensory information from experience, but the algorithms by which it does so remain unknown. One popular theory formalizes representations as inferred factors in a generative model of sensory stimuli, meaning that learning must improve this generative model and inference procedure. This framework underlies many classic computational theories of sensory learning, such as Boltzmann machines, the Wake/Sleep algorithm, and a more recent proposal that the brain learns with an adversarial algorithm that compares waking and dreaming activity. However, in order for such theories to provide insights into the cellular mechanisms of sensory learning, they must be first linked to the cell types in the brain that mediate them. In this study, we examine whether a subtype of cortical interneurons might mediate sensory learning by serving as discriminators, a crucial component in an adversarial algorithm for representation learning. We describe how such interneurons would be characterized by a plasticity rule that switches from Hebbian plasticity during waking states to anti-Hebbian plasticity in dreaming states. Evaluating the computational advantages and disadvantages of this algorithm, we find that it excels at learning representations in networks with recurrent connections but scales poorly with network size. This limitation can be partially addressed if the network also oscillates between evoked activity and generative samples on faster timescales. Consequently, we propose that an adversarial algorithm with interneurons as discriminators is a plausible and testable strategy for sensory learning in biological systems.
Collapse
Affiliation(s)
- Ari S. Benjamin
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Konrad P. Kording
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
328
|
Zhou YJ, Ramchandran A, Haegens S. Alpha oscillations protect working memory against distracters in a modality-specific way. Neuroimage 2023; 278:120290. [PMID: 37482324 DOI: 10.1016/j.neuroimage.2023.120290] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 07/25/2023] Open
Abstract
Alpha oscillations are thought to be involved in suppressing distracting input in working-memory tasks. Yet, the spatial-temporal dynamics of such suppression remain unclear. Key questions are whether such suppression reflects a domain-general inattentiveness mechanism, or occurs in a stimulus- or modality-specific manner within cortical areas most responsive to the distracters; and whether the suppression is proactive (i.e., preparatory) or reactive. Here, we addressed these questions using a working-memory task where participants had to memorize an array of visually presented digits and reproduce one of them upon being probed. We manipulated the presence of distracters and the sensory modality in which distracters were presented during memory maintenance. Our results show that sensory areas most responsive to visual and auditory distracters exhibited stronger alpha power increase after visual and auditory distracter presentation respectively. These results suggest that alpha oscillations underlie distracter suppression in a reactive, modality-specific manner.
Collapse
Affiliation(s)
- Ying Joey Zhou
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Nijmegen, The Netherlands; Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford, United Kingdom
| | - Aarti Ramchandran
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Saskia Haegens
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Nijmegen, The Netherlands; Department of Psychiatry, Columbia University, New York, NY, United States of America; Division of Systems Neuroscience, New York State Psychiatric Institute, New York, NY, United States of America.
| |
Collapse
|
329
|
Torbaghan ME, Moghimi A, Kobravi HR, Fereidoni M, Bigdeli I. Effect of stress on spatial working memory and EEG signal dynamics in the follicular and luteal phases of the menstrual cycle in young single girls. Brain Behav 2023; 13:e3166. [PMID: 37488720 PMCID: PMC10498068 DOI: 10.1002/brb3.3166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 07/02/2023] [Accepted: 07/07/2023] [Indexed: 07/26/2023] Open
Abstract
AIM Women undergo behavioral changes during the menstrual cycle. This study aimed to investigate the effect of estradiol (Es) on stress and effect of stress on spatial working memory (WM) and also to investigate electroencephalogram (EEG) signal's dynamics in the early and late follicular (EF and LF) and luteal (LU) phases of unmarried girls' menstrual cycle. METHODS Stress was induced by presentation of a short (3 min) movie clip. Simultaneous with a memory test and stress induction, EEG, serum Es levels, and galvanic skin response (GSR) were assessed. RESULTS Serum Es concentrations were decreased in LF, LU, and EF phases. The mean GSR score decreased after stress induction in all three phases, but it increased in the LF and LU phases versus the EF phase. Spatial WM diminished after stress induction in all three phases, but it increased in the LF phase versus the two phases before and after stress induction. Average power spectrum density in all frequency bands increased after stress induction in the frontal and prefrontal channels in the spatial WM test. CONCLUSION The results showed that stress led to spatial WM dysfunction; however, Es improved spatial WM performance in the LF phase versus the other two phases.
Collapse
Affiliation(s)
| | - Ali Moghimi
- Rayan Research Center for Neuroscience & Behavior, Department of Biology, Faculty of ScienceFerdowsi University of MashhadMashhadIran
| | - Hamid Reza Kobravi
- Research Center of Biomedical Engineering, Mashhad BranchIslamic Azad UniversityMashhadIran
| | - Masoud Fereidoni
- Rayan Research Center for Neuroscience & Behavior, Department of Biology, Faculty of ScienceFerdowsi University of MashhadMashhadIran
| | - Imanollah Bigdeli
- Department of Psychology, Faculty of Educational Sciences and PsychologyFerdowsi University of MashhadMashhadIran
| |
Collapse
|
330
|
Annen J, Frasso G, van der Lande GJM, Bonin EAC, Vitello MM, Panda R, Sala A, Cavaliere C, Raimondo F, Bahri MA, Schiff ND, Gosseries O, Thibaut A, Laureys S. Cerebral electrometabolic coupling in disordered and normal states of consciousness. Cell Rep 2023; 42:112854. [PMID: 37498745 DOI: 10.1016/j.celrep.2023.112854] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 06/02/2023] [Accepted: 07/08/2023] [Indexed: 07/29/2023] Open
Abstract
We assess cerebral integrity with cortical and subcortical FDG-PET and cortical electroencephalography (EEG) within the mesocircuit model framework in patients with disorders of consciousness (DoCs). The mesocircuit hypothesis proposes that subcortical activation facilitates cortical function. We find that the metabolic balance of subcortical mesocircuit areas is informative for diagnosis and is associated with four EEG-based power spectral density patterns, cortical metabolism, and α power in healthy controls and patients with a DoC. Last, regional electrometabolic coupling at the cortical level can be identified in the θ and α ranges, showing positive and negative relations with glucose uptake, respectively. This relation is inverted in patients with a DoC, potentially related to altered orchestration of neural activity, and may underlie suboptimal excitability states in patients with a DoC. By understanding the neurobiological basis of the pathophysiology underlying DoCs, we foresee translational value for diagnosis and treatment of patients with a DoC.
Collapse
Affiliation(s)
- Jitka Annen
- Coma Science Group, GIGA-Consciousness, University of Liège, Liège, Belgium; Centre du Cerveau(2), University Hospital of Liège, Liège, Belgium.
| | | | - Glenn J M van der Lande
- Coma Science Group, GIGA-Consciousness, University of Liège, Liège, Belgium; Centre du Cerveau(2), University Hospital of Liège, Liège, Belgium
| | - Estelle A C Bonin
- Coma Science Group, GIGA-Consciousness, University of Liège, Liège, Belgium; Centre du Cerveau(2), University Hospital of Liège, Liège, Belgium
| | - Marie M Vitello
- Coma Science Group, GIGA-Consciousness, University of Liège, Liège, Belgium; Centre du Cerveau(2), University Hospital of Liège, Liège, Belgium
| | - Rajanikant Panda
- Coma Science Group, GIGA-Consciousness, University of Liège, Liège, Belgium; Centre du Cerveau(2), University Hospital of Liège, Liège, Belgium
| | - Arianna Sala
- Coma Science Group, GIGA-Consciousness, University of Liège, Liège, Belgium; Centre du Cerveau(2), University Hospital of Liège, Liège, Belgium
| | | | - Federico Raimondo
- Coma Science Group, GIGA-Consciousness, University of Liège, Liège, Belgium; Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, Jülich, Germany
| | - Mohamed Ali Bahri
- GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, Liège, Belgium
| | | | - Olivia Gosseries
- Coma Science Group, GIGA-Consciousness, University of Liège, Liège, Belgium; Centre du Cerveau(2), University Hospital of Liège, Liège, Belgium
| | - Aurore Thibaut
- Coma Science Group, GIGA-Consciousness, University of Liège, Liège, Belgium; Centre du Cerveau(2), University Hospital of Liège, Liège, Belgium
| | - Steven Laureys
- Coma Science Group, GIGA-Consciousness, University of Liège, Liège, Belgium; Centre du Cerveau(2), University Hospital of Liège, Liège, Belgium; Joint International Research Unit on Consciousness, CERVO Brain Research Centre, University Laval, Quebec City, QC, Canada
| |
Collapse
|
331
|
Fan X, Mocchi M, Pascuzzi B, Xiao J, Metzger BA, Mathura RK, Hacker C, Adkinson JA, Bartoli E, Elhassa S, Watrous AJ, Zhang Y, Goodman W, Pouratian N, Bijanki KR. Brain mechanisms underlying the emotion processing bias in treatment-resistant depression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.26.554837. [PMID: 37693557 PMCID: PMC10491112 DOI: 10.1101/2023.08.26.554837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Depression is associated with a cognitive bias towards negative information and away from positive information. This biased emotion processing may underlie core depression symptoms, including persistent feelings of sadness or low mood and a reduced capacity to experience pleasure. The neural mechanisms responsible for this biased emotion processing remain unknown. Here, we had a unique opportunity to record stereotactic electroencephalography (sEEG) signals in the amygdala and prefrontal cortex (PFC) from 5 treatment-resistant depression (TRD) patients and 12 epilepsy patients (as control) while they participated in an affective bias task in which happy and sad faces were rated. First, compared with the control group, patients with TRD showed increased amygdala responses to sad faces in the early stage (around 300 ms) and decreased amygdala responses to happy faces in the late stage (around 600 ms) following the onset of faces. Further, during the late stage of happy face processing, alpha-band activity in PFC as well as alpha-phase locking between the amygdala and PFC were significantly greater in TRD patients compared to the controls. Second, after deep brain stimulation (DBS) delivered to bilateral subcallosal cingulate (SCC) and ventral capsule/ventral striatum (VC/VS), atypical amygdala and PFC processing of happy faces in TRD patients remitted toward the normative pattern. The increased amygdala activation during the early stage of sad face processing suggests an overactive bottom-up processing system in TRD. Meanwhile, the reduced amygdala response during the late stage of happy face processing could be attributed to inhibition by PFC through alpha-band oscillation, which can be released by DBS in SCC and VC/VS.
Collapse
|
332
|
Dinse HR, Höffken O, Tegenthoff M. Cortical excitability in human somatosensory and visual cortex: implications for plasticity and learning - a minireview. Front Hum Neurosci 2023; 17:1235487. [PMID: 37662638 PMCID: PMC10469727 DOI: 10.3389/fnhum.2023.1235487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 07/31/2023] [Indexed: 09/05/2023] Open
Abstract
The balance of excitation and inhibition plays a key role in plasticity and learning. A frequently used, reliable approach to assess intracortical inhibition relies on measuring paired-pulse behavior. Moreover, recent developments of magnetic resonance spectroscopy allows measuring GABA and glutamate concentrations. We give an overview about approaches employed to obtain information about excitatory states in human participants and discuss their putative relation. We summarize paired-pulse techniques and basic findings characterizing paired-pulse suppression in somatosensory (SI) and (VI) visual areas. Paired-pulse suppression describes the effect of paired sensory stimulation at short interstimulus intervals where the cortical response to the second stimulus is significantly suppressed. Simultaneous assessments of paired-pulse suppression in SI and VI indicated that cortical excitability is not a global phenomenon, but instead reflects the properties of local sensory processing. We review studies using non-invasive brain stimulation and perceptual learning experiments that assessed both perceptual changes and accompanying changes of cortical excitability in parallel. Independent of the nature of the excitation/inhibition marker used these data imply a close relationship between altered excitability and altered performance. These results suggest a framework where increased or decreased excitability is linked with improved or impaired perceptual performance. Recent findings have expanded the potential role of cortical excitability by demonstrating that inhibition markers such as GABA concentrations, paired-pulse suppression or alpha power predict to a substantial degree subsequent perceptual learning outcome. This opens the door for a targeted intervention where subsequent plasticity and learning processes are enhanced by altering prior baseline states of excitability.
Collapse
|
333
|
DeCouto BS, Smeeton NJ, Williams AM. Skilled Performers Show Right Parietal Lateralization during Anticipation of Volleyball Attacks. Brain Sci 2023; 13:1204. [PMID: 37626560 PMCID: PMC10452595 DOI: 10.3390/brainsci13081204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/04/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Global and local biological motion processing are likely influenced by an observer's perceptual experience. Skilled athletes anticipating an opponent's movements use globally distributed motion information, while less skilled athletes focus on single kinematic cues. Published reports have demonstrated that attention can be primed globally or locally before perceptual tasks; such an intervention could highlight motion processing mechanisms used by skilled and less skilled observers. In this study, we examined skill differences in biological motion processing using attentional priming. Skilled (N = 16) and less skilled (N = 16) players anticipated temporally occluded videos of volleyball attacks after being primed using a Navon matching task while parietal EEG was measured. Skilled players were more accurate than less skilled players across priming conditions. Global priming improved performance in both skill groups. Skilled players showed significantly reduced alpha and beta power in the right compared to left parietal region, but brain activity was not affected by the priming interventions. Our findings highlight the importance of right parietal dominance for skilled performers, which may be functional for inhibiting left hemispheric local processing or enhancing visual spatial attention for dynamic visual scenes. Further work is needed to systematically determine the function of this pattern of brain activity during skilled anticipation.
Collapse
Affiliation(s)
- Brady S. DeCouto
- Healthspan, Resilience & Performance Research Group, Florida Institute for Human & Machine Cognition, 40 South Alcaniz St., Pensacola, FL 32502, USA;
- Department of Health & Kinesiology, College of Health, University of Utah, 383 Colorow Drive, Suite 260, Salt Lake City, UT 84112, USA
| | - Nicholas J. Smeeton
- Sport and Exercise Science and Sport Medicine Research and Enterprise Group, School of Sport and Health Sciences, University of Brighton, 1 Denton Road, Brighton BN22 7SR, UK;
| | - A. Mark Williams
- Healthspan, Resilience & Performance Research Group, Florida Institute for Human & Machine Cognition, 40 South Alcaniz St., Pensacola, FL 32502, USA;
| |
Collapse
|
334
|
Cartocci G, Inguscio BMS, Giorgi A, Vozzi A, Leone CA, Grassia R, Di Nardo W, Di Cesare T, Fetoni AR, Freni F, Ciodaro F, Galletti F, Albera R, Canale A, Piccioni LO, Babiloni F. Music in noise recognition: An EEG study of listening effort in cochlear implant users and normal hearing controls. PLoS One 2023; 18:e0288461. [PMID: 37561758 PMCID: PMC10414671 DOI: 10.1371/journal.pone.0288461] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 06/27/2023] [Indexed: 08/12/2023] Open
Abstract
Despite the plethora of studies investigating listening effort and the amount of research concerning music perception by cochlear implant (CI) users, the investigation of the influence of background noise on music processing has never been performed. Given the typical speech in noise recognition task for the listening effort assessment, the aim of the present study was to investigate the listening effort during an emotional categorization task on musical pieces with different levels of background noise. The listening effort was investigated, in addition to participants' ratings and performances, using EEG features known to be involved in such phenomenon, that is alpha activity in parietal areas and in the left inferior frontal gyrus (IFG), that includes the Broca's area. Results showed that CI users performed worse than normal hearing (NH) controls in the recognition of the emotional content of the stimuli. Furthermore, when considering the alpha activity corresponding to the listening to signal to noise ratio (SNR) 5 and SNR10 conditions subtracted of the activity while listening to the Quiet condition-ideally removing the emotional content of the music and isolating the difficulty level due to the SNRs- CI users reported higher levels of activity in the parietal alpha and in the homologous of the left IFG in the right hemisphere (F8 EEG channel), in comparison to NH. Finally, a novel suggestion of a particular sensitivity of F8 for SNR-related listening effort in music was provided.
Collapse
Affiliation(s)
- Giulia Cartocci
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
- BrainSigns ltd, Rome, Italy
| | | | - Andrea Giorgi
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
- BrainSigns ltd, Rome, Italy
| | | | - Carlo Antonio Leone
- Department of Otolaringology Head-Neck Surgery, Monaldi Hospital, Naples, Italy
| | - Rosa Grassia
- Department of Otolaringology Head-Neck Surgery, Monaldi Hospital, Naples, Italy
| | - Walter Di Nardo
- Institute of Otorhinolaryngology, Catholic University of Sacred Heart, Fondazione Policlinico "A Gemelli," IRCCS, Rome, Italy
| | - Tiziana Di Cesare
- Institute of Otorhinolaryngology, Catholic University of Sacred Heart, Fondazione Policlinico "A Gemelli," IRCCS, Rome, Italy
| | - Anna Rita Fetoni
- Institute of Otorhinolaryngology, Catholic University of Sacred Heart, Fondazione Policlinico "A Gemelli," IRCCS, Rome, Italy
| | - Francesco Freni
- Department of Otorhinolaryngology, University of Messina, Messina, Italy
| | - Francesco Ciodaro
- Department of Otorhinolaryngology, University of Messina, Messina, Italy
| | - Francesco Galletti
- Department of Otorhinolaryngology, University of Messina, Messina, Italy
| | - Roberto Albera
- Department of Surgical Sciences, University of Turin, Turin, Italy
| | - Andrea Canale
- Department of Surgical Sciences, University of Turin, Turin, Italy
| | - Lucia Oriella Piccioni
- Department of Otolaryngology-Head and Neck Surgery, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Fabio Babiloni
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
- BrainSigns ltd, Rome, Italy
| |
Collapse
|
335
|
Vigué-Guix I, Soto-Faraco S. Using occipital ⍺-bursts to modulate behavior in real-time. Cereb Cortex 2023; 33:9465-9477. [PMID: 37365814 DOI: 10.1093/cercor/bhad217] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 05/26/2023] [Accepted: 05/27/2023] [Indexed: 06/28/2023] Open
Abstract
Pre-stimulus endogenous neural activity can influence the processing of upcoming sensory input and subsequent behavioral reactions. Despite it is known that spontaneous oscillatory activity mostly appears in stochastic bursts, typical approaches based on trial averaging fail to capture this. We aimed at relating spontaneous oscillatory bursts in the alpha band (8-13 Hz) to visual detection behavior, via an electroencephalography-based brain-computer interface (BCI) that allowed for burst-triggered stimulus presentation in real-time. According to alpha theories, we hypothesized that visual targets presented during alpha-bursts should lead to slower responses and higher miss rates, whereas targets presented in the absence of bursts (low alpha activity) should lead to faster responses and higher false alarm rates. Our findings support the role of bursts of alpha oscillations in visual perception and exemplify how real-time BCI systems can be used as a test bench for brain-behavioral theories.
Collapse
Affiliation(s)
- Irene Vigué-Guix
- Center for Brain and Cognition, Departament de Tecnologies de la Informació i les Comunicacions, Universitat Pompeu Fabra, Barcelona 08005, Spain
| | - Salvador Soto-Faraco
- Center for Brain and Cognition, Departament de Tecnologies de la Informació i les Comunicacions, Universitat Pompeu Fabra, Barcelona 08005, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona 08010, Spain
| |
Collapse
|
336
|
Zhong C, Ding Y, Qu Z. Distinct roles of theta and alpha oscillations in the process of contingent attentional capture. Front Hum Neurosci 2023; 17:1220562. [PMID: 37609570 PMCID: PMC10440541 DOI: 10.3389/fnhum.2023.1220562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 07/20/2023] [Indexed: 08/24/2023] Open
Abstract
Introduction Visual spatial attention can be captured by a salient color singleton that is contingent on the target feature. A previous study reported that theta (4-7 Hz) and alpha (8-14 Hz) oscillations were related to contingent attentional capture, but the corresponding attentional mechanisms of these oscillations remain unclear. Methods In this study, we analyzed the electroencephalogram data of our previous study to investigate the roles of capture-related theta and alpha oscillation activities. Different from the previous study that used color-changed placeholders as irrelevant cues, the present study adopted abrupt onsets of color singleton cues which tend to elicit phase-locked neural activities. In Experiment 1, participants completed a peripheral visual search task in which spatially uninformative color singleton cues were inside the spatial attentional window and a central rapid serial visual presentation (RSVP) task in which the same cues were outside the spatial attentional window. In Experiment 2, participants completed a color RSVP task and a size RSVP task in which the peripheral color singleton cues were contingent and not contingent on target feature, respectively. Results In Experiment 1, spatially uninformative color singleton cues elicited lateralized theta activities when they were contingent on target feature, irrespective of whether they were inside or outside the spatial attentional window. In contrast, the same color singleton cues elicited alpha lateralization only when they were inside the spatial attentional window. In Experiment 2, we further found that theta lateralization vanished if the color singleton cues were not contingent on target feature. Discussion These results suggest distinct roles of theta and alpha oscillations in the process of contingent attentional capture initiated by abrupt onsets of singleton cues. Theta activities may reflect global enhancement of target feature, while alpha activities may be related to attentional engagement to spatially relevant singleton cues. These lateralized neural oscillations, together with the distractor-elicited N2pc component, might consist of multiple stages of attentional processes during contingent attentional capture.
Collapse
Affiliation(s)
- Chupeng Zhong
- Department of Psychology, Sun Yat-sen University, Guangzhou, China
| | - Yulong Ding
- Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, Guangzhou, China
- School of Psychology, South China Normal University, Guangzhou, China
| | - Zhe Qu
- Department of Psychology, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
337
|
Miao Z, Zhao M, Zhang X, Ming D. LMDA-Net:A lightweight multi-dimensional attention network for general EEG-based brain-computer interfaces and interpretability. Neuroimage 2023; 276:120209. [PMID: 37269957 DOI: 10.1016/j.neuroimage.2023.120209] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/05/2023] [Accepted: 05/30/2023] [Indexed: 06/05/2023] Open
Abstract
Electroencephalography (EEG)-based brain-computer interfaces (BCIs) pose a challenge for decoding due to their low spatial resolution and signal-to-noise ratio. Typically, EEG-based recognition of activities and states involves the use of prior neuroscience knowledge to generate quantitative EEG features, which may limit BCI performance. Although neural network-based methods can effectively extract features, they often encounter issues such as poor generalization across datasets, high predicting volatility, and low model interpretability. To address these limitations, we propose a novel lightweight multi-dimensional attention network, called LMDA-Net. By incorporating two novel attention modules designed specifically for EEG signals, the channel attention module and the depth attention module, LMDA-Net is able to effectively integrate features from multiple dimensions, resulting in improved classification performance across various BCI tasks. LMDA-Net was evaluated on four high-impact public datasets, including motor imagery (MI) and P300-Speller, and was compared with other representative models. The experimental results demonstrate that LMDA-Net outperforms other representative methods in terms of classification accuracy and predicting volatility, achieving the highest accuracy in all datasets within 300 training epochs. Ablation experiments further confirm the effectiveness of the channel attention module and the depth attention module. To facilitate an in-depth understanding of the features extracted by LMDA-Net, we propose class-specific neural network feature interpretability algorithms that are suitable for evoked responses and endogenous activities. By mapping the output of the specific layer of LMDA-Net to the time or spatial domain through class activation maps, the resulting feature visualizations can provide interpretable analysis and establish connections with EEG time-spatial analysis in neuroscience. In summary, LMDA-Net shows great potential as a general decoding model for various EEG tasks.
Collapse
Affiliation(s)
- Zhengqing Miao
- State Key Laboratory of Precision Measuring Technology and Instruments, School of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China.
| | - Meirong Zhao
- State Key Laboratory of Precision Measuring Technology and Instruments, School of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China.
| | - Xin Zhang
- Laboratory of Neural Engineering and Rehabilitation, Department of Biomedical Engineering, School of Precision Instruments and Optoelectronics Engineering, Tianjin University, China; Tianjin International Joint Research Center for Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China.
| | - Dong Ming
- Laboratory of Neural Engineering and Rehabilitation, Department of Biomedical Engineering, School of Precision Instruments and Optoelectronics Engineering, Tianjin University, China; Tianjin International Joint Research Center for Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
338
|
Coyle HL, Bailey NW, Ponsford J, Hoy KE. Recovery of clinical, cognitive and cortical activity measures following mild traumatic brain injury (mTBI): A longitudinal investigation. Cortex 2023; 165:14-25. [PMID: 37245405 DOI: 10.1016/j.cortex.2023.04.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 03/06/2023] [Accepted: 04/17/2023] [Indexed: 05/30/2023]
Abstract
The mechanisms that underpin recovery following mild traumatic brain injury (mTBI) remain poorly understood. Identifying neurophysiological markers and their functional significance is necessary to develop diagnostic and prognostic indicators of recovery. The current study assessed 30 participants in the subacute phase of mTBI (10-31 days post-injury) and 28 demographically matched controls. Participants also completed 3 month (mTBI: N = 21, control: N = 25) and 6 month (mTBI: N = 15, control: N = 25) follow up sessions to track recovery. At each time point, a battery of clinical, cognitive, and neurophysiological assessments was completed. Neurophysiological measures included resting-state electroencephalography (EEG) and transcranial magnetic stimulation combined with EEG (TMS-EEG). Outcome measures were analysed using mixed linear models (MLM). Group differences in mood, post-concussion symptoms and resting-state EEG resolved by 3 months, and recovery was maintained at 6 months. On TMS-EEG derived neurophysiological measures of cortical reactivity, group differences ameliorated at 3 months but re-emerged at 6 months, while on measures of fatigue, group differences persisted across all time points. Persistent neurophysiological changes and greater fatigue in the absence of measurable cognitive impairment may suggest the impact of mTBI on neuronal communication may leads to increased neural effort to maintain efficient function. Neurophysiological measures to track recovery may help identify both temporally optimal windows and therapeutic targets for the development of new treatments in mTBI.
Collapse
Affiliation(s)
- Hannah L Coyle
- Central Clinical School Department of Psychiatry, Monash University, Melbourne, Victoria, Australia
| | - Neil W Bailey
- Central Clinical School Department of Psychiatry, Monash University, Melbourne, Victoria, Australia; Monarch Research Institute Monarch Mental Health Group, Sydney, New South Wales, Australia; School of Medicine and Psychology, The Australian National University, Canberra, ACT, Australia
| | - Jennie Ponsford
- Turner Institute for Brain and Mental Health, Monash University, Clayton, Victoria, Australia; Monash-Epworth Rehabilitation Research Centre, Epworth Healthcare, Melbourne, Victoria, Australia
| | - Kate E Hoy
- Central Clinical School Department of Psychiatry, Monash University, Melbourne, Victoria, Australia; Bionics Institute, East Melbourne, Victoria, Australia.
| |
Collapse
|
339
|
Santoyo AE, Gonzales MG, Iqbal ZJ, Backer KC, Balasubramaniam R, Bortfeld H, Shahin AJ. Neurophysiological time course of timbre-induced music-like perception. J Neurophysiol 2023; 130:291-302. [PMID: 37377190 PMCID: PMC10396220 DOI: 10.1152/jn.00042.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 06/26/2023] [Accepted: 06/26/2023] [Indexed: 06/29/2023] Open
Abstract
Traditionally, pitch variation in a sound stream has been integral to music identity. We attempt to expand music's definition, by demonstrating that the neural code for musicality is independent of pitch encoding. That is, pitchless sound streams can still induce music-like perception and a neurophysiological hierarchy similar to pitched melodies. Previous work reported that neural processing of sounds with no-pitch, fixed-pitch, and irregular-pitch (melodic) patterns, exhibits a right-lateralized hierarchical shift, with pitchless sounds favorably processed in Heschl's gyrus (HG), ascending laterally to nonprimary auditory areas for fixed-pitch and even more laterally for melodic patterns. The objective of this EEG study was to assess whether sound encoding maintains a similar hierarchical profile when musical perception is driven by timbre irregularities in the absence of pitch changes. Individuals listened to repetitions of three musical and three nonmusical sound-streams. The nonmusical streams were comprised of seven 200-ms segments of white, pink, or brown noise, separated by silent gaps. Musical streams were created similarly, but with all three noise types combined in a unique order within each stream to induce timbre variations and music-like perception. Subjects classified the sound streams as musical or nonmusical. Musical processing exhibited right dominant α power enhancement, followed by a lateralized increase in θ phase-locking and spectral power. The θ phase-locking was stronger in musicians than in nonmusicians. The lateralization of activity suggests higher-level auditory processing. Our findings validate the existence of a hierarchical shift, traditionally observed with pitched-melodic perception, underscoring that musicality can be achieved with timbre irregularities alone.NEW & NOTEWORTHY EEG induced by streams of pitchless noise segments varying in timbre were classified as music-like and exhibited a right-lateralized hierarchy in processing similar to pitched melodic processing. This study provides evidence that the neural-code of musicality is independent of pitch encoding. The results have implications for understanding music processing in individuals with degraded pitch perception, such as in cochlear-implant listeners, as well as the role of nonpitched sounds in the induction of music-like perceptual states.
Collapse
Affiliation(s)
- Alejandra E Santoyo
- Department of Cognitive and Information Sciences, University of California, Merced, California, United States
| | - Mariel G Gonzales
- Department of Cognitive and Information Sciences, University of California, Merced, California, United States
| | - Zunaira J Iqbal
- Department of Cognitive and Information Sciences, University of California, Merced, California, United States
| | - Kristina C Backer
- Department of Cognitive and Information Sciences, University of California, Merced, California, United States
- Health Sciences Research Institute, University of California, Merced, California, United States
| | - Ramesh Balasubramaniam
- Department of Cognitive and Information Sciences, University of California, Merced, California, United States
- Health Sciences Research Institute, University of California, Merced, California, United States
| | - Heather Bortfeld
- Department of Cognitive and Information Sciences, University of California, Merced, California, United States
- Health Sciences Research Institute, University of California, Merced, California, United States
- Department of Psychology, University of California, Merced, California, United States
| | - Antoine J Shahin
- Department of Cognitive and Information Sciences, University of California, Merced, California, United States
- Health Sciences Research Institute, University of California, Merced, California, United States
| |
Collapse
|
340
|
Pepper JL, Nuttall HE. Age-Related Changes to Multisensory Integration and Audiovisual Speech Perception. Brain Sci 2023; 13:1126. [PMID: 37626483 PMCID: PMC10452685 DOI: 10.3390/brainsci13081126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/20/2023] [Accepted: 07/22/2023] [Indexed: 08/27/2023] Open
Abstract
Multisensory integration is essential for the quick and accurate perception of our environment, particularly in everyday tasks like speech perception. Research has highlighted the importance of investigating bottom-up and top-down contributions to multisensory integration and how these change as a function of ageing. Specifically, perceptual factors like the temporal binding window and cognitive factors like attention and inhibition appear to be fundamental in the integration of visual and auditory information-integration that may become less efficient as we age. These factors have been linked to brain areas like the superior temporal sulcus, with neural oscillations in the alpha-band frequency also being implicated in multisensory processing. Age-related changes in multisensory integration may have significant consequences for the well-being of our increasingly ageing population, affecting their ability to communicate with others and safely move through their environment; it is crucial that the evidence surrounding this subject continues to be carefully investigated. This review will discuss research into age-related changes in the perceptual and cognitive mechanisms of multisensory integration and the impact that these changes have on speech perception and fall risk. The role of oscillatory alpha activity is of particular interest, as it may be key in the modulation of multisensory integration.
Collapse
Affiliation(s)
| | - Helen E. Nuttall
- Department of Psychology, Lancaster University, Bailrigg LA1 4YF, UK;
| |
Collapse
|
341
|
Wisniewski MG, Zakrzewski AC. Effortful listening produces both enhancement and suppression of alpha in the EEG. AUDITORY PERCEPTION & COGNITION 2023; 6:289-299. [PMID: 38665905 PMCID: PMC11044958 DOI: 10.1080/25742442.2023.2218239] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 05/18/2023] [Indexed: 04/28/2024]
Abstract
Introduction Adverse listening conditions can drive increased mental effort during listening. Neuromagnetic alpha oscillations (8-13 Hz) may index this listening effort, but inconsistencies regarding the direction of the relationship are abundant. We performed source analyses on high-density EEG data collected during a speech-on-speech listening task to address the possibility that opposing alpha power relationships among alpha producing brain sources drive this inconsistency. Methods Listeners (N=20) heard two simultaneously presented sentences of the form: Ready go to now. They either reported the color/number pair of a "Baron" call sign sentence (active: high effort), or ignored the stimuli (passive: low effort). Independent component analysis (ICA) was used to segregate temporally distinct sources in the EEG. Results Analysis of independent components (ICs) revealed simultaneous alpha enhancements (e.g., for somatomotor mu ICs) and suppressions (e.g., for left temporal ICs) for different brain sources. The active condition exhibited stronger enhancement for left somatomotor mu rhythm ICs, but stronger suppression for central occipital ICs. Discussion This study shows both alpha enhancement and suppression to be associated with increases in listening effort. Literature inconsistencies could partially relate to some source activities overwhelming others in scalp recordings.
Collapse
Affiliation(s)
- Matthew G. Wisniewski
- Department of Psychological Sciences, Kansas State University, Manhattan, Kansas, USA
| | | |
Collapse
|
342
|
Redding ZV, Fiebelkorn IC. Distractor suppression does and does not depend on pre-distractor alpha-band activity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.18.549512. [PMID: 37502869 PMCID: PMC10370075 DOI: 10.1101/2023.07.18.549512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Selective attention enhances behaviorally important information and suppresses distracting information. Research on the neural basis of selective attention has largely focused on sensory enhancement, with less focus on sensory suppression. Enhancement and suppression can operate through a push-pull relationship that arises from competitive interactions among neural populations. There has been considerable debate, however, regarding (i) whether suppression can also operate independent of enhancement and (ii) whether neural processes associated with the voluntary deployment of suppression can occur prior to distractor onset. We provide further behavioral and electrophysiological evidence of independent suppression at cued distractor locations while humans performed a visual search task. We specifically utilize two established EEG markers of suppression: alpha power (∼8-15 Hz) and the distractor positivity (P D ). Increased alpha power has been linked with attenuated sensory processing, while the P D -a component of event-related potentials-has been linked with successful distractor suppression. The present results demonstrate that cueing the location of an upcoming distractor speeded responding and led to an earlier onset P D , consistent with earlier suppression due to strategic use of a spatial cue. We further demonstrate that higher pre-distractor alpha power contralateral to distractors was generally associated with successful suppression on both cued and non-cued trials. However, there was no consistent change in alpha power associated with the spatial cue, meaning cueing effects on behavioral and neural measures occurred independent of alpha-related gating of sensory processing. These findings reveal the importance of pre-distractor neural processes for subsequent distractor suppression. Significance Statement Selective suppression of distracting information is important for survival, contributing to preferential processing of behaviorally important information. Does foreknowledge of an upcoming distractor's location help with suppression? Here, we recorded EEG while subjects performed a target detection task with cues that indicated the location of upcoming distractors. Behavioral and electrophysiological results revealed that foreknowledge of a distractor's location speeded suppression, thereby facilitating target detection. The results further revealed a significant relationship between pre-stimulus alpha-band activity and successful suppression; however, pre-stimulus alpha-band activity was not consistently lateralized relative to the spatially informative cues. The present findings therefore demonstrate that target detection can benefit from foreknowledge of distractor location in a process that is independent of alpha-related gating of sensory processing.
Collapse
|
343
|
Cartocci G, Inguscio BMS, Giliberto G, Vozzi A, Giorgi A, Greco A, Babiloni F, Attanasio G. Listening Effort in Tinnitus: A Pilot Study Employing a Light EEG Headset and Skin Conductance Assessment during the Listening to a Continuous Speech Stimulus under Different SNR Conditions. Brain Sci 2023; 13:1084. [PMID: 37509014 PMCID: PMC10377270 DOI: 10.3390/brainsci13071084] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/07/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Background noise elicits listening effort. What else is tinnitus if not an endogenous background noise? From such reasoning, we hypothesized the occurrence of increased listening effort in tinnitus patients during listening tasks. Such a hypothesis was tested by investigating some indices of listening effort through electroencephalographic and skin conductance, particularly parietal and frontal alpha and electrodermal activity (EDA). Furthermore, tinnitus distress questionnaires (THI and TQ12-I) were employed. Parietal alpha values were positively correlated to TQ12-I scores, and both were negatively correlated to EDA; Pre-stimulus frontal alpha correlated with the THI score in our pilot study; finally, results showed a general trend of increased frontal alpha activity in the tinnitus group in comparison to the control group. Parietal alpha during the listening to stimuli, positively correlated to the TQ12-I, appears to reflect a higher listening effort in tinnitus patients and the perception of tinnitus symptoms. The negative correlation between both listening effort (parietal alpha) and tinnitus symptoms perception (TQ12-I scores) with EDA levels could be explained by a less responsive sympathetic nervous system to prepare the body to expend increased energy during the "fight or flight" response, due to pauperization of energy from tinnitus perception.
Collapse
Affiliation(s)
- Giulia Cartocci
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy
- Department of Research and Development, BrainSigns Ltd., 00198 Rome, Italy
| | - Bianca Maria Serena Inguscio
- Department of Research and Development, BrainSigns Ltd., 00198 Rome, Italy
- Department of Human Neuroscience, Sapienza University of Rome, 00185 Rome, Italy
| | - Giovanna Giliberto
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Alessia Vozzi
- Department of Research and Development, BrainSigns Ltd., 00198 Rome, Italy
- SAIMLAL Department, Sapienza University of Rome, 00185 Rome, Italy
| | - Andrea Giorgi
- Department of Research and Development, BrainSigns Ltd., 00198 Rome, Italy
- SAIMLAL Department, Sapienza University of Rome, 00185 Rome, Italy
| | - Antonio Greco
- Department of Sense Organs, Sapienza University of Rome, 00161 Rome, Italy
| | - Fabio Babiloni
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy
- Department of Research and Development, BrainSigns Ltd., 00198 Rome, Italy
- Department of Computer Science, Hangzhou Dianzi University, Hangzhou 310005, China
| | | |
Collapse
|
344
|
Blanc C, Buisson JC, Kruck J, Kostrubiec V. Using a haptic dynamic clamp to reduce arousal: preference, arousal, and coordination stability are related. Exp Brain Res 2023:10.1007/s00221-023-06631-8. [PMID: 37422610 DOI: 10.1007/s00221-023-06631-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 05/06/2023] [Indexed: 07/10/2023]
Abstract
We have developed a haptic dynamic clamp dedicated to the regulation of arousal. It takes the form of a vibrating stress ball to be squeezed, called Viball, controlled by Righetti's nonlinear adaptive Hopf oscillator. Participants squeezed an adaptive Viball which adapts its frequency of vibration to the current frequency of human squeezing. The adaptive Viball was compared to three non-adaptive Viballs, parametrized to vibrate at a lower, equal, or higher frequency than the participants' preferred frequency. While squeezing the ball, participants looked at stressful or calming pictures and their electrodermal activity was recorded. Using the preference paradigm, we show that participants preferred to interact with the adaptive Viball rather than with the most slowly vibrating ball that most strongly reduced arousal. The stability of the human-ball coordination was the highest with the adaptive Viball. There was also a positive correlation between the stability of coordination and arousal. The data are discussed in light of the energy-based interpretation of coordination dynamics.
Collapse
Affiliation(s)
- Clement Blanc
- Center for Studies and Research on Health Psychopathology and Psychology (CERPPS), University of Toulouse 2 Jean Jaurès, Toulouse, France.
| | - Jean-Christophe Buisson
- Institut de Recherche en Informatique de Toulouse-UMR 5505, CNRS-University of Toulouse 3 Paul Sabatier, Toulouse, France
| | - Jeanne Kruck
- Center for Studies and Research on Health Psychopathology and Psychology (CERPPS), University of Toulouse 2 Jean Jaurès, Toulouse, France
| | - Viviane Kostrubiec
- Center for Studies and Research on Health Psychopathology and Psychology (CERPPS), University of Toulouse 2 Jean Jaurès, Toulouse, France
- University of Toulouse 3 Paul Sabatier, Toulouse, France
| |
Collapse
|
345
|
Friedman G, Turk KW, Budson AE. The Current of Consciousness: Neural Correlates and Clinical Aspects. Curr Neurol Neurosci Rep 2023; 23:345-352. [PMID: 37303019 PMCID: PMC10287796 DOI: 10.1007/s11910-023-01276-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2023] [Indexed: 06/13/2023]
Abstract
PURPOSE OF REVIEW In this review, we summarize the current understanding of consciousness including its neuroanatomic basis. We discuss major theories of consciousness, physical exam-based and electroencephalographic metrics used to stratify levels of consciousness, and tools used to shed light on the neural correlates of the conscious experience. Lastly, we review an expanded category of 'disorders of consciousness,' which includes disorders that impact either the level or experience of consciousness. RECENT FINDINGS Recent studies have revealed many of the requisite EEG, ERP, and fMRI signals to predict aspects of the conscious experience. Neurological disorders that disrupt the reticular activating system can affect the level of consciousness, whereas cortical disorders from seizures and migraines to strokes and dementia may disrupt phenomenal consciousness. The recently introduced memory theory of consciousness provides a new explanation of phenomenal consciousness that may explain better than prior theories both experimental studies and the neurologist's clinical experience. Although the complete neurobiological basis of consciousness remains a mystery, recent advances have improved our understanding of the physiology underlying level of consciousness and phenomenal consciousness.
Collapse
Affiliation(s)
- Garrett Friedman
- Center for Translational Cognitive Neuroscience, VA Boston Healthcare System, 150 S. Huntington Ave., Jamaica Plain, Boston, MA, 02130, USA
| | - Katherine W Turk
- Center for Translational Cognitive Neuroscience, VA Boston Healthcare System, 150 S. Huntington Ave., Jamaica Plain, Boston, MA, 02130, USA
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Andrew E Budson
- Center for Translational Cognitive Neuroscience, VA Boston Healthcare System, 150 S. Huntington Ave., Jamaica Plain, Boston, MA, 02130, USA.
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA.
| |
Collapse
|
346
|
Radecke JO, Fiene M, Misselhorn J, Herrmann CS, Engel AK, Wolters CH, Schneider TR. Personalized alpha-tACS targeting left posterior parietal cortex modulates visuo-spatial attention and posterior evoked EEG activity. Brain Stimul 2023; 16:1047-1061. [PMID: 37353071 DOI: 10.1016/j.brs.2023.06.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 06/04/2023] [Accepted: 06/20/2023] [Indexed: 06/25/2023] Open
Abstract
BACKGROUND Covert visuo-spatial attention is marked by the anticipatory lateralization of neuronal alpha activity in the posterior parietal cortex. Previous applications of transcranial alternating current stimulation (tACS) at the alpha frequency, however, were inconclusive regarding the causal contribution of oscillatory activity during visuo-spatial attention. OBJECTIVE Attentional shifts of behavior and electroencephalography (EEG) after-effects were assessed in a cued visuo-spatial attention paradigm. We hypothesized that parietal alpha-tACS shifts attention relative to the ipsilateral visual hemifield. Furthermore, we assumed that modulations of behavior and neurophysiology are related to individual electric field simulations. METHODS We applied personalized tACS at alpha and gamma frequencies to elucidate the role of oscillatory neuronal activity for visuo-spatial attention. Personalized tACS montages were algorithmically optimized to target individual left and right parietal regions that were defined by an EEG localizer. RESULTS Behavioral performance in the left hemifield was specifically increased by alpha-tACS compared to gamma-tACS targeting the left parietal cortex. This hemisphere-specific effect was observed despite the symmetry of simulated electric fields. In addition, visual event-related potential (ERP) amplitudes showed a reduced lateralization over posterior sites induced by left alpha-tACS. Neuronal sources of this effect were localized in the left premotor cortex. Interestingly, accuracy modulations induced by left parietal alpha-tACS were directly related to electric field magnitudes in the left premotor cortex. CONCLUSION Overall, results corroborate the notion that alpha lateralization plays a causal role in covert visuo-spatial attention and indicate an increased susceptibility of parietal and premotor brain regions of the left dorsal attention network to subtle tACS-neuromodulation.
Collapse
Affiliation(s)
- Jan-Ole Radecke
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany.
| | - Marina Fiene
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Jonas Misselhorn
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Christoph S Herrmann
- Experimental Psychology Lab, Department of Psychology, University of Oldenburg, 26111, Oldenburg, Germany; Research Center Neurosensory Science, University of Oldenburg, 26111, Oldenburg, Germany; Cluster of Excellence "Hearing4all", Germany
| | - Andreas K Engel
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Carsten H Wolters
- Institute for Biomagnetism and Biosignalanalysis, University of Münster, 48149, Münster, Germany; Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, 48149, Münster, Germany
| | - Till R Schneider
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| |
Collapse
|
347
|
Seifpour S, Šatka A. Tensor Decomposition Analysis of Longitudinal EEG Signals Reveals Differential Oscillatory Dynamics in Eyes-Closed and Eyes-Open Motor Imagery BCI: A Case Report. Brain Sci 2023; 13:1013. [PMID: 37508946 PMCID: PMC10377314 DOI: 10.3390/brainsci13071013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/15/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
Functional dissociation of brain neural activity induced by opening or closing the eyes has been well established. However, how the temporal dynamics of the underlying neuronal modulations differ between these eye conditions during movement-related behaviours is less known. Using a robotic-assisted motor imagery brain-computer interface (MI BCI), we measured neural activity over the motor regions with electroencephalography (EEG) in a stroke survivor during his longitudinal rehabilitation training. We investigated lateralized oscillatory sensorimotor rhythm modulations while the patient imagined moving his hemiplegic hand with closed and open eyes to control an external robotic splint. In order to precisely identify the main profiles of neural activation affected by MI with eyes-open (MIEO) and eyes-closed (MIEC), a data-driven approach based on parallel factor analysis (PARAFAC) tensor decomposition was employed. Using the proposed framework, a set of narrow-band, subject-specific sensorimotor rhythms was identified; each of them had its own spatial and time signature. When MIEC trials were compared with MIEO trials, three key narrow-band rhythms whose peak frequencies centred at ∼8.0 Hz, ∼11.5 Hz, and ∼15.5 Hz, were identified with differently modulated oscillatory dynamics during movement preparation, initiation, and completion time frames. Furthermore, we observed that lower and higher sensorimotor oscillations represent different functional mechanisms within the MI paradigm, reinforcing the hypothesis that rhythmic activity in the human sensorimotor system is dissociated. Leveraging PARAFAC, this study achieves remarkable precision in estimating latent sensorimotor neural substrates, aiding the investigation of the specific functional mechanisms involved in the MI process.
Collapse
Affiliation(s)
- Saman Seifpour
- RIKEN Center for Brain Science, Wako, Saitama 351-0198, Japan
- Institute of Measurement Science, Slovak Academy of Sciences, Dubravska cesta 9, 84104 Bratislava, Slovakia
| | - Alexander Šatka
- Institute of Measurement Science, Slovak Academy of Sciences, Dubravska cesta 9, 84104 Bratislava, Slovakia
| |
Collapse
|
348
|
Baumgarten TJ, Wutz A, Samaha J. Editorial: Peak frequencies in neural oscillatory activity and their connection to perception and cognition. Front Psychol 2023; 14:1234955. [PMID: 37425156 PMCID: PMC10328761 DOI: 10.3389/fpsyg.2023.1234955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 07/11/2023] Open
Affiliation(s)
- Thomas J. Baumgarten
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Andreas Wutz
- Department of Psychology and Centre for Cognitive Neuroscience, University of Salzburg, Salzburg, Austria
| | - Jason Samaha
- Psychology Department, University of California, Santa Cruz, Santa Cruz, CA, United States
| |
Collapse
|
349
|
Koirala N, Deroche MLD, Wolfe J, Neumann S, Bien AG, Doan D, Goldbeck M, Muthuraman M, Gracco VL. Dynamic networks differentiate the language ability of children with cochlear implants. Front Neurosci 2023; 17:1141886. [PMID: 37409105 PMCID: PMC10318154 DOI: 10.3389/fnins.2023.1141886] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 05/29/2023] [Indexed: 07/07/2023] Open
Abstract
Background Cochlear implantation (CI) in prelingually deafened children has been shown to be an effective intervention for developing language and reading skill. However, there is a substantial proportion of the children receiving CI who struggle with language and reading. The current study-one of the first to implement electrical source imaging in CI population was designed to identify the neural underpinnings in two groups of CI children with good and poor language and reading skill. Methods Data using high density electroencephalography (EEG) under a resting state condition was obtained from 75 children, 50 with CIs having good (HL) or poor language skills (LL) and 25 normal hearing (NH) children. We identified coherent sources using dynamic imaging of coherent sources (DICS) and their effective connectivity computing time-frequency causality estimation based on temporal partial directed coherence (TPDC) in the two CI groups compared to a cohort of age and gender matched NH children. Findings Sources with higher coherence amplitude were observed in three frequency bands (alpha, beta and gamma) for the CI groups when compared to normal hearing children. The two groups of CI children with good (HL) and poor (LL) language ability exhibited not only different cortical and subcortical source profiles but also distinct effective connectivity between them. Additionally, a support vector machine (SVM) algorithm using these sources and their connectivity patterns for each CI group across the three frequency bands was able to predict the language and reading scores with high accuracy. Interpretation Increased coherence in the CI groups suggest overall that the oscillatory activity in some brain areas become more strongly coupled compared to the NH group. Moreover, the different sources and their connectivity patterns and their association to language and reading skill in both groups, suggest a compensatory adaptation that either facilitated or impeded language and reading development. The neural differences in the two groups of CI children may reflect potential biomarkers for predicting outcome success in CI children.
Collapse
Affiliation(s)
- Nabin Koirala
- Child Study Center, Yale School of Medicine, Yale University, New Haven, CT, United States
| | | | - Jace Wolfe
- Hearts for Hearing Foundation, Oklahoma City, OK, United States
| | - Sara Neumann
- Hearts for Hearing Foundation, Oklahoma City, OK, United States
| | - Alexander G. Bien
- Department of Otolaryngology – Head and Neck Surgery, University of Oklahoma Medical Center, Oklahoma City, OK, United States
| | - Derek Doan
- University of Oklahoma College of Medicine, Oklahoma City, OK, United States
| | - Michael Goldbeck
- University of Oklahoma College of Medicine, Oklahoma City, OK, United States
| | - Muthuraman Muthuraman
- Department of Neurology, Neural Engineering with Signal Analytics and Artificial Intelligence (NESA-AI), Universitätsklinikum Würzburg, Würzburg, Germany
| | - Vincent L. Gracco
- Child Study Center, Yale School of Medicine, Yale University, New Haven, CT, United States
- School of Communication Sciences and Disorders, McGill University, Montreal, QC, Canada
| |
Collapse
|
350
|
Bertaccini R, Ippolito G, Tarasi L, Zazio A, Stango A, Bortoletto M, Romei V. Rhythmic TMS as a Feasible Tool to Uncover the Oscillatory Signatures of Audiovisual Integration. Biomedicines 2023; 11:1746. [PMID: 37371840 DOI: 10.3390/biomedicines11061746] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/09/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
Multisensory integration is quintessential to adaptive behavior, with clinical populations showing significant impairments in this domain, most notably hallucinatory reports. Interestingly, altered cross-modal interactions have also been reported in healthy individuals when engaged in tasks such as the Sound-Induced Flash-Illusion (SIFI). The temporal dynamics of the SIFI have been recently tied to the speed of occipital alpha rhythms (IAF), with faster oscillations entailing reduced temporal windows within which the illusion is experienced. In this regard, entrainment-based protocols have not yet implemented rhythmic transcranial magnetic stimulation (rhTMS) to causally test for this relationship. It thus remains to be evaluated whether rhTMS-induced acoustic and somatosensory sensations may not specifically interfere with the illusion. Here, we addressed this issue by asking 27 volunteers to perform a SIFI paradigm under different Sham and active rhTMS protocols, delivered over the occipital pole at the IAF. Although TMS has been proven to act upon brain tissues excitability, results show that the SIFI occurred for both Sham and active rhTMS, with the illusory rate not being significantly different between baseline and stimulation conditions. This aligns with the discrete sampling hypothesis, for which alpha amplitude modulation, known to reflect changes in cortical excitability, should not account for changes in the illusory rate. Moreover, these findings highlight the viability of rhTMS-based interventions as a means to probe the neuroelectric signatures of illusory and hallucinatory audiovisual experiences, in healthy and neuropsychiatric populations.
Collapse
Affiliation(s)
- Riccardo Bertaccini
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia, Alma Mater Studiorum-Università di Bologna, 47521 Cesena, Italy
- Neurophysiology Lab., IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy
| | - Giuseppe Ippolito
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia, Alma Mater Studiorum-Università di Bologna, 47521 Cesena, Italy
- Laboratory of Cognitive Neuroscience, Department of Languages and Literatures, Communication, Education and Society, University of Udine, 33100 Udine, Italy
| | - Luca Tarasi
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia, Alma Mater Studiorum-Università di Bologna, 47521 Cesena, Italy
| | - Agnese Zazio
- Neurophysiology Lab., IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy
| | - Antonietta Stango
- Neurophysiology Lab., IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy
| | - Marta Bortoletto
- Neurophysiology Lab., IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy
| | - Vincenzo Romei
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia, Alma Mater Studiorum-Università di Bologna, 47521 Cesena, Italy
- Facultad de Lenguas y Educación, Universidad Antonio de Nebrija, 28015 Madrid, Spain
| |
Collapse
|