351
|
Ganugula R, Arora M, Saini P, Guada M, Kumar MNVR. Next Generation Precision-Polyesters Enabling Optimization of Ligand-Receptor Stoichiometry for Modular Drug Delivery. J Am Chem Soc 2017; 139:7203-7216. [PMID: 28395139 DOI: 10.1021/jacs.6b13231] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The success of receptor-mediated drug delivery primarily depends on the ability to optimize ligand-receptor stoichiometry. Conventional polyesters such as polylactide (PLA) or its copolymer, polylactide-co-glycolide (PLGA), do not allow such optimization due to their terminal functionality. We herein report the synthesis of 12 variations of the PLA-poly(ethylene glycol) (PEG) based precision-polyester (P2s) platform, permitting 5-12 periodically spaced carboxyl functional groups on the polymer backbone. These carboxyl groups were utilized to achieve variable degrees of gambogic acid (GA) conjugation to facilitate ligand-receptor stoichiometry optimization. These P2s-GA combined with fluorescent P2s upon emulsification form nanosystems (P2Ns) of size <150 nm with GA expressed on the surface. The P2Ns outclass conventional PLGA-GA nanosystems in cellular uptake using caco-2 intestinal model cultures. The P2Ns showed a proportional increase in cellular uptake with an increase in relative surface GA density from 0 to 75%; the slight decline for 100% GA density was indicative of receptor saturation. The intracellular trafficking of P2Ns in live caco-2 cells demonstrated the involvement of endocytic pathways in cellular uptake. The P2Ns manifest transferrin receptor (TfR) colocalization in ex vivo intestinal tissue sections, despite blocking of the receptor with transferrin (Tf) noncompetitively, i.e., independently of receptor occupation by native ligand. The in vivo application of P2Ns was demonstrated using cyclosporine (CsA) as a model peptide. The P2Ns exhibited modular release in vivo, as a function of surface GA density. This approach may contribute to the development of personalized dose regimen.
Collapse
Affiliation(s)
- Raghu Ganugula
- Department of Pharmaceutical Sciences, College of Pharmacy, Texas A&M University , TAMU Mailstop 1114, College Station, Texas 77843, United States
| | - Meenakshi Arora
- Department of Pharmaceutical Sciences, College of Pharmacy, Texas A&M University , TAMU Mailstop 1114, College Station, Texas 77843, United States
| | - Prabhjot Saini
- Department of Pharmaceutical Sciences, College of Pharmacy, Texas A&M University , TAMU Mailstop 1114, College Station, Texas 77843, United States
| | - Melissa Guada
- Department of Pharmaceutical Sciences, College of Pharmacy, Texas A&M University , TAMU Mailstop 1114, College Station, Texas 77843, United States
| | - Majeti N V Ravi Kumar
- Department of Pharmaceutical Sciences, College of Pharmacy, Texas A&M University , TAMU Mailstop 1114, College Station, Texas 77843, United States
| |
Collapse
|
352
|
Amreddy N, Babu A, Muralidharan R, Munshi A, Ramesh R. Polymeric Nanoparticle-Mediated Gene Delivery for Lung Cancer Treatment. Top Curr Chem (Cham) 2017; 375:35. [PMID: 28290155 PMCID: PMC5480422 DOI: 10.1007/s41061-017-0128-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 02/22/2017] [Indexed: 11/28/2022]
Abstract
In recent years, researchers have focused on targeted gene therapy for lung cancer, using nanoparticle carriers to overcome the limitations of conventional treatment methods. The main goal of targeted gene therapy is to develop more efficient therapeutic strategies by improving the bioavailability, stability, and target specificity of gene therapeutics and to reduce off-target effects. Polymer-based nanoparticles, an alternative to lipid and inorganic nanoparticles, efficiently carry nucleic acid therapeutics and are stable in vivo. Receptor-targeted delivery is a promising approach that can limit non-specific gene delivery and can be achieved by modifying the polymer nanoparticle surface with specific receptor ligands or antibodies. This review highlights the recent developments in gene delivery using synthetic and natural polymer-based nucleic acid carriers for lung cancer treatment. Various nanoparticle systems based on polymers and polymer combinations are discussed. Further, examples of targeting ligands or moieties used in targeted, polymer-based gene delivery to lung cancer are reviewed.
Collapse
Affiliation(s)
- Narsireddy Amreddy
- Department of Pathology, Stanton L. Young Biomedical Research Center, University of Oklahoma Health Sciences Center, Suite 1403, 975 N.E., 10th Street, Oklahoma City, OK, 73104, USA
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Anish Babu
- Department of Pathology, Stanton L. Young Biomedical Research Center, University of Oklahoma Health Sciences Center, Suite 1403, 975 N.E., 10th Street, Oklahoma City, OK, 73104, USA
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Ranganayaki Muralidharan
- Department of Pathology, Stanton L. Young Biomedical Research Center, University of Oklahoma Health Sciences Center, Suite 1403, 975 N.E., 10th Street, Oklahoma City, OK, 73104, USA
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Anupama Munshi
- Department of Radiation Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Rajagopal Ramesh
- Department of Pathology, Stanton L. Young Biomedical Research Center, University of Oklahoma Health Sciences Center, Suite 1403, 975 N.E., 10th Street, Oklahoma City, OK, 73104, USA.
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- Graduate Program in Biomedical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|
353
|
Lazari D, Alexiou GA, Markopoulos GS, Vartholomatos E, Hodaj E, Chousidis I, Leonardos I, Galani V, Kyritsis AP. N-(p-coumaroyl) serotonin inhibits glioblastoma cells growth through triggering S-phase arrest and apoptosis. J Neurooncol 2017; 132:373-381. [PMID: 28365838 DOI: 10.1007/s11060-017-2382-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Accepted: 02/05/2017] [Indexed: 01/06/2023]
Abstract
Glioblastoma is the most common and most malignant primary brain tumor with a median survival of 15 months. N-(p-coumaroyl) serotonin (CS) is an indole alkaloid with antioxidant, cardioprotective effects after ischemia and antitumor activity. In the present study we sought to determine whether could exert cytotoxic and cytostatic effects in glioma cells in vitro. CS was tested for toxicity in zebrafish. We investigated the effect of CS in U251MG and T98G glioblastoma cell lines. Viability and proliferation of the cells were examined with trypan blue exclusion assay and the xCELLigence system. Cell cycle, activation of caspase-8, mitochondrial membrane potential and CD24/CD44/CD56/CD15/CD71 expression were tested with flow cytometry. Treatment with CS significantly reduced cell viability in both cell lines tested. Induction of cell death and cell cycle arrest at G2/M and S-phase was confirmed with flow cytometry in both cell lines. CS produced significant higher activity of caspase-8 compared to control. After treatment with CS there was a dose-dependent increase in CD15 and CD71 expression, whereas there was no change in CD24/CD44/CD56 expression in both cell lines. The zebrafish mortality on the fifth post fertilization day was zero for even 1 mM of CS concentration. The treatment of glioblastoma cell lines with CS may represent a novel strategy for targeting glioblastoma. Further studies are obviously needed to elucidate the complete mechanism of its antitumor activity.
Collapse
Affiliation(s)
- Diamanto Lazari
- Laboratory of Pharmacognosy, Division of Pharmacognosy-Pharmacology, Faculty of Health Sciences, School of Pharmacy, Aristotle University of Thessaloniki, 541 24, Thessaloniki, Greece
| | - George A Alexiou
- Medical School, Neurosurgical Institute, University of Ioannina, PO BOX 103, Neochoropoulo, Ioannina, Greece.
| | - Georgios S Markopoulos
- Laboratory of Biology, School of Medicine, University of Ioannina, Ioannina, Greece.,Division of Biomedical Research, IMBB-FORTH University Campus, Ioannina, Greece
| | - Evrysthenis Vartholomatos
- Medical School, Neurosurgical Institute, University of Ioannina, PO BOX 103, Neochoropoulo, Ioannina, Greece
| | - Entela Hodaj
- Laboratory of Pharmacognosy, Division of Pharmacognosy-Pharmacology, Faculty of Health Sciences, School of Pharmacy, Aristotle University of Thessaloniki, 541 24, Thessaloniki, Greece.,Department of Industrial Chemistry, Faculty of Natural Sciences, University of Tirana, Tirana, Albania
| | - Ieremias Chousidis
- Zoology Laboratory Department of Biological Application and Technology, University of Ioannina, 45110, Ioannina, Greece
| | - Ioannis Leonardos
- Zoology Laboratory Department of Biological Application and Technology, University of Ioannina, 45110, Ioannina, Greece
| | - Vasiliki Galani
- Department of Anatomy-Histology-Embryology, Medical School, University of Ioannina, 45110, Ioannina, Greece
| | - Athanasios P Kyritsis
- Medical School, Neurosurgical Institute, University of Ioannina, PO BOX 103, Neochoropoulo, Ioannina, Greece
| |
Collapse
|
354
|
Varshosaz J, Riahi S, Ghassami E, Jahanian-Najafabadi A. Transferrin-targeted poly(butylene adipate)/terephthalate nanoparticles for targeted delivery of 5-fluorouracil in HT29 colorectal cancer cell line. J BIOACT COMPAT POL 2017. [DOI: 10.1177/0883911517690756] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The purpose of this study was to design 5-fluorouracil-loaded poly(butylene adipate)/terephthalate (Ecoflex®) nanoparticles for targeting colorectal cancer. The nanoparticles were prepared by emulsification–solvent evaporation method and optimized by a full factorial design. The effects of polymer and surfactant concentration, surfactant type, and stirrer rate were studied on the particle size, zeta potential, loading efficiency, and release efficiency of nanoparticles. For production of targeted nanoparticles, chitosan was conjugated to transferrin which was then coated on the surface of Ecoflex nanoparticles via electrostatic interactions. The conjugation of transferrin/chitosan was verified by Fourier transform infrared spectroscopy, ultraviolet spectroscopy, and SDS-PAGE (sodium dodecyl sulfate–polyacrylamide gel electrophoresis) methods and quantified by ultraviolet spectroscopy assay. The cytotoxicity of 5-fluorouracil loaded in targeted and non-targeted nanoparticles was studied on human colon adenocarcinoma cell line (HT29), Michigan Cancer Foundation-7 (MCF-7), and human umbilical vein endothelial cells using MTT (thiazolyl blue tetrazolium bromide) assay. The best results were obtained from nanoparticles prepared by 0.2% of the polymer, 2% of Tween 20, and stirrer speed of 17,500 r/min. The successful conjugation of transferrin/chitosan was confirmed by Fourier transform infrared spectrum and SDS-PAGE results and was about 80%. The targeted nanoparticles showed significantly more cytotoxic effects on HT29 cells compared to free 5-fluorouracil and non-targeted nanoparticles. Blocking transferrin receptors resulted in a significantly higher cell survival for targeted nanoparticles which confirmed receptor-mediated cellular uptake of targeted nanoparticles.
Collapse
Affiliation(s)
- Jaleh Varshosaz
- Department of Pharmaceutics, School of Pharmacy and Novel Drug Delivery Systems Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sara Riahi
- Department of Pharmaceutics, School of Pharmacy and Novel Drug Delivery Systems Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Erfaneh Ghassami
- Department of Pharmaceutics, School of Pharmacy and Novel Drug Delivery Systems Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ali Jahanian-Najafabadi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
355
|
Reduced cancer mortality at high altitude: The role of glucose, lipids, iron and physical activity. Exp Cell Res 2017; 356:209-216. [PMID: 28344053 DOI: 10.1016/j.yexcr.2017.03.048] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Accepted: 03/22/2017] [Indexed: 12/21/2022]
Abstract
Residency at high altitude (HA) demands adaptation to challenging environmental conditions with hypobaric hypoxia being the most important one. Epidemiological and experimental data suggest that chronic exposure to HA reduces cancer mortality and lowers prevalence of metabolic disorders like diabetes and obesity implying that adaption to HA modifies a broad spectrum of physiological, metabolic and cellular programs with a generally beneficial outcome for humans. However, the complexity of multiple, potentially tumor-suppressive pathways at HA impedes the understanding of mechanisms leading to reduced cancer mortality. Many adaptive processes at HA are tightly interconnected and thus it cannot be ruled out that the entirety or at least some of the HA-related alterations act in concert to reduce cancer mortality. In this review we discuss tumor formation as a concept of competition between healthy and cancer cells with improved fitness - and therefore higher competitiveness - of healthy cells at high altitude. We discuss HA-related changes in glucose, lipid and iron metabolism that may have an impact on tumorigenesis. Additionally, we discuss two parameters with a strong impact on tumorigenesis, namely drug metabolism and physical activity, to underpin their potential contribution to HA-dependent reduced cancer mortality. Future studies are needed to unravel why cancer mortality is reduced at HA and how this knowledge might be used to prevent and to treat cancer patients.
Collapse
|
356
|
Lipocalin-2 and iron trafficking in the tumor microenvironment. Pharmacol Res 2017; 120:146-156. [PMID: 28342790 DOI: 10.1016/j.phrs.2017.03.018] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 03/16/2017] [Accepted: 03/17/2017] [Indexed: 02/07/2023]
Abstract
Iron is an essential element for virtually all organisms. It facilitates cell proliferation and growth but also contributes to major hallmarks of cancer such as tumor initiation, growth, and metastasis. Often, iron handling of tumor cells is disturbed, with altered iron acquisition, efflux, and storage. Targeting perturbed iron metabolic pathways might open opportunities towards novel approaches in cancer treatment. It is becoming clear that cells of the tumor microenvironment such as macrophages contribute to tumor progression. Since macrophages evolved a multitude of mechanisms to sequester, transport, store, and release iron it can be speculated that tumor cells educate them to supply iron to support tumor growth. Recent evidence supports the existence of transferrin-independent iron transport mechanisms in the tumor microenvironment, which points to local iron transport proteins such as lipocalin-2 and/or low molecular weight iron-trafficking substances such as siderophores. We hypothesize that tumor cells educate immune cells, i.e. macrophages in their neighborhood to make them delivering iron for the benefit of cancer progression. In particular, we pay attention to recent developments, pointing to lipocalin-2 and siderophores as alternative iron transport molecules in the tumor microenvironment.
Collapse
|
357
|
Bar-Zeev M, Livney YD, Assaraf YG. Targeted nanomedicine for cancer therapeutics: Towards precision medicine overcoming drug resistance. Drug Resist Updat 2017; 31:15-30. [PMID: 28867241 DOI: 10.1016/j.drup.2017.05.002] [Citation(s) in RCA: 229] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
358
|
Shimosaki S, Nakahata S, Ichikawa T, Kitanaka A, Kameda T, Hidaka T, Kubuki Y, Kurosawa G, Zhang L, Sudo Y, Shimoda K, Morishita K. Development of a complete human IgG monoclonal antibody to transferrin receptor 1 targeted for adult T-cell leukemia/lymphoma. Biochem Biophys Res Commun 2017; 485:144-151. [DOI: 10.1016/j.bbrc.2017.02.039] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 02/07/2017] [Indexed: 12/31/2022]
|
359
|
Sugyo A, Tsuji AB, Sudo H, Nomura F, Satoh H, Koizumi M, Kurosawa G, Kurosawa Y, Saga T. Uptake of 111In-labeled fully human monoclonal antibody TSP-A18 reflects transferrin receptor expression in normal organs and tissues of mice. Oncol Rep 2017; 37:1529-1536. [PMID: 28184946 DOI: 10.3892/or.2017.5412] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 12/22/2016] [Indexed: 11/06/2022] Open
Abstract
Transferrin receptor (TfR) is an attractive molecule for targeted therapy of cancer. Various TfR-targeted therapeutic agents such as anti-TfR antibodies conjugated with anticancer agents have been developed. An antibody that recognizes both human and murine TfR is needed to predict the toxicity of antibody-based agents before clinical trials, there is no such antibody to date. In this study, a new fully human monoclonal antibody TSP-A18 that recognizes both human and murine TfR was developed and the correlation analysis of the radiolabeled antibody uptake and TfR expression in two murine strains was conducted. TSP-A18 was selected using extracellular portions of human and murine TfR from a human antibody library. The cross-reactivity of TSP-A18 with human and murine cells was confirmed by flow cytometry. Cell binding and competitive inhibition assays with [111In]TSP-A18 showed that TSP-A18 bound highly to TfR-expressing MIAPaCa-2 cells with high affinity. Biodistribution studies of [111In]TSP-A18 and [67Ga]citrate (a transferrin-mediated imaging probe) were conducted in C57BL/6J and BALB/c-nu/nu mice. [111In]TSP-A18 was accumulated highly in the spleen and bone containing marrow component of both strains, whereas high [67Ga]citrate uptake was only observed in bone containing marrow component and not in the spleen. Western blotting indicated the spleen showed the strongest TfR expression compared with other organs in both strains. There was significant correlation between [111In]TSP-A18 uptake and TfR protein expression in both strains, whereas there was significant correlation of [67Ga]citrate uptake with TfR expression only in C57BL/6J. These findings suggest that the difference in TfR expression between murine strains should be carefully considered when testing for the toxicity of anti-TfR antibody in mice and the uptake of anti-TfR antibody could reflect tissue TfR expression more accurately compared with that of transferrin-mediated imaging probe such as [67Ga]citrate.
Collapse
Affiliation(s)
- Aya Sugyo
- Department of Molecular Imaging and Theranostics, National Institute of Radiological Sciences, Inage-ku, Chiba 263-8555, Japan
| | - Atsushi B Tsuji
- Department of Molecular Imaging and Theranostics, National Institute of Radiological Sciences, Inage-ku, Chiba 263-8555, Japan
| | - Hitomi Sudo
- Department of Molecular Imaging and Theranostics, National Institute of Radiological Sciences, Inage-ku, Chiba 263-8555, Japan
| | - Fumiko Nomura
- Research and Development Division, Perseus Proteomics Inc., Meguro-ku, Tokyo 153-0041, Japan
| | - Hirokazu Satoh
- Research and Development Division, Perseus Proteomics Inc., Meguro-ku, Tokyo 153-0041, Japan
| | - Mitsuru Koizumi
- Department of Nuclear Medicine, Cancer Institute Hospital, Koto-Ku, Tokyo 135-8550, Japan
| | - Gene Kurosawa
- Innovation Center for Advanced Medicine, School of Medicine, Fujita Health University, Toyoake, Aichi 470-1192, Japan
| | - Yoshikazu Kurosawa
- Innovation Center for Advanced Medicine, School of Medicine, Fujita Health University, Toyoake, Aichi 470-1192, Japan
| | - Tsuneo Saga
- Department of Molecular Imaging and Theranostics, National Institute of Radiological Sciences, Inage-ku, Chiba 263-8555, Japan
| |
Collapse
|
360
|
Tabasum S, Noreen A, Kanwal A, Zuber M, Anjum MN, Zia KM. Glycoproteins functionalized natural and synthetic polymers for prospective biomedical applications: A review. Int J Biol Macromol 2017; 98:748-776. [PMID: 28111295 DOI: 10.1016/j.ijbiomac.2017.01.078] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 01/05/2017] [Accepted: 01/16/2017] [Indexed: 02/06/2023]
Abstract
Glycoproteins have multidimensional properties such as biodegradability, biocompatibility, non-toxicity, antimicrobial and adsorption properties; therefore, they have wide range of applications. They are blended with different polymers such as chitosan, carboxymethyl cellulose (CMC), polyvinyl pyrrolidone (PVP), polycaprolactone (PCL), heparin, polystyrene fluorescent nanoparticles (PS-NPs) and carboxyl pullulan (PC) to improve their properties like thermal stability, mechanical properties, resistance to pH, chemical stability and toughness. Considering the versatile charateristics of glycoprotein based polymers, this review sheds light on synthesis and characterization of blends and composites of glycoproteins, with natural and synthetic polymers and their potential applications in biomedical field such as drug delivery system, insulin delivery, antimicrobial wound dressing uses, targeting of cancer cells, development of anticancer vaccines, development of new biopolymers, glycoproteome research, food product and detection of dengue glycoproteins. All the technical scientific issues have been addressed; highlighting the recent advancement.
Collapse
Affiliation(s)
- Shazia Tabasum
- Institute of Chemistry, Government College University, Faisalabad 38030, Pakistan
| | - Aqdas Noreen
- Institute of Chemistry, Government College University, Faisalabad 38030, Pakistan
| | - Arooj Kanwal
- Institute of Chemistry, Government College University, Faisalabad 38030, Pakistan
| | - Mohammad Zuber
- Institute of Chemistry, Government College University, Faisalabad 38030, Pakistan
| | | | - Khalid Mahmood Zia
- Institute of Chemistry, Government College University, Faisalabad 38030, Pakistan.
| |
Collapse
|
361
|
Zackova Suchanova J, Neburkova J, Spanielova H, Forstova J, Cigler P. Retargeting Polyomavirus-Like Particles to Cancer Cells by Chemical Modification of Capsid Surface. Bioconjug Chem 2017; 28:307-313. [DOI: 10.1021/acs.bioconjchem.6b00622] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Jirina Zackova Suchanova
- Department
of Genetics and Microbiology, Faculty of Science, Charles University, Vinicna 5, 128 44 Prague 2, Czech Republic
| | - Jitka Neburkova
- Institute of Organic Chemistry and Biochemistry of the CAS, v.v.i., Flemingovo nam. 2, 166 10, Prague 6, Czech Republic
- First
Faculty of Medicine, Charles University, Katerinska 32, 121 08, Prague 2, Czech Republic
| | - Hana Spanielova
- Department
of Genetics and Microbiology, Faculty of Science, Charles University, Vinicna 5, 128 44 Prague 2, Czech Republic
- Institute of Organic Chemistry and Biochemistry of the CAS, v.v.i., Flemingovo nam. 2, 166 10, Prague 6, Czech Republic
| | - Jitka Forstova
- Department
of Genetics and Microbiology, Faculty of Science, Charles University, Vinicna 5, 128 44 Prague 2, Czech Republic
| | - Petr Cigler
- Institute of Organic Chemistry and Biochemistry of the CAS, v.v.i., Flemingovo nam. 2, 166 10, Prague 6, Czech Republic
| |
Collapse
|
362
|
Roveri M, Bernasconi M, Leroux JC, Luciani P. Peptides for tumor-specific drug targeting: state of the art and beyond. J Mater Chem B 2017; 5:4348-4364. [DOI: 10.1039/c7tb00318h] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
This review outlines the most recent advances in peptide-mediated tumor-targeting and gives insight into the direction of the field.
Collapse
Affiliation(s)
- Maurizio Roveri
- Institute of Pharmaceutical Sciences
- ETH Zurich
- 8093 Zurich
- Switzerland
- Experimental Infectious Diseases and Cancer Research
| | - Michele Bernasconi
- Experimental Infectious Diseases and Cancer Research
- Children's Research Center
- University Children's Hospital Zurich
- 8032 Zurich
- Switzerland
| | | | - Paola Luciani
- Institute of Pharmacy
- Department of Pharmaceutical Technology
- Friedrich Schiller University
- 07743 Jena
- Germany
| |
Collapse
|
363
|
Hagimori M, Fuchigami Y, Kawakami S. Peptide-Based Cancer-Targeted DDS and Molecular Imaging. Chem Pharm Bull (Tokyo) 2017; 65:618-624. [DOI: 10.1248/cpb.c17-00098] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Masayori Hagimori
- Department of Pharmaceutical Informatics, Nagasaki University Graduate School of Biomedical Sciences
| | - Yuki Fuchigami
- Department of Pharmaceutical Informatics, Nagasaki University Graduate School of Biomedical Sciences
| | - Shigeru Kawakami
- Department of Pharmaceutical Informatics, Nagasaki University Graduate School of Biomedical Sciences
| |
Collapse
|
364
|
Chitgupi U, Qin Y, Lovell JF. Targeted Nanomaterials for Phototherapy. Nanotheranostics 2017; 1:38-58. [PMID: 29071178 PMCID: PMC5646723 DOI: 10.7150/ntno.17694] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Accepted: 11/30/2016] [Indexed: 12/22/2022] Open
Abstract
Phototherapies involve the irradiation of target tissues with light. To further enhance selectivity and potency, numerous molecularly targeted photosensitizers and photoactive nanoparticles have been developed. Active targeting typically involves harnessing the affinity between a ligand and a cell surface receptor for improved accumulation in the targeted tissue. Targeting ligands including peptides, proteins, aptamers and small molecules have been explored for phototherapy. In this review, recent examples of targeted nanomaterials used in phototherapy are summarized.
Collapse
Affiliation(s)
| | | | - Jonathan F. Lovell
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, New York, USA
| |
Collapse
|
365
|
Lazzari G, Couvreur P, Mura S. Multicellular tumor spheroids: a relevant 3D model for the in vitro preclinical investigation of polymer nanomedicines. Polym Chem 2017. [DOI: 10.1039/c7py00559h] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Application of 3D multicellular tumor spheroids to the investigation of polymer nanomedicines.
Collapse
Affiliation(s)
- Gianpiero Lazzari
- Institut Galien Paris-Sud
- UMR 8612
- CNRS
- Univ Paris-Sud
- Université Paris-Saclay
| | - Patrick Couvreur
- Institut Galien Paris-Sud
- UMR 8612
- CNRS
- Univ Paris-Sud
- Université Paris-Saclay
| | - Simona Mura
- Institut Galien Paris-Sud
- UMR 8612
- CNRS
- Univ Paris-Sud
- Université Paris-Saclay
| |
Collapse
|
366
|
Lopes AM, Chen KY, Kamei DT. A transferrin variant as the targeting ligand for polymeric nanoparticles incorporated in 3-D PLGA porous scaffolds. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 73:373-380. [PMID: 28183621 DOI: 10.1016/j.msec.2016.12.091] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 11/10/2016] [Accepted: 12/19/2016] [Indexed: 01/11/2023]
Abstract
We have developed doxorubicin (DOX)-loaded poly(lactide-co-glycolide) (PLGA) nanoparticles (DP) conjugated with polyethylene glycol (PEG) and transferrin (Tf) to form Tf-PEG-DPs (TPDPs), and incorporated these TPDPs into three-dimensional (3-D) PLGA porous scaffolds to form a controlled delivery system. To our knowledge, this represents the first use of a Tf variant (oxalate Tf) to improve the targeted delivery of drug-encapsulated nanoparticles (NPs) in PLGA scaffolds to PC3 prostate cancer cells. The PLGA scaffolds with TPDPs incorporated have been shown to release drugs for sustained delivery and provided a continuous release of DOX. The MTS assay was also performed to determine the potency of native and oxalate TPDPs, and a 3.0-fold decrease in IC50 values were observed between the native and oxalate TPDPs. The lower IC50 value for the oxalate version signifies greater potency compared to the native version, since a lower concentration of drug was required to achieve the same therapeutic effect. These results suggest that this technology has potential to become a new implantable polymeric device to improve the controlled and targeted drug delivery of Tf-conjugated NPs for cancer therapy.
Collapse
Affiliation(s)
- André M Lopes
- Department of Bioengineering, University of California, Los Angeles, 420 Westwood Plaza, 5121 Engineering V, Los Angeles, CA 90095, USA
| | - Kevin Y Chen
- Department of Bioengineering, University of California, Los Angeles, 420 Westwood Plaza, 5121 Engineering V, Los Angeles, CA 90095, USA
| | - Daniel T Kamei
- Department of Bioengineering, University of California, Los Angeles, 420 Westwood Plaza, 5121 Engineering V, Los Angeles, CA 90095, USA.
| |
Collapse
|
367
|
Santi M, Maccari G, Mereghetti P, Voliani V, Rocchiccioli S, Ucciferri N, Luin S, Signore G. Rational Design of a Transferrin-Binding Peptide Sequence Tailored to Targeted Nanoparticle Internalization. Bioconjug Chem 2016; 28:471-480. [DOI: 10.1021/acs.bioconjchem.6b00611] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Melissa Santi
- Center
for Nanotechnology Innovation@NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, Pisa 56127, Italy
- NEST, Scuola Normale Superiore and Istituto Nanoscienze-CNR, Piazza San Silvestro 12, Pisa 56127, Italy
| | - Giuseppe Maccari
- Center
for Nanotechnology Innovation@NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, Pisa 56127, Italy
| | - Paolo Mereghetti
- Center
for Nanotechnology Innovation@NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, Pisa 56127, Italy
| | - Valerio Voliani
- Center
for Nanotechnology Innovation@NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, Pisa 56127, Italy
| | - Silvia Rocchiccioli
- Institute of Clinical Physiology-CNR, Via Giuseppe Moruzzi 1, Pisa 56124, Italy
| | - Nadia Ucciferri
- Institute of Clinical Physiology-CNR, Via Giuseppe Moruzzi 1, Pisa 56124, Italy
| | - Stefano Luin
- NEST, Scuola Normale Superiore and Istituto Nanoscienze-CNR, Piazza San Silvestro 12, Pisa 56127, Italy
| | - Giovanni Signore
- Center
for Nanotechnology Innovation@NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, Pisa 56127, Italy
| |
Collapse
|
368
|
Luria-Pérez R, Helguera G, Rodríguez JA. Antibody-mediated targeting of the transferrin receptor in cancer cells. BOLETIN MEDICO DEL HOSPITAL INFANTIL DE MEXICO 2016; 73:372-379. [PMID: 29421281 DOI: 10.1016/j.bmhimx.2016.11.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 11/23/2016] [Indexed: 12/13/2022] Open
Abstract
Iron is essential for cell growth and is imported into cells in part through the action of transferrin (Tf), a protein that binds its receptor (TfR1 or CD71) on the surface of a cell, and then releases iron into endosomes. TfR1 is a single pass type-II transmembrane protein expressed at basal levels in most tissues. High expression of TfR1 is typically associated with rapidly proliferating cells, including various types of cancer. TfR1 is targeted by experimental therapeutics for several reasons: its cell surface accessibility, constitutive endocytosis into cells, essential role in cell growth and proliferation, and its overexpression by cancer cells. Among the therapeutic agents used to target TfR1, antibodies stand out due to their remarkable specificity and affinity. Clinical trials are being conducted to evaluate the safety and efficacy of agents targeting TfR1 in cancer patients with promising results. These observations suggest that therapies targeting TfR1 as direct therapeutics or delivery conduits remain an attractive alternative for the treatment of cancers that overexpress the receptor.
Collapse
Affiliation(s)
- Rosendo Luria-Pérez
- Unidad de Investigación en Enfermedades Oncológicas, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| | - Gustavo Helguera
- Instituto de Biología y Medicina Experimental, Ciudad Autónoma de Buenos Aires, Argentina.
| | - José A Rodríguez
- Department of Chemistry and Biochemistry, UCLA-DOE Institute for Genomics and Proteomics, University of California, Los Angeles, California, USA.
| |
Collapse
|
369
|
Afzal SM, Shareef MZ, Kishan V. Transferrin tagged lipid nanoemulsion of docetaxel for enhanced tumor targeting. J Drug Deliv Sci Technol 2016. [DOI: 10.1016/j.jddst.2016.10.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
370
|
Tumor targeting strategies for chitosan-based nanoparticles. Colloids Surf B Biointerfaces 2016; 148:460-473. [DOI: 10.1016/j.colsurfb.2016.09.020] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Revised: 09/13/2016] [Accepted: 09/15/2016] [Indexed: 12/17/2022]
|
371
|
Cui Y, Zhang M, Zeng F, Jin H, Xu Q, Huang Y. Dual-Targeting Magnetic PLGA Nanoparticles for Codelivery of Paclitaxel and Curcumin for Brain Tumor Therapy. ACS APPLIED MATERIALS & INTERFACES 2016; 8:32159-32169. [PMID: 27808492 DOI: 10.1021/acsami.6b10175] [Citation(s) in RCA: 154] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Chemotherapy is one of the most important strategies for glioma treatment. However, the "impermeability" of the blood-brain barrier (BBB) impedes most chemotherapeutics from entering the brain, thereby rendering very few drugs suitable for glioma therapy, letting alone application of a combination of chemotherapeutics. Thereby, there is a pressing need to overcome the obstacles. A dual-targeting strategy was developed by a combination of magnetic guidance and transferrin receptor-binding peptide T7-mediated active targeting delivery. The T7-modified magnetic PLGA nanoparticle (NP) system was prepared with co-encapsulation of the hydrophobic magnetic nanoparticles and a combination of drugs (i.e., paclitaxel and curcumin) based on a "one-pot" process. The combined drugs yielded synergistic effects on inhibition of tumor growth via the mechanisms of apoptosis induction and cell cycle arrest, displaying significantly increased efficacy relative to the single use of each drug. Dual-targeting effects yielded a >10-fold increase in cellular uptake studies and a >5-fold enhancement in brain delivery compared to the nontargeting NPs. For the in vivo studies with an orthotopic glioma model, efficient brain accumulation was observed by using fluorescence imaging, synchrotron radiation X-ray imaging, and MRI. Furthermore, the antiglioma treatment efficacy of the delivery system was evaluated. With application of a magnetic field, this system exhibited enhanced treatment efficiency and reduced adverse effects. All mice bearing orthotopic glioma survived, compared to a 62.5% survival rate for the combination group receiving free drugs. This dual-targeting, co-delivery strategy provides a potential method for improving brain drug delivery and antiglioma treatment efficacy.
Collapse
Affiliation(s)
- Yanna Cui
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 501 Haike Road, Shanghai 201203, China
- Key Laboratory of Primate Neurobiology, Institute of Neuroscience, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences , 320 Yueyang Road, Shanghai 200031, China
| | - Meng Zhang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 501 Haike Road, Shanghai 201203, China
| | - Feng Zeng
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 501 Haike Road, Shanghai 201203, China
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University , 826 Zhangheng Road, Shanghai 201203, China
- Institute of Tropical Medicine, Guangzhou University of Chinese Medicine , 12 Jichang Road, Guangzhou 501405, China
| | - Hongyue Jin
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 501 Haike Road, Shanghai 201203, China
| | - Qin Xu
- Institute of Tropical Medicine, Guangzhou University of Chinese Medicine , 12 Jichang Road, Guangzhou 501405, China
| | - Yongzhuo Huang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 501 Haike Road, Shanghai 201203, China
| |
Collapse
|
372
|
Multi-functional vesicles for cancer therapy: The ultimate magic bullet. Colloids Surf B Biointerfaces 2016; 147:161-171. [DOI: 10.1016/j.colsurfb.2016.07.060] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 07/25/2016] [Accepted: 07/28/2016] [Indexed: 01/22/2023]
|
373
|
Shapiro JM, Chung W, Ogawa K, Barker L, Carlson R, Wands JR, Li J. Identification of Tumor Antigen AF20 as Glycosylated Transferrin Receptor 1 in Complex with Heat Shock Protein 90 and/or Transporting ATPase. PLoS One 2016; 11:e0165227. [PMID: 27802297 PMCID: PMC5089552 DOI: 10.1371/journal.pone.0165227] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 10/07/2016] [Indexed: 11/18/2022] Open
Abstract
We previously isolated AF20, a murine monoclonal antibody that recognizes a cell surface glycoprotein of approximately 90-110 kDa. The AF20 antigen is specifically expressed in human hepatoma and colon cancer cell lines, and thus could serve as a cancer biomarker. To uncover the molecular identity of the AF20 antigen, a combination of ion-exchange chromatography, immunoprecipitation, and SDS-polyacrylamide gel electrophoresis was employed to purify the AF20 antigen followed by trypsin digestion and mass spectrometry. Surprisingly, three host proteins were thus purified from human hepatoma and colon cancer cell lines: transferrin receptor 1 (TFR1), heat shock protein 90 (HSP90), and Na+/K+ ATPase or Mg++ ATPase. Co-immunoprecipitation followed by Western blot analysis confirmed interaction among the three proteins. However, only the cDNA encoding TFR1 conferred strong cell surface staining by the AF20 antibody following its transient transfection into a cell line lacking endogenous AF20. In support of the molecular identity of AF20 as TFR1, diferric but not iron-free transferrin could prevent AF20 antigen-antibody interaction during immunoprecipitation. Moreover, very similar patterns of AF20 and TFR1 overexpression was documented in colon cancer tissues. In conclusion, AF20 is glycosylated TFR1. This finding could explain the molecular structure of AF20, its cell surface localization, as well as overexpression in cancer cells. Glycosylated TFR1 should serve as a usefulness target for anti-cancer therapy, or a vehicle for delivery of anti-tumor drugs with high affinity and specificity. The biological significance of the complex formation between TFR1, HSP90, and/or transporting ATPase warrants further investigation.
Collapse
Affiliation(s)
- Jason M. Shapiro
- Liver Research Center, Rhode Island Hospital and Warren Alpert Medical School of Brown University, Providence, Rhode Island, United States of America
- Division of Pediatric Gastroenterology, Nutrition and Liver Diseases, Hasbro Children’s Hospital, Providence, Rhode Island, United States of America
| | - Waihong Chung
- Liver Research Center, Rhode Island Hospital and Warren Alpert Medical School of Brown University, Providence, Rhode Island, United States of America
| | - Kosuke Ogawa
- Liver Research Center, Rhode Island Hospital and Warren Alpert Medical School of Brown University, Providence, Rhode Island, United States of America
| | - Luke Barker
- Liver Research Center, Rhode Island Hospital and Warren Alpert Medical School of Brown University, Providence, Rhode Island, United States of America
| | - Rolf Carlson
- Liver Research Center, Rhode Island Hospital and Warren Alpert Medical School of Brown University, Providence, Rhode Island, United States of America
| | - Jack R. Wands
- Liver Research Center, Rhode Island Hospital and Warren Alpert Medical School of Brown University, Providence, Rhode Island, United States of America
| | - Jisu Li
- Liver Research Center, Rhode Island Hospital and Warren Alpert Medical School of Brown University, Providence, Rhode Island, United States of America
- * E-mail:
| |
Collapse
|
374
|
Lee WH, Loo CY, Leong CR, Young PM, Traini D, Rohanizadeh R. The achievement of ligand-functionalized organic/polymeric nanoparticles for treating multidrug resistant cancer. Expert Opin Drug Deliv 2016; 14:937-957. [DOI: 10.1080/17425247.2017.1247804] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Wing-Hin Lee
- Respiratory Technology, Woolcock Institute of Medical Research and Discipline of Pharmacology, Sydney Medical School, University of Sydney, Sydney, Australia
| | - Ching-Yee Loo
- Respiratory Technology, Woolcock Institute of Medical Research and Discipline of Pharmacology, Sydney Medical School, University of Sydney, Sydney, Australia
| | - Chean-Ring Leong
- Section of Bioengineering Technology, Universiti Kuala Lumpur (UNIKL) MICET, Alor Gajah, Malaysia
| | - Paul M. Young
- Respiratory Technology, Woolcock Institute of Medical Research and Discipline of Pharmacology, Sydney Medical School, University of Sydney, Sydney, Australia
| | - Daniela Traini
- Respiratory Technology, Woolcock Institute of Medical Research and Discipline of Pharmacology, Sydney Medical School, University of Sydney, Sydney, Australia
| | | |
Collapse
|
375
|
Clawson GA, Abraham T, Pan W, Tang X, Linton SS, McGovern CO, Loc WS, Smith JP, Butler PJ, Kester M, Adair JH, Matters GL. A Cholecystokinin B Receptor-Specific DNA Aptamer for Targeting Pancreatic Ductal Adenocarcinoma. Nucleic Acid Ther 2016; 27:23-35. [PMID: 27754762 PMCID: PMC5312616 DOI: 10.1089/nat.2016.0621] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Pancreatic ductal adenocarcinomas (PDACs) constitutively express the G-protein-coupled cholecystokinin B receptor (CCKBR). In this study, we identified DNA aptamers (APs) that bind to the CCKBR and describe their characterization and targeting efficacy. Using dual SELEX selection against “exposed” CCKBR peptides and CCKBR-expressing PDAC cells, a pool of DNA APs was identified. Further downselection was based on predicted structures and properties, and we selected eight APs for initial characterizations. The APs bound specifically to the CCKBR, and we showed not only that they did not stimulate proliferation of PDAC cell lines but rather inhibited their proliferation. We chose one AP, termed AP1153, for further binding and localization studies. We found that AP1153 did not activate CCKBR signaling pathways, and three-dimensional Confocal microscopy showed that AP1153 was internalized by PDAC cells in a receptor-mediated manner. AP1153 showed a binding affinity of 15 pM. Bioconjugation of AP1153 to the surface of fluorescent NPs greatly facilitated delivery of NPs to PDAC tumors in vivo. The selectivity of this AP-targeted NP delivery system holds promise for enhanced early detection of PDAC lesions as well as improved chemotherapeutic treatments for PDAC patients.
Collapse
Affiliation(s)
- Gary A Clawson
- 1 Department of Pathology, Gittlen Cancer Research Laboratories, Pennsylvania State University College of Medicine , Hershey, Pennsylvania
| | - Thomas Abraham
- 2 Department of Neural and Behavioral Sciences and the Microscopy Imaging Facility, Pennsylvania State University College of Medicine , Hershey, Pennsylvania
| | - Weihua Pan
- 1 Department of Pathology, Gittlen Cancer Research Laboratories, Pennsylvania State University College of Medicine , Hershey, Pennsylvania
| | - Xiaomeng Tang
- 3 Department of Chemistry, Pennsylvania State University , University Park, Pennsylvania.,4 Department of Materials Science and Engineering, Pennsylvania State University , University Park, Pennsylvania
| | - Samuel S Linton
- 5 Department of Biochemistry and Molecular Biology, Pennsylvania State University College of Medicine , Hershey, Pennsylvania
| | - Christopher O McGovern
- 5 Department of Biochemistry and Molecular Biology, Pennsylvania State University College of Medicine , Hershey, Pennsylvania
| | - Welley S Loc
- 3 Department of Chemistry, Pennsylvania State University , University Park, Pennsylvania.,4 Department of Materials Science and Engineering, Pennsylvania State University , University Park, Pennsylvania
| | - Jill P Smith
- 6 Department of Medicine, Georgetown University , Washington, District of Columbia
| | - Peter J Butler
- 7 Department of Bioengineering, Pennsylvania State University , University Park, Pennsylvania
| | - Mark Kester
- 8 Department of Pharmacology, University of Virginia , Charlottesville, Virginia
| | - James H Adair
- 4 Department of Materials Science and Engineering, Pennsylvania State University , University Park, Pennsylvania
| | - Gail L Matters
- 5 Department of Biochemistry and Molecular Biology, Pennsylvania State University College of Medicine , Hershey, Pennsylvania
| |
Collapse
|
376
|
Benadiba J, Rosilio C, Nebout M, Heimeroth V, Neffati Z, Popa A, Mary D, Griessinger E, Imbert V, Sirvent N, Peyron JF. Iron chelation: an adjuvant therapy to target metabolism, growth and survival of murine PTEN-deficient T lymphoma and human T lymphoblastic leukemia/lymphoma. Leuk Lymphoma 2016; 58:1433-1445. [PMID: 27736268 DOI: 10.1080/10428194.2016.1239257] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Iron is an essential nutrient, acting as a catalyst for metabolic reactions that are fundamental to cell survival and proliferation. Iron complexed to transferrin is delivered to the metabolism after endocytosis via the CD71 surface receptor. We found that transformed cells from a murine PTEN-deficient T-cell lymphoma model and from T-cell acute lymphoblastic leukemia/lymphoma (T-ALL/T-LL) cell lines overexpress CD71. As a consequence, the cells developed an addiction toward iron whose chelation by deferoxamine (DFO) dramatically affected their survival to induce apoptosis. Interestingly, DFO displayed synergistic activity with three ALL-specific drugs: dexamethasone, doxorubicin, and L-asparaginase. DFO appeared to act through a reactive oxygen species-dependent DNA damage response and potentiated the action of an inhibitor of the PARP pathway of DNA repair. Our results demonstrate that targeting iron metabolism could be an interesting adjuvant therapy for acute lymphoblastic leukemia.
Collapse
Affiliation(s)
- Joy Benadiba
- a INSERM, U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), Equipe 4 Inflammation, Cancer, Cellules Souches Cancéreuses , Nice , France.,b UFR Médecine, Faculté de Médecine , Université de Nice-Sophia Antipolis , Nice , France.,c Centre Hospitalier Universitaire de Nice, Service d'Oncologie Pédiatrique, Hôpital de l'Archet , Nice , France
| | - Celia Rosilio
- a INSERM, U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), Equipe 4 Inflammation, Cancer, Cellules Souches Cancéreuses , Nice , France.,b UFR Médecine, Faculté de Médecine , Université de Nice-Sophia Antipolis , Nice , France
| | - Marielle Nebout
- a INSERM, U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), Equipe 4 Inflammation, Cancer, Cellules Souches Cancéreuses , Nice , France.,b UFR Médecine, Faculté de Médecine , Université de Nice-Sophia Antipolis , Nice , France
| | - Vera Heimeroth
- a INSERM, U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), Equipe 4 Inflammation, Cancer, Cellules Souches Cancéreuses , Nice , France.,b UFR Médecine, Faculté de Médecine , Université de Nice-Sophia Antipolis , Nice , France
| | - Zouhour Neffati
- a INSERM, U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), Equipe 4 Inflammation, Cancer, Cellules Souches Cancéreuses , Nice , France.,b UFR Médecine, Faculté de Médecine , Université de Nice-Sophia Antipolis , Nice , France
| | - Alexandra Popa
- b UFR Médecine, Faculté de Médecine , Université de Nice-Sophia Antipolis , Nice , France.,d CNRS, Institut de Pharmacologie Moléculaire et Cellulaire , Sophia-Antipolis, Valbonne, France
| | - Didier Mary
- a INSERM, U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), Equipe 4 Inflammation, Cancer, Cellules Souches Cancéreuses , Nice , France.,b UFR Médecine, Faculté de Médecine , Université de Nice-Sophia Antipolis , Nice , France
| | - Emmanuel Griessinger
- a INSERM, U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), Equipe 4 Inflammation, Cancer, Cellules Souches Cancéreuses , Nice , France.,b UFR Médecine, Faculté de Médecine , Université de Nice-Sophia Antipolis , Nice , France
| | - Véronique Imbert
- a INSERM, U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), Equipe 4 Inflammation, Cancer, Cellules Souches Cancéreuses , Nice , France.,b UFR Médecine, Faculté de Médecine , Université de Nice-Sophia Antipolis , Nice , France
| | - Nicolas Sirvent
- e UAM Hématologie et Oncologie Pédiatriques, Centre Hospitalier Régional Universitaire de Montpellier, Hôpital Arnaud de Villeneuve , Nice , France
| | - Jean-François Peyron
- a INSERM, U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), Equipe 4 Inflammation, Cancer, Cellules Souches Cancéreuses , Nice , France.,b UFR Médecine, Faculté de Médecine , Université de Nice-Sophia Antipolis , Nice , France
| |
Collapse
|
377
|
Targeted Delivery of siRNA to Transferrin Receptor Overexpressing Tumor Cells via Peptide Modified Polyethylenimine. Molecules 2016; 21:molecules21101334. [PMID: 27735873 PMCID: PMC6273023 DOI: 10.3390/molecules21101334] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 09/30/2016] [Accepted: 10/04/2016] [Indexed: 12/11/2022] Open
Abstract
The use of small interference RNA (siRNA) to target oncogenes is a promising treatment approach for cancer. However, siRNA cancer therapies are hindered by poor delivery of siRNA to cancer cells. Transferrin receptor (TfR) is overexpressed in many types of tumor cells and therefore is a potential target for the selective delivery of siRNA to cancer cells. Here, we used the TfR binding peptide HAIYPRH (HAI peptide) conjugated to cationic polymer branched polyethylenimine (bPEI), optimized the coupling strategy, and the TfR selective delivery of siRNA was evaluated in cells with high (H1299) and low TfR expression (A549 and H460). The HAI-bPEI conjugate exhibited chemico-physical properties in terms of size, zeta-potential, and siRNA condensation efficiency similar to unmodified bPEI. Confocal microscopy and flow cytometry results revealed that HAI-bPEI selectively delivered siRNA to H1299 cells compared with A549 or H460 cells. Moreover, HAI-bPEI achieved more efficient glyceraldehyde 3-phosphate dehydrogenase (GAPDH) gene knockdown in H1299 cells compared with bPEI alone. However, despite optimization of the targeting peptide and coupling strategy, HAI-bPEI can only silence reporter gene enhanced green fluorescent protein (eGFP) at the protein level when chloroquine is present, indicating that further optimization of the conjugate is required. In conclusion, the HAI peptide may be useful to target TfR overexpressing tumors in targeted gene and siRNA delivery approaches.
Collapse
|
378
|
Sheng Y, You Y, Chen Y. Dual-targeting hybrid peptide-conjugated doxorubicin for drug resistance reversal in breast cancer. Int J Pharm 2016; 512:1-13. [DOI: 10.1016/j.ijpharm.2016.08.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 07/29/2016] [Accepted: 08/08/2016] [Indexed: 10/21/2022]
|
379
|
Greening DW, Ji H, Chen M, Robinson BWS, Dick IM, Creaney J, Simpson RJ. Secreted primary human malignant mesothelioma exosome signature reflects oncogenic cargo. Sci Rep 2016; 6:32643. [PMID: 27605433 PMCID: PMC5015102 DOI: 10.1038/srep32643] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 08/11/2016] [Indexed: 02/07/2023] Open
Abstract
Malignant mesothelioma (MM) is a highly-aggressive heterogeneous malignancy, typically diagnosed at advanced stage. An important area of mesothelioma biology and progression is understanding intercellular communication and the contribution of the secretome. Exosomes are secreted extracellular vesicles shown to shuttle cellular cargo and direct intercellular communication in the tumour microenvironment, facilitate immunoregulation and metastasis. In this study, quantitative proteomics was used to investigate MM-derived exosomes from distinct human models and identify select cargo protein networks associated with angiogenesis, metastasis, and immunoregulation. Utilising bioinformatics pathway/network analyses, and correlation with previous studies on tumour exosomes, we defined a select mesothelioma exosomal signature (mEXOS, 570 proteins) enriched in tumour antigens and various cancer-specific signalling (HPGD/ENO1/OSMR) and secreted modulators (FN1/ITLN1/MAMDC2/PDGFD/GBP1). Notably, such circulating cargo offers unique insights into mesothelioma progression and tumour microenvironment reprogramming. Functionally, we demonstrate that oncogenic exosomes facilitate the migratory capacity of fibroblast/endothelial cells, supporting the systematic model of MM progression associated with vascular remodelling and angiogenesis. We provide biophysical and proteomic characterisation of exosomes, define a unique oncogenic signature (mEXOS), and demonstrate the regulatory capacity of exosomes in cell migration/tube formation assays. These findings contribute to understanding tumour-stromal crosstalk in the context of MM, and potential new diagnostic and therapeutic extracellular targets.
Collapse
Affiliation(s)
- David W. Greening
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Hong Ji
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Maoshan Chen
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Bruce W. S. Robinson
- National Centre for Asbestos Related Diseases, School of Medicine and Pharmacology, University of Western Australia, 6009, Australia
- Department of Respiratory Medicine, Sir Charles Gairdner Hospital, Perth, Western Australia, 6009, Australia
| | - Ian M. Dick
- National Centre for Asbestos Related Diseases, School of Medicine and Pharmacology, University of Western Australia, 6009, Australia
| | - Jenette Creaney
- National Centre for Asbestos Related Diseases, School of Medicine and Pharmacology, University of Western Australia, 6009, Australia
- Australian Mesothelioma Tissue Bank, Sir Charles Gairdner Hospital, Perth, Western Australia, 6009, Australia
| | - Richard J. Simpson
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| |
Collapse
|
380
|
McErlean EM, McCrudden CM, McCarthy HO. Delivery of nucleic acids for cancer gene therapy: overcoming extra- and intra-cellular barriers. Ther Deliv 2016; 7:619-37. [PMID: 27582234 DOI: 10.4155/tde-2016-0049] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The therapeutic potential of cancer gene therapy has been limited by the difficulty of delivering genetic material to target sites. Various biological and molecular barriers exist which need to be overcome before effective nonviral delivery systems can be applied successfully in oncology. Herein, various barriers are described and strategies to circumvent such obstacles are discussed, considering both the extracellular and intracellular setting. Development of multifunctional delivery systems holds much promise for the progression of gene delivery, and a growing body of evidence supports this approach involving rational design of vectors, with a unique molecular architecture. In addition, the potential application of composite gene delivery platforms is highlighted which may provide an alternative delivery strategy to traditional systemic administration.
Collapse
|
381
|
Liu P, Zhang H, Wu X, Guo L, Wang F, Xia G, Chen B, Yin H, Wang Y, Li X. Tf-PEG-PLL-PLGA nanoparticles enhanced chemosensitivity for hypoxia-responsive tumor cells. Onco Targets Ther 2016; 9:5049-59. [PMID: 27574446 PMCID: PMC4990384 DOI: 10.2147/ott.s108169] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Hypoxia is an inseparable component of the solid tumor as well as the bone marrow microenvironment. In this study, we investigated the effect of the novel polyethylene glycol (PEG)-poly L-lysine (PLL)-poly lactic-co-glycolic acid (PLGA) based nanoparticles (NPs) modified by transferrin (Tf) loaded with daunorubicin (DNR) (DNR-Tf-PEG-PLL-PLGA-NPs, abbreviated as DNR-Tf-NPs) on leukemia cells (K562) under hypoxia. In vitro and in vivo tests to determine the effect of the enhanced chemosensitivity were evaluated using the immunofluorescence, flow cytometry, 3,-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-tetrazoliumbromide assay, Western blot analysis, histopathological examination, and immunohistochemistry analysis. Under hypoxia, K562 cells were hypoxia-responsive with the inhibitory concentration 50% (IC50) of DNR increased, resulting in chemotherapy insensitivity. By targeting the transferrin receptor (TfR) on the surface of K562 cells, DNR-Tf-NPs led to an increased intracellular DNR level, enhancing drug sensitivity of K562 cells to DNR with a decreased IC50, even under hypoxia. We further detected the protein levels of hypoxia-inducible factor-1α (HIF-1α), Bcl-2, Bax, and caspase-3 in K562 cells. The results indicated that DNR-Tf-NPs downregulated HIF-1α and induced apoptosis to overcome hypoxia. In the xenograft model, injection of DNR-Tf-NPs significantly suppressed tumor growth, and the immunosignals of Ki67 in DNR-Tf-NPs group was significantly lower than the other groups. It was therefore concluded that DNR-Tf-NPs could be a promising candidate for enhancing drug sensitivity under hypoxia in tumor treatment.
Collapse
Affiliation(s)
- Ping Liu
- Department of Hematology and Oncology, Key Department of Jiangsu Province, Zhongda Hospital
| | - Haijun Zhang
- Department of Hematology and Oncology, Key Department of Jiangsu Province, Zhongda Hospital
| | - Xue Wu
- Department of Hematology and Oncology, Key Department of Jiangsu Province, Zhongda Hospital
| | - Liting Guo
- Department of Hematology and Oncology, Key Department of Jiangsu Province, Zhongda Hospital
| | - Fei Wang
- Department of Hematology and Oncology, Key Department of Jiangsu Province, Zhongda Hospital
| | - Guohua Xia
- Department of Hematology and Oncology, Medical School of Southeast University
| | - Baoan Chen
- Department of Hematology and Oncology, Key Department of Jiangsu Province, Zhongda Hospital
| | - HaiXiang Yin
- School of Pharmacy, Nanjing University of Technology, Nanjing, People's Republic of China
| | - Yonglu Wang
- School of Pharmacy, Nanjing University of Technology, Nanjing, People's Republic of China
| | - Xueming Li
- School of Pharmacy, Nanjing University of Technology, Nanjing, People's Republic of China
| |
Collapse
|
382
|
Advances in Targeted Drug Delivery Approaches for the Central Nervous System Tumors: The Inspiration of Nanobiotechnology. J Neuroimmune Pharmacol 2016; 12:84-98. [DOI: 10.1007/s11481-016-9698-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Accepted: 07/06/2016] [Indexed: 12/21/2022]
|
383
|
Vago R, Collico V, Zuppone S, Prosperi D, Colombo M. Nanoparticle-mediated delivery of suicide genes in cancer therapy. Pharmacol Res 2016; 111:619-641. [PMID: 27436147 DOI: 10.1016/j.phrs.2016.07.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 06/27/2016] [Accepted: 07/05/2016] [Indexed: 02/06/2023]
Abstract
Conventional chemotherapeutics have been employed in cancer treatment for decades due to their efficacy in killing the malignant cells, but the other side of the coin showed off-target effects, onset of drug resistance and recurrences. To overcome these limitations, different approaches have been investigated and suicide gene therapy has emerged as a promising alternative. This approach consists in the introduction of genetic materials into cancerous cells or the surrounding tissue to cause cell death or retard the growth of the tumor mass. Despite promising results obtained both in vitro and in vivo, this innovative approach has been limited, for long time, to the treatment of localized tumors, due to the suboptimal efficiency in introducing suicide genes into cancer cells. Nanoparticles represent a valuable non-viral delivery system to protect drugs in the bloodstream, to improve biodistribution, and to limit side effects by achieving target selectivity through surface ligands. In this scenario, the real potential of suicide genes can be translated into clinically viable treatments for patients. In the present review, we summarize the recent advances of inorganic nanoparticles as non-viral vectors in terms of therapeutic efficacy, targeting capacity and safety issues. We describe the main suicide genes currently used in therapy, with particular emphasis on toxin-encoding genes of bacterial and plant origin. In addition, we discuss the relevance of molecular targeting and tumor-restricted expression to improve treatment specificity to cancer tissue. Finally, we analyze the main clinical applications, limitations and future perspectives of suicide gene therapy.
Collapse
Affiliation(s)
- Riccardo Vago
- Università Vita-Salute San Raffaele, Milano, I-20132, Italy; Istituto di Ricerca Urologica, Divisione di Oncologia Sperimentale, IRCCS Ospedale San Raffaele, Via Olgettina 60, 20132, Milan, Italy
| | - Veronica Collico
- Università degli Studi di Milano-Bicocca, NanoBioLab, Dipartimento di Biotecnologie e Bioscienze, Piazza Della Scienza 2, 20126 Milan, Italy
| | - Stefania Zuppone
- Università degli Studi di Milano-Bicocca, NanoBioLab, Dipartimento di Biotecnologie e Bioscienze, Piazza Della Scienza 2, 20126 Milan, Italy; Istituto di Ricerca Urologica, Divisione di Oncologia Sperimentale, IRCCS Ospedale San Raffaele, Via Olgettina 60, 20132, Milan, Italy
| | - Davide Prosperi
- Università degli Studi di Milano-Bicocca, NanoBioLab, Dipartimento di Biotecnologie e Bioscienze, Piazza Della Scienza 2, 20126 Milan, Italy
| | - Miriam Colombo
- Università degli Studi di Milano-Bicocca, NanoBioLab, Dipartimento di Biotecnologie e Bioscienze, Piazza Della Scienza 2, 20126 Milan, Italy.
| |
Collapse
|
384
|
Daniels-Wells TR, Penichet ML. Transferrin receptor 1: a target for antibody-mediated cancer therapy. Immunotherapy 2016; 8:991-4. [PMID: 27373880 DOI: 10.2217/imt-2016-0050] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Affiliation(s)
- Tracy R Daniels-Wells
- Division of Surgical Oncology, Department of Surgery, David Geffen School of Medicine at UCLA, 10833 Le Conte Ave, CHS 54-140, Box 951782, Los Angeles, CA 90095-1782, USA
| | - Manuel L Penichet
- Division of Surgical Oncology, Department of Surgery, David Geffen School of Medicine at UCLA, 10833 Le Conte Ave, CHS 54-140, Box 951782, Los Angeles, CA 90095-1782, USA.,Department of Microbiology, Immunology, & Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.,The Molecular Biology Institute, UCLA, Los Angeles, CA USA.,Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA, USA.,UCLA AIDS Institute, CA, USA
| |
Collapse
|
385
|
Pirollo KF, Nemunaitis J, Leung PK, Nunan R, Adams J, Chang EH. Safety and Efficacy in Advanced Solid Tumors of a Targeted Nanocomplex Carrying the p53 Gene Used in Combination with Docetaxel: A Phase 1b Study. Mol Ther 2016; 24:1697-706. [PMID: 27357628 DOI: 10.1038/mt.2016.135] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 06/21/2016] [Indexed: 01/10/2023] Open
Abstract
Loss of p53 suppressor function, through mutations or inactivation of the p53 pathway, occurs in most human cancers. SGT-53 is a liposomal nanocomplex designed for systemic, tumor-targeting delivery of the wt p53 gene. In this nanodelivery system, an anti-transferrin receptor single-chain antibody fragment serves as the targeting moiety. In an initial phase 1 trial in patients with advanced solid tumors, SGT-53 demonstrated tumor-specific targeting, was shown to be well tolerated, and was associated with an antitumor effect in several patients. Our preclinical studies have also demonstrated enhanced antitumor activity with the combination of SGT-53 and docetaxel. Thus, this dose-escalation trial was undertaken to assess the combination of SGT-53 and docetaxel for safety and potential efficacy in 14 advanced cancer patients. Results reveal that the combination of SGT-53 (maximum dose, 3.6 mg DNA/infusion) and docetaxel (75 mg/m(2)/infusion) was well tolerated. Moreover, clinical activity involving 12 evaluable patients was observed. Three of these patients achieved RECIST-verified partial responses with tumor reductions of -47%, -51%, and -79%. Two others had stable disease with significant shrinkage (-25% and -16%). These results support phase 2 testing of SGT-53 in combination with docetaxel.
Collapse
Affiliation(s)
- Kathleen F Pirollo
- Department of Oncology, Experimental Therapeutics Division, Georgetown University Medical Center, Washington, District of Columbia, USA
| | - John Nemunaitis
- Mary Crowley Cancer Research Centers, Dallas, Texas, USA.,Gradalis, Dallas, Texas, USA.,Texas Oncology PA, Dallas, Texas, USA.,Medical City Dallas Hospital, Dallas, Texas, USA
| | - Po Ki Leung
- SynerGene Therapeutics, Potomac, Maryland, USA
| | - Robert Nunan
- Mary Crowley Cancer Research Centers, Dallas, Texas, USA
| | - Jana Adams
- Mary Crowley Cancer Research Centers, Dallas, Texas, USA
| | - Esther H Chang
- Department of Oncology, Experimental Therapeutics Division, Georgetown University Medical Center, Washington, District of Columbia, USA.,SynerGene Therapeutics, Potomac, Maryland, USA
| |
Collapse
|
386
|
A Phase l Study of a Tumor-targeted Systemic Nanodelivery System, SGT-94, in Genitourinary Cancers. Mol Ther 2016; 24:1484-91. [PMID: 27480598 DOI: 10.1038/mt.2016.118] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 05/25/2016] [Indexed: 12/14/2022] Open
Abstract
Gene therapy development has been limited by our inability to target multifocal cancer with systemic delivery. We developed a systemically administered, tumor-targeted liposomal nanodelivery complex (SGT-94) carrying a plasmid encoding RB94, a truncated form of the RB gene. In preclinical studies, RB94 showed marked cytotoxicity against tumor but not normal cells. SGT-94 was administered intravenously in a first-in-man study in metastatic genitourinary cancer. Minimal side effects were observed; dose-limiting toxicity (DLT) has not been reached in 11 evaluable patients. There was evidence of clinical activity at the 2.4 mg dose with one complete remission (CR) and one partial remission (PR). The patient in CR was retreated upon progression and had a second PR. Furthermore, there was tumor-specific targeting of the SGT-94 complex. One patient had wedge resections of two lung metastases which demonstrated RB94 expression at the DNA level by polymerase chain reaction (PCR) and at the protein level by Western blotting, with no RB94 present in normal contiguous lung. In conclusion, systemically delivered SGT-94 showed evidence of selective tumor targeting and was well tolerated with evidence of clinical activity. Additional studies are warranted to explore the activity of this drug as a single agent and in combination therapy.
Collapse
|
387
|
Lu L, Yuan L, Yan J, Tang C, Wang Q. Development of Core–Shell Nanostructures by In Situ Assembly of Pyridine-Grafted Diblock Copolymer and Transferrin for Drug Delivery Applications. Biomacromolecules 2016; 17:2321-8. [DOI: 10.1021/acs.biomac.6b00032] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Lin Lu
- Department of Chemistry and
Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Liang Yuan
- Department of Chemistry and
Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Jing Yan
- Department of Chemistry and
Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Chuanbing Tang
- Department of Chemistry and
Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Qian Wang
- Department of Chemistry and
Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| |
Collapse
|
388
|
Self-assembled IR780-loaded transferrin nanoparticles as an imaging, targeting and PDT/PTT agent for cancer therapy. Sci Rep 2016; 6:27421. [PMID: 27263444 PMCID: PMC4899881 DOI: 10.1038/srep27421] [Citation(s) in RCA: 189] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 05/18/2016] [Indexed: 12/22/2022] Open
Abstract
Combination of photothermal and photodynamic therapy (PTT/PDT) offer unique advantages over PDT alone. However, to achieve synergetic PDT/PTT effect, one generally needs two lasers with different wavelengths. Near-infrared dye IR-780 could be used as photosensitizer both for PTT and PDT, but its lipophilicity limits its practical use and in vivo efficiency. Herein, a simple multifunctional IR780-loaded nanoplatform based on transferrin was developed for targeted imaging and phototherapy of cancer compatible with a single-NIR-laser irradiation. The self-assembled transferrin-IR780 nanoparticles (Tf-IR780 NPs) exhibited narrow size distribution, good photo-stability, and encouraging photothermal performance with enhanced generation of ROS under laser irradiation. Following intravenous injection, Tf-IR780 NPs had a high tumor-to-background ratio in CT26 tumor-bearing mice. Treatment with Tf-IR780 NPs resulted in significant tumor suppression. Overall, the Tf-IR780 NPs show notable targeting and theranostic potential in cancer therapy.
Collapse
|
389
|
Anti-cancer activity of doxorubicin-loaded liposomes co-modified with transferrin and folic acid. Eur J Pharm Biopharm 2016; 105:40-9. [PMID: 27264717 DOI: 10.1016/j.ejpb.2016.05.023] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 05/21/2016] [Accepted: 05/30/2016] [Indexed: 12/15/2022]
Abstract
Cancer-specific drug delivery represents an attractive approach to prevent undesirable side-effects and increase the accumulation of the drug in the tumor. Surface modification of nanoparticles such as liposomes with targeting moieties specific to the up-regulated receptors on the surface of tumor cells thus represents an effective strategy. Furthermore, since this receptor expression can be heterogeneous, using a dual-combination of targeting moieties may prove advantageous. With this in mind, the anti-cancer activity of PEGylated doxorubicin-loaded liposomes targeted with folic acid (F), transferrin (Tf) or both (F+Tf) was evaluated. The dual-targeted liposomes showed a 7-fold increase in cell association compared to either of the single-ligand targeted ones in human cervical carcinoma (HeLa) cell monolayers. The increased penetration and cell association of the dual-targeted liposomes were also demonstrated using HeLa cell spheroids. The in vitro cytotoxicity of the doxorubicin liposomes (LD) was then evaluated using HeLa and A2780-ADR ovarian carcinoma cell monolayers. In both these cell lines, the (F+Tf) LD showed significantly higher cytotoxic effects than the untargeted, or single-ligand targeted liposomes. In a HeLa xenograft model in nude mice, compared to the untreated group, though the untargeted LD showed 42% tumor growth inhibition, both the (F) LD and (F+Tf) LD showed 75% and 79% tumor growth inhibition respectively. These results thus highlight that though the dual-targeted liposomes represent an effective cytotoxic formulation in the in vitro setting, they were equally effective as the folic acid-targeted liposomes in reducing tumor burden in the more complex in vivo setting in this particular model.
Collapse
|
390
|
Zhang W, Müller K, Kessel E, Reinhard S, He D, Klein PM, Höhn M, Rödl W, Kempter S, Wagner E. Targeted siRNA Delivery Using a Lipo-Oligoaminoamide Nanocore with an Influenza Peptide and Transferrin Shell. Adv Healthc Mater 2016; 5:1493-504. [PMID: 27109317 DOI: 10.1002/adhm.201600057] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 02/23/2016] [Indexed: 01/06/2023]
Abstract
Developing RNA-interference-based therapeutic approaches with efficient and targeted cytosolic delivery of small interfering RNA (siRNA) is remaining a critical challenge since two decades. Herein, a multifunctional transferrin receptor (TfR)-targeted siRNA delivery system (Tf&INF7) is designed based on siRNA complexes formed with the cationic lipo-oligoamino amide 454, sequentially surface-modified with polyethylene glycol-linked transferrin (Tf) for receptor targeting and the endosomolytic peptide INF7 for efficient cytosolic release of the siRNA. Effective Tf&INF7 polyplex internalization and target gene silencing are demonstrated for the TfR overexpressing tumor cell lines (K562, D145, and N2a). Treatment with antitumoral EG5 siRNA results in a block of tumor cell growth and triggered apoptosis. Tf-modified polyplexes are far more effective than the corresponding albumin- (Alb) or nonmodified 454 polyplexes. Competition experiments with excess of Tf demonstrate TfR target specificity. As alternative to the ligand Tf, an anti-murine TfR antibody is incorporated into the polyplexes for specific targeting and gene silencing in the murine N2a cell line. In vivo distribution studies not only demonstrate an enhanced tumor residence of siRNA in N2a tumor-bearing mice with the Tf&INF7 as compared to the 454 polyplex group but also a reduced siRNA nanoparticle stability limiting the in vivo performance.
Collapse
Affiliation(s)
- Wei Zhang
- Pharmaceutical Biotechnology Department of Pharmacy Ludwig‐Maximilians‐Universität München (LMU) Butenandtstrasse 5‐13 D‐81377 Munich Germany
| | - Katharina Müller
- Pharmaceutical Biotechnology Department of Pharmacy Ludwig‐Maximilians‐Universität München (LMU) Butenandtstrasse 5‐13 D‐81377 Munich Germany
| | - Eva Kessel
- Pharmaceutical Biotechnology Department of Pharmacy Ludwig‐Maximilians‐Universität München (LMU) Butenandtstrasse 5‐13 D‐81377 Munich Germany
- Nanosystems Initiative Munich Schellingstrasse 4 D‐80799 Munich Germany
| | - Sören Reinhard
- Pharmaceutical Biotechnology Department of Pharmacy Ludwig‐Maximilians‐Universität München (LMU) Butenandtstrasse 5‐13 D‐81377 Munich Germany
| | - Dongsheng He
- Pharmaceutical Biotechnology Department of Pharmacy Ludwig‐Maximilians‐Universität München (LMU) Butenandtstrasse 5‐13 D‐81377 Munich Germany
- Nanosystems Initiative Munich Schellingstrasse 4 D‐80799 Munich Germany
| | - Philipp M. Klein
- Pharmaceutical Biotechnology Department of Pharmacy Ludwig‐Maximilians‐Universität München (LMU) Butenandtstrasse 5‐13 D‐81377 Munich Germany
| | - Miriam Höhn
- Pharmaceutical Biotechnology Department of Pharmacy Ludwig‐Maximilians‐Universität München (LMU) Butenandtstrasse 5‐13 D‐81377 Munich Germany
| | - Wolfgang Rödl
- Pharmaceutical Biotechnology Department of Pharmacy Ludwig‐Maximilians‐Universität München (LMU) Butenandtstrasse 5‐13 D‐81377 Munich Germany
| | - Susanne Kempter
- Department of Physics Ludwig‐Maximilians‐Universität München Geschwister‐Scholl‐Platz 1 80539 Munich Germany
| | - Ernst Wagner
- Pharmaceutical Biotechnology Department of Pharmacy Ludwig‐Maximilians‐Universität München (LMU) Butenandtstrasse 5‐13 D‐81377 Munich Germany
- Nanosystems Initiative Munich Schellingstrasse 4 D‐80799 Munich Germany
| |
Collapse
|
391
|
Naito Y, Hosokawa M, Sawada H, Oboshi M, Hirotani S, Iwasaku T, Okuhara Y, Morisawa D, Eguchi A, Nishimura K, Soyama Y, Fujii K, Mano T, Ishihara M, Tsujino T, Masuyama T. Transferrin Receptor 1 in Chronic Hypoxia-Induced Pulmonary Vascular Remodeling. Am J Hypertens 2016; 29:713-8. [PMID: 26419445 DOI: 10.1093/ajh/hpv163] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 09/08/2015] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Iron is associated with the pathophysiology of several cardiovascular diseases, including pulmonary hypertension (PH). In addition, disrupted pulmonary iron homeostasis has been reported in several chronic lung diseases. Transferrin receptor 1 (TfR1) plays a key role in cellular iron transport. However, the role of TfR1 in the pathophysiology of PH has not been well characterized. In this study, we investigate the role of TfR1 in the development of hypoxia-induced pulmonary vascular remodeling. METHODS PH was induced by exposing wild-type (WT) mice and TfR1 hetero knockout mice to hypoxia for 4 weeks and evaluated via assessment of pulmonary vascular remodeling, right ventricular (RV) systolic pressure, and RV hypertrophy. In addition, we assessed the functional role of TfR1 in pulmonary artery smooth muscle cells in vitro. RESULTS The morphology of pulmonary arteries did not differ between WT mice and TfR1 hetero knockout mice under normoxic conditions. In contrast, TfR1 hetero knockout mice exposed to 4 weeks hypoxia showed attenuated pulmonary vascular remodeling, RV systolic pressure, and RV hypertrophy compared with WT mice. In addition, the depletion of TfR1 by RNA interference attenuated human pulmonary artery smooth muscle cells proliferation induced by platelet-derived growth factor-BB (PDGF-BB) in vitro. CONCLUSIONS These results suggest that TfR1 plays an important role in the development of hypoxia-induced pulmonary vascular remodeling.
Collapse
Affiliation(s)
- Yoshiro Naito
- Cardiovascular Division, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan;
| | - Manami Hosokawa
- Cardiovascular Division, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| | - Hisashi Sawada
- Cardiovascular Division, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| | - Makiko Oboshi
- Cardiovascular Division, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| | - Shinichi Hirotani
- Cardiovascular Division, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| | - Toshihiro Iwasaku
- Cardiovascular Division, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| | - Yoshitaka Okuhara
- Cardiovascular Division, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| | - Daisuke Morisawa
- Cardiovascular Division, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| | - Akiyo Eguchi
- Cardiovascular Division, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| | - Koichi Nishimura
- Cardiovascular Division, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| | - Yuko Soyama
- Cardiovascular Division, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| | - Kenichi Fujii
- Cardiovascular Division, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| | - Toshiaki Mano
- Cardiovascular Division, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| | - Masaharu Ishihara
- Division of Coronary Heart Disease, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| | - Takeshi Tsujino
- Department of Pharmacy, Hyogo University of Health Sciences, Kobe, Japan
| | - Tohru Masuyama
- Cardiovascular Division, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| |
Collapse
|
392
|
Dehaini D, Fang RH, Zhang L. Biomimetic strategies for targeted nanoparticle delivery. Bioeng Transl Med 2016; 1:30-46. [PMID: 29313005 PMCID: PMC5689512 DOI: 10.1002/btm2.10004] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Revised: 04/07/2016] [Accepted: 04/08/2016] [Indexed: 01/02/2023] Open
Abstract
Nanoparticle‐based drug delivery and imaging platforms have become increasingly popular over the past several decades. Among different design parameters that can affect their performance, the incorporation of targeting functionality onto nanoparticle surfaces has been a widely studied subject. Targeted formulations have the ability to improve efficacy and function by positively modulating tissue localization. Many methods exist for creating targeted nanoformulations, including the use of custom biomolecules such as antibodies or aptamers. More recently, a great amount of focus has been placed on biomimetic targeting strategies that leverage targeting interactions found directly in nature. Such strategies, which have been painstakingly selected over time by the process of evolution to maximize functionality, oftentimes enable scientists to forgo the specialized discovery processes associated with many traditional ligands and help to accelerate development of novel nanoparticle formulations. In this review, we categorize and discuss in‐depth recent works in this growing field of bioinspired research.
Collapse
Affiliation(s)
- Diana Dehaini
- Dept. of NanoEngineering and Moores Cancer Center University of California San Diego, La Jolla CA 92093
| | - Ronnie H Fang
- Dept. of NanoEngineering and Moores Cancer Center University of California San Diego, La Jolla CA 92093
| | - Liangfang Zhang
- Dept. of NanoEngineering and Moores Cancer Center University of California San Diego, La Jolla CA 92093
| |
Collapse
|
393
|
Piktel E, Niemirowicz K, Wątek M, Wollny T, Deptuła P, Bucki R. Recent insights in nanotechnology-based drugs and formulations designed for effective anti-cancer therapy. J Nanobiotechnology 2016; 14:39. [PMID: 27229857 PMCID: PMC4881065 DOI: 10.1186/s12951-016-0193-x] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 05/17/2016] [Indexed: 12/18/2022] Open
Abstract
The rapid development of nanotechnology provides alternative approaches to overcome several limitations of conventional anti-cancer therapy. Drug targeting using functionalized nanoparticles to advance their transport to the dedicated site, became a new standard in novel anti-cancer methods. In effect, the employment of nanoparticles during design of antineoplastic drugs helps to improve pharmacokinetic properties, with subsequent development of high specific, non-toxic and biocompatible anti-cancer agents. However, the physicochemical and biological diversity of nanomaterials and a broad spectrum of unique features influencing their biological action requires continuous research to assess their activity. Among numerous nanosystems designed to eradicate cancer cells, only a limited number of them entered the clinical trials. It is anticipated that progress in development of nanotechnology-based anti-cancer materials will provide modern, individualized anti-cancer therapies assuring decrease in morbidity and mortality from cancer diseases. In this review we discussed the implication of nanomaterials in design of new drugs for effective antineoplastic therapy and describe a variety of mechanisms and challenges for selective tumor targeting. We emphasized the recent advantages in the field of nanotechnology-based strategies to fight cancer and discussed their part in effective anti-cancer therapy and successful drug delivery.
Collapse
Affiliation(s)
- Ewelina Piktel
- Department of Microbiological and Nanobiomedical Engineering, Medical University of Bialystok, Mickiewicza 2c, 15-222, Bialystok, Poland
| | - Katarzyna Niemirowicz
- Department of Microbiological and Nanobiomedical Engineering, Medical University of Bialystok, Mickiewicza 2c, 15-222, Bialystok, Poland
| | - Marzena Wątek
- Holy Cross Oncology Center of Kielce, Artwińskiego 3, 25-317, Kielce, Poland
| | - Tomasz Wollny
- Holy Cross Oncology Center of Kielce, Artwińskiego 3, 25-317, Kielce, Poland
| | - Piotr Deptuła
- Department of Microbiological and Nanobiomedical Engineering, Medical University of Bialystok, Mickiewicza 2c, 15-222, Bialystok, Poland
| | - Robert Bucki
- Department of Microbiological and Nanobiomedical Engineering, Medical University of Bialystok, Mickiewicza 2c, 15-222, Bialystok, Poland. .,Department of Physiology, Pathophysiology and Immunology of Infections, The Faculty of Health Sciences of the Jan Kochanowski University in Kielce, Kielce, Al. IX Wieków Kielc 19, 25-317, Kielce, Poland.
| |
Collapse
|
394
|
Efficacy of an Anti-transferrin Receptor 1 Antibody Against AIDS-related Non-Hodgkin Lymphoma: A Brief Communication. J Immunother 2016; 38:307-10. [PMID: 26325374 PMCID: PMC4592199 DOI: 10.1097/cji.0000000000000092] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The transferrin receptor 1 (TfR1), also known as CD71, is a target for antibody-based cancer immunotherapy due to its high expression on the surface of cancer cells and its ability to internalize. We have previously developed a mouse/human chimeric IgG3 specific for human TfR1 genetically fused to avidin, as a vector to deliver biotinylated anticancer agents into malignant cells. However, we found that this fusion protein (ch128.1Av), and to a lesser extent the same antibody without avidin (ch128.1), exhibits direct cytotoxic activity in vitro against certain malignant hematopoietic cells through the induction of TfR1 degradation and lethal iron starvation. Importantly, both ch128.1 and ch128.1Av have also shown significant anticancer activity in 2 xenograft models of the B-cell malignancy multiple myeloma. It is interesting to note that ch128.1 exhibited superior anticancer activity in both models compared with ch128.1Av, even against malignant cells that show no sensitivity to ch128.1 in vitro. In the present study, we evaluated the efficacy of ch128.1 against an AIDS-related human Burkitt lymphoma cell line (2F7) to determine if ch128.1 can eliminate these cells in vitro and in an in vivo model of AIDS-related non-Hodgkin lymphoma (AIDS-NHL). Even though 2F7 cells expressed high TfR1 levels, these cells lacked sensitivity to the cytotoxicity induced by ch128.1 in vitro. However, ch128.1 showed significant anticancer activity against these AIDS-NHL cells in vivo by significantly prolonging the survival of immunodeficient mice bearing 2F7 tumors. Therefore, ch128.1 warrants further study as a candidate for the treatment of AIDS-NHL and other B-cell malignancies.
Collapse
|
395
|
Guo J, O'Driscoll CM, Holmes JD, Rahme K. Bioconjugated gold nanoparticles enhance cellular uptake: A proof of concept study for siRNA delivery in prostate cancer cells. Int J Pharm 2016; 509:16-27. [PMID: 27188645 DOI: 10.1016/j.ijpharm.2016.05.027] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 05/12/2016] [Accepted: 05/13/2016] [Indexed: 12/19/2022]
Abstract
The chemistry of gold nanoparticles (AuNPs) facilitates surface modifications and thus these bioengineered NPs have been investigated as a means of delivering a variety of therapeutic cargos to treat cancer. In this study we have developed AuNPs conjugated with targeting ligands to enhance cell-specific uptake in prostate cancer cells, with a purpose of providing efficient non-viral gene delivery systems in the treatment of prostate cancer. As a consequence, two novel AuNPs were synthesised namely AuNPs-PEG-Tf (negatively charged AuNPs with the transferrin targeting ligands) and AuNPs-PEI-FA (positively charged AuNPs with the folate-receptor targeting ligands). Both bioconjugated AuNPs demonstrated low cytotoxicity in prostate cancer cells. The attachment of the targeting ligand Tf to AuNPs successfully achieved receptor-mediated cellular uptake in PC-3 cells, a prostate cancer cell line highly expressing Tf receptors. The AuNPs-PEI-FA effectively complexed small interfering RNA (siRNA) through electrostatic interaction. At the cellular level the AuNPs-PEI-FA specifically delivered siRNA into LNCaP cells, a prostate cancer cell line overexpressing prostate specific membrane antigen (PSMA, exhibits a hydrolase enzymic activity with a folate substrate). Following endolysosomal escape the AuNPs-PEI-FA.siRNA formulation produced enhanced endogenous gene silencing compared to the non-targeted formulation. Our results suggest both formulations have potential as non-viral gene delivery vectors in the treatment of prostate cancer.
Collapse
Affiliation(s)
- Jianfeng Guo
- Pharmacodelivery Group, School of Pharmacy, University College Cork, Cork, Ireland.
| | | | - Justin D Holmes
- Materials Chemistry and Analysis Group, Department of Chemistry and The Tyndall National Institute, University College Cork, Cork, Ireland; Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Trinity College Dublin, Dublin 2, Ireland
| | - Kamil Rahme
- Materials Chemistry and Analysis Group, Department of Chemistry and The Tyndall National Institute, University College Cork, Cork, Ireland; Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Trinity College Dublin, Dublin 2, Ireland; Department of Sciences, Faculty of Natural and Applied Science, Notre Dame University (Louaize), Zouk Mosbeh, Lebanon.
| |
Collapse
|
396
|
Xie Y, Kim NH, Nadithe V, Schalk D, Thakur A, Kılıç A, Lum LG, Bassett DJP, Merkel OM. Targeted delivery of siRNA to activated T cells via transferrin-polyethylenimine (Tf-PEI) as a potential therapy of asthma. J Control Release 2016; 229:120-129. [PMID: 27001893 PMCID: PMC4886848 DOI: 10.1016/j.jconrel.2016.03.029] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 03/16/2016] [Accepted: 03/17/2016] [Indexed: 12/12/2022]
Abstract
Asthma is a worldwide health problem. Activated T cells (ATCs) in the lung, particularly T helper 2 cells (Th2), are strongly associated with inducing airway inflammatory responses and chemoattraction of inflammatory cells in asthma. Small interfering RNA (siRNA) as a promising anti-sense molecule can specifically silence inflammation related genes in ATCs, however, lack of safe and efficient siRNA delivery systems limits the application of siRNA as a therapeutic molecule in asthma. Here, we designed a novel pulmonary delivery system of siRNA, transferrin-polyethylenimine (Tf-PEI), to selectively deliver siRNA to ATCs in the lung. Tf-PEI polyplexes demonstrated optimal physicochemical properties such as size, distribution, zeta-potential, and siRNA condensation efficiency. Moreover, in vitro studies showed significantly enhanced cellular uptake and gene knockdown mediated by Tf-PEI polyplexes in human primary ATCs. Biodistribution of polyplexes in a murine asthmatic model confirmed that Tf-PEI polyplexes can efficiently and selectively deliver siRNA to ATCs. In conclusion, the present work proves the feasibility to target ATCs in asthma via Tf receptor. This strategy could potentially be used to design an efficient siRNA delivery system for asthma therapy.
Collapse
Affiliation(s)
- Yuran Xie
- Wayne State University, Detroit, MI, United States
| | - Na Hyung Kim
- Wayne State University, Detroit, MI, United States
| | | | - Dana Schalk
- Wayne State University, Detroit, MI, United States; Karmanos Cancer Institute, Detroit, MI, United States
| | - Archana Thakur
- Wayne State University, Detroit, MI, United States; Karmanos Cancer Institute, Detroit, MI, United States
| | - Ayşe Kılıç
- Philipps-Universität Marburg, Marburg, Germany
| | - Lawrence G Lum
- Wayne State University, Detroit, MI, United States; Karmanos Cancer Institute, Detroit, MI, United States
| | | | - Olivia M Merkel
- Wayne State University, Detroit, MI, United States; Karmanos Cancer Institute, Detroit, MI, United States; Ludwig-Maximilians Universität München, Munich, Germany.
| |
Collapse
|
397
|
Ishiwatari A, Yamaguchi S, Takamori S, Yamahira S, Minamihata K, Nagamune T. Photolytic Protein Aggregates: Versatile Materials for Controlled Release of Active Proteins. Adv Healthc Mater 2016; 5:1002-7. [PMID: 26945901 DOI: 10.1002/adhm.201500957] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 01/18/2016] [Indexed: 01/29/2023]
Abstract
Photolytic protein aggregates are developed as a facile and versatile platform for light-induced release of active proteins. The proteins modified with biotin through a photo-cleavable linker rapidly form aggregates with streptavidin and biotinylated functional molecules simply by mixing. Light irradiation releases active proteins from the aggregates in high yields, and light-induced uptake of drug-modified transferrin into living cells is successfully demonstrated.
Collapse
Affiliation(s)
- Akira Ishiwatari
- Department of Chemistry and Biotechnology; School of Engineering; The University of Tokyo; 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| | - Satoshi Yamaguchi
- Research Center for Advanced Science and Technology (RCAST); The University of Tokyo; 4-6-1 Komaba, Meguro-ku Tokyo 153-8904 Japan
| | - Satoshi Takamori
- Department of Chemistry and Biotechnology; School of Engineering; The University of Tokyo; 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| | - Shinya Yamahira
- Department of Chemistry and Biotechnology; School of Engineering; The University of Tokyo; 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| | - Kosuke Minamihata
- Department of Chemistry and Biotechnology; School of Engineering; The University of Tokyo; 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| | - Teruyuki Nagamune
- Department of Chemistry and Biotechnology; School of Engineering; The University of Tokyo; 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
- Department of Bioengineering; School of Engineering; The University of Tokyo; 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| |
Collapse
|
398
|
Schaffert DH, Okholm AH, Sørensen RS, Nielsen JS, Tørring T, Rosen CB, Kodal ALB, Mortensen MR, Gothelf KV, Kjems J. Intracellular Delivery of a Planar DNA Origami Structure by the Transferrin-Receptor Internalization Pathway. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:2634-40. [PMID: 27032044 DOI: 10.1002/smll.201503934] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Revised: 03/02/2016] [Indexed: 05/15/2023]
Abstract
DNA origami provides rapid access to easily functionalized, nanometer-sized structures making it an intriguing platform for the development of defined drug delivery and sensor systems. Low cellular uptake of DNA nanostructures is a major obstacle in the development of DNA-based delivery platforms. Herein, significant strong increase in cellular uptake in an established cancer cell line by modifying a planar DNA origami structure with the iron transport protein transferrin (Tf) is demonstrated. A variable number of Tf molecules are coupled to the origami structure using a DNA-directed, site-selective labeling technique to retain ligand functionality. A combination of confocal fluorescence microscopy and quantitative (qPCR) techniques shows up to 22-fold increased cytoplasmic uptake compared to unmodified structures and with an efficiency that correlates to the number of transferrin molecules on the origami surface.
Collapse
Affiliation(s)
- David H Schaffert
- Department of Molecular Biology and Genetics, University of Aarhus, C. F. Møllers Allé 3, 8000, Aarhus C, Denmark
- Center for DNA Nanotechnology and Interdisciplinary Nanoscience Center (iNANO), University of Aarhus, Gustav Wieds Vej 14, 8000, Aarhus C, Denmark
| | - Anders H Okholm
- Department of Molecular Biology and Genetics, University of Aarhus, C. F. Møllers Allé 3, 8000, Aarhus C, Denmark
- Center for DNA Nanotechnology and Interdisciplinary Nanoscience Center (iNANO), University of Aarhus, Gustav Wieds Vej 14, 8000, Aarhus C, Denmark
| | - Rasmus S Sørensen
- Department of Molecular Biology and Genetics, University of Aarhus, C. F. Møllers Allé 3, 8000, Aarhus C, Denmark
- Center for DNA Nanotechnology and Interdisciplinary Nanoscience Center (iNANO), University of Aarhus, Gustav Wieds Vej 14, 8000, Aarhus C, Denmark
| | - Jesper S Nielsen
- Department of Molecular Biology and Genetics, University of Aarhus, C. F. Møllers Allé 3, 8000, Aarhus C, Denmark
- Center for DNA Nanotechnology and Interdisciplinary Nanoscience Center (iNANO), University of Aarhus, Gustav Wieds Vej 14, 8000, Aarhus C, Denmark
| | - Thomas Tørring
- Center for DNA Nanotechnology and Interdisciplinary Nanoscience Center (iNANO), University of Aarhus, Gustav Wieds Vej 14, 8000, Aarhus C, Denmark
- Department of Chemistry, University of Aarhus, Langelandsgade 140, 8000, Aarhus C, Denmark
| | - Christian B Rosen
- Center for DNA Nanotechnology and Interdisciplinary Nanoscience Center (iNANO), University of Aarhus, Gustav Wieds Vej 14, 8000, Aarhus C, Denmark
- Department of Chemistry, University of Aarhus, Langelandsgade 140, 8000, Aarhus C, Denmark
| | - Anne Louise B Kodal
- Center for DNA Nanotechnology and Interdisciplinary Nanoscience Center (iNANO), University of Aarhus, Gustav Wieds Vej 14, 8000, Aarhus C, Denmark
- Department of Chemistry, University of Aarhus, Langelandsgade 140, 8000, Aarhus C, Denmark
| | - Michael R Mortensen
- Center for DNA Nanotechnology and Interdisciplinary Nanoscience Center (iNANO), University of Aarhus, Gustav Wieds Vej 14, 8000, Aarhus C, Denmark
- Department of Chemistry, University of Aarhus, Langelandsgade 140, 8000, Aarhus C, Denmark
| | - Kurt V Gothelf
- Center for DNA Nanotechnology and Interdisciplinary Nanoscience Center (iNANO), University of Aarhus, Gustav Wieds Vej 14, 8000, Aarhus C, Denmark
- Department of Chemistry, University of Aarhus, Langelandsgade 140, 8000, Aarhus C, Denmark
| | - Jørgen Kjems
- Department of Molecular Biology and Genetics, University of Aarhus, C. F. Møllers Allé 3, 8000, Aarhus C, Denmark
- Center for DNA Nanotechnology and Interdisciplinary Nanoscience Center (iNANO), University of Aarhus, Gustav Wieds Vej 14, 8000, Aarhus C, Denmark
| |
Collapse
|
399
|
Zhou Y, Li W, Xiao Y. Profiling of Multiple Targets of Artemisinin Activated by Hemin in Cancer Cell Proteome. ACS Chem Biol 2016; 11:882-8. [PMID: 26854499 DOI: 10.1021/acschembio.5b01043] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The antimalarial drug artemisinin is found to have diverse biological activities ranging from anti-inflammatory to anticancer properties; however, as of today, the cellular targets and mechanism of action of this important compound have remained elusive. Here, we report the global protein target profiling of artemisinin in the HeLa cancer cell proteome using a chemical proteomics approach. In the presence of hemin, multiple proteins were targeted by artemisinin probe through covalent modification. Further studies revealed that reducing of hemin to heme by protein thiols was essential for endoperoxide activation and subsequent protein alkylation. Artemisinin may exert its synergistic therapeutic anticancer effects via modulation of a variety of cellular pathways through acting on multiple targets.
Collapse
Affiliation(s)
- Yiqing Zhou
- CAS Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Weichao Li
- CAS Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Youli Xiao
- CAS Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
400
|
Zhang R, Feng G, Zhang CJ, Cai X, Cheng X, Liu B. Real-Time Specific Light-Up Sensing of Transferrin Receptor: Image-Guided Photodynamic Ablation of Cancer Cells through Controlled Cytomembrane Disintegration. Anal Chem 2016; 88:4841-8. [DOI: 10.1021/acs.analchem.6b00524] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Ruoyu Zhang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585
| | - Guangxue Feng
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585
| | - Chong-Jing Zhang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585
| | - Xiaolei Cai
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585
| | - Xiamin Cheng
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585
| | - Bin Liu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585
- Institute of Materials Research and Engineering (Astar), 3 Research Link, Singapore 117602
| |
Collapse
|