351
|
Abstract
Lysosomes are an important cellular organelle that receive and degrade macromolecules from the secretory, endocytic, autophagic, and phagocytic membrane-trafficking pathways. Defects in lysosome function lead to the development of disease with often-severe consequences to the individual. Since the discovery of lysosomes by Christian de Duve over 50 years ago, research into endocytic and lysosomal biology has allowed for the development of tools to understand further the role of lysosomes in cells. There are now several fluorescent probes that can be used to visualize and assess membrane traffic to the lysosome as well as probes to assess the activity of lysosomal hydrolases in live cells. This chapter describes the current methods used to measure lysosome function in live cells.
Collapse
Affiliation(s)
- Paul R Pryor
- Centre for Immunology and Infection, Hull York Medical School and Department of Biology, University of York, York, United Kingdom
| |
Collapse
|
352
|
Wang D, Belakhov V, Kandasamy J, Baasov T, Li SC, Li YT, Bedwell DM, Keeling KM. The designer aminoglycoside NB84 significantly reduces glycosaminoglycan accumulation associated with MPS I-H in the Idua-W392X mouse. Mol Genet Metab 2012; 105:116-25. [PMID: 22056610 PMCID: PMC3253910 DOI: 10.1016/j.ymgme.2011.10.005] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Revised: 10/11/2011] [Accepted: 10/12/2011] [Indexed: 12/20/2022]
Abstract
Suppression therapy utilizes compounds that suppress translation termination at in-frame premature termination codons (PTCs) to restore full-length, functional protein. This approach may provide a treatment for diseases caused by nonsense mutations such as mucopolysaccharidosis type I-Hurler (MPS I-H). MPS I-H is a lysosomal storage disease caused by severe α-L-iduronidase deficiency and subsequent lysosomal glycosaminoglycan (GAG) accumulation. MPS I-H represents a good target for suppression therapy because the majority of MPS I-H patients carry nonsense mutations, and restoration of even a small amount of functional α-L-iduronidase may attenuate the MPS I-H phenotype. In this study, we investigated the efficiency of suppression therapy agents to suppress the Idua-W392X nonsense mutation in an MPS I-H mouse model. The drugs tested included the conventional aminoglycosides gentamicin, G418, amikacin, and paromomycin. In addition, the designer aminoglycosides NB54 and NB84, two compounds previously designed to mediate efficient PTC suppression with reduced toxicity, were also examined. Overall, NB84 suppressed the Idua-W392X nonsense mutation much more efficiently than any of the other compounds tested. NB84 treatment restored enough functional α-L-iduronidase activity to partially reverse abnormal GAG accumulation and lysosomal abundance in mouse embryonic fibroblasts derived from the Idua-W392X mouse. Finally, in vivo administration of NB84 to Idua-W392X mice significantly reduced urine GAG excretion and tissue GAG storage. Together, these results suggest that NB84-mediated suppression therapy has the potential to attenuate the MPS I-H disease phenotype.
Collapse
Affiliation(s)
- Dan Wang
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Valery Belakhov
- The Edith and Joseph Fischer Enzyme Inhibitors Laboratory, Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Jeyakumar Kandasamy
- The Edith and Joseph Fischer Enzyme Inhibitors Laboratory, Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Timor Baasov
- The Edith and Joseph Fischer Enzyme Inhibitors Laboratory, Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Su-Chen Li
- Department of Biochemistry, Tulane University, New Orleans, LA 70112, USA
| | - Yu-Teh Li
- Department of Biochemistry, Tulane University, New Orleans, LA 70112, USA
| | - David M. Bedwell
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Kim M. Keeling
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Corresponding author: Kim M. Keeling, Address: Department of Microbiology, BBRB 456, 845 19 Street South, University of Alabama at Birmingham, Birmingham, AL 35294, USA. Telephone: 205-975-6585; Fax: 205-975-5482.
| |
Collapse
|
353
|
Mannose 6 dephosphorylation of lysosomal proteins mediated by acid phosphatases Acp2 and Acp5. Mol Cell Biol 2011; 32:774-82. [PMID: 22158965 DOI: 10.1128/mcb.06195-11] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mannose 6-phosphate (Man6P) residues represent a recognition signal required for efficient receptor-dependent transport of soluble lysosomal proteins to lysosomes. Upon arrival, the proteins are rapidly dephosphorylated. We used mice deficient for the lysosomal acid phosphatase Acp2 or Acp5 or lacking both phosphatases (Acp2/Acp5(-/-)) to examine their role in dephosphorylation of Man6P-containing proteins. Two-dimensional (2D) Man6P immunoblot analyses of tyloxapol-purified lysosomal fractions revealed an important role of Acp5 acting in concert with Acp2 for complete dephosphorylation of lysosomal proteins. The most abundant lysosomal substrates of Acp2 and Acp5 were identified by Man6P affinity chromatography and mass spectrometry. Depending on the presence of Acp2 or Acp5, the isoelectric point of the lysosomal cholesterol-binding protein Npc2 ranged between 7.0 and 5.4 and may thus regulate its interaction with negatively charged lysosomal membranes at acidic pH. Correspondingly, unesterified cholesterol was found to accumulate in lysosomes of cultured hepatocytes of Acp2/Acp5(-/-) mice. The data demonstrate that dephosphorylation of Man6P-containing lysosomal proteins requires the concerted action of Acp2 and Acp5 and is needed for hydrolysis and removal of degradation products.
Collapse
|
354
|
Eissenberg JC, Ilvarsonn AM, Sly WS, Waheed A, Krzyzanek V, Pohlmann R, Waschkau D, Kretzschmar D, Dennes AC. Drosophila GGA model: an ultimate gateway to GGA analysis. Traffic 2011; 12:1821-38. [PMID: 21923734 PMCID: PMC3601743 DOI: 10.1111/j.1600-0854.2011.01285.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Golgi-localized, γ-ear-containing, ADP ribosylation factor-binding (GGA) proteins are monomeric adaptors implicated in clathrin-mediated vesicular transport between the trans Golgi network and endosomes, characterized mainly from cell culture analysis of lysosomal sorting. To provide the first demonstration of GGA's role in vivo, we used Drosophila which has a single GGA and a single lysosomal sorting receptor, lysosomal enzyme receptor protein (LERP). Using RNAi knockdowns, we show that the Drosophila GGA is required for lysosomal sorting. We further identified authentic components of the Drosophila lysosomal sorting system--the sorting receptor LERP, the sorting adaptor GGA and the lysosomal cargo cathepsins B1, D and L--to show that GGA depletion results in lysosomal dysfunction. Abnormal lysosomal morphology, missorting of lysosomal cathepsins and impaired lysosomal proteolysis show disturbed LERP trafficking after GGA depletion. GGA is highly expressed in the mushroom bodies and the pigment cells of the retina, and increasing or decreasing the levels of GGA in the eyes leads to retinal defects. Reduced GGA levels also enhance an eye defect caused by overexpression of the autophagy-associated protein Blue cheese (Bchs), implicating GGA in autophagic processes. This shows that Drosophila provides an excellent whole-animal model to gain new insights into the function of GGA in the physiological environment of a multicellular organism.
Collapse
Affiliation(s)
- Joel C. Eissenberg
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Doisy Research Center, St. Louis, MO 63104, USA
| | - Anne M. Ilvarsonn
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Doisy Research Center, St. Louis, MO 63104, USA
| | - William S. Sly
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Doisy Research Center, St. Louis, MO 63104, USA
| | - Abdul Waheed
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Doisy Research Center, St. Louis, MO 63104, USA
| | - Vladislav Krzyzanek
- Institute of Medical Physics and Biophysics University of Muenster, 48149 Muenster, Germany
| | - Regina Pohlmann
- UKM, Institute of Physiological Chemistry and Pathobiochemistry, 48149 Münster, Germany
| | - Daniela Waschkau
- UKM, Institute of Physiological Chemistry and Pathobiochemistry, 48149 Münster, Germany
| | | | - André C. Dennes
- UKM, Institute of Physiological Chemistry and Pathobiochemistry, 48149 Münster, Germany
| |
Collapse
|
355
|
De Francesco PN, Mucci JM, Ceci R, Fossati CA, Rozenfeld PA. Higher apoptotic state in Fabry disease peripheral blood mononuclear cells.: effect of globotriaosylceramide. Mol Genet Metab 2011; 104:319-24. [PMID: 21724436 DOI: 10.1016/j.ymgme.2011.06.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Accepted: 06/09/2011] [Indexed: 11/22/2022]
Abstract
Fabry disease is an X-linked lysosomal storage disorder (LSD) due to deficiency of the enzyme α-galactosidase A, resulting in intracellular deposition of globotriaosylceramide (Gb3). Accumulation of Gb3 is probably related to tissue and organ dysfunctions. Diverse pathological mechanisms are elicited in LSDs, giving together the phenotypic expression of each disease. The purpose of the present study is to investigate if apoptosis could play a role in Fabry disease pathogenesis and to understand the mechanisms involved in the proapoptotic state. We have demonstrated that Fabry disease peripheral blood mononuclear cells display a higher apoptotic state, which is reduced by enzyme replacement therapy (ERT), and is mediated, at least in part, by activation of the intrinsic pathway of caspases. We could rule out the implication of "unfolded protein response-ER stress" in this apoptotic process. To further confirm the suggestion that Gb3 is associated to apoptotic cell death, we treated normal cells with Gb3 at concentrations found in Fabry patients. Addition of Gb3 resulted in a dose-dependent induction of apoptosis involving the intrinsic pathway. In summary, PBMC from Fabry patients display a higher apoptotic state, which could be mainly related to elevated Gb3.
Collapse
Affiliation(s)
- Pablo N De Francesco
- LISIN, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata (1900), Argentina
| | | | | | | | | |
Collapse
|
356
|
Chen G, Zhang Z, Wei Z, Cheng Q, Li X, Li W, Duan S, Gu X. Lysosomal exocytosis in Schwann cells contributes to axon remyelination. Glia 2011; 60:295-305. [PMID: 22042600 DOI: 10.1002/glia.21263] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Accepted: 10/06/2011] [Indexed: 12/21/2022]
Abstract
Myelin biogenesis is a complex process involving coordinated exocytosis, endocytosis, mRNA transport, and cytoskeletal dynamics. Although abnormalities of myelin are common in lysosomal storage diseases, our understanding of the role of lysosomes in the formation and maintenance of myelin is still limited. Here, we show that late endosomes/lysosomes in Schwann cells contain abundant myelin protein P0, which accounts for over half the total protein of compact myelin in the peripheral nervous system and exhibit Ca(2+) -dependent exocytosis in response to various stimuli. Downregulation of Rab27a, a small GTPase required for the trafficking of the secretory lysosomes to the plasma membrane, largely blocked lysosomal exocytosis in Schwann cells and reduced the remyelination of regenerated sciatic nerve. These findings highlight a novel role for lysosomes in Schwann cells and suggest that the regulated lysosome exocytosis in Schwann cells may have important physiological and pathological significance in the peripheral nervous system.
Collapse
Affiliation(s)
- Gang Chen
- Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, 226001, Jiangsu, China
| | | | | | | | | | | | | | | |
Collapse
|
357
|
Medina DL, Fraldi A, Bouche V, Annunziata F, Mansueto G, Spampanato C, Puri C, Pignata A, Martina JA, Sardiello M, Palmieri M, Polishchuk R, Puertollano R, Ballabio A. Transcriptional activation of lysosomal exocytosis promotes cellular clearance. Dev Cell 2011; 21:421-30. [PMID: 21889421 PMCID: PMC3173716 DOI: 10.1016/j.devcel.2011.07.016] [Citation(s) in RCA: 553] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Revised: 05/09/2011] [Accepted: 07/28/2011] [Indexed: 11/30/2022]
Abstract
Lysosomes are cellular organelles primarily involved in degradation and recycling processes. During lysosomal exocytosis, a Ca2+-regulated process, lysosomes are docked to the cell surface and fuse with the plasma membrane (PM), emptying their content outside the cell. This process has an important role in secretion and PM repair. Here we show that the transcription factor EB (TFEB) regulates lysosomal exocytosis. TFEB increases the pool of lysosomes in the proximity of the PM and promotes their fusion with PM by raising intracellular Ca2+ levels through the activation of the lysosomal Ca2+ channel MCOLN1. Induction of lysosomal exocytosis by TFEB overexpression rescued pathologic storage and restored normal cellular morphology both in vitro and in vivo in lysosomal storage diseases (LSDs). Our data indicate that lysosomal exocytosis may directly modulate cellular clearance and suggest an alternative therapeutic strategy for disorders associated with intracellular storage.
Collapse
Affiliation(s)
- Diego L Medina
- Telethon Institute of Genetics and Medicine (TIGEM), Via P. Castellino 111, 80131 Naples, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
358
|
Elevated plasma glucosylsphingosine in Gaucher disease: relation to phenotype, storage cell markers, and therapeutic response. Blood 2011; 118:e118-27. [PMID: 21868580 DOI: 10.1182/blood-2011-05-352971] [Citation(s) in RCA: 204] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Gaucher disease, caused by a deficiency of the lysosomal enzyme glucocerebrosidase, leads to prominent glucosylceramide accumulation in lysosomes of tissue macrophages (Gaucher cells). Here we show glucosylsphingosine, the deacylated form of glucosylceramide, to be markedly increased in plasma of symptomatic nonneuronopathic (type 1) Gaucher patients (n = 64, median = 230.7 nM, range 15.6-1035.2 nM; normal (n = 28): median 1.3 nM, range 0.8-2.7 nM). The method developed for mass spectrometric quantification of plasma glucosylsphingosine is sensitive and robust. Plasma glucosylsphingosine levels correlate with established plasma markers of Gaucher cells, chitotriosidase (ρ = 0.66) and CCL18 (ρ = 0.40). Treatment of Gaucher disease patients by supplementing macrophages with mannose-receptor targeted recombinant glucocerebrosidase results in glucosylsphingosine reduction, similar to protein markers of Gaucher cells. Since macrophages prominently accumulate the lysoglycosphingolipid on glucocerebrosidase inactivation, Gaucher cells seem a major source of the elevated plasma glucosylsphingosine. Our findings show that plasma glucosylsphingosine can qualify as a biomarker for type 1 Gaucher disease, but that further investigations are warranted regarding its relationship with clinical manifestations of Gaucher disease.
Collapse
|
359
|
Abstract
Lysosomal storage disorders (LSDs) are a large group of more than 50 different inherited metabolic diseases which, in the great majority of cases, result from the defective function of specific lysosomal enzymes and, in cases, of non-enzymatic lysosomal proteins or non-lysosomal proteins involved in lysosomal biogenesis. The progressive lysosomal accumulation of undegraded metabolites results in generalised cell and tissue dysfunction, and, therefore, multi-systemic pathology. Storage may begin during early embryonic development, and the clinical presentation for LSDs can vary from an early and severe phenotype to late-onset mild disease. The diagnosis of most LSDs--after accurate clinical/paraclinical evaluation, including the analysis of some urinary metabolites--is based mainly on the detection of a specific enzymatic deficiency. In these cases, molecular genetic testing (MGT) can refine the enzymatic diagnosis. Once the genotype of an individual LSD patient has been ascertained, genetic counselling should include prediction of the possible phenotype and the identification of carriers in the family at risk. MGT is essential for the identification of genetic disorders resulting from non-enzymatic lysosomal protein defects and is complementary to biochemical genetic testing (BGT) in complex situations, such as in cases of enzymatic pseudodeficiencies. Prenatal diagnosis is performed on the most appropriate samples, which include fresh or cultured chorionic villus sampling or cultured amniotic fluid. The choice of the test--enzymatic and/or molecular--is based on the characteristics of the defect to be investigated. For prenatal MGT, the genotype of the family index case must be known. The availability of both tests, enzymatic and molecular, enormously increases the reliability of the entire prenatal diagnostic procedure. To conclude, BGT and MGT are mostly complementary for post- and prenatal diagnosis of LSDs. Whenever genotype/phenotype correlations are available, they can be helpful in predicting prognosis and in making decisions about therapy.
Collapse
Affiliation(s)
- Mirella Filocamo
- S.S.D. Lab. Diagnosi Pre-Postnatale Malattie Metaboliche, Dipartimento di Neuroscienze, IRCCS G. Gaslini, Largo G. Gaslini 5, Genova, Italy.
| | | |
Collapse
|
360
|
Lysosomal proteolysis inhibition selectively disrupts axonal transport of degradative organelles and causes an Alzheimer's-like axonal dystrophy. J Neurosci 2011; 31:7817-30. [PMID: 21613495 DOI: 10.1523/jneurosci.6412-10.2011] [Citation(s) in RCA: 361] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
In the hallmark neuritic dystrophy of Alzheimer's disease (AD), autophagic vacuoles containing incompletely digested proteins selectively accumulate in focal axonal swellings, reflecting defects in both axonal transport and autophagy. Here, we investigated the possibility that impaired lysosomal proteolysis could be a basis for both of these defects leading to neuritic dystrophy. In living primary mouse cortical neurons expressing fluorescence-tagged markers, LC3-positive autophagosomes forming in axons rapidly acquired the endo-lysosomal markers Rab7 and LAMP1 and underwent exclusive retrograde movement. Proteolytic clearance of these transported autophagic vacuoles was initiated after fusion with bidirectionally moving lysosomes that increase in number at more proximal axon levels and in the perikaryon. Disrupting lysosomal proteolysis by either inhibiting cathepsins directly or by suppressing lysosomal acidification slowed the axonal transport of autolysosomes, late endosomes, and lysosomes and caused their selective accumulation within dystrophic axonal swellings. Mitochondria and other organelles lacking cathepsins moved normally under these conditions, indicating that the general functioning of the axonal transport system was preserved. Dystrophic swellings induced by lysosomal proteolysis inhibition resembled in composition those in several mouse models of AD and also acquired other AD-like features, including immunopositivity for ubiquitin, amyloid precursor protein, and hyperphosphorylated neurofilament proteins. Restoration of lysosomal proteolysis reversed the affected movements of proteolytic Rab7 vesicles, which in turn essentially cleared autophagic substrates and reversed the axonal dystrophy. These studies identify the AD-associated defects in neuronal lysosomal proteolysis as a possible basis for the selective transport abnormalities and highly characteristic pattern of neuritic dystrophy associated with AD.
Collapse
|
361
|
Substrate inhibition of lysosomal hydrolases: α-Galactosidase A and β-glucocerebrosidase. Clin Biochem 2011; 44:941-3. [DOI: 10.1016/j.clinbiochem.2011.04.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Revised: 04/14/2011] [Accepted: 04/21/2011] [Indexed: 11/22/2022]
|
362
|
Schultz ML, Tecedor L, Chang M, Davidson BL. Clarifying lysosomal storage diseases. Trends Neurosci 2011; 34:401-10. [PMID: 21723623 DOI: 10.1016/j.tins.2011.05.006] [Citation(s) in RCA: 165] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Revised: 05/17/2011] [Accepted: 05/27/2011] [Indexed: 11/29/2022]
Abstract
Lysosomal storage diseases (LSDs) are a class of metabolic disorders caused by mutations in proteins critical for lysosomal function. Such proteins include lysosomal enzymes, lysosomal integral membrane proteins, and proteins involved in the post-translational modification and trafficking of lysosomal proteins. There are many recognized forms of LSDs and, although individually rare, their combined prevalence is estimated to be 1 in 8000 births. Over two-thirds of LSDs involve central nervous system (CNS) dysfunction (progressive cognitive and motor decline) and these symptoms are often the most debilitating. Although the genetic basis for these disorders is clear and the biochemistry of the proteins well understood, the cellular mechanisms by which deficiencies in these proteins disrupt neuronal viability remain ambiguous. In this review, we provide an overview of the widespread cellular perturbations occurring in LSDs, how they might be linked and interventions that may specifically or globally correct those defects.
Collapse
Affiliation(s)
- Mark L Schultz
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA
| | | | | | | |
Collapse
|
363
|
Lemonnier T, Blanchard S, Toli D, Roy E, Bigou S, Froissart R, Rouvet I, Vitry S, Heard JM, Bohl D. Modeling neuronal defects associated with a lysosomal disorder using patient-derived induced pluripotent stem cells. Hum Mol Genet 2011; 20:3653-66. [PMID: 21685203 DOI: 10.1093/hmg/ddr285] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
By providing access to affected neurons, human induced pluripotent stem cells (iPSc) offer a unique opportunity to model human neurodegenerative diseases. We generated human iPSc from the skin fibroblasts of children with mucopolysaccharidosis type IIIB. In this fatal lysosomal storage disease, defective α-N-acetylglucosaminidase interrupts the degradation of heparan sulfate (HS) proteoglycans and induces cell disorders predominating in the central nervous system, causing relentless progression toward severe mental retardation. Partially digested proteoglycans, which affect fibroblast growth factor signaling, accumulated in patient cells. They impaired isolation of emerging iPSc unless exogenous supply of the missing enzyme cleared storage and restored cell proliferation. After several passages, patient iPSc starved of an exogenous enzyme continued to proliferate in the presence of fibroblast growth factor despite HS accumulation. Survival and neural differentiation of patient iPSc were comparable with unaffected controls. Whereas cell pathology was modest in floating neurosphere cultures, undifferentiated patient iPSc and their neuronal progeny expressed cell disorders consisting of storage vesicles and severe disorganization of Golgi ribbons associated with modified expression of the Golgi matrix protein GM130. Gene expression profiling in neural stem cells pointed to alterations of extracellular matrix constituents and cell-matrix interactions, whereas genes associated with lysosome or Golgi apparatus functions were downregulated. Taken together, these results suggest defective responses of patient undifferentiated stem cells and neurons to environmental cues, which possibly affect Golgi organization, cell migration and neuritogenesis. This could have potential consequences on post-natal neurological development, once HS proteoglycan accumulation becomes prominent in the affected child brain.
Collapse
Affiliation(s)
- Thomas Lemonnier
- Institut Pasteur, Unité Rétrovirus et Transfert Génétique, 28 rue du Dr Roux, F-75015 Paris, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
364
|
Nylandsted J, Becker AC, Bunkenborg J, Andersen JS, Dengjel J, Jäättelä M. ErbB2-associated changes in the lysosomal proteome. Proteomics 2011; 11:2830-8. [DOI: 10.1002/pmic.201000734] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2010] [Revised: 04/01/2011] [Accepted: 04/20/2011] [Indexed: 01/01/2023]
|
365
|
Wu G, Huang J, Feng X, Zhang A, Li J, Pang S, Gu K, Dong H, Zhang J, Gao H, Yan B. Decreased expression of lysosomal alpha-galactosiase A gene in sporadic Parkinson's disease. Neurochem Res 2011; 36:1939-44. [PMID: 21643977 DOI: 10.1007/s11064-011-0516-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/19/2011] [Indexed: 01/12/2023]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disease. To date, the causal genes and variants associated with sporadic PD are largely unknown. Accumulating evidence demonstrates that autophagy delivers alpha-syncuclein proteins to lysosome for degradation and dysfunctional autophagy is involved in the PD pathogenesis. We have previously screened a group of lysosomal hydrolases and found that alpha-galactosidase A (GLA) activity is significantly decreased in the peripheral leukocytes of sporadic PD patients. In this study, GLA transcript and protein levels were semi-quantitatively examined. The GLA transcript (P = 0.020) and protein (P = 0.027) levels in the peripheral leukocytes of sporadic PD patients were significantly decreased, compared to age- and sex-matched healthy controls. Furthermore, decreased GLA gene expression levels were strongly associated with sporadic PD (OR 3.33, 95%CI 1.17-9.52, P = 0.024). Therefore, our data suggest that insufficient GLA activity may contribute to the pathogenesis of sporadic PD. The underlying molecular mechanisms remain to be determined.
Collapse
Affiliation(s)
- Guanghua Wu
- Division of Cardiac Surgery, Jining Medical College Affiliated Hospital, Jining Medical College, 79 Guhuai Road, Jining, Shandong 272029, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
366
|
Kiselyov K, Colletti GA, Terwilliger A, Ketchum K, Lyons CWP, Quinn J, Muallem S. TRPML: transporters of metals in lysosomes essential for cell survival? Cell Calcium 2011; 50:288-94. [PMID: 21621258 DOI: 10.1016/j.ceca.2011.04.009] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Accepted: 04/29/2011] [Indexed: 01/09/2023]
Abstract
Key aspects of lysosomal function are affected by the ionic content of the lysosomal lumen and, therefore, by the ion permeability in the lysosomal membrane. Such functions include regulation of lysosomal acidification, a critical process in delivery and activation of the lysosomal enzymes, release of metals from lysosomes into the cytoplasm and the Ca(2+)-dependent component of membrane fusion events in the endocytic pathway. While the basic mechanisms of lysosomal acidification have been largely defined, the lysosomal metal transport system is not well understood. TRPML1 is a lysosomal ion channel whose malfunction is implicated in the lysosomal storage disease Mucolipidosis Type IV. Recent evidence suggests that TRPML1 is involved in Fe(2+), Ca(2+) and Zn(2+) transport across the lysosomal membrane, ascribing novel physiological roles to this ion channel, and perhaps to its relatives TRPML2 and TRPML3 and illuminating poorly understood aspects of lysosomal function. Further, alterations in metal transport by the TRPMLs due to mutations or environmental factors may contribute to their role in the disease phenotype and cell death.
Collapse
Affiliation(s)
- Kirill Kiselyov
- Department of Biological Science, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| | | | | | | | | | | | | |
Collapse
|
367
|
Abstract
INTRODUCTION Lysosomal storage disorders (LSDs) encompass more than 50 distinct diseases, caused by defects in various aspects of lysosomal function. Neurodegeneration and/or dysmyelination are the hallmark of roughly 70% of LSDs. Gene therapy represents a promising approach for the treatment of CNS manifestations in LSDs, as it has the potential to provide a permanent source of the deficient enzyme, either by direct injection of vectors or by transplantation of gene-corrected cells. In this latter approach, the biology of neural stem/progenitor cells and hematopoietic cells might be exploited. AREAS COVERED Based on an extensive literature search up until March 2011, the author reviews and discusses the progress, the crucial aspects and the major challenges towards the development of novel gene therapy strategies aimed to target the CNS, with particular attention to direct intracerebral gene delivery and transplantation of neural stem/progenitor cells. EXPERT OPINION The implementation of viral vector delivery systems with specific tropism, regulated transgene expression, low immunogenicity and low genotoxic risk and the improvement in isolation and manipulation of relevant cell types to be transplanted, are fundamental challenges to the field. Also, combinatorial strategies might be required to achieve full correction in LSDs with neurological involvement.
Collapse
Affiliation(s)
- Angela Gritti
- San Raffaele Telethon Institute for Gene Therapy (HSR-TIGET), San Raffaele Scientific Institute, Via Olgettina 58, 20132, Milano, Italy.
| |
Collapse
|
368
|
Lyons JA, Dickson P, Wall J, Passage M, Ellinwood NM, Kakkis ED, McEntee MF. Arterial pathology in canine mucopolysaccharidosis-I and response to therapy. J Transl Med 2011; 91:665-74. [PMID: 21383673 PMCID: PMC3084338 DOI: 10.1038/labinvest.2011.7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Mucopolysaccharidosis-I (MPS-I) is an inherited deficiency of α-L-iduronidase (IdU) that causes lysosomal accumulation of glycosaminoglycans (GAG) in a variety of parenchymal cell types and connective tissues. The fundamental link between genetic mutation and tissue GAG accumulation is clear, but relatively little attention has been given to the morphology or pathogenesis of associated lesions, particularly those affecting the vascular system. The terminal parietal branches of the abdominal aorta were examined from a colony of dogs homozygous (MPS-I affected) or heterozygous (unaffected carrier) for an IdU mutation that eliminated all enzyme activity, and in affected animals treated with human recombinant IdU. High-resolution computed tomography showed that vascular wall thickenings occurred in affected animals near branch points, and associated with low endothelial shear stress. Histologically these asymmetric 'plaques' entailed extensive intimal thickening with disruption of the internal elastic lamina, occluding more than 50% of the vascular lumen in some cases. Immunohistochemistry was used to show that areas of sclerosis contained foamy (GAG laden) macrophages, fibroblasts and smooth muscle cells, with loss of overlying endothelial basement membrane and claudin-5 expression. Lesions contained scattered cells expressing nuclear factor-κβ (p65), increased fibronectin and transforming growth factor β-1 signaling (with nuclear Smad3 accumulation) in comparison to unaffected vessels. Intimal lesion development and morphology was improved by intravenous recombinant enzyme treatment, particularly with immune tolerance to this exogenous protein. The progressive sclerotic vasculopathy of MPS-I shares some morphological and molecular similarities to atherosclerosis, including formation in areas of low shear stress near branch points, and can be reduced or inhibited by intravenous administration of recombinant IdU.
Collapse
Affiliation(s)
| | - Patricia Dickson
- Division of Medical Genetics, Los Angeles Biomedical Research Institute at Harbor-UCLA, Torrance, CA
| | - Jonathan Wall
- Graduate School of Medicine, University of Tennessee, Knoxville, TN
| | - Merry Passage
- Division of Medical Genetics, Los Angeles Biomedical Research Institute at Harbor-UCLA, Torrance, CA
| | | | - Emil D. Kakkis
- Division of Medical Genetics, Los Angeles Biomedical Research Institute at Harbor-UCLA, Torrance, CA, BioMarin Pharmaceutical Inc., Novato, CA
| | - Michael F. McEntee
- Department of Pathobiology, University of Tennessee, Knoxville, TN,Corresponding author: Michael McEntee, DVM, Department of Pathobiology, University of Tennessee, 2407 River Drive, RmA201, Knoxville, TN, 37996-4542. Office: 865-974-8236, Fax: 865-974-5616,
| |
Collapse
|
369
|
Abstract
Biochemical disorders in lysosomal storage diseases consist of the interruption of metabolic pathways involved in the recycling of the degradation products of one or several types of macromolecules. The progressive accumulation of these primary storage products is the direct consequence of the genetic defect and represents the initial pathogenic event. Downstream consequences for the affected cells include the accumulation of secondary storage products and the formation of histological storage lesions, which appear as intracellular vacuoles that represent the pathological hallmark of lysosomal storage diseases. Relationships between storage products and storage lesions are not simple and are still largely not understood. Primary storage products induce malfunction of the organelles where they accumulate, these being primarily, but not only, lysosomes. Consequences for cell metabolism and intracellular trafficking combine the effects of primary storage product toxicity and the compensatory mechanisms activated to protect the cell. Induced disorders extend far beyond the primarily interrupted metabolic pathway.
Collapse
|
370
|
The role of ESCRT proteins in fusion events involving lysosomes, endosomes and autophagosomes. Biochem Soc Trans 2011; 38:1469-73. [PMID: 21118109 DOI: 10.1042/bst0381469] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
ESCRT (endosomal sorting complex required for transport) proteins were originally identified for their role in delivering endocytosed proteins to the intraluminal vesicles of late-endosomal structures termed multivesicular bodies. Multivesicular bodies then fuse with lysosomes, leading to degradation of the internalized proteins. Four ESCRT complexes interact to concentrate cargo on the endosomal membrane, induce membrane curvature to form an intraluminal bud and finally pinch off the bud through a membrane-scission event to produce the intraluminal vesicle. Recent work suggests that ESCRT proteins are also required downstream of these events to enable fusion of multivesicular bodies with lysosomes. Autophagy is a related pathway required for the degradation of organelles, long-lived proteins and protein aggregates which also converges on lysosomes. The proteins or organelle to be degraded are encapsulated by an autophagosome that fuses either directly with a lysosome or with an endosome to form an amphisome, which then fuses with a lysosome. A common machinery is beginning to emerge that regulates fusion events in the multivesicular body and autophagy pathways, and we focus in the present paper on the role of ESCRT proteins. These fusion events have been implicated in diseases including frontotemporal dementia, Alzheimer's disease, lysosomal storage disorders, myopathies and bacterial pathogen invasion, and therefore further examination of the mechanisms involved may lead to new insight into disease pathogenesis and treatments.
Collapse
|
371
|
Raben N, Schreiner C, Baum R, Takikita S, Xu S, Xie T, Myerowitz R, Komatsu M, Van der Meulen JH, Nagaraju K, Ralston E, Plotz PH. Suppression of autophagy permits successful enzyme replacement therapy in a lysosomal storage disorder--murine Pompe disease. Autophagy 2011; 6:1078-89. [PMID: 20861693 DOI: 10.4161/auto.6.8.13378] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Autophagy, an intracellular system for delivering portions of cytoplasm and damaged organelles to lysosomes for degradation/recycling, plays a role in many physiological processes and is disturbed in many diseases. We recently provided evidence for the role of autophagy in Pompe disease, a lysosomal storage disorder in which acid alphaglucosidase, the enzyme involved in the breakdown of glycogen, is deficient or absent. Clinically the disease manifests as a cardiac and skeletal muscle myopathy. The current enzyme replacement therapy (ERT) clears lysosomal glycogen effectively from the heart but less so from skeletal muscle. In our Pompe model, the poor muscle response to therapy is associated with the presence of pools of autophagic debris. To clear the fibers of the autophagic debris, we have generated a Pompe model in which an autophagy gene, Atg7, is inactivated in muscle. Suppression of autophagy alone reduced the glycogen level by 50–60%. Following ERT, muscle glycogen was reduced to normal levels, an outcome not observed in Pompe mice with genetically intact autophagy. The suppression of autophagy, which has proven successful in the Pompe model, is a novel therapeutic approach that may be useful in other diseases with disturbed autophagy.
Collapse
Affiliation(s)
- Nina Raben
- Arthritis and Rheumatism Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
372
|
Blomqvist M, Gieselmann V, Månsson JE. Accumulation of lysosulfatide in the brain of arylsulfatase A-deficient mice. Lipids Health Dis 2011; 10:28. [PMID: 21299873 PMCID: PMC3041674 DOI: 10.1186/1476-511x-10-28] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Accepted: 02/07/2011] [Indexed: 11/30/2022] Open
Abstract
Lysosomal storage diseases are a group of disorders where accumulation of catabolites is manifested in the lysosomes of different cell types. In metachromatic leukodystrophy (Arylsulfatase A [EC.3.1.6.8] deficiency) storage of the glycosphingolipid sulfatide in the brain leads to demyelination, resulting in neuromotor co-ordination deficits and regression. In a mouse model for metachromatic leukodystrophy, the ASA null mutant mouse, the accumulation of sulfatide in correlation to phenotype has been thoroughly investigated. Another lipid species reported to accumulate in patients with metachromatic leukodystrophy is the sulfatide related lipid lysosulfatide. Lysosulfatide was shown to be a cytotoxic compound in cell culture experiments and thus suggested to be involved in the pathology of metachromatic leukodystrophy. In this study, we further investigated the developmental profile of lysosulfatide in the brain of ASA null mutant mice by using high performance liquid chromatography. Lysosulfatide could be detected in the brain of normal mice (ASA +/+) from 1.8 months up to 23.1 months of age. From the age of 8.8 months the lysosulfatide levels remained constant at 1 pmol/mg wet tissue. The developmental change (< 20 months) of brain lysosulfatide showed an accumulation in ASA null mutant mice at ages above one month compared to its normal counterpart (ASA +/+). Thus, the ASA null mutant mouse might be a suitable model to further investigate the role of lysosulfatide in the pathogenesis of metachromatic leukodystrophy.
Collapse
Affiliation(s)
- Maria Blomqvist
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, Sweden.
| | | | | |
Collapse
|
373
|
Kobayashi H, Takahashi-Fujigasaki J, Fukuda T, Sakurai K, Shimada Y, Nomura K, Ariga M, Ohashi T, Eto Y, Otomo T, Sakai N, Ida H. Pathology of the first autopsy case diagnosed as mucolipidosis type III α/β suggesting autophagic dysfunction. Mol Genet Metab 2011; 102:170-5. [PMID: 21051253 DOI: 10.1016/j.ymgme.2010.09.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Accepted: 09/29/2010] [Indexed: 11/16/2022]
Abstract
Mucolipidosis type III (MLIII) is a mild form of Mucolipidosis type II (MLII, I-cell disease) of late onset, of which almost no pathological study has been reported, as it is a very rare disease. We encountered the case of a 23-year-old man of Japanese and Caucasian mixed parentage diagnosed with MLIII by enzyme assay and genotyping. He died suddenly due to severe dilated cardiomyopathy. On the day after his death, autopsy was performed, and accumulation of Luxol Fast Blue (LFB) positive material was found to be most severe in the neuronal cells of dorsal root ganglions (DRG). Electromicroscopic DRG revealed the neuronal cytoplasm was filled with a zebra-body-like membranous matrix. We tried immunohistochemistry to investigate the mechanism of such accumulation in the DRG that resulted in double positive anti-ubiquitin antibody (FK-2) and anti-LC3 antibody (as specific marker for autophagy) staining, and speculated activating of autophagosome pathway, and 'zebra-body' should be suspected as dysfunctional autophagosome. We also detected foamy cell proliferation in the dura mater, Auerbach's plexus (peripheral nervous system), podocytes of almost all glomeruli, cartilage tissue in lumbar discs, and in cardiac muscle. We tried FK-2 and anti-LC3 antibody staining also for the podocytes, the area with the most marked proliferation of foamy cells, but the result was negative. This led us to speculate that these pathological findings, namely, accumulation of LFB-positive material and foamy fibroblast proliferation, might be the forms of dysfunctional autophagosome at various stages of development. This pathological study of MLIII supports the theory that MLIII is a mild type of MLII because of the close similarity of their pathological findings.
Collapse
Affiliation(s)
- Hiroshi Kobayashi
- Department of Gene Therapy, Institute of DNA Medicine, The Jikei University School of Medicine, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
374
|
rnaset2 mutant zebrafish model familial cystic leukoencephalopathy and reveal a role for RNase T2 in degrading ribosomal RNA. Proc Natl Acad Sci U S A 2011; 108:1099-103. [PMID: 21199949 DOI: 10.1073/pnas.1009811107] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
T2-family acidic endoribonucleases are represented in all genomes. A physiological role for RNase T2 has yet to be defined for metazoa. RNASET2 mutation in humans is linked with a leukoencephalopathy that arises in infancy characterized by cortical cysts and multifocal white matter lesions. We now show localization of RNASET2 within lysosomes. Further, we demonstrate that loss of rnaset2 in mutant zebrafish results in accumulation of undigested rRNA within lysosomes within neurons of the brain. Further, by using high field intensity magnetic resonance microimaging, we reveal white matter lesions in these animals comparable to those observed in RNASET2-deficient infants. This correlates with accumulation of Amyloid precursor protein and astrocytes at sites of neurodegeneration. Thus we conclude that familial cystic leukoencephalopathy is a lysosomal storage disorder in which rRNA is the best candidate for the noxious storage material.
Collapse
|
375
|
|
376
|
Brumshtein B, Aguilar-Moncayo M, Benito JM, García Fernandez JM, Silman I, Shaaltiel Y, Aviezer D, Sussman JL, Futerman AH, Ortiz Mellet C. Cyclodextrin-mediated crystallization of acid β-glucosidase in complex with amphiphilic bicyclic nojirimycin analogues. Org Biomol Chem 2011; 9:4160-7. [DOI: 10.1039/c1ob05200d] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
377
|
Faust PL, Kaye EM, Powers JM. Myelin lesions associated with lysosomal and peroxisomal disorders. Expert Rev Neurother 2010; 10:1449-66. [PMID: 20819015 DOI: 10.1586/ern.10.127] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Abnormalities of myelin are common in lysosomal and peroxisomal disorders. Most display a primary loss of myelin in which the myelin sheath and/or oligodendrocytes are selectively targeted by diverse pathogenetic processes. The most severe and, hence, clinically relevant are heritable diseases predominantly of infants and children, the leukodystrophies: metachromatic, globoid cell (Krabbe disease) and adreno-leukodystrophy. Our still limited understanding of these diseases has derived from multiple sources: originally, neurological-neuropathologic-neurochemical correlative studies of the natural disease in humans or other mammals, which has been enhanced by more sophisticated and contemporary techniques of cell and molecular biology. Transgenic mouse models seem to be the most promising methodology, allowing the examination of the cellular role of lysosomes and peroxisomes for formation and maintenance of both myelin and axons, and providing initial platforms to evaluate therapies. Treatment options are woefully inadequate and in their nascent stages, but still inspire some hope for the future.
Collapse
Affiliation(s)
- Phyllis L Faust
- Department of Pathology and Cell Biology, Columbia University, 630 West 168th Street, New York, NY 10032, USA.
| | | | | |
Collapse
|
378
|
Raben N, Ralston E, Chien YH, Baum R, Schreiner C, Hwu WL, Zaal KJM, Plotz PH. Differences in the predominance of lysosomal and autophagic pathologies between infants and adults with Pompe disease: implications for therapy. Mol Genet Metab 2010; 101:324-31. [PMID: 20801068 PMCID: PMC2991562 DOI: 10.1016/j.ymgme.2010.08.001] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Revised: 08/02/2010] [Accepted: 08/02/2010] [Indexed: 11/29/2022]
Abstract
Pompe disease is a lysosomal storage disorder caused by the deficiency of acid alpha-glucosidase, the enzyme that degrades glycogen in the lysosomes. The disease manifests as a fatal cardiomyopathy and skeletal muscle myopathy in infants; in milder late-onset forms skeletal muscle is the major tissue affected. We have previously demonstrated that autophagic inclusions in muscle are prominent in adult patients and the mouse model. In this study we have evaluated the contribution of the autophagic pathology in infants before and 6 months after enzyme replacement therapy. Single muscle fibers, isolated from muscle biopsies, were stained for autophagosomal and lysosomal markers and analyzed by confocal microscopy. In addition, unstained bundles of fixed muscles were analyzed by second harmonic imaging. Unexpectedly, the autophagic component which is so prominent in juvenile and adult patients was negligible in infants; instead, the overwhelming characteristic was the presence of hugely expanded lysosomes. After 6 months on therapy, however, the autophagic buildup becomes visible as if unmasked by the clearance of glycogen. In most fibers, the two pathologies did not seem to coexist. These data point to the possibility of differences in the pathogenesis of Pompe disease in infants and adults.
Collapse
Affiliation(s)
- Nina Raben
- Arthritis and Rheumatism Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892-1820, USA.
| | | | | | | | | | | | | | | |
Collapse
|
379
|
Yoneshige A, Suzuki K, Suzuki K, Matsuda J. A mutation in the saposin C domain of the sphingolipid activator protein (Prosaposin) gene causes neurodegenerative disease in mice. J Neurosci Res 2010; 88:2118-34. [PMID: 20175216 DOI: 10.1002/jnr.22371] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Saposins A, B, C, and D are small amphiphatic glycoproteins that are encoded in tandem within a precursor protein (prosaposin, PSAP), and are required for in vivo degradation of sphingolipids. Humans with saposin C deficiency exhibit the clinical presentation of Gaucher-like disease. We generated two types of saposin C mutant mice, one carrying a homozygous missense mutation (C384S) in the saposin C domain of prosaposin (Sap-C(-/-)) and the other carrying the compound heterozygous mutation with a second null Psap allele (Psap(-/C384S)). During early life stages, both Sap-C(-/-) and Psap(-/C384S) mice grew normally; however, they developed progressive motor and behavioral deficits after 3 months of age and the majority of affected mice could scarcely move by about 15 months. They showed no signs of hepatosplenomegaly throughout their lives. No accumulation of glucosylceramide and glucosylsphingosine was detected in the brain or liver of both Sap-C(-/-) and Psap(-/C384S) mice. Neuropathological analyses revealed patterned loss of cerebellar Purkinje cells, widespread axonal spheroids filled with membrane-derived concentric or lamellar electron-dense bodies, and lipofuscin-like deposition in the neurons. Soap-bubble-like inclusion bodies were detected in the trigeminal ganglion cells and the vascular endothelial cells. Compound heterozygous Psap(-/C384S) mice showed qualitatively identical but faster progression of the neurological phenotypes than Sap-C(-/-) mice. These results suggest the in vivo role of saposin C in axonal membrane homeostasis, the disruption of which leads to neurodegeneration in lysosomal storage disease.
Collapse
Affiliation(s)
- Azusa Yoneshige
- Institute of Glycoscience, Tokai University, Hiratsuka, Kanagawa, Japan
| | | | | | | |
Collapse
|
380
|
Jialin G, Xuefan G, Huiwen Z. SID1 transmembrane family, member 2 (Sidt2): a novel lysosomal membrane protein. Biochem Biophys Res Commun 2010; 402:588-94. [PMID: 20965152 DOI: 10.1016/j.bbrc.2010.09.133] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2010] [Accepted: 09/27/2010] [Indexed: 12/01/2022]
Abstract
In a recent proteomic study of lysosomal proteins [10], we identified SID1 transmembrane family, member 2 (Sidt2) as a novel lysosomal membrane protein candidate. The Sidt2 gene encodes an 832-amino acid residues protein with a calculated molecular mass of 94.5kDa. Bioinformatic analysis showed that Sidt2 is a multipass transmembrane protein that contains 10 putative N-glycosylation sites (NxS/T) and two potential tyrosine-based sorting signals (YGSF and YDTL). Using specific anti-Sidt2 antibody and lysosomal markers, the lysosomal localization of Sidt2 was determined by immunofluorescence. Furthermore, using subcellular fractionation techniques, we demonstrated that Sidt2 is a lysosomal integral membrane protein. Endogenous Sidt2 was detected in multiple tissues of mouse and rat with approximately 120-130kDa molecular weights due to extensive glycosylation. After digestion with PNGase F, the apparent molecular mass of Sidt2 decreased to the predicted value of 95kDa. In rats, Sidt2 was highly expressed in the liver, brain, and kidney, whereas no or little expression was found in the skeletal muscles, heart, and other tissues. In summary, Sidt2 is a highly glycosylated lysosomal integral membrane protein that shows tissue-specific expression.
Collapse
Affiliation(s)
- Gao Jialin
- Department of Pediatric Endocrinology and Genetic Metabolism, Shanghai Institute for Pediatric Research, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | | | |
Collapse
|
381
|
Parini R, Pozzi K, Di Mauro S, Furlan F, Rigoldi M. Intravenous enzyme replacement therapy: hospital vs home. ACTA ACUST UNITED AC 2010; 19:892-4, 896-8. [PMID: 20647981 DOI: 10.12968/bjon.2010.19.14.49047] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Two surveys were carried out to establish the status of enzyme replacement therapy (ERT) for lysosomal storage diseases in Italy. The first was a national survey covering the regional reference centres (RRCs) for these diseases; replies disclosed that 57.7% of patients are on ERT, administered almost exclusively in hospital settings (local hospital 60.7%, RRC 34.8%, home 2.6%); Italian health service procedures do not support ERT at home. The second survey was a regional survey in Lombardy, involving 48 patients (six of whom were on ERT at home). According to 40% of the patients, hospital-based ERT is disruptive, causing loss of days at school/work, stress and family issues. The patients on home therapy did not have these problems. However, 93% of patients receiving ERT in hospital perceived the advantages of greater safety, closer monitoring and more support from health professionals and experts. A total of 55% were willing to receive ERT at home, but 33% were against it. This may be the result of a lack of experience with ERT at home in Italy, or because of different opinions between family members and physicians. As international experience shows that ERT at home saves healthcare resources and improves quality of life, the issue should be raised with Italian healthcare policy makers, who should ensure nursing support for home-based ERT.
Collapse
Affiliation(s)
- Rossella Parini
- Rare Metabolic Diseases Unit, Department of Paediatrics, San Gerardo Hospital, Monza, Italy
| | | | | | | | | |
Collapse
|
382
|
Elliott MR, Ravichandran KS. Clearance of apoptotic cells: implications in health and disease. ACTA ACUST UNITED AC 2010; 189:1059-70. [PMID: 20584912 PMCID: PMC2894449 DOI: 10.1083/jcb.201004096] [Citation(s) in RCA: 390] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Recent advances in defining the molecular signaling pathways that regulate the phagocytosis of apoptotic cells have improved our understanding of this complex and evolutionarily conserved process. Studies in mice and humans suggest that the prompt removal of dying cells is crucial for immune tolerance and tissue homeostasis. Failed or defective clearance has emerged as an important contributing factor to a range of disease processes. This review addresses how specific molecular alterations of engulfment pathways are linked to pathogenic states. A better understanding of the apoptotic cell clearance process in healthy and diseased states could offer new therapeutic strategies.
Collapse
Affiliation(s)
- Michael R Elliott
- Center for Cell Clearance and the Department of Microbiology, University of Virginia, Charlottesville, VA 22908, USA
| | | |
Collapse
|
383
|
Dennemärker J, Lohmüller T, Müller S, Aguilar SV, Tobin DJ, Peters C, Reinheckel T. Impaired turnover of autophagolysosomes in cathepsin L deficiency. Biol Chem 2010; 391:913-22. [PMID: 20536383 DOI: 10.1515/bc.2010.097] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Some of the phenotypes of mice deficient for the lysosomal cysteine endopeptidase cathepsin L (Ctsl) are characterized by large dysmorphic vesicles in the cytoplasm. Specifically, the heart (dilative cardiomyopathy), the thyroid (impaired thyroglobulin processing) and keratinocytes (periodic hair loss and epidermal hyperproliferation) are affected. We hypothesized that the formation of aberrant vesicles is owing to defects in macroautophagy. Therefore, primary mouse embryonic fibroblasts (MEF), which were derived from Ctsl(-/-) animals crossed with mice transgenic for the autophagy marker GFP-LC3, were investigated. Ctsl(-/-) MEF show increased number and size of vesicular structures belonging to the 'acidic' cellular compartment and are also characterized by GFP-LC3. Induction of autophagy by nutrient starvation or rapamycin treatment showed no significant impairment of the initiation of autophagy, the formation of autophagosomes or autophagosome-lysosome fusion in Ctsl(-/-) MEF, but co-localization of GFP-LC3 and Lamp1 revealed unusually large autophagolysosomes filled with Lamp1. Furthermore, the soluble lysosomal enzyme cathepsin D was elevated in Ctsl(-/-) MEF. Thus, degradation of autophagolysosomal content is impaired in the absence of Ctsl. This could slow the turnover of autophagolysosomes and result in accumulation of the dysmorphic and 'acidic' vesicles that were previously described in the context of the pathological phenotypes of Ctsl(-/-) mice.
Collapse
Affiliation(s)
- Julia Dennemärker
- Institute for Molecular Medicine and Cell Research, Albert Ludwigs University Freiburg, Freiburg, Germany
| | | | | | | | | | | | | |
Collapse
|
384
|
Bellettato CM, Scarpa M. Pathophysiology of neuropathic lysosomal storage disorders. J Inherit Metab Dis 2010; 33:347-62. [PMID: 20429032 DOI: 10.1007/s10545-010-9075-9] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2009] [Revised: 02/28/2010] [Accepted: 03/05/2010] [Indexed: 12/19/2022]
Abstract
Although neurodegenerative diseases are most prevalent in the elderly, in rare cases, they can also affect children. Lysosomal storage diseases (LSDs) are a group of inherited metabolic neurodegenerative disorders due to deficiency of a specific protein integral to lysosomal function, such as enzymes or lysosomal components, or to errors in enzyme trafficking/targeting and defective function of nonenzymatic lysosomal proteins, all preventing the complete degradation and recycling of macromolecules. This primary metabolic event determines a cascade of secondary events, inducing LSD's pathology. The accumulation of intermediate degradation affects the function of lysosomes and other cellular organelles. Accumulation begins in infancy and progressively worsens, often affecting several organs, including the central nervous system (CNS). Affected neurons may die through apoptosis or necrosis, although neuronal loss usually does not occur before advanced stages of the disease. CNS pathology causes mental retardation, progressive neurodegeneration, and premature death. Many of these features are also found in adult neurodegenerative disorders, such as Alzheimer's, Parkinson's, and Huntington's diseases. However, the nature of the secondary events and their exact contribution to mental retardation and dementia remains largely unknown. Recently, lysosomal involvement in the pathogenesis of these disorders has been described. Improved knowledge of secondary events may have impact on diagnosis, staging, and follow-up of affected children. Importantly, new insights may provide indications about possible disease reversal upon treatment. A discussion about the CNS pathophysiology involvement in LSDs is the aim of this review. The lysosomal involvement in adult neurodegenerative diseases will also be briefly described.
Collapse
Affiliation(s)
- Cinzia Maria Bellettato
- Department of Paediatrics, Centre for Rare Diseases, University of Padova, Via Giustiniani 3, 35128, Padova, Italy
| | | |
Collapse
|
385
|
|
386
|
Pinto LLC, Vieira TA, Giugliani R, Schwartz IVD. Expression of the disease on female carriers of X-linked lysosomal disorders: a brief review. Orphanet J Rare Dis 2010; 5:14. [PMID: 20509947 PMCID: PMC2889886 DOI: 10.1186/1750-1172-5-14] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2009] [Accepted: 05/28/2010] [Indexed: 01/01/2023] Open
Abstract
Most lysosomal diseases (LD) are inherited as autosomal recessive traits, but two important conditions have X-linked inheritance: Fabry disease and Mucopolysaccharidosis II (MPS II). These two diseases show a very different pattern regarding expression on heterozygotes, which does not seem to be explained by the X-inactivation mechanism only. While MPS II heterozygotes are asymptomatic in most instances, in Fabry disease most of female carriers show some disease manifestation, which is sometimes severe. It is known that there is a major difference among X-linked diseases depending on the cell autonomy of the gene product involved and, therefore, on the occurrence of cross-correction. Since lysosomal enzymes are usually secreted and uptaken by neighbor cells, the different findings between MPS II and Fabry disease heterozygotes can also be due to different efficiency of cross-correction (higher in MPS II and lower in Fabry disease). In this paper, we review these two X-linked LD in order to discuss the mechanisms that could explain the different rates of penetrance and expressivity observed in the heterozygotes; this could be helpful to better understand the expression of X-linked traits.
Collapse
Affiliation(s)
- Louise L C Pinto
- Postgraduate Program in Child and Adolescent Health, UFRGS, Porto Alegre, Brazil.
| | | | | | | |
Collapse
|
387
|
Müller-Loennies S, Galliciotti G, Kollmann K, Glatzel M, Braulke T. A novel single-chain antibody fragment for detection of mannose 6-phosphate-containing proteins: application in mucolipidosis type II patients and mice. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 177:240-7. [PMID: 20472886 DOI: 10.2353/ajpath.2010.090954] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Newly synthesized soluble lysosomal hydrolases require mannose 6-phosphate (Man6P) residues on their oligosaccharides for their transport to lysosomes. The formation of Man6P residues is catalyzed by the GlcNAc-1-phosphotransferase, which is defective in the lysosomal storage disorders mucolipidosis type II (ML II) and ML III. Both hypersecretion and reduced intracellular level of lysosomal enzymes as well as direct sequencing of GlcNAc-1-phosphotransferase genes are important diagnostic markers for ML II and ML III. A high-affinity Man6P-specific single-chain antibody fragment was generated, allowing the rapid indirect demonstration of defective GlcNAc-1-phosphotransferase. In media and extracts of cultured fibroblasts of healthy controls but not of ML II and ML III patients, several Man6P-containing proteins could be detected by anti-Man6P Western blotting. Immunoprecipitation of Man6P-containing proteins from conditioned media or mouse brain extracts followed by arylsulfatase A and cathepsin D Western blotting confirmed the specificity of the antibody fragment for lysosomal proteins. Application of the antibody fragment in immunohistochemistry of human brain slices from nonaffected patients showed strong neuronal immunoreactivity, which was not observed in cortical sections of an ML II patient. Finally, in brain extracts of a novel GlcNAc-1-phosphotransferase knock-in mouse no Man6P-containing proteins were detectable. Thus, the single-chain antibody fragment against Man6P was demonstrated to allow the specific, rapid, and convenient detection of Man6P-containing proteins and facilitates the diagnosis of ML II and ML III.
Collapse
Affiliation(s)
- Sven Müller-Loennies
- University Medical Center Hamburg-Eppendorf, Department of Biochemistry, Children's Hospital, Martinistr. 52, Bld N27, 20246 Hamburg, Germany
| | | | | | | | | |
Collapse
|
388
|
Vitner EB, Platt FM, Futerman AH. Common and uncommon pathogenic cascades in lysosomal storage diseases. J Biol Chem 2010; 285:20423-7. [PMID: 20430897 DOI: 10.1074/jbc.r110.134452] [Citation(s) in RCA: 273] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Lysosomal storage diseases (LSDs), of which about 50 are known, are caused by the defective activity of lysosomal proteins, resulting in accumulation of unmetabolized substrates. As a result, a variety of pathogenic cascades are activated such as altered calcium homeostasis, oxidative stress, inflammation, altered lipid trafficking, autophagy, endoplasmic reticulum stress, and autoimmune responses. Some of these pathways are common to many LSDs, whereas others are only altered in a subset of LSDs. We now review how these cascades impact upon LSD pathology and suggest how intervention in the pathways may lead to novel therapeutic approaches.
Collapse
Affiliation(s)
- Einat B Vitner
- From the Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | |
Collapse
|
389
|
Schneider L, Zhang J. Lysosomal function in macromolecular homeostasis and bioenergetics in Parkinson's disease. Mol Neurodegener 2010; 5:14. [PMID: 20388210 PMCID: PMC2867960 DOI: 10.1186/1750-1326-5-14] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Accepted: 04/13/2010] [Indexed: 12/21/2022] Open
Abstract
The pathological changes occurring in Parkinson's and several other neurodegenerative diseases are complex and poorly understood, but all clearly involve protein aggregation. Also frequently appearing in neurodegeneration is mitochondrial dysfunction which may precede, coincide or follow protein aggregation. These observations led to the concept that protein aggregation and mitochondrial dysfunction either arise from the same etiological factors or are interactive. Understanding the mechanisms and regulation of processes that lead to protein aggregation or mitochondrial dysfunction may therefore contribute to the design of better therapeutics. Clearance of protein aggregates and dysfunctional organelles is dependent on macroautophagy which is the process through which aged or damaged proteins and organelles are first degraded by the lysosome and then recycled. The macroautophagy-lysosomal pathway is essential for maintaining protein and energy homeostasis. Not surprisingly, failure of the lysosomal system has been implicated in diseases that have features of protein aggregation and mitochondrial dysfunction. This review summarizes 3 major topics: 1) the current understanding of Parkinson's disease pathogenesis in terms of accumulation of damaged proteins and reduction of cellular bioenergetics; 2) evolving insights into lysosomal function and biogenesis and the accumulating evidence that lysosomal dysfunction may cause or exacerbate Parkinsonian pathology and finally 3) the possibility that enhancing lysosomal function may provide a disease modifying therapy.
Collapse
Affiliation(s)
- Lonnie Schneider
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL35294, USA.
| | | |
Collapse
|
390
|
Abstract
In the last years, much progress has been achieved in the field of lysosomal storage disorders. In the past, no specific treatment was available for the affected patients; management mainly consisted of supportive care and treatment of complications. As orphan drug regulations, however, encouraged development of drugs for these disorders by granting marketing exclusivity for 10 years and other commercial benefits, enzyme replacement therapy became available for lysosomal storage disorders, such as Gaucher disease, Fabry disease, mucopolysaccharidoses type I, II, and VI, and Pompe disease. This review will summarize the efficacy and clinical status of hematopoietic stem cell transplantation, enzyme replacement, and substrate deprivation therapy, and describe new therapeutic perspectives currently under preclinical investigations such as chaperone-mediated therapy, stop-codon read-through therapy, and gene therapy.
Collapse
Affiliation(s)
- Michael Beck
- Children's Hospital, University of Mainz, Dept. Lysosomal Storage Disorders, Langenbeckstrasse 1, 55101 Mainz, Germany.
| |
Collapse
|
391
|
Gulati S, Liu Y, Munkacsi AB, Wilcox L, Sturley SL. Sterols and sphingolipids: dynamic duo or partners in crime? Prog Lipid Res 2010; 49:353-65. [PMID: 20362613 DOI: 10.1016/j.plipres.2010.03.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
One manner in which eukaryotic cells respond to their environments is by optimizing the composition and proportions of sterols and sphingolipids in membranes. The physical association of the planar ring of sterols with the acyl chains of phospholipids, particularly sphingolipids, produces membrane micro-heterogeneity that is exploited to coordinate several crucial pathways. We hypothesize that these lipid molecules play an integrated role in human disease; when one of the partners is mis-regulated, pathology frequently ensues. Sterols and sphingolipid levels are not coordinated by the action of a single master regulator, however the cross-talk between their metabolic pathways is considerable. We describe our perspectives on the key components of synthesis, catabolism and transport of these lipid partners with an emphasis on evolutionarily conserved reactions that produce disease states when defective.
Collapse
Affiliation(s)
- Sonia Gulati
- Institute of Human Nutrition, Columbia University Medical Center, 630 W. 168th St., New York, NY 10032, USA
| | | | | | | | | |
Collapse
|
392
|
Farfel-Becker T, Futerman AH. Cellular pathogenesis in sphingolipid storage disorders: the quest for new therapeutic approaches. ACTA ACUST UNITED AC 2010. [DOI: 10.2217/clp.10.13] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
393
|
Parenti G. Treating lysosomal storage diseases with pharmacological chaperones: from concept to clinics. EMBO Mol Med 2010; 1:268-79. [PMID: 20049730 PMCID: PMC3378140 DOI: 10.1002/emmm.200900036] [Citation(s) in RCA: 203] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Lysosomal storage diseases (LSDs) are a group of genetic disorders due to defects in any aspect of lysosomal biology. During the past two decades, different approaches have been introduced for the treatment of these conditions. Among them, enzyme replacement therapy (ERT) represented a major advance and is used successfully in the treatment of some of these disorders. However, ERT has limitations such as insufficient biodistribution of recombinant enzymes and high costs. An emerging strategy for the treatment of LSDs is pharmacological chaperone therapy (PCT), based on the use of chaperone molecules that assist the folding of mutated enzymes and improve their stability and lysosomal trafficking. After proof-of-concept studies, PCT is now being translated into clinical applications for Fabry, Gaucher and Pompe disease. This approach, however, can only be applied to patients carrying chaperone-responsive mutations. The recent demonstration of a synergistic effect of chaperones and ERT expands the applications of PCT and prompts a re-evaluation of their therapeutic use and potential. This review discusses the strengths and drawbacks of the potential therapies available for LSDs and proposes that future research should be directed towards the development of treatment protocols based on the combination of different therapies to improve the clinical outcome of LSD patients.
Collapse
|
394
|
Wennekes T, van den Berg RJBHN, Boot RG, van der Marel GA, Overkleeft HS, Aerts JMFG. Glycosphingolipids--nature, function, and pharmacological modulation. Angew Chem Int Ed Engl 2010; 48:8848-69. [PMID: 19862781 DOI: 10.1002/anie.200902620] [Citation(s) in RCA: 221] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The discovery of the glycosphingolipids is generally attributed to Johan L. W. Thudichum, who in 1884 published on the chemical composition of the brain. In his studies he isolated several compounds from ethanolic brain extracts which he coined cerebrosides. He subjected one of these, phrenosin (now known as galactosylceramide), to acid hydrolysis, and this produced three distinct components. One he identified as a fatty acid and another proved to be an isomer of D-glucose, which is now known as D-galactose. The third component, with an "alkaloidal nature", presented "many enigmas" to Thudichum, and therefore he named it sphingosine, after the mythological riddle of the Sphinx. Today, sphingolipids and their glycosidated derivatives are the subjects of intense study aimed at elucidating their role in the structural integrity of the cell membrane, their participation in recognition and signaling events, and in particular their involvement in pathological processes that are at the basis of human disease (for example, sphingolipidoses and diabetes type 2). This Review details some of the recent findings on the biosynthesis, function, and degradation of glycosphingolipids in man, with a focus on the glycosphingolipid glucosylceramide. Special attention is paid to the clinical relevance of compounds directed at interfering with the factors responsible for glycosphingolipid metabolism.
Collapse
Affiliation(s)
- Tom Wennekes
- Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, P.O. Box 9502, Leiden, The Netherlands
| | | | | | | | | | | |
Collapse
|
395
|
Kiselyov K, Yamaguchi S, Lyons CW, Muallem S. Aberrant Ca2+ handling in lysosomal storage disorders. Cell Calcium 2010; 47:103-11. [PMID: 20053447 DOI: 10.1016/j.ceca.2009.12.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2009] [Accepted: 12/07/2009] [Indexed: 12/27/2022]
Abstract
Lysosomal storage diseases (LSDs) are caused by inability of cells to process the material captured during endocytosis. While they are essentially diseases of cellular "indigestion", LSDs affect large number of cellular activities and, as such, they teach us about the integrative function of the cell, as well as about the gaps in our knowledge of the endocytic pathway and membrane transport. The present review summarizes recent findings on Ca2+ handling in LSDs and attempts to identify the key questions on alterations in Ca2+ signaling and membrane transport in this group of diseases, answers to which may lie in delineating the cellular pathogeneses of LSDs.
Collapse
Affiliation(s)
- Kirill Kiselyov
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| | | | | | | |
Collapse
|
396
|
Wang D, Shukla C, Liu X, Schoeb TR, Clarke LA, Bedwell DM, Keeling KM. Characterization of an MPS I-H knock-in mouse that carries a nonsense mutation analogous to the human IDUA-W402X mutation. Mol Genet Metab 2010; 99:62-71. [PMID: 19751987 PMCID: PMC2795040 DOI: 10.1016/j.ymgme.2009.08.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2009] [Revised: 08/17/2009] [Accepted: 08/17/2009] [Indexed: 02/01/2023]
Abstract
Here we report the characterization of a knock-in mouse model for the autosomal recessive disorder mucopolysaccharidosis type I-Hurler (MPS I-H), also known as Hurler syndrome. MPS I-H is the most severe form of alpha-l-iduronidase deficiency. alpha-l-iduronidase (encoded by the IDUA gene) is a lysosomal enzyme that participates in the degradation of dermatan sulfate and heparan sulfate. Using gene replacement methodology, a nucleotide change was introduced into the mouse Idua locus that resulted in a nonsense mutation at codon W392. The Idua-W392X mutation is analogous to the human IDUA-W402X mutation commonly found in MPS I-H patients. We found that the phenotype in homozygous Idua-W392X mice closely correlated with the human MPS I-H disease. Homozygous W392X mice showed no detectable alpha-l-iduronidase activity. We observed a defect in GAG degradation as evidenced by an increase in sulfated GAGs excreted in the urine and stored in multiple tissues. Histology and electron microscopy also revealed evidence of GAG storage in all tissues examined. Additional assessment revealed bone abnormalities and altered metabolism within the Idua-W392X mouse. This new mouse will provide an important tool to investigate therapeutic approaches for MPS I-H that cannot be addressed using current MPS I-H animal models.
Collapse
Affiliation(s)
- Dan Wang
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Charu Shukla
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Xiaoli Liu
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Trenton R. Schoeb
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Lorne A. Clarke
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, CA
| | - David M. Bedwell
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Kim M. Keeling
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
397
|
Zheng J, Yan T, Feng Y, Zhai Q. Involvement of lysosomes in the early stages of axon degeneration. Neurochem Int 2009; 56:516-21. [PMID: 20036294 DOI: 10.1016/j.neuint.2009.12.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2009] [Revised: 12/15/2009] [Accepted: 12/17/2009] [Indexed: 01/08/2023]
Abstract
Axon degeneration is a common hallmark of many neurodegenerative diseases, and the underlying mechanism remains largely unknown. Lysosomes are involved in some neurodegenerative diseases, including Alzheimer's disease and Parkinson's disease. Whether lysosomes are involved in axon degeneration is yet to be elucidated. In this study, we found only about 10% lysosomes remained in axons of cultured superior cervical ganglia (SCGs) after transection for 4h when stained with LysoTracker. Furthermore, we found that lysosomal disruption occurred earlier than morphological changes and loss of mitochondrial membrane potential. In addition, the well-known axon-protective protein Wld(S) delayed injury-induced axon degeneration from both morphological changes and lysosomal disruption. Lysosomal inhibitors including chloroquine and ammonium chloride induced axon degeneration in cultured SCGs, and Wld(S) also slowed down the axon degeneration induced by lysosomal inhibitors. All these data suggest that lysosomal disruption is an early marker of axon degeneration, and inhibition of lysosome induces axon degeneration in a Wld(S)-protectable way. Thus, maintenance of normal lysosomal function might be an important approach to delay axon degeneration in neurodegenerative diseases.
Collapse
Affiliation(s)
- Jin Zheng
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | | | | | | |
Collapse
|
398
|
Otomo T, Higaki K, Nanba E, Ozono K, Sakai N. Inhibition of autophagosome formation restores mitochondrial function in mucolipidosis II and III skin fibroblasts. Mol Genet Metab 2009; 98:393-9. [PMID: 19656701 DOI: 10.1016/j.ymgme.2009.07.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2009] [Accepted: 07/01/2009] [Indexed: 01/07/2023]
Abstract
Mucolipidosis II and III are progressive lysosomal storage disorders caused by a deficiency of N-acetylglucosamine-1-phosphotransferase, leading to massive accumulation of undigested substrates in lysosomes (inclusion bodies) in skin fibroblast. In this study, we demonstrated accumulation of autolysosomes and increased levels of p62 and ubiquitin proteins in cultured fibroblasts. These autophagic elevations were milder in mucolipidosis III compared with mucolipidosis II. Mitochondrial structure was fragmented and activity was impaired in the affected cells, and 3-methyladenine, an inhibitor of autophagosome formation, restored these. These results show for the first time autophagic and mitochondrial dysfunctions in this disorder.
Collapse
Affiliation(s)
- Takanobu Otomo
- Department of Pediatrics (D-5), Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | | | |
Collapse
|
399
|
|
400
|
Wennekes T, van den Berg R, Boot R, van der Marel G, Overkleeft H, Aerts J. Glycosphingolipide - Natur, Funktion und pharmakologische Modulierung. Angew Chem Int Ed Engl 2009. [DOI: 10.1002/ange.200902620] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|