301
|
Shaik MI, Azhari MF, Sarbon NM. Gelatin-Based Film as a Color Indicator in Food-Spoilage Observation: A Review. Foods 2022; 11:foods11233797. [PMID: 36496605 PMCID: PMC9739830 DOI: 10.3390/foods11233797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/12/2022] [Accepted: 11/15/2022] [Indexed: 11/27/2022] Open
Abstract
The color indicator can monitor the quality and safety of food products due to its sensitive nature toward various pH levels. A color indicator helps consumers monitor the freshness of food products since it is difficult for them to depend solely on their appearance. Thus, this review could provide alternative suggestions to solve the food-spoilage determination, especially for perishable food. Usually, food spoilage happens due to protein and lipid oxidation, enzymatic reaction, and microbial activity that will cause an alteration of the pH level. Due to their broad-spectrum properties, natural sources such as anthocyanin, curcumin, and betacyanin are commonly used in developing color indicators. They can also improve the gelatin-based film's morphology and significant drawbacks. Incorporating natural colorants into the gelatin-based film can improve the film's strength, gas-barrier properties, and water-vapor permeability and provide antioxidant and antimicrobial properties. Hence, the color indicator can be utilized as an effective tool to monitor and control the shelf life of packaged foods. Nevertheless, future studies should consider the determination of food-spoilage observation using natural colorants from betacyanin, chlorophyll, and carotenoids, as well as the determination of gas levels in food spoilage, especially carbon dioxide gas.
Collapse
|
302
|
Development of Smart Bilayer Alginate/Agar Film Containing Anthocyanin and Catechin-Lysozyme. Polymers (Basel) 2022; 14:polym14225042. [PMID: 36433169 PMCID: PMC9699012 DOI: 10.3390/polym14225042] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/10/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022] Open
Abstract
Smart packaging can provide real-time information about changes in food quality and impart a protective effect to the food product by using active agents. This study aimed to develop a smart bilayer film (alginate/agar) with a cellulose nanosphere (CNs) from corncob. The bilayer films were prepared using 1.5% (w/w) sodium alginate with 0.25% (w/v) butterfly pea extract incorporated (indicator layer) and 2% (w/w) agar containing 0.5% (w/v) catechin−lysozyme (ratio 1:1) (active layer). The CNs were incorporated into the alginate layer at different concentrations (0, 5, 10, 20, and 30% w/w-based film) in order to improve the film’s properties. The thickness of smart bilayer film dramatically increased with the increase of CNs concentration. The inclusion of CNs reduced the transparency and elongation at break of the smart bilayer film while increasing its tensile strength (p < 0.05). The integration of CNs did not significantly affect the solubility and water vapor permeability of the smart bilayer film (p > 0.05). The smart bilayer film displayed a blue film with a glossy (without CNs) or matte surface (with CNs). The developed bilayer film shows excellent pH sensitivity, changing color at a wide range of pHs, and has a good response to ammonia and acetic acid gases. The film possesses exceptional antimicrobial and antioxidant activities. The integration of CNs did not influence the antibacterial activity of the film, despite the presence of a higher level of DPPH in film containing CNs. The smart bilayer film was effectively used to monitor shrimp freshness. These findings imply that smart bilayer films with and without CNs facilitate food safety and increase food shelf life by monitoring food quality.
Collapse
|
303
|
Novel Features of Cellulose-Based Films as Sustainable Alternatives for Food Packaging. Polymers (Basel) 2022; 14:polym14224968. [PMID: 36433095 PMCID: PMC9699531 DOI: 10.3390/polym14224968] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/31/2022] [Accepted: 11/07/2022] [Indexed: 11/18/2022] Open
Abstract
Packaging plays an important role in food quality and safety, especially regarding waste and spoilage reduction. The main drawback is that the packaging industry is among the ones that is highly dependent on plastic usage. New alternatives to conventional plastic packaging such as biopolymers-based type are mandatory. Examples are cellulose films and its derivatives. These are among the most used options in the food packaging due to their unique characteristics, such as biocompatibility, environmental sustainability, low price, mechanical properties, and biodegradability. Emerging concepts such as active and intelligent packaging provides new solutions for an extending shelf-life, and it fights some limitations of cellulose films and improves the properties of the packaging. This article reviews the available cellulose polymers and derivatives that are used as sustainable alternatives for food packaging regarding their properties, characteristics, and functionalization towards active properties enhancement. In this way, several types of films that are prepared with cellulose and their derivatives, incorporating antimicrobial and antioxidant compounds, are herein described, and discussed.
Collapse
|
304
|
Iftikhar N, Hussain AI, Kamal GM, Manzoor S, Fatima T, Alswailmi FK, Ahmad A, Alsuwayt B, Abdullah Alnasser SM. Antioxidant, Anti-Obesity, and Hypolipidemic Effects of Polyphenol Rich Star Anise ( Illicium verum) Tea in High-Fat-Sugar Diet-Induced Obesity Rat Model. Antioxidants (Basel) 2022; 11:2240. [PMID: 36421427 PMCID: PMC9686881 DOI: 10.3390/antiox11112240] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/31/2022] [Accepted: 11/07/2022] [Indexed: 11/16/2022] Open
Abstract
Star anise (Illicium verum Hook. fil.) is commonly utilized as a culinary and medicinal fruit and is most famous in indigenous systems of medicine. The present research work aims to appraise and validate the potential of polyphenol-rich star anise tea (SAT) on oxidative stress, obesity and related biochemical parameters in high-fat-sugar-diet (HFSD)-induced obesity model in rats. SAT was prepared using the traditional method in warm water. The Reverse Phase High Pressure Liquid Chromatography (RP-HPLC) analysis was performed for the simultaneous determination of phenolic acids and flavonoids in SAT. Two doses (250 and 500 mg/kg body weight) were selected to investigate the anti-obesity potential of SAT using HFSD-induced obese rat model. Major (>5 mg/100 mL) phenolic acids in SAT were p-coumeric acid, gallic aid, cinamic acid, chlorogenic acid and ferulic acid while catechin and rutin were the major flavonoids detected in the SAT. SAT exhibited 51.3% DPPH radical scavenging activity. In vivo study showed that higher doses of SAT (500 mg/kg body weight) significantly reduced the body weight increase (74.82%) and BMI (0.64 g/cm2). Moreover, significant reductions in the levels of serum total cholesterol, triglyceride, LDL and VLDL were recorded in all the treatment groups in comparison to the HFSDC group. Furthermore, SAT reduced the alterations in MDA, SOD and GSH levels of experimental groups thus showing the potential against oxidative stress. The SAT-500 group showed a significant decrease in the elevated kidney and liver weights and atherogenic index in comparison to the HFSDC group. The present study proved that SAT exhibited strong protective effects against obesity and oxidative stress, especially at higher doses.
Collapse
Affiliation(s)
- Neelam Iftikhar
- Natural Product and Synthetic Chemistry (NPSC) Lab, Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Abdullah Ijaz Hussain
- Natural Product and Synthetic Chemistry (NPSC) Lab, Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan
- Central Hi-Tech Lab, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Ghulam Mustafa Kamal
- Institute of Chemistry, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan 64200, Pakistan
| | - Sidra Manzoor
- Natural Product and Synthetic Chemistry (NPSC) Lab, Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Tabinda Fatima
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Hafr Al-Batin, Hafr Al-Batin 39524, Saudi Arabia
| | - Farhan Khashim Alswailmi
- Department of Pharmacy Practice, College of Pharmacy, University of Hafr Al-Batin, Hafr Al-Batin 39524, Saudi Arabia
| | - Ashfaq Ahmad
- Department of Pharmacy Practice, College of Pharmacy, University of Hafr Al-Batin, Hafr Al-Batin 39524, Saudi Arabia
| | - Bader Alsuwayt
- Department of Pharmacy Practice, College of Pharmacy, University of Hafr Al-Batin, Hafr Al-Batin 39524, Saudi Arabia
| | | |
Collapse
|
305
|
Emir AA, Yildiz E, Aydogdu Y, Sumnu G. Active Films Based on Faba Bean (Vicia faba L.) Flour Incorporated with Sumac (Rhus coriaria): Assessment of Antioxidant and Antimicrobial Performances of Packaging for Shelf Life of Chicken Breast. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02940-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
306
|
Qian YF, Yu JY, Yu YJ, Xie J, Yang SP. Effects of immersing treatment of curcumin and piperine combined with vacuum packaging on the quality of salmon ( Salmo salar) during cold chain logistics. Front Nutr 2022; 9:1021280. [PMID: 36407510 PMCID: PMC9671655 DOI: 10.3389/fnut.2022.1021280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 10/18/2022] [Indexed: 12/05/2023] Open
Abstract
In order to study the effects of the compound preservatives (curcumin and piperine (CP)) and vacuum packaging (VP) on the quality of salmon during cold chain logistics suffered from temperature abuse, the physiochemical indexes (texture, water holding capacity (WHC), total volatile basic nitrogen (TVB-N), thiobarbituric acid reactive substances (TBARS), free amino acids (FAA) contents), microbial indicators (total mesophilic bacteria count (MBC), total psychrotrophic bacteria count (PBC), H2S-producing bacteria count (HSBC)) were determined, and the moisture changes were explored by near-infrared (NIR) spectroscopy and low-field nuclear magnetic resonance (LF-NMR). The results showed that the treatment of curcumin and piperine in combination with vacuum packaging could maintain the quality of salmon suffered from temperature abuse most effectively. At the end of storage, the MBC of VP+CP was only 4.95 log CFU/g, which was about 1 log CFU/g lower than the control sample stored at the same condition. The combined treatment also retarded the increase of TVB-N, TBARS, and the decrease of hardness, springiness, and a* value, as well as water migration in salmon, contributing to higher water holding capacity and better appearance. Besides, VP+CP retarded the decrease of free glutamate, which contributed to umami taste. Due to the biological activity and safety of the preserves, the combined treatment could be a promising method for preservation of seafood.
Collapse
Affiliation(s)
- Yun-Fang Qian
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai Ocean University, Shanghai, China
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
| | - Jia-Yi Yu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Ying-Jie Yu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai Ocean University, Shanghai, China
| | - Sheng-Ping Yang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
307
|
Fallah AA, Sarmast E, Ghasemi M, Jafari T, Mousavi Khaneghah A, Lacroix M. Combination of ionizing radiation and bio-based active packaging for muscle foods: A global systematic review and meta-analysis. Food Chem 2022; 405:134960. [DOI: 10.1016/j.foodchem.2022.134960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 10/29/2022] [Accepted: 11/11/2022] [Indexed: 11/18/2022]
|
308
|
Gelatin films from wastes: a review of production, characterization, and application trends in food preservation and agriculture. Food Res Int 2022; 162:112114. [DOI: 10.1016/j.foodres.2022.112114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 10/27/2022] [Accepted: 10/30/2022] [Indexed: 11/06/2022]
|
309
|
Chitosan-based Maillard self-reaction products: formation, characterization, antioxidant and antimicrobial potential. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2022. [DOI: 10.1016/j.carpta.2022.100257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
310
|
Yang Y, Yu X, Zhu Y, Zeng Y, Fang C, Liu Y, Hu S, Ge Y, Jiang W. Preparation and application of a colorimetric film based on sodium alginate/sodium carboxymethyl cellulose incorporated with rose anthocyanins. Food Chem 2022; 393:133342. [PMID: 35661468 DOI: 10.1016/j.foodchem.2022.133342] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 05/17/2022] [Accepted: 05/24/2022] [Indexed: 11/30/2022]
Abstract
To monitor the freshness of Penaeus vannamei during storage, a colorimetric film based on sodium alginate/sodium carboxymethyl cellulose incorporated with rose anthocyanins extract (RAE) was prepared. The results showed that the incorporation of RAE increased moisture content, water vapor permeability, and water contact angle of the colorimetric film. FTIR, XRD spectra, and SEM demonstrated that RAE had good compatibility with the film-forming substrate. The colorimetric film presented obvious color variation in the pH range of 2.0-12.0 and was sensitive to volatile ammonia. The colorimetric film exhibited a visual color change from pink to pale yellow to yellowish green during the storage of Penaeus vannamei at 4 °C. Significant correlations were observed between the color change of colorimetric film (ΔE) and the pH value or TVB-N content of Penaeus vannamei (p < 0.05). Therefore, the colorimetric film shows great application potential to monitor the freshness of shrimp as intelligent packaging.
Collapse
Affiliation(s)
- Yang Yang
- Key Laboratory of Key Technical Factors in Zhejiang Seafood Health Hazards, College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Xuena Yu
- Institute of Innovation and Application, Zhejiang Ocean University, Zhoushan 316022, China
| | - Yanling Zhu
- Institute of Innovation and Application, Zhejiang Ocean University, Zhoushan 316022, China
| | - Yan Zeng
- Institute of Innovation and Application, Zhejiang Ocean University, Zhoushan 316022, China
| | - Chunshan Fang
- Key Laboratory of Key Technical Factors in Zhejiang Seafood Health Hazards, College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Yu Liu
- Key Laboratory of Key Technical Factors in Zhejiang Seafood Health Hazards, College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China; Institute of Innovation and Application, Zhejiang Ocean University, Zhoushan 316022, China
| | - Shiwei Hu
- Key Laboratory of Key Technical Factors in Zhejiang Seafood Health Hazards, College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China; Institute of Innovation and Application, Zhejiang Ocean University, Zhoushan 316022, China
| | - Yaming Ge
- Key Laboratory of Key Technical Factors in Zhejiang Seafood Health Hazards, College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China; Institute of Innovation and Application, Zhejiang Ocean University, Zhoushan 316022, China
| | - Wei Jiang
- Key Laboratory of Key Technical Factors in Zhejiang Seafood Health Hazards, College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China; Institute of Innovation and Application, Zhejiang Ocean University, Zhoushan 316022, China.
| |
Collapse
|
311
|
Recent advances in the improvement of carboxymethyl cellulose-based edible films. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.09.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
312
|
Gracia-Vallés N, Ruiz-Torrubia F, Mitchell SG, Nerín C, Silva F. Developing ethyl lauroyl arginate antimicrobial films to combat Listeria monocytogenes in cured ham. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
313
|
Khan S, Wang H, Shu Y, Zhang Z, Liang T. Characterization of a novel bioactive film based on Artemisia sphaerocephala Krasch. Gum (ASKG) complexed with β-cyclodextrin/curcumin (β-CD/CUR) inclusion complex and its application in meat preservation. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
314
|
Amini M, Rasouli M, Ghoranneviss M, Momeni M, Ostrikov KK. Synergistic cellulose-based nanocomposite packaging and cold plasma decontamination for extended saffron preservation. Sci Rep 2022; 12:18275. [PMID: 36316404 PMCID: PMC9619018 DOI: 10.1038/s41598-022-23284-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 10/27/2022] [Indexed: 11/05/2022] Open
Abstract
Sterilization of saffron packaging and maintaining the quality of saffron content are the main priorities in saffron preservation. Common modalities do not offer lasting saffron preservation and it is urgent to develop novel packaging approaches from renewable resources and prevent packaging waste. Here, simultaneous decontamination and quality maintenance of saffron is demonstrated, for the first time, through the synergistic application of nano-clay-loaded carboxymethyl cellulose (CMC)/polyvinyl alcohol (PVA) nanocomposites (CNCs) and cold plasmas (CP). Compared to the separate uses of CP and CMC/PVA/nano clay, our results confirm the synergies between CP and CMC/PVA/nano clay cause complete inactivation of Escherichia coli bacteria, while not significantly affecting the concentrations of the essential saffron components (safranal, crocin, and picrocrocin). Overall, the CP-treated CMC/PVA/nano clay fosters saffron preservation, through contamination removal and quality maintenance of the food product. The synergistic application of CP and CMC/PVA/nano clay thus represents a promising strategy for packaging, sterilization, and preservation of high-value food products.
Collapse
Affiliation(s)
- Maryam Amini
- grid.411463.50000 0001 0706 2472Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Milad Rasouli
- grid.411463.50000 0001 0706 2472Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran ,grid.412265.60000 0004 0406 5813Department of Physics and Institute for Plasma Research, Kharazmi University, Tehran, Iran
| | - Mahmood Ghoranneviss
- grid.411463.50000 0001 0706 2472Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mahdi Momeni
- grid.440804.c0000 0004 0618 762XFaculty of Physics, Shahrood University of Technology, Semnan, Iran
| | - Kostya Ken Ostrikov
- grid.1024.70000000089150953School of Chemistry and Physics and QUT Centre for Materials Science, Queensland University of Technology (QUT), Brisbane, Australia
| |
Collapse
|
315
|
Jayarathna S, Andersson M, Andersson R. Recent Advances in Starch-Based Blends and Composites for Bioplastics Applications. Polymers (Basel) 2022; 14:4557. [PMID: 36365555 PMCID: PMC9657003 DOI: 10.3390/polym14214557] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/20/2022] [Accepted: 10/23/2022] [Indexed: 09/10/2023] Open
Abstract
Environmental pollution by synthetic polymers is a global problem and investigating substitutes for synthetic polymers is a major research area. Starch can be used in formulating bioplastic materials, mainly as blends or composites with other polymers. The major drawbacks of using starch in such applications are water sensitivity and poor mechanical properties. Attempts have been made to improve the mechanical properties of starch-based blends and composites, by e.g., starch modification or plasticization, matrix reinforcement, and polymer blending. Polymer blending can bring synergetic benefits to blends and composites, but necessary precautions must be taken to ensure the compatibility of hydrophobic polymers and hydrophilic starch. Genetic engineering offers new possibilities to modify starch inplanta in a manner favorable for bioplastics applications, while the incorporation of antibacterial and/or antioxidant agents into starch-based food packaging materials brings additional advantages. In conclusion, starch is a promising material for bioplastic production, with great potential for further improvements. This review summarizes the recent advances in starch-based blends and composites and highlights the potential strategies for overcoming the major drawbacks of using starch in bioplastics applications.
Collapse
Affiliation(s)
- Shishanthi Jayarathna
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Box 7015, SE-750 07 Uppsala, Sweden
| | - Mariette Andersson
- Department of Plant Breeding, Swedish University of Agricultural Sciences, P.O. Box 190, SE-234 22 Lomma, Sweden
| | - Roger Andersson
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Box 7015, SE-750 07 Uppsala, Sweden
| |
Collapse
|
316
|
Chaari M, Elhadef K, Akermi S, Ben Akacha B, Fourati M, Chakchouk Mtibaa A, Ennouri M, Sarkar T, Shariati MA, Rebezov M, Abdelkafi S, Mellouli L, Smaoui S. Novel Active Food Packaging Films Based on Gelatin-Sodium Alginate Containing Beetroot Peel Extract. Antioxidants (Basel) 2022; 11:2095. [PMID: 36358468 PMCID: PMC9686688 DOI: 10.3390/antiox11112095] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/19/2022] [Accepted: 10/21/2022] [Indexed: 08/13/2023] Open
Abstract
Currently, the exploration of natural colorants from vegetal waste has gained particular attention. Furthermore, incorporation of these natural sources into biopolymers is an encouraging environmentally friendly approach to establishing active films with biological activities for food packaging. The present study developed bioactive antioxidant films based on gelatin-sodium alginate (NaAlg) incorporated with aqueous beetroot peel extract (BPE). Firstly, the effects of combining gelatin-NaAlg and BPE at 0.25, 0.5, and 1% on the mechanical, physical, antioxidant, and antibacterial properties of the films were analyzed. With increasing BPE, mechanico-physical properties and antioxidant and anti-foodborne pathogen capacities were enhanced. Likewise, when added to gelatin-NaAlg films, BPE remarkably increased the instrumental color properties. Moreover, during 14 days of storage at 4 °C, the impact of gelatin-NaAlg coating impregnated with BPE on microbial and chemical oxidation and on the sensory characteristics of beef meat samples was periodically assessed. Interestingly, by the end of the storage, BPE at 1% limited the microbial deterioration, enhanced the instrumental color, delayed chemical oxidation, and improved sensory traits. By practicing chemometrics tools (principal component analysis and heat maps), all data provided valuable information for categorizing all samples regarding microbiological and oxidative properties, sensory features, and instrumental color. Our findings revealed the ability of gelatin-NaAlg with BPE as an antioxidant to be employed as food packaging for meat preservation.
Collapse
Affiliation(s)
- Moufida Chaari
- Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Center of Biotechnology of Sfax (CBS), University of Sfax, Sfax 3018, Tunisia
| | - Khaoula Elhadef
- Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Center of Biotechnology of Sfax (CBS), University of Sfax, Sfax 3018, Tunisia
| | - Sarra Akermi
- Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Center of Biotechnology of Sfax (CBS), University of Sfax, Sfax 3018, Tunisia
| | - Boutheina Ben Akacha
- Laboratory of Biotechnology and Plant Improvement, Center of Biotechnology of Sfax, Sfax 3018, Tunisia
| | - Mariam Fourati
- Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Center of Biotechnology of Sfax (CBS), University of Sfax, Sfax 3018, Tunisia
| | - Ahlem Chakchouk Mtibaa
- Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Center of Biotechnology of Sfax (CBS), University of Sfax, Sfax 3018, Tunisia
| | - Monia Ennouri
- Olive Tree Institute, University of Sfax, Sfax 3018, Tunisia
- Valuation, Security and Food Analysis Laboratory, National School of Engineers of Sfax, University of Sfax, Sfax 3038, Tunisia
| | - Tanmay Sarkar
- Department of Food Processing Technology, Malda Polytechnic, Bengal State Council of Technical Education, Government of West Bengal, Malda 732102, West Bengal, India
| | - Mohammad Ali Shariati
- Department of Scientific Research, Russian State Agrarian University—Moscow Timiryazev Agricultural Academy, 127550 Moscow, Russia
| | - Maksim Rebezov
- Department of Scientific Research, Russian State Agrarian University—Moscow Timiryazev Agricultural Academy, 127550 Moscow, Russia
- Department of Scientific Research, V. M. Gorbatov Federal Research, Center for Food Systems, 26 Talalikhin St., 109316 Moscow, Russia
| | - Slim Abdelkafi
- Laboratory of Enzymatic Engineering and Microbiology, Algae Biotechnology Unit, Biological Engineering Department, National School of Engineers of Sfax, University of Sfax, Sfax 3038, Tunisia
| | - Lotfi Mellouli
- Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Center of Biotechnology of Sfax (CBS), University of Sfax, Sfax 3018, Tunisia
| | - Slim Smaoui
- Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Center of Biotechnology of Sfax (CBS), University of Sfax, Sfax 3018, Tunisia
| |
Collapse
|
317
|
Amani F, Rezaei A, Akbari H, Dima C, Jafari SM. Active Packaging Films Made by Complex Coacervation of Tragacanth Gum and Gelatin Loaded with Curcumin; Characterization and Antioxidant Activity. Foods 2022; 11:3168. [PMID: 37430917 PMCID: PMC9601596 DOI: 10.3390/foods11203168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/04/2022] [Accepted: 10/10/2022] [Indexed: 08/29/2023] Open
Abstract
The development of biopolymer-based green packaging films has gained remarkable attention in recent years. In this study, curcumin active films were prepared using different proportions of gelatin (GE) and a soluble fraction of tragacanth gum (SFTG) (1GE:1SFTG and 2GE:1SFTG) by complex coacervation. The various ratios of used biopolymers did not significantly impact the mechanical properties, thickness, and WVP of final films. However, biopolymers' ratio impacted the moisture content, water solubility, swelling ratio, and release rate. Blending curcumin with biopolymers caused a reduction in tensile strength (from 1.74 MPa to 0.62 MPa for film containing 1GE:1SFTG and from 1.77 MPa to 0.17 MPa for film containing 2GE:1SFTG) and proliferation in elongation at break (from 81.48% to 122.00% for film containing 1GE:1SFTG and from 98.87% to 109.58% MPa for film containing 2GE:1SFTG). Moisture content and water solubility of films experienced a decrease after the addition of curcumin. Antioxidant activity of curcumin-loaded films was almost five times higher than neat film samples. Furthermore, the interreaction between the carboxylic group of SFTG and amide I of GE formed an amide linkage and was proven by FTIR analysis. TGA showed a drop in the thermal stability of film samples compared to the main ingredients. In general, the complex coacervate of SFTG and GE has the advantage of developing eco-friendly and low-cost packaging film in the food industry, especially for the protection of fatty foods.
Collapse
Affiliation(s)
- Fateme Amani
- Nutrition and Food Security Research Center, Department of Food Science and Technology, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan P.O. Box 81746-73461, Iran
| | - Atefe Rezaei
- Nutrition and Food Security Research Center, Department of Food Science and Technology, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan P.O. Box 81746-73461, Iran
| | - Hajar Akbari
- Nutrition and Food Security Research Center, Department of Food Science and Technology, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan P.O. Box 81746-73461, Iran
| | - Cristian Dima
- Faculty of Food Science and Engineering, “Dunarea de Jos” University of Galati, “Domnească” Str. 111, Building F, Room 107, 800201 Galati, Romania
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan P.O. Box 49138-15739, Iran
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, E-32004 Ourense, Spain
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China
| |
Collapse
|
318
|
Production of Thermoplastic Starch- Aloe vera Gel Film with High Tensile Strength and Improved Water Solubility. Polymers (Basel) 2022; 14:polym14194213. [PMID: 36236161 PMCID: PMC9571595 DOI: 10.3390/polym14194213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/12/2022] [Accepted: 09/23/2022] [Indexed: 11/19/2022] Open
Abstract
Biodegradable film packaging made from thermoplastic starch (TPS) has low mechanical performance and high water solubility, which is incomparable with synthetic films. In this work, Aloe vera (AV) gel and plasticized soluble potato starch were utilised to improve the mechanical stability and water solubility of TPS. Dried starch was mixed with glycerol and different AV gel concentrations (0% to 50%). The TPS + 50% AV gel (30 g TPS + 15 g AV gel) showed the best improvement compared to TPS alone. When compared to similar TPS films with AV gel added, this film is stronger and dissolves better in water. Mechanical qualities improved the tensile strength and Young's modulus of the TPS film, with 1.03 MPa to 9.14 MPa and 51.92 MPa to 769.00 MPa, respectively. This was supported by the improvement of TPS water solubility from 57.44% to 46.6% and also by the increase in decomposition temperature of the TPS. This promises better heat resistance. The crystallinity percentage increase to 24.26% suggested that the formation of hydrogen bonding between TPS and AV gel enhanced crosslinking in the polymeric structure. By adding AV gel, the TPS polymeric structure is improved and can be used as a biodegradable food-packaging film.
Collapse
|
319
|
Rasti F, Yousefpoor Y, Abdollahi A, Safari M, Roozitalab G, Osanloo M. Antioxidative, anticancer, and antibacterial activities of a nanogel containing Mentha spicata L. essential oil and electrospun nanofibers of polycaprolactone-hydroxypropyl methylcellulose. BMC Complement Med Ther 2022; 22:261. [PMID: 36207726 PMCID: PMC9540714 DOI: 10.1186/s12906-022-03741-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/28/2022] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND As the largest organ, the skin has been frequently affected by trauma, chemical materials, toxins, bacterial pathogens, and free radicals. Recently, many attempts have been made to develop natural nanogels that, besides hydrating the skin, could also be used as antioxidant or antibacterial agents. METHODS In this study, the chemical composition of the Mentha spicata essential oil was first investigated using GC-MS analysis. Its nanoemulsion-based nanogel was then investigated; successful loading of the essential oil in the nanogel was confirmed using FTIR analysis. Besides, nanogel's antioxidative, anticancer, and antibacterial activities were investigated. RESULTS Carvone (37.1%), limonene (28.5%), borneol (3.9%), β-pinene (3.3%), and pulegone (3.3%) were identified as five major compounds in the essential oil. By adding carboxymethylcellulose (3.5% w/v) to the optimal nanoemulsion containing the essential oil (droplet size of 196 ± 8 nm), it was gelified. The viscosity was fully fitted with a common non-Newtonian viscosity regression, the Carreau-Yasuda model. The antioxidant effect of the nanogel was significantly more potent than the essential oil (P < 0.001) at all examined concentrations (62.5-1000 µg/mL). Furthermore, the potency of the nanogel with an IC50 value of 55.0 µg/mL was substantially more (P < 0.001) than the essential oil (997.4 µg/mL). Also, the growth of Staphylococcus aureus and Escherichia coli after treatment with 1000 µg/mL nanogel was about 50% decreased compared to the control group. Besides, the prepared electrospun polycaprolactone-hydroxypropyl methylcellulose nanofibers mat with no cytotoxic, antioxidant, or antibacterial effects was proposed as lesion dressing after treatment with the nanogel. High potency, natural ingredients, and straightforward preparation are advantages of the prepared nanogel. Therefore, it could be considered for further consideration in vivo studies.
Collapse
Affiliation(s)
- Fatemeh Rasti
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
- Student Research Center Committee, Fasa University of Medical Sciences, Fasa, Iran
| | - Yaser Yousefpoor
- Department of Medical Biotechnology, School of Paramedical Sciences, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
- Khalil Abad Health Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abbas Abdollahi
- Department of Microbiology, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Mojdeh Safari
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Science, Tehran, Iran
| | - Ghazaal Roozitalab
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
- Student Research Center Committee, Fasa University of Medical Sciences, Fasa, Iran
| | - Mahmoud Osanloo
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran.
| |
Collapse
|
320
|
Kossyvaki D, Contardi M, Athanassiou A, Fragouli D. Colorimetric Indicators Based on Anthocyanin Polymer Composites: A Review. Polymers (Basel) 2022; 14:polym14194129. [PMID: 36236076 PMCID: PMC9571802 DOI: 10.3390/polym14194129] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022] Open
Abstract
This review explores the colorimetric indicators based on anthocyanin polymer composites fabricated in the last decade, in order to provide a comprehensive overview of their morphological and compositional characteristics and their efficacy in their various application fields. Notably, the structural properties of the developed materials and the effect on their performance will be thoroughly and critically discussed in order to highlight their important role. Finally, yet importantly, the current challenges and the future perspectives of the use of anthocyanins as components of colorimetric indicator platforms will be highlighted, in order to stimulate the exploration of new anthocyanin sources and the in-depth investigation of all the possibilities that they can offer. This can pave the way for the development of high-end materials and the expansion of their use to new application fields.
Collapse
Affiliation(s)
- Despoina Kossyvaki
- Smart Materials, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
- Dipartimento di Informatica Bioingegneria, Robotica e Ingegneria dei Sistemi (DIBRIS), Università degli Studi di Genova, Via Opera Pia 13, 16145 Genova, Italy
| | - Marco Contardi
- Smart Materials, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | | | - Despina Fragouli
- Smart Materials, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
- Correspondence:
| |
Collapse
|
321
|
Roy S, Priyadarshi R, Rhim JW. Gelatin/agar-based multifunctional film integrated with copper-doped zinc oxide nanoparticles and clove essential oil Pickering emulsion for enhancing the shelf life of pork meat. Food Res Int 2022; 160:111690. [DOI: 10.1016/j.foodres.2022.111690] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/22/2022] [Accepted: 07/12/2022] [Indexed: 12/12/2022]
|
322
|
Posgay M, Greff B, Kapcsándi V, Lakatos E. Effect of Thymus vulgaris L. essential oil and thymol on the microbiological properties of meat and meat products: A review. Heliyon 2022; 8:e10812. [PMID: 36247140 PMCID: PMC9562244 DOI: 10.1016/j.heliyon.2022.e10812] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/10/2022] [Accepted: 09/23/2022] [Indexed: 01/06/2023] Open
Abstract
Since foodborne diseases are often considered as one of the biggest public health threats worldwide, effective preservation strategies are needed to inhibit the growth of undesirable microorganisms in food commodities. Up to now, several techniques have been adopted for the production of safe and high-quality products. Although the traditional methods can improve the reliability, safety, and shelf-life of food, some of them cannot be applied without rising health concerns. Thereby, the addition of various phytochemicals has gained much attention during the last decades, especially for meat products that may be contaminated with pathogenic and spoilage organisms. Thyme (Thymus vulgaris L.), as an important medicinal and culinary herb, is a promising source of bioactive compounds that have a great impact on the microbiological stability of meat by suppressing the undesirable microflora. However, the use of these antimicrobials is still facing difficulties due to their aromatic properties and variable efficacy against targeted species. In this paper, we provide an overview on the potential effects of thyme essential oil (EO) and thymol as bio-preservative agents in meat products. Furthermore, this paper provides insights into the limitations and current challenges of the addition of EOs and their constituents to meat commodities and suggests viable solutions that can improve the applicability of these phytochemicals.
Collapse
Affiliation(s)
- Miklós Posgay
- Department of Food Science, Faculty of Agricultural and Food Sciences, Széchenyi István University, 15-17 Lucsony Street, 9200 Mosonmagyaróvár, Hungary
| | - Babett Greff
- Department of Food Science, Faculty of Agricultural and Food Sciences, Széchenyi István University, 15-17 Lucsony Street, 9200 Mosonmagyaróvár, Hungary
| | - Viktória Kapcsándi
- Department of Food Science, Faculty of Agricultural and Food Sciences, Széchenyi István University, 15-17 Lucsony Street, 9200 Mosonmagyaróvár, Hungary
| | - Erika Lakatos
- Department of Food Science, Faculty of Agricultural and Food Sciences, Széchenyi István University, 15-17 Lucsony Street, 9200 Mosonmagyaróvár, Hungary
| |
Collapse
|
323
|
Rodrigues LM, Guimarães AS, de Lima Ramos J, de Almeida Torres Filho R, Fontes PR, de Lemos Souza Ramos A, Ramos EM. Application of gamma radiation in the beef texture development during accelerated aging. J Texture Stud 2022; 53:923-934. [PMID: 36054753 DOI: 10.1111/jtxs.12714] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 12/30/2022]
Abstract
This study aimed to evaluate the effects of gamma radiation (3 kGy) on the quality of post-rigor beef (M. longissimus lumborum) aged for up to 21 days at different temperatures (1, 7, and 15°C). Irradiation reduced the mesophilic and lactic acid bacteria counts, which were higher in the non-irradiated samples aged at 7 and 15°C. The water retention capacity was lower in the irradiated beef, resulting in higher values of exudation and cooking losses. High aging temperatures increased the exudation loss and myofibrillar proteolysis (lower fragmentation index; FI) and reduced the total and insoluble collagen contents and the beef Warner-Bratzler square Shear Force (WBsSF). However, irradiated beef had higher FI and SF than non-irradiated ones, increasing the time required for the beef tenderizing. Gamma irradiation (3 kGy) can be used to ensure the microbiological safety during short storage at high temperatures (up to 15°C) in order to accelerate the process of beef tenderizing.
Collapse
Affiliation(s)
- Lorena Mendes Rodrigues
- Departamento de Ciência dos Alimentos, Escola de Ciências Agrárias de Lavras, Universidade Federal de Lavras, Minas Gerais, Brazil
| | - Angélica Sousa Guimarães
- Departamento de Ciência dos Alimentos, Escola de Ciências Agrárias de Lavras, Universidade Federal de Lavras, Minas Gerais, Brazil
| | - Johnathan de Lima Ramos
- Departamento de Ciência dos Alimentos, Escola de Ciências Agrárias de Lavras, Universidade Federal de Lavras, Minas Gerais, Brazil
| | | | - Paulo Rogério Fontes
- Departamento de Tecnologia de Alimentos, Universidade Federal de Viçosa, Minas Gerais, Brazil
| | - Alcinéia de Lemos Souza Ramos
- Departamento de Ciência dos Alimentos, Escola de Ciências Agrárias de Lavras, Universidade Federal de Lavras, Minas Gerais, Brazil
| | - Eduardo Mendes Ramos
- Departamento de Ciência dos Alimentos, Escola de Ciências Agrárias de Lavras, Universidade Federal de Lavras, Minas Gerais, Brazil
| |
Collapse
|
324
|
Singh L, Kaur S, Aggarwal P. Techno and bio functional characterization of industrial potato waste for formulation of phytonutrients rich snack product. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
325
|
Recent advances in the development of smart, active, and bioactive biodegradable biopolymer-based films containing betalains. Food Chem 2022; 390:133149. [DOI: 10.1016/j.foodchem.2022.133149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 04/06/2022] [Accepted: 05/02/2022] [Indexed: 12/18/2022]
|
326
|
Optimization and Characterization of Lippia citriodora Essential Oil Loaded Niosomes: A Novel Plant-based Food Nano Preservative. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
327
|
Ameer A, Seleshe S, Kang SN. Effect of Various Doses of Electron Beam Irradiation Treatment on the Quality Characteristics of Vacuum-Packed Dry Fermented Sausage during Refrigerated Storage. Prev Nutr Food Sci 2022; 27:323-334. [PMID: 36313059 PMCID: PMC9585401 DOI: 10.3746/pnf.2022.27.3.323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 06/24/2022] [Accepted: 06/24/2022] [Indexed: 11/23/2022] Open
Abstract
In this study, we investigated the effect of electron beam irradiation on the physicochemical, microbiological, and sensory attributes of dry fermented sausage during 8 weeks of refrigerated storage at 4°C. The five doses of e-beam irradiation applied were: 0 kGy (control) and 1, 2, 3, and 4 kGy. All the experimental treatments led to a significant decrease in pH values during the storage period of 60 days (P<0.05). The 2-kGy treatment caused a significant (P<0.05) decrease in pH value, bacterial growth (total plate count, Listeria monocytogenes, Salmonella Typhimurium, and Escherichia coli), and thiobarbituric acid-reactive substances values than other irradiated fermented sausage batches during the study. Irradiation did not affect the water activity value of the fermented sausage samples. For color characteristics, 3 kGy exhibited significantly lower (P<0.05) L* (lightness) values than other irradiation treatments. A similar trend of significantly lower (P<0.05) a* (redness) and b* (yellowness) values was observed in all irradiated treatments than in the control. All the treatments showed no significant differences (P>0.05) in scores in sensory attributes (color and sourness); however, fermented sausage irradiated with 3 kGy had the highest sensory characteristics (overall acceptability) at the end of the storage period. In conclusion, 1, 2, and 3 kGy irradiation treatments can be beneficial for inhibiting lipid oxidation, controlling microbial growth, and maintaining sensory attributes of fermented sausage during storage, thereby enhancing their food safety and shelf stability.
Collapse
Affiliation(s)
- Ammara Ameer
- Department of Animal Resource, Daegu University, Gyeongbuk 38453, Korea
| | - Semeneh Seleshe
- Department of Animal Resource, Daegu University, Gyeongbuk 38453, Korea
| | - Suk Nam Kang
- Department of Animal Resource, Daegu University, Gyeongbuk 38453, Korea,
Correspondence to Suk Nam Kang, E-mail:
| |
Collapse
|
328
|
Development of edible films based on anchote (Coccinia abyssinica) starch: process optimization using response surface methodology (RSM). JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01632-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
329
|
Chandak A, Dhull SB, Chawla P, Fogarasi M, Fogarasi S. Effect of Single and Dual Modifications on Properties of Lotus Rhizome Starch Modified by Microwave and γ-Irradiation: A Comparative Study. Foods 2022; 11:foods11192969. [PMID: 36230043 PMCID: PMC9562692 DOI: 10.3390/foods11192969] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/12/2022] [Accepted: 09/19/2022] [Indexed: 01/16/2023] Open
Abstract
A comparative study between two novel starch modification technologies, i.e., microwave (MI) and γ-irradiation (IR), is of important significance for their applications. The objective of this work is to compare the changes in lotus rhizome starch (LRS) subjected to single modifications by MI (thermal treatment) and IR (non-thermal treatment), and dual modification by changing the treatment sequence, i.e., microwave followed by irradiation (MI-IR) and irradiation followed by microwave (IR-MI). The amylose content of native and modified LRS varied from 14.68 to 18.94%, the highest and lowest values found for native and MI-LRS, respectively. IR-treated LRS showed the lowest swelling power (4.13 g/g) but highest solubility (86.9%) among native and modified LRS. An increase in light transmittance value suggested a lower retrogradation rate for dual-modified starches, making them more suitable for food application at refrigeration and frozen temperatures. Dual-modified LRS showed the development of fissures and dents on the surface of granules as well as the reduction in peak intensities of OH and CH2 groups in FTIR spectra. Combined modifications (MI and IR) reduced values of pasting parameters and gelatinization properties compared to native and microwaved LRS and showed improved stability to shear thinning during cooking and thermal processing. The sequence of modification also affected the rheological properties; the G′ and G″ of MI-IR LRS were lower (357.41 Pa and 50.16 Pa, respectively) than the IR-MI sample (511.96 Pa and 70.09 Pa, respectively), giving it a soft gel texture. Nevertheless, dual modification of LRS by combining MI and IR made more significant changes in starch characteristics than single modifications.
Collapse
Affiliation(s)
- Ankita Chandak
- Department of Food Science and Technology, Chaudhary Devi Lal University, Sirsa 125055, India
| | - Sanju Bala Dhull
- Department of Food Science and Technology, Chaudhary Devi Lal University, Sirsa 125055, India
- Correspondence: (S.B.D.); (M.F.)
| | - Prince Chawla
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara 144411, India
| | - Melinda Fogarasi
- Department of Food Engineering, University of Agricultural Sciences and Veterinary Medicine of ClujNapoca, CaleaMănăstur 3–5, 400372 Cluj-Napoca, Romania
- Correspondence: (S.B.D.); (M.F.)
| | - Szabolcs Fogarasi
- Department of Chemical Engineering, Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University, 11 Arany Janos Street, 400028 Cluj-Napoca, Romania
- Interdisciplinary Research Institute on Bio-Nano-Sciences, Babeş-Bolyai University, 42 Treboniu LaurianStreet, 400271 Cluj-Napoca, Romania
| |
Collapse
|
330
|
Effects of Sodium Alginate, Pectin and Chitosan Addition on the Physicochemical Properties, Acrylamide Formation and Hydroxymethylfurfural Generation of Air Fried Biscuits. Polymers (Basel) 2022; 14:polym14193961. [PMID: 36235909 PMCID: PMC9572387 DOI: 10.3390/polym14193961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/12/2022] [Accepted: 09/16/2022] [Indexed: 11/17/2022] Open
Abstract
This study evaluated the effects of sodium alginate, pectin and chitosan addition (0.5–1.5%) on the physicochemical properties including pH, water activity, moisture content, color values, hardness, diameter, thickness, spread ratio, antioxidant activities and sensory scores of biscuits in air frying processing. In addition, the formation of acrylamide and hydroxymethylfurfural (HMF) were discussed. Physicochemical properties of biscuits including water content, water activity, hardness, appearance, shape, color, flavor, texture, overall acceptability, and DPPH radical scavenging activity of biscuits were not influenced significantly by the addition (0.5–1.0%) of three food hydrocolloids. The data showed that the biscuits with hydrocolloids addition had lower acrylamide contents than that of the control biscuit without hydrocolloids addition, and the reducing power of biscuits increased after adding the hydrocolloids. The highest mitigation of acrylamide formation was obtained by the chitosan addition formulation. The formation of acrylamide showed a negative correlation with the content of sodium alginate and chitosan addition, and they were effective ingredients in terms of mitigating the formation of acrylamide in biscuit formulation.
Collapse
|
331
|
Optimization of Antibacterial, Physical and Mechanical Properties of Novel Chitosan/Olibanum Gum Film for Food Packaging Application. Polymers (Basel) 2022; 14:polym14193960. [PMID: 36235904 PMCID: PMC9573402 DOI: 10.3390/polym14193960] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/21/2022] [Accepted: 08/15/2022] [Indexed: 11/30/2022] Open
Abstract
Chitosan-based films are promising active biodegradable materials with the ability to be enhanced by different materials, including gums. This study aims to optimize the physical (transmittance, water vapor permeability and water solubility), mechanical (tensile strength and elongation at break) and antibacterial (against Staphylococcus aureus and Salmonella Typhimurium) properties of newly fabricated chitosan/olibanum gum (CH/OG) films as a function of different levels of CH (0.5, 0.75, 1, 1.25 and 1.5% w/v) and OG (0.125, 0.25, 0.375, 0.5 and 0.625% w/v), using response surface methodology (RSM). Moreover, Fourier-transform infrared spectroscopy (FTIR), scanning electron microscope (SEM) and differential scanning calorimetry (DSC) were used to better characterize the fabricated films. RSM analysis results showed the significant fitting of all dependent variable responses to the quadratic polynomial model. To attain the desirable physical, mechanical and antibacterial responses, the optimal concentrations were 1.31% (w/v) CH and 0.3% (w/v) OG. The encouraging antibacterial, physical and mechanical properties of the developed composites support the application of chitosan/gum blends in active food packaging, particularly for perishable foodstuffs, such as meat and horticultural products.
Collapse
|
332
|
Shi J, Wu R, Li Y, Ma L, Liu S, Liu R, Lu P. Antimicrobial food packaging composite films prepared from hemicellulose/polyvinyl alcohol/potassium cinnamate blends. Int J Biol Macromol 2022; 222:395-402. [PMID: 36176221 DOI: 10.1016/j.ijbiomac.2022.09.139] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 09/05/2022] [Accepted: 09/15/2022] [Indexed: 11/29/2022]
Abstract
Hemicellulose and its derivatives have attracted extensive attention as packaging materials and various methods have been utilized to improve its film formation properties. To make use of the byproduct in dissolving pulp production, hemicellulose collected from waste water was modified by carboxymethylation and blended with polyvinyl alcohol (PVA) to prepare composite film by solution casting method. Potassium cinnamate (PC) was further incorporated to endow the film with antibacterial activity. The properties of the composite films were characterized. Due to the good compatibility and intermolecular interactions, the composite film exhibited moderate oxygen barrier property (3.64-12.21 cm3 μm m-2 d-1 KPa-1). The flexibility of the film was improved compared with pure PVA film although tensile strength was decreased. The film had good UV barrier properties and good antibacterial properties due to the introduction of PC. GAB model could be used to predict moisture sorption of the composite films. Moreover, the obtained film showed good performance in cherry tomato preservation. This work provided a prospective route for utilization of hemicellulose recovered from waste water for high value-added products.
Collapse
Affiliation(s)
- Jiahui Shi
- Tianjin Key Laboratory of Pulp & Paper, School of light industry science and engineering, Tianjin University of Science & Technology, Tianjin 300457, China; State Key Laboratory of Food Nutrition and Safety, College of Food Science and Technology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Rina Wu
- Tianjin Key Laboratory of Pulp & Paper, School of light industry science and engineering, Tianjin University of Science & Technology, Tianjin 300457, China; Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China.
| | - Yanan Li
- Tianjin Key Laboratory of Pulp & Paper, School of light industry science and engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Liyan Ma
- Tianjin Key Laboratory of Pulp & Paper, School of light industry science and engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Shuai Liu
- Tianjin Key Laboratory of Pulp & Paper, School of light industry science and engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Rui Liu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Technology, Tianjin University of Science & Technology, Tianjin 300457, China.
| | - Peng Lu
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| |
Collapse
|
333
|
Recent Advances and Applications in Starch for Intelligent Active Food Packaging: A Review. Foods 2022; 11:foods11182879. [PMID: 36141005 PMCID: PMC9498516 DOI: 10.3390/foods11182879] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/10/2022] [Accepted: 09/11/2022] [Indexed: 12/22/2022] Open
Abstract
At present, the research and innovation of packaging materials are in a period of rapid development. Starch, a sustainable, low-cost, and abundant polymer, can develop environmentally friendly packaging alternatives, and it possesses outstanding degradability and reproducibility in terms of improving environmental issues and reducing oil resources. However, performance limitations, such as less mechanical strength and lower barrier properties, limit the application of starch in the packaging industry. The properties of starch-based films can be improved by modifying starch, adding reinforcing groups, or blending with other polymers. It is of significance to study starch as an active and intelligent packaging option for prolonging shelf life and monitoring the extent of food deterioration. This paper reviews the development of starch-based films, the current methods to enhance the mechanical and barrier properties of starch-based films, and the latest progress in starch-based activity, intelligent packaging, and food applications. The potential challenges and future development directions of starch-based films in the food industry are also discussed.
Collapse
|
334
|
Rincón E, Bautista JM, Espinosa E, Serrano L. Biopolymer‐based sachets enriched with acorn shell extracts produced by ultrasound‐assisted extraction for active packaging. J Appl Polym Sci 2022. [DOI: 10.1002/app.53102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Esther Rincón
- Biopren Group, Inorganic Chemistry and Chemical Engineering Department Nanochemistry University Institute (IUNAN), Universidad de Córdoba Córdoba Spain
| | - Juana M. Bautista
- Biopren Group, Inorganic Chemistry and Chemical Engineering Department Nanochemistry University Institute (IUNAN), Universidad de Córdoba Córdoba Spain
| | - Eduardo Espinosa
- Biopren Group, Inorganic Chemistry and Chemical Engineering Department Nanochemistry University Institute (IUNAN), Universidad de Córdoba Córdoba Spain
| | - Luis Serrano
- Biopren Group, Inorganic Chemistry and Chemical Engineering Department Nanochemistry University Institute (IUNAN), Universidad de Córdoba Córdoba Spain
| |
Collapse
|
335
|
Hasan M, Khaldun I, Zatya I, Rusman R, Nasir M. Facile fabrication and characterization of an economical active packaging film based on corn starch–chitosan biocomposites incorporated with clove oil. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01616-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
336
|
Effects of barberry extract and alginate coating enriched with cinnamaldehyde and nisin on the microbiological, chemical and sensory properties of chicken meat. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01606-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
337
|
Tappiban P, Zhao J, Zhang Y, Gao Y, Zhang L, Bao J. Effects of single and dual modifications through electron beam irradiation and hydroxypropylation on physicochemical properties of potato and corn starches. Int J Biol Macromol 2022; 220:1579-1588. [PMID: 36113603 DOI: 10.1016/j.ijbiomac.2022.09.091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 08/16/2022] [Accepted: 09/10/2022] [Indexed: 11/18/2022]
Abstract
In this study, electron beam irradiation (EBI; 2, 4, 6, 8 and 10 kGy), hydroxypropylation (HP) and dual modification of EBI-HP were applied to modify corn and potato starches. The results showed that the molar substitution (MS) of EBI-HP modified corn and potato starches were in the range of 0.060-0.087 and 0.080-0.124, respectively. After modifications, amylose content of corn (30.0 %) and potato (31.2 %) starches were declined to 24.2-28.1 % and 26.1-29.5 %, respectively, and relative crystallinity was reduced from 35.5 to 30.0 % for corn and 34.1 to 20.2 % for potato. Pasting properties decreased significantly in both starch sources with increasing irradiation dose. EBI decreased springiness, enthalpy of retrograded starch (ΔHr) and percentage of retrogradation (R%) on corn starches, which were different from those effects observed on potato starches. Meanwhile, HP increased peak viscosity up to 312.6 RVU and 1359.3 RVU for corn and potato starches, respectively. Moreover, EBI-HP was highly responsible for the decreases in the textural, gelatinization and retrogradation properties and relative crystallinity in both corn and potato starches. These results enhance the understanding of starch functionality modified by using both physical and chemical methods, and provide further insights on food and non-food applications.
Collapse
Affiliation(s)
- Piengtawan Tappiban
- Institute of Nuclear Agricultural Sciences, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China.
| | - Jiajia Zhao
- Institute of Nuclear Agricultural Sciences, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Yu Zhang
- Institute of Nuclear Agricultural Sciences, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Yan Gao
- Hainan Institute of Zhejiang University, Yazhou Bay Science and Technology City, Yazhou District, Sanya 572025, China
| | - Lin Zhang
- Hainan Institute of Zhejiang University, Yazhou Bay Science and Technology City, Yazhou District, Sanya 572025, China
| | - Jinsong Bao
- Institute of Nuclear Agricultural Sciences, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China; Hainan Institute of Zhejiang University, Yazhou Bay Science and Technology City, Yazhou District, Sanya 572025, China.
| |
Collapse
|
338
|
Active edible coating based on guar gum with mint extract and antibrowning agents for ber (Ziziphus mauritiana) fruits preservation. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01609-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
339
|
Laorenza Y, Chonhenchob V, Bumbudsanpharoke N, Jittanit W, Sae-tan S, Rachtanapun C, Chanput WP, Charoensiddhi S, Srisa A, Promhuad K, Wongphan P, Harnkarnsujarit N. Polymeric Packaging Applications for Seafood Products: Packaging-Deterioration Relevance, Technology and Trends. Polymers (Basel) 2022; 14:polym14183706. [PMID: 36145850 PMCID: PMC9504574 DOI: 10.3390/polym14183706] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 08/28/2022] [Accepted: 08/30/2022] [Indexed: 12/17/2022] Open
Abstract
Seafood is a highly economical product worldwide. Primary modes of deterioration include autolysis, oxidation of protein and lipids, formation of biogenic amines and melanosis, and microbial deterioration. These post-harvest losses can be properly handled if the appropriate packaging technology has been applied. Therefore, it is necessary for packaging deterioration relevance to be clearly understood. This review demonstrates recent polymeric packaging technology for seafood products. Relationship between packaging and quality deterioration, including microbial growth and chemical and biochemical reactions, are discussed. Recent technology and trends in the development of seafood packaging are demonstrated by recent research articles and patents. Development of functional polymers for active packaging is the largest area for seafood applications. Intelligent packaging, modified atmosphere packaging, thermal insulator cartons, as well as the method of removing a fishy aroma have been widely developed and patented to solve the specific and comprehensive quality issues in seafood products. Many active antioxidant and antimicrobial compounds have been found and successfully incorporated with polymers to preserve the quality and monitor the fish freshness. A thermal insulator has also been developed for seafood packaging to preserve its freshness and avoid deterioration by microbial growth and enzymatic activity. Moreover, the enhanced biodegradable tray is also innovative as a single or bulk fish container for marketing and distribution. Accordingly, this review shows emerging polymeric packaging technology for seafood products and the relevance between packaging and seafood qualities.
Collapse
Affiliation(s)
- Yeyen Laorenza
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand
| | - Vanee Chonhenchob
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand
| | - Nattinee Bumbudsanpharoke
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand
| | - Weerachet Jittanit
- Department of Food Science and Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand
| | - Sudathip Sae-tan
- Department of Food Science and Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand
| | - Chitsiri Rachtanapun
- Department of Food Science and Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand
| | - Wasaporn Pretescille Chanput
- Department of Food Science and Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand
| | - Suvimol Charoensiddhi
- Department of Food Science and Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand
| | - Atcharawan Srisa
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand
| | - Khwanchat Promhuad
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand
| | - Phanwipa Wongphan
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand
| | - Nathdanai Harnkarnsujarit
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand
- Correspondence: ; Tel.: +66-2-562-5045
| |
Collapse
|
340
|
Guo Q, Shan K, Yang X, Jiang C, Zhu L. Inhibitory effects of pH, salinity, and tea polyphenols concentration on the specific spoilage organisms isolated from lightly-salted large yellow croaker ( Pseudosciaena crocea). Food Sci Nutr 2022; 10:3062-3071. [PMID: 36171782 PMCID: PMC9469860 DOI: 10.1002/fsn3.2905] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 04/13/2022] [Accepted: 04/15/2022] [Indexed: 11/08/2022] Open
Abstract
Proteus vulgaris and Hafnia alvei were identified as specific spoilage organisms (SSOs) isolated from the refrigerated lightly-salted large yellow croaker (Pseudosciaena crocea). In this work, the inhibitory effects of pH, salinity, and tea polyphenols concentration on both strains were investigated. Modified Gompertz models were used to estimate the kinetic parameters μm (maximum specific growth rate) and λ (duration of lag phase) of the two strains under different conditions, demonstrating that their growth rates decreased with the decrease of pH as well as the increase of salinity and tea polyphenols concentration, and the growths of both strains stopped while the salinity and tea polyphenols concentration increased to 0.05 and 5%, respectively. Response surface methodology (RSM) based on a three-level three-factor Box-Behnken Design (BBD) was employed to optimize the combination of these three antibacterial factors. The results showed that the optimum inhibitory conditions were: tea polyphenols concentration 0.05%, salinity 3.46%, and pH 6.96 to inhibit the growth of P. vulgaris; tea polyphenols concentration 0.05%, salinity 3.45%, and pH 6.94 to inhibit H. alvei. Validation experiments were performed and demonstrated that under these conditions, the growth of the two SSOs could be 100% inhibited. This research provided references for the inhibition of the SSOs of lightly-salted large yellow croaker and the extension of its shelf life.
Collapse
Affiliation(s)
- Quan‐you Guo
- East China Sea Fisheries Research Institute,Chinese Academy of Fishery SciencesShanghaiChina
| | - Ke Shan
- East China Sea Fisheries Research Institute,Chinese Academy of Fishery SciencesShanghaiChina
| | - Xu Yang
- East China Sea Fisheries Research Institute,Chinese Academy of Fishery SciencesShanghaiChina
| | - Chao‐jun Jiang
- East China Sea Fisheries Research Institute,Chinese Academy of Fishery SciencesShanghaiChina
| | - Lin Zhu
- East China Sea Fisheries Research Institute,Chinese Academy of Fishery SciencesShanghaiChina
- University of Shanghai for Science and TechnologyShanghaiChina
| |
Collapse
|
341
|
Yao X, Yun D, Xu F, Chen D, Liu J. Development of shrimp freshness indicating films by immobilizing red pitaya betacyanins and titanium dioxide nanoparticles in polysaccharide-based double-layer matrix. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100871] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
342
|
Recent advances in poly (vinyl alcohol)/natural polymer based films for food packaging applications: A review. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100904] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
343
|
Purgatorio C, Serio A, Chaves-López C, Rossi C, Paparella A. An overview of the natural antimicrobial alternatives for sheep meat preservation. Compr Rev Food Sci Food Saf 2022; 21:4210-4250. [PMID: 35876396 DOI: 10.1111/1541-4337.13004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 06/09/2022] [Accepted: 06/19/2022] [Indexed: 01/28/2023]
Abstract
Sheep meat is consumed and appreciated all over the world for its nutritional value and flavor. However, this meat is very perishable and easily subjected to the action of both spoilage and pathogenic microorganisms. For this reason, in combination with cold storage, effective preservation techniques are required. There is increasing interest in the application of natural antimicrobials, such as essential oils, extracts, spices, and by-products of the food industry. This review analyses the studies on natural antimicrobials in sheep meat and sheep meat products and gathers evidence about the encouraging results achieved on the reduction and/or elimination of spoilage and pathogenic microorganisms. The use of these natural antimicrobial alternatives might open up important perspectives for industrial application, considering that this specific meat is often traded over long distances. In fact, on the basis of scientific literature, natural antimicrobials can be considered a sustainable and affordable alternative to extend the shelf life of sheep meat and guarantee its safety, although many factors need to be further investigated, such as the sensory impact, potential toxicity, and economic aspects. For all these issues, investigated in some of the studies reviewed here, it is fundamental to obtain the antimicrobial effect with the minimum amount of effective substance to avoid sensory modifications, toxic effects, and unbearable costs. This study sets foundations for the possible direction of future studies, which will contribute to identify effective solutions for industrial applications of natural antimicrobials in the sheep meat industry.
Collapse
Affiliation(s)
- Chiara Purgatorio
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Annalisa Serio
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Clemencia Chaves-López
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Chiara Rossi
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Antonello Paparella
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| |
Collapse
|
344
|
Huang H, Huang C, Xu C, Liu R. Development and characterization of lotus-leaf-inspired bionic antibacterial adhesion film through beeswax. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
345
|
González-Ceballos L, Guirado-moreno JC, Guembe-García M, Rovira J, Melero B, Arnaiz A, Diez AM, García JM, Vallejos S. Metal-free organic polymer for the preparation of a reusable antimicrobial material with real-life application as an absorbent food pad. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
346
|
Oladzadabbasabadi N, Mohammadi Nafchi A, Ghasemlou M, Ariffin F, Singh Z, Al-Hassan A. Natural anthocyanins: Sources, extraction, characterization, and suitability for smart packaging. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100872] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
347
|
Ordoñez R, Atarés L, Chiralt A. Biodegradable active materials containing phenolic acids for food packaging applications. Compr Rev Food Sci Food Saf 2022; 21:3910-3930. [PMID: 35912666 DOI: 10.1111/1541-4337.13011] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 06/05/2022] [Accepted: 06/30/2022] [Indexed: 01/28/2023]
Abstract
The development of new materials for food packaging applications is necessary to reduce the excessive use of disposable plastics and their environmental impact. Biodegradable polymers represent an alternative means of mitigating the problem. To add value to biodegradable materials and to enhance food preservation, the incorporation of active compounds into the polymer matrix is an affordable strategy. Phenolic acids are plant metabolites that can be found in multiple plant extracts and exhibit antioxidant and antimicrobial properties. Compared with other natural active compounds, such as essential oils, phenolic acids do not present a high sensorial impact while exhibiting similar minimal inhibitory concentrations against different bacteria. This study summarizes and discusses recent studies about the potential of both phenolic acids/plant extracts and biodegradable polymers as active food packaging materials, their properties, interactions, and the factors that could affect their antimicrobial efficiency. The molecular structure of phenolic acids greatly affects their potential antioxidant and antimicrobial capacity, as well as their specific interactions with polymer matrices and food substrates. These interactions, in turn, can lead to plasticizing or cross-linking effects. In the present study, the antioxidant and antimicrobial properties of different biodegradable films with phenolic acids have been described, as well as the main factors affecting the active properties of these films as useful materials for active packaging development. More studies applying these active materials in real foods are required.
Collapse
Affiliation(s)
- Ramón Ordoñez
- Instituto Universitario de Ingeniería de Alimentos para el Desarrollo, Universitat Politècnica de València, Valencia, Spain
| | - Lorena Atarés
- Instituto Universitario de Ingeniería de Alimentos para el Desarrollo, Universitat Politècnica de València, Valencia, Spain
| | - Amparo Chiralt
- Instituto Universitario de Ingeniería de Alimentos para el Desarrollo, Universitat Politècnica de València, Valencia, Spain
| |
Collapse
|
348
|
Lamarra J, Rivero S, Pinotti A. Functionalized biomaterials based on poly(vinyl alcohol) and chitosan as a vehicle for controlled release of cabreuva essential oil. POLYM ENG SCI 2022. [DOI: 10.1002/pen.26062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Javier Lamarra
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CCT‐CONICET La Plata, CIC, UNLP) La Plata Argentina
- Facultad de Ciencias Exactas UNLP La Plata Argentina
| | - Sandra Rivero
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CCT‐CONICET La Plata, CIC, UNLP) La Plata Argentina
- Facultad de Ciencias Exactas UNLP La Plata Argentina
| | - Adriana Pinotti
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CCT‐CONICET La Plata, CIC, UNLP) La Plata Argentina
- Facultad de Ingeniería UNLP La Plata Argentina
| |
Collapse
|
349
|
Ahmed MW, Haque MA, Mohibbullah M, Khan MSI, Islam MA, Mondal MHT, Ahmmed R. A review on active packaging for quality and safety of foods: Current trends, applications, prospects and challenges. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
350
|
Özünlü O, Ergezer H. Development of Novel Paper‐based Colorimetric Indicator Labels for Monitoring Shelf Life of Chicken Breast Fillets. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.17013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Orhan Özünlü
- University of Pamukkale, Department Food Engineering Denizli Turkey
| | - Haluk Ergezer
- University of Pamukkale, Department Food Engineering Denizli Turkey
| |
Collapse
|