351
|
Caswell AJ, Morgan MJ, Duka T. Inhibitory Control Contributes to “Motor”- but not “Cognitive”- Impulsivity. Exp Psychol 2013; 60:324-34. [DOI: 10.1027/1618-3169/a000202] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Literature on impulsivity regularly claims inhibitory control deficits underlie impulsive behavior. The current study investigated whether taxing inhibitory control will increase reflection (decision making under conditions of uncertainty), temporal (delay of gratification), and motor impulsivity (behavioral disinhibition). Inhibitory control was challenged, via a random letter generation task presented during responding to three impulsivity measures: the Information Sampling Task (IST), Single Key Impulsivity Paradigm, and the Stop Signal Task (SST). Participants (n = 33) were assigned to the inhibitory control challenging (experimental) condition, or to a control condition in which inhibitory control was not challenged. The SST was affected by the inhibitory control challenge: participants in the experimental condition displayed increased motor impulsivity, evidenced in longer stop signal reaction times (SSRTs) compared to the control group. The manipulation did not affect reflection- or temporal- impulsivity measures. These data support the suggestion that the mechanisms underlying the motor subtype of impulsivity are dissociable from the temporal and reflection subtypes, and that engagement of inhibitory control is not necessary to prevent impulsive decision making.
Collapse
Affiliation(s)
- Amy Jane Caswell
- Behavioural and Clinical Neuroscience, School of Psychology, University of Sussex, Brighton, UK
| | - Michael John Morgan
- Behavioural and Clinical Neuroscience, School of Psychology, University of Sussex, Brighton, UK
- Norwegian Center for Addiction Research, University of Oslo, Norway
| | - Theodora Duka
- Behavioural and Clinical Neuroscience, School of Psychology, University of Sussex, Brighton, UK
| |
Collapse
|
352
|
Lesch KP, Merker S, Reif A, Novak M. Dances with black widow spiders: dysregulation of glutamate signalling enters centre stage in ADHD. Eur Neuropsychopharmacol 2013; 23:479-91. [PMID: 22939004 DOI: 10.1016/j.euroneuro.2012.07.013] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Revised: 07/10/2012] [Accepted: 07/24/2012] [Indexed: 11/26/2022]
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is a common neurodevelopmental disorder with impairments across the lifespan. The persistence of ADHD is associated with considerable liability to neuropsychiatric co-morbidity such as depression, anxiety and substance use disorder. The substantial heritability of ADHD is well documented and recent genome-wide analyses for risk genes revealed synaptic adhesion molecules (e.g. latrophilin-3, LPHN3; fibronectin leucine-rich repeat transmembrane protein-3, FLRT3), glutamate receptors (e.g. metabotropic glutamate receptor-5, GRM5) and mediators of intracellular signalling pathways (e.g. nitric oxide synthase-1, NOS1). These genes encode principal components of the molecular machinery that connects pre- and postsynaptic neurons, facilitates glutamatergic transmission, controls synaptic plasticity and empowers intersecting neural circuits to process and refine information. Thus, identification of genetic variation affecting molecules essential for the formation, specification and function of excitatory synapses is refocusing research efforts on ADHD pathogenesis to include the long-neglected glutamate system.
Collapse
Affiliation(s)
- K P Lesch
- Division of Molecular Psychiatry, Laboratory of Translational Neuroscience, ADHD Clinical Research Network, Department of Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, Füchsleinstr. 15, 97080 Würzburg, Germany.
| | | | | | | |
Collapse
|
353
|
Parker MO, Brock AJ, Walton RT, Brennan CH. The role of zebrafish (Danio rerio) in dissecting the genetics and neural circuits of executive function. Front Neural Circuits 2013; 7:63. [PMID: 23580329 PMCID: PMC3619107 DOI: 10.3389/fncir.2013.00063] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Accepted: 03/19/2013] [Indexed: 01/06/2023] Open
Abstract
Zebrafish have great potential to contribute to our understanding of behavioral genetics and thus to contribute to our understanding of the etiology of psychiatric disease. However, progress is dependent upon the rate at which behavioral assays addressing complex behavioral phenotypes are designed, reported and validated. Here we critically review existing behavioral assays with particular focus on the use of adult zebrafish to explore executive processes and phenotypes associated with human psychiatric disease. We outline the case for using zebrafish as models to study impulse control and attention, discussing the validity of applying extant rodent assays to zebrafish and evidence for the conservation of relevant neural circuits.
Collapse
Affiliation(s)
- Matthew O Parker
- School of Biological and Chemical Sciences, Queen Mary University of London London, UK
| | | | | | | |
Collapse
|
354
|
Averbeck BB, Djamshidian A, O'Sullivan SS, Housden CR, Roiser JP, Lees AJ. Uncertainty about mapping future actions into rewards may underlie performance on multiple measures of impulsivity in behavioral addiction: evidence from Parkinson's disease. Behav Neurosci 2013; 127:245-55. [PMID: 23565936 PMCID: PMC3935250 DOI: 10.1037/a0032079] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A subset of patients with Parkinson's disease (PD) develops behavioral addictions, which may be due to their dopamine replacement therapy. Recently, several groups have been comparing PD patients with and without behavioral addictions on tasks that are thought to measure aspects of impulsivity. Several of these experiments, including information sampling, a bias toward novel stimuli and temporal discounting, have shown differences between PD patients with and without behavioral addictions. We have developed a unifying theoretical framework that allows us to model behavior in all three of these tasks. By exploring the performance of the patient groups on the three tasks with a single framework, we can ask questions about common mechanisms that underlie all three. Our results suggest that the effects seen in all three tasks can be accounted for by uncertainty about the ability to map future actions into rewards. More specifically, the modeling is consistent with the hypothesis that the group with behavioral addictions behaves as if they cannot use information provided within the experimental context to improve future reward guided actions. Future studies will be necessary to more firmly establish (or refute) this hypothesis. We discuss this result in light of what is known about the pathology that underlies the behavioral addictions in the PD patients.
Collapse
Affiliation(s)
- Bruno B Averbeck
- Laboratory of Neuropsychology, NIMH/NIH, Building 49 Room 1B80, 49 Convent Drive MSC 4415, Bethesda, MD 20892-4415, USA.
| | | | | | | | | | | |
Collapse
|
355
|
Simon NW, Beas BS, Montgomery KS, Haberman RP, Bizon JL, Setlow B. Prefrontal cortical-striatal dopamine receptor mRNA expression predicts distinct forms of impulsivity. Eur J Neurosci 2013; 37:1779-88. [PMID: 23510331 DOI: 10.1111/ejn.12191] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 01/01/2013] [Accepted: 02/17/2013] [Indexed: 12/31/2022]
Abstract
Variation in dopamine receptor levels has been associated with different facets of impulsivity. To further delineate the neural substrates underlying impulsive action (inability to withhold a prepotent motor response) and impulsive choice (delay aversion), we characterised rats in the Differential Reinforcement of Low Rates of Responding task and a delay discounting task. We also measured performance on an effort-based discounting task. We then assessed D1 and D2 dopamine receptor mRNA expression in subregions of the prefrontal cortex and nucleus accumbens using in situ hybridisation, and compared these data with behavioral performance. Expression of D1 and D2 receptor mRNA in distinct brain regions was predictive of impulsive action. A dissociation within the nucleus accumbens was observed between subregions and receptor subtypes; higher D1 mRNA expression in the shell predicted greater impulsive action, whereas lower D2 mRNA expression in the core predicted greater impulsive action. We also observed a negative correlation between impulsive action and D2 mRNA expression in the prelimbic cortex. Interestingly, a similar relationship was present between impulsive choice and prelimbic cortex D2 mRNA, despite the fact that behavioral indices of impulsive action and impulsive choice were uncorrelated. Finally, we found that both high D1 mRNA expression in the insular cortex and low D2 mRNA expression in the infralimbic cortex were associated with willingness to exert effort for rewards. Notably, dopamine receptor mRNA in these regions was not associated with either facet of impulsivity. The data presented here provide novel molecular and neuroanatomical distinctions between different forms of impulsivity, as well as effort-based decision-making.
Collapse
Affiliation(s)
- Nicholas W Simon
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| | | | | | | | | | | |
Collapse
|
356
|
Cottone P, Iemolo A, Narayan AR, Kwak J, Momaney D, Sabino V. The uncompetitive NMDA receptor antagonists ketamine and memantine preferentially increase the choice for a small, immediate reward in low-impulsive rats. Psychopharmacology (Berl) 2013; 226:127-38. [PMID: 23104264 PMCID: PMC3572289 DOI: 10.1007/s00213-012-2898-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Accepted: 09/23/2012] [Indexed: 02/04/2023]
Abstract
RATIONALE Impulsive behavior is categorically differentiated between impulsive action, the inability to withhold from acting out a response, and impulsive choice, the greater preference for an immediate and smaller reward over a delayed but more advantageous reward. While the effects of N-methyl-D-aspartic acid (NMDA) receptor antagonists on impulsive action have been extensively characterized, there are very few and conflicting reports on the effects of this class of drugs on impulsive choice. OBJECTIVES Using a modified adjusting delay task, we investigated the effects of uncompetitive and competitive blockade of NMDA receptors on impulsive choice. METHODS Male Wistar rats were trained in a modified adjusting delay task, which involved repeated choice between a low reinforcing solution delivered immediately and a highly reinforcing solution delivered after a variable delay. Rats were then administered either the NMDA receptor uncompetitive antagonists ketamine or memantine, or the competitive antagonists D-AP-5 or CGS 19755. RESULTS Ketamine treatment dose-dependently increased impulsive choice, and this effect was selective for low-impulsive but not high-impulsive rats. Similarly, memantine treatment dose-dependently increased impulsive choice with a preferential effect for low-impulsive rats. While D-AP-5 treatment did not affect impulsive choice, CGS 19755 increased impulsivity, however, at the same doses at which it caused a marked response inhibition. CONCLUSIONS NMDA receptor uncompetitive, but not competitive, antagonists significantly increased impulsive choice, preferentially in low-impulsive rats. These findings demonstrate that the effects of NMDA receptor blockade on impulsive choice are not generalizable and depend on the specific mechanism of action of the antagonist used.
Collapse
Affiliation(s)
- Pietro Cottone
- Department of Pharmacology, Laboratory of Addictive Disorders, Boston University School of Medicine, 72 E Concord St., R-618, Boston, MA 02118, USA. Department of Psychiatry, Laboratory of Addictive Disorders, Boston University School of Medicine, 72 E Concord St., R-618, Boston, MA 02118, USA
| | - Attilio Iemolo
- Department of Pharmacology, Laboratory of Addictive Disorders, Boston University School of Medicine, 72 E Concord St., R-618, Boston, MA 02118, USA. Department of Psychiatry, Laboratory of Addictive Disorders, Boston University School of Medicine, 72 E Concord St., R-618, Boston, MA 02118, USA
| | - Aditi R. Narayan
- Department of Pharmacology, Laboratory of Addictive Disorders, Boston University School of Medicine, 72 E Concord St., R-618, Boston, MA 02118, USA. Department of Psychiatry, Laboratory of Addictive Disorders, Boston University School of Medicine, 72 E Concord St., R-618, Boston, MA 02118, USA
| | - Jina Kwak
- Department of Pharmacology, Laboratory of Addictive Disorders, Boston University School of Medicine, 72 E Concord St., R-618, Boston, MA 02118, USA. Department of Psychiatry, Laboratory of Addictive Disorders, Boston University School of Medicine, 72 E Concord St., R-618, Boston, MA 02118, USA
| | - Duncan Momaney
- Department of Pharmacology, Laboratory of Addictive Disorders, Boston University School of Medicine, 72 E Concord St., R-618, Boston, MA 02118, USA. Department of Psychiatry, Laboratory of Addictive Disorders, Boston University School of Medicine, 72 E Concord St., R-618, Boston, MA 02118, USA
| | - Valentina Sabino
- Department of Pharmacology, Laboratory of Addictive Disorders, Boston University School of Medicine, 72 E Concord St., R-618, Boston, MA 02118, USA. Department of Psychiatry, Laboratory of Addictive Disorders, Boston University School of Medicine, 72 E Concord St., R-618, Boston, MA 02118, USA
| |
Collapse
|
357
|
Impulsivity, attention, memory, and decision-making among adolescent marijuana users. Psychopharmacology (Berl) 2013; 226:307-19. [PMID: 23138434 PMCID: PMC3581724 DOI: 10.1007/s00213-012-2908-5] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Accepted: 10/17/2012] [Indexed: 12/11/2022]
Abstract
RATIONALE Marijuana is a popular drug of abuse among adolescents, and they may be uniquely vulnerable to resulting cognitive and behavioral impairments. Previous studies have found impairments among adolescent marijuana users. However, the majority of this research has examined measures individually rather than multiple domains in a single cohesive analysis. This study used a logistic regression model that combines performance on a range of tasks to identify which measures were most altered among adolescent marijuana users. OBJECTIVES The purpose of this research was to determine unique associations between adolescent marijuana use and performances on multiple cognitive and behavioral domains (attention, memory, decision-making, and impulsivity) in 14- to 17-year-olds while simultaneously controlling for performances across the measures to determine which measures most strongly distinguish marijuana users from nonusers. METHODS Marijuana-using adolescents (n = 45) and controls (n = 48) were tested. Logistic regression analyses were conducted to test for: (1) differences between marijuana users and nonusers on each measure, (2) associations between marijuana use and each measure after controlling for the other measures, and (3) the degree to which (1) and (2) together elucidated differences among marijuana users and nonusers. RESULTS Of all the cognitive and behavioral domains tested, impaired short-term recall memory and consequence sensitivity impulsivity were associated with marijuana use after controlling for performances across all measures. CONCLUSIONS This study extends previous findings by identifying cognitive and behavioral impairments most strongly associated with adolescent marijuana users. These specific deficits are potential targets of intervention for this at-risk population.
Collapse
|
358
|
Killeen PR, Russell VA, Sergeant JA. A behavioral neuroenergetics theory of ADHD. Neurosci Biobehav Rev 2013; 37:625-57. [PMID: 23454637 DOI: 10.1016/j.neubiorev.2013.02.011] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Revised: 02/02/2013] [Accepted: 02/18/2013] [Indexed: 02/02/2023]
Abstract
Energetic insufficiency in neurons due to inadequate lactate supply is implicated in several neuropathologies, including attention-deficit/hyperactivity disorder (ADHD). By formalizing the mechanism and implications of such constraints on function, the behavioral Neuroenergetics Theory (NeT) predicts the results of many neuropsychological tasks involving individuals with ADHD and kindred dysfunctions, and entails many novel predictions. The associated diffusion model predicts that response times will follow a mixture of Wald distributions from the attentive state, and ex-Wald distributions after attentional lapses. It is inferred from the model that ADHD participants can bring only 75-85% of the neurocognitive energy to bear on tasks, and allocate only about 85% of the cognitive resources of comparison groups. Parameters derived from the model in specific tasks predict performance in other tasks, and in clinical conditions often associated with ADHD. The primary action of therapeutic stimulants is to increase norepinephrine in active regions of the brain. This activates glial adrenoceptors, increasing the release of lactate from astrocytes to fuel depleted neurons. The theory is aligned with other approaches and integrated with more general theories of ADHD. Therapeutic implications are explored.
Collapse
Affiliation(s)
- Peter R Killeen
- Department of Psychology, Arizona State University, Tempe, AZ 85287-1104, USA.
| | | | | |
Collapse
|
359
|
Torres A, Catena A, Megías A, Maldonado A, Cándido A, Verdejo-García A, Perales JC. Emotional and non-emotional pathways to impulsive behavior and addiction. Front Hum Neurosci 2013; 7:43. [PMID: 23441001 PMCID: PMC3578351 DOI: 10.3389/fnhum.2013.00043] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 02/04/2013] [Indexed: 11/13/2022] Open
Abstract
Impulsivity is tightly linked to addiction. However, there are several pathways by means of which impulsive individuals are more prone to become addicts, or to suffer an addiction more intensely and for a longer period. One of those pathways involves an inadequate appraisal or regulation of positive and negative emotions, leading to lack of control over hazardous behaviors, and inappropriate decisions. In the present work, we assessed cocaine-dependent individuals (CDI; n = 20), pathological gamblers (PG; n = 21), and healthy controls (HC; n = 23) in trait impulsivity measures (UPPS-P model's dimensions), and decision-making tasks (Go/No-go; delay-discounting task). During the Go/No-go task, electroencephalographic (EEG) activity was recorded, and Go/No-go stimuli-evoked potentials (ERP) were extracted. Theory-driven ERP analyses focused on the No-go > Go difference in the N2 ERP. Our results show that negative urgency is one of the several psychological features that distinguish addicts from HC. Nevertheless, among the dimensions of trait impulsivity, negative urgency is unique at independently covarying with gambling over-pathologization in the PG sample. Cocaine-dependent individuals performed more poorly than gamblers in the Go/No-go task, and showed abnormal Go/No-go stimuli-evoked potentials. The difference between the No-go stimulus-evoked N2, and the Go one was attenuated by severity and intensity of chronic cocaine use. Emotional dimensions of impulsivity, however, did not influence Go/No-go performance.
Collapse
Affiliation(s)
- Ana Torres
- Learning, Emotion, and Decision Research Group, Mind, Brain and Behavior Research Center/Centro de Investigación Mente, Cerebro y Comportamiento (CIMCYC), Universidad de Granada Granada, Spain
| | | | | | | | | | | | | |
Collapse
|
360
|
Soeiro-De-Souza MG, Stanford MS, Bio DS, Machado-Vieira R, Moreno RA. Association of the COMT Met¹⁵⁸ allele with trait impulsivity in healthy young adults. Mol Med Rep 2013; 7:1067-72. [PMID: 23440431 DOI: 10.3892/mmr.2013.1336] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Accepted: 02/20/2013] [Indexed: 11/05/2022] Open
Abstract
Dopamine (DA) is considered to be an important neurotransmitter in the control of impulsive behavior, however, its underlying mechanisms have not been fully elucidated. Catechol-O-methyltransferase (COMT) is a key enzyme in the catabolism of DA within the prefrontal cortex (PFC) and has been suggested to play a role in the mediation of impulsive behavior. The COMT single nucleotide polymorphism (SNP) rs4680 (Val158Met) Met allele has been shown to decrease COMT enzyme activity and is associated with improved PFC cognitive function (intelligence and executive functions). Studies have associated the rs4680 genotype with impulsivity as a symptom in attention deficit hyperactivity disorder and substance abuse. However, only a few studies have assessed the effects of rs4680 on impulsiveness in healthy subjects, the results of which remain controversial. The Barratt Impulsiveness Scale (BIS-11) was applied to 82 healthy volunteers (including 42 females) who were genotyped for COMT rs4680. Subjects carrying the Met/Met genotype scored higher for the BIS-11 second-order factor Non-planning than carriers of the Val/Val genotype. No interaction between gender genotype was detected. Age, gender and education had no effect on the results. The COMT rs4680 Met/Met genotype was associated with higher impulsivity on the BIS-11 second-order factor Non-planning. These results suggest that COMT enzyme activity may be important in the regulation of impulsiveness among young adults. Further studies involving larger samples should be conducted to confirm the results of the present study.
Collapse
Affiliation(s)
- Márcio Gerhardt Soeiro-De-Souza
- Mood Disorders Unit (GRUDA), Department and Institute of Psychiatry, School of Medicine, University of São Paulo (HC-FMUSP), São Paulo, Brazil.
| | | | | | | | | |
Collapse
|
361
|
Humpston CS, Wood CM, Robinson ESJ. Investigating the roles of different monoamine transmitters and impulse control using the 5-choice serial reaction time task. J Psychopharmacol 2013; 27:213-21. [PMID: 23135241 DOI: 10.1177/0269881112466182] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Previous studies have shown that drugs which block the reuptake of catecholamine neurotransmitters improve impulse control in diseases such as attention deficit hyperactivity disorder (ADHD). Serotonin-specific reuptake inhibitors (SSRI) lack efficacy in ADHD and have been linked to increased suicide risk. The present study investigated drugs with affinity for one or more of the monoamine reuptake transporters using the 5-choice serial reaction time task, a model of attention and impulsivity in rodents. We also tested the effects of the alpha(2)-adreoceptor antagonist, idazoxan and novel antidepressant, agomelatine, which both increase cortical noradrenaline concentrations through non-reuptake mechanisms. Improvements in impulse control were observed with venlafaxine, a serotonin and noradrenaline re-uptake inhibitor (SNRI) but not bupropion (dopamine and noradrenaline re-uptake inhibitor). Sibutramine (SNRI) reduced premature responses by ~50% at the highest dose tested but this was not significant. All three of the SSRIs tested reduced premature responding in a dose-dependent manner, although also slowed response and collection latencies. Neither idazoxan nor agomelatine significantly reduced premature responding, suggesting a lack of efficacy at the doses tested. None of the drugs tested improved attention in this task but sibutramine (SNRI), fluoxetine (SSRI) and paroxetine (SSRI) all increased omissions at the highest dose tested. These data suggest that the SNRIs and SSRIs reduce premature responding but tend to be less specific than noradrenaline specific reuptake inhibitors in this model. SSRIs did not induce any specific impairment in impulse control in this model.
Collapse
Affiliation(s)
- Clara S Humpston
- School of Physiology and Pharmacology, University of Bristol, Bristol, BS8 1TD, UK
| | | | | |
Collapse
|
362
|
Pardey MC, Kumar NN, Goodchild AK, Cornish JL. Catecholamine receptors differentially mediate impulsive choice in the medial prefrontal and orbitofrontal cortex. J Psychopharmacol 2013; 27:203-12. [PMID: 23135240 DOI: 10.1177/0269881112465497] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Impulsivity is characteristic of several mental health disorders and is largely mediated by the prefrontal cortex subregions: the medial prefrontal cortex (mPFC) and the orbitofrontal cortex (OFC). Dopamine (DA) and norepinephrine (NE) are known to modulate activity of the prefrontal cortex, however their direct role in impulsive choice is not known. The aim of the present study was to investigate the effect of microinjecting DA or NE compounds in the mPFC or OFC on impulsive choice as measured by a delayed reinforcement (DR) task in male Wistar Kyoto rats. Following training in the DR task, rats were pretreated with DA D(1) and D(2) receptor antagonists (SCH23390 3 μg/side, raclopride 3 or 6 μg/side) or NE α(1) and α(2) receptor agonists (phenylephrine 0.1 or 0.3 μg/side, guanfacine 1 or 3 μg/side, respectively) into the mPFC or OFC and the effect on impulsive behavior was assessed. Pretreatment with raclopride into the mPFC or OFC significantly increased impulsive choice, however only pretreatment with SCH23390 into the mPFC, and not the OFC, significantly increased impulsive choice. Pretreatment with the NE receptor agonists had no effect on impulsive choice. This study suggests that DA receptors, but not NE receptors, differentially mediate impulsive choice in sub-regions of the prefrontal cortex.
Collapse
Affiliation(s)
- Margery C Pardey
- Department of Psychology, Macquarie University, Sydney, Australia
| | | | | | | |
Collapse
|
363
|
Garcia A, Kirkpatrick K. Impulsive choice behavior in four strains of rats: evaluation of possible models of Attention-Deficit/Hyperactivity Disorder. Behav Brain Res 2013; 238:10-22. [PMID: 23085479 PMCID: PMC3513624 DOI: 10.1016/j.bbr.2012.10.017] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Revised: 10/08/2012] [Accepted: 10/11/2012] [Indexed: 02/06/2023]
Abstract
Several studies have examined impulsive choice behavior in spontaneously hypertensive rats (SHRs) as a possible pre-clinical model for Attention-Deficit/Hyperactivity Disorder (ADHD). However, this strain was not specifically selected for the traits of ADHD and as a result their appropriateness as a model has been questioned. The present study investigated whether SHRs would exhibit impulsive behavior in comparison to their control strain, Wistar Kyoto (WKY) rats. In addition, we evaluated a strain that has previously shown high levels of impulsive choice, the Lewis (LEW) rats and compared them with their source strain, Wistar (WIS) rats. In the first phase, rats could choose between a smaller-sooner (SS) reward of 1 pellet after 10 s and a larger-later (LL) reward of 2 pellets after 30 s. Subsequently, the rats were exposed to increases in LL reward magnitude and SS delay. These manipulations were designed to assess sensitivity to magnitude and delay within the choice task to parse out possible differences in using the strains as models of specific deficits associated with ADHD. The SHR and WKY strains did not differ in their choice behavior under either delay or magnitude manipulations. In comparison to WIS, LEW showed deficits in choice behavior in the delay manipulation, and to a lesser extent in the magnitude manipulation. An examination of individual differences indicated that the SHR strain may not be sufficiently homogeneous in their impulsive choice behavior to be considered as a viable model for impulse control disorders such as ADHD. The LEW strain may be worthy of further consideration for their suitability as an animal model.
Collapse
Affiliation(s)
- Ana Garcia
- Kansas State University, Manhattan, KS 66506-5302, United States
| | | |
Collapse
|
364
|
Navarrete F, Pérez-Ortiz JM, Manzanares J. Pregabalin- and topiramate-mediated regulation of cognitive and motor impulsivity in DBA/2 mice. Br J Pharmacol 2013; 167:183-95. [PMID: 22489711 DOI: 10.1111/j.1476-5381.2012.01981.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Impulsivity is a core symptom in many neuropsychiatric disorders. The main objective of this study was to evaluate the effects of topiramate and pregabalin on the modulation of different impulsivity dimensions in DBA/2 mice. EXPERIMENTAL APPROACH The effects of acute and chronic administration of pregabalin (10, 20 and 40 mg·kg(-1) ) and topiramate (12.5, 25 and 50 mg·kg(-1) ) were evaluated in the light-dark box (LDB), hole board test (HBT) and delayed reinforcement task (DRT). α(2A) -Adrenoceptor, D(2) -receptor and TH gene expression were evaluated by real-time PCR in the prefrontal cortex (PFC), accumbens (ACC) and ventral tegmental area (VTA), respectively. KEY RESULTS Acute pregabalin administration showed a clear anxiolytic-like effect (LDB) but did not modify novelty-seeking behaviour (HBT). In contrast, topiramate produced an anxiolytic effect only at the highest dose, whereas it reduced novelty seeking at all doses tested. In the DRT, acute pregabalin had no effect, whereas topiramate only reduced motor impulsivity. Chronically, pregabalin significantly increased motor impulsivity and topiramate diminished cognitive impulsivity. Pregabalin decreased α(2A) -adrenoceptor and D(2) -receptor gene expression in the PFC and ACC, respectively, and increased TH in the VTA. In contrast, chronic administration of topiramate increased α(2A) -adrenoceptor and D(2) -receptor gene expression in the PFC and ACC, respectively, and also increased TH in the VTA. CONCLUSIONS AND IMPLICATIONS These results suggest that the usefulness of pregabalin in impulsivity-related disorders is related to its anxiolytic properties, whereas topiramate modulates impulsivity. These differences could be linked to their opposite effects on α(2A) -adrenoceptor and D(2) -receptor gene expression in the PFC and ACC, respectively.
Collapse
Affiliation(s)
- Francisco Navarrete
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Avda. Ramón y Cajal s/n, San Juan de Alicante, Alicante, Spain
| | | | | |
Collapse
|
365
|
Cardona D, López-Granero C, Cañadas F, Llorens J, Flores P, Pancetti F, Sánchez-Santed F. Dose-dependent regional brain acetylcholinesterase and acylpeptide hydrolase inhibition without cell death after chlorpyrifos administration. J Toxicol Sci 2013; 38:193-203. [DOI: 10.2131/jts.38.193] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Diana Cardona
- Departamento de Neurociencia y Ciencias de la Salud, Universidad de Almería,Spain
| | | | - Fernando Cañadas
- Departamento de Neurociencia y Ciencias de la Salud, Universidad de Almería,Spain
| | - Jordi Llorens
- Departament de Ciéncies Fisológiques II, Universitat de Barcelona, Spain
| | - Pilar Flores
- Departamento de Neurociencia y Ciencias de la Salud, Universidad de Almería,Spain
| | - Floria Pancetti
- Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica del Norte, Chile
| | | |
Collapse
|
366
|
Webster JP, Kaushik M, Bristow GC, McConkey GA. Toxoplasma gondii infection, from predation to schizophrenia: can animal behaviour help us understand human behaviour? J Exp Biol 2013; 216:99-112. [PMID: 23225872 PMCID: PMC3515034 DOI: 10.1242/jeb.074716] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Accepted: 09/08/2012] [Indexed: 12/15/2022]
Abstract
We examine the role of the protozoan Toxoplasma gondii as a manipulatory parasite and question what role study of infections in its natural intermediate rodent hosts and other secondary hosts, including humans, may elucidate in terms of the epidemiology, evolution and clinical applications of infection. In particular, we focus on the potential association between T. gondii and schizophrenia. We introduce the novel term 'T. gondii-rat manipulation-schizophrenia model' and propose how future behavioural research on this model should be performed from a biological, clinical and ethically appropriate perspective.
Collapse
Affiliation(s)
- Joanne P. Webster
- Department of Infectious Disease Epidemiology, School of Public Health, Imperial College Faculty of Medicine, London, W2 1PG, UK
| | - Maya Kaushik
- Department of Infectious Disease Epidemiology, School of Public Health, Imperial College Faculty of Medicine, London, W2 1PG, UK
| | - Greg C. Bristow
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Glenn A. McConkey
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| |
Collapse
|
367
|
Koffarnus MN, Woods JH. Individual differences in discount rate are associated with demand for self-administered cocaine, but not sucrose. Addict Biol 2013; 18:8-18. [PMID: 21812874 DOI: 10.1111/j.1369-1600.2011.00361.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Substance abusers, including cocaine abusers, discount delayed rewards to a greater extent than do matched controls. In the current experiment, individual differences in discounting of delayed rewards in rats (choice of one immediate over three delayed sucrose pellets) were assessed for associations with demand for either sucrose pellets or an intravenous dose of 0.1 mg/kg/infusion cocaine. Twenty-four male Sprague Dawley rats were split into three groups based on sensitivity to delay to reinforcement. Then, demand for sucrose pellets and cocaine was determined across a range of fixed-ratio values. Delay discounting was then reassessed to determine the stability of this measure over the course of the experiment. Individual differences in impulsive choice were positively associated with elasticity of demand for cocaine, a measure of reinforcer value, indicating that rats having higher discount rates also valued cocaine more. Impulsive choice was not associated with the level of cocaine consumption as price approached 0 or with any parameter associated with demand for sucrose. Individual sensitivity to delay was correlated with the initial assessment when reassessed at the end of the experiment, although impulsive choice increased for this cohort of rats as a whole. These findings suggest that impulsive choice in rats is positively associated with valuation of cocaine, but not sucrose.
Collapse
Affiliation(s)
- Mikhail N Koffarnus
- Johns Hopkins University School of Medicine, Department of Psychiatry, Baltimore, MD 21224, USA.
| | | |
Collapse
|
368
|
Torres A, Catena A, Megías A, Maldonado A, Cándido A, Verdejo-García A, Perales JC. Emotional and non-emotional pathways to impulsive behavior and addiction. Front Hum Neurosci 2013. [PMID: 23441001 DOI: 10.3389/fuhum.2013.00043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023] Open
Abstract
Impulsivity is tightly linked to addiction. However, there are several pathways by means of which impulsive individuals are more prone to become addicts, or to suffer an addiction more intensely and for a longer period. One of those pathways involves an inadequate appraisal or regulation of positive and negative emotions, leading to lack of control over hazardous behaviors, and inappropriate decisions. In the present work, we assessed cocaine-dependent individuals (CDI; n = 20), pathological gamblers (PG; n = 21), and healthy controls (HC; n = 23) in trait impulsivity measures (UPPS-P model's dimensions), and decision-making tasks (Go/No-go; delay-discounting task). During the Go/No-go task, electroencephalographic (EEG) activity was recorded, and Go/No-go stimuli-evoked potentials (ERP) were extracted. Theory-driven ERP analyses focused on the No-go > Go difference in the N2 ERP. Our results show that negative urgency is one of the several psychological features that distinguish addicts from HC. Nevertheless, among the dimensions of trait impulsivity, negative urgency is unique at independently covarying with gambling over-pathologization in the PG sample. Cocaine-dependent individuals performed more poorly than gamblers in the Go/No-go task, and showed abnormal Go/No-go stimuli-evoked potentials. The difference between the No-go stimulus-evoked N2, and the Go one was attenuated by severity and intensity of chronic cocaine use. Emotional dimensions of impulsivity, however, did not influence Go/No-go performance.
Collapse
Affiliation(s)
- Ana Torres
- Learning, Emotion, and Decision Research Group, Mind, Brain and Behavior Research Center/Centro de Investigación Mente, Cerebro y Comportamiento (CIMCYC), Universidad de Granada Granada, Spain
| | | | | | | | | | | | | |
Collapse
|
369
|
A review on the relationship between testosterone and life-course persistent antisocial behavior. Psychiatry Res 2012; 200:984-1010. [PMID: 22925371 DOI: 10.1016/j.psychres.2012.07.044] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2011] [Revised: 07/18/2012] [Accepted: 07/28/2012] [Indexed: 12/11/2022]
Abstract
Life-course persistent antisocial behavior is 10 to 14 times more prevalent in males and it has been suggested that testosterone levels could account for this gender bias. Preliminary studies with measures of fetal testosterone find inconsistent associations with antisocial behavior, especially studies that use the 2D:4D ratio as a proxy for fetal testosterone. However, circulating testosterone consistently shows positive associations with antisocial behaviors throughout childhood, adolescence, and adulthood, particularly in males. It is suggested that high fetal/circulating testosterone interactively influence the maturation and functionality of mesolimbic dopaminergic circuitry, right orbitofrontal cortex, and cortico-subcortical connectivity, resulting in a strong reward motivation, low social sensitivity, and dampened regulation of strong motivational/emotional processes. The link between these testosterone induced endophenotypes and actual display of antisocial behavior is strongly modulated by different social (e.g., social rejection, low SES) and genetic (e.g., MAOA, 5HTT) risk factors that can disturb socio-, psycho-, and biological development and interact with testosterone in shaping behavior. When these additional risk factors are present, the testosterone induced endophenotypes may increase the risk for a chronic antisocial lifestyle. However, behavioral endophenotypes induced by testosterone can also predispose towards socially adaptive traits such as a strong achievement motivation, leadership, fair bargaining behaviors, and social assertiveness. These adaptive traits are more likely to emerge when the high testosterone individual has positive social experiences that promote prosocial behaviors such as strong and secure attachments with his caregivers, affiliation with prosocial peers, and sufficient socioeconomic resources. A theoretical model is presented, various hypotheses are examined, and future venues for research are discussed.
Collapse
|
370
|
de Zeeuw P, Weusten J, van Dijk S, van Belle J, Durston S. Deficits in cognitive control, timing and reward sensitivity appear to be dissociable in ADHD. PLoS One 2012; 7:e51416. [PMID: 23236497 PMCID: PMC3517570 DOI: 10.1371/journal.pone.0051416] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Accepted: 11/01/2012] [Indexed: 12/21/2022] Open
Abstract
Recent neurobiological models of ADHD suggest that deficits in different neurobiological pathways may independently lead to symptoms of this disorder. At least three independent pathways may be involved: a dorsal frontostriatal pathway involved in cognitive control, a ventral frontostriatal pathway involved in reward processing and a frontocerebellar pathway related to temporal processing. Importantly, we and others have suggested that disruptions in these three pathways should lead to separable deficits at the cognitive level. Furthermore, if these truly represent separate biological pathways to ADHD, these cognitive deficits should segregate between individuals with ADHD. The present study tests these hypotheses in a sample of children, adolescents and young adults with ADHD and controls. 149 Subjects participated in a short computerized battery assessing cognitive control, timing and reward sensitivity. We used Principal Component Analysis to find independent components underlying the variance in the data. The segregation of deficits between individuals was tested using Loglinear Analysis. We found four components, three of which were predicted by the model: Cognitive control, reward sensitivity and timing. Furthermore, 80% of subjects with ADHD that had a deficit were deficient on only one component. Loglinear Analysis statistically confirmed the independent segregation of deficits between individuals. We therefore conclude that cognitive control, timing and reward sensitivity were separable at a cognitive level and that deficits on these components segregated between individuals with ADHD. These results support a neurobiological framework of separate biological pathways to ADHD with separable cognitive deficits.
Collapse
Affiliation(s)
- Patrick de Zeeuw
- Neuroimaging Lab, Developmental Disorders Unit, Department of Psychiatry, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Utrecht, The Netherlands.
| | | | | | | | | |
Collapse
|
371
|
van den Bos W, McClure SM. Towards a general model of temporal discounting. J Exp Anal Behav 2012; 99:58-73. [PMID: 23344988 DOI: 10.1002/jeab.6] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Accepted: 10/29/2012] [Indexed: 12/11/2022]
Abstract
Psychological models of temporal discounting have now successfully displaced classical economic theory due to the simple fact that many common behavior patterns, such as impulsivity, were unexplainable with classic models. However, the now dominant hyperbolic model of discounting is itself becoming increasingly strained. Numerous factors have arisen that alter discount rates with no means to incorporate the different influences into standard hyperbolic models. Furthermore, disparate literatures are emerging that propose theoretical constructs that are seemingly independent of hyperbolic discounting. We argue that, although hyperbolic discounting provides an eminently useful quantitative measure of discounting, it fails as a descriptive psychological model of the cognitive processes that produce intertemporal preferences. Instead, we propose that recent contributions from cognitive neuroscience indicate a path for developing a general model of time discounting. New data suggest a means by which neuroscience-based theory may both integrate the diverse empirical data on time preferences and merge seemingly disparate theoretical models that impinge on time preferences.
Collapse
|
372
|
Abela AR, Chudasama Y. Dissociable contributions of the ventral hippocampus and orbitofrontal cortex to decision-making with a delayed or uncertain outcome. Eur J Neurosci 2012. [PMID: 23190048 DOI: 10.1111/ejn.12071] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
In this study, we examined how risk and delay influence rats' decision-making, and the role of the ventral hippocampus (VHC) and orbitofrontal cortex (OFC) in the valuation of these two factors. We used a touchscreen testing method in which rats with VHC lesions, OFC lesions and sham control surgery made choices in two decision-making tasks. In the delay discounting task, rats chose between two visual stimuli, one of which indicated a small, immediate reward, and the other of which indicated a large, delayed reward. In the probability discounting task, two stimuli indicated, instead, a small, certain reward or a large, uncertain reward. The two lesion groups showed a double dissociation with respect to the two tasks. Rats with VHC lesions were intolerant of delay, and were strongly biased towards the small, immediate reward. However, the same rats were indistinguishable from sham controls in the probability discounting task. The opposite pattern was observed for rats with OFC lesions; they performed normally in the delay discounting task, but showed a reduced tolerance for uncertainty as compared with sham-operated controls. These data support the conclusion that the VHC and OFC contribute differentially to decision-making that involves delayed or uncertain outcomes. This provides a means for understanding the neural basis of a range of neurological and psychiatric patients who show impaired decision-making and executive dysfunction.
Collapse
Affiliation(s)
- Andrew R Abela
- Department of Psychology, McGill University, Montreal, QC, Canada
| | | |
Collapse
|
373
|
Brevers D, Cleeremans A, Verbruggen F, Bechara A, Kornreich C, Verbanck P, Noël X. Impulsive action but not impulsive choice determines problem gambling severity. PLoS One 2012; 7:e50647. [PMID: 23209796 PMCID: PMC3507734 DOI: 10.1371/journal.pone.0050647] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Accepted: 10/22/2012] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Impulsivity is a hallmark of problem gambling. However, impulsivity is not a unitary construct and this study investigated the relationship between problem gambling severity and two facets of impulsivity: impulsive action (impaired ability to withhold a motor response) and impulsive choice (abnormal aversion for the delay of reward). METHODS The recruitment includes 65 problem gamblers and 35 normal control participants. On the basis of DSM-IV-TR criteria, two groups of gamblers were distinguished: problem gamblers (n = 38) and pathological gamblers (n = 27) with similar durations of gambling practice. Impulsive action was assessed using a response inhibition task (the stop-signal task). Impulsive choice was estimated with the delay-discounting task. Possible confounds (e.g., IQ, mood, ADHD symptoms) were recorded. RESULTS Both problem and pathological gamblers discounted reward at a higher rate than their controls, but only pathological gamblers showed abnormally low performance on the most demanding condition of the stop-signal task. None of the potential confounds covaried with these results. CONCLUSIONS These results suggest that, whereas abnormal impulsive choice characterizes all problem gamblers, pathological gamblers' impairments in impulsive action may represent an important developmental pathway of pathological gambling.
Collapse
Affiliation(s)
- Damien Brevers
- Psychological Medicine Laboratory, CHU-Brugmann, Université Libre de Bruxelles, Bruxelles, Belgium.
| | | | | | | | | | | | | |
Collapse
|
374
|
Abstract
Pesticide exposure has been associated with neuropsychological and psychiatric impairments and neurodegenerative disorders. Pesticide exposure commonly causes a deficit in inhibitory control behaviours. In the present study, we investigated whether acute exposure to organophosphate (OP) chlorpyrifos (CPF) is related to long-term lack of inhibitory control; we also examined the possible neurochemical basis of this association. Lister Hooded rats were exposed to an acute dose of CPF (250 mg/kg). Seven months later, we tested inhibitory control with the 5-choice serial reaction time task (5-CSRTT). We manipulated the baseline conditions of this task and also systemically pre-administered d-amphetamine, quinpirole, dizocilpine (MK-801) or ketanserin. We also analysed the post-mortem baseline levels of monoamines and amino acids in different brain regions. On the 5-CSRT task, CPF-exposed rats showed elevated perseverative responses that persisted across manipulation of baseline conditions of the task and under most of the pharmacological challenges tested. Only D-amphetamine induced a dose-dependent amelioration of the increased perseverative responses in the CPF group. The CPF group also exhibited increased levels of dopamine metabolism in the hippocampus and decreased levels of gamma-aminobutyric acid (GABA) and glutamate in the striatum compared to the vehicle group. These findings suggest that CPF induced a long-term compulsivity that was apparent in the 5-CSRT task and associated with changes in monoaminergic and amino acid brain systems of inhibitory control function. Exposure to high doses of OP should be taken into account in studies of environmental causes for neurodegenerative, neuropsychological and neuropsychiatric disorders.
Collapse
|
375
|
Impulsive action and impulsive choice are mediated by distinct neuropharmacological substrates in rat. Int J Neuropsychopharmacol 2012; 15:1473-87. [PMID: 22094071 DOI: 10.1017/s1461145711001635] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Impulsivity is a heterogeneous construct according to clinical and preclinical behavioural measures and there is some preliminary evidence indicating distinct neurobiological substrates underlying the sub-components of impulsivity. Two preclinical assays, the five-choice serial reaction time task (5-CSRTT) and the delayed discounting task (DDT), are hypothesized to provide measures of impulsive action (premature responding) and impulsive choice (percent choice for delayed reward), respectively. In the present studies, we show that the norepinephrine reuptake inhibitor atomoxetine attenuated premature responding in the 5-CSRTT, but was ineffective in the DDT. The mixed dopamine/norepinephrine reuptake inhibitor methylphenidate exhibited an opposite profile of effects. In addition, blockade of 5-HT2A/C receptors via ketanserin decreased premature responding but had no effects on percent choice for delayed reward; blockade of 5-HT2C receptors via SB 242084 had opposite effects. Follow-up studies provided some limited evidence of additive effects of 5-HT2A/C receptor blockade on the effects of atomoxetine on impulsive action. These studies demonstrate dissociable profiles of stimulant vs. non-stimulant attention deficit hyperactivity disorder medications and 5-HT subtype-selective ligands, in the 5-CSRTT and DDT assays. Thus, the present findings support the sub-categorization of impulsivity and suggest that 5-HT receptor subtype-selective antagonists may provide therapeutic targets for disorders characterized by different forms of impulsivity.
Collapse
|
376
|
Abstract
Converging evidence, including observations in patients with Parkinson's disease (PD), suggests that dopamine plays a role in impulsivity. This multi-faceted construct includes considerations of both time and risk; determining how these more specific processes are affected by PD and dopaminergic treatment can inform neurobiological models. We examined the effects of PD and its treatment on temporal discounting and risky decision-making in a cohort of 23 mild-moderate PD patients and 20 healthy participants. Patients completed the Balloon Analogue Risk Task and a temporal discounting paradigm both on and off their usual dopamine replacement therapy. PD patients did not differ from controls in their initial risk-taking on the Balloon Analogue Risk Task, but took progressively more risks across trials when on medication. A subset of patients and controls was tested again, 1.5-3 years later, to explore the effects of disease progression. On follow-up, baseline risk-taking diminished in patients, but the tendency to take increasing risks across trials persisted. Neither disease progression nor its treatment affected the temporal discounting rate. These findings suggest a different neural basis for temporal discounting and risk-taking, and demonstrate that risk-taking can be further decomposed into initial and trial-by-trial effects, with dopamine affecting only the latter.
Collapse
|
377
|
Talmi D, Pine A. How costs influence decision values for mixed outcomes. Front Neurosci 2012; 6:146. [PMID: 23112758 PMCID: PMC3481112 DOI: 10.3389/fnins.2012.00146] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Accepted: 09/14/2012] [Indexed: 11/30/2022] Open
Abstract
The things that we hold dearest often require a sacrifice, as epitomized in the maxim “no pain, no gain.” But how is the subjective value of outcomes established when they consist of mixtures of costs and benefits? We describe theoretical models for the integration of costs and benefits into a single value, drawing on both the economic and the empirical literatures, with the goal of rendering them accessible to the neuroscience community. We propose two key assays that go beyond goodness of fit for deciding between the dominant additive model and four varieties of interactive models. First, how they model decisions between costs when reward is not on offer; and second, whether they predict changes in reward sensitivity when costs are added to outcomes, and in what direction. We provide a selective review of relevant neurobiological work from a computational perspective, focusing on those studies that illuminate the underlying valuation mechanisms. Cognitive neuroscience has great potential to decide which of the theoretical models is actually employed by our brains, but empirical work has yet to fully embrace this challenge. We hope that future research improves our understanding of how our brain decides whether mixed outcomes are worthwhile.
Collapse
|
378
|
Schneider T, Bizarro L, Asherson PJE, Stolerman IP. Hyperactivity, increased nicotine consumption and impaired performance in the five-choice serial reaction time task in adolescent rats prenatally exposed to nicotine. Psychopharmacology (Berl) 2012; 223:401-15. [PMID: 22562524 PMCID: PMC4765091 DOI: 10.1007/s00213-012-2728-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Accepted: 04/17/2012] [Indexed: 01/15/2023]
Abstract
RATIONALE Prenatal exposure to nicotine has been linked to accelerated risk for different psychiatric disorders, including conduct disorder, attention deficit hyperactivity disorder (ADHD) and drug abuse. We examine a potential link between prenatal nicotine exposure, hyperactivity, anxiety, nicotine consumption, and cognitive performance in rats. METHODS Adolescent offspring of females exposed during pregnancy to 0.06 mg/ml nicotine solution as the only source of water and of a group of pair-fed females, used as a control for anorexic effects of nicotine, were evaluated in a battery of tests, including locomotor activity, the elevated plus maze, two-bottle free-choice nicotine solution consumption, the five-choice serial reaction time test (5-CSRTT) and a delay-discounting test. All tests were conducted between postnatal day (PND) 25 and PND 50. RESULTS Nicotine-exposed animals expressed hyperactivity, increased number of open arms entries in the elevated plus maze and increased numbers of anticipatory responses in the 5-CSRTT. Decreased aversion for nicotine solution in the free-choice test and decreased numbers of omission errors in the 5-CSRTT were observed both in nicotine-exposed and pair-fed offspring. Neither nicotine exposure nor pair-feeding had an effect on impulsive choice in a delay-discounting test. CONCLUSIONS Our study confirms deleterious effects of prenatal nicotine exposure on important aspects of behaviour and inhibitory control in adolescent rats and supports epidemiological findings that show increased levels of symptoms of ADHD and related disorders among those whose mothers smoked during their pregnancy. It also suggests a link between food restriction during pregnancy and addiction-related behaviours in offspring.
Collapse
Affiliation(s)
- T Schneider
- Section of Behavioural Pharmacology, Institute of Psychiatry P048, King's College London, De Crespigny Park, London, SE5 8AF, UK.
| | | | | | | |
Collapse
|
379
|
Psychopathology and the human connectome: toward a transdiagnostic model of risk for mental illness. Neuron 2012; 74:990-1004. [PMID: 22726830 DOI: 10.1016/j.neuron.2012.06.002] [Citation(s) in RCA: 265] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/05/2012] [Indexed: 12/18/2022]
Abstract
The panoply of cognitive, affective, motivational, and social functions that underpin everyday human experience requires precisely choreographed patterns of interaction between networked brain regions. Perhaps not surprisingly, diverse forms of psychopathology are characterized by breakdowns in these interregional relationships. Here, we discuss how functional brain imaging has provided insights into the nature of brain dysconnectivity in mental illness. Synthesizing work to date, we propose that genetic and environmental risk factors impinge upon systems-level circuits for several core dimensions of cognition, producing transdiagnostic symptoms. We argue that risk-associated disruption of these circuits mediates susceptibility to broad domains of psychopathology rather than discrete disorders.
Collapse
|
380
|
Alexander GE, Ryan L, Bowers D, Foster TC, Bizon JL, Geldmacher DS, Glisky EL. Characterizing cognitive aging in humans with links to animal models. Front Aging Neurosci 2012; 4:21. [PMID: 22988439 PMCID: PMC3439638 DOI: 10.3389/fnagi.2012.00021] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Accepted: 07/15/2012] [Indexed: 11/30/2022] Open
Abstract
With the population of older adults expected to grow rapidly over the next two decades, it has become increasingly important to advance research efforts to elucidate the mechanisms associated with cognitive aging, with the ultimate goal of developing effective interventions and prevention therapies. Although there has been a vast research literature on the use of cognitive tests to evaluate the effects of aging and age-related neurodegenerative disease, the need for a set of standardized measures to characterize the cognitive profiles specific to healthy aging has been widely recognized. Here we present a review of selected methods and approaches that have been applied in human research studies to evaluate the effects of aging on cognition, including executive function, memory, processing speed, language, and visuospatial function. The effects of healthy aging on each of these cognitive domains are discussed with examples from cognitive/experimental and clinical/neuropsychological approaches. Further, we consider those measures that have clear conceptual and methodological links to tasks currently in use for non-human animal studies of aging, as well as those that have the potential for translation to animal aging research. Having a complementary set of measures to assess the cognitive profiles of healthy aging across species provides a unique opportunity to enhance research efforts for cross-sectional, longitudinal, and intervention studies of cognitive aging. Taking a cross-species, translational approach will help to advance cognitive aging research, leading to a greater understanding of associated neurobiological mechanisms with the potential for developing effective interventions and prevention therapies for age-related cognitive decline.
Collapse
Affiliation(s)
- Gene E. Alexander
- Department of Psychology, Evelyn F. McKnight Brain Institute, University of ArizonaTucson, AZ, USA
| | - Lee Ryan
- Department of Psychology, Evelyn F. McKnight Brain Institute, University of ArizonaTucson, AZ, USA
| | - Dawn Bowers
- Department of Clinical and Health Psychology, University of FloridaGainesville, FL, USA
- Department of Neurology, University of FloridaGainesville, FL, USA
- McKnight Brain Institute, University of FloridaGainesville, FL, USA
| | - Thomas C. Foster
- McKnight Brain Institute, University of FloridaGainesville, FL, USA
- Department of Neuroscience, University of FloridaGainesville, FL, USA
| | - Jennifer L. Bizon
- McKnight Brain Institute, University of FloridaGainesville, FL, USA
- Department of Neuroscience, University of FloridaGainesville, FL, USA
| | - David S. Geldmacher
- Departments of Neurology and Neurobiology, Evelyn F. McKnight Brain Institute, University of Alabama at BirminghamBirmingham, AL, USA
| | - Elizabeth L. Glisky
- Department of Psychology, Evelyn F. McKnight Brain Institute, University of ArizonaTucson, AZ, USA
| |
Collapse
|
381
|
Schmaal L, Goudriaan AE, van der Meer J, van den Brink W, Veltman DJ. The association between cingulate cortex glutamate concentration and delay discounting is mediated by resting state functional connectivity. Brain Behav 2012; 2:553-62. [PMID: 23139901 PMCID: PMC3489808 DOI: 10.1002/brb3.74] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Accepted: 06/04/2012] [Indexed: 12/31/2022] Open
Abstract
Humans vary in their ability to delay gratification and impulsive decision making is a common feature in various psychiatric disorders. The level of delay discounting is a relatively stable psychological trait, and therefore neural processes implicated in delay discounting are likely to be based on the overall functional organization of the brain (under task-free conditions) in which state-dependent shifts from baseline levels occur. The current study investigated whether delay discounting can be predicted by intrinsic properties of brain functioning. Fourteen healthy male subjects performed a delay discounting task. In addition, resting state functional magnetic resonance imaging (fMRI) and magnetic resonance spectroscopy (¹H MRS) were used to investigate the relationship between individual differences in delay discounting and molecular and regional measures of resting state (baseline) activity of dorsal anterior cingulate cortex (dACC). Results showed that delay discounting was associated with both dACC glutamate concentrations and resting state functional connectivity of the dACC with a midbrain region including ventral tegmental area and substantia nigra. In addition, a neural pathway was established, showing that the effect of glutamate concentrations in the dACC on delay discounting is mediated by functional connectivity of the dACC with the midbrain. The current findings are important to acknowledge because spontaneous intrinsic brain processes have been proposed to be a potential promising biomarker of disease and impulsive decision making is associated with several psychiatric disorders.
Collapse
Affiliation(s)
- Lianne Schmaal
- Amsterdam Institute for Addiction Research, Department of Psychiatry, Academic Medical Center, University of Amsterdam Amsterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
382
|
Gruber AJ, McDonald RJ. Context, emotion, and the strategic pursuit of goals: interactions among multiple brain systems controlling motivated behavior. Front Behav Neurosci 2012; 6:50. [PMID: 22876225 PMCID: PMC3411069 DOI: 10.3389/fnbeh.2012.00050] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Accepted: 07/19/2012] [Indexed: 11/16/2022] Open
Abstract
Motivated behavior exhibits properties that change with experience and partially dissociate among a number of brain structures. Here, we review evidence from rodent experiments demonstrating that multiple brain systems acquire information in parallel and either cooperate or compete for behavioral control. We propose a conceptual model of systems interaction wherein a ventral emotional memory network involving ventral striatum (VS), amygdala, ventral hippocampus, and ventromedial prefrontal cortex triages behavioral responding to stimuli according to their associated affective outcomes. This system engages autonomic and postural responding (avoiding, ignoring, approaching) in accordance with associated stimulus valence (negative, neutral, positive), but does not engage particular operant responses. Rather, this emotional system suppresses or invigorates actions that are selected through competition between goal-directed control involving dorsomedial striatum (DMS) and habitual control involving dorsolateral striatum (DLS). The hippocampus provides contextual specificity to the emotional system, and provides an information rich input to the goal-directed system for navigation and discriminations involving ambiguous contexts, complex sensory configurations, or temporal ordering. The rapid acquisition and high capacity for episodic associations in the emotional system may unburden the more complex goal-directed system and reduce interference in the habit system from processing contingencies of neutral stimuli. Interactions among these systems likely involve inhibitory mechanisms and neuromodulation in the striatum to form a dominant response strategy. Innate traits, training methods, and task demands contribute to the nature of these interactions, which can include incidental learning in non-dominant systems. Addition of these features to reinforcement learning models of decision-making may better align theoretical predictions with behavioral and neural correlates in animals.
Collapse
Affiliation(s)
- Aaron J Gruber
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge AB, Canada
| | | |
Collapse
|
383
|
Age modulates the effect of COMT genotype on delay discounting behavior. Psychopharmacology (Berl) 2012; 222:609-17. [PMID: 22349272 PMCID: PMC3401276 DOI: 10.1007/s00213-012-2653-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2011] [Accepted: 01/27/2012] [Indexed: 12/21/2022]
Abstract
RATIONALE AND OBJECTIVE A form of impulsivity, the tendency to choose immediate over delayed rewards (delay-discounting) has been associated with a single nucleotide polymorphism (SNP) in the catechol-O-methyltransferase (COMT) gene (COMTval¹⁵⁸met; rs4680). However, the existing data regarding the nature of this association are in conflict. We have previously reported that adults homozygous for valine (val) at the COMTval¹⁵⁸met SNP demonstrate greater delay-discounting than do methionine (met) allele carriers (Boettiger et al., J Neurosci 27:14383-14391, 2007). In contrast, a recent study of adolescent males found that those with the met/met genotype demonstrate greater delay-discounting than do val-allele carriers (Paloyelis et al., Neuropsychopharmacology 35:2414-2426, 2010). Based on reported age-related changes in frontal dopamine function and COMT expression, we hypothesized that the association of COMT genotype with delay-discounting behavior is modulated by age from late adolescence to young adulthood. METHODS To test this hypothesis, we genotyped late adolescents (18-21 years; n = 72) and adults (22-40 years; n = 70) for the COMTval¹⁵⁸met polymorphism, measured their delay-discounting behavior, and tested for an interaction between age group and COMT genotype. RESULTS This cross-sectional study found that age modulates COMTval¹⁵⁸met genotype effects on delay-discounting behavior. Among met-carriers, delay-discounting was negatively correlated with age from late adolescence to adulthood, while among val/val individuals delay-discounting was positively correlated with age across this range. CONCLUSIONS These results confirm our previous finding of enhanced delay-discounting among val/val adults relative to met-allele carriers, and help reconcile existing literature. We propose a single U-shaped model of the relationship between frontal DA levels and impulsive choice that accounts for both adolescent and adult data.
Collapse
|
384
|
Dudley JA, Weir RK, Yan TC, Grabowska EM, Grimmé AJ, Amini S, Stephens DN, Hunt SP, Stanford SC. Antagonism of L-type Ca(v) channels with nifedipine differentially affects performance of wildtype and NK1R-/- mice in the 5-Choice Serial Reaction-Time Task. Neuropharmacology 2012; 64:329-36. [PMID: 22884624 DOI: 10.1016/j.neuropharm.2012.06.056] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 06/23/2012] [Accepted: 06/26/2012] [Indexed: 12/11/2022]
Abstract
Mice with functional ablation of the substance P-preferring receptor gene ('Nk1r' in mice ('NK1R-/-'), 'TACR1' in humans) display deficits in cognitive performance that resemble those seen in patients with Attention Deficit Hyperactivity Disorder (ADHD): namely, inattentiveness, impulsivity and perseveration. A recent report suggested that the L-type Ca(v) channel blocker, nifedipine, can ameliorate behavioral abnormalities of this type in humans. In light of evidence that NK1R antagonists modulate the opening of these L-type channels, we investigated whether nifedipine modifies %premature responses (impulsivity), perseveration or %omissions (inattentiveness) in the 5-Choice Serial Reaction-Time Task (5-CSRTT) and whether the response differs in NK1R-/- and wildtype mice. %Premature responses and perseveration were reduced in both genotypes, although wildtype mice were more sensitive to the effects of nifedipine than NK1R-/- mice. By contrast, nifedipine greatly increased %omissions but, again, was more potent in wildtypes. %Accuracy and locomotor activity were unaffected in either genotype. We infer that behavior of mice in the 5-CSRTT depends on the regulation of striato-cortical networks by L-type Ca(v) channels and NK1R. We further suggest that disruption of NK1R signaling in patients with ADHD, especially those with polymorphisms of the TACR1 gene, could lead to compensatory changes in the activity of L-type channels that underlie or exacerbate their problems. This article is part of a Special Issue entitled 'Cognitive Enhancers'.
Collapse
Affiliation(s)
- Julia A Dudley
- Department of Cell and Developmental Biology, University College London (UCL), Gower Street, London WC1E 6BT, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
385
|
Farr OM, Hu S, Zhang S, Li CSR. Decreased saliency processing as a neural measure of Barratt impulsivity in healthy adults. Neuroimage 2012; 63:1070-7. [PMID: 22885245 DOI: 10.1016/j.neuroimage.2012.07.049] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 06/27/2012] [Accepted: 07/23/2012] [Indexed: 11/13/2022] Open
Abstract
Cognitive control is necessary to navigating through an uncertain world. With the stop signal task (SST), we measure how cognitive control functions in a controlled environment. There has been conflicting evidence on whether trait impulsivity might reflect differences in cognitive control during the SST. While some studies find that trait impulsivity relates to measures of response inhibition, such as the stop signal reaction time (SSRT), other studies do not. Here, in 92 young adult participants (58 females; age 25 ± 4 years), we examined whether trait impulsivity, measured by the Barratt impulsivity scale (BIS-11), is associated with differences in performance and regional brain activations for the component processes of cognitive control during the SST. Across participants, trait impulsivity showed a trend-level correlation with SSRT (F(1.90)=3.18, p<.07; Pearson regression). In simple regressions, activation of the right anterior dorsal insula and middle frontal cortex (MFC) during stop as compared to go trials negatively correlated with motor and non-planning impulsivity score. Using the generalized form of psychophysiological interaction (gPPI), we showed that functional connectivity of the right insula and MFC with the left dorsolateral prefrontal cortex and bilateral visual areas were also negatively correlated with impulsivity. None of the other component processes of cognitive control, including response inhibition, error processing, post-error slowing, were significantly related to Barratt impulsivity. These results suggest that trait impulsivity as measured by BIS-11 may have distinct effects on saliency processing in adult individuals.
Collapse
Affiliation(s)
- Olivia M Farr
- Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT 06520, USA.
| | | | | | | |
Collapse
|
386
|
Abstract
Attention deficit hyperactivity disorder (ADHD) presents special challenges for drug development. Current treatment with psychostimulants and nonstimulants is effective, but their mechanism of action beyond the cellular level is incompletely understood. We review evidence suggesting that altered reinforcement mechanisms are a fundamental characteristic of ADHD. We show that a deficit in the transfer of dopamine signals from established positive reinforcers to cues that predict such reinforcers may underlie these altered reinforcement mechanisms, and in turn explain key symptoms of ADHD. We argue that the neural substrates controlling the excitation and inhibition of dopamine neurons during the transfer process are a promising target for future drug development. There is a need to develop animal models and behavioral paradigms that can be used to experimentally investigate these mechanisms and their effects on sensitivity to reinforcement. More specific and selective targeting of drug development may be possible through this approach.
Collapse
Affiliation(s)
- Gail Tripp
- Human Developmental Neurobiology Unit, Okinawa Institute of Science and Technology Graduate University, Kunigami, Okinawa 904-0412, Japan.
| | | |
Collapse
|
387
|
Minzenberg MJ. Pharmacotherapy for attention-deficit/hyperactivity disorder: from cells to circuits. Neurotherapeutics 2012; 9:610-21. [PMID: 22718077 PMCID: PMC3441935 DOI: 10.1007/s13311-012-0128-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is a highly prevalent disorder of childhood and adulthood, with a considerable impact on public health. There is a substantial pharmacopoeia available for safe and effective treatment of ADHD, and newly available agents diversify the treatment options. With the burgeoning scientific literature addressing the genetic, neurochemical, and neural systems basis for this condition, increasing attention is directed at establishing the neural basis for the efficacy of existing treatments. ADHD remains the only highly prevalent, nondegenerative neuropsychiatric disorder for which effective medications remediate the principal cognitive disturbances in concert with clinical efficacy. Therefore, deeper insight into the neural mechanisms of cognitive remediation may serve to advance treatment development not only in ADHD, but across a wide range of neuropsychiatric disorders in which cognitive dysfunction is a cardinal feature and a strong predictor of clinical outcome. To date, all effective medications for ADHD act on 1 or both of the major catecholamine neurotransmitter systems in the brain. These 2 systems, which arise from subcortical nuclei and use norepinephrine (NE) or dopamine (DA) as transmitters, exert strong modulatory effects on widely distributed cortical-subcortical neural circuits, with important effects on cognition, mood, and behavior, in both health and illness. The present review outlines the actions of ADHD medications from subcellular effects to effects on neural systems and cognition in ADHD patients. This is a very active area of investigation at all phases of the translational cycle, and near-term work is poised to firmly link cellular neuropharmacology to large-scale effects, and point the way toward advances in treatment.
Collapse
Affiliation(s)
- Michael J Minzenberg
- Department of Psychiatry, Davis School of Medicine, University of California, Sacramento, CA 95817, USA.
| |
Collapse
|
388
|
Wiskerke J, van Mourik Y, Schetters D, Schoffelmeer ANM, Pattij T. On the Role of Cannabinoid CB1- and μ-Opioid Receptors in Motor Impulsivity. Front Pharmacol 2012; 3:108. [PMID: 22701425 PMCID: PMC3371578 DOI: 10.3389/fphar.2012.00108] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Accepted: 05/20/2012] [Indexed: 11/16/2022] Open
Abstract
Previous studies using a rat 5-choice serial reaction time task have established a critical role for dopamine D2 receptors in regulating increments in motor impulsivity induced by acute administration of the psychostimulant drugs amphetamine and nicotine. Here we investigated whether cannabinoid CB1 and/or μ-opioid receptors are involved in nicotine-induced impulsivity, given recent findings indicating that both receptor systems mediate amphetamine-induced motor impulsivity. Results showed that the cannabinoid CB1 receptor antagonist SR141716A, but not the opioid receptor antagonist naloxone, reduced nicotine-induced premature responding, indicating that nicotine-induced motor impulsivity is cannabinoid, but not opioid receptor-dependent. In contrast, SR141716A did not affect impulsivity following a challenge with the dopamine transporter inhibitor GBR 12909, a form of drug-induced impulsivity that was previously found to be dependent on μ-opioid receptor activation. Together, these data are consistent with the idea that the endogenous cannabinoid, dopamine, and opioid systems each play important, but distinct roles in regulating (drug-induced) motor impulsivity. The rather complex interplay between these neurotransmitter systems modulating impulsivity will be discussed in terms of the differential involvement of mesocortical and mesolimbic neurocircuitry.
Collapse
Affiliation(s)
- Joost Wiskerke
- Department of Anatomy and Neurosciences, Neuroscience Campus Amsterdam, VU University Medical Center Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
389
|
Navarrete F, Pérez-Ortiz JM, Manzanares J. Cannabinoid CB₂ receptor-mediated regulation of impulsive-like behaviour in DBA/2 mice. Br J Pharmacol 2012; 165:260-73. [PMID: 21671903 DOI: 10.1111/j.1476-5381.2011.01542.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND AND PURPOSE This study evaluated gene expression differences between two mouse strains, characterized by opposite impulsivity-like traits and the involvement of the cannabinoid CB(2) receptor in the modulation of impulsivity. EXPERIMENTAL APPROACH Behavioural tests were conducted to compare motor activity, exploration and novelty seeking, attention and cognitive and motor impulsivity (delayed reinforcement task: session duration 30 min; timeout 30 s) between A/J and DBA/2 mice. Expression of genes for dopamine D(2) receptors, CB(1) and CB(2) receptors were measured in the cingulate cortex (CgCtx), caudate-putamen (CPu), accumbens (Acc), amygdala (Amy) and hippocampus (Hipp). Involvement of CB(2) receptors in impulsivity was evaluated in DBA/2 mice with a CB(2) receptor agonist (JWH133) and an antagonist (AM630). KEY RESULTS DBA/2 mice presented higher motor and exploratory activity, pre-pulse inhibition impairment and higher cognitive and motor impulsivity level than A/J mice. In addition, DBA/2 mice showed lower (CgCtx, Acc, CPu) D(2) receptor, lower (Amy) and higher (CgCtx, Acc, CPu, Hipp) CB(1) receptor and higher (CgCtx, Acc, Amy) and similar (CPu, Hipp) CB(2) receptor gene expressions. Treatment with JWH133 (0.5, 1, 3 mg·kg(-1), i.p.) reduced cognitive and motor impulsivity level, accompanied by CB(2) receptor down-regulation (CgCtx, Acc, Amy) but did not modify other behaviours. In contrast, AM630 (1, 2, 3 mg·kg(-1), i.p.) improved pre-pulse inhibition and reduced novelty seeking behaviour in DBA/2 mice. CONCLUSIONS AND IMPLICATIONS CB(2) receptors might play an important role in regulating impulsive behaviours and should be considered a promising therapeutic target in the treatment of impulsivity-related disorders.
Collapse
Affiliation(s)
- Francisco Navarrete
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, San Juan de Alicante, Alicante, Spain
| | | | | |
Collapse
|
390
|
Social-cooperation differs from individual behavior in hypothalamic and striatal monoamine function: Evidence from a laboratory rat model. Behav Brain Res 2012; 232:252-63. [DOI: 10.1016/j.bbr.2012.04.032] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Revised: 04/17/2012] [Accepted: 04/20/2012] [Indexed: 01/10/2023]
|
391
|
Gianotti LRR, Figner B, Ebstein RP, Knoch D. Why Some People Discount More than Others: Baseline Activation in the Dorsal PFC Mediates the Link between COMT Genotype and Impatient Choice. Front Neurosci 2012; 6:54. [PMID: 22586360 PMCID: PMC3345569 DOI: 10.3389/fnins.2012.00054] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Accepted: 03/29/2012] [Indexed: 11/23/2022] Open
Abstract
Individuals differ widely in how steeply they discount future rewards. The sources of these stable individual differences in delay discounting (DD) are largely unknown. One candidate is the COMT Val158Met polymorphism, known to modulate prefrontal dopamine levels and affect DD. To identify possible neural mechanisms by which this polymorphism may contribute to stable individual DD differences, we measured 73 participants’ neural baseline activation using resting electroencephalogram (EEG). Such neural baseline activation measures are highly heritable and stable over time, thus an ideal endophenotype candidate to explain how genes may influence behavior via individual differences in neural function. After EEG-recording, participants made a series of incentive-compatible intertemporal choices to determine the steepness of their DD. We found that COMT significantly affected DD and that this effect was mediated by baseline activation level in the left dorsal prefrontal cortex (DPFC): (i) COMT had a significant effect on DD such that the number of Val alleles was positively correlated with steeper DD (higher numbers of Val alleles means greater COMT activity and thus lower dopamine levels). (ii) A whole-brain search identified a cluster in left DPFC where baseline activation was correlated with DD; lower activation was associated with steeper DD. (iii) COMT had a significant effect on the baseline activation level in this left DPFC cluster such that a higher number of Val alleles was associated with lower baseline activation. (iv) The effect of COMT on DD was explained by the mediating effect of neural baseline activation in the left DPFC cluster. Our study thus establishes baseline activation level in left DPFC as salient neural signature in the form of an endophenotype that mediates the link between COMT and DD.
Collapse
Affiliation(s)
- Lorena R R Gianotti
- Social and Affective Neuroscience, Department of Psychology, University of Basel Basel, Switzerland
| | | | | | | |
Collapse
|
392
|
Broos N, Schmaal L, Wiskerke J, Kostelijk L, Lam T, Stoop N, Weierink L, Ham J, de Geus EJC, Schoffelmeer ANM, van den Brink W, Veltman DJ, de Vries TJ, Pattij T, Goudriaan AE. The relationship between impulsive choice and impulsive action: a cross-species translational study. PLoS One 2012; 7:e36781. [PMID: 22574225 PMCID: PMC3344935 DOI: 10.1371/journal.pone.0036781] [Citation(s) in RCA: 175] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Accepted: 04/13/2012] [Indexed: 11/29/2022] Open
Abstract
Maladaptive impulsivity is a core symptom in various psychiatric disorders. However, there is only limited evidence available on whether different measures of impulsivity represent largely unrelated aspects or a unitary construct. In a cross-species translational study, thirty rats were trained in impulsive choice (delayed reward task) and impulsive action (five-choice serial reaction time task) paradigms. The correlation between those measures was assessed during baseline performance and after pharmacological manipulations with the psychostimulant amphetamine and the norepinephrine reuptake inhibitor atomoxetine. In parallel, to validate the animal data, 101 human subjects performed analogous measures of impulsive choice (delay discounting task, DDT) and impulsive action (immediate and delayed memory task, IMT/DMT). Moreover, all subjects completed the Stop Signal Task (SST, as an additional measure of impulsive action) and filled out the Barratt impulsiveness scale (BIS-11). Correlations between DDT and IMT/DMT were determined and a principal component analysis was performed on all human measures of impulsivity. In both rats and humans measures of impulsive choice and impulsive action did not correlate. In rats the within-subject pharmacological effects of amphetamine and atomoxetine did not correlate between tasks, suggesting distinct underlying neural correlates. Furthermore, in humans, principal component analysis identified three independent factors: (1) self-reported impulsivity (BIS-11); (2) impulsive action (IMT/DMT and SST); (3) impulsive choice (DDT). This is the first study directly comparing aspects of impulsivity using a cross-species translational approach. The present data reveal the non-unitary nature of impulsivity on a behavioral and pharmacological level. Collectively, this warrants a stronger focus on the relative contribution of distinct forms of impulsivity in psychopathology.
Collapse
Affiliation(s)
- Nienke Broos
- Department of Anatomy and Neurosciences, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Lianne Schmaal
- Department of Psychiatry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Joost Wiskerke
- Department of Anatomy and Neurosciences, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Lennard Kostelijk
- Department of Psychiatry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Thomas Lam
- Department of Psychiatry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Nicky Stoop
- Department of Anatomy and Neurosciences, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Lonneke Weierink
- Department of Anatomy and Neurosciences, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Jannemieke Ham
- Department of Anatomy and Neurosciences, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Eco J. C. de Geus
- Department of Biological Psychology, VU University, Amsterdam, The Netherlands
| | - Anton N. M. Schoffelmeer
- Department of Anatomy and Neurosciences, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Wim van den Brink
- Department of Psychiatry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Dick J. Veltman
- Department of Psychiatry, VU University Medical Center, Amsterdam, The Netherlands
| | - Taco J. de Vries
- Department of Anatomy and Neurosciences, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Tommy Pattij
- Department of Anatomy and Neurosciences, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
- * E-mail:
| | - Anna E. Goudriaan
- Department of Psychiatry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
393
|
Trait impulsive choice predicts resistance to extinction and propensity to relapse to cocaine seeking: a bidirectional investigation. Neuropsychopharmacology 2012; 37:1377-86. [PMID: 22318198 PMCID: PMC3327843 DOI: 10.1038/npp.2011.323] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Despite the strong association between impulsivity and addiction in humans, it is still a matter of debate whether impulsive choice predisposes to, or results from, drug dependence. Furthermore, it is unknown whether treating impulsivity can protect against relapse propensity. Therefore, this study explored the bidirectional relationship between impulsive choice and cocaine taking and seeking in rat behavioral models. In experiment 1, to determine whether impulsive choice predisposes to cocaine taking or seeking, rats were selected based on trait impulsivity in a delayed reward task and subsequently compared on various stages of cocaine self-administration (SA). To examine the consequence of cocaine intake on impulsive choice, impulsivity was monitored once a week throughout various stages of cocaine SA. To determine whether treating impulsive choice can protect against relapse propensity, in experiment 2, impulsive choice was manipulated by pharmacological interventions and cocaine-associated contextual cues. Trait impulsive choice as determined in experiment 1 predicted high extinction resistance and enhanced propensity to context-induced relapse in the cocaine SA model, whereas cocaine intake did not alter impulsive choice. Furthermore, acute changes in impulsive choice were not related to rates of context-induced relapse. Taken together, the current data indicate that trait impulsive choice predicts persistent cocaine seeking during extinction and enhanced propensity to relapse, whereas acute manipulations of impulsive choice had no favorable outcomes on relapse measures. These observations suggest that trait impulsivity can be used as a predictive factor for addiction liability, but treating this impulsivity does not necessarily protect against relapse.
Collapse
|
394
|
Reeves SJ, Polling C, Stokes PRA, Lappin JM, Shotbolt PP, Mehta MA, Howes OD, Egerton A. Limbic striatal dopamine D2/3 receptor availability is associated with non-planning impulsivity in healthy adults after exclusion of potential dissimulators. Psychiatry Res 2012; 202:60-4. [PMID: 22595510 DOI: 10.1016/j.pscychresns.2011.09.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Revised: 09/16/2011] [Accepted: 09/23/2011] [Indexed: 12/18/2022]
Abstract
Positron emission tomography (PET) studies have reported an association between reduced striatal dopamine D2/3 receptor availability and higher scores on self-report measures of trait impulsivity in healthy adults. However, impulsivity is a multi-faceted construct, and it is unclear which aspect(s) of impulsivity might be driving these associations. The current study aimed to investigate the relationship between limbic (ventral) striatal D2/3 receptor availability and individual components of impulsivity (attentional, motor and non-planning) using the Barratt Impulsiveness Scale (BIS-11) and [(11)C]raclopride PET in 23 healthy volunteers. A partial correlational analysis showed a significant association between non-planning impulsiveness (lack of forethought or 'futuring') and limbic D2/3 receptor availability, which was only apparent after the exclusion of potential dissimulators (indexed by high scores on impression management). Our findings suggest that non-planning impulsiveness is associated with individual variation in limbic striatal D2/3 receptor availability and that different facets of impulsivity may have specific neurochemical correlates. Future studies that combine D2/3 receptor imaging with behavioral measures of impulsivity are required to further elucidate the precise relationship between individual components of trait impulsivity and brain dopaminergic function.
Collapse
Affiliation(s)
- Suzanne J Reeves
- Department of Old Age Psychiatry, Institute of Psychiatry, Kings College London, UK.
| | | | | | | | | | | | | | | |
Collapse
|
395
|
Ozdemir Ö. Is premature ejaculation an impulse control disorder? Med Hypotheses 2012; 79:59-62. [PMID: 22543077 DOI: 10.1016/j.mehy.2012.03.034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Revised: 02/17/2012] [Accepted: 03/30/2012] [Indexed: 10/28/2022]
Abstract
Premature ejaculation (PE) is defined as persistent or recurrent ejaculation with minimal sexual stimulation that occurs before the participant wishes to ejaculate and is associated with marked distress or interpersonal difficulty. Impulse control disorders (ICDs) are grouped as a heterogeneous cluster of disorders linked by a "failure to resist" impulses to engage in harmful, disturbing or distressing behaviours. I hypothesise that premature ejaculation is an impulse control disorder. ICDs share features with PE aspects of impaired control, rapid responses to stimuli and hypersensitivity. These disorders often occur with subjective and social distress for patients. In addition to these features, the neurotransmitter systems have been similarly implicated in ICDs and PE. The same treatment options further support a relationship between ICDs and PE. The behaviours likely exist on a spectrum.
Collapse
Affiliation(s)
- Özdemir Ozdemir
- Department of Psychiatry, Ipekyolu Public Hospital, Van 65200, Turkey.
| |
Collapse
|
396
|
Dalley JW, Roiser JP. Dopamine, serotonin and impulsivity. Neuroscience 2012; 215:42-58. [PMID: 22542672 DOI: 10.1016/j.neuroscience.2012.03.065] [Citation(s) in RCA: 303] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Revised: 03/08/2012] [Accepted: 03/10/2012] [Indexed: 12/17/2022]
Abstract
Impulsive people have a strong urge to act without thinking. It is sometimes regarded as a positive trait but rash impulsiveness is also widely present in clinical disorders such as attention deficit hyperactivity disorder (ADHD), drug dependence, mania, and antisocial behaviour. Contemporary research has begun to make major inroads into unravelling the brain mechanisms underlying impulsive behaviour with a prominent focus on the limbic cortico-striatal systems. With this progress has come the understanding that impulsivity is a multi-faceted behavioural trait involving neurally and psychologically diverse elements. We discuss the significance of this heterogeneity for clinical disorders expressing impulsive behaviour and the pivotal contribution made by the brain dopamine and serotonin systems in the aetiology and treatment of behavioural syndromes expressing impulsive symptoms.
Collapse
Affiliation(s)
- J W Dalley
- Behavioural and Clinical Neuroscience Institute and Department of Experimental Psychology, University of Cambridge, Downing Street, Cambridge CB2 3EB, UK. jwd20@cam. ac. uk
| | | |
Collapse
|
397
|
Altered spatial learning and delay discounting in a rat model of human third trimester binge ethanol exposure. Behav Pharmacol 2012; 23:54-65. [PMID: 22129556 DOI: 10.1097/fbp.0b013e32834eb07d] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Ethanol exposure during perinatal development can cause cognitive abnormalities including difficulties in learning, attention, and memory, as well as heightened impulsivity. The purpose of this study was to assess performance in spatial learning and impulsive choice tasks in rats subjected to an intragastric intubation model of binge ethanol exposure during human third trimester-equivalent brain development. Male and female Sprague-Dawley rat pups were intubated with ethanol (5.25 g/kg/day) on postnatal days 4-9. At adolescence (between postnatal days 35-38), these rats and sham intubated within-litter controls were trained in both spatial and cued versions of the Morris water maze. A subset of the male rats was subsequently tested on a delay-discounting task to assess impulsive choice. Ethanol-exposed rats were spatially impaired relative to controls, but performed comparably to controls on the cued version of the water maze. Ethanol-exposed rats also showed greater preference for large delayed rewards on the delay discounting task, but no evidence for altered reward sensitivity or perseverative behavior. These data demonstrate that early postnatal intermittent binge-like ethanol exposure has prolonged, detrimental, but selective effects on cognition, suggesting that even relatively brief ethanol exposure late in human pregnancy can be deleterious for cognitive function.
Collapse
|
398
|
Angoa-Pérez M, Kane MJ, Briggs DI, Sykes CE, Shah MM, Francescutti DM, Rosenberg DR, Thomas DM, Kuhn DM. Genetic depletion of brain 5HT reveals a common molecular pathway mediating compulsivity and impulsivity. J Neurochem 2012; 121:974-84. [PMID: 22443164 DOI: 10.1111/j.1471-4159.2012.07739.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Neuropsychiatric disorders characterized by behavioral disinhibition, including disorders of compulsivity (e.g. obsessive-compulsive disorder; OCD) and impulse-control (e.g. impulsive aggression), are severe, highly prevalent and chronically disabling. Treatment options for these diseases are extremely limited. The pathophysiological bases of disorders of behavioral disinhibition are poorly understood but it has been suggested that serotonin dysfunction may play a role. Mice lacking the gene encoding brain tryptophan hydroxylase 2 (Tph2-/-), the initial and rate-limiting enzyme in the synthesis of serotonin, were tested in numerous behavioral assays that are well known for their utility in modeling human neuropsychiatric diseases. Mice lacking Tph2 (and brain 5HT) show intense compulsive and impulsive behaviors to include extreme aggression. The impulsivity is motor in form and not cognitive because Tph2-/- mice show normal acquisition and reversal learning on a spatial learning task. Restoration of 5HT levels by treatment of Tph2-/- mice with its immediate precursor 5-hydroxytryptophan attenuated compulsive and impulsive-aggressive behaviors. Surprisingly, in Tph2-/- mice, the lack of 5HT was not associated with anxiety-like behaviors. The results indicate that 5HT mediates behavioral disinhibition in the mammalian brain independent of anxiogenesis.
Collapse
Affiliation(s)
- Mariana Angoa-Pérez
- Department of Psychiatry & Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, Michigan, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
399
|
Burton CL, Fletcher PJ. Age and sex differences in impulsive action in rats: The role of dopamine and glutamate. Behav Brain Res 2012; 230:21-33. [DOI: 10.1016/j.bbr.2012.01.046] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Revised: 01/11/2012] [Accepted: 01/24/2012] [Indexed: 11/25/2022]
|
400
|
Groman SM, Jentsch JD. Cognitive control and the dopamine D₂-like receptor: a dimensional understanding of addiction. Depress Anxiety 2012; 29:295-306. [PMID: 22147558 DOI: 10.1002/da.20897] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Revised: 08/05/2011] [Accepted: 08/06/2011] [Indexed: 11/09/2022] Open
Abstract
The phenotypic complexity of psychiatric conditions is revealed by the dimensional nature of these disorders, which consist of multiple behavioral, affective, and cognitive dysfunctions that can result in substantial psychosocial impairment. The high degree of heterogeneity in symptomatology and comorbidity suggests that simple categorical diagnoses of "affected" or "unaffected" may fail to capture the true characteristics of the disorder in a manner relevant to individualized treatment. A particular dimension of interest is cognitive control ability because impairments in the capacity to control thoughts, feelings, and actions are key to several psychiatric disorders. Here, we describe evidence suggesting that cognitive control over behavior is a crucial dimension of function relevant to addictions. Moreover, dopamine (DA) D(2)-receptor transmission is increasingly being identified as a point of convergence for these behavioral and cognitive processes. Consequently, we argue that measures of cognitive control and D(2) DA receptor function may be particularly informative markers of individual function and treatment response in addictions.
Collapse
Affiliation(s)
- Stephanie M Groman
- Department of Psychology, University of California, Los Angeles, California 90095-1563, USA
| | | |
Collapse
|