351
|
Magno L, Kretz O, Bert B, Ersözlü S, Vogt J, Fink H, Kimura S, Vogt A, Monyer H, Nitsch R, Naumann T. The integrity of cholinergic basal forebrain neurons depends on expression of Nkx2-1. Eur J Neurosci 2011; 34:1767-82. [PMID: 22098391 DOI: 10.1111/j.1460-9568.2011.07890.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The transcription factor Nkx2-1 belongs to the homeobox-encoding family of proteins that have essential functions in prenatal brain development. Nkx2-1 is required for the specification of cortical interneurons and several neuronal subtypes of the ventral forebrain. Moreover, this transcription factor is involved in migratory processes by regulating the expression of guidance molecules. Interestingly, Nkx2-1 expression was recently detected in the mouse brain at postnatal stages. Using two transgenic mouse lines that allow prenatal or postnatal cell type-specific deletion of Nkx2-1, we show that continuous expression of the transcription factor is essential for the maturation and maintenance of cholinergic basal forebrain neurons in mice. Notably, prenatal deletion of Nkx2-1 in GAD67-expressing neurons leads to a nearly complete loss of cholinergic neurons and parvalbumin-containing GABAergic neurons in the basal forebrain. We also show that postnatal mutation of Nkx2-1 in choline acetyltransferase-expressing cells causes a striking reduction in their number. These degenerative changes are accompanied by partial denervation of their target structures and results in a discrete impairment of spatial memory.
Collapse
Affiliation(s)
- Lorenza Magno
- Institute of Cell Biology and Neurobiology, Centre of Anatomy, Charité Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
352
|
Brown KN, Chen S, Han Z, Lu CH, Tan X, Zhang XJ, Ding L, Lopez-Cruz A, Saur D, Anderson SA, Huang K, Shi SH. Clonal production and organization of inhibitory interneurons in the neocortex. Science 2011; 334:480-6. [PMID: 22034427 DOI: 10.1126/science.1208884] [Citation(s) in RCA: 130] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The neocortex contains excitatory neurons and inhibitory interneurons. Clones of neocortical excitatory neurons originating from the same progenitor cell are spatially organized and contribute to the formation of functional microcircuits. In contrast, relatively little is known about the production and organization of neocortical inhibitory interneurons. We found that neocortical inhibitory interneurons were produced as spatially organized clonal units in the developing ventral telencephalon. Furthermore, clonally related interneurons did not randomly disperse but formed spatially isolated clusters in the neocortex. Individual clonal clusters consisting of interneurons expressing the same or distinct neurochemical markers exhibited clear vertical or horizontal organization. These results suggest that the lineage relationship plays a pivotal role in the organization of inhibitory interneurons in the neocortex.
Collapse
Affiliation(s)
- Keith N Brown
- Developmental Biology Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
353
|
Fishell G, Rudy B. Mechanisms of inhibition within the telencephalon: "where the wild things are". Annu Rev Neurosci 2011; 34:535-67. [PMID: 21469958 DOI: 10.1146/annurev-neuro-061010-113717] [Citation(s) in RCA: 172] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In this review, we first provide a historical perspective of inhibitory signaling from the discovery of inhibition through to our present understanding of the diversity and mechanisms by which GABAergic interneuron populations function in different parts of the telencephalon. This is followed by a summary of the mechanisms of inhibition in the CNS. With this as a starting point, we provide an overview describing the variations in the subtypes and origins of inhibitory interneurons within the pallial and subpallial divisions of the telencephalon, with a focus on the hippocampus, somatosensory, paleo/piriform cortex, striatum, and various amygdala nuclei. Strikingly, we observe that marked variations exist in the origin and numerical balance between GABAergic interneurons and the principal cell populations in distinct regions of the telencephalon. Finally we speculate regarding the attractiveness and challenges of establishing a unifying nomenclature to describe inhibitory neuron diversity throughout the telencephalon.
Collapse
Affiliation(s)
- Gord Fishell
- Smilow Neuroscience Program, Smilow Research Center, New York University School of Medicine, New York, New York 10016, USA.
| | | |
Collapse
|
354
|
Ma T, Zhang Q, Cai Y, You Y, Rubenstein JLR, Yang Z. A subpopulation of dorsal lateral/caudal ganglionic eminence-derived neocortical interneurons expresses the transcription factor Sp8. Cereb Cortex 2011; 22:2120-30. [PMID: 22021915 DOI: 10.1093/cercor/bhr296] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Cortical GABAergic interneurons in rodents originate from subpallial progenitors and tangentially migrate to the cortex. While the majority of mouse neocortical interneurons are derived from the medial and caudal ganglionic eminence (MGE and CGE, respectively), it remains unknown whether the lateral ganglionic eminence (LGE) also contributes to a subpopulation of cortical interneurons. Here, we show that the transcription factor Sp8 is expressed in one-fifth of adult cortical interneurons, which appear to be derived from both the dorsal LGE and the dorsal CGE (dLGE and dCGE, respectively). Compared with the MGE-derived cortical interneurons, dLGE/dCGE-derived Sp8-expressing (Sp8+) ones are born at later embryonic stages with peak production occurring at embryonic day 15.5. They tangentially migrate mainly along the subventricular/intermediate zone (SVZ/IZ) route; some continue to express mitotic markers (Ki67 and PH3) in the neonatal cortical SVZ/IZ. Sp8+ interneurons continue to radially migrate from the SVZ/IZ into the cortical layers at early postnatal stages. In contrast to MGE-derived interneurons, dLGE/dCGE-derived Sp8+ interneurons follow an outside-in layering pattern, preferentially occupying superficial cortical layers.
Collapse
Affiliation(s)
- Tong Ma
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Fudan University, Shanghai, China
| | | | | | | | | | | |
Collapse
|
355
|
Londhe VA, Maisonet TM, Lopez B, Jeng JM, Xiao J, Li C, Minoo P. Conditional deletion of epithelial IKKβ impairs alveolar formation through apoptosis and decreased VEGF expression during early mouse lung morphogenesis. Respir Res 2011; 12:134. [PMID: 21985298 PMCID: PMC3202236 DOI: 10.1186/1465-9921-12-134] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Accepted: 10/10/2011] [Indexed: 02/05/2023] Open
Abstract
Background Alveolar septation marks the beginning of the transition from the saccular to alveolar stage of lung development. Inflammation can disrupt this process and permanently impair alveolar formation resulting in alveolar hypoplasia as seen in bronchopulmonary dysplasia in preterm newborns. NF-κB is a transcription factor central to multiple inflammatory and developmental pathways including dorsal-ventral patterning in fruit flies; limb, mammary and submandibular gland development in mice; and branching morphogenesis in chick lungs. We have previously shown that epithelial overexpression of NF-κB accelerates lung maturity using transgenic mice. The purpose of this study was to test our hypothesis that targeted deletion of NF-κB signaling in lung epithelium would impair alveolar formation. Methods We generated double transgenic mice with lung epithelium-specific deletion of IKKβ, a known activating kinase upstream of NF-κB, using a cre-loxP transgenic recombination strategy. Lungs of resulting progeny were analyzed at embryonic and early postnatal stages to determine specific effects on lung histology, and mRNA and protein expression of relevant lung morphoreulatory genes. Lastly, results measuring expression of the angiogenic factor, VEGF, were confirmed in vitro using a siRNA-knockdown strategy in cultured mouse lung epithelial cells. Results Our results showed that IKKβ deletion in the lung epithelium transiently decreased alveolar type I and type II cells and myofibroblasts and delayed alveolar formation. These effects were mediated through increased alveolar type II cell apoptosis and decreased epithelial VEGF expression. Conclusions These results suggest that epithelial NF-κB plays a critical role in early alveolar development possibly through regulation of VEGF.
Collapse
Affiliation(s)
- Vedang A Londhe
- Department of Pediatrics, Division of Neonatology and Developmental Biology, David Geffen School of Medicine at UCLA, 10833 Le Conte Ave, Mailcode 175217, Los Angeles, CA, USA.
| | | | | | | | | | | | | |
Collapse
|
356
|
A blueprint for the spatiotemporal origins of mouse hippocampal interneuron diversity. J Neurosci 2011; 31:10948-70. [PMID: 21795545 DOI: 10.1523/jneurosci.0323-11.2011] [Citation(s) in RCA: 221] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Although vastly outnumbered, inhibitory interneurons critically pace and synchronize excitatory principal cell populations to coordinate cortical information processing. Precision in this control relies upon a remarkable diversity of interneurons primarily determined during embryogenesis by genetic restriction of neuronal potential at the progenitor stage. Like their neocortical counterparts, hippocampal interneurons arise from medial and caudal ganglionic eminence (MGE and CGE) precursors. However, while studies of the early specification of neocortical interneurons are rapidly advancing, similar lineage analyses of hippocampal interneurons have lagged. A "hippocampocentric" investigation is necessary as several hippocampal interneuron subtypes remain poorly represented in the neocortical literature. Thus, we investigated the spatiotemporal origins of hippocampal interneurons using transgenic mice that specifically report MGE- and CGE-derived interneurons either constitutively or inducibly. We found that hippocampal interneurons are produced in two neurogenic waves between E9-E12 and E12-E16 from MGE and CGE, respectively, and invade the hippocampus by E14. In the mature hippocampus, CGE-derived interneurons primarily localize to superficial layers in strata lacunosum moleculare and deep radiatum, while MGE-derived interneurons readily populate all layers with preference for strata pyramidale and oriens. Combined molecular, anatomical, and electrophysiological interrogation of MGE/CGE-derived interneurons revealed that MGE produces parvalbumin-, somatostatin-, and nitric oxide synthase-expressing interneurons including fast-spiking basket, bistratified, axo-axonic, oriens-lacunosum moleculare, neurogliaform, and ivy cells. In contrast, CGE-derived interneurons contain cholecystokinin, calretinin, vasoactive intestinal peptide, and reelin including non-fast-spiking basket, Schaffer collateral-associated, mossy fiber-associated, trilaminar, and additional neurogliaform cells. Our findings provide a basic blueprint of the developmental origins of hippocampal interneuron diversity.
Collapse
|
357
|
Neddens J, Fish KN, Tricoire L, Vullhorst D, Shamir A, Chung W, Lewis DA, McBain CJ, Buonanno A. Conserved interneuron-specific ErbB4 expression in frontal cortex of rodents, monkeys, and humans: implications for schizophrenia. Biol Psychiatry 2011; 70:636-45. [PMID: 21664604 PMCID: PMC5040357 DOI: 10.1016/j.biopsych.2011.04.016] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Revised: 04/15/2011] [Accepted: 04/15/2011] [Indexed: 12/16/2022]
Abstract
BACKGROUND Neuregulin-1 and ErbB4 are genetically associated with schizophrenia, and detailed knowledge of the cellular and subcellular localization of ErbB4 is important for understanding how neuregulin-1 regulates neuronal network activity and behavior. Expression of ErbB4 is restricted to interneurons in the rodent hippocampus and cortex. However, controversy remains about the cellular expression pattern in primate brain and its subcellular distribution in postsynaptic somatodendritic locations versus presynaptic terminals. METHODS ErbB4 expression was analyzed in pyramidal cells and interneurons in the frontal cortex of five species: C57BL6 mice (n = 3), ErbB4⁻/⁻ mice (n = 2), Sprague-Dawley rats (n = 3), two macaque species (n = 3 + 2), and humans (normal control subjects, n = 2). We investigated 1) messenger RNA in mice, macaques, and humans; 2) protein expression in all species using highly specific monoclonal antibodies; and 3) specificity tests of several ErbB4 antibodies on brain samples (mouse, macaque, human). RESULTS ErbB4 RNA is restricted to interneurons in the frontal cortex of mice. ErbB4 protein is undetectable in pyramidal cells of rodents, macaques, and human frontal cortex, whereas most interneurons positive for parvalbumin, calretinin, or cholecystokinin, but only a minority of calbindin-positive cells, co-express ErbB4 in macaques. Importantly, no presynaptic ErbB4 expression was detected in any species. CONCLUSIONS The interneuron-selective somatodendritic expression of ErbB4 is consistent with a primary role of neuregulin-ErbB4 signaling in the postsynaptic modulation of gamma-aminobutyric acidergic function in rodents and primates. Our data validate the use of rodents to analyze effects of abnormal ErbB4 function as a means to model endophenotypes of psychiatric disorders.
Collapse
|
358
|
Ihrie RA, Shah JK, Harwell CC, Levine JH, Guinto CD, Lezameta M, Kriegstein AR, Alvarez-Buylla A. Persistent sonic hedgehog signaling in adult brain determines neural stem cell positional identity. Neuron 2011; 71:250-62. [PMID: 21791285 DOI: 10.1016/j.neuron.2011.05.018] [Citation(s) in RCA: 220] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2011] [Indexed: 11/30/2022]
Abstract
Neural stem cells (NSCs) persist in the subventricular zone (SVZ) of the adult brain. Location within this germinal region determines the type of neuronal progeny NSCs generate, but the mechanism of adult NSC positional specification remains unknown. We show that sonic hedgehog (Shh) signaling, resulting in high gli1 levels, occurs in the ventral SVZ and is associated with the genesis of specific neuronal progeny. Shh is selectively produced by a small group of ventral forebrain neurons. Ablation of Shh decreases production of ventrally derived neuron types, while ectopic activation of this pathway in dorsal NSCs respecifies their progeny to deep granule interneurons and calbindin-positive periglomerular cells. These results show that Shh is necessary and sufficient for the specification of adult ventral NSCs.
Collapse
Affiliation(s)
- Rebecca A Ihrie
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA
| | | | | | | | | | | | | | | |
Collapse
|
359
|
Taniguchi H, He M, Wu P, Kim S, Paik R, Sugino K, Kvitsiani D, Kvitsani D, Fu Y, Lu J, Lin Y, Miyoshi G, Shima Y, Fishell G, Nelson SB, Huang ZJ. A resource of Cre driver lines for genetic targeting of GABAergic neurons in cerebral cortex. Neuron 2011; 71:995-1013. [PMID: 21943598 PMCID: PMC3779648 DOI: 10.1016/j.neuron.2011.07.026] [Citation(s) in RCA: 1406] [Impact Index Per Article: 100.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/18/2011] [Indexed: 10/17/2022]
Abstract
A key obstacle to understanding neural circuits in the cerebral cortex is that of unraveling the diversity of GABAergic interneurons. This diversity poses general questions for neural circuit analysis: how are these interneuron cell types generated and assembled into stereotyped local circuits and how do they differentially contribute to circuit operations that underlie cortical functions ranging from perception to cognition? Using genetic engineering in mice, we have generated and characterized approximately 20 Cre and inducible CreER knockin driver lines that reliably target major classes and lineages of GABAergic neurons. More select populations are captured by intersection of Cre and Flp drivers. Genetic targeting allows reliable identification, monitoring, and manipulation of cortical GABAergic neurons, thereby enabling a systematic and comprehensive analysis from cell fate specification, migration, and connectivity, to their functions in network dynamics and behavior. As such, this approach will accelerate the study of GABAergic circuits throughout the mammalian brain.
Collapse
Affiliation(s)
- Hiroki Taniguchi
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
360
|
The transcription factor Sp8 is required for the production of parvalbumin-expressing interneurons in the olfactory bulb. J Neurosci 2011; 31:8450-5. [PMID: 21653849 DOI: 10.1523/jneurosci.0939-11.2011] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Interneurons in the olfactory bulb (OB) represent a heterogeneous population, which are first produced at embryonic stages and persisting into adulthood. Using the BrdU birthdating method combined with immunostaining for several different neuronal markers, we provide the integrated temporal patterns of distinct mouse OB interneuron production from embryonic day 14 to postnatal day 365. We show that although the majority of OB interneuron subtypes continue to be generated throughout life, most subtypes show a similar "bell-like" temporal production pattern with a peak around birth. Tyrosine hydroxylase and calretinin-expressing interneurons are produced at a relatively low rate in the adult OB, while parvalbumin-expressing (PV+) interneuron production is confined to later embryonic and early postnatal stages. We also show that Dlx5/6-expressing progenitors contribute to PV+ interneurons in the OB. Interestingly, all PV+ interneurons in the external plexiform layer (EPL) express the transcription factor Sp8. Genetic ablation of Sp8 by cre/loxP-based recombination severely reduces the number of PV+ interneurons in the EPL of the OB. Our results suggest that Sp8 is required for the normal production of PV+ interneurons in the EPL of the OB. These data expand our understanding of the temporal and molecular regulation of OB interneuron neurogenesis.
Collapse
|
361
|
Pombero A, Bueno C, Saglietti L, Rodenas M, Guimera J, Bulfone A, Martinez S. Pallial origin of basal forebrain cholinergic neurons in the nucleus basalis of Meynert and horizontal limb of the diagonal band nucleus. Development 2011; 138:4315-26. [PMID: 21865321 DOI: 10.1242/dev.069534] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The majority of the cortical cholinergic innervation implicated in attention and memory originates in the nucleus basalis of Meynert and in the horizontal limb of the diagonal band nucleus of the basal prosencephalon. Functional alterations in this system give rise to neuropsychiatric disorders as well as to the cognitive alterations described in Parkinson and Alzheimer's diseases. Despite the functional importance of these basal forebrain cholinergic neurons very little is known about their origin and development. Previous studies suggest that they originate in the medial ganglionic eminence of the telencephalic subpallium; however, our results identified Tbr1-expressing, reelin-positive neurons migrating from the ventral pallium to the subpallium that differentiate into cholinergic neurons in the basal forebrain nuclei projecting to the cortex. Experiments with Tbr1 knockout mice, which lack ventropallial structures, confirmed the pallial origin of cholinergic neurons in Meynert and horizontal diagonal band nuclei. Also, we demonstrate that Fgf8 signaling in the telencephalic midline attracts these neurons from the pallium to follow a tangential migratory route towards the basal forebrain.
Collapse
Affiliation(s)
- Ana Pombero
- Instituto de Neurociencias, 03550 San Juan, Alicante, Spain
| | | | | | | | | | | | | |
Collapse
|
362
|
Genetics and function of neocortical GABAergic interneurons in neurodevelopmental disorders. Neural Plast 2011; 2011:649325. [PMID: 21876820 PMCID: PMC3159129 DOI: 10.1155/2011/649325] [Citation(s) in RCA: 117] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Accepted: 05/04/2011] [Indexed: 12/04/2022] Open
Abstract
A dysfunction of cortical and limbic GABAergic circuits has been postulated to contribute to multiple neurodevelopmental disorders in humans, including schizophrenia, autism, and epilepsy. In the current paper, I summarize the characteristics that underlie the great diversity of cortical GABAergic interneurons and explore how the multiple roles of these cells in developing and mature circuits might contribute to the aforementioned disorders. Furthermore, I review the tightly controlled genetic cascades that determine the fate of cortical interneurons and summarize how the dysfunction of genes important for the generation, specification, maturation, and function of cortical interneurons might contribute to these disorders.
Collapse
|
363
|
Inan M, Welagen J, Anderson SA. Spatial and temporal bias in the mitotic origins of somatostatin- and parvalbumin-expressing interneuron subgroups and the chandelier subtype in the medial ganglionic eminence. Cereb Cortex 2011; 22:820-7. [PMID: 21693785 DOI: 10.1093/cercor/bhr148] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
GABAergic interneurons modulate cortical activity through the actions of distinct subgroups. Recent studies using interneuron transplants have shown tremendous promise as cell-based therapies for seizure disorders, Parkinson's disease, and in the study of neocortical plasticity. Previous reports identified a spatial bias for the origins of parvalbumin (PV)- and somatostatin (SST)-expressing interneuron subgroups within the medial ganglionic eminence (MGE). In the current study, the mitotic origins of these interneurons are examined by harvesting MGE cells at 2 time points and evaluating their neurochemical profiles after transplantation into neonatal mouse cortex. Although the dorsal MGE (dMGE)-SST and ventral MGE (vMGE)-PV bias were confirmed, both subgroups originate from progenitors located throughout the MGE. The dMGE bias was also found for SST subgroups that coexpress calretinin or reelin. In contrast, another major subgroup of SST interneuron, neuropeptide Y-expressing, does not appear to originate within the MGE. Finally, novel evidence is provided that a clinically important subtype of PV-expressing interneuron, the chandelier (axo-axonic) cell, is greatly enriched in transplants from the vMGE at embryonic day 15. These findings have important implications both for the study of interneuron fate determination and for studies that use interneuron precursor transplantation to alter cortical activity.
Collapse
Affiliation(s)
- Melis Inan
- Department of Psychiatry, Weill Medical College of Cornell University, New York, NY 10021, USA
| | | | | |
Collapse
|
364
|
Riccio O, Murthy S, Szabo G, Vutskits L, Kiss JZ, Vitalis T, Lebrand C, Dayer AG. New pool of cortical interneuron precursors in the early postnatal dorsal white matter. ACTA ACUST UNITED AC 2011; 22:86-98. [PMID: 21616983 DOI: 10.1093/cercor/bhr086] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The migration of cortical γ-aminobutyric acidergic interneurons has been extensively studied in rodent embryos, whereas few studies have documented their postnatal migration. Combining in vivo analysis together with time-lapse imaging on cortical slices, we explored the origin and migration of cortical interneurons during the first weeks of postnatal life. Strikingly, we observed that a large pool of GAD65-GFP-positive cells accumulate in the dorsal white matter region during the first postnatal week. Part of these cells divides and expresses the transcription factor paired box 6 indicating the presence of local transient amplifying precursors. The vast majority of these cells are immature interneurons expressing the neuronal marker doublecortin and partly the calcium-binding protein calretinin. Time-lapse imaging reveals that GAD65-GFP-positive neurons migrate from the white matter pool into the overlying anterior cingulate cortex (aCC). Some interneurons in the postnatal aCC express the same immature neuronal markers suggesting ongoing migration of calretinin-positive interneurons. Finally, bromodeoxyuridine incorporation experiments confirm that a small fraction of interneurons located in the aCC are generated during the early postnatal period. These results altogether reveal that at postnatal ages, the dorsal white matter contains a pool of interneuron precursors that divide and migrate into the aCC.
Collapse
Affiliation(s)
- O Riccio
- Department of Mental Health and General Psychiatry, University Hospital of Geneva, CH-1211 Geneva 4, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
365
|
Bupesh M, Legaz I, Abellán A, Medina L. Multiple telencephalic and extratelencephalic embryonic domains contribute neurons to the medial extended amygdala. J Comp Neurol 2011; 519:1505-25. [DOI: 10.1002/cne.22581] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
366
|
Chatzi C, Brade T, Duester G. Retinoic acid functions as a key GABAergic differentiation signal in the basal ganglia. PLoS Biol 2011; 9:e1000609. [PMID: 21532733 PMCID: PMC3075211 DOI: 10.1371/journal.pbio.1000609] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Accepted: 03/02/2011] [Indexed: 11/21/2022] Open
Abstract
Retinoic acid (RA) is essential for the generation of GABAergic inhibitory neurons in the mouse forebrain, and RA treatment of embryonic stem cells induces the production of GABAergic neurons. Although retinoic acid (RA) has been implicated as an extrinsic signal regulating forebrain neurogenesis, the processes regulated by RA signaling remain unclear. Here, analysis of retinaldehyde dehydrogenase mutant mouse embryos lacking RA synthesis demonstrates that RA generated by Raldh3 in the subventricular zone of the basal ganglia is required for GABAergic differentiation, whereas RA generated by Raldh2 in the meninges is unnecessary for development of the adjacent cortex. Neurospheres generated from the lateral ganglionic eminence (LGE), where Raldh3 is highly expressed, produce endogenous RA, which is required for differentiation to GABAergic neurons. In Raldh3−/− embryos, LGE progenitors fail to differentiate into either GABAergic striatal projection neurons or GABAergic interneurons migrating to the olfactory bulb and cortex. We describe conditions for RA treatment of human embryonic stem cells that result in efficient differentiation to a heterogeneous population of GABAergic interneurons without the appearance of GABAergic striatal projection neurons, thus providing an in vitro method for generation of GABAergic interneurons for further study. Our observation that endogenous RA is required for generation of LGE-derived GABAergic neurons in the basal ganglia establishes a key role for RA signaling in development of the forebrain. The vitamin A metabolite retinoic acid is an important signaling molecule needed for development of the central nervous system. Previous studies have shown a role for retinoic acid in regulating genes involved in the generation of motor neurons both in the hindbrain and spinal cord, but the role of retinoic acid in the forebrain has remained elusive. Here, we investigated mice that lack the ability to metabolize vitamin A into retinoic acid in the forebrain. Although no defects were observed in the generation of forebrain cortical neurons, we did observe a serious deficiency in GABAergic neurons, which provide inhibitory input to cortical neurons. Specifically, our results reveal that retinoic acid is required for forebrain neurons to activate an enzyme that converts glutamate to the inhibitory neurotransmitter GABA. We also find that retinoic acid treatment of human embryonic stem cells could stimulate production of GABAergic neurons. Deficiencies in GABAergic neurons have been associated with several neurological disorders, including Huntington's disease, autism, schizophrenia, and epilepsy. Knowledge of how GABAergic neurons are generated may aid efforts to treat these diseases.
Collapse
Affiliation(s)
- Christina Chatzi
- Sanford-Burnham Medical Research Institute, Development and Aging Program, La Jolla, California, United States of America
| | - Thomas Brade
- Sanford-Burnham Medical Research Institute, Development and Aging Program, La Jolla, California, United States of America
| | - Gregg Duester
- Sanford-Burnham Medical Research Institute, Development and Aging Program, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
367
|
Dorsal radial glial cells have the potential to generate cortical interneurons in human but not in mouse brain. J Neurosci 2011; 31:2413-20. [PMID: 21325508 DOI: 10.1523/jneurosci.5249-10.2011] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Radial glial (RG) cells, in the neocortical ventricular/subventricular zone (VZ/SVZ), generate cortical projection neurons both in rodents and humans, but whether they can also generate cortical interneurons is not clear. We demonstrated both on cryosections and in cell cultures that in the human VZ/SVZ, cells can be double labeled with RG markers and calretinin (CalR) and GABA, markers that suggest interneuronal lineage. We examined in more detail the cell fate of human RG cells isolated from the VZ/SVZ at midterm. After 24 h, no CalR(+) or GABA(+) cells were seen in cultures, whereas 5-10% cells expressed Nkx2.1 and Dlx, two ventral transcription factors. CalR(+) and GABA(+) cells were apparent for the first time after 3 d in vitro, and their number increased in subsequent days, consistent with the gradual transition of RG cells into CalR(+) or GABA(+) cells. Indeed, the progeny of genetically labeled RG cells could be immunolabeled with antibodies to CalR and GABA or ventral transcription factors (Nkx2.1(+), Dlx(+)). In contrast to humans, in the embryonic mouse, similar experiments showed that only RG cells isolated from the subpallium (ganglionic eminence) generate CalR(+) or GABA(+) cells, whereas this was not the case with RG cells isolated from the pallium. These findings support the idea that human, but not mouse, dorsal RG cells have the potential to generate various subtypes of neocortical interneurons. Multiple progenitors and sites of cortical interneuron origin in human might be an evolutionary adaptation underlying brain expansion and the increased complexity of cortical circuitry in humans.
Collapse
|
368
|
The largest group of superficial neocortical GABAergic interneurons expresses ionotropic serotonin receptors. J Neurosci 2011; 30:16796-808. [PMID: 21159951 DOI: 10.1523/jneurosci.1869-10.2010] [Citation(s) in RCA: 454] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
A highly diverse population of neocortical GABAergic inhibitory interneurons has been implicated in multiple functions in information processing within cortical circuits. The diversity of cortical interneurons is determined during development and primarily depends on their embryonic origins either from the medial (MGE) or the caudal (CGE) ganglionic eminences. Although MGE-derived parvalbumin (PV)- or somatostatin (SST)-expressing interneurons are well characterized, less is known about the other types of cortical GABAergic interneurons, especially those of CGE lineage, because of the lack of specific neuronal markers for these interneuron subtypes. Using a bacterial artificial chromosome transgenic mouse line, we show that, in the somatosensory cortex of the mouse, the serotonin 5-hydroxytryptamine 3A (5-HT(3A)) receptor, the only ionotropic serotonergic receptor, is expressed in most, if not all, neocortical GABAergic interneurons that do not express PV or SST. Genetic fate mapping and neurochemical profile demonstrate that 5-HT(3A)R-expressing neurons include the entire spectrum of CGE-derived interneurons. We report that, in addition to serotonergic responsiveness via 5-HT(3A)Rs, acetylcholine also depolarizes 5-HT(3A)R-expressing neurons via nicotinic receptors. 5-HT(3A)R-expressing neurons in thalamocortical (TC) recipient areas receive weak but direct monosynaptic inputs from the thalamus. TC input depolarizes a subset of TC-recipient 5-HT(3A)R neurons as strongly as fast-spiking cells, in part because of their high input resistance. Hence, fast modulation of serotonergic and cholinergic transmission may influence cortical activity through an enhancement of GABAergic synaptic transmission from 5-HT(3A)R-expressing neurons during sensory process depending on different behavioral states.
Collapse
|
369
|
Spina A, Rea S, De Pasquale V, Mastellone V, Avallone L, Pavone LM. Fate Map of Serotonin Transporter-Expressing Cells in Developing Mouse Thyroid. Anat Rec (Hoboken) 2011; 294:384-90. [DOI: 10.1002/ar.21353] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Accepted: 01/03/2011] [Indexed: 11/09/2022]
|
370
|
Yang Y, Fung SJ, Rothwell A, Tianmei S, Weickert CS. Increased interstitial white matter neuron density in the dorsolateral prefrontal cortex of people with schizophrenia. Biol Psychiatry 2011; 69:63-70. [PMID: 20974464 PMCID: PMC3005941 DOI: 10.1016/j.biopsych.2010.08.020] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2010] [Revised: 08/04/2010] [Accepted: 08/05/2010] [Indexed: 11/27/2022]
Abstract
BACKGROUND Interstitial white matter neurons (IWMNs) may reflect immature neurons that migrate tangentially to the neocortex from the ganglionic eminence to form cortical interneurons. Alterations of interneuron markers have been detected in gray matter of dorsolateral prefrontal cortex in schizophrenia, and IWMNs are also reported to be altered in schizophrenia. In this study, we considered whether a potential link exists between these two pathological findings. METHODS From a cohort of 29 schizophrenia subjects and 37 control subjects, IWMN densities were determined in the dorsolateral prefrontal cortex by counting neuronal nuclear antigen (NeuN) and somatostatin (SST)-positive cells. Double-label immunofluorescence was carried out to determine the overlap between SST+/NeuN+ and SST+/neuropeptide Y + neurons. RESULTS We found that density of NeuN + IWMNs in superficial white matter is significantly increased in schizophrenia subjects compared with control subjects. There was a significant negative correlation between SST mRNA expression in gray matter and NeuN + IWMN density. In schizophrenic patients with increased NeuN IWMN density, the density of SST-expressing neurons in white matter was also higher compared with control subjects. A subpopulation of SST immunopositive cells also show coexpression of neuropeptide Y. CONCLUSIONS Our study confirmed previous results indicating that the density of NeuN + IWMNs is increased in superficial white matter in schizophrenia. We provide the first evidence that increased IWMN density correlates with a gray matter interneuron deficit, suggesting that migration of interneurons from white matter to the cortex may be deficient in some patients with schizophrenia, consistent with an interneuron deficit in schizophrenia.
Collapse
Affiliation(s)
- Yang Yang
- Schizophrenia Research Institute, Sydney, NSW, Australia
,School of Psychiatry University of New South Wales, Sydney, NSW, Australia
,Neuroscience Research Australia, Sydney, NSW, Australia
,Peking University Institute of Mental Health, Beijing, China
| | - Samantha J Fung
- Schizophrenia Research Institute, Sydney, NSW, Australia
,Neuroscience Research Australia, Sydney, NSW, Australia
,School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
,Corresponding Author: Dr Samantha Fung, Schizophrenia Research Laboratory, Neuroscience Research Australia, Corner of Barker and Easy Streets, Randwick, NSW 2031 Australia, Phone: +61 02 9399 1141, Fax: +61 02 9399 1005,
| | - Alice Rothwell
- Schizophrenia Research Institute, Sydney, NSW, Australia
,School of Psychiatry University of New South Wales, Sydney, NSW, Australia
,Neuroscience Research Australia, Sydney, NSW, Australia
| | - Si Tianmei
- Peking University Institute of Mental Health, Beijing, China
| | - Cynthia Shannon Weickert
- Schizophrenia Research Institute, Sydney, NSW, Australia
,School of Psychiatry University of New South Wales, Sydney, NSW, Australia
,Neuroscience Research Australia, Sydney, NSW, Australia
| |
Collapse
|
371
|
Zhong Q, Zhou B, Ann DK, Minoo P, Liu Y, Banfalvi A, Krishnaveni MS, Dubourd M, Demaio L, Willis BC, Kim KJ, duBois RM, Crandall ED, Beers MF, Borok Z. Role of endoplasmic reticulum stress in epithelial-mesenchymal transition of alveolar epithelial cells: effects of misfolded surfactant protein. Am J Respir Cell Mol Biol 2010; 45:498-509. [PMID: 21169555 DOI: 10.1165/rcmb.2010-0347oc] [Citation(s) in RCA: 160] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Endoplasmic reticulum (ER) stress has been implicated in alveolar epithelial type II (AT2) cell apoptosis in idiopathic pulmonary fibrosis. We hypothesized that ER stress (either chemically induced or due to accumulation of misfolded proteins) is also associated with epithelial-mesenchymal transition (EMT) in alveolar epithelial cells (AECs). ER stress inducers, thapsigargin (TG) or tunicamycin (TN), increased expression of ER chaperone, Grp78, and spliced X-box binding protein 1, decreased epithelial markers, E-cadherin and zonula occludens-1 (ZO-1), increased the myofibroblast marker, α-smooth muscle actin (α-SMA), and induced fibroblast-like morphology in both primary AECs and the AT2 cell line, RLE-6TN, consistent with EMT. Overexpression of the surfactant protein (SP)-C BRICHOS mutant SP-C(ΔExon4) in A549 cells increased Grp78 and α-SMA and disrupted ZO-1 distribution, and, in primary AECs, SP-C(ΔExon4) induced fibroblastic-like morphology, decreased ZO-1 and E-cadherin and increased α-SMA, mechanistically linking ER stress associated with mutant SP to fibrosis through EMT. Whereas EMT was evident at lower concentrations of TG or TN, higher concentrations caused apoptosis. The Src inhibitor, 4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4]pyramidine) (PP2), abrogated EMT associated with TN or TG in primary AECs, whereas overexpression of SP-C(ΔExon4) increased Src phosphorylation, suggesting a common mechanism. Furthermore, increased Grp78 immunoreactivity was observed in AT2 cells of mice after bleomycin injury, supporting a role for ER stress in epithelial abnormalities in fibrosis in vivo. These results demonstrate that ER stress induces EMT in AECs, at least in part through Src-dependent pathways, suggesting a novel role for ER stress in fibroblast accumulation in pulmonary fibrosis.
Collapse
Affiliation(s)
- Qian Zhong
- Will Rogers Institute Pulmonary Research Center, Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Southern California, Keck School of Medicine, Los Angeles, CA 90033, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
372
|
The mouse homeobox gene Gbx2 is required for the development of cholinergic interneurons in the striatum. J Neurosci 2010; 30:14824-34. [PMID: 21048141 DOI: 10.1523/jneurosci.3742-10.2010] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Mammalian forebrain cholinergic neurons are composed of local circuit neurons in the striatum and projection neurons in the basal forebrain. These neurons are known to arise from a common pool of progenitors that primarily resides in the medial ganglionic eminence (MGE). However, little is known about the genetic programs that differentiate these two types of cholinergic neurons. Using inducible genetic fate mapping, here we examined the developmental fate of cells that express the homeodomain transcription factor Gbx2 in the MGE. We show that the Gbx2 lineage-derived cells that undergo tangential migration exclusively give rise to almost all cholinergic interneurons in the striatum, whereas those undergoing radial migration mainly produce noncholinergic neurons in the basal forebrain. Deletion of Gbx2 throughout the mouse embryo or specifically in the MGE results in abnormal distribution and significant reduction of cholinergic neurons in the striatum. We show that early-born (before embryonic day 12.5) cholinergic interneurons preferentially populate the lateral aspect of the striatum and mature earlier than late-born (after embryonic day 12.5) neurons, which normally reside in the medial part of the striatum. In the absence of Gbx2, early-born striatal cholinergic precursors display abnormal neurite outgrowth and increased complexity, and abnormally contribute to the medial part of the caudate-putamen, whereas late-born striatal cholinergic interneurons are mostly missing. Together, our data demonstrate that Gbx2 is required for the development of striatal cholinergic interneurons, perhaps by regulating tangential migration of the striatal cholinergic precursors.
Collapse
|
373
|
Woodruff AR, Anderson SA, Yuste R. The enigmatic function of chandelier cells. Front Neurosci 2010; 4:201. [PMID: 21151823 PMCID: PMC2999891 DOI: 10.3389/fnins.2010.00201] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Accepted: 11/19/2010] [Indexed: 11/13/2022] Open
Abstract
Chandelier (or axo-axonic) cells are one of the most distinctive GABAergic interneurons in the brain. Their exquisite target specificity for the axon initial segment of pyramidal neurons, together with their GABAergic nature, long suggested the possibility that they provide the ultimate inhibitory control of pyramidal neuron output. Recent findings indicate that their function may be more complicated, and perhaps more interesting, than initially believed. Here we review these recent developments and their implications. We focus in particular on whether chandelier cells may provide a depolarizing, excitatory effect on pyramidal neuron output, in addition to a powerful inhibition.
Collapse
Affiliation(s)
- Alan R Woodruff
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University New York, NY, USA
| | | | | |
Collapse
|
374
|
Li M, Krishnaveni MS, Li C, Zhou B, Xing Y, Banfalvi A, Li A, Lombardi V, Akbari O, Borok Z, Minoo P. Epithelium-specific deletion of TGF-β receptor type II protects mice from bleomycin-induced pulmonary fibrosis. J Clin Invest 2010; 121:277-87. [PMID: 21135509 DOI: 10.1172/jci42090] [Citation(s) in RCA: 187] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Accepted: 10/13/2010] [Indexed: 01/10/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic fibroproliferative pulmonary disorder for which there are currently no treatments. Although the etiology of IPF is unknown, dysregulated TGF-β signaling has been implicated in its pathogenesis. Recent studies also suggest a central role for abnormal epithelial repair. In this study, we sought to elucidate the function of epithelial TGF-β signaling via TGF-β receptor II (TβRII) and its contribution to fibrosis by generating mice in which TβRII was specifically inactivated in mouse lung epithelium. These mice, which are referred to herein as TβRIINkx2.1-cre mice, were used to determine the impact of TβRII inactivation on (a) embryonic lung morphogenesis in vivo; and (b) the epithelial cell response to TGF-β signaling in vitro and in a bleomycin-induced, TGF-β-mediated mouse model of pulmonary fibrosis. Although postnatally viable with no discernible abnormalities in lung morphogenesis and epithelial cell differentiation, TβRIINkx2.1-cre mice developed emphysema, suggesting a requirement for epithelial TβRII in alveolar homeostasis. Absence of TβRII increased phosphorylation of Smad2 and decreased, but did not entirely block, phosphorylation of Smad3 in response to endogenous/physiologic TGF-β. However, TβRIINkx2.1-cre mice exhibited increased survival and resistance to bleomycin-induced pulmonary fibrosis. To our knowledge, these findings are the first to demonstrate a specific role for TGF-β signaling in the lung epithelium in the pathogenesis of pulmonary fibrosis.
Collapse
Affiliation(s)
- Min Li
- Division of Neonatology, Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
375
|
Cossart R. The maturation of cortical interneuron diversity: how multiple developmental journeys shape the emergence of proper network function. Curr Opin Neurobiol 2010; 21:160-8. [PMID: 21074988 DOI: 10.1016/j.conb.2010.10.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Revised: 10/04/2010] [Accepted: 10/21/2010] [Indexed: 12/31/2022]
Abstract
If the classical functional attribute of cortical GABAergic interneurons is to mediate synaptic inhibition in the adult cortex, it is becoming evident that their major task is instead to shape the spatio-temporal dynamics of the network oscillations that support most brain functions. This complex function involves a division of labour between morpho-physiologically diverse interneuron subtypes. Both the central network function and the bewildering heterogeneity of the interneuron population are especially emphasized during cortical development: at early postnatal stages, a single GABAergic neuron can efficiently pace the activity of hundreds of other cells, whereas some interneuron subtypes are still poorly developed. Given the role of coherent activity in brain development, this confers to GABAergic interneurons a major role in the proper maturation of cortical networks.
Collapse
Affiliation(s)
- Rosa Cossart
- INMED, INSERM U901, Université de la Méditerranée, Parc Scientifique de Luminy, BP.13, 13273 Marseille Cedex 9, France.
| |
Collapse
|
376
|
Schwartz CM, Cheng A, Mughal MR, Mattson MP, Yao PJ. Clathrin assembly proteins AP180 and CALM in the embryonic rat brain. J Comp Neurol 2010; 518:3803-18. [PMID: 20653035 DOI: 10.1002/cne.22425] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Clathrin-coated vesicles are known to play diverse and pivotal roles in cells. The proper formation of clathrin-coated vesicles is dependent on, and highly regulated by, a large number of clathrin assembly proteins. These assembly proteins likely determine the functional specificity of clathrin-coated vesicles, and together they control a multitude of intracellular trafficking pathways, including those involved in embryonic development. In this study, we focus on two closely related clathrin assembly proteins, AP180 and CALM (clathrin assembly lymphoid myeloid leukemia protein), in the developing embryonic rat brain. We find that AP180 begins to be expressed at embryonic day 14 (E14), but only in postmitotic cells that have acquired a neuronal fate. CALM, on the other hand, is expressed as early as E12, by both neural stem cells and postmitotic neurons. In vitro loss-of-function studies using RNA interference (RNAi) indicate that AP180 and CALM are dispensable for some aspects of embryonic neurogenesis but are required for the growth of postmitotic neurons. These results identify the developmental stage of AP180 and CALM expression and suggest that each protein has distinct functions in neural development.
Collapse
Affiliation(s)
- Catherine M Schwartz
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, Maryland 21224, USA
| | | | | | | | | |
Collapse
|
377
|
The germinal zones of the basal ganglia but not the septum generate GABAergic interneurons for the cortex. J Neurosci 2010; 30:12050-62. [PMID: 20826668 DOI: 10.1523/jneurosci.6178-09.2010] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Cortical interneurons originate from subpallial precursors and migrate into the cortex during development. Using genetic lineage tracing in transgenic mice we examine the contribution of two germinal zones, the septum and the lateral ganglionic eminence/caudal ganglionic eminence (LGE/CGE) to interneurons of the cortex. We find that the septal neuroepithelium does not generate interneurons for the neocortex. There is, however, clear migration of cells from the LGE/CGE to the cortex. Comparison of the dynamics of cortical colonization by the two major cohorts of interneurons originating in the medial ganglionic eminence (MGE) and the LGE/CGE has shown differences in the timing of migration and initial route of entry into the cortex. LGE/CGE-derived interneurons enter the cortex later than the MGE-derived ones. They invade the cortex through the subventricular/intermediate zone route and only later disperse within the cortical plate and the marginal zone. During the first postnatal week MGE interneurons move extensively to acquire their laminar position within the cortical plate whereas LGE/CGE-derived cells remain largely within the upper layers of the cortex. The two populations intermingle in the adult cortex but have distinct neurochemical properties and different overall distributions. LGE/CGE-derived interneurons account for one third of the total GABAergic interneuron population in the adult cortex.
Collapse
|
378
|
Miyoshi G, Fishell G. GABAergic interneuron lineages selectively sort into specific cortical layers during early postnatal development. ACTA ACUST UNITED AC 2010; 21:845-52. [PMID: 20732898 DOI: 10.1093/cercor/bhq155] [Citation(s) in RCA: 166] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
It is of considerable interest to determine how diverse subtypes of γ-aminobutyric acidergic (GABAergic) interneurons integrate into the functional network of the cerebral cortex. Using inducible in vivo genetic fate mapping approaches, we found that interneuron precursors arising from the medial ganglionic eminence (MGE) and caudal ganglionic eminence (CGE) at E12.5, respectively, populate deep and superficial cortical layers in a complementary manner in the mature cortex. These age-matched populations initiate tangential migration into the cortex simultaneously, migrate above and below the cortical plate in a similar ratio, and complete their entrance into the cortical plate by P1. Surprisingly, while these 2 interneuron populations show a comparable layer distribution at P1, they subsequently segregate into distinct cortical layers. In addition, the initiation of the radial sorting within each lineage coincided well with the upregulation of the potassium/chloride cotransporter KCC2. Moreover, layer sorting of a later born (E16.5) CGE-derived population occurred with a similar time course to the earlier born E12.5 cohorts, further suggesting that this segregation step is controlled in a subtype specific manner. We conclude that radial sorting within the early postnatal cortex is a key mechanism by which the layer-specific integration of GABAergic interneurons into the emerging cortical network is achieved.
Collapse
Affiliation(s)
- Goichi Miyoshi
- Neuroscience Program and the Department of Cell Biology, Smilow Research Center, New York University School of Medicine, New York, NY 10016, USA
| | | |
Collapse
|
379
|
Bardet SM, Ferran JLE, Sanchez-Arrones L, Puelles L. Ontogenetic expression of sonic hedgehog in the chicken subpallium. Front Neuroanat 2010; 4. [PMID: 20700498 PMCID: PMC2917215 DOI: 10.3389/fnana.2010.00028] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Accepted: 06/09/2010] [Indexed: 01/11/2023] Open
Abstract
Sonic hedgehog (SHH) is a secreted signaling factor that is implicated in the molecular patterning of the central nervous system (CNS), somites, and limbs in vertebrates. SHH has a crucial role in the generation of ventral cell types along the entire rostrocaudal axis of the neural tube. It is secreted early in development by the axial mesoderm (prechordal plate and notochord) and the overlying ventral neural tube. Recent studies clarified the impact of SHH signaling mechanisms on dorsoventral patterning of the spinal cord, but the corresponding phenomena in the rostral forebrain are slightly different and more complex. This notably involves separate Shh expression in the preoptic part of the forebrain alar plate, as well as in the hypothalamic floor and basal plates. The present work includes a detailed spatiotemporal description of the singular alar Shh expression pattern in the rostral preoptic forebrain of chick embryos, comparing it with FoxG1, Dlx5, Nkx2.1, and Nkx2.2 mRNA expression at diverse stages of development. As a result of this mapping, we report a subdivision of the preoptic region in dorsal and ventral zones; only the dorsal part shows Shh expression. The positive area impinges as well upon a median septocommissural preoptic domain. Our study strongly suggests tangential migration of Shh-positive cells from the preoptic region into other subpallial domains, particularly into the pallidal mantle and the intermediate septum.
Collapse
Affiliation(s)
- Sylvia M Bardet
- Unité de Génétique Moléculaire Animale-INRA UMR 1061, University of Limoges Limoges, France
| | | | | | | |
Collapse
|
380
|
Ring LE, Zeltser LM. Disruption of hypothalamic leptin signaling in mice leads to early-onset obesity, but physiological adaptations in mature animals stabilize adiposity levels. J Clin Invest 2010; 120:2931-41. [PMID: 20592471 DOI: 10.1172/jci41985] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Accepted: 05/19/2010] [Indexed: 01/13/2023] Open
Abstract
Distinct populations of leptin-sensing neurons in the hypothalamus, midbrain, and brainstem contribute to the regulation of energy homeostasis. To assess the requirement for leptin signaling in the hypothalamus, we crossed mice with a floxed leptin receptor allele (Leprfl) to mice transgenic for Nkx2.1-Cre, which drives Cre expression in the hypothalamus and not in more caudal brain regions, generating LeprNkx2.1KO mice. From weaning, LeprNkx2.1KO mice exhibited phenotypes similar to those observed in mice with global loss of leptin signaling (Leprdb/db mice), including increased weight gain and adiposity, hyperphagia, cold intolerance, and insulin resistance. However, after 8 weeks of age, LeprNkx2.1KO mice maintained stable adiposity levels, whereas the body fat percentage of Leprdb/db animals continued to escalate. The divergence in the adiposity phenotypes of Leprdb/db and LeprNkx2.1KO mice with age was concomitant with increased rates of linear growth and energy expenditure in LeprNkx2.1KO mice. These data suggest that remaining leptin signals in LeprNkx2.1KO mice mediate physiological adaptations that prevent the escalation of the adiposity phenotype in adult mice. The persistence of severe adiposity in LeprNkx2.1KO mice, however, suggests that compensatory actions of circuits regulating growth and energy expenditure are not sufficient to reverse obesity established at an early age.
Collapse
Affiliation(s)
- Laurence E Ring
- Department of Anesthesiology, 2Naomi Berrie Diabetes Center, Columbia University, New York, New York, USA
| | | |
Collapse
|
381
|
A transgenic mouse line for molecular genetic analysis of excitatory glutamatergic neurons. Mol Cell Neurosci 2010; 45:245-57. [PMID: 20600924 DOI: 10.1016/j.mcn.2010.06.016] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2010] [Revised: 06/18/2010] [Accepted: 06/25/2010] [Indexed: 12/22/2022] Open
Abstract
Excitatory glutamatergic neurons are part of most of the neuronal circuits in the mammalian nervous system. We have used BAC-technology to generate a BAC-Vglut2::Cre mouse line where Cre expression is driven by the vesicular glutamate transporter 2 (Vglut2) promotor. This BAC-Vglut2::Cre mouse line showed specific expression of Cre in Vglut2 positive cells in the spinal cord with no ectopic expression in GABAergic or glycinergic neurons. This mouse line also showed specific Cre expression in Vglut2 positive structures in the brain such as thalamus, hypothalamus, superior colliculi, inferior colliculi and deep cerebellar nuclei together with nuclei in the midbrain and hindbrain. Cre-mediated recombination was restricted to Cre expressing cells in the spinal cord and brain and occurred as early as E 12.5. Known Vglut2 positive neurons showed normal electrophysiological properties in the BAC-Vglut2::Cre transgenic mice. Altogether, this BAC-Vglut2::Cre mouse line provides a valuable tool for molecular genetic analysis of excitatory neuronal populations throughout the mouse nervous system.
Collapse
|
382
|
Costa MR, Hedin-Pereira C. Does cell lineage in the developing cerebral cortex contribute to its columnar organization? Front Neuroanat 2010; 4:26. [PMID: 20676384 PMCID: PMC2910372 DOI: 10.3389/fnana.2010.00026] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Accepted: 05/26/2010] [Indexed: 11/13/2022] Open
Abstract
Since the pioneer work of Lorente de Nó, Ramón y Cajal, Brodmann, Mountcastle, Hubel and Wiesel and others, the cerebral cortex has been seen as a jigsaw of anatomic and functional modules involved in the processing of different sets of information. In fact, a columnar distribution of neurons displaying similar functional properties throughout the cerebral cortex has been observed by many researchers. Although it has been suggested that much of the anatomical substrate for such organization would be already specified at early developmental stages, before activity-dependent mechanisms could take place, it is still unclear whether gene expression in the ventricular zone (VZ) could play a role in the development of discrete functional units, such as minicolumns or columns. Cell lineage experiments using replication-incompetent retroviral vectors have shown that the progeny of a single neuroepithelial/radial glial cell in the dorsal telencephalon is organized into discrete radial clusters of sibling excitatory neurons, which have a higher propensity for developing chemical synapses with each other rather than with neighboring non-siblings. Here, we will discuss the possibility that the cell lineage of single neuroepithelial/radial glia cells could contribute for the columnar organization of the neocortex by generating radial columns of sibling, interconnected neurons. Borrowing some concepts from the studies on cell–cell recognition and transcription factor networks, we will also touch upon the potential molecular mechanisms involved in the establishment of sibling-neuron circuits.
Collapse
Affiliation(s)
- Marcos R Costa
- Edmond and Lily Safra International Institute of Neuroscience of Natal, Natal, Rio Grande do Norte Brazil
| | | |
Collapse
|
383
|
Abstract
Gamma-aminobutyric acid-containing (GABAergic) interneurons play an important role in the function of the cerebral cortex. Through mostly inhibitory mechanisms, interneurons control hyperexcitability, and synchronize and shape the spatiotemporal dynamics of cortical activity underlying various brain functions. Their influence on cortical function is remarkably diverse, a reflection of the large variety of interneuronal populations that exist in the mammalian cortex. Research over the past few years has rapidly transformed our understanding of their mechanisms underlying the generation of different classes of interneurons. In this review, we summarize recent progress on this process, progress which holds the promise of providing a rational framework for their classification, as well as means to understand their role in cortical processing.
Collapse
Affiliation(s)
- Diego M Gelman
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas & Universidad Miguel Hernández, 03550 Sant Joan d'Alacant, Spain
| | | |
Collapse
|
384
|
Developmental origin of the neuronal subtypes that comprise the amygdalar fear circuit in the mouse. J Neurosci 2010; 30:6944-53. [PMID: 20484636 DOI: 10.1523/jneurosci.5772-09.2010] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We have taken a genetic-based fate-mapping approach to determine the specific contributions of telencephalic progenitors to the structures that comprise the amygdalar fear circuit including the central (CA), lateral (LA), and basolateral (BLA) amygdala. Our data indicate that progenitors in the ventral pallium (VP) contribute projection neurons to the LA and BLA but not the CA. Rather, the CA appears to derive, at least in part, from progenitors located in the ventral lateral ganglionic eminence (vLGE). Diverse groups of interneurons populate these amygdalar nuclei, and as predicted our data support the notion that they originate from subpallial progenitors. A rather specific population of amygdalar interneurons, the intercalated cells (ITCs), is known to play a fundamental role in fear-related behaviors. However, no information on their specific origin has, as yet, been provided. Our findings suggest that the ITCs arise from the dorsal lateral ganglionic eminence (dLGE) and migrate in the lateral migratory stream to populate the paracapsular regions as well as the main intercalated mass of the amygdala (IA). Germ-line Gsx2 mutants are known to exhibit an expansion of the VP into the LGE and a concomitant reduction in the dLGE and vLGE. Accordingly, Gsx2 conditional mutants display a significantly enlarged LA and a significant reduction in ITCs both within the paracapsular regions and the IA. Additional support for a dLGE origin of the ITCs was obtained in conditional mutants of the dLGE gene Sp8. Thus, our findings indicate diverse origins for the neuronal components that comprise the amygdalar fear circuit.
Collapse
|
385
|
Carney RSE, Mangin JM, Hayes L, Mansfield K, Sousa VH, Fishell G, Machold RP, Ahn S, Gallo V, Corbin JG. Sonic hedgehog expressing and responding cells generate neuronal diversity in the medial amygdala. Neural Dev 2010; 5:14. [PMID: 20507551 PMCID: PMC2892491 DOI: 10.1186/1749-8104-5-14] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Accepted: 05/27/2010] [Indexed: 11/23/2022] Open
Abstract
Background The mammalian amygdala is composed of two primary functional subdivisions, classified according to whether the major output projection of each nucleus is excitatory or inhibitory. The posterior dorsal and ventral subdivisions of the medial amygdala, which primarily contain inhibitory output neurons, modulate specific aspects of innate socio-sexual and aggressive behaviors. However, the development of the neuronal diversity of this complex and important structure remains to be fully elucidated. Results Using a combination of genetic fate-mapping and loss-of-function analyses, we examined the contribution and function of Sonic hedgehog (Shh)-expressing and Shh-responsive (Nkx2-1+ and Gli1+) neurons in the medial amygdala. Specifically, we found that Shh- and Nkx2-1-lineage cells contribute differentially to the dorsal and ventral subdivisions of the postnatal medial amygdala. These Shh- and Nkx2-1-lineage neurons express overlapping and non-overlapping inhibitory neuronal markers, such as Calbindin, FoxP2, nNOS and Somatostatin, revealing diverse fate contributions in discrete medial amygdala nuclear subdivisions. Electrophysiological analysis of the Shh-derived neurons additionally reveals an important functional diversity within this lineage in the medial amygdala. Moreover, inducible Gli1CreER(T2) temporal fate mapping shows that early-generated progenitors that respond to Shh signaling also contribute to medial amygdala neuronal diversity. Lastly, analysis of Nkx2-1 mutant mice demonstrates a genetic requirement for Nkx2-1 in inhibitory neuronal specification in the medial amygdala distinct from the requirement for Nkx2-1 in cerebral cortical development. Conclusions Taken together, these data reveal a differential contribution of Shh-expressing and Shh-responding cells to medial amygdala neuronal diversity as well as the function of Nkx2-1 in the development of this important limbic system structure.
Collapse
Affiliation(s)
- Rosalind S E Carney
- Center for Neuroscience Research, Children's Research Institute, Children's National Medical Center, Washington, DC 20010, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
386
|
Abstract
Dlx5 and Dlx6 homeobox genes are expressed in developing and mature cortical interneurons. Simultaneous deletion of Dlx5 and 6 results in exencephaly of the anterior brain; despite this defect, prenatal basal ganglia differentiation appeared largely intact, while tangential migration of Lhx6(+) and Mafb(+) interneurons to the cortex was reduced and disordered. The migration deficits were associated with reduced CXCR4 expression. Transplantation of mutant immature interneurons into a wild-type brain demonstrated that loss of either Dlx5 or Dlx5&6 preferentially reduced the number of mature parvalbumin(+) interneurons; those parvalbumin(+) interneurons that were present had increased dendritic branching. Dlx5/6(+/-) mice, which appear normal histologically, show spontaneous electrographic seizures and reduced power of gamma oscillations. Thus, Dlx5&6 appeared to be required for development and function of somal innervating (parvalbumin(+)) neocortical interneurons. This contrasts with Dlx1, whose function is required for dendrite innervating (calretinin(+), somatostatin(+), and neuropeptide Y(+)) interneurons (Cobos et al., 2005).
Collapse
|
387
|
Sonic hedgehog functions through dynamic changes in temporal competence in the developing forebrain. Curr Opin Genet Dev 2010; 20:391-9. [PMID: 20466536 DOI: 10.1016/j.gde.2010.04.008] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Revised: 04/12/2010] [Accepted: 04/15/2010] [Indexed: 12/12/2022]
Abstract
Morphogens act during development to provide graded spatial information that controls patterning and cell lineage specification in the nervous system. The role of morphogen signaling in instructing the expression of downstream effector transcription factors has been well established. However, a key requirement for morphogen signaling is the existence of functional intracellular machinery able to mediate the appropriate response in target cells. Here we suggest that dynamic changes in the temporal responses to Shh in the developing ventral telencephalon occur through alterations in progenitor competence. We suggest these developmental changes in competence are mediated by a transcriptional mechanism that intrinsically integrates information from the distinct signaling pathways that act to pattern the telencephalic neuroepithelium.
Collapse
|
388
|
Abstract
The mechanisms controlling the assembly of brain nuclei are poorly understood. In the forebrain, it is typically assumed that the formation of nuclei follows a similar sequence of events that in the cortex. In this structure, projection neurons are generated sequentially from common progenitor cells and migrate radially to reach their final destination, whereas interneurons are generated remotely and arrive to the cortex through tangential migration. Using the globus pallidus as a model to study the formation of forebrain nuclei, we found that the development of this basal ganglia structure involves the generation of several distinct classes of projection neurons from relatively distant progenitor pools, which then assemble together through tangential migration. Our results thus suggest that tangential migration in the forebrain is not limited to interneurons, as previously thought, but also involves projection neurons and reveal that the assembly of forebrain nuclei is more complex than previously anticipated.
Collapse
|
389
|
The progenitor zone of the ventral medial ganglionic eminence requires Nkx2-1 to generate most of the globus pallidus but few neocortical interneurons. J Neurosci 2010; 30:2812-23. [PMID: 20181579 DOI: 10.1523/jneurosci.4228-09.2010] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We show that most globus pallidus neurons, but very few neocortical interneurons, are generated from the ventral medial ganglionic eminence and dorsal preoptic area based on fate mapping using an Shh-Cre allele. The Shh-expressing subpallial lineage produces parvalbumin(+) GABAergic neurons, ChAT(+) cholinergic neurons, and oligodendrocytes. Loss of Nkx2-1 function from the Shh-expressing domain eliminated most globus pallidus neurons, whereas most cortical and striatal interneurons continued to be generated, except for striatal cholinergic neurons. Finally, our analysis provided evidence for a novel cellular component (Nkx2-1(-);Npas1(+)) of the globus pallidus.
Collapse
|
390
|
A genomic atlas of mouse hypothalamic development. Nat Neurosci 2010; 13:767-75. [PMID: 20436479 DOI: 10.1038/nn.2545] [Citation(s) in RCA: 285] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2010] [Accepted: 03/11/2010] [Indexed: 01/09/2023]
Abstract
The hypothalamus is a central regulator of many behaviors that are essential for survival, such as temperature regulation, food intake and circadian rhythms. However, the molecular pathways that mediate hypothalamic development are largely unknown. To identify genes expressed in developing mouse hypothalamus, we performed microarray analysis at 12 different developmental time points. We then conducted developmental in situ hybridization for 1,045 genes that were dynamically expressed over the course of hypothalamic neurogenesis. We identified markers that stably labeled each major hypothalamic nucleus over the entire course of neurogenesis and constructed a detailed molecular atlas of the developing hypothalamus. As a proof of concept of the utility of these data, we used these markers to analyze the phenotype of mice in which Sonic Hedgehog (Shh) was selectively deleted from hypothalamic neuroepithelium and found that Shh is essential for anterior hypothalamic patterning. Our results serve as a resource for functional investigations of hypothalamic development, connectivity, physiology and dysfunction.
Collapse
|
391
|
Prospective isolation of cortical interneuron precursors from mouse embryonic stem cells. J Neurosci 2010; 30:4667-75. [PMID: 20357117 DOI: 10.1523/jneurosci.4255-09.2010] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Despite their therapeutic potential, progress in generating fully differentiated forebrain neurons from embryonic stem cells (ESCs) has lagged behind that from more caudal regions of the neuraxis. GABAergic interneuron precursors have the remarkable ability to migrate extensively and survive after transplantation into postnatal cortex, making them an attractive candidate for use in cell-based therapy for seizures or other neuropsychiatric disorders. We have modified a mouse ESC line with an Lhx6-GFP reporter construct that allows for the isolation of newly generated cortical interneuron precursors. When transplanted into postnatal cortex, these cells can migrate into the cortical parenchyma, survive for months, and display morphological, neurochemical, and electrophysiological properties characteristic of mature interneurons. This work demonstrates that forebrain neuronal subtypes with complex traits can be generated from embryonic stem cells, and provides a novel approach to the study of cortical interneuron development and to the establishment of cell-based therapies for neurological disease.
Collapse
|
392
|
Molecules and mechanisms involved in the generation and migration of cortical interneurons. ASN Neuro 2010; 2:e00031. [PMID: 20360946 PMCID: PMC2847827 DOI: 10.1042/an20090053] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Revised: 03/04/2010] [Accepted: 03/05/2010] [Indexed: 11/30/2022] Open
Abstract
The GABA (γ-aminobutyric acid)-containing interneurons of the neocortex are largely derived from the ganglionic eminences in the subpallium. Numerous studies have previously defined the migratory paths travelled by these neurons from their origins to their destinations in the cortex. We review here results of studies that have identified many of the genes expressed in the subpallium that are involved in the specification of the subtypes of cortical interneurons, and the numerous transcription factors, motogenic factors and guidance molecules that are involved in their migration.
Collapse
Key Words
- 5-HT, 5-hydroxytryptamine
- AEP, anterior entopeduncular
- BDNF, brain-derived neurotrophic factor
- CGE, caudal ganglionic eminence
- CP, cortical plate
- CR, calretinin
- CXCR, CXC chemokine receptor
- E, embryonic day
- GABA, γ-aminobutyric acid
- GABAR, GABA receptor
- HGF/SF, hepatocyte growth factor/scatter factor
- IZ, intermediate zone
- LGE, lateral ganglionic eminence
- MGE, medial ganglionic eminence
- MZ, marginal zone
- NGR, neuregulin
- NPY, neuropeptide Y
- Nrp, neuropilin
- POA, preoptic area
- PV, paravalbumin
- Robo, Roundabout
- SDF-1, stromal-derived factor 1
- SHH, sonic hedgehog
- SST, somatostatin
- SVZ, subventricular zone
- VZ, ventricular zone
- gene expression
- interneuron
- migration
- neocortex
- neuronal specification
- subpallium
Collapse
|
393
|
Xing Y, Li C, Li A, Sridurongrit S, Tiozzo C, Bellusci S, Borok Z, Kaartinen V, Minoo P. Signaling via Alk5 controls the ontogeny of lung Clara cells. Development 2010; 137:825-33. [PMID: 20147383 DOI: 10.1242/dev.040535] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Clara cells, together with ciliated and pulmonary neuroendocrine cells, make up the epithelium of the bronchioles along the conducting airways. Clara cells are also known as progenitor or stem cells during lung regeneration after injury. The mechanisms of Clara cell differentiation are largely unknown. Transforming growth factor beta (TGFbeta)is a multifunctional molecule with roles in normal development and disease pathogenesis. In this study, we deleted the TGFbeta type I receptor Alk5 in the embryonic lung epithelium using Gata5-Cre mice. Absence of Alk5 blocked Clara cell differentiation but had no effect on ciliated or pulmonary neuroendocrine cells. Hairy/Enhancer of Split-1, which is expressed in Clara cell putative ;progenitors' was found to be a downstream target of Alk5 in vivo and in vitro. Loss of Alk5-mediated signaling also stimulated Pten gene expression and inhibited ERK phosphorylation in vivo. Using lung epithelial cells, we show that Alk5-regulated Hes1 expression is stimulated through Pten and the MEK/ERK and PI3K/AKT pathways. Thus, the signaling pathway by which TGFbeta/ALK5 regulates Clara cell differentiation may entail inhibition of Pten expression, which in turn activates ERK and AKT phosphorylation.
Collapse
Affiliation(s)
- Yiming Xing
- Department of Pediatrics, Division of Neonatology, University of Southern California, Keck School of Medicine, Los Angeles, CA 90033, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
394
|
Genetic fate mapping reveals that the caudal ganglionic eminence produces a large and diverse population of superficial cortical interneurons. J Neurosci 2010; 30:1582-94. [PMID: 20130169 DOI: 10.1523/jneurosci.4515-09.2010] [Citation(s) in RCA: 427] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
By combining an inducible genetic fate mapping strategy with electrophysiological analysis, we have systematically characterized the populations of cortical GABAergic interneurons that originate from the caudal ganglionic eminence (CGE). Interestingly, compared with medial ganglionic eminence (MGE)-derived cortical interneuron populations, the initiation [embryonic day 12.5 (E12.5)] and peak production (E16.5) of interneurons from this embryonic structure occurs 3 d later in development. Moreover, unlike either pyramidal cells or MGE-derived cortical interneurons, CGE-derived interneurons do not integrate into the cortex in an inside-out manner but preferentially (75%) occupy superficial cortical layers independent of birthdate. In contrast to previous estimates, CGE-derived interneurons are both considerably greater in number (approximately 30% of all cortical interneurons) and diversity (comprised by at least nine distinct subtypes). Furthermore, we found that a large proportion of CGE-derived interneurons, including the neurogliaform subtype, express the glycoprotein Reelin. In fact, most CGE-derived cortical interneurons express either Reelin or vasoactive intestinal polypeptide. Thus, in conjunction with previous studies, we have now determined the spatial and temporal origins of the vast majority of cortical interneuron subtypes.
Collapse
|
395
|
Common origins of hippocampal Ivy and nitric oxide synthase expressing neurogliaform cells. J Neurosci 2010; 30:2165-76. [PMID: 20147544 DOI: 10.1523/jneurosci.5123-09.2010] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
GABAergic interneurons critically regulate cortical computation through exquisite spatiotemporal control over excitatory networks. Precision of this inhibitory control requires a remarkable diversity within interneuron populations that is largely specified during embryogenesis. Although interneurons expressing the neuronal isoform of nitric oxide synthase (nNOS) constitute the largest hippocampal interneuron cohort their origin and specification remain unknown. Thus, as neurogliaform cells (NGC) and Ivy cells (IvC) represent the main nNOS(+) interneurons, we investigated their developmental origins. Although considered distinct interneuron subtypes, NGCs and IvCs exhibited similar neurochemical and electrophysiological signatures, including NPY expression and late spiking. Moreover, lineage analyses, including loss-of-function experiments and inducible fate-mapping, indicated that nNOS(+) IvCs and NGCs are both derived from medial ganglionic eminence (MGE) progenitors under control of the transcription factor Nkx2-1. Surprisingly, a subset of NGCs lacking nNOS arises from caudal ganglionic eminence (CGE) progenitors. Thus, while nNOS(+) NGCs and IvCs arise from MGE progenitors, a CGE origin distinguishes a discrete population of nNOS(-) NGCs.
Collapse
|
396
|
Xu Q, Guo L, Moore H, Waclaw RR, Campbell K, Anderson SA. Sonic hedgehog signaling confers ventral telencephalic progenitors with distinct cortical interneuron fates. Neuron 2010; 65:328-40. [PMID: 20159447 PMCID: PMC2868511 DOI: 10.1016/j.neuron.2010.01.004] [Citation(s) in RCA: 160] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2010] [Indexed: 12/25/2022]
Abstract
Interneurons in the cerebral cortex regulate cortical functions through the actions of distinct subgroups that express parvalbumin, somatostatin, or calretinin. The genesis of the first two subgroups requires the expression of NKX2.1, which is maintained by SHH signaling during neurogenesis. In this paper, we report that mosaic elimination in the medial ganglionic eminence (MGE) of Smo, a key effector of SHH signaling, reveals that MGE progenitors retain a remarkable degree of plasticity during the neurogenic period. SHH signaling prevents the upregulation of GSX2 and conversion of some MGE progenitors to a caudal ganglionic eminence-like, bipolar calretinin-expressing cell fate that is promoted by GSX2. In addition, a higher level of SHH signaling promotes the generation of the somatostatin-expressing interneuron at the expense of parvalbumin-expressing subgroup. These results indicate that cortical interneuron diversity, a major determinant of cortical function, is critically influenced by differential levels of SHH signaling within the ventral telencephalon.
Collapse
Affiliation(s)
- Qing Xu
- Weill Cornell Medical College, 1300 York Avenue New York, NY 10065, USA
| | | | | | | | | | | |
Collapse
|
397
|
Sunmonu NA, Chen L, Li JYH. Misexpression of Gbx2 throughout the mesencephalon by a conditional gain-of-function transgene leads to deletion of the midbrain and cerebellum in mice. Genesis 2010; 47:667-73. [PMID: 19603509 DOI: 10.1002/dvg.20546] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The mouse homeobox gene, Gbx2, is expressed in discreet domains in the neural tube and plays a key role in forebrain and hindbrain development. Previous studies have demonstrated that mutual inhibition between Gbx2 and Otx2, which are respectively expressed in the anterior and posterior parts of the neural plate, positions the prospective midbrain-hindbrain junction. We describe here a conditional Gbx2 gain-of-function transgenic mouse line, Gbx2-GOF, which expresses Gbx2 and red fluorescence protein, mCherry, upon Cre-mediated recombination. In the absence of Cre, beta-galactosidase is broadly expressed in mouse embryos and adult brains carrying the transgene. By combining Gbx2-GOF and En1(Cre) knock-in allele, we activated expression of Gbx2 and mCherry throughout the mesencephalon (mes) and rhombomere 1 (r1). The ectopic expression of Gbx2 causes an anterior shift of the mes/r1 junction at embryonic day 10.5. Interestingly, we found that persistent expression of Gbx2 throughout the mes/r1 region largely abolishes expression of the isthmic organizer gene Fgf8, leading to deletion of the midbrain and cerebellum at later stages. Our data suggest that the juxtaposition of the expression domains of Gbx2 and Otx2 within the mes/r1 area is essential for the maintenance of Fgf8 expression. Furthermore, the Gbx2-GOF transgenic line is suitable for functional study of Gbx2 during development.
Collapse
|
398
|
Xu Q, Anderson SA. Mapping lineage using BAC-Cre reporter lines. CURRENT PROTOCOLS IN NEUROSCIENCE 2010; Chapter 1:Unit 1.19. [PMID: 20066654 DOI: 10.1002/0471142301.ns0119s50] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
As the brain develops, progenitor cells acquire the features of specific neuronal or glial subtypes through dynamic expression of the fate-determining signaling molecules and their targeting transcription factors. An effective and versatile approach for tracing lineage of progenitors into adult cell types is to target the promoter of an interested gene with Cre (a phage DNA recombinase) to achieve simultaneous activation during neurogenesis. The bacterial artificial chromosome (BAC) is an efficient Cre carrier. Not only the targeted gene remains diploidy in BAC-Cre transgenic mice, but also the large portions of the gene's regulatory elements to be incorporated in the BAC allow Cre to sufficiently and reliably reproduce the endogenous gene expression pattern. When the BAC-Cre mouse is crossed to a Cre reporter mouse, even Cre is transiently expressed. Cre-loxP mediated recombination can permanently activate a reporter gene, such as green fluorescent protein (GFP) in all lineage cells of the gene. Experimental designs and procedures for RecA-based BAC DNA modification and preparation for pronuclear injection are highlighted. Suggestions for the use of BAC-Cre transgenic mice in fate-mapping analyses are also provided.
Collapse
Affiliation(s)
- Qing Xu
- Weill Medical College of Cornell University, New York, New York, USA
| | | |
Collapse
|
399
|
Yee CL, Wang Y, Anderson S, Ekker M, Rubenstein JLR. Arcuate nucleus expression of NKX2.1 and DLX and lineages expressing these transcription factors in neuropeptide Y(+), proopiomelanocortin(+), and tyrosine hydroxylase(+) neurons in neonatal and adult mice. J Comp Neurol 2009; 517:37-50. [PMID: 19711380 DOI: 10.1002/cne.22132] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Despite its small size, the arcuate nucleus of the hypothalamus has a critical role in regulating energy homeostasis. We have begun to define genetic approaches to express genes in specific cell types within the developing arcuate nucleus, to allow precise molecular perturbations of these cells. Furthermore, our analysis aims to contribute to defining the transcriptional networks that regulate the development of function of the arcuate neurons. Here, we define the neuronal cells types within the arcuate that express Nkx2.1 and Dlx homeobox genes. In addition, we used mice expressing Cre recombinase from the Dlx5/6 intergenic enhancer (Dlx5/6i) and from the Nkx2.1 locus to follow the fate of embryonic cells expressing these genes within the arcuate nucleus. We demonstrate that NKX2.1(+) cells and their lineages are broadly expressed in arcuate neurons [gamma-aminobutyric acid (GABA)(+), neuropeptide Y (NPY)(+), proopiomelanocortin (POMC)(+), tyrosine hydroxylase (TH)(+)] and glia (tanycytes). On the other hand, DLX(+) cells and their lineages mark only GABA(+) and TH(+) (dopaminergic) neurons, and Dlx1(-/-) mutants have fewer TH(+) neurons. These results have implications for the genetic control of arcuate development and function and for the utility of the Nkx2.1-Cre and Dlx5/6i-Cre mouse lines to alter gene expression in the developing arcuate.
Collapse
Affiliation(s)
- Cindy L Yee
- Nina Ireland Laboratory of Developmental Neurobiology, University of California San Francisco, Genetics and Development, San Francisco, California 94158-2611, USA
| | | | | | | | | |
Collapse
|
400
|
Woodruff A, Xu Q, Anderson SA, Yuste R. Depolarizing effect of neocortical chandelier neurons. Front Neural Circuits 2009; 3:15. [PMID: 19876404 PMCID: PMC2769545 DOI: 10.3389/neuro.04.015.2009] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2009] [Accepted: 09/30/2009] [Indexed: 11/13/2022] Open
Abstract
Chandelier (or axo-axonic) cells are one of the most distinctive types of GABAergic interneurons in the cortex. Although they have traditionally been considered inhibitory neurons, data from rat and human neocortical preparations suggest that chandelier cells have a depolarizing effect on pyramidal neurons at resting membrane potential, and could even activate synaptic chains of neurons. At the same time, recent results from rat hippocampal chandeliers indicate a predominantly inhibitory effect on their postsynaptic targets. To better understand the function of chandelier neurons, we generated Nkx2.1Cre MADM mice, a strain of genetically engineered animals that, by expressing GFP in a subset of neocortical interneurons, enable the identification and targeting of chandelier cells in living brain slices. Using these mice, we characterized the basic electrophysiological properties of a homogeneous population of chandelier neurons from upper layers of somatosensory cortical slices. These chandelier cells have characteristic axon cartridges and stereotypical electrophysiological features, distinguishable from basket cells. To investigate the effect of chandelier cells on target neurons, we performed paired recordings from chandeliers and postsynaptic pyramidal cells. In both perforated patch and cell-attached configurations, chandelier PSPs have in every case a reversal potential that is depolarized from rest. Our results support the idea that chandelier cells depolarize pyramidal neurons and could potentially have an excitatory effect on the network at rest.
Collapse
Affiliation(s)
- Alan Woodruff
- Howard Hughes Medical Institute, Department Biological Sciences, Columbia University New York, NY, USA
| | | | | | | |
Collapse
|