351
|
Li Z, Xiao S, Yang Y, Chen C, Lu T, Chen Z, Jiang H, Chen S, Luo C, Zhou B. Discovery of 8-Methyl-pyrrolo[1,2-a]pyrazin-1(2H)-one Derivatives as Highly Potent and Selective Bromodomain and Extra-Terminal (BET) Bromodomain Inhibitors. J Med Chem 2020; 63:3956-3975. [DOI: 10.1021/acs.jmedchem.9b01784] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Zizhou Li
- Department of Medicinal Chemistry, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Senhao Xiao
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
- School of Life Science and Technology, Shanghai Tech University, Shanghai 200031, China
| | - Yaxi Yang
- Department of Medicinal Chemistry, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Chao Chen
- Department of Medicinal Chemistry, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Tian Lu
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Zhifeng Chen
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Hualiang Jiang
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Shijie Chen
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Cheng Luo
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Bing Zhou
- Department of Medicinal Chemistry, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| |
Collapse
|
352
|
Hu X, Chen LF. Pinning Down the Transcription: A Role for Peptidyl-Prolyl cis-trans Isomerase Pin1 in Gene Expression. Front Cell Dev Biol 2020; 8:179. [PMID: 32266261 PMCID: PMC7100383 DOI: 10.3389/fcell.2020.00179] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 03/04/2020] [Indexed: 12/14/2022] Open
Abstract
Pin1 is a peptidyl-prolyl cis-trans isomerase that specifically binds to a phosphorylated serine or threonine residue preceding a proline (pSer/Thr-Pro) motif and catalyzes the cis-trans isomerization of proline imidic peptide bond, resulting in conformational change of its substrates. Pin1 regulates many biological processes and is also involved in the development of human diseases, like cancer and neurological diseases. Many Pin1 substrates are transcription factors and transcription regulators, including RNA polymerase II (RNAPII) and factors associated with transcription initiation, elongation, termination and post-transcription mRNA decay. By changing the stability, subcellular localization, protein-protein or protein-DNA/RNA interactions of these transcription related proteins, Pin1 modulates the transcription of many genes related to cell proliferation, differentiation, apoptosis and immune response. Here, we will discuss how Pin regulates the properties of these transcription relevant factors for effective gene expression and how Pin1-mediated transcription contributes to the diverse pathophysiological functions of Pin1.
Collapse
Affiliation(s)
- Xiangming Hu
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Lin-Feng Chen
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, United States.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| |
Collapse
|
353
|
Sapienza MR, Pileri S. Molecular Features of Blastic Plasmacytoid Dendritic Cell Neoplasm: DNA Mutations and Epigenetics. Hematol Oncol Clin North Am 2020; 34:511-521. [PMID: 32336416 DOI: 10.1016/j.hoc.2020.01.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is a rare hematologic neoplasm with a dismal prognosis and no standard therapy. In the past, its cellular ontogenesis was obscure, and BPDCN had been erroneously named CD56+/TdT+ blastic NK cell tumor and CD4+/CD56+ hematodermic neoplasm. Finally, in 2008, the BPDCN was correctly recognized as a neoplasm deriving from the malignant transformation of plasmacytoid dendritic cell precursors and classified among the myeloid neoplasms. Since then, the understanding of BPDCN biology has improved rapidly: the DNA mutational status of BPDCN has been extensively investigated revealing a spectrum perfectly resembling its myeloid lineage derivation.
Collapse
Affiliation(s)
- Maria Rosaria Sapienza
- Division of Diagnostic Haematopathology, European Institute of Oncology, IRCCS, Via Ripamonti 435, Milan 20141, Italy.
| | - Stefano Pileri
- Division of Diagnostic Haematopathology, European Institute of Oncology, IRCCS, Via Ripamonti 435, Milan 20141, Italy
| |
Collapse
|
354
|
Westphal M, Sant P, Hauser AT, Jung M, Driever W. Chemical Genetics Screen Identifies Epigenetic Mechanisms Involved in Dopaminergic and Noradrenergic Neurogenesis in Zebrafish. Front Genet 2020; 11:80. [PMID: 32158467 PMCID: PMC7052299 DOI: 10.3389/fgene.2020.00080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 01/24/2020] [Indexed: 12/17/2022] Open
Abstract
The cell type diversity and complexity of the nervous system is generated by a network of signaling events, transcription factors, and epigenetic regulators. Signaling and transcriptional control have been easily amenable to forward genetic screens in model organisms like zebrafish. In contrast, epigenetic mechanisms have been somewhat elusive in genetic screens, likely caused by broad action in multiple developmental pathways that masks specific phenotypes, but also by genetic redundancies of epigenetic factors. Here, we performed a screen using small molecule inhibitors of epigenetic mechanisms to reveal contributions to specific aspects of neurogenesis in zebrafish. We chose development of dopaminergic and noradrenergic neurons from neural progenitors as target of epigenetic regulation. We performed the screen in two phases: First, we tested a small molecule inhibitor library that targets a broad range of epigenetic protein classes and mechanisms, using expression of the dopaminergic and noradrenergic marker tyrosine hydroxylase as readout. We identified 10 compounds, including HDAC, Bromodomain and HAT inhibitors, which interfered with dopaminergic and noradrenergic development in larval zebrafish. In the second screening phase, we aimed to identify neurogenesis stages affected by these 10 inhibitors. We analyzed treated embryos for effects on neural stem cells, growth progression of the retina, and apoptosis in neural tissues. In addition, we analyzed effects on islet1 expressing neuronal populations to determine potential selectivity of compounds for transmitter phenotypes. In summary, our targeted screen of epigenetic inhibitors identified specific compounds, which reveal chromatin regulator classes that contribute to dopaminergic and noradrenergic neurogenesis in vivo.
Collapse
Affiliation(s)
- Markus Westphal
- Developmental Biology, Faculty of Biology, Institute Biology 1, Albert Ludwigs University Freiburg, Freiburg, Germany
- CIBSS and BIOSS—Centres for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Pooja Sant
- Developmental Biology, Faculty of Biology, Institute Biology 1, Albert Ludwigs University Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
| | - Alexander-Thomas Hauser
- Chemical Epigenetics Group, Institute of Pharmaceutical Sciences, Albert Ludwigs University Freiburg, Freiburg, Germany
| | - Manfred Jung
- Chemical Epigenetics Group, Institute of Pharmaceutical Sciences, Albert Ludwigs University Freiburg, Freiburg, Germany
- CIBSS—Centre for Integrative Biological SignallingStudies, University of Freiburg, Freiburg, Germany
| | - Wolfgang Driever
- Developmental Biology, Faculty of Biology, Institute Biology 1, Albert Ludwigs University Freiburg, Freiburg, Germany
- CIBSS and BIOSS—Centres for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| |
Collapse
|
355
|
P-TEFb as A Promising Therapeutic Target. Molecules 2020; 25:molecules25040838. [PMID: 32075058 PMCID: PMC7070488 DOI: 10.3390/molecules25040838] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 02/06/2020] [Accepted: 02/07/2020] [Indexed: 01/19/2023] Open
Abstract
The positive transcription elongation factor b (P-TEFb) was first identified as a general factor that stimulates transcription elongation by RNA polymerase II (RNAPII), but soon afterwards it turned out to be an essential cellular co-factor of human immunodeficiency virus (HIV) transcription mediated by viral Tat proteins. Studies on the mechanisms of Tat-dependent HIV transcription have led to radical advances in our knowledge regarding the mechanism of eukaryotic transcription, including the discoveries that P-TEFb-mediated elongation control of cellular transcription is a main regulatory step of gene expression in eukaryotes, and deregulation of P-TEFb activity plays critical roles in many human diseases and conditions in addition to HIV/AIDS. P-TEFb is now recognized as an attractive and promising therapeutic target for inflammation/autoimmune diseases, cardiac hypertrophy, cancer, infectious diseases, etc. In this review article, I will summarize our knowledge about basic P-TEFb functions, the regulatory mechanism of P-TEFb-dependent transcription, P-TEFb’s involvement in biological processes and diseases, and current approaches to manipulating P-TEFb functions for the treatment of these diseases.
Collapse
|
356
|
Werner MT, Wang H, Hamagami N, Hsu SC, Yano JA, Stonestrom AJ, Behera V, Zong Y, Mackay JP, Blobel GA. Comparative structure-function analysis of bromodomain and extraterminal motif (BET) proteins in a gene-complementation system. J Biol Chem 2020; 295:1898-1914. [PMID: 31792058 PMCID: PMC7029111 DOI: 10.1074/jbc.ra119.010679] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 11/17/2019] [Indexed: 11/06/2022] Open
Abstract
The widely expressed bromodomain and extraterminal motif (BET) proteins bromodomain-containing protein 2 (BRD2), BRD3, and BRD4 are multifunctional transcriptional regulators that bind acetylated chromatin via their conserved tandem bromodomains. Small molecules that target BET bromodomains are being tested for various diseases but typically do not discern between BET family members. Genomic distributions and protein partners of BET proteins have been described, but the basis for differences in BET protein function within a given lineage remains unclear. By establishing a gene knockout-rescue system in a Brd2-null erythroblast cell line, here we compared a series of mutant and chimeric BET proteins for their ability to modulate cell growth, differentiation, and gene expression. We found that the BET N-terminal halves bearing the bromodomains convey marked differences in protein stability but do not account for specificity in BET protein function. Instead, when BET proteins were expressed at comparable levels, their specificity was largely determined by the C-terminal half. Remarkably, a chimeric BET protein comprising the N-terminal half of the structurally similar short BRD4 isoform (BRD4S) and the C-terminal half of BRD2 functioned similarly to intact BRD2. We traced part of the BRD2-specific activity to a previously uncharacterized short segment predicted to harbor a coiled-coil (CC) domain. Deleting the CC segment impaired BRD2's ability to restore growth and differentiation, and the CC region functioned in conjunction with the adjacent ET domain to impart BRD2-like activity onto BRD4S. In summary, our results identify distinct BET protein domains that regulate protein turnover and biological activities.
Collapse
Affiliation(s)
- Michael T Werner
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104; Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104.
| | - Hongxin Wang
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104
| | - Nicole Hamagami
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104
| | - Sarah C Hsu
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104; Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Jennifer A Yano
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104
| | - Aaron J Stonestrom
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104; Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Vivek Behera
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104; Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Yichen Zong
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Joel P Mackay
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Gerd A Blobel
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104; Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104.
| |
Collapse
|
357
|
Tang F, Yang Z, Tan Y, Li Y. Super-enhancer function and its application in cancer targeted therapy. NPJ Precis Oncol 2020; 4:2. [PMID: 32128448 PMCID: PMC7016125 DOI: 10.1038/s41698-020-0108-z] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 12/31/2019] [Indexed: 12/12/2022] Open
Abstract
Recently, super-enhancers (SEs) have been identified as a unique type of transcriptional regulation involved in cancer development. SEs exhibit a size, high transcription factor density, and strong binding to the transcriptional machinery compared with typical enhancers. SEs play an essential role in cell growth, differentiation, and disease initiation and progression including tumorigenesis. In particular, cancer-specific SEs have been proven to be key oncogenic drivers types of tumor cells. Furthermore, it has been confirmed that cancer-specific SEs can mediate the dysregulation of signaling pathways and promote cancer cell growth. Additionally, therapeutic strategies directly targeting SE components, for example, by disrupting SE structure or inhibiting SE cofactors, have shown a good curative effect on various cancers.
Collapse
Affiliation(s)
- Faqing Tang
- 1Department of Clinical Laboratory, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 410013 Changsha, China
| | - Zongbei Yang
- 2Department of Clinical Laboratory, Zhuhai People's Hospital & Zhuhai Hospital of Jinan University, 519000 Zhuhai, China
| | - Yuan Tan
- 1Department of Clinical Laboratory, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 410013 Changsha, China
| | - Yuejin Li
- 1Department of Clinical Laboratory, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 410013 Changsha, China
| |
Collapse
|
358
|
Lee S, Liu H, Hill R, Chen C, Hong X, Crawford F, Kingsley M, Zhang Q, Liu X, Chen Z, Lengeling A, Bernt KM, Marrack P, Kappler J, Zhou Q, Li CY, Xue Y, Hansen K, Zhang G. JMJD6 cleaves MePCE to release positive transcription elongation factor b (P-TEFb) in higher eukaryotes. eLife 2020; 9:53930. [PMID: 32048991 PMCID: PMC7064345 DOI: 10.7554/elife.53930] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 02/11/2020] [Indexed: 12/19/2022] Open
Abstract
More than 30% of genes in higher eukaryotes are regulated by promoter-proximal pausing of RNA polymerase II (Pol II). Phosphorylation of Pol II CTD by positive transcription elongation factor b (P-TEFb) is a necessary precursor event that enables productive transcription elongation. The exact mechanism on how the sequestered P-TEFb is released from the 7SK snRNP complex and recruited to Pol II CTD remains unknown. In this report, we utilize mouse and human models to reveal methylphosphate capping enzyme (MePCE), a core component of the 7SK snRNP complex, as the cognate substrate for Jumonji domain-containing 6 (JMJD6)’s novel proteolytic function. Our evidences consist of a crystal structure of JMJD6 bound to methyl-arginine, enzymatic assays of JMJD6 cleaving MePCE in vivo and in vitro, binding assays, and downstream effects of Jmjd6 knockout and overexpression on Pol II CTD phosphorylation. We propose that JMJD6 assists bromodomain containing 4 (BRD4) to recruit P-TEFb to Pol II CTD by disrupting the 7SK snRNP complex. In animals, an enzyme known as RNA polymerase II (Pol II for short) is a key element of the transcription process, whereby the genetic information contained in DNA is turned into messenger RNA molecules in the cells, which can then be translated to proteins. To perform this task, Pol II needs to be activated by a complex of proteins called P-TEFb; however, P-TEFb is usually found in an inactive form held by another group of proteins. Yet, it is unclear how P-TEFb is released and allowed to activate Pol II. Scientists have speculated that another protein called JMJD6 (Jumonji domain-containing 6) is important for P-TEFb to activate Pol II. Various roles for JMJD6 have been proposed, but its exact purpose remains unclear. Recently, two enzymes closely related to JMJD6 were found to be able to make precise cuts in other proteins; Lee, Liu et al. therefore wanted to test whether this is also true of JMJD6. Experiments using purified JMJD6 showed that it could make a cut in an enzyme called MePCE, which belongs to the group of proteins that hold P-TEFb in its inactive form. Lee, Liu et al. then tested the relationships between these proteins in living human and mouse cells. The levels of activated Pol II were lower in cells without JMJD6 and higher in those without MePCE. Together, the results suggest that JMJD6 cuts MePCE to release P-TEFb, which then activates Pol II. JMJD6 appears to know where to cut by following a specific pattern of elements in the structure of MePCE. When MePCE was mutated so that the pattern changed, JMJD6 was unable to cut it. These results suggest that JMJD6 and related enzymes belong to a new family of proteases, the molecular scissors that can cleave other proteins. The molecules that regulate transcription often are major drug targets, for example in the fight against cancer. Ultimately, understanding the role of JMJD6 might help to identify new avenues for cancer drug development.
Collapse
Affiliation(s)
- Schuyler Lee
- Department of Biomedical Research, National Jewish Health, Denver, United States.,Department of Immunology and Microbiology, School of Medicine, University of Colorado, Aurora, United States
| | - Haolin Liu
- Department of Biomedical Research, National Jewish Health, Denver, United States.,Department of Immunology and Microbiology, School of Medicine, University of Colorado, Aurora, United States
| | - Ryan Hill
- Department of Genetics and Biochemistry, School of Medicine, University of Colorado, Aurora, United States
| | - Chunjing Chen
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Xia Hong
- Department of Biomedical Research, National Jewish Health, Denver, United States.,Department of Immunology and Microbiology, School of Medicine, University of Colorado, Aurora, United States
| | - Fran Crawford
- Department of Biomedical Research, National Jewish Health, Denver, United States
| | - Molly Kingsley
- Department of Pediatrics, Children Hospital, University of Colorado, Aurora, United States.,Department of Pediatrics and the Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, United States
| | - Qianqian Zhang
- State Key Laboratory of Agrobiotechnology, China Agriculture University, Beijing, China
| | - Xinjian Liu
- Department of Dermatology, Duke University, Durham, United States
| | - Zhongzhou Chen
- State Key Laboratory of Agrobiotechnology, China Agriculture University, Beijing, China
| | | | - Kathrin Maria Bernt
- Department of Pediatrics and the Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, United States.,Department of Molecular and Cell Biology, University of California, Berkeley, United States
| | - Philippa Marrack
- Department of Biomedical Research, National Jewish Health, Denver, United States.,Department of Immunology and Microbiology, School of Medicine, University of Colorado, Aurora, United States
| | - John Kappler
- Department of Biomedical Research, National Jewish Health, Denver, United States.,Department of Immunology and Microbiology, School of Medicine, University of Colorado, Aurora, United States
| | - Qiang Zhou
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| | - Chuan-Yuan Li
- Department of Dermatology, Duke University, Durham, United States
| | - Yuhua Xue
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Kirk Hansen
- Department of Genetics and Biochemistry, School of Medicine, University of Colorado, Aurora, United States
| | - Gongyi Zhang
- Department of Biomedical Research, National Jewish Health, Denver, United States.,Department of Immunology and Microbiology, School of Medicine, University of Colorado, Aurora, United States
| |
Collapse
|
359
|
A combination strategy targeting enhancer plasticity exerts synergistic lethality against BETi-resistant leukemia cells. Nat Commun 2020; 11:740. [PMID: 32029739 PMCID: PMC7005144 DOI: 10.1038/s41467-020-14604-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 01/20/2020] [Indexed: 12/22/2022] Open
Abstract
Primary and acquired drug resistance imposes a major threat to achieving optimized clinical outcomes during cancer treatment. Aberrant changes in epigenetic modifications are closely involved in drug resistance of tumor cells. Using BET inhibitor (BETi) resistant leukemia cells as a model system, we demonstrated herein that genome-wide enhancer remodeling played a pivotal role in driving therapeutic resistance via compensational re-expression of pro-survival genes. Capitalizing on the CRISPR interference technology, we identified the second intron of IncRNA, PVT1, as a unique bona fide gained enhancer that restored MYC transcription independent of BRD4 recruitment in leukemia. A combined BETi and CDK7 inhibitor treatment abolished MYC transcription by impeding RNAPII loading without affecting PVT1-mediated chromatin looping at the MYC locus in BETi-resistant leukemia cells. Together, our findings have established the feasibility of targeting enhancer plasticity to overcome drug resistance associated with epigenetic therapies.
Collapse
|
360
|
Lobo J, Jerónimo C, Henrique R. Targeting the Immune system and Epigenetic Landscape of Urological Tumors. Int J Mol Sci 2020; 21:E829. [PMID: 32012885 PMCID: PMC7037817 DOI: 10.3390/ijms21030829] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 01/18/2020] [Accepted: 01/27/2020] [Indexed: 02/06/2023] Open
Abstract
In the last years, we have witnessed remarkable advances in targeted therapies for cancer patients. There is a growing effort to either replace or reduce the dose of unspecific, systemic (chemo)therapies, given the associated short- and long-term side effects, by introducing more specific targeted therapies as single or combination agents. Due to the well-known implications of the immune system and epigenetic landscape in modulating cancer development, both have been explored as potential targets in several malignancies, including those affecting the genitourinary tract. As the immune system function is also epigenetically regulated, there is rationale for combining both strategies. However, this is still rather underexplored, namely in urological tumors. We aim to briefly review the use of immune therapies in prostate, kidney, bladder, and testicular cancer, and further describe studies providing supporting evidence on their combination with epigenetic-based therapies.
Collapse
Affiliation(s)
- João Lobo
- Department of Pathology, Portuguese Oncology Institute of Porto (IPOP), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
- Cancer Biology and Epigenetics Group, Research Center of Portuguese Oncology Institute of Porto (GEBC CI-IPOP) and Porto Comprehensive Cancer Center (P.CCC), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal;
- Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar, University of Porto (ICBAS-UP), Rua Jorge Viterbo Ferreira 228, 4050-513 Porto, Portugal
| | - Carmen Jerónimo
- Cancer Biology and Epigenetics Group, Research Center of Portuguese Oncology Institute of Porto (GEBC CI-IPOP) and Porto Comprehensive Cancer Center (P.CCC), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal;
- Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar, University of Porto (ICBAS-UP), Rua Jorge Viterbo Ferreira 228, 4050-513 Porto, Portugal
| | - Rui Henrique
- Department of Pathology, Portuguese Oncology Institute of Porto (IPOP), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
- Cancer Biology and Epigenetics Group, Research Center of Portuguese Oncology Institute of Porto (GEBC CI-IPOP) and Porto Comprehensive Cancer Center (P.CCC), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal;
- Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar, University of Porto (ICBAS-UP), Rua Jorge Viterbo Ferreira 228, 4050-513 Porto, Portugal
| |
Collapse
|
361
|
H.S. Richter G, Hensel T, Schmidt O, Saratov V, von Heyking K, Becker-Dettling F, Prexler C, Yen HY, Steiger K, Fulda S, Dirksen U, Weichert W, Wang S, Burdach S, Schäfer BW. Combined Inhibition of Epigenetic Readers and Transcription Initiation Targets the EWS-ETS Transcriptional Program in Ewing Sarcoma. Cancers (Basel) 2020; 12:cancers12020304. [PMID: 32012890 PMCID: PMC7072515 DOI: 10.3390/cancers12020304] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/17/2020] [Accepted: 01/24/2020] [Indexed: 12/17/2022] Open
Abstract
Background: Previously, we used inhibitors blocking BET bromodomain binding proteins (BRDs) in Ewing sarcoma (EwS) and observed that long term treatment resulted in the development of resistance. Here, we analyze the possible interaction of BRD4 with cyclin-dependent kinase (CDK) 9. Methods: Co-immunoprecipitation experiments (CoIP) to characterize BRD4 interaction and functional consequences of inhibiting transcriptional elongation were assessed using drugs targeting of BRD4 or CDK9, either alone or in combination. Results: CoIP revealed an interaction of BRD4 with EWS-FLI1 and CDK9 in EwS. Treatment of EwS cells with CDKI-73, a specific CDK9 inhibitor (CDK9i), induced a rapid downregulation of EWS-FLI1 expression and block of contact-dependent growth. CDKI-73 induced apoptosis in EwS, as depicted by cleavage of Caspase 7 (CASP7), PARP and increased CASP3 activity, similar to JQ1. Microarray analysis following CDKI-73 treatment uncovered a transcriptional program that was only partially comparable to BRD inhibition. Strikingly, combined treatment of EwS with BRD- and CDK9-inhibitors re-sensitized cells, and was overall more effective than individual drugs not only in vitro but also in a preclinical mouse model in vivo. Conclusion: Treatment with BRD inhibitors in combination with CDK9i offers a new treatment option that significantly blocks the pathognomonic EWS-ETS transcriptional program and malignant phenotype of EwS.
Collapse
Affiliation(s)
- Günther H.S. Richter
- Children’s Cancer Research Centre and Department of Pediatrics, Klinikum rechts der Isar, Technische Universität München, 80804 München, Germany; (T.H.); (O.S.); (K.v.H.); (F.B.-D.); (C.P.); (S.B.)
- German Cancer Research Center (DKFZ), partner site Munich, 81377 Munich, Germany; (H.-Y.Y.); (W.W.)
- Division of Oncology and Hematology, Department of Pediatrics, Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany
- Correspondence:
| | - Tim Hensel
- Children’s Cancer Research Centre and Department of Pediatrics, Klinikum rechts der Isar, Technische Universität München, 80804 München, Germany; (T.H.); (O.S.); (K.v.H.); (F.B.-D.); (C.P.); (S.B.)
- German Cancer Research Center (DKFZ), partner site Munich, 81377 Munich, Germany; (H.-Y.Y.); (W.W.)
| | - Oxana Schmidt
- Children’s Cancer Research Centre and Department of Pediatrics, Klinikum rechts der Isar, Technische Universität München, 80804 München, Germany; (T.H.); (O.S.); (K.v.H.); (F.B.-D.); (C.P.); (S.B.)
- German Cancer Research Center (DKFZ), partner site Munich, 81377 Munich, Germany; (H.-Y.Y.); (W.W.)
| | - Vadim Saratov
- Department of Oncology and Children’s Research Center, University Children’s Hospital, 8032 Zurich, Switzerland; (V.S.); (B.W.S.)
| | - Kristina von Heyking
- Children’s Cancer Research Centre and Department of Pediatrics, Klinikum rechts der Isar, Technische Universität München, 80804 München, Germany; (T.H.); (O.S.); (K.v.H.); (F.B.-D.); (C.P.); (S.B.)
- German Cancer Research Center (DKFZ), partner site Munich, 81377 Munich, Germany; (H.-Y.Y.); (W.W.)
| | - Fiona Becker-Dettling
- Children’s Cancer Research Centre and Department of Pediatrics, Klinikum rechts der Isar, Technische Universität München, 80804 München, Germany; (T.H.); (O.S.); (K.v.H.); (F.B.-D.); (C.P.); (S.B.)
| | - Carolin Prexler
- Children’s Cancer Research Centre and Department of Pediatrics, Klinikum rechts der Isar, Technische Universität München, 80804 München, Germany; (T.H.); (O.S.); (K.v.H.); (F.B.-D.); (C.P.); (S.B.)
- German Cancer Research Center (DKFZ), partner site Munich, 81377 Munich, Germany; (H.-Y.Y.); (W.W.)
| | - Hsi-Yu Yen
- German Cancer Research Center (DKFZ), partner site Munich, 81377 Munich, Germany; (H.-Y.Y.); (W.W.)
- Institute of Pathology, Technical University of Munich and Comparative Experimental Pathology (CEP), Technical University of Munich, 81675 Munich, Germany;
| | - Katja Steiger
- Institute of Pathology, Technical University of Munich and Comparative Experimental Pathology (CEP), Technical University of Munich, 81675 Munich, Germany;
| | - Simone Fulda
- Institute for Experimental Cancer Research in Paediatrics, Goethe-University Frankfurt, 60528 Frankfurt/Main, Germany;
| | - Uta Dirksen
- Pediatrics III, West German Cancer Centre, University Hospital of Essen, 45147 Essen, Germany;
- German Cancer Research Center (DKFZ), partner site Essen, 45147 Essen, Germany
| | - Wilko Weichert
- German Cancer Research Center (DKFZ), partner site Munich, 81377 Munich, Germany; (H.-Y.Y.); (W.W.)
- Institute of Pathology, Technical University of Munich and Comparative Experimental Pathology (CEP), Technical University of Munich, 81675 Munich, Germany;
| | - Shudong Wang
- Centre for Drug Discovery and Development and School of Pharmacy and Medical Sciences, University of South Australia Cancer Research Institute, Adelaide, South Australia 5001, Australia;
| | - Stefan Burdach
- Children’s Cancer Research Centre and Department of Pediatrics, Klinikum rechts der Isar, Technische Universität München, 80804 München, Germany; (T.H.); (O.S.); (K.v.H.); (F.B.-D.); (C.P.); (S.B.)
- German Cancer Research Center (DKFZ), partner site Munich, 81377 Munich, Germany; (H.-Y.Y.); (W.W.)
| | - Beat W. Schäfer
- Department of Oncology and Children’s Research Center, University Children’s Hospital, 8032 Zurich, Switzerland; (V.S.); (B.W.S.)
| |
Collapse
|
362
|
Selective inhibition of the BD2 bromodomain of BET proteins in prostate cancer. Nature 2020; 578:306-310. [PMID: 31969702 DOI: 10.1038/s41586-020-1930-8] [Citation(s) in RCA: 269] [Impact Index Per Article: 53.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 11/25/2019] [Indexed: 12/24/2022]
Abstract
Proteins of the bromodomain and extra-terminal (BET) domain family are epigenetic readers that bind acetylated histones through their bromodomains to regulate gene transcription. Dual-bromodomain BET inhibitors (DbBi) that bind with similar affinities to the first (BD1) and second (BD2) bromodomains of BRD2, BRD3, BRD4 and BRDt have displayed modest clinical activity in monotherapy cancer trials. A reduced number of thrombocytes in the blood (thrombocytopenia) as well as symptoms of gastrointestinal toxicity are dose-limiting adverse events for some types of DbBi1-5. Given that similar haematological and gastrointestinal defects were observed after genetic silencing of Brd4 in mice6, the platelet and gastrointestinal toxicities may represent on-target activities associated with BET inhibition. The two individual bromodomains in BET family proteins may have distinct functions7-9 and different cellular phenotypes after pharmacological inhibition of one or both bromodomains have been reported10,11, suggesting that selectively targeting one of the bromodomains may result in a different efficacy and tolerability profile compared with DbBi. Available compounds that are selective to individual domains lack sufficient potency and the pharmacokinetics properties that are required for in vivo efficacy and tolerability assessment10-13. Here we carried out a medicinal chemistry campaign that led to the discovery of ABBV-744, a highly potent and selective inhibitor of the BD2 domain of BET family proteins with drug-like properties. In contrast to the broad range of cell growth inhibition induced by DbBi, the antiproliferative activity of ABBV-744 was largely, but not exclusively, restricted to cell lines of acute myeloid leukaemia and prostate cancer that expressed the full-length androgen receptor (AR). ABBV-744 retained robust activity in prostate cancer xenografts, and showed fewer platelet and gastrointestinal toxicities than the DbBi ABBV-07514. Analyses of RNA expression and chromatin immunoprecipitation followed by sequencing revealed that ABBV-744 displaced BRD4 from AR-containing super-enhancers and inhibited AR-dependent transcription, with less impact on global transcription compared with ABBV-075. These results underscore the potential value of selectively targeting the BD2 domain of BET family proteins for cancer therapy.
Collapse
|
363
|
Yang J, Chen S, Yang Y, Ma X, Shao B, Yang S, Wei Y, Wei X. Jumonji domain-containing protein 6 protein and its role in cancer. Cell Prolif 2020; 53:e12747. [PMID: 31961032 PMCID: PMC7046477 DOI: 10.1111/cpr.12747] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 11/29/2019] [Accepted: 12/02/2019] [Indexed: 02/05/2023] Open
Abstract
The jumonji domain‐containing protein 6 (JMJD6) is a Fe(II)‐ and 2‐oxoglutarate (2OG)‐dependent oxygenase that catalyses lysine hydroxylation and arginine demethylation of histone and non‐histone peptides. Recently, the intrinsic tyrosine kinase activity of JMJD6 has also been reported. The JMJD6 has been implicated in embryonic development, cellular proliferation and migration, self‐tolerance induction in the thymus, and adipocyte differentiation. Not surprisingly, abnormal expression of JMJD6 may contribute to the development of many diseases, such as neuropathic pain, foot‐and‐mouth disease, gestational diabetes mellitus, hepatitis C and various types of cancer. In the present review, we summarized the structure and functions of JMJD6, with particular emphasis on the role of JMJD6 in cancer progression.
Collapse
Affiliation(s)
- Jing Yang
- Laboratory of Aging Research and Nanotoxicology, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Siyuan Chen
- Laboratory of Aging Research and Nanotoxicology, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yanfei Yang
- Laboratory of Aging Research and Nanotoxicology, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xuelei Ma
- Laboratory of Aging Research and Nanotoxicology, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Bin Shao
- State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Shengyong Yang
- Laboratory of Aging Research and Nanotoxicology, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yuquan Wei
- Laboratory of Aging Research and Nanotoxicology, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiawei Wei
- Laboratory of Aging Research and Nanotoxicology, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
364
|
Bechter O, Schöffski P. Make your best BET: The emerging role of BET inhibitor treatment in malignant tumors. Pharmacol Ther 2020; 208:107479. [PMID: 31931101 DOI: 10.1016/j.pharmthera.2020.107479] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 11/15/2019] [Indexed: 12/17/2022]
Abstract
Bromodomains are protein-protein interaction modules with a great diversity in terms of number of proteins and their function. The bromodomain and extraterminal protein (BET) represents a distinct subclass of bromodomain proteins mainly involved in transcriptional regulation via their interaction with acetylated chromatin. In cancer cells BET proteins are found to be altered in many ways such as overexpression, mutations and fusions of BET proteins or their interference with cancer relevant signaling pathways and transcriptional programs in order to sustain cancer growth and viability. Blocking BET protein function with small molecules is associated with therapeutic activity. Consequently, a variety of small molecules have been developed and a number of phase I clinical trials have explored their tolerability and efficacy in patients with solid tumors and hematological malignancies. We will review the rational for applying BET inhibitors in the clinic and we will discuss the toxicity profile as well as efficacy of this new class of protein inhibitors. We will also highlight the emerging problem of treatment resistance and the potential these drugs might have when combined with other anti-cancer therapies.
Collapse
Affiliation(s)
- Oliver Bechter
- Leuven Cancer Institute, Department of General Medical Oncology, University Hospitals Leuven, Belgium; Department of Oncology, KU, Leuven, Belgium.
| | - Patrick Schöffski
- Leuven Cancer Institute, Department of General Medical Oncology, University Hospitals Leuven, Belgium; Department of Oncology, KU, Leuven, Belgium.
| |
Collapse
|
365
|
Vansant G, Bruggemans A, Janssens J, Debyser Z. Block-And-Lock Strategies to Cure HIV Infection. Viruses 2020; 12:E84. [PMID: 31936859 PMCID: PMC7019976 DOI: 10.3390/v12010084] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/07/2020] [Accepted: 01/09/2020] [Indexed: 12/12/2022] Open
Abstract
Today HIV infection cannot be cured due to the presence of a reservoir of latently infected cells inducing a viral rebound upon treatment interruption. Hence, the latent reservoir is considered as the major barrier for an HIV cure. So far, efforts to completely eradicate the reservoir via a shock-and-kill approach have proven difficult and unsuccessful. Therefore, more research has been done recently on an alternative block-and-lock functional cure strategy. In contrast to the shock-and-kill strategy that aims to eradicate the entire reservoir, block-and-lock aims to permanently silence all proviruses, even after treatment interruption. HIV silencing can be achieved by targeting different factors of the transcription machinery. In this review, we first describe the underlying mechanisms of HIV transcription and silencing. Next, we give an overview of the different block-and-lock strategies under investigation.
Collapse
Affiliation(s)
- Gerlinde Vansant
- Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, Katholieke Universiteit, Leuven, 3000 Flanders, Belgium
| | - Anne Bruggemans
- Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, Katholieke Universiteit, Leuven, 3000 Flanders, Belgium
| | - Julie Janssens
- Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, Katholieke Universiteit, Leuven, 3000 Flanders, Belgium
| | - Zeger Debyser
- Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, Katholieke Universiteit, Leuven, 3000 Flanders, Belgium
| |
Collapse
|
366
|
Abstract
The dynamic nature of histone post-translational modifications such as methylation or acetylation makes possible the alteration of disease associated epigenetic states through the manipulation of the associated epigenetic machinery. One approach is through small molecule perturbation. Chemical probes of epigenetic reader domains have been critical in improving our understanding of the biological consequences of modulating their targets, while also enabling the development of novel probe-based reagents. By appending a functional handle to a reader domain probe, a chemical toolbox of reagents can be created to facilitate chemiprecipitation of epigenetic complexes, evaluate probe selectivity, develop in vitro screening assays, visualize cellular target localization, enable target degradation and recruit epigenetic machinery to a site within the genome in a highly controlled fashion.
Collapse
|
367
|
Jiang G, Deng W, Liu Y, Wang C. General mechanism of JQ1 in inhibiting various types of cancer. Mol Med Rep 2020; 21:1021-1034. [PMID: 31922235 PMCID: PMC7003028 DOI: 10.3892/mmr.2020.10927] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 10/04/2019] [Indexed: 01/21/2023] Open
Abstract
Bromodomain-containing 4 (BRD4) is a histone modification reader and transcriptional regulator that has been reported to interact with acetylated lysine histone motifs transcription factors (TFs), transcription co-activators and RNA polymerase II. The selective small molecule inhibitor JQ1, which binds competitively to bromodomains, has been reported to exhibit anti-proliferative effects in various types of cancer. Previous studies on the mechanism of action of JQ1 mostly focused on a specific tumor type or disease; however, the general mechanism through which JQ1 affects various tumors remains to be determined. In the present study, chromatin immunoprecipitation sequencing data for BRD4 and its expression profiles in six cancer cell lines were integrated and analyzed systematically. The results indicated that BRD4 binds to enhancers with histone H3 acetylated at lysine 27 (H3K27Ac) and mediator complex subunit 1 in a cell type-specific manner, as well as binds to promoter regions with the oncogenic TFs MYC and E2F1 in a cell type-common manner. The cell type-common sites across the six cell types investigated were found to be functionally important for tumorigenesis, whereas the cell type-specific sites were functionally enriched with the cell identity, all of which were sensitive to JQ1 treatment. Furthermore, a core set of JQ1-regulated BRD4 binding genes were obtained, which were significantly inhibited by JQ1 in various cancer cell lines and contributed to hallmarks of cancer. These results implied a common mechanism underlying the therapeutic effects of JQ1 and suggested its potential suitability as an anti-cancer drug targeting BRD4-mediated transcriptional regulation.
Collapse
Affiliation(s)
- Guojuan Jiang
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital Affiliated to School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, P.R. China
| | - Wanglong Deng
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital Affiliated to School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, P.R. China
| | - Yang Liu
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital Affiliated to School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, P.R. China
| | - Chengde Wang
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| |
Collapse
|
368
|
Wang Y, Qiu T. Positive transcription elongation factor b and its regulators in development. ALL LIFE 2020. [DOI: 10.1080/21553769.2019.1663277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Affiliation(s)
- Yan Wang
- Department of Pediatrics, West China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, People’s Republic of China
| | - Tong Qiu
- Department of Pediatrics, West China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, People’s Republic of China
| |
Collapse
|
369
|
Lu T, Lu W, Luo C. A patent review of BRD4 inhibitors (2013-2019). Expert Opin Ther Pat 2020; 30:57-81. [PMID: 31815566 DOI: 10.1080/13543776.2020.1702645] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 12/05/2019] [Indexed: 02/07/2023]
Abstract
Introduction: The bromodomain-containing protein 4 (BRD4), a member of the bromodomain and extra-terminal (BET) family, functions as an 'epigenetic reader' that binds to acetylated lysine (KAc) residues on histone tails sophisticatedly regulating chromatin structure and gene expression. Recently, emerging evidence demonstrates that BRD4 plays a significant role in the occurrence and progression of several malignant human diseases especially cancers, making it a hot target in cancer therapy.Areas covered: This review mainly summarizes the patents of BRD4 inhibitors that have been authorized from 2013 to 2019. The patents are mostly described in terms of chemical structures, molecular mechanisms of action, pharmacological activities and potential clinical applications, including combination therapies. The development of BRD4 inhibitors in the clinical phase has been highlighted. Prospects for further development of more selective BRD4 inhibitors are provided.Expert opinion: In 2013-2019, several previously known chemical scaffolds have been further developed and disclosed. Although many small molecule BRD4 inhibitors with high potency and diverse scaffolds have been developed, the selectivity of most BRD4 inhibitors still needs to be improved. Therefore, the development of more selective small molecule inhibitors or combined use of drugs such as immunotherapy may provide new ideas for drug development.
Collapse
Affiliation(s)
- Tian Lu
- Department of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Wenchao Lu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- Department of Pharmacy, University of Chinese Academy of Sciences, Beijing, China
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Cheng Luo
- Department of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- Department of Pharmacy, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
370
|
The BET inhibitor GS-5829 targets chronic lymphocytic leukemia cells and their supportive microenvironment. Leukemia 2019; 34:1588-1598. [PMID: 31862959 PMCID: PMC7272263 DOI: 10.1038/s41375-019-0682-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 11/18/2019] [Accepted: 12/05/2019] [Indexed: 12/11/2022]
Abstract
Despite major improvements in treatment outcome with novel targeted therapies, such as the Bruton tyrosine kinase (BTK) inhibitor ibrutinib, chronic lymphocytic leukemia (CLL) remains incurable in the majority of patients. Activation of PI3K, NF-κB, and/or MYC has been linked to residual disease and/or resistance in ibrutinib-treated patients. These pathways can be targeted by inhibitors of bromodomain and extra-terminal (BET) proteins. Here we report about the preclinical activity of GS-5829, a novel BET inhibitor, in CLL. GS-5829 inhibited CLL cell proliferation and induced leukemia cell apoptosis through deregulation of key signaling pathways, such as BLK, AKT, ERK1/2, and MYC. IκBα modulation indicates that GS-5829 also inhibited NF-κB signaling. GS-5829-induced apoptosis resulted from an imbalance between positive (BIM) and negative regulators (BCL-XL) of the intrinsic apoptosis pathway. The antileukemia activity of GS-5829 increased synergistically in combinations with B-cell receptor signaling inhibitors, the BTK inhibitor ibrutinib, the PI3Kδ inhibitor idelalisib, and the SYK inhibitor entospletinib. In cocultures that mimic the lymph node microenvironment, GS-5829 inhibited signaling pathways within nurselike cells and their growth, indicating that BET inhibitors also can target the supportive CLL microenvironment. Collectively, these data provide a rationale for the clinical evaluation of BET inhibitors in CLL.
Collapse
|
371
|
Tibes R, Bogenberger JM. Transcriptional Silencing of MCL-1 Through Cyclin-Dependent Kinase Inhibition in Acute Myeloid Leukemia. Front Oncol 2019; 9:1205. [PMID: 31921615 PMCID: PMC6920180 DOI: 10.3389/fonc.2019.01205] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 10/23/2019] [Indexed: 12/13/2022] Open
Abstract
Acute myeloid leukemia (AML) is the most common adult acute leukemia. Survival remains poor, despite decades of scientific advances. Cytotoxic induction chemotherapy regimens are standard-of-care for most patients. Many investigations have highlighted the genomic heterogeneity of AML, and several new targeted therapeutic options have recently been approved. Additional novel therapies are showing promising clinical results and may rapidly transform the therapeutic landscape of AML. Despite the emerging clinical success of B-cell lymphoma (BCL)-2 targeting in AML and a large body of preclinical data supporting myeloid leukemia cell (MCL)-1 as an attractive therapeutic target for AML, MCL-1 targeting remains relatively unexplored, although novel MCL-1 inhibitors are under clinical investigation. Inhibitors of cyclin-dependent kinases (CDKs) involved in the regulation of transcription, CDK9 in particular, are being investigated in AML as a strategy to target MCL-1 indirectly. In this article, we review the basis for CDK inhibition in oncology with a focus on relevant preclinical mechanism-of-action studies of CDK9 inhibitors in the context of their therapeutic potential specifically in AML.
Collapse
Affiliation(s)
- Raoul Tibes
- NYU School of Medicine & Perlmutter Cancer Center, NYU Langone Health, New York, NY, United States
| | | |
Collapse
|
372
|
Yang Y, Chen P, Zhao L, Zhang F, Zhang H, Zhou J. Pharmacokinetics-Driven Optimization of 7-Methylimidazo[1,5- a]pyrazin-8(7H)-one as Novel BRD4 Inhibitors. ACS Med Chem Lett 2019; 10:1680-1685. [PMID: 31857846 DOI: 10.1021/acsmedchemlett.9b00474] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 11/26/2019] [Indexed: 12/22/2022] Open
Abstract
The BET bromodomain containing protein (BRD4) plays a key role in transcription regulation. Therefore, efforts to generate BRD4 inhibitors with excellent potency and DMPK properties are of clinical value. As a continuing work to improve the stability in in vitro metabolic experiments of liver microsomes of our previously reported 7-methylimidazo[1,5-a]pyrazin-8(7H)-one, our optimization of this poor pharmacokinetics focusing on the phenyl substituent is performed. Fortunately, compound 17 displayed subnanomolar potency (IC50 = 30 nM) against BRD4(1), and its liver microsome stability in human, rat, and mouse are more favorable than previously reported inhibitor 28. Compound 17 exhibited antitumor efficacy with no significant toxicity in xenograft models of pancreatic cancer. In addition, fluorescent probe and nuclei-specific dye were utilized to verify apoptosis-inducing of compound 17 via intranuclear potency in BXPC-3 cell line.
Collapse
Affiliation(s)
- Yifei Yang
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, PR China
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, United States
| | - Pan Chen
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, PR China
| | - Leilei Zhao
- Center of Drug Discovery, Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, China Pharmaceutical University, Nanjing 210009, PR China
| | - Fangqing Zhang
- Center of Drug Discovery, Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, China Pharmaceutical University, Nanjing 210009, PR China
| | - Huibin Zhang
- Center of Drug Discovery, Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, China Pharmaceutical University, Nanjing 210009, PR China
| | - Jinpei Zhou
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, PR China
| |
Collapse
|
373
|
Rahnamoun H, Orozco P, Lauberth SM. The role of enhancer RNAs in epigenetic regulation of gene expression. Transcription 2019; 11:19-25. [PMID: 31823686 DOI: 10.1080/21541264.2019.1698934] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Since the discovery that enhancers can support transcription, the roles of enhancer RNAs have remained largely elusive. We identified that enhancer RNAs interact with and augment bromodomain engagement with acetylated chromatin. Here, we discuss our recent findings and the potential mechanisms underlying the regulation and functions of enhancer RNA-bromodomain associations.
Collapse
Affiliation(s)
- Homa Rahnamoun
- Section of Molecular Biology, University of California, San Diego, La Jolla, CA, USA
| | - Paola Orozco
- Section of Molecular Biology, University of California, San Diego, La Jolla, CA, USA
| | - Shannon M Lauberth
- Section of Molecular Biology, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
374
|
Wu T, Kamikawa YF, Donohoe ME. Brd4's Bromodomains Mediate Histone H3 Acetylation and Chromatin Remodeling in Pluripotent Cells through P300 and Brg1. Cell Rep 2019; 25:1756-1771. [PMID: 30428346 DOI: 10.1016/j.celrep.2018.10.003] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 11/10/2016] [Accepted: 09/28/2018] [Indexed: 12/22/2022] Open
Abstract
The pluripotent state of embryonic stem cells (ESCs) is defined by its transcriptome and epigenome. The chromatin reader Brd4 determines ESC identity. Although Brd4 regulation in gene transcription has been well described, its contribution to the chromatin landscape is less known. Here, we show that Brd4's bromodomains partner with the histone acetyltransferase P300, increasing its enzymatic activities. Augmenting histone acetylation by Brd4-P300 interaction recruits the chromatin remodeler Brg1 altering chromatin structure. This pathway is important for maintaining the expression and chromatin patterns of pluripotency-associated genes, such as Oct4, Nanog, and the X chromosome regulatory long noncoding RNAs Tsix and Xite. Furthermore, we show that the Brd4-P300 interaction regulates the de novo formation of chromatin marks during ESC differentiation, as exemplified by controlling the master regulators of mesoderm formation. Collectively, we delineate the function of Brd4 in organizing the chromatin structure that contributes to gene transcriptional regulation and cell fate determination.
Collapse
Affiliation(s)
- Tao Wu
- Burke Medical Research Institute, White Plains, NY 10605, USA; Department of Neuroscience, Brain Mind Research Institute, Department of Cell & Development, Weill Cornell Medical College, New York, NY 10065, USA
| | - Yasunao F Kamikawa
- Burke Medical Research Institute, White Plains, NY 10605, USA; Department of Neuroscience, Brain Mind Research Institute, Department of Cell & Development, Weill Cornell Medical College, New York, NY 10065, USA
| | - Mary E Donohoe
- Burke Medical Research Institute, White Plains, NY 10605, USA; Department of Neuroscience, Brain Mind Research Institute, Department of Cell & Development, Weill Cornell Medical College, New York, NY 10065, USA.
| |
Collapse
|
375
|
Schiedel M, Moroglu M, Ascough DMH, Chamberlain AER, Kamps JJAG, Sekirnik AR, Conway SJ. Chemical Epigenetics: The Impact of Chemical and Chemical Biology Techniques on Bromodomain Target Validation. Angew Chem Int Ed Engl 2019; 58:17930-17952. [DOI: 10.1002/anie.201812164] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 01/08/2019] [Indexed: 12/22/2022]
Affiliation(s)
- Matthias Schiedel
- Department of ChemistryChemistry Research LaboratoryUniversity of Oxford Mansfield Road Oxford OX1 3TA UK
| | - Mustafa Moroglu
- Department of ChemistryChemistry Research LaboratoryUniversity of Oxford Mansfield Road Oxford OX1 3TA UK
| | - David M. H. Ascough
- Department of ChemistryChemistry Research LaboratoryUniversity of Oxford Mansfield Road Oxford OX1 3TA UK
| | - Anna E. R. Chamberlain
- Department of ChemistryChemistry Research LaboratoryUniversity of Oxford Mansfield Road Oxford OX1 3TA UK
| | - Jos J. A. G. Kamps
- Department of ChemistryChemistry Research LaboratoryUniversity of Oxford Mansfield Road Oxford OX1 3TA UK
| | - Angelina R. Sekirnik
- Department of ChemistryChemistry Research LaboratoryUniversity of Oxford Mansfield Road Oxford OX1 3TA UK
| | - Stuart J. Conway
- Department of ChemistryChemistry Research LaboratoryUniversity of Oxford Mansfield Road Oxford OX1 3TA UK
| |
Collapse
|
376
|
NUT midline carcinoma: Current concepts and future perspectives of a novel tumour entity. Crit Rev Oncol Hematol 2019; 144:102826. [DOI: 10.1016/j.critrevonc.2019.102826] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 10/17/2019] [Accepted: 10/22/2019] [Indexed: 01/22/2023] Open
|
377
|
Kim JJ, Lee SY, Gong F, Battenhouse AM, Boutz DR, Bashyal A, Refvik ST, Chiang CM, Xhemalce B, Paull TT, Brodbelt JS, Marcotte EM, Miller KM. Systematic bromodomain protein screens identify homologous recombination and R-loop suppression pathways involved in genome integrity. Genes Dev 2019; 33:1751-1774. [PMID: 31753913 PMCID: PMC6942044 DOI: 10.1101/gad.331231.119] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 10/28/2019] [Indexed: 01/01/2023]
Abstract
Bromodomain proteins (BRD) are key chromatin regulators of genome function and stability as well as therapeutic targets in cancer. Here, we systematically delineate the contribution of human BRD proteins for genome stability and DNA double-strand break (DSB) repair using several cell-based assays and proteomic interaction network analysis. Applying these approaches, we identify 24 of the 42 BRD proteins as promoters of DNA repair and/or genome integrity. We identified a BRD-reader function of PCAF that bound TIP60-mediated histone acetylations at DSBs to recruit a DUB complex to deubiquitylate histone H2BK120, to allowing direct acetylation by PCAF, and repair of DSBs by homologous recombination. We also discovered the bromo-and-extra-terminal (BET) BRD proteins, BRD2 and BRD4, as negative regulators of transcription-associated RNA-DNA hybrids (R-loops) as inhibition of BRD2 or BRD4 increased R-loop formation, which generated DSBs. These breaks were reliant on topoisomerase II, and BRD2 directly bound and activated topoisomerase I, a known restrainer of R-loops. Thus, comprehensive interactome and functional profiling of BRD proteins revealed new homologous recombination and genome stability pathways, providing a framework to understand genome maintenance by BRD proteins and the effects of their pharmacological inhibition.
Collapse
Affiliation(s)
- Jae Jin Kim
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, USA
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Seo Yun Lee
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, USA
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Fade Gong
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, USA
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Anna M Battenhouse
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, USA
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas 78712, USA
- Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Daniel R Boutz
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, USA
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas 78712, USA
- Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Aarti Bashyal
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Samantha T Refvik
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, USA
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas 78712, USA
- The Howard Hughes Medical Institute
| | - Cheng-Ming Chiang
- Simmons Comprehensive Cancer Center, Department of Biochemistry, Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Blerta Xhemalce
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, USA
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas 78712, USA
- Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Tanya T Paull
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, USA
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas 78712, USA
- The Howard Hughes Medical Institute
- Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Jennifer S Brodbelt
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, USA
- Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Edward M Marcotte
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, USA
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas 78712, USA
- Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Kyle M Miller
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, USA
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas 78712, USA
- Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, Texas 78712, USA
| |
Collapse
|
378
|
PCNA Unloading Is Negatively Regulated by BET Proteins. Cell Rep 2019; 29:4632-4645.e5. [DOI: 10.1016/j.celrep.2019.11.114] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 11/01/2019] [Accepted: 11/27/2019] [Indexed: 02/01/2023] Open
|
379
|
Xu Y, Song S, Wang Z, Ajani JA. The role of hedgehog signaling in gastric cancer: molecular mechanisms, clinical potential, and perspective. Cell Commun Signal 2019; 17:157. [PMID: 31775795 PMCID: PMC6882007 DOI: 10.1186/s12964-019-0479-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 11/11/2019] [Indexed: 02/07/2023] Open
Abstract
Patients with advanced gastric cancer usually have a poor prognosis and limited therapeutic options. Overcoming this challenge requires novel targets and effective drugs. The Hedgehog (Hh) signaling pathway plays a crucial role in the development of the gastrointestinal tract and maintenance of the physiologic function of the stomach. Aberrantly activated Hh signaling is implicated in carcinogenesis as well as maintenance of cancer stem cells. Somatic mutations in the components of Hh signaling (PTCH1 and SMO) have been shown to be a major cause of basal cell carcinoma, and dozens of Hh inhibitors have been developed. To date, two inhibitors (GDC-0449 and LDE225) have been approved by the U.S. Food and Drug Administration to treat basal cell carcinoma and medulloblastoma. Here, we review the role of the Hh signaling in the carcinogenesis and progression of gastric cancer and summarize recent findings on Hh inhibitors in gastric cancer. Hedgehog signaling is often aberrantly activated and plays an important role during inflammation and carcinogenesis of gastric epithelial cells. Further study of the precise mechanisms of Hh signaling in this disease is needed for the validation of therapeutic targets and evaluation of the clinical utility of Hh inhibitors for gastric cancer.
Collapse
Affiliation(s)
- Yan Xu
- Department of Gastrointestinal Medical Oncology, Unit 426, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030-4009, USA.,Department of Surgical Oncology and General Surgery, First Hospital of China Medical University, 155 North Nanjing Street, Shenyang, 110001, People's Republic of China
| | - Shumei Song
- Department of Gastrointestinal Medical Oncology, Unit 426, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030-4009, USA.
| | - Zhenning Wang
- Department of Surgical Oncology and General Surgery, First Hospital of China Medical University, 155 North Nanjing Street, Shenyang, 110001, People's Republic of China.
| | - Jaffer A Ajani
- Department of Gastrointestinal Medical Oncology, Unit 426, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030-4009, USA.
| |
Collapse
|
380
|
Cejas P, Long HW. Principles and methods of integrative chromatin analysis in primary tissues and tumors. Biochim Biophys Acta Rev Cancer 2019; 1873:188333. [PMID: 31759992 DOI: 10.1016/j.bbcan.2019.188333] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 10/22/2019] [Accepted: 10/23/2019] [Indexed: 12/16/2022]
Abstract
Recent methodological advances have enabled the genome-wide interrogation of chromatin from primary tumor tissues. Integrative analysis of histone post-translational modifications, transcription factor (TF) binding and open chromatin sites in tumors across cancer stages can elucidate the aberrant epigenetic states accompanying tumor progression. Cancer-associated chromatin alterations can activate or inactivate enhancers at genes involved in cancer while still respecting cell-of-origin constrictions. Accordingly, enhancer analysis in cancer could have uses for biomarker discovery to further refine patient diagnosis and potentially sub-classify patients for tailored therapy. Methodologies used for chromatin analyses of primary tissues need to address issues distinct from cell line studies including the specific sources of variability coming from the heterogeneous cellular composition of tissues and from inter-individual (epi)genetic differences. This leads to requirements for careful histological analysis to select the specific samples and cells of interest. In analyzing tumors somatic changes should be taken into account to distinguish the genuine epigenetic changes across tumor specimens from any genetic alterations such as copy number variations (CNV). In this contribution we review a selection of current results from chromatin profiling, examine experimental methodologies and discuss specific analysis approaches. We also review specific considerations regarding tissue preparation for epigenetic analysis and conclude with our perspectives on emerging approaches that will impact studies of chromatin landscapes of clinical samples in the future.
Collapse
Affiliation(s)
- Paloma Cejas
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA; Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA; Translational Oncology Laboratory, Hospital La Paz Institute for Health Research (IdiPAZ) and CIBERONC, La Paz University Hospital, Madrid, Spain
| | - Henry W Long
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA; Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA.
| |
Collapse
|
381
|
Schiedel M, Moroglu M, Ascough DMH, Chamberlain AER, Kamps JJAG, Sekirnik AR, Conway SJ. Chemische Epigenetik: der Einfluss chemischer und chemo‐biologischer Techniken auf die Zielstruktur‐Validierung von Bromodomänen. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201812164] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Matthias Schiedel
- Department of ChemistryChemistry Research LaboratoryUniversity of Oxford Mansfield Road Oxford OX1 3TA Großbritannien
| | - Mustafa Moroglu
- Department of ChemistryChemistry Research LaboratoryUniversity of Oxford Mansfield Road Oxford OX1 3TA Großbritannien
| | - David M. H. Ascough
- Department of ChemistryChemistry Research LaboratoryUniversity of Oxford Mansfield Road Oxford OX1 3TA Großbritannien
| | - Anna E. R. Chamberlain
- Department of ChemistryChemistry Research LaboratoryUniversity of Oxford Mansfield Road Oxford OX1 3TA Großbritannien
| | - Jos J. A. G. Kamps
- Department of ChemistryChemistry Research LaboratoryUniversity of Oxford Mansfield Road Oxford OX1 3TA Großbritannien
| | - Angelina R. Sekirnik
- Department of ChemistryChemistry Research LaboratoryUniversity of Oxford Mansfield Road Oxford OX1 3TA Großbritannien
| | - Stuart J. Conway
- Department of ChemistryChemistry Research LaboratoryUniversity of Oxford Mansfield Road Oxford OX1 3TA Großbritannien
| |
Collapse
|
382
|
Morgado-Pascual JL, Rayego-Mateos S, Tejedor L, Suarez-Alvarez B, Ruiz-Ortega M. Bromodomain and Extraterminal Proteins as Novel Epigenetic Targets for Renal Diseases. Front Pharmacol 2019; 10:1315. [PMID: 31780938 PMCID: PMC6857099 DOI: 10.3389/fphar.2019.01315] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 10/15/2019] [Indexed: 12/11/2022] Open
Abstract
Epigenetic mechanisms, especially DNA methylation and histone modifications, are dynamic processes that regulate the gene expression transcriptional program in normal and diseased states. The bromodomain and extraterminal (BET) protein family (BRD2, BRD3, BRD4, and BRDT) are epigenetic readers that, via bromodomains, regulate gene transcription by binding to acetylated lysine residues on histones and master transcriptional factors. Experimental data have demonstrated the involvement of some BET proteins in many pathological conditions, including tumor development, infections, autoimmunity, and inflammation. Selective bromodomain inhibitors are epigenetic drugs that block the interaction between BET proteins and acetylated proteins, thus exerting beneficial effects. Recent data have described the beneficial effect of BET inhibition on experimental renal diseases. Emerging evidence underscores the importance of environmental modifications in the origin of pathological features in chronic kidney diseases (CKD). Several cellular processes such as oxidation, metabolic disorders, cytokines, inflammation, or accumulated uremic toxins may induce epigenetic modifications that regulate key processes involved in renal damage and in other pathological conditions observed in CKD patients. Here, we review how targeting bromodomains in BET proteins may regulate essential processes involved in renal diseases and in associated complications found in CKD patients, such as cardiovascular damage, highlighting the potential of epigenetic therapeutic strategies against BET proteins for CKD treatment and associated risks.
Collapse
Affiliation(s)
- Jose Luis Morgado-Pascual
- Cellular Biology in Renal Diseases Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autónoma Madrid, Madrid, Spain.,Red de Investigación Renal (REDinREN), Madrid, Spain
| | - Sandra Rayego-Mateos
- Red de Investigación Renal (REDinREN), Madrid, Spain.,Vascular and Renal Translational Research Group, Institut de Recerca Biomèdica de Lleida (IRBLleida), Lleida, Spain
| | - Lucia Tejedor
- Cellular Biology in Renal Diseases Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autónoma Madrid, Madrid, Spain.,Red de Investigación Renal (REDinREN), Madrid, Spain
| | - Beatriz Suarez-Alvarez
- Red de Investigación Renal (REDinREN), Madrid, Spain.,Translational Immunology Laboratory, Health Research Institute of the Principality of Asturias (ISPA), Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Marta Ruiz-Ortega
- Cellular Biology in Renal Diseases Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autónoma Madrid, Madrid, Spain.,Red de Investigación Renal (REDinREN), Madrid, Spain
| |
Collapse
|
383
|
Maita H, Nakagawa S. What is the switch for coupling transcription and splicing? RNA Polymerase II C‐terminal domain phosphorylation, phase separation and beyond. WILEY INTERDISCIPLINARY REVIEWS-RNA 2019; 11:e1574. [DOI: 10.1002/wrna.1574] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 10/03/2019] [Accepted: 10/08/2019] [Indexed: 01/12/2023]
Affiliation(s)
- Hiroshi Maita
- RNA Biology Laboratory, Faculty of Pharmaceutical Sciences Hokkaido University Sapporo Japan
| | - Shinichi Nakagawa
- RNA Biology Laboratory, Faculty of Pharmaceutical Sciences Hokkaido University Sapporo Japan
| |
Collapse
|
384
|
Ray KK, Nicholls SJ, Ginsberg HD, Johansson JO, Kalantar-Zadeh K, Kulikowski E, Toth PP, Wong N, Cummings JL, Sweeney M, Schwartz GG. Effect of selective BET protein inhibitor apabetalone on cardiovascular outcomes in patients with acute coronary syndrome and diabetes: Rationale, design, and baseline characteristics of the BETonMACE trial. Am Heart J 2019; 217:72-83. [PMID: 31520897 DOI: 10.1016/j.ahj.2019.08.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 08/01/2019] [Indexed: 12/26/2022]
Abstract
After an acute coronary syndrome (ACS), patients with diabetes remain at high risk for additional cardiovascular events despite use of current therapies. Bromodomain and extra-terminal (BET) proteins are epigenetic modulators of inflammation, thrombogenesis, and lipoprotein metabolism implicated in atherothrombosis. The BETonMACE trial tests the hypothesis that treatment with apabetalone, a selective BET protein inhibitor, will improve cardiovascular outcomes in patients with diabetes after an ACS. DESIGN: Patients (n = 2425) with ACS in the preceding 7 to 90 days, with type 2 diabetes and low HDL cholesterol (≤40 mg/dl for men, ≤45 mg/dl for women), receiving intensive or maximum-tolerated therapy with atorvastatin or rosuvastatin, were assigned in double-blind fashion to receive apabetalone 100 mg orally twice daily or matching placebo. Baseline characteristics include female sex (25%), myocardial infarction as index ACS event (74%), coronary revascularization for index ACS (80%), treatment with dual anti-platelet therapy (87%) and renin-angiotensin system inhibitors (91%), median LDL cholesterol 65 mg per deciliter, and median HbA1c 7.3%. The primary efficacy measure is time to first occurrence of cardiovascular death, non-fatal myocardial infarction, or stroke. Assumptions include a primary event rate of 7% per annum in the placebo group and median follow-up of 1.5 years. Patients will be followed until at least 250 primary endpoint events have occurred, providing 80% power to detect a 30% reduction in the primary endpoint with apabetalone. SUMMARY: BETonMACE will determine whether the addition of the selective BET protein inhibitor apabetalone to contemporary standard of care for ACS reduces cardiovascular morbidity and mortality in patients with type 2 diabetes. Results are expected in 2019.
Collapse
|
385
|
A novel benzoxazinone derivative YLT-LL-11 inhibits diffuse large B-cell lymphoma growth via inducing cell cycle arrest and apoptosis. Biosci Rep 2019; 39:BSR20190828. [PMID: 31527063 PMCID: PMC6822579 DOI: 10.1042/bsr20190828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 08/29/2019] [Accepted: 09/13/2019] [Indexed: 11/29/2022] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is a clinically aggressive B-cell non-Hodgkin’s lymphoma (NHL) with high treatment difficulty and high relapse rate. The bromodomain and extra-terminal (BET) proteins play significant roles in supporting the transcription of known DLBCL oncogene MYC, which provides a way for the development of targeted therapeutic agents to address this kind of malignant tumor. Here, we reported a novel benzoxazinone derivative YLT-LL-11 as potential BRD4 inhibitor and further investigated the biological activities against DLBCL. The results suggested that YLT-LL-11 inhibited cell growth against a panel of human hematopoietic malignancies cell lines in a dose- and time-dependent manner. In addition, flow cytometry and Western blotting assays showed that YLT-LL-11 inhibited the proliferation of a DLBCL cell line OCI-LY10 via inducing G0/G1 cell cycle arrest with regulation of the cyclin-dependent kinases (CDKs) expression. Furthermore, YLT-LL-11 facilitated OCI-LY10 cell apoptosis by up-regulation of pro-apoptotic protein BAX and down-regulation of anti-apoptotic protein Bcl-2. Taken together, these results revealed that BRD4 inhibitor YLT-LL-11 can down-regulate growth-associated transcription factors MYC in DLBCL thus resulted in cell growth inhibition and apoptosis.
Collapse
|
386
|
Mao W, Ghasemzadeh A, Freeman ZT, Obradovic A, Chaimowitz MG, Nirschl TR, McKiernan E, Yegnasubramanian S, Drake CG. Immunogenicity of prostate cancer is augmented by BET bromodomain inhibition. J Immunother Cancer 2019; 7:277. [PMID: 31653272 PMCID: PMC6814994 DOI: 10.1186/s40425-019-0758-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 09/26/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Prostate cancer responds poorly to current immunotherapies. Epigenetic therapies such as BET Bromodomain inhibition can change the transcriptome of tumor cells, possibly making them more immunogenic and thus susceptible to immune targeting. METHODS We characterized the effects of BET bromodomain inhibition using JQ1 on PD-L1 and HLA-ABC expression in two human prostate cell lines, DU145 and PC3. RNA-Seq was performed to assess changes on a genome-wide level. A cytotoxic T cell killing assay was performed in MC38-OVA cells treated with JQ1 to demonstrate increased immunogenicity. In vivo experiments in the Myc-Cap model were conducted to show the effects of JQ1 administration in concert with anti-CTLA-4 checkpoint blockade. RESULTS Here, we show that targeting BET bromodomains using the small molecule inhibitor JQ1 decreased PD-L1 expression and mitigated tumor progression in prostate cancer models. Mechanistically, BET bromodomain inhibition increased MHC I expression and increased the immunogenicity of tumor cells. Transcriptional profiling showed that BET bromodomain inhibition regulates distinct networks of antigen processing and immune checkpoint molecules. In murine models, treatment with JQ1 was additive with anti-CTLA-4 immunotherapy, resulting in an increased CD8/Treg ratio. CONCLUSIONS BET Bromodomain inhibition can mediate changes in expression at a genome wide level in prostate cancer cells, resulting in an increased susceptibility to CD8 T cell targeting. These data suggest that combining BET bromodomain inhibition with immune checkpoint blockade may have clinical activity in prostate cancer patients.
Collapse
Affiliation(s)
- Wendy Mao
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY, 10032, USA
| | - Ali Ghasemzadeh
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY, 10032, USA
| | - Zachary T Freeman
- Unit for Laboratory Animal Medicine (ULAM), Michigan Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
- Rogel Cancer Center, Michigan Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Aleksandar Obradovic
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY, 10032, USA
- Columbia University Systems Biology, Herbert Irving Cancer Research Center, Columbia University Medical Center, New York, NY, 10032, USA
| | - Matthew G Chaimowitz
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY, 10032, USA
| | - Thomas R Nirschl
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Emily McKiernan
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY, 10032, USA
| | - Srinivasan Yegnasubramanian
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Charles G Drake
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY, 10032, USA.
- Department of Urology, Columbia University Medical Center, New York, NY, 10032, USA.
- Herbert Irving Comprehensive Cancer Center, Division of Hematology / Oncology, Columbia University Medical Center, 177 Fort Washington Avenue, Suite 6GN-435, New York, NY, 10032, USA.
| |
Collapse
|
387
|
Zhao L, Li P, Zhao L, Wang M, Tong D, Meng Z, Zhang Q, Li Q, Zhang F. Expression and clinical value of PD‐L1 which is regulated by BRD4 in tongue squamous cell carcinoma. J Cell Biochem 2019; 121:1855-1869. [DOI: 10.1002/jcb.29420] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 10/08/2019] [Indexed: 01/05/2023]
Affiliation(s)
- Lu Zhao
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, School of Stomatology Shandong University Jinan Shandong China
- Department of Oral and Maxillofacial Surgery, School of Stomatology Shandong University Jinan Shandong China
- Department of Stomatology Binzhou People's Hospital Binzhou Shandong China
| | - Pengchong Li
- Department of Stomatology Binzhou People's Hospital Binzhou Shandong China
| | - Li Zhao
- Department of Periodontology Dongguan Dental Hospital Dongguan Guangdong China
| | - Miao Wang
- Department of Oral and Maxillofacial Surgery, School of Stomatology Shandong University Jinan Shandong China
| | - Dongdong Tong
- Department of Oral and Maxillofacial Surgery, School of Stomatology Shandong University Jinan Shandong China
| | - Zilin Meng
- School of Resources and Environmental Engineering Shandong University of Technology Zibo Shandong China
| | - Qian Zhang
- School of Resources and Environmental Engineering Shandong University of Technology Zibo Shandong China
| | - Qing Li
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, School of Stomatology Shandong University Jinan Shandong China
- Department of Oral and Maxillofacial Surgery, School of Stomatology Shandong University Jinan Shandong China
| | - Fenghe Zhang
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, School of Stomatology Shandong University Jinan Shandong China
- Department of Oral and Maxillofacial Surgery, School of Stomatology Shandong University Jinan Shandong China
| |
Collapse
|
388
|
Wu T, Donohoe ME. Yy1 regulates Senp1 contributing to AMPA receptor GluR1 expression following neuronal depolarization. J Biomed Sci 2019; 26:79. [PMID: 31629407 PMCID: PMC6800989 DOI: 10.1186/s12929-019-0582-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 10/09/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Neuronal activity-induced changes in gene expression patterns are important mediators of neuronal plasticity. Many neuronal genes can be activated or inactivated in response to neuronal depolarization. Mechanisms that activate gene transcription are well established, but activity-dependent mechanisms that silence transcription are less understood. It is also not clear what is the significance of inhibiting these genes during neuronal activity. METHODS Quantitative Real Time-PCR, western blot and immunofluorescence staining were performed to examine the expression of Senp1 and GluR1 in mouse cortical neurons. The alterations of Yy1 phosphorylation upon neuronal depolarization and the interaction of Yy1 with Brd4 were studied by protein co-immunoprecipitation. The regulators of Yy1 phosphorylation were identified by phosphatase inhibitors. Chromatin immunoprecipitation, in vitro DNA binding assay, luciferase assay and gene knockdown experiments were used to validate the roles of Yy1 and its phosphorylation as well as Brd4 in regulating Senp1 expression. RESULTS We report that neuronal depolarization deactivates the transcription of the SUMO protease Senp1, an important component regulating synaptic transmission, scaling, and plasticity, through Yy1. In un-stimulated neurons, Senp1 transcription is activated by a Yy1-Brd4 transcription factor protein complex assembled on the Senp1 promoter. Upon membrane depolarization, however, Yy1 is dephosphorylated and the Yy1-Brd4 complex is evicted from the Senp1 promoter, reducing Senp1 transcription levels. Both Yy1 and Senp1 promote the expression of AMPA receptor subunit GluR1, a pivotal component in learning and memory. CONCLUSIONS These results reveal an axis of Yy1/Brd4-Senp1 which regulates the expression of GluR1 during neuronal depolarization. This implicates a regulation mechanism in silencing gene expression upon neuronal activity.
Collapse
Affiliation(s)
- Tao Wu
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 210009, People's Republic of China.
- Burke Medical Research Institute, White Plains, NY, 10605, USA.
- Department of Neuroscience, Brain Mind Research Institute, Department of Cell & Development, Weill Cornell Medical College, New York, NY, 10065, USA.
| | - Mary E Donohoe
- Burke Medical Research Institute, White Plains, NY, 10605, USA.
- Department of Neuroscience, Brain Mind Research Institute, Department of Cell & Development, Weill Cornell Medical College, New York, NY, 10065, USA.
- Present address: Department of Medicine, Division of Regenerative Medicine, University of California San Diego School of Medicine, La Jolla, CA, 92037, USA.
| |
Collapse
|
389
|
Wang Y, Dong C, Zhou BP. Metabolic reprogram associated with epithelial-mesenchymal transition in tumor progression and metastasis. Genes Dis 2019; 7:172-184. [PMID: 32215287 PMCID: PMC7083713 DOI: 10.1016/j.gendis.2019.09.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 09/08/2019] [Accepted: 09/27/2019] [Indexed: 02/09/2023] Open
Abstract
Epithelial-mesenchymal Transition (EMT) is a de-differentiation program that imparts tumor cells with the phenotypic and cellular plasticity required for drug resistance, metastasis, and recurrence. This dynamic and reversible events is governed by a network of EMT-transcription factors (EMT-TFs) through epigenetic regulation. Many chromatin modifying-enzymes utilize metabolic intermediates as cofactors or substrates; this suggests that EMT is subjected to the metabolic regulation. Conversely, EMT rewires metabolic program to accommodate cellular changes during EMT. Here we summarize the latest findings regarding the epigenetic regulation of EMT, and discuss the mutual interactions among metabolism, epigenetic regulation, and EMT. Finally, we provide perspectives of how this interplay contributes to cellular plasticity, which may result in the clinical manifestation of tumor heterogeneity.
Collapse
Affiliation(s)
- Yifan Wang
- Cancer Institute of Integrative Medicine, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, Zhejiang, 310012, China
| | - Chenfang Dong
- Department of Pathology and Pathophysiology, Department of Surgical Oncology (Breast Center) of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Binhua P Zhou
- Departments of Molecular and Cellular Biochemistry, Markey Cancer Center, University of Kentucky School of Medicine, Lexington, KY, 40506, USA
| |
Collapse
|
390
|
Reyes-Garau D, Ribeiro ML, Roué G. Pharmacological Targeting of BET Bromodomain Proteins in Acute Myeloid Leukemia and Malignant Lymphomas: From Molecular Characterization to Clinical Applications. Cancers (Basel) 2019; 11:cancers11101483. [PMID: 31581671 PMCID: PMC6826405 DOI: 10.3390/cancers11101483] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/27/2019] [Accepted: 09/30/2019] [Indexed: 12/16/2022] Open
Abstract
Alterations in protein-protein and DNA-protein interactions and abnormal chromatin remodeling are a major cause of uncontrolled gene transcription and constitutive activation of critical signaling pathways in cancer cells. Multiple epigenetic regulators are known to be deregulated in several hematologic neoplasms, by somatic mutation, amplification, or deletion, allowing the identification of specific epigenetic signatures, but at the same time providing new therapeutic opportunities. While these vulnerabilities have been traditionally addressed by hypomethylating agents or histone deacetylase inhibitors, pharmacological targeting of bromodomain-containing proteins has recently emerged as a promising approach in a number of lymphoid and myeloid malignancies. Indeed, preclinical and clinical studies highlight the relevance of targeting the bromodomain and extra-terminal (BET) family as an efficient strategy of target transcription irrespective of the presence of epigenetic mutations. Here we will summarize the main advances achieved in the last decade regarding the preclinical and clinical evaluation of BET bromodomain inhibitors in hematologic cancers, either as monotherapies or in combinations with standard and/or experimental agents. A mention will finally be given to the new concept of the protein degrader, and the perspective it holds for the design of bromodomain-based therapies.
Collapse
Affiliation(s)
- Diana Reyes-Garau
- Laboratory of Experimental Hematology, Department of Hematology, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron University Hospital, Autonomous University of Barcelona, 08035 Barcelona, Spain.
| | - Marcelo L Ribeiro
- Laboratory of Experimental Hematology, Department of Hematology, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron University Hospital, Autonomous University of Barcelona, 08035 Barcelona, Spain.
- Laboratory of Immunopharmacology and Molecular Biology, Sao Francisco University Medical School, Braganca Paulista, São Paulo 12916-900, Brazil.
| | - Gaël Roué
- Laboratory of Experimental Hematology, Department of Hematology, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron University Hospital, Autonomous University of Barcelona, 08035 Barcelona, Spain.
| |
Collapse
|
391
|
Zuo H, Wang S, Feng J, Liu X. BRD4 contributes to high-glucose-induced podocyte injury by modulating Keap1/Nrf2/ARE signaling. Biochimie 2019; 165:100-107. [DOI: 10.1016/j.biochi.2019.07.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Accepted: 07/12/2019] [Indexed: 01/25/2023]
|
392
|
Tian B, Liu Z, Yang J, Sun H, Zhao Y, Wakamiya M, Chen H, Rytting E, Zhou J, Brasier AR. Selective Antagonists of the Bronchiolar Epithelial NF-κB-Bromodomain-Containing Protein 4 Pathway in Viral-Induced Airway Inflammation. Cell Rep 2019; 23:1138-1151. [PMID: 29694891 DOI: 10.1016/j.celrep.2018.03.106] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 02/11/2018] [Accepted: 03/22/2018] [Indexed: 11/25/2022] Open
Abstract
The mechanisms by which the mammalian airway detects invading viral pathogens to trigger protective innate neutrophilic inflammation are incompletely understood. We observe that innate activation of nuclear factor κB (NF-κB)/RelA transcription factor indirectly activates atypical BRD4 histone acetyltransferase (HAT) activity, RNA polymerase II (Pol II) phosphorylation, and secretion of neutrophilic chemokines. To study this pathway in vivo, we developed a conditional knockout of RelA in distal airway epithelial cells; these animals have reduced mucosal BRD4/Pol II activation and neutrophilic inflammation to viral patterns. To further understand the role of BRD4 in vivo, two potent, highly selective small-molecule BRD4 inhibitors were developed. These well-tolerated inhibitors disrupt the BRD4 complex with Pol II and histones, completely blocking inducible epithelial chemokine production and neutrophilia. We conclude that RelA-BRD4 signaling in distal tracheobronchiolar epithelial cells mediates acute inflammation in response to luminal viral patterns. These potent BRD4 antagonists are versatile pharmacological tools for investigating BRD4 functions in vivo.
Collapse
Affiliation(s)
- Bing Tian
- Department of Internal Medicine, University of Texas, Galveston, TX 77555, USA; Sealy Center for Molecular Medicine, University of Texas, Galveston, TX 77555, USA
| | - Zhiqing Liu
- Department of Pharmacology and Toxicology, University of Texas, Galveston, TX 77555, USA
| | - Jun Yang
- Department of Internal Medicine, University of Texas, Galveston, TX 77555, USA; Sealy Center for Molecular Medicine, University of Texas, Galveston, TX 77555, USA
| | - Hong Sun
- Department of Internal Medicine, University of Texas, Galveston, TX 77555, USA
| | - Yingxin Zhao
- Department of Internal Medicine, University of Texas, Galveston, TX 77555, USA; Sealy Center for Molecular Medicine, University of Texas, Galveston, TX 77555, USA; Institute for Translational Sciences, University of Texas, Galveston, TX 77555, USA
| | - Maki Wakamiya
- Institute for Translational Sciences, University of Texas, Galveston, TX 77555, USA
| | - Haiying Chen
- Department of Pharmacology and Toxicology, University of Texas, Galveston, TX 77555, USA
| | - Erik Rytting
- Department of Obstetrics and Gynecology, University of Texas, Galveston, TX 77555, USA
| | - Jia Zhou
- Sealy Center for Molecular Medicine, University of Texas, Galveston, TX 77555, USA; Department of Pharmacology and Toxicology, University of Texas, Galveston, TX 77555, USA; Institute for Translational Sciences, University of Texas, Galveston, TX 77555, USA
| | - Allan R Brasier
- School of Medicine and Public Health, University of Wisconsin, Madison, WI 53715, USA.
| |
Collapse
|
393
|
Chen FX, Smith ER, Shilatifard A. Born to run: control of transcription elongation by RNA polymerase II. Nat Rev Mol Cell Biol 2019; 19:464-478. [PMID: 29740129 DOI: 10.1038/s41580-018-0010-5] [Citation(s) in RCA: 288] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The dynamic regulation of transcription elongation by RNA polymerase II (Pol II) is an integral part of the implementation of gene expression programmes during development. In most metazoans, the majority of transcribed genes exhibit transient pausing of Pol II at promoter-proximal regions, and the release of Pol II into gene bodies is controlled by many regulatory factors that respond to environmental and developmental cues. Misregulation of the elongation stage of transcription is implicated in cancer and other human diseases, suggesting that mechanistic understanding of transcription elongation control is therapeutically relevant. In this Review, we discuss the features, establishment and maintenance of Pol II pausing, the transition into productive elongation, the control of transcription elongation by enhancers and by factors of other cellular processes, such as topoisomerases and poly(ADP-ribose) polymerases (PARPs), and the potential of therapeutic targeting of the elongation stage of transcription by Pol II.
Collapse
Affiliation(s)
- Fei Xavier Chen
- Simpson Querrey Center for Epigenetics and the Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Edwin R Smith
- Simpson Querrey Center for Epigenetics and the Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Ali Shilatifard
- Simpson Querrey Center for Epigenetics and the Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
394
|
Stratton MS, Bagchi RA, Felisbino MB, Hirsch RA, Smith HE, Riching AS, Enyart BY, Koch KA, Cavasin MA, Alexanian M, Song K, Qi J, Lemieux ME, Srivastava D, Lam MPY, Haldar SM, Lin CY, McKinsey TA. Dynamic Chromatin Targeting of BRD4 Stimulates Cardiac Fibroblast Activation. Circ Res 2019; 125:662-677. [PMID: 31409188 DOI: 10.1161/circresaha.119.315125] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
RATIONALE Small molecule inhibitors of the acetyl-histone binding protein BRD4 have been shown to block cardiac fibrosis in preclinical models of heart failure (HF). However, since the inhibitors target BRD4 ubiquitously, it is unclear whether this chromatin reader protein functions in cell type-specific manner to control pathological myocardial fibrosis. Furthermore, the molecular mechanisms by which BRD4 stimulates the transcriptional program for cardiac fibrosis remain unknown. OBJECTIVE We sought to test the hypothesis that BRD4 functions in a cell-autonomous and signal-responsive manner to control activation of cardiac fibroblasts, which are the major extracellular matrix-producing cells of the heart. METHODS AND RESULTS RNA-sequencing, mass spectrometry, and cell-based assays employing primary adult rat ventricular fibroblasts demonstrated that BRD4 functions as an effector of TGF-β (transforming growth factor-β) signaling to stimulate conversion of quiescent cardiac fibroblasts into Periostin (Postn)-positive cells that express high levels of extracellular matrix. These findings were confirmed in vivo through whole-transcriptome analysis of cardiac fibroblasts from mice subjected to transverse aortic constriction and treated with the small molecule BRD4 inhibitor, JQ1. Chromatin immunoprecipitation-sequencing revealed that BRD4 undergoes stimulus-dependent, genome-wide redistribution in cardiac fibroblasts, becoming enriched on a subset of enhancers and super-enhancers, and leading to RNA polymerase II activation and expression of downstream target genes. Employing the Sertad4 (SERTA domain-containing protein 4) locus as a prototype, we demonstrate that dynamic chromatin targeting of BRD4 is controlled, in part, by p38 MAPK (mitogen-activated protein kinase) and provide evidence of a critical function for Sertad4 in TGF-β-mediated cardiac fibroblast activation. CONCLUSIONS These findings define BRD4 as a central regulator of the pro-fibrotic cardiac fibroblast phenotype, establish a p38-dependent signaling circuit for epigenetic reprogramming in heart failure, and uncover a novel role for Sertad4. The work provides a mechanistic foundation for the development of BRD4 inhibitors as targeted anti-fibrotic therapies for the heart.
Collapse
Affiliation(s)
- Matthew S Stratton
- From the Department of Medicine, Division of Cardiology (M.S.S., R.A.B., M.B.F., A.S.R., B.Y.E., K.A.K., M.A.C., K.S., M.P.Y.L., T.A.M.), University of Colorado Anschutz Medical Campus, Aurora.,Consortium for Fibrosis Research & Translation (M.S.S., R.A.B., M.B.F., A.S.R., B.Y.E., K.A.K., M.A.C., K.S., M.P.Y.L., T.A.M.), University of Colorado Anschutz Medical Campus, Aurora
| | - Rushita A Bagchi
- From the Department of Medicine, Division of Cardiology (M.S.S., R.A.B., M.B.F., A.S.R., B.Y.E., K.A.K., M.A.C., K.S., M.P.Y.L., T.A.M.), University of Colorado Anschutz Medical Campus, Aurora.,Consortium for Fibrosis Research & Translation (M.S.S., R.A.B., M.B.F., A.S.R., B.Y.E., K.A.K., M.A.C., K.S., M.P.Y.L., T.A.M.), University of Colorado Anschutz Medical Campus, Aurora
| | - Marina B Felisbino
- From the Department of Medicine, Division of Cardiology (M.S.S., R.A.B., M.B.F., A.S.R., B.Y.E., K.A.K., M.A.C., K.S., M.P.Y.L., T.A.M.), University of Colorado Anschutz Medical Campus, Aurora.,Consortium for Fibrosis Research & Translation (M.S.S., R.A.B., M.B.F., A.S.R., B.Y.E., K.A.K., M.A.C., K.S., M.P.Y.L., T.A.M.), University of Colorado Anschutz Medical Campus, Aurora
| | - Rachel A Hirsch
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX (R.A.H., H.E.S., C.Y.L.)
| | - Harrison E Smith
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX (R.A.H., H.E.S., C.Y.L.)
| | - Andrew S Riching
- From the Department of Medicine, Division of Cardiology (M.S.S., R.A.B., M.B.F., A.S.R., B.Y.E., K.A.K., M.A.C., K.S., M.P.Y.L., T.A.M.), University of Colorado Anschutz Medical Campus, Aurora.,Consortium for Fibrosis Research & Translation (M.S.S., R.A.B., M.B.F., A.S.R., B.Y.E., K.A.K., M.A.C., K.S., M.P.Y.L., T.A.M.), University of Colorado Anschutz Medical Campus, Aurora
| | - Blake Y Enyart
- From the Department of Medicine, Division of Cardiology (M.S.S., R.A.B., M.B.F., A.S.R., B.Y.E., K.A.K., M.A.C., K.S., M.P.Y.L., T.A.M.), University of Colorado Anschutz Medical Campus, Aurora.,Consortium for Fibrosis Research & Translation (M.S.S., R.A.B., M.B.F., A.S.R., B.Y.E., K.A.K., M.A.C., K.S., M.P.Y.L., T.A.M.), University of Colorado Anschutz Medical Campus, Aurora
| | - Keith A Koch
- From the Department of Medicine, Division of Cardiology (M.S.S., R.A.B., M.B.F., A.S.R., B.Y.E., K.A.K., M.A.C., K.S., M.P.Y.L., T.A.M.), University of Colorado Anschutz Medical Campus, Aurora.,Consortium for Fibrosis Research & Translation (M.S.S., R.A.B., M.B.F., A.S.R., B.Y.E., K.A.K., M.A.C., K.S., M.P.Y.L., T.A.M.), University of Colorado Anschutz Medical Campus, Aurora
| | - Maria A Cavasin
- From the Department of Medicine, Division of Cardiology (M.S.S., R.A.B., M.B.F., A.S.R., B.Y.E., K.A.K., M.A.C., K.S., M.P.Y.L., T.A.M.), University of Colorado Anschutz Medical Campus, Aurora.,Consortium for Fibrosis Research & Translation (M.S.S., R.A.B., M.B.F., A.S.R., B.Y.E., K.A.K., M.A.C., K.S., M.P.Y.L., T.A.M.), University of Colorado Anschutz Medical Campus, Aurora
| | - Michael Alexanian
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA (M.A., D.S., S.M.H.)
| | - Kunhua Song
- From the Department of Medicine, Division of Cardiology (M.S.S., R.A.B., M.B.F., A.S.R., B.Y.E., K.A.K., M.A.C., K.S., M.P.Y.L., T.A.M.), University of Colorado Anschutz Medical Campus, Aurora.,Consortium for Fibrosis Research & Translation (M.S.S., R.A.B., M.B.F., A.S.R., B.Y.E., K.A.K., M.A.C., K.S., M.P.Y.L., T.A.M.), University of Colorado Anschutz Medical Campus, Aurora
| | - Jun Qi
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA (J.Q.)
| | | | - Deepak Srivastava
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA (M.A., D.S., S.M.H.)
| | - Maggie P Y Lam
- From the Department of Medicine, Division of Cardiology (M.S.S., R.A.B., M.B.F., A.S.R., B.Y.E., K.A.K., M.A.C., K.S., M.P.Y.L., T.A.M.), University of Colorado Anschutz Medical Campus, Aurora.,Consortium for Fibrosis Research & Translation (M.S.S., R.A.B., M.B.F., A.S.R., B.Y.E., K.A.K., M.A.C., K.S., M.P.Y.L., T.A.M.), University of Colorado Anschutz Medical Campus, Aurora
| | - Saptarsi M Haldar
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA (M.A., D.S., S.M.H.).,Cardiovascular Research Institute and Department of Medicine, Division of Cardiology UCSF School of Medicine, San Francisco, CA (S.M.H.).,Cardiometabolic Disorders, Amgen, San Francisco, CA (S.M.H.)
| | - Charles Y Lin
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX (R.A.H., H.E.S., C.Y.L.)
| | - Timothy A McKinsey
- From the Department of Medicine, Division of Cardiology (M.S.S., R.A.B., M.B.F., A.S.R., B.Y.E., K.A.K., M.A.C., K.S., M.P.Y.L., T.A.M.), University of Colorado Anschutz Medical Campus, Aurora.,Consortium for Fibrosis Research & Translation (M.S.S., R.A.B., M.B.F., A.S.R., B.Y.E., K.A.K., M.A.C., K.S., M.P.Y.L., T.A.M.), University of Colorado Anschutz Medical Campus, Aurora
| |
Collapse
|
395
|
Chua V, Orloff M, Teh JL, Sugase T, Liao C, Purwin TJ, Lam BQ, Terai M, Ambrosini G, Carvajal RD, Schwartz G, Sato T, Aplin AE. Stromal fibroblast growth factor 2 reduces the efficacy of bromodomain inhibitors in uveal melanoma. EMBO Mol Med 2019; 11:emmm.201809081. [PMID: 30610113 PMCID: PMC6365926 DOI: 10.15252/emmm.201809081] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Alterations in transcriptional programs promote tumor development and progression and are targetable by bromodomain and extraterminal (BET) protein inhibitors. However, in a multi‐site clinical trial testing the novel BET inhibitor, PLX51107, in solid cancer patients, liver metastases of uveal melanoma (UM) patients progressed rapidly following treatment. Mechanisms of resistance to BET inhibitors in UM are unknown. We show that fibroblast growth factor 2 (FGF2) rescued UM cells from growth inhibition by BET inhibitors, and FGF2 effects were reversible by FGF receptor (FGFR) inhibitors. BET inhibitors also increased FGFR protein expression in UM cell lines and in patient tumor samples. Hepatic stellate cells (HSCs) secrete FGF2, and HSC‐conditioned medium provided resistance of UM cells to BET inhibitors. PLX51107 was ineffective in vivo, but the combination of a FGFR inhibitor, AZD4547, and PLX51107 significantly suppressed the growth of xenograft UM tumors formed from subcutaneous inoculation of UM cells with HSCs and orthotopically in the liver. These results suggest that co‐targeting of FGFR signaling is required to increase the responses of metastatic UM to BET inhibitors.
Collapse
Affiliation(s)
- Vivian Chua
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Marlana Orloff
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Jessica Lf Teh
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Takahito Sugase
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Connie Liao
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Timothy J Purwin
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Bao Q Lam
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Mizue Terai
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Grazia Ambrosini
- The Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY, USA
| | - Richard D Carvajal
- The Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY, USA.,Division of Hematology/Oncology, Columbia University Medical Center, New York, NY, USA
| | - Gary Schwartz
- The Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY, USA.,Division of Hematology/Oncology, Columbia University Medical Center, New York, NY, USA
| | - Takami Sato
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Andrew E Aplin
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA .,Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
396
|
Liu S, Li F, Pan L, Yang Z, Shu Y, Lv W, Dong P, Gong W. BRD4 inhibitor and histone deacetylase inhibitor synergistically inhibit the proliferation of gallbladder cancer in vitro and in vivo. Cancer Sci 2019; 110:2493-2506. [PMID: 31215139 PMCID: PMC6676267 DOI: 10.1111/cas.14102] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 06/08/2019] [Accepted: 06/15/2019] [Indexed: 02/05/2023] Open
Abstract
Gallbladder cancer (GBC) is the most common malignancy of the bile duct and has a high mortality rate. Here, we demonstrated that BRD4 inhibitor JQ1 and histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA) synergistically inhibited the GBC cells in vitro and in vivo. Our results showed that cotreatment with JQ1 and SAHA significantly inhibited proliferation, cell viability and metastasis, and induced apoptosis and G2/M arrest in GBC cells, with only minor effects in benign cells. In vivo, tumor volumes and weights of GBC xenograft models were significantly decreased after treatment with JQ1 or SAHA; meanwhile, the cotreatment showed the strongest effect. Further study indicated that the above anticancer effects was associated with the downregulation of BRD4 and suppression of PI3K/AKT and MAPK/ERK pathways. These findings highlight JQ1 and SAHA as potential therapeutic agents and their combination as a promising therapeutic strategy for GBC.
Collapse
Affiliation(s)
- Shilei Liu
- Department of General SurgeryXinhua Hospital, Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Biliary Tract Disease ResearchShanghaiChina
| | - Fengnan Li
- Department of General SurgeryXinhua Hospital, Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Biliary Tract Disease ResearchShanghaiChina
| | - Lijia Pan
- Department of General SurgeryXinhua Hospital, Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Biliary Tract Disease ResearchShanghaiChina
| | - Ziyi Yang
- Department of General SurgeryXinhua Hospital, Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Biliary Tract Disease ResearchShanghaiChina
| | - Yijun Shu
- Department of General SurgeryXinhua Hospital, Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Biliary Tract Disease ResearchShanghaiChina
| | - Wenjie Lv
- Department of General SurgeryXinhua Hospital, Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Biliary Tract Disease ResearchShanghaiChina
| | - Ping Dong
- Department of General SurgeryXinhua Hospital, Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Biliary Tract Disease ResearchShanghaiChina
| | - Wei Gong
- Department of General SurgeryXinhua Hospital, Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Biliary Tract Disease ResearchShanghaiChina
| |
Collapse
|
397
|
Niu Q, Liu Z, Alamer E, Fan X, Chen H, Endsley J, Gelman BB, Tian B, Kim JH, Michael NL, Robb ML, Ananworanich J, Zhou J, Hu H. Structure-guided drug design identifies a BRD4-selective small molecule that suppresses HIV. J Clin Invest 2019; 129:3361-3373. [PMID: 31329163 PMCID: PMC6668673 DOI: 10.1172/jci120633] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 05/28/2019] [Indexed: 12/24/2022] Open
Abstract
HIV integrates its provirus into the host genome and establishes latent infection. Antiretroviral therapy (ART) can control HIV viremia, but cannot eradicate or cure the virus. Approaches targeting host epigenetic machinery to repress HIV, leading to an aviremic state free of ART, are needed. Bromodomain and extraterminal (BET) family protein BRD4 is an epigenetic reader involved in HIV transcriptional regulation. Using structure-guided drug design, we identified a small molecule (ZL0580) that induced epigenetic suppression of HIV via BRD4. We showed that ZL0580 induced HIV suppression in multiple in vitro and ex vivo cell models. Combination treatment of cells of aviremic HIV-infected individuals with ART and ZL0580 revealed that ZL0580 accelerated HIV suppression during ART and delayed viral rebound after ART cessation. Mechanistically different from the BET/BRD4 pan-inhibitor JQ1, which nonselectively binds to BD1 and BD2 domains of all BET proteins, ZL0580 selectively bound to BD1 domain of BRD4. We further demonstrate that ZL0580 induced HIV suppression by inhibiting Tat transactivation and transcription elongation as well as by inducing repressive chromatin structure at the HIV promoter. Our findings establish a proof of concept for modulation of BRD4 to epigenetically suppress HIV and provide a promising chemical scaffold for the development of probes and/or therapeutic agents for HIV epigenetic silencing.
Collapse
Affiliation(s)
- Qingli Niu
- Department of Microbiology and Immunology, University of Texas Medical Branch (UTMB), Galveston, Texas, USA
- Institute for Human Infections and Immunity, Sealy Institute for Vaccine Sciences
| | - Zhiqing Liu
- Chemical Biology Program, Department of Pharmacology and Toxicology
| | - Edrous Alamer
- Department of Microbiology and Immunology, University of Texas Medical Branch (UTMB), Galveston, Texas, USA
- Institute for Human Infections and Immunity, Sealy Institute for Vaccine Sciences
| | - Xiuzhen Fan
- Department of Microbiology and Immunology, University of Texas Medical Branch (UTMB), Galveston, Texas, USA
- Institute for Human Infections and Immunity, Sealy Institute for Vaccine Sciences
| | - Haiying Chen
- Chemical Biology Program, Department of Pharmacology and Toxicology
| | - Janice Endsley
- Department of Microbiology and Immunology, University of Texas Medical Branch (UTMB), Galveston, Texas, USA
- Institute for Human Infections and Immunity, Sealy Institute for Vaccine Sciences
| | | | - Bing Tian
- Department of Internal Medicine, Sealy Center for Molecular Medicine, UTMB, Galveston, Texas, USA
| | - Jerome H. Kim
- International Vaccine Institute, Gwanak-gu, Seoul, South Korea
| | - Nelson L. Michael
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - Merlin L. Robb
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - Jintanat Ananworanich
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
- Department of Global Health, The University of Amsterdam, Amsterdam, Netherlands
| | - Jia Zhou
- Chemical Biology Program, Department of Pharmacology and Toxicology
| | - Haitao Hu
- Department of Microbiology and Immunology, University of Texas Medical Branch (UTMB), Galveston, Texas, USA
- Institute for Human Infections and Immunity, Sealy Institute for Vaccine Sciences
| |
Collapse
|
398
|
Bromodomain inhibitor JQ1 reversibly blocks IFN-γ production. Sci Rep 2019; 9:10280. [PMID: 31311960 PMCID: PMC6635431 DOI: 10.1038/s41598-019-46516-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 06/29/2019] [Indexed: 02/07/2023] Open
Abstract
As a class, ‘BET’ inhibitors disrupt binding of bromodomain and extra-terminal motif (BET) proteins, BRD2, BRD3, BRD4 and BRDT, to acetylated histones preventing recruitment of RNA polymerase 2 to enhancers and promoters, especially super-enhancers, to inhibit gene transcription. As such, BET inhibitors may be useful therapeutics for treatment of cancer and inflammatory disease. For example, the small molecule BET inhibitor, JQ1, selectively represses MYC, an important oncogene regulated by a super-enhancer. IFN-γ, a critical cytokine for both innate and adaptive immune responses, is also regulated by a super-enhancer. Here, we show that JQ1 represses IFN-γ expression in TH1 polarized PBMC cultures, CD4+ memory T cells, and NK cells. JQ1 treatment does not reduce activating chromatin marks at the IFNG locus, but displaces RNA polymerase II from the locus. Further, IFN-γ expression recovers in polarized TH1 cultures following removal of JQ1. Our results show that JQ1 abrogates IFN-γ expression, but repression is reversible. Thus, BET inhibitors may disrupt the normal functions of the innate and adaptive immune response.
Collapse
|
399
|
Tsujikawa LM, Fu L, Das S, Halliday C, Rakai BD, Stotz SC, Sarsons CD, Gilham D, Daze E, Wasiak S, Studer D, Rinker KD, Sweeney M, Johansson JO, Wong NCW, Kulikowski E. Apabetalone (RVX-208) reduces vascular inflammation in vitro and in CVD patients by a BET-dependent epigenetic mechanism. Clin Epigenetics 2019; 11:102. [PMID: 31300040 PMCID: PMC6626370 DOI: 10.1186/s13148-019-0696-z] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 06/11/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Apabetalone (RVX-208) is a bromodomain and extraterminal protein inhibitor (BETi) that in phase II trials reduced the relative risk (RR) of major adverse cardiac events (MACE) in patients with cardiovascular disease (CVD) by 44% and in diabetic CVD patients by 57% on top of statins. A phase III trial, BETonMACE, is currently assessing apabetalone's ability to reduce MACE in statin-treated post-acute coronary syndrome type 2 diabetic CVD patients with low high-density lipoprotein C. The leading cause of MACE is atherosclerosis, driven by dysfunctional lipid metabolism and chronic vascular inflammation (VI). In vitro studies have implicated the BET protein BRD4 as an epigenetic driver of inflammation and atherogenesis, suggesting that BETi may be clinically effective in combating VI. Here, we assessed apabetalone's ability to regulate inflammation-driven gene expression and cell adhesion in vitro and investigated the mechanism by which apabetalone suppresses expression. The clinical impact of apabetalone on mediators of VI was assessed with proteomic analysis of phase II CVD patient plasma. RESULTS In vitro, apabetalone prevented inflammatory (TNFα, LPS, or IL-1β) induction of key factors that drive endothelial activation, monocyte recruitment, adhesion, and plaque destabilization. BRD4 abundance on inflammatory and adhesion gene promoters and enhancers was reduced by apabetalone. BRD2-4 degradation by MZ-1 also prevented TNFα-induced transcription of monocyte and endothelial cell adhesion molecules and inflammatory mediators, confirming BET-dependent regulation. Transcriptional regulation by apabetalone translated into a reduction in monocyte adhesion to an endothelial monolayer. In a phase II trial, apabetalone treatment reduced the abundance of multiple VI mediators in the plasma of CVD patients (SOMAscan® 1.3 k). These proteins correlate with CVD risk and include adhesion molecules, cytokines, and metalloproteinases. Ingenuity® Pathway Analysis (IPA®) predicted that apabetalone inhibits pro-atherogenic regulators and pathways and prevents disease states arising from leukocyte recruitment. CONCLUSIONS Apabetalone suppressed gene expression of VI mediators in monocytes and endothelial cells by inhibiting BET-dependent transcription induced by multiple inflammatory stimuli. In CVD patients, apabetalone treatment reduced circulating levels of VI mediators, an outcome conducive with atherosclerotic plaque stabilization and MACE reduction. Inhibition of inflammatory and adhesion molecule gene expression by apabetalone is predicted to contribute to MACE reduction in the phase III BETonMACE trial.
Collapse
Affiliation(s)
- Laura M Tsujikawa
- Resverlogix Corp., 300, 4820 Richard Road SW, Calgary, AB, T3E 6 L1, Canada
| | - Li Fu
- Resverlogix Corp., 300, 4820 Richard Road SW, Calgary, AB, T3E 6 L1, Canada
| | - Shovon Das
- Resverlogix Corp., 300, 4820 Richard Road SW, Calgary, AB, T3E 6 L1, Canada
| | | | - Brooke D Rakai
- Resverlogix Corp., 300, 4820 Richard Road SW, Calgary, AB, T3E 6 L1, Canada
| | - Stephanie C Stotz
- Resverlogix Corp., 300, 4820 Richard Road SW, Calgary, AB, T3E 6 L1, Canada
| | | | - Dean Gilham
- Resverlogix Corp., 300, 4820 Richard Road SW, Calgary, AB, T3E 6 L1, Canada
| | - Emily Daze
- Resverlogix Corp., 300, 4820 Richard Road SW, Calgary, AB, T3E 6 L1, Canada
| | - Sylwia Wasiak
- Resverlogix Corp., 300, 4820 Richard Road SW, Calgary, AB, T3E 6 L1, Canada
| | - Deborah Studer
- Cellular and Molecular Bioengineering Research Lab, Libin Cardiovascular Institute of Alberta, University of Calgary, HMRB 358/361 3330 University Drive NW, Calgary, AB, T2N 4 N1, Canada
| | - Kristina D Rinker
- Cellular and Molecular Bioengineering Research Lab, Libin Cardiovascular Institute of Alberta, University of Calgary, HMRB 358/361 3330 University Drive NW, Calgary, AB, T2N 4 N1, Canada
| | - Michael Sweeney
- Resverlogix Inc., Suite 4010, 44 Montgomery Street, San Francisco, CA, 94104, USA
| | - Jan O Johansson
- Resverlogix Inc., Suite 4010, 44 Montgomery Street, San Francisco, CA, 94104, USA
| | - Norman C W Wong
- Resverlogix Corp., 300, 4820 Richard Road SW, Calgary, AB, T3E 6 L1, Canada
| | - Ewelina Kulikowski
- Resverlogix Corp., 300, 4820 Richard Road SW, Calgary, AB, T3E 6 L1, Canada.
| |
Collapse
|
400
|
Winer ES, Stone RM. Novel therapy in Acute myeloid leukemia (AML): moving toward targeted approaches. Ther Adv Hematol 2019; 10:2040620719860645. [PMID: 31321011 PMCID: PMC6624910 DOI: 10.1177/2040620719860645] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 05/30/2019] [Indexed: 12/20/2022] Open
Abstract
Acute myeloid leukemia (AML) is a heterogenous and complex disease characterized by rapid cellular proliferation, an aggressive clinical course, and generally high mortality. While progress has been made in the understanding of the genetic and molecular biology of the disease, the standard of care for patients had only changed minimally over the past 40 years. Recently, rapid movement of potentially useful agents from bench to bedside has translated into new therapies either recently approved or in clinical trials. These therapies include improved chemotherapies, mutationally targeted inhibitors, pro-apoptotic agents, microenvironment targeting molecules, cell cycle checkpoint inhibitors, and epigenetic regulators. Furthermore, advances in immunotherapy employ monoclonal and bispecific antibodies, chimeric antigen receptor (CAR) T cells, checkpoint inhibitors, and vaccines provide an alternative pathway for AML treatment. In this review, we discuss the recent results of completed or ongoing clinical trials with these novel therapeutic agents in AML.
Collapse
Affiliation(s)
- Eric S. Winer
- Dana-Farber Cancer Institute, Leukemia Division,
Department of Medical Oncology, Boston, MA, USA
| | - Richard M. Stone
- Dana-Farber Cancer Institute, Leukemia Division,
Department of Medical Oncology, 450 Brookline Ave., Boston, MA 02115,
USA
| |
Collapse
|