351
|
Liu S, Huang D, Hu Y, Zhang J, Chen B, Zhang H, Dong X, Tong R, Li Y, Zhou W. Sodium alginate/collagen composite multiscale porous scaffolds containing poly(ε-caprolactone) microspheres fabricated based on additive manufacturing technology. RSC Adv 2020; 10:39241-39250. [PMID: 35518419 PMCID: PMC9057369 DOI: 10.1039/d0ra04581k] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 10/20/2020] [Indexed: 12/18/2022] Open
Abstract
Biocompatible porous scaffolds with adjustable pore structures, appropriate mechanical properties and drug loading properties are important components of bone tissue engineering. In this work, biocompatible sodium alginate (SA)/collagen (Col) multiscale porous scaffolds containing poly(ε-caprolactone) microspheres (Ms-PCL) have been facilely fabricated based on 3D extrusion printing of the pre-crosslinked composite hydrogels. The prepared composite hydrogels can be 3D extrusion printed into porous scaffolds with different designed shapes and adjustable pore structures. The hydroxyapatite (HAP) nanoparticles have been added into the SA/Col hydrogels to achieve stress dispersion and form double crosslinking networks. SA-Ca2+ crosslinking networks and Col–genipin (GP) crosslinking networks have been constructed to improve the mechanical properties of the scaffolds (about 2557 kPa of compressive stress at 70% strain), and reduce the swelling rate and degradation rate of SA/Col scaffolds. Moreover, the SA/Col hydrogels contain hydrophobic antibacterial drug enrofloxacin loaded Ms-PCL, and in vitro drug release research shows a sustained-release function of porous scaffolds, indicating the potential application of SA/Col porous scaffolds as drug carriers. In addition, the antibacterial experiments show that the composite scaffolds display a distinguished and long-term antibacterial activity against Escherichia coli and Staphylococcus aureus. Furthermore, mouse bone mesenchymal stem cells (mBMSCs) are seeded on the SA/Col composite scaffolds, and an in vitro biocompatibility experiment shows that the mBMSCs can adhere well on the composite scaffolds, which indicate that the fabricated composite scaffolds are biocompatible. In short, all of the above results suggest that the biocompatible SA/Col composite porous scaffolds have enormous application and potential in bone tissue engineering. Biocompatible porous scaffolds with adjustable pore structures, appropriate mechanical properties and drug loading properties are important components of bone tissue engineering.![]()
Collapse
Affiliation(s)
- Shuifeng Liu
- Biomass 3D Printing Materials Research Center, College of Materials and Energy, South China Agricultural University Guangzhou 510642 China
| | - Da Huang
- Department of Anatomy, Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University 1023# Shatai South Road Guangzhou 510515 China
| | - Yang Hu
- Biomass 3D Printing Materials Research Center, College of Materials and Energy, South China Agricultural University Guangzhou 510642 China
| | - Jiancheng Zhang
- Biomass 3D Printing Materials Research Center, College of Materials and Energy, South China Agricultural University Guangzhou 510642 China
| | - Bairui Chen
- Biomass 3D Printing Materials Research Center, College of Materials and Energy, South China Agricultural University Guangzhou 510642 China
| | - Hongwu Zhang
- Department of Anatomy, Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University 1023# Shatai South Road Guangzhou 510515 China
| | - Xianming Dong
- Biomass 3D Printing Materials Research Center, College of Materials and Energy, South China Agricultural University Guangzhou 510642 China
| | - Rongbiao Tong
- Department of Chemistry, The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong China
| | - Yiheng Li
- Guangzhou Trauer Biotechnology Co., Ltd. 4F, A Building, U-Best Industrial Park, No. 17 Xiangshan Road, Science Town Guangzhou China 510663
| | - Wuyi Zhou
- Biomass 3D Printing Materials Research Center, College of Materials and Energy, South China Agricultural University Guangzhou 510642 China
| |
Collapse
|
352
|
Butylina S, Geng S, Laatikainen K, Oksman K. Cellulose Nanocomposite Hydrogels: From Formulation to Material Properties. Front Chem 2020; 8:655. [PMID: 33062631 PMCID: PMC7517874 DOI: 10.3389/fchem.2020.00655] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Accepted: 06/23/2020] [Indexed: 11/13/2022] Open
Abstract
Poly(vinyl alcohol) (PVA) hydrogels produced using the freeze-thaw method have attracted attention for a long time since their first preparation in 1975. Due to the importance of polymer intrinsic features and the advantages associated with them, they are very suitable for biomedical applications such as tissue engineering and drug delivery systems. On the other hand, there is an increasing interest in the use of biobased additives such as cellulose nanocrystals, CNC. This study focused on composite hydrogels which were produced by using different concentrations of PVA (5 and 10%) and CNC (1 and 10 wt.%), also, pure PVA hydrogels were used as references. The main goal was to determine the impact of both components on mechanical, thermal, and water absorption properties of composite hydrogels as well as on morphology and initial water content. It was found that PVA had a dominating effect on all hydrogels. The effect of the CNC addition was both concentration-dependent and case-dependent. As a general trend, addition of CNC decreased the water content of the prepared hydrogels, decreased the crystallinity of the PVA, and increased the hydrogels compression modulus and strength to some extent. The performance of composite hydrogels in a cyclic compression test was studied; the hydrogel with low PVA (5) and high CNC (10) content showed totally reversible behavior after 10 cycles.
Collapse
Affiliation(s)
- Svetlana Butylina
- Division of Material Science, Luleå University of Technology, Luleå, Sweden.,Laboratory of Computational and Process Engineering, Lappeenranta-Lahti University of Technology, Lappeenranta, Finland
| | - Shiyu Geng
- Division of Material Science, Luleå University of Technology, Luleå, Sweden
| | - Katri Laatikainen
- Laboratory of Computational and Process Engineering, Lappeenranta-Lahti University of Technology, Lappeenranta, Finland
| | - Kristiina Oksman
- Division of Material Science, Luleå University of Technology, Luleå, Sweden.,Mechanical & Industrial Engineering (MIE), University of Toronto, Toronto, ON, Canada
| |
Collapse
|
353
|
Dai Y, Row KH. Ultrasonic-Assisted Extraction of Chlorogenic Acid from Capillary Artemisia with Natural Deep Eutectic Solvent-Functionalized Cellulose. ANAL LETT 2020. [DOI: 10.1080/00032719.2020.1826502] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Yunliang Dai
- Department of Chemistry and Chemical Engineering, Education and Research Center for Smart Energy and Materials, Inha University, Incheon, Korea
| | - Kyung Ho Row
- Department of Chemistry and Chemical Engineering, Education and Research Center for Smart Energy and Materials, Inha University, Incheon, Korea
| |
Collapse
|
354
|
Mao L, Hu S, Gao Y, Wang L, Zhao W, Fu L, Cheng H, Xia L, Xie S, Ye W, Shi Z, Yang G. Biodegradable and Electroactive Regenerated Bacterial Cellulose/MXene (Ti 3 C 2 T x ) Composite Hydrogel as Wound Dressing for Accelerating Skin Wound Healing under Electrical Stimulation. Adv Healthc Mater 2020; 9:e2000872. [PMID: 32864898 DOI: 10.1002/adhm.202000872] [Citation(s) in RCA: 177] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/22/2020] [Indexed: 01/07/2023]
Abstract
Traditional wound dressings mainly participate in the passive healing processes and are rarely engaged in active wound healing by stimulating skin cell behaviors. Electrical stimulation (ES) has been known to regulate skin cell behaviors. Herein, a series of multifunctional hydrogels based on regenerated bacterial cellulose (rBC) and MXene (Ti3 C2 Tx ) are first developed that can electrically modulate cell behaviors for active skin wound healing under external ES. The composite hydrogel with 2 wt% MXene (rBC/MXene-2%) exhibits the highest electrical conductivity and the best biocompatibility. Meanwhile, the rBC/MXene-2% hydrogel presents desired mechanical properties, favorable flexibility, good biodegradability, and high water-uptake capacity. An in vivo study using a rat full-thickness defect model reveals that this rBC/MXene hydrogel exhibits a better therapeutic effect than the commercial Tegaderm film. More importantly, in vitro and in vivo data demonstrate that coupling with ES, the hydrogel can significantly enhance the proliferation activity of NIH3T3 cells and accelerate the wound healing process, as compared to non-ES controls. This study suggests that the biodegradable and electroactive rBC/MXene hydrogel is an appealing candidate as a wound dressing for skin wound healing, while also providing an effective synergistic therapeutic strategy for accelerating wound repair process through coupling ES with the hydrogel dressing.
Collapse
Affiliation(s)
- Lin Mao
- National Engineering Research Center for Nano‐Medicine Department of Biomedical Engineering College of Life Science and Technology Huazhong University of Science and Technology Wuhan 430074 China
| | - Sanming Hu
- National Engineering Research Center for Nano‐Medicine Department of Biomedical Engineering College of Life Science and Technology Huazhong University of Science and Technology Wuhan 430074 China
| | - Yihua Gao
- Center for Nanoscale Characterization & Devices Wuhan National Laboratory for Optoelectronics School of Physics Huazhong University of Science and Technology Wuhan 430074 China
| | - Li Wang
- National Engineering Research Center for Nano‐Medicine Department of Biomedical Engineering College of Life Science and Technology Huazhong University of Science and Technology Wuhan 430074 China
| | - Weiwei Zhao
- School of Mechanical and Electronic Engineering Wuhan University of Technology Wuhan 430070 China
| | - Lina Fu
- Department of Head and Neck Surgery & Communication Sciences School of Medicine Duke University Durham 27710 USA
| | - Haoyan Cheng
- School of Materials Science and Engineering Henan University of Science and Technology Luoyang 471023 China
| | - Lin Xia
- Key Laboratory of Molecular Biophysics of MOE College of Life Science and Technology Huazhong University of Science and Technology Wuhan 430074 China
| | - Shangxian Xie
- Key Laboratory of Molecular Biophysics of MOE College of Life Science and Technology Huazhong University of Science and Technology Wuhan 430074 China
| | - Weiliang Ye
- National Engineering Research Center for Nano‐Medicine Department of Biomedical Engineering College of Life Science and Technology Huazhong University of Science and Technology Wuhan 430074 China
| | - Zhijun Shi
- National Engineering Research Center for Nano‐Medicine Department of Biomedical Engineering College of Life Science and Technology Huazhong University of Science and Technology Wuhan 430074 China
| | - Guang Yang
- National Engineering Research Center for Nano‐Medicine Department of Biomedical Engineering College of Life Science and Technology Huazhong University of Science and Technology Wuhan 430074 China
| |
Collapse
|
355
|
Alam KM, Kumar P, Gusarov S, Kobryn AE, Kalra AP, Zeng S, Goswami A, Thundat T, Shankar K. Synthesis and Characterization of Zinc Phthalocyanine-Cellulose Nanocrystal (CNC) Conjugates: Toward Highly Functional CNCs. ACS APPLIED MATERIALS & INTERFACES 2020; 12:43992-44006. [PMID: 32530267 DOI: 10.1021/acsami.0c07179] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We report highly fluorescent cellulose nanocrystals (CNCs) formed by conjugating a carboxylated zinc phthalocyanine (ZnPc) to two different types of CNCs. The conjugated nanocrystals (henceforth called ZnPc@CNCs) were bright green in color and exhibited absorption and emission maxima at ∼690 and ∼715 nm, respectively. The esterification protocol employed to covalently bind carboxylated ZnPc to surface hydroxyl group rich CNCs was expected to result in a monolayer of ZnPc on the surface of the CNCs. However, dynamic light scattering (DLS) studies indicated a large increase in the hydrodynamic radius of CNCs following conjugation to ZnPc, which suggests the binding of multiple ZnPc molecular layers on the CNC surface. This binding could be through co-facial π-stacking of ZnPc, where ZnPc metallophthalocyanine rings are horizontal to the CNC surface. The other possible binding mode would give rise to conjugated systems where ZnPc metallophthalocyanine rings are oriented vertically on the CNC surface. Density functional theory based calculations showed stable geometry following the conjugation protocol that involved covalently attached ester bond formation. The conjugates demonstrated superior performance for potential sensing applications through higher photoluminescence quenching capabilities compared to pristine ZnPc.
Collapse
Affiliation(s)
- Kazi M Alam
- Department of Electrical & Computer Engineering, University of Alberta, 9211-116 St., Edmonton, AB T6G 1H9, Canada
| | - Pawan Kumar
- Department of Electrical & Computer Engineering, University of Alberta, 9211-116 St., Edmonton, AB T6G 1H9, Canada
| | - Sergey Gusarov
- Nanotechnology Research Centre, National Research Council Canada, 11421 Saskatchewan Drive, Edmonton, AB T6G 2M9, Canada
| | - Alexander E Kobryn
- Nanotechnology Research Centre, National Research Council Canada, 11421 Saskatchewan Drive, Edmonton, AB T6G 2M9, Canada
| | - Aarat P Kalra
- Department of Electrical & Computer Engineering, University of Alberta, 9211-116 St., Edmonton, AB T6G 1H9, Canada
- Department of Physics, Faculty of Science, University of Alberta, Edmonton, T6G 1H9, Canada
| | - Sheng Zeng
- Department of Electrical & Computer Engineering, University of Alberta, 9211-116 St., Edmonton, AB T6G 1H9, Canada
| | - Ankur Goswami
- Department of Electrical & Computer Engineering, University of Alberta, 9211-116 St., Edmonton, AB T6G 1H9, Canada
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, New Delhi 11016, India
| | - Thomas Thundat
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, T6G 1H9, Canada
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Karthik Shankar
- Department of Electrical & Computer Engineering, University of Alberta, 9211-116 St., Edmonton, AB T6G 1H9, Canada
| |
Collapse
|
356
|
Zhao M, Zhang S, Fang G, Huang C, Wu T. Directionally-Grown Carboxymethyl Cellulose/Reduced Graphene Oxide Aerogel with Excellent Structure Stability and Adsorption Capacity. Polymers (Basel) 2020; 12:polym12102219. [PMID: 32992626 PMCID: PMC7601747 DOI: 10.3390/polym12102219] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/17/2020] [Accepted: 09/23/2020] [Indexed: 12/15/2022] Open
Abstract
A novel three-dimensional carboxymethyl cellulose (CMC)/reduced graphene oxide (rGO) composite aerogel crosslinked by poly (methyl vinyl ether-co-maleic acid)/poly (ethylene glycol) system via a directional freezing technique exhibits high structure stability while simultaneously maintaining its excellent adsorption capacity to remove organic dyes from liquid. A series of crosslinked aerogels with different amounts of GO were investigated for their adsorption capacity of methylene blue (MB), which were found to be superb adsorbents, and the maximum adsorption capacity reached 520.67 mg/g with the incorporation of rGO. The adsorption kinetics and isotherm studies revealed that the adsorption process followed the pseudo-second-order model and the Langmuir adsorption model, and the adsorption was a spontaneous process. Furthermore, the crosslinked aerogel can be easily recycled after washing with dilute HCl solution, which could retain over 97% of the adsorption capacity after recycling five times. These excellent properties endow the crosslinked CMC/rGO aerogel’s potential in wastewater treatment and environment protection.
Collapse
Affiliation(s)
- Mengke Zhao
- Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, National Demonstration Center for Experimental Light Chemistry Engineering Education, Key Laboratory of Paper Based Functional Materials of China National Light Industry, Shaanxi University of Science and Technology, Xian 710021, China;
| | - Sufeng Zhang
- Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, National Demonstration Center for Experimental Light Chemistry Engineering Education, Key Laboratory of Paper Based Functional Materials of China National Light Industry, Shaanxi University of Science and Technology, Xian 710021, China;
- Correspondence: (S.Z.); (G.F.)
| | - Guigan Fang
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, China; (C.H.); (T.W.)
- Correspondence: (S.Z.); (G.F.)
| | - Chen Huang
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, China; (C.H.); (T.W.)
| | - Ting Wu
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, China; (C.H.); (T.W.)
| |
Collapse
|
357
|
Khan A, Wang B, Ni Y. Chitosan-Nanocellulose Composites for Regenerative Medicine Applications. Curr Med Chem 2020; 27:4584-4592. [PMID: 31985365 DOI: 10.2174/0929867327666200127152834] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 06/29/2019] [Accepted: 12/24/2019] [Indexed: 11/22/2022]
Abstract
Regenerative medicine represents an emerging multidisciplinary field that brings together engineering methods and complexity of life sciences into a unified fundamental understanding of structure-property relationship in micro/nano environment to develop the next generation of scaffolds and hydrogels to restore or improve tissue functions. Chitosan has several unique physico-chemical properties that make it a highly desirable polysaccharide for various applications such as, biomedical, food, nutraceutical, agriculture, packaging, coating, etc. However, the utilization of chitosan in regenerative medicine is often limited due to its inadequate mechanical, barrier and thermal properties. Cellulosic nanomaterials (CNs), owing to their exceptional mechanical strength, ease of chemical modification, biocompatibility and favorable interaction with chitosan, represent an attractive candidate for the fabrication of chitosan/ CNs scaffolds and hydrogels. The unique mechanical and biological properties of the chitosan/CNs bio-nanocomposite make them a material of choice for the development of next generation bio-scaffolds and hydrogels for regenerative medicine applications. In this review, we have summarized the preparation method, mechanical properties, morphology, cytotoxicity/ biocompatibility of chitosan/CNs nanocomposites for regenerative medicine applications, which comprises tissue engineering and wound dressing applications.
Collapse
Affiliation(s)
- Avik Khan
- Limerick Pulp and Paper Centre, Department of Chemical Engineering; University of New Brunswick, Fredericton, New Brunswick E3B 5A3, Canada
| | - Baobin Wang
- Limerick Pulp and Paper Centre, Department of Chemical Engineering; University of New Brunswick, Fredericton, New Brunswick E3B 5A3, Canada
| | - Yonghao Ni
- Limerick Pulp and Paper Centre, Department of Chemical Engineering; University of New Brunswick, Fredericton, New Brunswick E3B 5A3, Canada
| |
Collapse
|
358
|
Nehra P, Chauhan RP. Eco-friendly nanocellulose and its biomedical applications: current status and future prospect. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2020; 32:112-149. [PMID: 32892717 DOI: 10.1080/09205063.2020.1817706] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cellulose is the earth's leading natural polymer. It is known for its properties like biocompatibility, high mechanical strength, cost-effectiveness and lightweight. Nanocellulose displays better properties as compared to the native cellulose fibre. The nanocellulose is very remunerative in the arenas of routine application especially in health care, food industry, sanitary products and many more. In the biomedical area, cellulose-based products are utilized in applications like wound healing, dental applications, drug delivery, antimicrobial material, etc. Nanocellulose biomaterials have been commercialised, representing the material of new generation. With the objective to comprehend the contribution of nanocellulose in the current status and future development in biomedical utilisations, the review is focused on cellulose, nanocellulose, types and sources of nanocellulose, its preparation, characteristics, constraints related to its composites through the analysis of certain scientific reports.
Collapse
Affiliation(s)
- Poonam Nehra
- School of Biomedical Engineering, National Institute of Technology, Kurukshetra, India
| | - R P Chauhan
- Department of Physics, National Institute of Technology, Kurukshetra, India
| |
Collapse
|
359
|
Liu R, Dai L, Xu C, Wang K, Zheng C, Si C. Lignin-Based Micro- and Nanomaterials and their Composites in Biomedical Applications. CHEMSUSCHEM 2020; 13:4266-4283. [PMID: 32462781 DOI: 10.1002/cssc.202000783] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/28/2020] [Indexed: 05/13/2023]
Abstract
Lignin, as the most abundant aromatic renewable biopolymer in nature, has long been regarded as waste and simply discarded from the pulp and paper industry. In recent years, with many breakthroughs in lignin chemistry, pretreatment, and processing techniques, a lot of the inherent bioactivities of lignin, including antioxidant activities, antimicrobial activities, biocompatibilities, optical properties, and metal-ion chelating and redox activities, have been discovered and this has opened a new field not only for lignin-based materials but also for biomaterials. In this Review, the biological activities of lignin and drug/gene delivery and bioimaging applications of various types of lignin-based material are summarized. In addition, the challenges and limitations of lignin-based materials encountered during the development of biomedical applications are also discussed.
Collapse
Affiliation(s)
- Rui Liu
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, No. 9 at 13th Avenue, TEDA, Tianjin, 300457, China
- Johan Gadolin Process Chemistry Centre, Laboratory of Natural Materials Technology, Åbo Akademi University, Turku, 20500, Finland
| | - Lin Dai
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, No. 9 at 13th Avenue, TEDA, Tianjin, 300457, China
| | - Chunlin Xu
- Johan Gadolin Process Chemistry Centre, Laboratory of Natural Materials Technology, Åbo Akademi University, Turku, 20500, Finland
| | - Kai Wang
- International Medicine Centre, Tianjin Hospital, 506 Jiefang South Road, Tianjin, 300211, China
| | - Chunyang Zheng
- Robustnique Co. Ltd., Block C, Phase II, Pioneer Park, Lanyuan Road, Tianjin, 300384, China
| | - Chuanling Si
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, No. 9 at 13th Avenue, TEDA, Tianjin, 300457, China
| |
Collapse
|
360
|
Feroz S, Muhammad N, Ranayake J, Dias G. Keratin - Based materials for biomedical applications. Bioact Mater 2020; 5:496-509. [PMID: 32322760 PMCID: PMC7171262 DOI: 10.1016/j.bioactmat.2020.04.007] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 03/27/2020] [Accepted: 04/06/2020] [Indexed: 12/22/2022] Open
Abstract
Keratin constitutes the major component of the feather, hair, hooves, horns, and wool represents a group of biological material having high cysteine content (7-13%) as compared to other structural proteins. Keratin -based biomaterials have been investigated extensively over the past few decades due to their intrinsic biological properties and excellent biocompatibility. Unlike other natural polymers such as starch, collagen, chitosan, the complex three-dimensional structure of keratin requires the use of harsh chemical conditions for their dissolution and extraction. The most commonly used methods for keratin extraction are oxidation, reduction, steam explosion, microbial method, microwave irradiation and use of ionic liquids. Keratin -based materials have been used extensively for various biomedical applications such as drug delivery, wound healing, tissue engineering. This review covers the structure, properties, history of keratin research, methods of extraction and some recent advancements related to the use of keratin derived biomaterials in the form of a 3-D scaffold, films, fibers, and hydrogels.
Collapse
Affiliation(s)
- Sandleen Feroz
- Department of Anatomy, School of Biomedical Sciences University of Otago, Otago, 9016, New Zealand
| | - Nawshad Muhammad
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University Islamabad, Lahore Campus, Pakistan
| | - Jithendra Ranayake
- Department of Anatomy, School of Biomedical Sciences University of Otago, Otago, 9016, New Zealand
| | - George Dias
- Department of Anatomy, School of Biomedical Sciences University of Otago, Otago, 9016, New Zealand
| |
Collapse
|
361
|
Wang P, Yin B, Dong H, Zhang Y, Zhang Y, Chen R, Yang Z, Huang C, Jiang Q. Coupling Biocompatible Au Nanoclusters and Cellulose Nanofibrils to Prepare the Antibacterial Nanocomposite Films. Front Bioeng Biotechnol 2020; 8:986. [PMID: 32974314 PMCID: PMC7466770 DOI: 10.3389/fbioe.2020.00986] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 07/29/2020] [Indexed: 12/20/2022] Open
Abstract
Cellulose nanofibrils (CNF) is considered as an inexhaustible precursor to produce antibacterial materials, such as antibacterial hydrogel, antibacterial paper, and antibacterial film. However, the poor antimicrobial property of neat CNF required it should be coupled with an antibacterial ingredient. Herein, biocompatible Au nanoclusters (AuNCs) were synthesized and added into the CNF dispersion to prepare a novel antibacterial film (AuNCs@CNF film). The effects of addition of AuNCs with different amount on the morphology and physicochemical properties of AuNCs@CNF films were characterized using atomic force microscopy (AFM), scanning electron microscopy (SEM), X-ray diffraction (XRD), FTIR (Fourier-transform infrared), light transmittance spectra, and thermogravimetric analysis (TGA). The results showed that AuNCs did not affect the nano-structural features of the CNF film and its basic structures, but could greatly increase the hydrophilicity, the flexibility and the thermal stability of CNF film, which might improve its application in antimicrobial wound-healing dressing. The prepared AuNCs@CNF films demonstrated high antibacterial properties toward Escherichia coli (E. coli) and Streptococcus mutans (S. mutans) both in vitro and in vivo, which can prohibit their growths and promote the healing of bacteria-infected wound, respectively. Thus, the prepared AuNCs@CNF film with great antibacterial properties could be applicable in biomedical field.
Collapse
Affiliation(s)
- Peng Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China.,Jiangsu Engineering Research Center for 3D Bioprinting, Jiangsu, China
| | - Baishuang Yin
- College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin, China
| | - Huiling Dong
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Yibo Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Yangheng Zhang
- Department of Periodontology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Rixin Chen
- Department of Periodontology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Zukun Yang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
| | - Caoxing Huang
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Qing Jiang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China.,Jiangsu Engineering Research Center for 3D Bioprinting, Jiangsu, China
| |
Collapse
|
362
|
Meneguin AB, da Silva Barud H, Sábio RM, de Sousa PZ, Manieri KF, de Freitas LAP, Pacheco G, Alonso JD, Chorilli M. Spray-dried bacterial cellulose nanofibers: A new generation of pharmaceutical excipient intended for intestinal drug delivery. Carbohydr Polym 2020; 249:116838. [PMID: 32933682 DOI: 10.1016/j.carbpol.2020.116838] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 07/01/2020] [Accepted: 07/28/2020] [Indexed: 12/16/2022]
Abstract
Defibrillation of bacterial cellulose by ultra-refining was efficient to release nanofibers (BCNF) which were spray dried with the matrices formers mannitol (MN), maltodextrin or hydroxypropylmethylcellulose. The best microsystem comprised the association of BCNF and MN, so the selected microparticles were loaded with diclofenac sodium or caffeine. Depending on the proportion of BCNF, the nanofibers collapse promoted by spray drying can occur onto surface or into microparticles core, leading to different release behaviors. Samples showed pH-dependent drug release, so the microsystem developed with the lowest BCNF concentration showed important trend to gastroresistance. Caffeine was spray dried as a free drug and for this reason it was devoid of any control over release rates. The set of results showed BCNF can be considered an interesting and potential pharmaceutical excipient for lipophilic drugs. Beyond that, BCNF association with MN can lead to novel enteric drug delivery systems based on natural polymers.
Collapse
Affiliation(s)
- Andréia Bagliotti Meneguin
- School of Pharmaceutical Sciences, São Paulo State University, Araraquara, São Paulo, 14800-903, Brazil.
| | - Hernane da Silva Barud
- Laboratory of Biopolymers and Biomaterials, University of Araraquara, Araraquara, São Paulo, 14801-320, Brazil
| | - Rafael Miguel Sábio
- School of Pharmaceutical Sciences, São Paulo State University, Araraquara, São Paulo, 14800-903, Brazil
| | - Paula Zanin de Sousa
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, 14040-903, Brazil
| | - Karyn Fernanda Manieri
- School of Pharmaceutical Sciences, São Paulo State University, Araraquara, São Paulo, 14800-903, Brazil
| | | | - Guilherme Pacheco
- Laboratory of Biopolymers and Biomaterials, University of Araraquara, Araraquara, São Paulo, 14801-320, Brazil
| | - Jovan Duran Alonso
- Analytical Chemistry Department, São Paulo State University, Araraquara, São Paulo, 14801-970, Brazil
| | - Marlus Chorilli
- School of Pharmaceutical Sciences, São Paulo State University, Araraquara, São Paulo, 14800-903, Brazil
| |
Collapse
|
363
|
Liu H, Liu K, Han X, Xie H, Si C, Liu W, Bae Y. Cellulose Nanofibrils-based Hydrogels for Biomedical Applications: Progresses and Challenges. Curr Med Chem 2020; 27:4622-4646. [DOI: 10.2174/0929867327666200303102859] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 12/15/2019] [Accepted: 12/25/2019] [Indexed: 02/06/2023]
Abstract
Background:
Cellulose Nanofibrils (CNFs) are natural nanomaterials with nanometer
dimensions. Compared with ordinary cellulose, CNFs own good mechanical properties, large specific
surface areas, high Young's modulus, strong hydrophilicity and other distinguishing characteristics,
which make them widely used in many fields. This review aims to introduce the preparation
of CNFs-based hydrogels and their recent biomedical application advances.
Methods:
By searching the recent literatures, we have summarized the preparation methods of
CNFs, including mechanical methods and chemical mechanical methods, and also introduced the
fabrication methods of CNFs-based hydrogels, including CNFs cross-linked with metal ion and
with polymers. In addition, we have summarized the biomedical applications of CNFs-based hydrogels,
including scaffold materials and wound dressings.
Results:
CNFs-based hydrogels are new types of materials that are non-toxic and display a certain
mechanical strength. In the tissue scaffold application, they can provide a micro-environment for
the damaged tissue to repair and regenerate it. In wound dressing applications, it can fit the wound
surface and protect the wound from the external environment, thereby effectively promoting the
healing of skin tissue.
Conclusion:
By summarizing the preparation and application of CNFs-based hydrogels, we have
analyzed and forecasted their development trends. At present, the research of CNFs-based hydrogels
is still in the laboratory stage. It needs further exploration to be applied in practice. The development
of medical hydrogels with high mechanical properties and biocompatibility still poses significant
challenges.
Collapse
Affiliation(s)
- Huayu Liu
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Kun Liu
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xiao Han
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Hongxiang Xie
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Chuanling Si
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Wei Liu
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Youngsoo Bae
- Jiangxi Academy of Forestry, Nanchang 33032, China
| |
Collapse
|
364
|
Chen Y, Zhang L, Mei C, Li Y, Duan G, Agarwal S, Greiner A, Ma C, Jiang S. Wood-Inspired Anisotropic Cellulose Nanofibril Composite Sponges for Multifunctional Applications. ACS APPLIED MATERIALS & INTERFACES 2020; 12:35513-35522. [PMID: 32672439 DOI: 10.1021/acsami.0c10645] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Nanocellulose-based porous materials have been recently considered as ideal candidates in various applications. However, challenges on performances remain owing to the disorderly structure and the limited transport specificity. Herein, wood-inspired composite sponges consisting of cellulose nanofibrils (CNFs) and high-aspect-ratio silver nanowires (AgNWs) were generated with anisotropic properties by the directional freeze-drying. The obtained composite sponges exhibited attractive features, such as an excellent compressive stress of 24.5 kPa, low percolation threshold of 0.1 vol % AgNWs, and high electrical conductivity of 1.52 S/cm. Furthermore, the self-assembled ordered structure in the longitudinal direction and synergistic effect between CNFs and AgNWs benefited the sponge interesting anisotropic electrical conductivity, thermal diffusivity, ultrafast electrically induced heating (<5 s), sensitive pressure sensing (errors <0.26%), and electromagnetic interference (EMI) shielding for special practical demands. This multifunctional material inspired by natural woods is expected to broaden new applications as electronic devices for an intelligent switch or EMI shielding.
Collapse
Affiliation(s)
- Yiming Chen
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Lin Zhang
- MIT Media Lab, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Changtong Mei
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yang Li
- Powder Metallurgy Research Institute, Central South University, Changsha 410083, China
- Science and Technology on Advanced Ceramic Fibers and Composites Laboratory, National University of Defense Technology, Changsha 410083, China
| | - Gaigai Duan
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Seema Agarwal
- Macromolecular Chemistry, Bavarian Polymer Institute, University of Bayreuth, Universitätsstrasse 30, 95440 Bayreuth, Germany
| | - Andreas Greiner
- Macromolecular Chemistry, Bavarian Polymer Institute, University of Bayreuth, Universitätsstrasse 30, 95440 Bayreuth, Germany
| | - Chunxin Ma
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Shaohua Jiang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
365
|
Trache D, Thakur VK, Boukherroub R. Cellulose Nanocrystals/Graphene Hybrids-A Promising New Class of Materials for Advanced Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1523. [PMID: 32759691 PMCID: PMC7466521 DOI: 10.3390/nano10081523] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 07/28/2020] [Accepted: 07/31/2020] [Indexed: 02/07/2023]
Abstract
With the growth of global fossil-based resource consumption and the environmental concern, there is an urgent need to develop sustainable and environmentally friendly materials, which exhibit promising properties and could maintain an acceptable level of performance to substitute the petroleum-based ones. As elite nanomaterials, cellulose nanocrystals (CNC) derived from natural renewable resources, exhibit excellent physicochemical properties, biodegradability and biocompatibility and have attracted tremendous interest nowadays. Their combination with other nanomaterials such as graphene-based materials (GNM) has been revealed to be useful and generated new hybrid materials with fascinating physicochemical characteristics and performances. In this context, the review presented herein describes the quickly growing field of a new emerging generation of CNC/GNM hybrids, with a focus on strategies for their preparation and most relevant achievements. These hybrids showed great promise in a wide range of applications such as separation, energy storage, electronic, optic, biomedical, catalysis and food packaging. Some basic concepts and general background on the preparation of CNC and GNM as well as their key features are provided ahead.
Collapse
Affiliation(s)
- Djalal Trache
- Energetic Materials Laboratory, Teaching and Research Unit of Energetic Processes, Ecole Militaire Polytechnique, BP 17, Bordj El-Bahri, 16046 Algiers, Algeria
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Center, Scotland’s Rural College (SRUC), Kings Buildings, Edinburgh EH9 3JG, UK;
- Department of Mechanical Engineering, School of Engineering, Shiv Nadar University, Greater Noida, Uttar Pradesh 201314, India
| | - Rabah Boukherroub
- Institut d’Electronique, de Microélectronique et de Nanotechnologie (IEMN-UMR CNRS 8520), University Lille, CNRS, Centrale Lille, University Polytechnique Hauts-de-France, UMR 8520—IEMN, F-59000 Lille, France;
| |
Collapse
|
366
|
Dai H, Wu J, Zhang H, Chen Y, Ma L, Huang H, Huang Y, Zhang Y. Recent advances on cellulose nanocrystals for Pickering emulsions: Development and challenge. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.05.016] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
367
|
Seidi F, Jin Y, Han J, Saeb MR, Akbari A, Hosseini SH, Shabanian M, Xiao H. Self‐healing Polyol/Borax Hydrogels: Fabrications, Properties and Applications. CHEM REC 2020. [DOI: 10.1002/tcr.202000060] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Farzad Seidi
- Provincial Key Lab of Pulp & Paper Sci and Tech Joint International Research Lab of Lignocellulosic Functional Materials Nanjing Forestry University Nanjing 210037 China
| | - Yongcan Jin
- Provincial Key Lab of Pulp & Paper Sci and Tech Joint International Research Lab of Lignocellulosic Functional Materials Nanjing Forestry University Nanjing 210037 China
| | - Jingquan Han
- Provincial Key Lab of Pulp & Paper Sci and Tech Joint International Research Lab of Lignocellulosic Functional Materials Nanjing Forestry University Nanjing 210037 China
- College of Materials Science and Engineering Nanjing Forestry University Nanjing 210037 China
| | - Mohammad Reza Saeb
- Department of Resin and Additives Institute for Color Science and Technology P.O. Box: 16765–654 Tehran Iran
| | - Ali Akbari
- Solid Tumor Research Center Research Institute for Cellular and Molecular Medicine Urmia University of Medical Sciences Urmia Iran
| | - Seyed Hassan Hosseini
- Department of Chemical Engineering University of Science and Technology of Mazandaran Behshahr Iran
| | - Meisam Shabanian
- Faculty of Chemistry and Petrochemical Engineering Standard Research Institute (SRI) P.O. Box 31745–139 Karaj Iran
| | - Huining Xiao
- Department of Chemical Engineering University of New Brunswick Fredericton, NB E3B 5 A3 Canada
| |
Collapse
|
368
|
Han S, Ni J, Han Y, Ge M, Zhang C, Jiang G, Peng Z, Cao J, Li S. Biomass-Based Polymer Nanoparticles With Aggregation-Induced Fluorescence Emission for Cell Imaging and Detection of Fe 3+ Ions. Front Chem 2020; 8:563. [PMID: 32719775 PMCID: PMC7350900 DOI: 10.3389/fchem.2020.00563] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 06/02/2020] [Indexed: 11/13/2022] Open
Abstract
Polymeric nanoparticles, which show aggregation-induced luminescence emission, have been successfully prepared from larch bark, a natural renewable biomass resource, in a simple, rapid ultrasonic fragmentation method. The structure, element, particle size and molecular weight distribution of larch bark extracts (LBE) were studied by FTIR, XPS, TEM, XRD and linear mode mass spectrometry, respectively. LBE was found containing large numbers of aromatic rings, displaying an average particle size of about 4.5 nm and mainly presenting tetramers proanthocyanidins. High concentration, poor solvent, low temperature and high viscosity restricted the rotation and vibration of the aromatic rings in LBE, leading to the formation of J-aggregates and enhancing the aggregation-induced fluorescence emission. LBE possessed good resistance to photobleaching under ultraviolet light (200 mW/m2). Cytotoxicity experiments for 24 h and flow cytometry experiments for 3 days proved that even the concentrations of LBE as high as 1 mg/mL displayed non-toxic to MG-63 cells. Therefore, LBE could be employed for MG-63 cell imaging, with similar nuclear staining to the DAPI. The effects of different metal ions on the fluorescence emission intensity of LBE were analyzed and exhibited that Fe3+ owned obvious fluorescence quenching effect on LBE, while other metal ions possessed little or weak effect. Furthermore, the limit of detection (LOD) of Fe3+ was evaluated as 0.17 μM.
Collapse
Affiliation(s)
- Shiyan Han
- Postdoctoral Station of Mechanical Engineering, Northeast Forestry University, Harbin, China.,Key Laboratory of Bio-Based Material Science and Technology (Northeast Forestry University), Ministry of Education, Harbin, China
| | - Jiaxin Ni
- Key Laboratory of Bio-Based Material Science and Technology (Northeast Forestry University), Ministry of Education, Harbin, China
| | - Youqi Han
- Key Laboratory of Bio-Based Material Science and Technology (Northeast Forestry University), Ministry of Education, Harbin, China
| | - Min Ge
- Key Laboratory of Bio-Based Material Science and Technology (Northeast Forestry University), Ministry of Education, Harbin, China
| | - Chunlei Zhang
- Key Laboratory of Bio-Based Material Science and Technology (Northeast Forestry University), Ministry of Education, Harbin, China
| | - Guiquan Jiang
- Key Laboratory of Wooden Materials Science and Engineering of Jilin Province, Beihua University, Jilin, China
| | - Zhibin Peng
- Department of Orthopedic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jun Cao
- Postdoctoral Station of Mechanical Engineering, Northeast Forestry University, Harbin, China
| | - Shujun Li
- Key Laboratory of Bio-Based Material Science and Technology (Northeast Forestry University), Ministry of Education, Harbin, China
| |
Collapse
|
369
|
Michelin M, Gomes DG, Romaní A, Polizeli MDLTM, Teixeira JA. Nanocellulose Production: Exploring the Enzymatic Route and Residues of Pulp and Paper Industry. Molecules 2020; 25:E3411. [PMID: 32731405 PMCID: PMC7436152 DOI: 10.3390/molecules25153411] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/19/2020] [Accepted: 07/23/2020] [Indexed: 12/28/2022] Open
Abstract
Increasing environmental and sustainability concerns, caused by current population growth, has promoted a raising utilization of renewable bio-resources for the production of materials and energy. Recently, nanocellulose (NC) has been receiving great attention due to its many attractive features such as non-toxic nature, biocompatibility, and biodegradability, associated with its mechanical properties and those related to its nanoscale, emerging as a promising material in many sectors, namely packaging, regenerative medicine, and electronics, among others. Nanofibers and nanocrystals, derived from cellulose sources, have been mainly produced by mechanical and chemical treatments; however, the use of cellulases to obtain NC attracted much attention due to their environmentally friendly character. This review presents an overview of general concepts in NC production. Especial emphasis is given to enzymatic hydrolysis processes using cellulases and the utilization of pulp and paper industry residues. Integrated process for the production of NC and other high-value products through enzymatic hydrolysis is also approached. Major challenges found in this context are discussed along with its properties, potential application, and future perspectives of the use of enzymatic hydrolysis as a pretreatment in the scale-up of NC production.
Collapse
Affiliation(s)
- Michele Michelin
- CEB—Centre of Biological Engineering, Universidade do Minho, Campus Gualtar, 4710-057 Braga, Portugal; (M.M.); (A.R.); (J.A.T.)
| | - Daniel G. Gomes
- CEB—Centre of Biological Engineering, Universidade do Minho, Campus Gualtar, 4710-057 Braga, Portugal; (M.M.); (A.R.); (J.A.T.)
| | - Aloia Romaní
- CEB—Centre of Biological Engineering, Universidade do Minho, Campus Gualtar, 4710-057 Braga, Portugal; (M.M.); (A.R.); (J.A.T.)
| | - Maria de Lourdes T. M. Polizeli
- Department of Biology, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto SP 14040-901, Brazil;
| | - José A. Teixeira
- CEB—Centre of Biological Engineering, Universidade do Minho, Campus Gualtar, 4710-057 Braga, Portugal; (M.M.); (A.R.); (J.A.T.)
| |
Collapse
|
370
|
Guancha-Chalapud MA, Gálvez J, Serna-Cock L, Aguilar CN. Valorization of Colombian fique (Furcraea bedinghausii) for production of cellulose nanofibers and its application in hydrogels. Sci Rep 2020; 10:11637. [PMID: 32669583 PMCID: PMC7363868 DOI: 10.1038/s41598-020-68368-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 06/18/2020] [Indexed: 11/25/2022] Open
Abstract
Cellulose nanofibers were obtained from the Colombian fique (Furcraea bedinghausii) and Acrylic hydrogels (H) and reinforced acrylic hydrogels with fique nanofibres (HRFN) were synthesized, using the solution polymerization method. The extraction was carried out using a combined extraction method (chemical procedures and ultrasound radiation). The raw material (NAT-F), bleached fibers (B-F), hydrolyzed fibers and fibers treated with ultrasound (US-F) were characterized by infrared spectroscopy (FTIR) and thermal stability analysis; also, in order to have a comparison criterion, a commercial microcrystalline cellulose sample (CC) was analyzed, which demonstrated the extraction of fique cellulose. The surface morphology of the NAT-F and the B-F was determined by scanning electron microscopy and the average particle size of the nanofibers was made through transmission electron microscopy. In H y HRFN the strain percent and compression resistance (Rc) were measured. The fique nanofibers showed diameter and length averages of 25.2 ± 6.2 nm and 483.8 ± 283.2 nm respectively. Maximum degradation temperature was 317 °C. HRFN presented higher compression resistance (16.39 ± 4.30 kPa) and this resistance was 2.5 greater than the resistance of H (6.49 ± 2.48 kPa). The results indicate that fique lignocellulosic matrix has potential application for obtaining polymeric type composite materials.
Collapse
Affiliation(s)
- Marcelo A Guancha-Chalapud
- National Center for Technical Assistance to Industry (ASTIN), Servicio Nacional de Aprendizaje - SENA, Cali, Colombia
| | - Jaime Gálvez
- National Center for Technical Assistance to Industry (ASTIN), Servicio Nacional de Aprendizaje - SENA, Cali, Colombia
| | - Liliana Serna-Cock
- Faculty of Engineering and Administration, Universidad Nacional de Colombia Campus Palmira, Palmira, Colombia
| | - Cristobal N Aguilar
- Bioprocesses and Bioproducts Research Group. Food Research Department, School of Chemistry. Universidad Autónoma de Coahuila, Saltillo, Mexico.
| |
Collapse
|
371
|
Wu X, Tang W, Huang C, Huang C, Lai C, Yong Q. Unrevealing model compounds of soil conditioners impacts on the wheat straw autohydrolysis efficiency and enzymatic hydrolysis. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:122. [PMID: 32684975 PMCID: PMC7359617 DOI: 10.1186/s13068-020-01763-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 07/06/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Soil-derived exogenous ash (EA) poses a challenge toward lignocellulosic autohydrolysis due to its buffering capacity. Previous works focusing on this phenomenon have failed to also investigate the role that soluble salts, and organic matter plays in this system. Herein, sodium phosphate and sodium humate were employed as model buffering compounds representing soluble salts and organic matter and dosed into a de-ashed wheat straw (DWS) autohydrolysis process to show the potential impacts of WS attached soil conditioners on the WS autohydrolysis efficiency which would further affect the enzymatic digestibility of autohydrolyzed WS. RESULTS Results showed that with the increasing loadings of sodium phosphate and sodium humate resulted in elevated pH values (from 4.0 to 5.1 and from 4.1 to 4.7, respectively). Meanwhile, the reductions of xylan removal yields from ~ 84.3-61.4% to 72.3-53.0% by loading (1-30 g/L) sodium phosphate and sodium humate during WS autohydrolysis lead to a significant decrease of cellulose accessibilities which finally lead to a reduction of the enzymatic digestibility of autohydrolyzed WS from ~ 75.4-77.2% to 47.3-57.7%. CONCLUSION The existence of different types soil conditioner model compounds results in various component fractions from autohydrolyzed WS in the process of autohydrolysis. A lack of sufficient xylan removal was found to drive the significant decrease in enzymatic accessibility. The results demonstrated the various effects of two typical tested soil conditioners on WS autohydrolysis and enzymatic hydrolysis.
Collapse
Affiliation(s)
- Xinxing Wu
- Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing, 210037 People’s Republic of China
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037 People’s Republic of China
| | - Wei Tang
- Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing, 210037 People’s Republic of China
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037 People’s Republic of China
| | - Chen Huang
- Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing, 210037 People’s Republic of China
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037 People’s Republic of China
| | - Caoxing Huang
- Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing, 210037 People’s Republic of China
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037 People’s Republic of China
| | - Chenhuan Lai
- Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing, 210037 People’s Republic of China
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037 People’s Republic of China
| | - Qiang Yong
- Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing, 210037 People’s Republic of China
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037 People’s Republic of China
| |
Collapse
|
372
|
Highly Efficient Preparation of Functional and Thermostable Cellulose Nanocrystals via H2SO4 Intensified Acetic Acid Hydrolysis. Carbohydr Polym 2020; 239:116233. [DOI: 10.1016/j.carbpol.2020.116233] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/20/2020] [Accepted: 03/27/2020] [Indexed: 12/14/2022]
|
373
|
|
374
|
Sorokin AV, Kuznetsov VA, Lavlinskaya MS. Synthesis of graft copolymers of carboxymethyl cellulose and N,N-dimethylaminoethyl methacrylate and their study as Paclitaxel carriers. Polym Bull (Berl) 2020. [DOI: 10.1007/s00289-020-03250-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
375
|
Huerta RR, Silva EK, Ekaette I, El-Bialy T, Saldaña MDA. High-intensity ultrasound-assisted formation of cellulose nanofiber scaffold with low and high lignin content and their cytocompatibility with gingival fibroblast cells. ULTRASONICS SONOCHEMISTRY 2020; 64:104759. [PMID: 31948850 DOI: 10.1016/j.ultsonch.2019.104759] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 08/16/2019] [Accepted: 08/27/2019] [Indexed: 06/10/2023]
Abstract
Cellulose nanofiber (CNF) hydrogels with low lignin (8%) (LL-CNF) and high lignin (18%) (HL-CNF) content were produced at nominal powers of 240, 720 and 1200 W using high-intensity ultrasound technology (HIUS). Freeze-dried CNF hydrogels were evaluated as scaffolds for gingival fibroblast cells proliferation aiming biomedical applications. HIUS processing improved the dispersibility of the CNF and increased the water retention value by more than 5 times. The LL-CNF had a maximum fibrillation yield of 46 wt.%, whereas the HL-CNF had a maximum fibrillation yield of 40 wt.% at nominal power of ≥720 W. Regardless of the lignin content, the CNF hydrogels exhibited a typical elastic gel-like behavior with the highest elasticity of 263 Pa. After freeze-drying, the CNF aerogels had porosity ≥ 96.8%, and swelling capacity up to 42.1 g PBS/g aerogel. Moreover, the cell proliferation assay showed no differences in proliferation among the LL-CNF and HL-CNF scaffolds up to 11 days. Therefore, CNF scaffolds prepared with lignin content up to 18% present promising application in the biomedical field.
Collapse
Affiliation(s)
- Raquel Razzera Huerta
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Eric Keven Silva
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Idaresit Ekaette
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Tarek El-Bialy
- Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Marleny D A Saldaña
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada.
| |
Collapse
|
376
|
Qi W, Wu J, Shu Y, Wang H, Rao W, Xu HN, Zhang Z. Microstructure and physiochemical properties of meat sausages based on nanocellulose-stabilized emulsions. Int J Biol Macromol 2020; 152:567-575. [PMID: 32112849 DOI: 10.1016/j.ijbiomac.2020.02.285] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/24/2020] [Accepted: 02/25/2020] [Indexed: 11/24/2022]
Abstract
Here we prepared some meat sausages using soybean oil in pure liquid form or pre-emulsified form stabilized with nanocelluloses (NCs) to partially replace pork back-fat and investigated the effects of NC types (sisal cellulose nanofiber, cotton cellulose nanofiber, and cotton cellulose nanocrystal) on the physicochemical properties and microstructure of the sausages. The physicochemical properties, including cooking loss, water holding capacity (WHC), textural properties, and rheological behavior, were evaluated. The results show that the sausages with pre-emulsified oil exhibited much-improved water and fat binding capacities, with significantly increased hardness, springiness, and chewiness. Additionally, pre-emulsifying soybean oil provided a more compact structure with smaller cavities. The sausages with different NCs had no significant difference in textural and microstructural properties, whereas they presented different water and fat binding capacities. From the results, it is concluded that NC-based emulsions are a viable fat replacer for meat sausages by providing similar stability and textural attributes.
Collapse
Affiliation(s)
- Wenhui Qi
- College of Food Science and Technology, Hebei Agricultural University, Lekai South Avenue, Baoding, Hebei 071000, People's Republic of China; Department of Food Science, University of Tennessee, 2510 River Drive, Knoxville, Tennessee 37996, United States.
| | - Junjie Wu
- College of Food Science and Technology, Hebei Agricultural University, Lekai South Avenue, Baoding, Hebei 071000, People's Republic of China
| | - Ying Shu
- College of Food Science and Technology, Hebei Agricultural University, Lekai South Avenue, Baoding, Hebei 071000, People's Republic of China
| | - Huiqiang Wang
- College of Food Science and Technology, Hebei Agricultural University, Lekai South Avenue, Baoding, Hebei 071000, People's Republic of China
| | - Weili Rao
- College of Food Science and Technology, Hebei Agricultural University, Lekai South Avenue, Baoding, Hebei 071000, People's Republic of China
| | - Hua-Neng Xu
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, People's Republic of China.
| | - Zhisheng Zhang
- College of Food Science and Technology, Hebei Agricultural University, Lekai South Avenue, Baoding, Hebei 071000, People's Republic of China.
| |
Collapse
|
377
|
|
378
|
Zhang H, Chen Y, Wang S, Ma L, Yu Y, Dai H, Zhang Y. Extraction and comparison of cellulose nanocrystals from lemon (Citrus limon) seeds using sulfuric acid hydrolysis and oxidation methods. Carbohydr Polym 2020; 238:116180. [DOI: 10.1016/j.carbpol.2020.116180] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 02/24/2020] [Accepted: 03/13/2020] [Indexed: 02/07/2023]
|
379
|
Huerta RR, Silva EK, El-Bialy T, Saldaña MDA. Clove essential oil emulsion-filled cellulose nanofiber hydrogel produced by high-intensity ultrasound technology for tissue engineering applications. ULTRASONICS SONOCHEMISTRY 2020; 64:104845. [PMID: 32178883 DOI: 10.1016/j.ultsonch.2019.104845] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 10/11/2019] [Accepted: 10/25/2019] [Indexed: 06/10/2023]
Abstract
High-intensity ultrasound (HIUS) was used to produce emulsion-filled cellulose nanofiber (CNF) hydrogel using clove essential oil (0.1, 0.5 and 1.0 wt%) as dispersed phase towards tissue engineering applications. The novel encapsulating systems obtained using HIUS specific energy at the levels of 0.10, 0.17, and 0.24 kJ/g were characterized by oil entrapment efficiency, microstructure, water retention value, color parameters, and viscoelastic properties. Freeze-dried emulsion-filled CNF hydrogels were characterized by porosity and swelling capacity. In addition, human gingival fibroblast cell cytocompatibility tests were performed to evaluate their potential applications as tissue engineering scaffold. The clove essential oil content strongly affected the oil entrapment efficiency, water retention value, color difference and whiteness of the prepared emulsion-filled CNF hydrogel. And, the HIUS energy only affected the yellowness of the emulsion-filled CNF hydrogel. Via HIUS processing, the CNF hydrogel successfully acted as a continuous phase in the emulsion-filled gel system with maximum oil entrapment efficiency of 34% when 0.5 wt% clove essential oil was added to the system. The encapsulating systems had predominantly gel-like property with maximum elastic modulus of 411 Pa. Furthermore, the emulsion-filled CNF hydrogels with the addition of clove essential oil up to 0.5 wt% indicated good cell viability rates (74-101%) to human gingival fibroblast cells. The newly developed clove essential oil emulsion-filled CNF hydrogel shows desirable cytocompatibility characteristics and can be considered as an alternative scaffold for tissue engineering applications.
Collapse
Affiliation(s)
- Raquel Razzera Huerta
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Eric Keven Silva
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Tarek El-Bialy
- Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Marleny D A Saldaña
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada.
| |
Collapse
|
380
|
A review on nanocellulose as a lightweight filler of polyolefin composites. Carbohydr Polym 2020; 243:116466. [PMID: 32532395 DOI: 10.1016/j.carbpol.2020.116466] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 05/12/2020] [Accepted: 05/14/2020] [Indexed: 12/20/2022]
Abstract
Nanocellulose (NC) possesses low density, high aspect ratio, impressive mechanical properties, nanoscale dimensions, which shows huge potential applications as a reinforced filler. Polyolefin (PO), represented by polyethylene (PE) and polypropylene (PP), has been widely used in industries. Recently nanocellulose/polyolefin nanocomposites (NC/PO nanocomposites) have caught more attention from the application of automotive components, aerospace, furniture, building, home appliances, and sport. In this review, the surface modifications of nanocellulose and polyolefin are summarized respectively, such as surface adsorption modification, small molecule modification, and graft copolymerization modification. The common preparations of NC/PO nanocomposites are discussed, including the melting compounding, the solvent casting, and the in-situ polymerization. The lightweight, mechanical properties, and aging-resistant properties of NC/PO nanocomposites are highlighted. Finally, the potentials and challenges for industrial production development of NC/PO nanocomposites are discussed.
Collapse
|
381
|
Shan H, Li K, Zhao D, Chi C, Tan Q, Wang X, Yu J, Piao M. Locally Controlled Release of Methotrexate and Alendronate by Thermo-Sensitive Hydrogels for Synergistic Inhibition of Osteosarcoma Progression. Front Pharmacol 2020; 11:573. [PMID: 32508628 PMCID: PMC7248331 DOI: 10.3389/fphar.2020.00573] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 04/15/2020] [Indexed: 12/28/2022] Open
Abstract
Osteosarcoma (OS) is a serious primary bone malignant tumor that can easily affect children and adolescents. Chemotherapy is one of the important and feasible clinical treatment strategies for the treatment of OS at present, which is severely limited due to insufficient retention time, poor penetration ability, and serious side effects of current anti-tumor drug preparations. In this work, a novel injectable thermo-sensitive hydrogel (mPEG45-PLV19) loaded with methotrexate and alendronate, and the sustained release at the tumor site synergistically inhibited the progression of OS. The mPEG45-PLV19 shows excellent physical and chemical properties. Compared with other treatment groups, the in vivo treatment of gel+ methotrexate + alendronate effectively inhibited the growth of tumor. More importantly, it significantly reduced bone destruction and lung metastasis caused by OS. Therefore, this injectable thermo-sensitive hydrogel drug delivery system has broad prospects for OS chemotherapy.
Collapse
Affiliation(s)
- Hongli Shan
- Department of Clinical Laboratory, The First Hospital of Jilin University, Changchun, China
| | - Ke Li
- Department of Orthopedics, the Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Duoyi Zhao
- Department of Orthopedics, the Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Changliang Chi
- Department of Urology, the First Hospital of Jilin University, Changchun, China
| | - Qinyuan Tan
- Department of Urology, the First Hospital of Jilin University, Changchun, China
| | - Xiaoqing Wang
- Department of Urology, the First Hospital of Jilin University, Changchun, China
| | - Jinhai Yu
- Department of Gastrointestinal Surgery, The First Hospital of Jilin University, Changchun, China
| | - Meihua Piao
- Department of Anesthesiology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
382
|
Trache D, Tarchoun AF, Derradji M, Hamidon TS, Masruchin N, Brosse N, Hussin MH. Nanocellulose: From Fundamentals to Advanced Applications. Front Chem 2020; 8:392. [PMID: 32435633 PMCID: PMC7218176 DOI: 10.3389/fchem.2020.00392] [Citation(s) in RCA: 327] [Impact Index Per Article: 65.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 04/15/2020] [Indexed: 12/14/2022] Open
Abstract
Over the past few years, nanocellulose (NC), cellulose in the form of nanostructures, has been proved to be one of the most prominent green materials of modern times. NC materials have gained growing interests owing to their attractive and excellent characteristics such as abundance, high aspect ratio, better mechanical properties, renewability, and biocompatibility. The abundant hydroxyl functional groups allow a wide range of functionalizations via chemical reactions, leading to developing various materials with tunable features. In this review, recent advances in the preparation, modification, and emerging application of nanocellulose, especially cellulose nanocrystals (CNCs), are described and discussed based on the analysis of the latest investigations (particularly for the reports of the past 3 years). We start with a concise background of cellulose, its structural organization as well as the nomenclature of cellulose nanomaterials for beginners in this field. Then, different experimental procedures for the production of nanocelluloses, their properties, and functionalization approaches were elaborated. Furthermore, a number of recent and emerging uses of nanocellulose in nanocomposites, Pickering emulsifiers, wood adhesives, wastewater treatment, as well as in new evolving biomedical applications are presented. Finally, the challenges and opportunities of NC-based emerging materials are discussed.
Collapse
Affiliation(s)
- Djalal Trache
- UER Procédés Energétiques, Ecole Militaire Polytechnique, Bordj El-Bahri, Algeria
| | - Ahmed Fouzi Tarchoun
- UER Procédés Energétiques, Ecole Militaire Polytechnique, Bordj El-Bahri, Algeria
| | - Mehdi Derradji
- UER Procédés Energétiques, Ecole Militaire Polytechnique, Bordj El-Bahri, Algeria
| | - Tuan Sherwyn Hamidon
- Materials Technology Research Group, School of Chemical Sciences, Universiti Sains Malaysia, Penang, Malaysia
| | - Nanang Masruchin
- Research Center for Biomaterials, Indonesian Institute of Sciences (LIPI), Jakarta, Indonesia
| | - Nicolas Brosse
- Laboratoire d'Etude et de Recherche sur le MAtériau Bois (LERMAB), Faculté des Sciences et Techniques, Université de Lorraine, Vandœuvre-lès-Nancy, France
| | - M. Hazwan Hussin
- Materials Technology Research Group, School of Chemical Sciences, Universiti Sains Malaysia, Penang, Malaysia
| |
Collapse
|
383
|
Li H, Wang H, Miao Q, Du J, Li C, Fang J. High-Efficiency Adsorbent for Biobutanol Separation Developed from Lignin by Solvents Fractionation. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c01311] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hao Li
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China
- Guangdong Provincial Key Lab of Green Chemical Product Technology, Wushan Road, Guangzhou 510000, PR China
- Tianjin Key Laboratory of Chemical Process Safety, Tianjin 300401, China
| | - Haoyang Wang
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China
| | - Qingya Miao
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China
| | - Jingjing Du
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China
| | - Chunli Li
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China
| | - Jing Fang
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China
- Tianjin Key Laboratory of Chemical Process Safety, Tianjin 300401, China
| |
Collapse
|
384
|
Development of reinforced chitosan/pectin scaffold by using the cellulose nanocrystals as nanofillers: An injectable hydrogel for tissue engineering. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109697] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
385
|
Zhang S, Huang D, Lin H, Xiao Y, Zhang X. Cellulose Nanocrystal Reinforced Collagen-Based Nanocomposite Hydrogel with Self-Healing and Stress-Relaxation Properties for Cell Delivery. Biomacromolecules 2020; 21:2400-2408. [DOI: 10.1021/acs.biomac.0c00345] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Shuang Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Danyang Huang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Hai Lin
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Yun Xiao
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| |
Collapse
|
386
|
Zhong L, Yang L, Wang C, Ji X, Yang G, Chen J, Lyu G, Xu F, Yoo CG. NaOH-Aided Sulfolane Pretreatment for Effective Fractionation and Utilization of Willow (Salix matsudana cv. Zhuliu). Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c01208] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Lei Zhong
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China
| | - Liyuan Yang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China
| | - Chao Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China
| | - Xingxiang Ji
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China
| | - Guihua Yang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China
| | - Jiachuan Chen
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China
| | - Gaojin Lyu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China
- RZBC GROUP CO., LTD., Rizhao, Shandong 276800, China
| | - Feng Xu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Chang Geun Yoo
- Department of Paper and Bioprocess Engineering, State University of New York College of Environmental Science and Forestry, Syracuse, New York 13210, United States
| |
Collapse
|
387
|
Preparation and Properties of Cassava Residue Cellulose Nanofibril/Cassava Starch Composite Films. NANOMATERIALS 2020; 10:nano10040755. [PMID: 32326505 PMCID: PMC7221531 DOI: 10.3390/nano10040755] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/03/2020] [Accepted: 04/08/2020] [Indexed: 01/30/2023]
Abstract
Because of its non-toxic, pollution-free, and low-cost advantages, environmentally-friendly packaging is receiving widespread attention. However, using simple technology to prepare environmentally-friendly packaging with excellent comprehensive performance is a difficult problem faced by the world. This paper reports a very simple and environmentally-friendly method. The hydroxyl groups of cellulose nanofibrils (CNFs) were modified by introducing malic acid and the silane coupling agent KH-550, and the modified CNF were added to cassava starch as a reinforcing agent to prepare film with excellent mechanical, hydrophobic, and barrier properties. In addition, due to the addition of malic acid and a silane coupling agent, the dispersibility and thermal stability of the modified CNFs became significantly better. By adjusting the order of adding the modifiers, the hydrophobicity of the CNFs and thermal stability were increased by 53.5% and 36.9% ± 2.7%, respectively. At the same time, the addition of modified CNFs increased the tensile strength, hydrophobicity, and water vapor transmission coefficient of the starch-based composite films by 1034%, 129.4%, and 35.95%, respectively. This material can be widely used in the packaging of food, cosmetics, pharmaceuticals, and medical consumables.
Collapse
|
388
|
Le Gars M, Delvart A, Roger P, Belgacem MN, Bras J. Amidation of TEMPO-oxidized cellulose nanocrystals using aromatic aminated molecules. Colloid Polym Sci 2020. [DOI: 10.1007/s00396-020-04640-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
389
|
Ilkar Erdagi S, Asabuwa Ngwabebhoh F, Yildiz U. Genipin crosslinked gelatin-diosgenin-nanocellulose hydrogels for potential wound dressing and healing applications. Int J Biol Macromol 2020; 149:651-663. [DOI: 10.1016/j.ijbiomac.2020.01.279] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 01/28/2020] [Accepted: 01/28/2020] [Indexed: 01/14/2023]
|
390
|
Aziz T, Fan H, Zhang X, Haq F, Ullah A, Ullah R, Khan FU, Iqbal M. Advance Study of Cellulose Nanocrystals Properties and Applications. JOURNAL OF POLYMERS AND THE ENVIRONMENT 2020; 28:1117-1128. [DOI: 10.1007/s10924-020-01674-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
|
391
|
Tao H, Lavoine N, Jiang F, Tang J, Lin N. Reducing end modification on cellulose nanocrystals: strategy, characterization, applications and challenges. NANOSCALE HORIZONS 2020; 5:607-627. [PMID: 32073114 DOI: 10.1039/d0nh00016g] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Different from traditional chemical surface modification, localized modification of the reducing end groups of cellulose nanocrystals (CNCs), i.e. the active aldehyde groups, provides new opportunities for diverse functional applications of this renewable nanomaterial without altering its surface chemistry and properties. Numerous reviews have deeply discussed the surface modification of the hydroxyl groups of CNCs, but no critical comment has been reported on the reducing end modification approach. This review is a comprehensive summary on the modification of the CNC reducing end, presenting the reaction mechanisms and conditions, discussing the different chemical modification strategies and characterization techniques, potential applications and future challenges in this field. In addition, the comparison between surface and end modification strategies of CNCs will highlight the potential of reducing end-functionalized CNCs to be used in various applications as an alternative to traditional surface-modified CNCs, or as additional functional nanoparticles for the design of advanced functional materials.
Collapse
Affiliation(s)
- Han Tao
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, P. R. China.
| | - Nathalie Lavoine
- Department of Forest Biomaterials, College of Natural Resources, North Carolina State University, Campus Box 8005, Raleigh NC 27695-8005, USA
| | - Feng Jiang
- Sustainable Functional Biomaterials Laboratory, Department of Wood Science, University of British Columbia, Vancouver, BC V6T1Z4, Canada
| | - Juntao Tang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, P. R. China
| | - Ning Lin
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, P. R. China.
| |
Collapse
|
392
|
Babicka M, Woźniak M, Dwiecki K, Borysiak S, Ratajczak I. Preparation of Nanocellulose Using Ionic Liquids: 1-Propyl-3-Methylimidazolium Chloride and 1-Ethyl-3-Methylimidazolium Chloride. Molecules 2020; 25:molecules25071544. [PMID: 32231037 PMCID: PMC7180691 DOI: 10.3390/molecules25071544] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 03/23/2020] [Accepted: 03/26/2020] [Indexed: 02/07/2023] Open
Abstract
Cellulose nanocrystals were prepared using ionic liquids (ILs), 1-ethyl-3-methylimidazolium chloride [EMIM][Cl] and 1-propyl-3-methylimidazolium chloride [PMIM][Cl], from microcrystalline cellulose. The resultant samples were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), dynamic light scattering (DLS), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The XRD results showed that nanocellulose obtained by treatment with both ILs preserved basic cellulose I structure, but crystallinity index of samples (except for Sigmacell treated with [EMIM][Cl]) was lower in comparison to the starting microcrystalline cellulose. The DLS results indicated noticeably smaller particle sizes of prepared cellulose for material treated with [PMIM][Cl] compared to cellulose samples hydrolyzed with [EMIM][Cl], which were prone to agglomeration. The obtained nanocellulose had a rod-like structure that was confirmed by electron microscopy analyses. Moreover, the results described in this paper indicate that cation type of ILs influences particle size and morphology of cellulose after treatment with ionic liquids.
Collapse
Affiliation(s)
- Marta Babicka
- Department of Chemistry, Poznan University of Life Sciences, Wojska Polskiego 75, 60-625 Poznan, Poland; (M.B.); (M.W.)
| | - Magdalena Woźniak
- Department of Chemistry, Poznan University of Life Sciences, Wojska Polskiego 75, 60-625 Poznan, Poland; (M.B.); (M.W.)
| | - Krzysztof Dwiecki
- Department of Food Biochemistry and Analysis, Poznan University of Life Sciences, Mazowiecka 48, 60-623 Poznan, Poland;
| | - Sławomir Borysiak
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland;
| | - Izabela Ratajczak
- Department of Chemistry, Poznan University of Life Sciences, Wojska Polskiego 75, 60-625 Poznan, Poland; (M.B.); (M.W.)
- Correspondence: ; Tel.: +48-61-8487825
| |
Collapse
|
393
|
Di Giorgio L, Martín L, Salgado PR, Mauri AN. Synthesis and conservation of cellulose nanocrystals. Carbohydr Polym 2020; 238:116187. [PMID: 32299567 DOI: 10.1016/j.carbpol.2020.116187] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/18/2020] [Accepted: 03/15/2020] [Indexed: 01/14/2023]
Abstract
This work deals with the preparation of cellulose nanocrystals (CNC) from microcrystalline cellulose by acid hydrolysis, discusses how their characteristics varied according to the drying technique used for their conservation and analyzes their re-dispersion in water. A stable water dispersion of "rod" or "needle" type CNC (≈5 nm of diameter, 276 nm of length and 41 mV of Z potencial) was initially prepared and then dried by lyophilization and spray. Thus powders with similar cristalinity but different morphology were obtained, while CNC seemed to aggregate in such an extent that hindered their re-dispersion in water. Only lyophilized CNC could be re-dispersed in water and maintained stable in dispersion for at least 24 h, when working with concentrations of CNC higher than a certain minimum value (3 %) and after submitting them to intense ultrasound treatments. The tested time achieved should be enough to allow their subsequent use in several applications.
Collapse
Affiliation(s)
- Luciana Di Giorgio
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA, CONICET-UNLP-CIC), 47 y 116 S/N°, (B1900JJ) La Plata, Argentina
| | - Lucía Martín
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA, CONICET-UNLP-CIC), 47 y 116 S/N°, (B1900JJ) La Plata, Argentina
| | - Pablo R Salgado
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA, CONICET-UNLP-CIC), 47 y 116 S/N°, (B1900JJ) La Plata, Argentina
| | - Adriana N Mauri
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA, CONICET-UNLP-CIC), 47 y 116 S/N°, (B1900JJ) La Plata, Argentina.
| |
Collapse
|
394
|
Ganguly K, Patel DK, Dutta SD, Shin WC, Lim KT. Stimuli-responsive self-assembly of cellulose nanocrystals (CNCs): Structures, functions, and biomedical applications. Int J Biol Macromol 2020; 155:456-469. [PMID: 32222290 DOI: 10.1016/j.ijbiomac.2020.03.171] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 03/05/2020] [Accepted: 03/19/2020] [Indexed: 02/06/2023]
Abstract
Cellulose nanocrystals (CNCs) have received a significant amount of attention from the researchers. It is used as a nanomaterial for various applications due to its excellent physiochemical properties for the last few decades. Self-assembly is a phenomenon where autonomous reorganization of randomly oriented species occurs elegantly. Self-assembly is responsible for the formation of the hierarchical cholesteric structure of CNCs. This process is highly influenced by several factors, such as the surface chemistry of the nanoparticles, intermolecular forces, and the fundamental laws of thermodynamics. Various conventional experimental designs and molecular dynamics (MD) studies have been applied to determine the possible mechanism of self-assembly in CNCs. Different external factors, like pH, temperature, magnetic/electric fields, vacuum, also influence the self-assembly process in CNCs. Notably, better responses have been observed in CNCs-grafted polymer nanocomposites. These functionalized CNCs with stimuli-responsive self-assembly have immense practical applications in modern biotechnology and medicine. Herein, we have concisely discussed the mechanism of the self-assembled CNCs in the presence of different external factors such as pH, temperature, electric/magnetic fields, and their biomedical applications.
Collapse
Affiliation(s)
- Keya Ganguly
- Department of Biosystems Engineering, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Dinesh K Patel
- Department of Biosystems Engineering, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Sayan Deb Dutta
- Department of Biosystems Engineering, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Woo-Chul Shin
- Department of Biosystems Engineering, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Ki-Taek Lim
- Department of Biosystems Engineering, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea.
| |
Collapse
|
395
|
Padzil FNM, Lee SH, Ainun ZMA, Lee CH, Abdullah LC. Potential of Oil Palm Empty Fruit Bunch Resources in Nanocellulose Hydrogel Production for Versatile Applications: A Review. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E1245. [PMID: 32164150 PMCID: PMC7085086 DOI: 10.3390/ma13051245] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/30/2020] [Accepted: 02/03/2020] [Indexed: 12/20/2022]
Abstract
Oil palm empty fruit bunch (OPEFB) is considered the cheapest natural fiber with good properties and exists abundantly in Malaysia. It has great potential as an alternative main raw material to substitute woody plants. On the other hand, the well-known polymeric hydrogel has gathered a lot of interest due to its three-dimensional (3D) cross-linked network with high porosity. However, some issues regarding its performance like poor interfacial connectivity and mechanical strength have been raised, hence nanocellulose has been introduced. In this review, the plantation of oil palm in Malaysia is discussed to show the potential of OPEFB as a nanocellulose material in hydrogel production. Nanocellulose can be categorized into three nano-structured celluloses, which differ in the processing method. The most popular nanocellulose hydrogel processing methods are included in this review. The 3D printing method is taking the lead in current hydrogel production due to its high complexity and the need for hygiene products. Some of the latest advanced applications are discussed to show the high commercialization potential of nanocellulose hydrogel products. The authors also considered the challenges and future direction of nanocellulose hydrogel. OPEFB has met the requirements of the marketplace and product value chains as nanocellulose raw materials in hydrogel applications.
Collapse
Affiliation(s)
- Farah Nadia Mohammad Padzil
- Laboratory of Biopolymer and Derivatives, Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Seng Hua Lee
- Laboratory of Biopolymer and Derivatives, Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Zuriyati Mohamed Asa’ari Ainun
- Laboratory of Biopolymer and Derivatives, Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Ching Hao Lee
- Laboratory of Biopolymer and Derivatives, Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Luqman Chuah Abdullah
- Laboratory of Biopolymer and Derivatives, Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Department of Chemical and Environmental Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| |
Collapse
|
396
|
Wang Y, Xie W, Wu D. Rheological properties of magnetorheological suspensions stabilized with nanocelluloses. Carbohydr Polym 2020; 231:115776. [DOI: 10.1016/j.carbpol.2019.115776] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 12/12/2019] [Accepted: 12/20/2019] [Indexed: 12/24/2022]
|
397
|
Omidi S, Pirhayati M, Kakanejadifard A. Co-delivery of doxorubicin and curcumin by a pH-sensitive, injectable, and in situ hydrogel composed of chitosan, graphene, and cellulose nanowhisker. Carbohydr Polym 2020; 231:115745. [DOI: 10.1016/j.carbpol.2019.115745] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 12/11/2019] [Accepted: 12/15/2019] [Indexed: 02/08/2023]
|
398
|
Nagarajan KJ, Balaji AN, Kasi Rajan ST, Ramanujam NR. Preparation of bio-eco based cellulose nanomaterials from used disposal paper cups through citric acid hydrolysis. Carbohydr Polym 2020; 235:115997. [PMID: 32122515 DOI: 10.1016/j.carbpol.2020.115997] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 02/02/2020] [Accepted: 02/11/2020] [Indexed: 11/29/2022]
Abstract
The Used Disposal Paper Cups (UDPCs) have become a concern to the solid waste management sector as scientists triggered the problems in recent years, to proceed forward in developing the process for this issue. Based on this concern, the present study emphasizes on the isolation of a novel bio-eco based Cellulose NanoCrystals (CNCs) from UDPCs through citric acid hydrolysis. The effect of acid concentration on microstructure and yield of CNCs are highlighted. The optimized yield (55 wt.%) has an appearance of rod-like structure with a width of 13.7 ± 0.6 nm which results due to 76 wt.% of acid hydrolyzed CNCs. The colloidal stability, crystallinity index, presence of functional groups and elemental composition in CNCs (76 wt.%) were identified by employing zeta potential, XRD, conductometric test and FTIR techniques. Finally, the thermal stability of CNCs (76 wt.%) was investigated by thermo-gravimetric analysis.
Collapse
Affiliation(s)
- K J Nagarajan
- Department of Mechanical Engineering, K.L.N. College of Engineering, Pottapalayam, Tamil Nadu, India.
| | - A N Balaji
- Department of Mechanical Engineering, K.L.N. College of Engineering, Pottapalayam, Tamil Nadu, India
| | - S Thanga Kasi Rajan
- Department of Mechanical Engineering, Kamaraj College of Engineering and Technology, Madurai, Tamil Nadu, India
| | - N R Ramanujam
- Department of Physics, K.L.N. College of Engineering, Pottapalayam, Tamil Nadu, India
| |
Collapse
|
399
|
Jiang P, Ji H, Li G, Chen S, Lv L. Structure formation in pH-sensitive micro porous membrane from well-defined ethyl cellulose-g-PDEAEMA via non-solvent-induced phase separation process. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2020. [DOI: 10.1080/10601325.2020.1722691] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Ping Jiang
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, P. R. China
| | - Hongmin Ji
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, P. R. China
| | - Gen Li
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, P. R. China
| | - Shaowei Chen
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, P. R. China
| | - Linda Lv
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, P. R. China
| |
Collapse
|
400
|
Yang X, Li Z, Jiang Z, Wang S, Liu H, Xu X, Wang D, Miao Y, Shang S, Song Z. Mechanical reinforcement of room-temperature-vulcanized silicone rubber using modified cellulose nanocrystals as cross-linker and nanofiller. Carbohydr Polym 2020; 229:115509. [DOI: 10.1016/j.carbpol.2019.115509] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 10/10/2019] [Accepted: 10/19/2019] [Indexed: 10/25/2022]
|