351
|
Tapia C, Zlobec I, Schneider S, Kilic E, Güth U, Bubendorf L, Kim S. Deletion of the inhibitor of growth 4 (ING4) tumor suppressor gene is prevalent in human epidermal growth factor 2 (HER2)-positive breast cancer. Hum Pathol 2011; 42:983-90. [PMID: 21315418 PMCID: PMC3103605 DOI: 10.1016/j.humpath.2010.10.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Revised: 08/27/2010] [Accepted: 10/01/2010] [Indexed: 02/02/2023]
Abstract
Inhibitor of growth 4 (ING4) is a candidate tumor suppressor gene that was shown to be deleted in 10% to 20% of breast cancers by array comparative genome hybridization analysis. We developed fluorescent in situ hybridization to detect the ING4 gene directly in the tissue samples on tumor tissue microarrays. We evaluated the ING4 gene status in 1033 breast cancer tissue samples and observed that ING4 was deleted in 16.5% (170/1033) of all breast cancers. ING4 deletion was significantly associated with Her2 overexpression: of the tumors with ING4 deletion, 23.8% (39/164) were human epidermal growth factor 2 (HER2) positive, as compared with 14.1% (115/814) of the tumors without ING4 deletion (P = .002). In addition, the tumors with ING4 deletion were more likely to belong to the HER2 molecular subtype (estrogen receptor negative/progesterone receptor negative/human epidermal growth factor positive) of breast cancer, compared with the other subtypes (28.4% HER2 versus 15.7% all, P = .002). ING4 deletion did not affect survival outcome of all patients with breast cancer (P = .797) or of the patients with HER2-positive tumors (P = .792). We conclude that ING4 deletion in breast cancer is relatively common, as 1 in 6 breast cancer harbors ING4 deletion. Furthermore, ING4 deletion is more prevalent in HER2-positive tumors, suggesting a functional antagonistic relationship between the ING4 tumor suppressor and the HER2 oncogene. These results sustain the view that ING4 is a tumor suppressor in breast cancer and suggest that ING4 deletion may contribute to the pathogenesis of HER2-positive breast cancer.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Breast Neoplasms/genetics
- Breast Neoplasms/metabolism
- Breast Neoplasms/mortality
- Carcinoma, Ductal, Breast/genetics
- Carcinoma, Ductal, Breast/metabolism
- Carcinoma, Ductal, Breast/mortality
- Cell Cycle Proteins/genetics
- Female
- Gene Deletion
- Homeodomain Proteins/genetics
- Humans
- Immunohistochemistry
- In Situ Hybridization, Fluorescence
- Kaplan-Meier Estimate
- Middle Aged
- Oligonucleotide Array Sequence Analysis
- Receptor, ErbB-2/genetics
- Receptor, ErbB-2/metabolism
- Receptors, Estrogen/genetics
- Receptors, Estrogen/metabolism
- Receptors, Progesterone/genetics
- Receptors, Progesterone/metabolism
- Tumor Suppressor Proteins/genetics
Collapse
Affiliation(s)
- Coya Tapia
- Institute for Pathology, University Hospital Basel, Schönbeinstrasse 40, 4103 Basel, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
352
|
Chen M, Pereira-Smith OM, Tominaga K. Loss of the chromatin regulator MRG15 limits neural stem/progenitor cell proliferation via increased expression of the p21 Cdk inhibitor. Stem Cell Res 2011; 7:75-88. [PMID: 21621175 PMCID: PMC3130620 DOI: 10.1016/j.scr.2011.04.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Revised: 02/24/2011] [Accepted: 04/15/2011] [Indexed: 01/01/2023] Open
Abstract
Chromatin regulation is crucial for many biological processes such as transcriptional regulation, DNA replication, and DNA damage repair. We have found that it is also important for neural stem/progenitor cell (NSC) function and neurogenesis. Here, we demonstrate that expression of the cyclin-dependent kinase inhibitor p21 is specifically up-regulated in Mrg15 deficient NSCs. Knockdown of p21 expression by p21 shRNA results in restoration of cell proliferation. This indicates that p21 is directly involved in the growth defects observed in Mrg15 deficient NSCs. Activated p53 accumulates in Mrg15 deficient NSCs and this most likely accounts for the up-regulation of p21 expression in the cells. We observed decreased p53 and p21 levels and a concomitant increase in the percentage of BrdU positive cells in Mrg15 null cultures following expression of p53 shRNA. DNA damage foci, as indicated by immunostaining for γH2AX and 53BP1, are detectable in a sub-population of Mrg15 deficient NSC cultures under normal growing conditions and the majority of p21-positive cells are also positive for 53BP1 foci. Furthermore, Mrg15 deficient NSCs exhibit severe defects in DNA damage response following ionizing radiation. Our observations highlight the importance of chromatin regulation and DNA damage response in NSC function and maintenance.
Collapse
Affiliation(s)
- Meizhen Chen
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78245, USA
| | - Olivia M. Pereira-Smith
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78245, USA
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78245, USA
| | - Kaoru Tominaga
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78245, USA
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78245, USA
| |
Collapse
|
353
|
Abstract
Chromatin is by its very nature a repressive environment which restricts the recruitment of transcription factors and acts as a barrier to polymerases. Therefore the complex process of gene activation must operate at two levels. In the first instance, localized chromatin decondensation and nucleosome displacement is required to make DNA accessible. Second, sequence-specific transcription factors need to recruit chromatin modifiers and remodellers to create a chromatin environment that permits the passage of polymerases. In this review I will discuss the chromatin structural changes that occur at active gene loci and at regulatory elements that exist as DNase I hypersensitive sites.
Collapse
Affiliation(s)
- Peter N Cockerill
- Experimental Haematology, Leeds Institute of Molecular Medicine, University of Leeds, UK.
| |
Collapse
|
354
|
Thalappilly S, Feng X, Pastyryeva S, Suzuki K, Muruve D, Larocque D, Richard S, Truss M, von Deimling A, Riabowol K, Tallen G. The p53 tumor suppressor is stabilized by inhibitor of growth 1 (ING1) by blocking polyubiquitination. PLoS One 2011; 6:e21065. [PMID: 21731648 PMCID: PMC3120833 DOI: 10.1371/journal.pone.0021065] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2010] [Accepted: 05/19/2011] [Indexed: 01/01/2023] Open
Abstract
The INhibitor of Growth tumor suppressors (ING1-ING5) affect aging, apoptosis, DNA repair and tumorigenesis. Plant homeodomains (PHD) of ING proteins bind histones in a methylation-sensitive manner to regulate chromatin structure. ING1 and ING2 contain a polybasic region (PBR) adjacent to their PHDs that binds stress-inducible phosphatidylinositol monophosphate (PtIn-MP) signaling lipids to activate these INGs. ING1 induces apoptosis independently of p53 but other studies suggest proapoptotic interdependence of ING1 and p53 leaving their functional relationship unclear. Here we identify a novel ubiquitin-binding domain (UBD) that overlaps with the PBR of ING1 and shows similarity to previously described UBDs involved in DNA damage responses. The ING1 UBD binds ubiquitin with high affinity (K(d)∼100 nM) and ubiquitin competes with PtIn-MPs for ING1 binding. ING1 expression stabilized wild-type, but not mutant p53 in an MDM2-independent manner and knockdown of endogenous ING1 depressed p53 levels in a transcription-independent manner. ING1 stabilized unmodified and six multimonoubiquitinated forms of wild-type p53 that were also seen upon DNA damage, but not p53 mutants lacking the six known sites of ubiquitination. We also find that ING1 physically interacts with herpesvirus-associated ubiquitin-specific protease (HAUSP), a p53 and MDM2 deubiquitinase (DUB), and knockdown of HAUSP blocks the ability of ING1 to stabilize p53. These data link lipid stress signaling to ubiquitin-mediated proteasomal degradation through the PBR/UBD of ING1 and further indicate that ING1 stabilizes p53 by inhibiting polyubiquitination of multimonoubiquitinated forms via interaction with and colocalization of the HAUSP-deubiquitinase with p53.
Collapse
Affiliation(s)
- Subhash Thalappilly
- Departments of Biochemistry and Molecular Biology and Oncology, University of Calgary, Calgary, Alberta, Canada
| | - Xiaolan Feng
- Departments of Biochemistry and Molecular Biology and Oncology, University of Calgary, Calgary, Alberta, Canada
| | - Svitlana Pastyryeva
- Departments of Biochemistry and Molecular Biology and Oncology, University of Calgary, Calgary, Alberta, Canada
| | - Keiko Suzuki
- Departments of Biochemistry and Molecular Biology and Oncology, University of Calgary, Calgary, Alberta, Canada
| | - Daniel Muruve
- Department of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Daniel Larocque
- Preclinical Research Team on Neurodegenerative Diseases, Chronic Disorders DAP, GlaxoSmithKline Biologicals North America, Laval, Quebec, Canada
| | - Stephane Richard
- Department of Medicine and Oncology, Lady Davis Institute, McGill University, Montreal, Quebec, Canada
| | - Matthias Truss
- Laboratory for Molecular Biology, Department of Pediatrics, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Andreas von Deimling
- Department of Neuropathology, Institute of Pathology, Ruprecht-Karls University Heidelberg and Clinical Cooperation Unit Neuropathology, Heidelberg, Germany
| | - Karl Riabowol
- Departments of Biochemistry and Molecular Biology and Oncology, University of Calgary, Calgary, Alberta, Canada
| | - Gesche Tallen
- Department of Pediatric Oncology/Haematology, Charité - Universitätsmedizin Berlin, Berlin, Germany
- * E-mail:
| |
Collapse
|
355
|
Suzuki K, Boland D, Gong W, Riabowol K. Domain recognition of the ING1 tumor suppressor by a panel of monoclonal antibodies. Hybridoma (Larchmt) 2011; 30:239-245. [PMID: 21707358 DOI: 10.1089/hyb.2010.0124] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The inhibitor of growth (ING) family of proteins play key roles in cell cycle arrest, apoptosis, cell aging, and the DNA damage response. To date, several domains including the plant homeodomain (PHD), lamin interacting domain (LID), and nuclear localization sequence (NLS) have been identified in the ING family of proteins that contribute to their function. To better understand the functional attributes of the ING proteins, we have developed and further characterized a panel of monoclonal IgGs that we call CAbs 1-9 based on their recognition sites, strength of binding affinity, and their specificity for ING1. All of the nine CAbs recognize the C-terminal half of the p33(ING1b) protein, which is fully conserved among all ING1 isoforms, being encoded by a common exon. Two of the nine CAbs bind a fragment that includes the PHD, which is the most conserved domain among ING family proteins (ING1-5), and one CAb cross-reacts with all ING family proteins that are encoded by different genes. Five of the nine CAbs recognized a fragment of ING1, which includes the NLS. Another two, CAb3 and CAb9, show affinity against an inter-domain sequence between the LID and the NLS. The sequence between the LID and NLS is less conserved among the ING proteins and, as expected, CAbs 3 and 9 were completely specific for ING1. Understanding the domains recognized by the different CAbs should further the functional analysis of the ING proteins that are known to participate in a wide variety of protein complexes, both in the cytoplasm and in the nucleus where they bind epigenetic histone marks via their PHD regions and lamin A via their LID domains.
Collapse
Affiliation(s)
- Keiko Suzuki
- Department of Biochemistry & Molecular Biology, University of Calgary, Alberta, Canada
| | | | | | | |
Collapse
|
356
|
You Q, Wang XS, Fu SB, Jin XM. Downregulated expression of inhibitor of growth 4 (ING4) in advanced colorectal cancers: a non-randomized experimental study. Pathol Oncol Res 2011; 17:473-7. [PMID: 21626442 DOI: 10.1007/s12253-010-9301-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2009] [Accepted: 08/19/2010] [Indexed: 11/28/2022]
Abstract
Colorectal cancer has a high cure rate if it can be detected early. Identifying and understanding the genes involved may enable early diagnosis and reduce mortality. The aim of our study was to investigate the correlation between the expression of ING4 and the pathological features in patients with colorectal cancer. We assayed ING4 protein expression levels in tumor samples from 97 patients diagnosed with colorectal cancer between January 2001 and January 2002. The patients received no other treatments except surgery. ING4 protein expression was downregulated in adenoma relative to normal mucosa and further reduced in colorectal cancer tissues. Furthermore, the suppression of ING4 expression was also related to the more advanced Dukes' stages. We observed that ING4 expression levels in patients with lymphatic metastasis were lower than those without metastasis. Together, our results indicate that ING4 play a role in colorectal carcinoma progression.
Collapse
Affiliation(s)
- Qi You
- Department of Colorectal Surgery, The Tumor Hospital of Harbin Medical University, Harbin, People's Republic of China
| | | | | | | |
Collapse
|
357
|
Hurst DR, Welch DR. Metastasis suppressor genes at the interface between the environment and tumor cell growth. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2011; 286:107-80. [PMID: 21199781 DOI: 10.1016/b978-0-12-385859-7.00003-3] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The molecular mechanisms and genetic programs required for cancer metastasis are sometimes overlapping, but components are clearly distinct from those promoting growth of a primary tumor. Every sequential, rate-limiting step in the sequence of events leading to metastasis requires coordinated expression of multiple genes, necessary signaling events, and favorable environmental conditions or the ability to escape negative selection pressures. Metastasis suppressors are molecules that inhibit the process of metastasis without preventing growth of the primary tumor. The cellular processes regulated by metastasis suppressors are diverse and function at every step in the metastatic cascade. As we gain knowledge into the molecular mechanisms of metastasis suppressors and cofactors with which they interact, we learn more about the process, including appreciation that some are potential targets for therapy of metastasis, the most lethal aspect of cancer. Until now, metastasis suppressors have been described largely by their function. With greater appreciation of their biochemical mechanisms of action, the importance of context is increasingly recognized especially since tumor cells exist in myriad microenvironments. In this chapter, we assemble the evidence that selected molecules are indeed suppressors of metastasis, collate the data defining the biochemical mechanisms of action, and glean insights regarding how metastasis suppressors regulate tumor cell communication to-from microenvironments.
Collapse
Affiliation(s)
- Douglas R Hurst
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | |
Collapse
|
358
|
Sapountzi V, Côté J. MYST-family histone acetyltransferases: beyond chromatin. Cell Mol Life Sci 2011; 68:1147-56. [PMID: 21132344 PMCID: PMC11114825 DOI: 10.1007/s00018-010-0599-9] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Revised: 11/12/2010] [Indexed: 12/01/2022]
Abstract
Covalently modifying a protein has proven to be a powerful mechanism of functional regulation. N-epsilon acetylation of lysine residues was initially discovered on histones and has been studied extensively in the context of chromatin and DNA metabolism, such as transcription, replication and repair. However, recent research shows that acetylation is more widespread than initially thought and that it regulates various nuclear as well as cytoplasmic and mitochondrial processes. In this review, we present the multitude of non-histone proteins targeted by lysine acetyltransferases of the large and conserved MYST family, and known functional consequences of this acetylation. Substrates of MYST enzymes include factors involved in transcription, heterochromatin formation and cell cycle, DNA repair proteins, gluconeogenesis enzymes and finally subunits of MYST protein complexes themselves. Discovering novel substrates of MYST proteins is pivotal for the understanding of the diverse functions of these essential acetyltransferases in nuclear processes, signaling, stress response and metabolism.
Collapse
Affiliation(s)
- Vasileia Sapountzi
- Laval University Cancer Research Center, Hôtel-Dieu de Québec (CHUQ), 9 McMahon Street, Quebec City, QC G1R 2J6 Canada
| | - Jacques Côté
- Laval University Cancer Research Center, Hôtel-Dieu de Québec (CHUQ), 9 McMahon Street, Quebec City, QC G1R 2J6 Canada
| |
Collapse
|
359
|
Abstract
DNA replication is an essential cell cycle event required for the accurate and timely duplication of the chromosomes. It is essential that the genome is replicated accurately and completely within the confines of S-phase. Failure to completely copy the genome has the potential to result in catastrophic genomic instability. Replication initiates in a coordinated manner from multiple locations, termed origins of replication, distributed across each of the chromosomes. The selection of these origins of replication is a dynamic process responding to both developmental and tissue-specific signals. In this review, we explore the role of the local chromatin environment in regulating the DNA replication program at the level of origin selection and activation. Finally, there is increasing molecular evidence that the DNA replication program itself affects the chromatin landscape, suggesting that DNA replication is critical for both genetic and epigenetic inheritance.
Collapse
Affiliation(s)
- Queying Ding
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham NC 27713
| | - David M. MacAlpine
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham NC 27713
| |
Collapse
|
360
|
Buratowski S, Kim T. The role of cotranscriptional histone methylations. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2011; 75:95-102. [PMID: 21447819 PMCID: PMC3229092 DOI: 10.1101/sqb.2010.75.036] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The carboxy-terminal domain (CTD) of the RNA polymerase II subunit Rpb1 undergoes dynamic phosphorylation, with different phosphorylation sites predominating at different stages of transcription. Our laboratory studies show how various mRNA-processing and chromatin-modifying enzymes interact with the phosphorylated CTD to efficiently produce mRNAs. The H3K36 methyltransferase Set2 interacts with CTD carrying phosphorylations characteristic of downstream elongation complexes, and the resulting cotranscriptional H3K36 methylation targets the Rpd3S histone deacetylase to downstream transcribed regions. Although positively correlated with gene activity, this pathway actually inhibits transcription elongation as well as initiation from cryptic promoters within genes. During early elongation, CTD serine 5 phosphorylation helps recruit the H3K4 methyltransferase complex containing Set1. Within 5' transcribed regions, cotranscriptional H3K4 dimethylation (H3K4me2) by Set1 recruits the deacetylase complex Set3C. Finally, H3K4 trimethylation at the most promoter-proximal nucleosomes is thought to stimulate transcription by promoting histone acetylation by complexes containing the ING/Yng PHD finger proteins. Surprisingly, the Rpd3L histone deacetylase complex, normally a transcription repressor, may also recognize H3K4me3. Together, the cotranscriptional histone methylations appear to function primarily to distinguish active promoter regions, which are marked by high levels of acetylation and nucleosome turnover, from the deacetylated, downstream transcribed regions of genes.
Collapse
Affiliation(s)
- S Buratowski
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | |
Collapse
|
361
|
Binda O, LeRoy G, Bua DJ, Garcia BA, Gozani O, Richard S. Trimethylation of histone H3 lysine 4 impairs methylation of histone H3 lysine 9: regulation of lysine methyltransferases by physical interaction with their substrates. Epigenetics 2011; 5:767-75. [PMID: 21124070 DOI: 10.4161/epi.5.8.13278] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Chromatin is broadly compartmentalized in two defined states: euchromatin and heterochromatin. Generally, euchromatin is trimethylated on histone H3 lysine 4 (H3K4(me3)) while heterochromatin contains the H3K9(me3) marks. The H3K9(me3) modification is added by lysine methyltransferases (KMTs) such as SETDB1. Herein, we show that SETDB1 interacts with its substrate H3, but only in the absence of the euchromatic mark H3K4(me3). In addition, we show that SETDB1 fails to methylate substrates containing the H3K4(me3) mark. Likewise, the functionally related H3K9 KMTs G9A, GLP, and SUV39H1 also fail to bind and to methylate H3K4(me3) substrates. Accordingly, we provide in vivo evidence that H3K9(me2)-enriched histones are devoid of H3K4(me2/3) and that histones depleted of H3K4(me2/3) have elevated H3K9(me2/3). The correlation between the loss of interaction of these KMTs with H3K4 (me3) and concomitant methylation impairment leads to the postulate that, at least these four KMTs, require stable interaction with their respective substrates for optimal activity. Thus, novel substrates could be discovered via the identification of KMT interacting proteins. Indeed, we find that SETDB1 binds to and methylates a novel substrate, the inhibitor of growth protein ING2, while SUV39H1 binds to and methylates the heterochromatin protein HP1α. Thus, our observations suggest a mechanism of post-translational regulation of lysine methylation and propose a potential mechanism for the segregation of the biologically opposing marks, H3K4(me3) and H3K9(me3). Furthermore, the correlation between H3-KMTs interaction and substrate methylation highlights that the identification of novel KMT substrates may be facilitated by the identification of interaction partners.
Collapse
Affiliation(s)
- Olivier Binda
- Lady Davis Institute, Montréal Jewish Hospital, McGill University, Montréal, Québec, Canada.
| | | | | | | | | | | |
Collapse
|
362
|
Zheng HC, Xia P, Xu XY, Takahashi H, Takano Y. The nuclear to cytoplasmic shift of ING5 protein during colorectal carcinogenesis with their distinct links to pathologic behaviors of carcinomas☆. Hum Pathol 2011; 42:424-33. [DOI: 10.1016/j.humpath.2009.12.018] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2009] [Revised: 12/06/2009] [Accepted: 12/08/2009] [Indexed: 11/26/2022]
|
363
|
Abad M, Moreno A, Palacios A, Narita M, Blanco F, Moreno-Bueno G, Narita M, Palmero I. The tumor suppressor ING1 contributes to epigenetic control of cellular senescence. Aging Cell 2011; 10:158-71. [PMID: 21078114 DOI: 10.1111/j.1474-9726.2010.00651.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Cellular senescence is an effective tumor-suppressive mechanism that causes a stable proliferative arrest in cells with potentially oncogenic alterations. Here, we have investigated the role of the p33ING1 tumor suppressor in the regulation of cellular senescence in human primary fibroblasts. We show that p33ING1 triggers a senescent phenotype in a p53-dependent fashion. Also, endogenous p33ING1 protein accumulates in chromatin in oncogene-senescent fibroblasts and its silencing by RNA interference impairs senescence triggered by oncogenes. Notably, the ability to induce senescence is lost in a mutant version of p33ING1 present in human tumors. Using specific point mutants, we further show that recognition of the chromatin mark H3K4me3 is essential for induction of senescence by p33ING1. Finally, we demonstrate that ING1-induced senescence is associated to a specific genetic signature with a strong representation of chemokine and cytokine signaling factors, which significantly overlaps with that of oncogene-induced senescence. In summary, our results identify ING1 as a critical epigenetic regulator of cellular senescence in human fibroblasts and highlight its role in control of gene expression in the context of this tumor-protective response.
Collapse
Affiliation(s)
- María Abad
- Instituto de Investigaciones Biomédicas "Alberto Sols" CSIC-UAM, E-28029 Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
364
|
Wong RPC, Lin H, Khosravi S, Piche B, Jafarnejad SM, Chen DWC, Li G. Tumour suppressor ING1b maintains genomic stability upon replication stress. Nucleic Acids Res 2011; 39:3632-42. [PMID: 21227930 PMCID: PMC3089469 DOI: 10.1093/nar/gkq1337] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The lesion bypass pathway, which is regulated by monoubiquitination of proliferating cell nuclear antigen (PCNA), is essential for resolving replication stalling due to DNA lesions. This process is important for preventing genomic instability and cancer development. Previously, it was shown that cells deficient in tumour suppressor p33ING1 (ING1b) are hypersensitive to DNA damaging agents via unknown mechanism. In this study, we demonstrated a novel tumour suppressive function of ING1b in preserving genomic stability upon replication stress through regulating PCNA monoubiquitination. We found that ING1b knockdown cells are more sensitive to UV due to defects in recovering from UV-induced replication blockage, leading to enhanced genomic instability. We revealed that ING1b is required for the E3 ligase Rad18-mediated PCNA monoubiquitination in lesion bypass. Interestingly, ING1b-mediated PCNA monoubiquitination is associated with the regulation of histone H4 acetylation. Results indicate that chromatin remodelling contributes to the stabilization of stalled replication fork and to the regulation of PCNA monoubiquitination during lesion bypass.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Gang Li
- *To whom correspondence should be addressed. Tel: +1 604 875 5826; Fax: +1 604 875 4497;
| |
Collapse
|
365
|
Aguissa-Touré AH, Wong RPC, Li G. The ING family tumor suppressors: from structure to function. Cell Mol Life Sci 2011; 68:45-54. [PMID: 20803232 PMCID: PMC11114739 DOI: 10.1007/s00018-010-0509-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Revised: 07/31/2010] [Accepted: 08/10/2010] [Indexed: 12/24/2022]
Abstract
The Inhibitor of Growth (ING) proteins belong to a well-conserved family which presents in diverse organisms with several structural and functional domains for each protein. The ING family members are found in association with many cellular processes. Thus, the ING family proteins are involved in regulation of gene transcription, DNA repair, tumorigenesis, apoptosis, cellular senescence and cell cycle arrest. The ING proteins have multiple domains that are potentially capable of binding to many partners. It is conceivable, therefore, that such proteins could function similarly within protein complexes. In this case, within this family, each function could be attributed to a specific domain. However, the role of ING domains is not definitively clear. In this review, we summarize recent advances in structure-function relationships in ING proteins. For each domain, we describe the known biological functions and the approaches utilized to identify the functions associated with ING proteins.
Collapse
Affiliation(s)
- Almass-Houd Aguissa-Touré
- Department of Dermatology and Skin Science, Jack Bell Research Centre, Vancouver Coastal Health Research Institute, University of British Columbia, 2660 Oak Street, Vancouver, BC V6H 3Z6 Canada
| | - Ronald P. C. Wong
- Department of Dermatology and Skin Science, Jack Bell Research Centre, Vancouver Coastal Health Research Institute, University of British Columbia, 2660 Oak Street, Vancouver, BC V6H 3Z6 Canada
| | - Gang Li
- Department of Dermatology and Skin Science, Jack Bell Research Centre, Vancouver Coastal Health Research Institute, University of British Columbia, 2660 Oak Street, Vancouver, BC V6H 3Z6 Canada
| |
Collapse
|
366
|
Abstract
Lysine (K) acetylation refers to transfer of the acetyl moiety from acetyl-CoA to the ε-amino group of a lysine residue. This is posttranslational and reversible, with its level dynamically maintained by lysine acetyltransferases (KATs) and deacetylases (KDACs). Traditionally, eukaryotic KDACs have been referred to as HDACs (histone deacetylases). Recent proteomic studies have revealed that hundreds of bacterial proteins and thousands of eukaryotic proteins contain acetyl-lysine (AcK) residues, indicating that K-acetylomes are comparable to phosphoproteomes. The current challenges are to assign enzymes that execute specific acetylation events, to determine the impact of these events, and to relate this modification to other posttranslational modifications, cell signaling networks, and pathophysiology under different cellular and developmental contexts. In this chapter, we provide a brief overview about the acetylomes, KATs, HDACs, AcK-recognizing protein domains, and acetylation-modulating therapeutics, and emphasize the latest developments in related areas. The remaining chapters of the book focus on and cover various aspects of HDACs (both the Rpd3/Hda1 and sirtuin families), which shall provide novel insights into how to utilize these enzymes for developing a new generation of HDAC-related therapeutics.
Collapse
|
367
|
Abstract
Post-translational modifications of histone proteins in conjunction with DNA methylation represent important events in the regulation of local and global genome functions. Advances in the study of these chromatin modifications established temporal and spatial co-localization of several distinct 'marks' on the same histone and/or the same nucleosome. Such complex modification patterns suggest the possibility of combinatorial effects. This idea was originally proposed to establish a code of histone modifications that regulates the interpretation of the genetic code of DNA. Indeed, interdependency of different modifications is now well documented in the literature. Our current understanding is that the function of a given histone modification is influenced by neighbouring or additional modifications. Such context sensitivity of the readout of a modification provides more flexible translation than would be possible if distinct modifications function as isolated units. The mechanistic principles for modification cross-talk can originate in the modulation of the activity of histone-modifying enzymes or may be due to selective recognition of these marks via modification of specific binding proteins. In the present chapter, we discuss fundamental biochemical principles of modification cross-talk and reflect on the interplay of chromatin marks in cellular signalling, cell-cycle progression and cell-fate determination.
Collapse
|
368
|
EBNA3C attenuates the function of p53 through interaction with inhibitor of growth family proteins 4 and 5. J Virol 2010; 85:2079-88. [PMID: 21177815 DOI: 10.1128/jvi.02279-10] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Epstein-Barr virus (EBV)-encoded EBNA3C is one of the latent proteins essential for the efficient transformation of human primary B lymphocytes into continuously proliferating lymphoblastoid cell lines (LCLs) in vitro through manipulation of a number of major cellular pathways. Although it does not have direct DNA-binding activity, EBNA3C plays a central role in the transcriptional modulation of a wide range of both viral and cellular genes during latent infection. Recently, we showed that EBNA3C can directly bind to the tumor suppressor protein p53 and repress its functions, in part by blocking its transcriptional activity as well as facilitating its degradation through stabilization of its negative regulator, Mdm2. In this study, we further showed that EBNA3C can negatively regulate p53-mediated functions by interacting with its regulatory proteins, the inhibitor of growth family proteins ING4 and ING5, shown to be frequently deregulated in different cancers. Functional mapping revealed that both ING4 and ING5 bound to N-terminal domain residues 129 to 200 of EBNA3C, which was previously demonstrated to associate with p53 and is also essential for LCL growth. In addition, we showed that a conserved domain of either ING4 or ING5 bound to both p53 and EBNA3C in a competitive manner, suggesting a potential role for EBNA3C whereby the ING4 or -5/p53 pathway is modulated in EBV-infected cells. Subsequently, we demonstrated that EBNA3C significantly suppresses both the ING4- and ING5-mediated regulation of p53 transcriptional activity in a dose-dependent manner. A colony formation assay as well as an apoptosis assay showed that EBNA3C nullified the negative regulatory effects on cell proliferation induced by coupled expression of p53 in the presence of either ING4 or ING5 in Saos-2 (p53(-/-)) cells. This report demonstrates a possible role for the candidate tumor suppressor ING genes in the biology of EBV-associated cancers.
Collapse
|
369
|
HBO1 is required for H3K14 acetylation and normal transcriptional activity during embryonic development. Mol Cell Biol 2010; 31:845-60. [PMID: 21149574 DOI: 10.1128/mcb.00159-10] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
We report here that the MYST histone acetyltransferase HBO1 (histone acetyltransferase bound to ORC; MYST2/KAT7) is essential for postgastrulation mammalian development. Lack of HBO1 led to a more than 90% reduction of histone 3 lysine 14 (H3K14) acetylation, whereas no reduction of acetylation was detected at other histone residues. The decrease in H3K14 acetylation was accompanied by a decrease in expression of the majority of genes studied. However, some genes, in particular genes regulating embryonic patterning, were more severely affected than "housekeeping" genes. Development of HBO1-deficient embryos was arrested at the 10-somite stage. Blood vessels, mesenchyme, and somites were disorganized. In contrast to previous studies that reported cell cycle arrest in HBO1-depleted cultured cells, no defects in DNA replication or cell proliferation were seen in Hbo1 mutant embryo primary fibroblasts or immortalized fibroblasts. Rather, a high rate of cell death and DNA fragmentation was observed in Hbo1 mutant embryos, resulting initially in the degeneration of mesenchymal tissues and ultimately in embryonic lethality. In conclusion, the primary role of HBO1 in development is that of a transcriptional activator, which is indispensable for H3K14 acetylation and for the normal expression of essential genes regulating embryonic development.
Collapse
|
370
|
Targeted disruption of Ing2 results in defective spermatogenesis and development of soft-tissue sarcomas. PLoS One 2010; 5:e15541. [PMID: 21124965 PMCID: PMC2988811 DOI: 10.1371/journal.pone.0015541] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Accepted: 10/06/2010] [Indexed: 12/23/2022] Open
Abstract
ING2 (inhibitor of growth family, member 2) is a member of the plant homeodomain (PHD)-containing ING family of putative tumor suppressors. As part of mSin3A-HDAC corepressor complexes, ING2 binds to tri-methylated lysine 4 of histone H3 (H3K4me3) to regulate chromatin modification and gene expression. ING2 also functionally interacts with the tumor suppressor protein p53 to regulate cellular senescence, apoptosis and DNA damage response in vitro, and is thus expected to modulate carcinogenesis and aging. Here we investigate the developmental and physiological functions of Ing2 through targeted germline disruption. Consistent with its abundant expression in mouse and human testes, male mice deficient for Ing2 showed abnormal spermatogenesis and were infertile. Numbers of mature sperm and sperm motility were significantly reduced in Ing2−/− mice (∼2% of wild type, P<0.0001 and ∼10% of wild type, P<0.0001, respectively). Their testes showed degeneration of seminiferous tubules, meiotic arrest before pachytene stage with incomplete meiotic recombination, induction of p53, and enhanced apoptosis. This phenotype was only partially abrogated by concomitant loss of p53 in the germline. The arrested spermatocytes in Ing2−/− testes were characterized by lack of specific HDAC1 accumulation and deregulated chromatin acetylation. The role of Ing2 in germ cell maturation may extend to human ING2 as well. Using publicly available gene expression datasets, low expression of ING2 was found in teratozoospermic sperm (>3-fold reduction) and in testes from patients with defective spermatogenesis (>7-fold reduction in Sertoli-cell only Syndrome). This study establishes ING2 as a novel regulator of spermatogenesis functioning through both p53- and chromatin-mediated mechanisms, suggests that an HDAC1/ING2/H3K4me3-regulated, stage-specific coordination of chromatin modifications is essential to normal spermatogenesis, and provides an animal model to study idiopathic and iatrogenic infertility in men. In addition, a bona fide tumor suppressive role of Ing2 is demonstrated by increased incidence of soft-tissue sarcomas in Ing2−/− mice.
Collapse
|
371
|
The altered expression of ING5 protein is involved in gastric carcinogenesis and subsequent progression. Hum Pathol 2010; 42:25-35. [PMID: 21062663 DOI: 10.1016/j.humpath.2010.05.024] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Revised: 05/23/2010] [Accepted: 05/26/2010] [Indexed: 11/20/2022]
Abstract
ING5 can interact with p53, thereby inhibiting cell growth and inducing apoptosis. To clarify the roles of ING5 in gastric tumorigenesis and progression, its expression was examined by immunohistochemistry on a tissue microarray containing gastric nonneoplastic mucosa (n = 119), dysplasia (n = 50), and carcinomas (n = 429), with its comparison with clinicopathologic parameters of the carcinomas. ING5 expression was analyzed in gastric carcinoma tissues and cell lines (MKN28, MKN45, AGS, GT-3 TKB, and KATO-III) by Western blot and reverse transcriptase-polymerase chain reaction. ING5 protein was found to distribute to the nuclei of gastric carcinoma cells with similar messenger RNA levels. An increased expression of ING5 messenger RNA was observed in gastric carcinoma in comparison with paired mucosa (P < .05). Lower expression of nuclear ING5 was detected in gastric dysplasia and carcinoma than that in nonneoplastic mucosa (P < .05). Gastric nonneoplastic mucosa and metastatic carcinoma showed more expression of cytoplasmic ING5 than did gastric carcinoma and dysplasia (P < .05). Nuclear ING5 expression was negatively correlated with tumor size, depth of invasion, lymph node metastasis, and clinicopathologic staging (P < .05), whereas cytoplasmic ING5 was positively associated with depth of invasion, venous invasion, lymph node metastasis, and clinicopathologic staging (P < .05). Nuclear ING5 was more expressed in older than younger carcinoma patients (P < .05). There was a higher expression of nuclear ING5 in intestinal-type than diffuse-type carcinoma (P < .05), whereas it was the converse for cytoplasmic ING5 (P < .05). Survival analysis indicated that nuclear ING5 was closely linked to favorable prognosis of carcinoma patients (P < .05), albeit not independent. It was suggested that aberrant ING5 expression may contribute to pathogenesis, growth, and invasion of gastric carcinomas and could be considered as a promising marker to gauge aggressiveness and prognosis of gastric carcinoma.
Collapse
|
372
|
Enhanced antitumor activity by combining an adenovirus harboring ING4 with cisplatin for hepatocarcinoma cells. Cancer Gene Ther 2010; 18:176-88. [PMID: 21052098 PMCID: PMC3047817 DOI: 10.1038/cgt.2010.67] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The inhibitor of growth (ING) family proteins have been defined as candidate tumor suppressors. ING4 as a novel member of the ING family has potential tumor-suppressive effects. In this study, we explored the combined effect of adenovirus-mediated ING4 (Ad-ING4) gene transfer plus chemotherapy drug cisplatin (CDDP) on SMMC-7721 human hepatocarcinoma cells in vitro and in vivo, and its underlying mechanism. We demonstrated that Ad-ING4 plus CDDP induced synergistic growth inhibition, enhanced apoptosis, and had an additive effect on upregulation of Fas, Bax, Bak, cleaved Bid, cleaved caspase-8, caspase-9, caspase-3 and cleaved PARP, and on downregulation of Bcl-2 and Bcl-XL in SMMC-7721 hepatocarcinoma cells. Moreover, Ad-ING4 plus CDDP synergistically suppressed in vivo SMMC-7721 hepatocarcinoma subcutaneous (s.c.) xenografted tumor growth and reduced tumor vessel CD34 expression and microvessel density (MVD) in athymic nude mice. Most importantly, Ad-ING4 plus CDDP did not have overlapping toxicities in HL-7702 normal human liver cells and normal liver tissues of mice. The in vitro and in vivo enhanced antitumor effect elicited by Ad-ING4 plus CDDP was closely associated with the cooperative regulation of extrinsic and intrinsic apoptotic pathways and synergistic inhibition of tumor angiogenesis. Thus, our results indicate that Ad-ING4 plus CDDP is a potential combined treatment strategy for hepatocarcinoma.
Collapse
|
373
|
Abstract
It is now widely recognized that epigenetic events are important mechanisms underlying cancer development and progression. Epigenetic information in chromatin includes covalent modifications (such as acetylation, methylation, phosphorylation, and ubiquitination) of core nucleosomal proteins (histones). A recent progress in the field of histone modifications and chromatin research has tremendously enhanced our understanding of the mechanisms underlying the control of key physiological and pathological processes. Histone modifications and other epigenetic mechanisms appear to work together in establishing and maintaining gene activity states, thus regulating a wide range of cellular processes. Different histone modifications themselves act in a coordinated and orderly fashion to regulate cellular processes such as gene transcription, DNA replication, and DNA repair. Interest in histone modifications has further grown over the last decade with the discovery and characterization of a large number of histone-modifying molecules and protein complexes. Alterations in the function of histone-modifying complexes are believed to disrupt the pattern and levels of histone marks and consequently deregulate the control of chromatin-based processes, ultimately leading to oncogenic transformation and the development of cancer. Consistent with this notion, aberrant patterns of histone modifications have been associated with a large number of human malignancies. In this chapter, we discuss recent advances in our understanding of the mechanisms controlling the establishment and maintenance of histone marks and how disruptions of these chromatin-based mechanisms contribute to tumorigenesis. We also suggest how these advances may facilitate the development of novel strategies to prevent, diagnose, and treat human malignancies.
Collapse
Affiliation(s)
- Carla Sawan
- Epigenetics Group, International Agency for Research on Cancer ,69008 Lyon, France
| | | |
Collapse
|
374
|
Wong PG, Glozak MA, Cao TV, Vaziri C, Seto E, Alexandrow M. Chromatin unfolding by Cdt1 regulates MCM loading via opposing functions of HBO1 and HDAC11-geminin. Cell Cycle 2010; 9:4351-63. [PMID: 20980834 PMCID: PMC3055186 DOI: 10.4161/cc.9.21.13596] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Accepted: 09/11/2010] [Indexed: 12/22/2022] Open
Abstract
The efficiency of metazoan origins of DNA replication is known to be enhanced by histone acetylation near origins. Although this correlates with increased MCM recruitment, the mechanism by which such acetylation regulates MCM loading is unknown. We show here that Cdt1 induces large-scale chromatin decondensation that is required for MCM recruitment. This process occurs in G₁, is suppressed by Geminin, and requires HBO1 HAT activity and histone H4 modifications. HDAC11, which binds Cdt1 and replication origins during S-phase, potently inhibits Cdt1-induced chromatin unfolding and re-replication, suppresses MCM loading and binds Cdt1 more efficiently in the presence of Geminin. We also demonstrate that chromatin at endogenous origins is more accessible in G₁ relative to S-phase. These results provide evidence that histone acetylation promotes MCM loading via enhanced chromatin accessibility. This process is regulated positively by Cdt1 and HBO1 in G₁ and repressed by Geminin-HDAC11 association with Cdt1 in S-phase, and represents a novel form of replication licensing control.
Collapse
Affiliation(s)
- Philip G Wong
- Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | | | | | | | | | | |
Collapse
|
375
|
Liu XS, Song B, Liu X. The substrates of Plk1, beyond the functions in mitosis. Protein Cell 2010; 1:999-1010. [PMID: 21153517 PMCID: PMC4875153 DOI: 10.1007/s13238-010-0131-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Accepted: 11/08/2010] [Indexed: 12/01/2022] Open
Abstract
Polo-like kinase 1 (Plk1) is a key regulator of cell division in eukaryotic cells. In this short review, we briefly summarized the well-established functions modulated by Plk1 during mitosis. Beyond mitosis, we focused mainly on the unexpected processes in which Plk1 emerges as a critical player, including microtubule dynamics, DNA replication, chromosome dynamics, p53 regulation, and recovery from the G2 DNA-damage checkpoint. Our discussion is mainly based on the critical substrates targeted by Plk1 during these cellular events and the functional significance associated with each phosphorylation event.
Collapse
Affiliation(s)
- X. Shawn Liu
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907 USA
| | - Bing Song
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907 USA
| | - Xiaoqi Liu
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907 USA
- Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907 USA
| |
Collapse
|
376
|
Desiderio S. Temporal and spatial regulatory functions of the V(D)J recombinase. Semin Immunol 2010; 22:362-9. [PMID: 21036059 DOI: 10.1016/j.smim.2010.09.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Accepted: 09/09/2010] [Indexed: 12/20/2022]
Abstract
In developing lymphocytes, V(D)J recombination is subject to tight spatial and temporal regulation. An emerging body of evidence indicates that some of these constraints, particularly with respect to locus specificity and cell cycle phase, are enforced by regulatory cues that converge directly on the RAG proteins themselves. Active chromatin is bound by RAG-2 through a specific histone modification that may serve the recombinase as an allosteric activator as well as a docking site. RAG-1 possesses intrinsic histone ubiquitin ligase activity, suggesting that the recombinase not only responds to chromatin modification but is itself able to modify chromatin. The cyclin A/Cdk2 component of the cell cycle clock triggers periodic destruction of RAG-2, thereby restricting V(D)J recombination to the G0/G1 cell cycle phases. These examples illustrate that the RAG proteins, in addition to their direct actions on DNA, are able to detect and respond to intracellular signals, thereby coordinating recombinase activity with intracellular processes such as cell division and transcription.
Collapse
Affiliation(s)
- Stephen Desiderio
- Department of Molecular Biology and Genetics and Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21210, United States
| |
Collapse
|
377
|
ING Genes Work as Tumor Suppressor Genes in the Carcinogenesis of Head and Neck Squamous Cell Carcinoma. JOURNAL OF ONCOLOGY 2010; 2011:963614. [PMID: 21052543 PMCID: PMC2968421 DOI: 10.1155/2011/963614] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2010] [Accepted: 10/01/2010] [Indexed: 12/24/2022]
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the sixth most common cancer in the world. The evolution and progression of HNSCC are considered to result from multiple stepwise alterations of cellular and molecular pathways in squamous epithelium. Recently, inhibitor of growth gene (ING) family consisting of five genes, ING1 to ING5, was identified as a new tumor suppressor gene family that was implicated in the downregulation of cell cycle and chromatin remodeling. In contrast, it has been shown that ING1 and ING2 play an oncogenic role in some cancers, this situation being similar to TGF-β. In HNSCC, the ING family has been reported to be downregulated, and ING translocation from the nucleus to the cytoplasm may be a critical event for carcinogenesis. In this paper, we describe our recent results and briefly summarize current knowledge regarding the biologic functions of ING in HNSCC.
Collapse
|
378
|
Müller K, Krohn K, Eszlinger M, Ludgate M, Führer D. Effect of iodine on early stage thyroid autonomy. Genomics 2010; 97:94-100. [PMID: 21035537 DOI: 10.1016/j.ygeno.2010.10.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Revised: 10/18/2010] [Accepted: 10/22/2010] [Indexed: 10/18/2022]
Abstract
Thyroid autonomy is a frequent cause of thyrotoxicosis in regions with iodine deficiency. Epidemiological data suggest that iodide may influence the course of pre-existing thyroid autonomy. Making use of FRTL-5 cells stably expressing a constitutively activating TSH receptor mutation as an in vitro model of thyroid autonomy, we investigated the impact of iodide on proliferation, function and changes in global gene expression. We demonstrate that iodine inhibits growth in TSHR WT and L629F mutant FRTL-5 cells and downregulates e.g. protocadherin cluster (Pcdha1-13) and thyroid responsive element (Thrsp). In addition functional genes e.g. iodotyrosine deiodinase (iyd) and oncogen junB are upregulated, while sodium-iodide-symporter (Nis) and thyroid peroxidase (Tpo) are downregulated by iodide. Iodide tunes down the biological activity of autonomous thyrocytes and may thus be of therapeutic benefit not only to prevent the occurrence of somatic TSHR mutations, causing thyroid autonomy, but also to slow down the development of clinically relevant disease.
Collapse
Affiliation(s)
- Kathrin Müller
- Department of Internal Medicine, Division of Endocrinology and Nephrology, University of Leipzig, Leipzig, Germany
| | | | | | | | | |
Collapse
|
379
|
Arif M, Senapati P, Shandilya J, Kundu TK. Protein lysine acetylation in cellular function and its role in cancer manifestation. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2010; 1799:702-16. [PMID: 20965294 DOI: 10.1016/j.bbagrm.2010.10.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2010] [Revised: 10/08/2010] [Accepted: 10/12/2010] [Indexed: 01/05/2023]
Abstract
Lysine acetylation appears to be crucial for diverse biological phenomena, including all the DNA-templated processes, metabolism, cytoskeleton dynamics, cell signaling, and circadian rhythm. A growing number of cellular proteins have now been identified to be acetylated and constitute the complex cellular acetylome. Cross-talk among protein acetylation together with other post-translational modifications fine-tune the cellular functions of different protein machineries. Dysfunction of acetylation process is often associated with several diseases, especially cancer. This review focuses on the recent advances in the role of protein lysine acetylation in diverse cellular functions and its implications in cancer manifestation.
Collapse
Affiliation(s)
- Mohammed Arif
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur (P.O.), Bangalore-560 064, Karnataka, India
| | | | | | | |
Collapse
|
380
|
Maintenance of neuronal laterality in Caenorhabditis elegans through MYST histone acetyltransferase complex components LSY-12, LSY-13 and LIN-49. Genetics 2010; 186:1497-502. [PMID: 20923973 DOI: 10.1534/genetics.110.123661] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Left/right asymmetrically expressed genes permit an animal to perform distinct tasks with the right vs. left side of its brain. Once established during development, lateralized gene expression patterns need to be maintained during the life of the animal. We show here that a histone modifying complex, composed of the LSY-12 MYST-type histone acetyltransferase, the ING-family PHD domain protein LSY-13, and PHD/bromodomain protein LIN-49, is required to first initiate and then actively maintain lateralized gene expression in the gustatory system of the nematode Caenorhabditis elegans. Similar defects are observed upon postembryonic removal of two C2H2 zinc finger transcription factors, die-1 and che-1, demonstrating that a combination of transcription factors, which recognize DNA in a sequence-specific manner, and a histone modifying enzyme complex are responsible for inducing and maintaining neuronal laterality.
Collapse
|
381
|
Li X, Nishida T, Noguchi A, Zheng Y, Takahashi H, Yang X, Masuda S, Takano Y. Decreased nuclear expression and increased cytoplasmic expression of ING5 may be linked to tumorigenesis and progression in human head and neck squamous cell carcinoma. J Cancer Res Clin Oncol 2010; 136:1573-83. [PMID: 20182888 DOI: 10.1007/s00432-010-0815-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2009] [Accepted: 02/01/2010] [Indexed: 12/30/2022]
Abstract
PURPOSE This study aimed to assess the protein level of inhibitor of growth gene 5 (ING5) in head and neck squamous cell carcinoma (HNSCC) and to explore its roles in tumorigenesis and cancer progression. METHODS ING5 expression was assessed in 172 cases of HNSCC by immunohistochemistry using tissue microarray, and in 3 oral SCC cell lines by immunohistochemistry and Western blot. Expression of ING5 was compared with clinicopathological variables, TUNEL assay staining, and the expression of several tumorigenic markers. In addition, double immunofluorescence labeling was performed in order to analyze the colocalization of ING5 with p300 and p21. RESULTS ING5 expression was primarily observed in the nuclei, but was also occasionally found in the cytoplasm of both SCC cell lines and tissue samples of HNSCC. Nuclear expression of ING5 in HNSCC was significantly lower than that of non-cancerous epithelium, and was positively correlated with a well-differentiated status. In contrast, cytoplasmic expression of ING5 was significantly increased in HNSCC, and was inversely correlated with a well-differentiated status and nuclear ING5 expression. In addition, nuclear expression of ING5 was positively correlated with p21 and p300 expression, and with the apoptotic index. In contrast, cytoplasmic expression of ING5 was negatively correlated with the expression of p300, p21, and PCNA. Although no statistical association was found between the expression of nuclear ING5 and mutant p53 in HNSCC, patients with high expression of nuclear ING5 tended to have converse prognoses when grouped according to mutant p53 expression. CONCLUSIONS Our results suggest that a decrease in nuclear ING5 localization and cytoplasmic translocation are involved in tumorigenesis and tumor differentiation in HNSCC. Nuclear ING5 may modulate the transactivation of target genes, and may promote apoptosis and cell cycle arrest by interacting with the p300 and p21 proteins. ING5 may function as a tumor suppressor gene or oncogene tightly linked with p53 status, and may play an important role in the prognosis of HNSCC patients. Therefore, we propose that ING5 represents a novel potential molecular therapeutic target for HNSCC.
Collapse
Affiliation(s)
- Xiaohan Li
- Department of Diagnostic Pathology, Graduate School of Medicine and Pharmaceutical Science, University of Toyama, Sugitani 2630, Toyama 930-0194, Japan
| | | | | | | | | | | | | | | |
Collapse
|
382
|
Eukaryotic DNA replication origins: many choices for appropriate answers. Nat Rev Mol Cell Biol 2010; 11:728-38. [DOI: 10.1038/nrm2976] [Citation(s) in RCA: 315] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
383
|
Cengiz B, Gunduz E, Gunduz M, Beder LB, Tamamura R, Bagci C, Yamanaka N, Shimizu K, Nagatsuka H. Tumor-specific mutation and downregulation of ING5 detected in oral squamous cell carcinoma. Int J Cancer 2010; 127:2088-94. [PMID: 20131318 DOI: 10.1002/ijc.25224] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Our previous study showed high frequency of allelic loss at chromosome 2q37 region in oral cancer. This location contains several candidate tumor suppressor genes such as PPP1R7, ILKAP, DTYMK and ING5. We previously showed 3 members of inhibitor of growth (ING) family, ING1, ING3 and ING4 as tumor suppressor gene in head and neck cancer. As ING5 shows high homology with other members of ING genes including highly conserved carboxy-terminal plant homeodomain and nuclear localization signal, we first picked up ING5 and examined it as a possible tumor suppressor in oral cancer. For this aim, mutation and mRNA expression status of ING5 in paired normal and oral squamous cell carcinoma samples were examined by reverse transcription polymerase chain reaction (RT-PCR) and sequencing. Three missense mutations located within leucine zipper like (LZL) finger and novel conserved region (NCR) domains in ING5 protein were detected, probably abrogating its normal function. We also found 5 different alternative splicing variants of ING5. Then, we examined mRNA level of ING5 by quantitative real time reverse transcription polymerase chain reaction (qRT-PCR) analysis, which demonstrated decreased expression of ING5 mRNA in 61% of the primary tumors as compared to the matched normal samples. In conclusion, tumor-specific mutation and downregulation of ING5 mRNA suggested it as a tumor suppressor gene in oral squamous cell carcinoma.
Collapse
Affiliation(s)
- Beyhan Cengiz
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Shikatacho 2-5-1, Okayama, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
384
|
Sayan B, Emre NCT, Irmak MB, Ozturk M, Cetin-Atalay R. Nuclear exclusion of p33ING1b tumor suppressor protein: explored in HCC cells using a new highly specific antibody. Hybridoma (Larchmt) 2010; 28:1-6. [PMID: 19132896 DOI: 10.1089/hyb.2008.0058] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Mouse monoclonal antibodies (MAb) were generated against p33ING1b tumor suppressor protein. 15B9 MAb was highly specific in recognizing a single protein band of approximately 33 kDa endogenous p33ING1b protein from HCC cell lines and normal liver tissue by Western blot analysis and by immunoprecipitation. Although p33ING1b mutations are rarely observed in cancer, differential subcellular distribution and nuclear exclusion of p33ING1b were reported in different cancer types. Therefore we analyzed the expression and subcellular localization of p33ING1b in HCC cell lines using 15B9 MAb. So far, p33ING1b mutations or differential subcellular localization are not reported in HCC. In this study, by indirect immunofluorescence using MAb 15B9, we demonstrate that nuclear localization of p33ING1b was highly correlated with well-differentiated HCC cell lines whereas poorly differentiated HCC cells have nuclear exclusion of the protein. Moreover no association was observed between differential subcellular localization of p33ING1b and p53 mutation status of HCC cell lines. Hence our newly produced MAb 15B9 can be used for studying cellular activities of p33ING1b under normal and cancerous conditions.
Collapse
Affiliation(s)
- Berna Sayan
- Department of Molecular Biology and Genetics, Faculty of Science, Bilkent University, 06533 Ankara, Turkey
| | | | | | | | | |
Collapse
|
385
|
Moreno A, Palacios A, Orgaz JL, Jimenez B, Blanco FJ, Palmero I. Functional impact of cancer-associated mutations in the tumor suppressor protein ING4. Carcinogenesis 2010; 31:1932-8. [PMID: 20705953 DOI: 10.1093/carcin/bgq171] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Inhibitor of growth 4 (ING4) is a member of the ING family of tumor suppressor proteins. In this study, we have analyzed the impact of two mutations in ING4 associated with human tumors (Y121N and N214D), testing their behavior in a series of functional, biochemical and structural analyses. We report that the N214D mutation dramatically dampened the ability of ING4 to inhibit proliferation, anchorage-independent growth or cell migration or to sensitize to cell death. In turn, the Y121N mutant did not differ significantly from wild-type ING4 in our assays. Neither of the mutations altered the normal subcellular localization of ING4, showing predominantly nuclear accumulation. We investigated the molecular basis of the defect in the activity of the N214D mutant. The folding and ability to bind histone marks of ING4 was not significantly altered by this mutation. Instead, we found that the functional impairment of the N214D mutant correlates with reduced protein stability due to increased proteasome-mediated degradation. In summary, our data demonstrates that a point mutation of ING4 associated to human tumors leads to the loss of several essential functions of ING4 pertinent to tumor protection and highlight the importance of ING4 function to prevent tumorigenesis.
Collapse
Affiliation(s)
- Alberto Moreno
- Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Arturo Duperier 4, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
386
|
Abstract
ING2 (inhibitor of growth 2) is a candidate tumor-suppressor gene involved in cell cycle control, apoptosis and senescence. Although the functions of ING2 within the chromatin remodeling complex Sin3A/histone deacetylase (HDAC) and in the p53 pathway have been described, how ING2 itself is regulated remains unknown. In this study we report for the first time that ING2 can be sumoylated by small ubiquitin-like modifier 1 (SUMO1) on lysine 195 both in vitro and in vivo. Strikingly, ING2 sumoylation enhances its association with Sin3a. We provide evidences that ING2 can bind to the promoter of genes to mediate their expression and that sumoylation of ING2 is required for this binding to some of these genes. Among them, we identified the gene TMEM71 (transmembrane protein 71), whose expression is regulated by ING2 sumoylation. ING2 must be sumoylated to bind to the promoter of TMEM71 and to recruit the Sin3A chromatin-modifying complex to this promoter, in order to regulate TMEM71 transcription. Hence, sumoylation of ING2 enhances its binding to the Sin3A/HDAC complex and is required to regulate gene transcriptions.
Collapse
|
387
|
Li Z, Xie Y, Sheng W, Miao J, Xiang J, Yang J. Tumor-Suppressive Effect of Adenovirus-Mediated Inhibitor of Growth 4 Gene Transfer in Breast Carcinoma Cells In Vitro and In Vivo. Cancer Biother Radiopharm 2010; 25:427-37. [DOI: 10.1089/cbr.2010.0778] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Affiliation(s)
- Zhengyi Li
- Cell and Molecular Biology Institute, College of Medicine, Soochow University, Suzhou, China
| | - Yufeng Xie
- Cell and Molecular Biology Institute, College of Medicine, Soochow University, Suzhou, China
- Department of Oncology and Immunology, University of Saskatchewan, Saskatoon, Canada
| | - Weihua Sheng
- Cell and Molecular Biology Institute, College of Medicine, Soochow University, Suzhou, China
| | - Jingcheng Miao
- Cell and Molecular Biology Institute, College of Medicine, Soochow University, Suzhou, China
| | - Jim Xiang
- Department of Oncology and Immunology, University of Saskatchewan, Saskatoon, Canada
| | - Jicheng Yang
- Cell and Molecular Biology Institute, College of Medicine, Soochow University, Suzhou, China
| |
Collapse
|
388
|
Jöngren M, Westander J, Nätt D, Jensen P. Brain gene expression in relation to fearfulness in female red junglefowl (Gallus gallus). GENES BRAIN AND BEHAVIOR 2010; 9:751-8. [PMID: 20597989 DOI: 10.1111/j.1601-183x.2010.00612.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The biology of fear is central to animal welfare and has been a major target for selection during domestication. Fear responses were studied in female red junglefowl (RJF), the ancestor of domesticated chickens. A total of 31 females were tested in a ground predator test, an aerial predator test and a tonic immobility (TI) test, in order to assess their level of fearfulness across different situations. Two to six variables from each test were entered into a principal component (PC) analysis, which showed one major fearfulness component (explaining 27% of the variance). Based on the PC scores, four high- and four low-fearful birds were then selected for gene expression analysis. From each of these birds, the midbrain region (including thalamus, hypothalamus, pituitary, mesencephalon, pons, nucleus tractus solitarii and medulla oblongata), was collected and global gene expression compared between groups using a 14k chicken cDNA microarray. There were 13 significantly differentially expressed (DE) genes (based on M > 1 and B > 0; FDR-adjusted P < 0.05) between the fearful and non-fearful females. Among the DE genes, we identified the neuroprotein Axin1, two potential DNA/RNA regulating proteins and a retrotransposon transcript situated in a well-studied quantitative trait loci (QTL) region on chromosome 1, known to affect several domestication-related traits. The differentially expressed genes may be part of a possible molecular mechanism controlling fear responses in fowl.
Collapse
Affiliation(s)
- M Jöngren
- IFM Biology, Division of Zoology, Linköping University, Linköping, Sweden
| | | | | | | |
Collapse
|
389
|
Abstract
Post-translational modification of histones provides an important regulatory platform for processes such as gene transcription and DNA damage repair. It has become increasingly apparent that the misregulation of histone modification, which is caused by the deregulation of factors that mediate the modification installation, removal and/or interpretation, actively contributes to human cancer. In this Review, we summarize recent advances in understanding the interpretation of certain histone methylations by plant homeodomain finger-containing proteins, and how misreading, miswriting and mis-erasing of histone methylation marks can be associated with oncogenesis and progression. These observations provide us with a greater mechanistic understanding of epigenetic alterations in human cancers and might also help direct new therapeutic interventions in the future.
Collapse
Affiliation(s)
- Ping Chi
- Laboratory of Chromatin Biology & Epigenetics, The Rockefeller University, New York, NY 10065, USA
- Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
| | - C. David Allis
- Laboratory of Chromatin Biology & Epigenetics, The Rockefeller University, New York, NY 10065, USA
| | - Gang Greg Wang
- Laboratory of Chromatin Biology & Epigenetics, The Rockefeller University, New York, NY 10065, USA
| |
Collapse
|
390
|
Kim S, Welm AL, Bishop JM. A dominant mutant allele of the ING4 tumor suppressor found in human cancer cells exacerbates MYC-initiated mouse mammary tumorigenesis. Cancer Res 2010; 70:5155-62. [PMID: 20501848 PMCID: PMC2891958 DOI: 10.1158/0008-5472.can-10-0425] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
ING4 is a candidate tumor suppressor gene that is deleted in 10% to 20% of human breast cancers and is mutated in various human cancer cell lines. To evaluate whether ING4 has a tumor-suppressive role in breast tissue, we overexpressed it in mouse mammary glands using a transplant system. Ectopic expression of ING4 suppressed MYC-induced mammary hyperplasia, but not tumorigenesis. In the same model system, we show that a COOH-terminal truncation mutant of ING4 found in human cancer cells could act alone to induce abnormal gland structures resembling mammary hyperplasia, which did not progress to tumors. However, coexpression of the ING4 mutant with MYC increased the penetrance and metastasis of MYC-initiated mammary tumors, giving rise to tumors with more organized acinar structures. Similarly, in vitro expression of the ING4 mutant in MCF10A mammary epithelial cells reinforced tight junctional structures. Our results provide direct functional evidence that ING4 could suppress the early stages of breast cancer and that dominant mutant alleles of ING4 might contribute to malignant development.
Collapse
Affiliation(s)
- Suwon Kim
- G.W. Hooper Research Foundation, University of California, San Francisco, California, USA.
| | | | | |
Collapse
|
391
|
Inhibitor of growth-4 promotes IkappaB promoter activation to suppress NF-kappaB signaling and innate immunity. Proc Natl Acad Sci U S A 2010; 107:11423-8. [PMID: 20534538 DOI: 10.1073/pnas.0912116107] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Ing4 is a member of the inhibitor of growth (ING) family of chromatin-modifying proteins. Biochemical experiments indicate that Ing4 is a subunit of the HB01-JADE-hEAF6 histone acetyltransferase complex responsible for most nucleosomal histone H4 acetylation in eukaryotes, and transfection studies suggest that Ing4 may regulate a wide variety of cellular processes, including DNA repair, apoptosis, cell-cycle regulation, metastasis, angiogenesis, and tumor suppression. However, in vivo evidence for a physiological role for Ing4 in cell-growth regulation is lacking. We have generated Ing4-deficient mice to explore the role of Ing4 in development, tumorigenesis, and in NF-kappaB signaling. Ing4-null mice develop normally and are viable. Although mice deficient for Ing4 fail to form spontaneous tumors, they are hypersensitive to LPS treatment and display elevated cytokine responses. Macrophages isolated from Ing4-null mice have increased levels of nuclear p65/RelA protein, resulting in increased RelA binding to NF-kappaB target promoters and up-regulation of cytokine gene expression. However, increased promoter occupancy by RelA in LPS-stimulated, Ing4-null cells does not always correlate with increased NF-kappaB target-gene expression, as RelA activation of a subset of cytokine promoters also requires Ing4 for proper histone H4 acetylation. Furthermore, activation of the IkappaB alpha promoter by RelA is also Ing4-dependent, and LPS-stimulated, Ing4-null cells have reduced levels of IkappaB alpha promoter H4 acetylation and IkappaB gene expression. Thus, Ing4 negatively regulates the cytokine-mediated inflammatory response in mice by facilitating NF-kappaB activation of IkappaB promoters, thereby suppressing nuclear RelA levels and the activation of select NF-kappaB target cytokines.
Collapse
|
392
|
Piche B, Li G. Inhibitor of growth tumor suppressors in cancer progression. Cell Mol Life Sci 2010; 67:1987-99. [PMID: 20195696 PMCID: PMC11115670 DOI: 10.1007/s00018-010-0312-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Revised: 01/11/2010] [Accepted: 01/29/2010] [Indexed: 12/27/2022]
Abstract
The inhibitor of growth (ING) family of tumor suppressors has five members and is implicated in the control of apoptosis, senescence, DNA repair, and cancer progression. However, little is known about ING activity in the regulation of cancer progression. ING members and splice variants seem to behave differently with respect to cancer invasion and metastasis. Interaction with histone trimethylated at lysine 4 (H3K4me3), hypoxia inducible factor-1 (HIF-1), p53, and nuclear factor kappa-B (NF-kappaB) are potential mechanisms by which ING members exert effects on invasion and metastasis. Subcellular mislocalization, rapid protein degradation, and to a lesser extent ING gene mutation are among the mechanisms responsible for inappropriate ING levels in cancer cells. The aim of this review is to summarize the different roles of ING family tumor suppressors in cancer progression and the molecular mechanisms involved.
Collapse
Affiliation(s)
- Brad Piche
- Department of Dermatology and Skin Science, Jack Bell Research Centre, Vancouver Coastal Health Research Institute, University of British Columbia, 2660 Oak Street, Vancouver, BC V6H 3Z6 Canada
| | - Gang Li
- Department of Dermatology and Skin Science, Jack Bell Research Centre, Vancouver Coastal Health Research Institute, University of British Columbia, 2660 Oak Street, Vancouver, BC V6H 3Z6 Canada
| |
Collapse
|
393
|
Nie J, Liu L, Wu M, Xing G, He S, Yin Y, Tian C, He F, Zhang L. HECT ubiquitin ligase Smurf1 targets the tumor suppressor ING2 for ubiquitination and degradation. FEBS Lett 2010; 584:3005-12. [DOI: 10.1016/j.febslet.2010.05.033] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2010] [Revised: 05/12/2010] [Accepted: 05/14/2010] [Indexed: 01/10/2023]
|
394
|
Altaf M, Auger A, Monnet-Saksouk J, Brodeur J, Piquet S, Cramet M, Bouchard N, Lacoste N, Utley RT, Gaudreau L, Côté J. NuA4-dependent acetylation of nucleosomal histones H4 and H2A directly stimulates incorporation of H2A.Z by the SWR1 complex. J Biol Chem 2010; 285:15966-77. [PMID: 20332092 PMCID: PMC2871465 DOI: 10.1074/jbc.m110.117069] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Indexed: 01/09/2023] Open
Abstract
Structural and functional analyses of nucleosomes containing histone variant H2A.Z have drawn a lot of interest over the past few years. Important work in budding yeast has shown that H2A.Z (Htz1)-containing nucleosomes are specifically located on the promoter regions of genes, creating a specific chromatin structure that is poised for disassembly during transcription activation. The SWR1 complex is responsible for incorporation of Htz1 into nucleosomes through ATP-dependent exchange of canonical H2A-H2B dimers for Htz1-H2B dimers. Interestingly, the yeast SWR1 complex is functionally linked to the NuA4 acetyltransferase complex in vivo. NuA4 and SWR1 are physically associated in higher eukaryotes as they are homologous to the TIP60/p400 complex, which encompasses both histone acetyltransferase (Tip60) and histone exchange (p400/Domino) activities. Here we present work investigating the impact of NuA4-dependent acetylation on SWR1-driven incorporation of H2A.Z into chromatin. Using in vitro histone exchange assays with native chromatin, we demonstrate that prior chromatin acetylation by NuA4 greatly stimulates the exchange of H2A for H2A.Z. Interestingly, we find that acetylation of H2A or H4 N-terminal tails by NuA4 can independently stimulate SWR1 activity. Accordingly, we demonstrate that mutations of H4 or H2A N-terminal lysine residues have similar effects on H2A.Z incorporation in vivo, and cells carrying mutations in both tails are nonviable. Finally, depletion experiments indicate that the bromodomain-containing protein Bdf1 is important for NuA4-dependent stimulation of SWR1. These results provide important mechanistic insight into the functional cross-talk between chromatin acetylation and ATP-dependent exchange of histone H2A variants.
Collapse
Affiliation(s)
- Mohammed Altaf
- From the Laval University Cancer Research Center, Hôtel-Dieu de Québec (CHUQ), Quebec City, Quebec G1R 2J6, Canada and
| | - Andréanne Auger
- From the Laval University Cancer Research Center, Hôtel-Dieu de Québec (CHUQ), Quebec City, Quebec G1R 2J6, Canada and
| | - Julie Monnet-Saksouk
- From the Laval University Cancer Research Center, Hôtel-Dieu de Québec (CHUQ), Quebec City, Quebec G1R 2J6, Canada and
| | - Joëlle Brodeur
- the Department of Biology, Université de Sherbrooke, Sherbrooke, Quebec J1K 2R1, Canada
| | - Sandra Piquet
- From the Laval University Cancer Research Center, Hôtel-Dieu de Québec (CHUQ), Quebec City, Quebec G1R 2J6, Canada and
| | - Myriam Cramet
- From the Laval University Cancer Research Center, Hôtel-Dieu de Québec (CHUQ), Quebec City, Quebec G1R 2J6, Canada and
| | - Nathalie Bouchard
- From the Laval University Cancer Research Center, Hôtel-Dieu de Québec (CHUQ), Quebec City, Quebec G1R 2J6, Canada and
| | - Nicolas Lacoste
- From the Laval University Cancer Research Center, Hôtel-Dieu de Québec (CHUQ), Quebec City, Quebec G1R 2J6, Canada and
| | - Rhea T. Utley
- From the Laval University Cancer Research Center, Hôtel-Dieu de Québec (CHUQ), Quebec City, Quebec G1R 2J6, Canada and
| | - Luc Gaudreau
- the Department of Biology, Université de Sherbrooke, Sherbrooke, Quebec J1K 2R1, Canada
| | - Jacques Côté
- From the Laval University Cancer Research Center, Hôtel-Dieu de Québec (CHUQ), Quebec City, Quebec G1R 2J6, Canada and
| |
Collapse
|
395
|
Culurgioni S, Muñoz IG, Palacios A, Redondo P, Blanco FJ, Montoya G. Crystallization and preliminary X-ray diffraction analysis of the dimerization domain of the tumour suppressor ING4. Acta Crystallogr Sect F Struct Biol Cryst Commun 2010; 66:567-70. [PMID: 20445261 DOI: 10.1107/s1744309110010080] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Accepted: 03/17/2010] [Indexed: 01/09/2023]
Abstract
Inhibitor of growth protein 4 (ING4) belongs to the ING family of tumour suppressors and is involved in chromatin remodelling, in growth arrest and, in cooperation with p53, in senescence and apoptosis. Whereas the structure and histone H3-binding properties of the C-terminal PHD domains of the ING proteins are known, no structural information is available for the N-terminal domains. This domain contains a putative oligomerization site rich in helical structure in the ING2-5 members of the family. The N-terminal domain of ING4 was overexpressed in Escherichia coli and purified to homogeneity. Crystallization experiments yielded crystals that were suitable for high-resolution X-ray diffraction analysis. The crystals belonged to the orthorhombic space group C222, with unit-cell parameters a = 129.7, b = 188.3, c = 62.7 A. The self-rotation function and the Matthews coefficient suggested the presence of three protein dimers per asymmetric unit. The crystals diffracted to a resolution of 2.3 A using synchrotron radiation at the Swiss Light Source (SLS) and the European Synchrotron Radiation Facility (ESRF).
Collapse
Affiliation(s)
- Simone Culurgioni
- Structural Biology Unit, CIC bioGUNE, Parque Tecnológico de Bizkaia, Edificio 800, 48160 Derio, Spain
| | | | | | | | | | | |
Collapse
|
396
|
Pardo M, Lang B, Yu L, Prosser H, Bradley A, Babu MM, Choudhary J. An expanded Oct4 interaction network: implications for stem cell biology, development, and disease. Cell Stem Cell 2010; 6:382-395. [PMID: 20362542 PMCID: PMC2860244 DOI: 10.1016/j.stem.2010.03.004] [Citation(s) in RCA: 307] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Revised: 03/10/2010] [Accepted: 03/16/2010] [Indexed: 12/03/2022]
Abstract
The transcription factor Oct4 is key in embryonic stem cell identity and reprogramming. Insight into its partners should illuminate how the pluripotent state is established and regulated. Here, we identify a considerably expanded set of Oct4-binding proteins in mouse embryonic stem cells. We find that Oct4 associates with a varied set of proteins including regulators of gene expression and modulators of Oct4 function. Half of its partners are transcriptionally regulated by Oct4 itself or other stem cell transcription factors, whereas one-third display a significant change in expression upon cell differentiation. The majority of Oct4-associated proteins studied to date show an early lethal phenotype when mutated. A fraction of the human orthologs is associated with inherited developmental disorders or causative of cancer. The Oct4 interactome provides a resource for dissecting mechanisms of Oct4 function, enlightening the basis of pluripotency and development, and identifying potential additional reprogramming factors.
Collapse
Affiliation(s)
- Mercedes Pardo
- Proteomic Mass Spectrometry, Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, UK.
| | - Benjamin Lang
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Lu Yu
- Proteomic Mass Spectrometry, Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, UK
| | - Haydn Prosser
- Mouse Genomics, Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, UK
| | - Allan Bradley
- Mouse Genomics, Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, UK
| | - M Madan Babu
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Jyoti Choudhary
- Proteomic Mass Spectrometry, Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, UK.
| |
Collapse
|
397
|
Critical determinants for chromatin binding by Saccharomyces cerevisiae Yng1 exist outside of the plant homeodomain finger. Genetics 2010; 185:469-77. [PMID: 20351216 DOI: 10.1534/genetics.110.116285] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The temporal and spatial regulation of histone post-translational modifications is essential for proper chromatin structure and function. The Saccharomyces cerevisiae NuA3 histone acetyltransferase complex modifies the amino-terminal tail of histone H3, but how NuA3 is targeted to specific regions of the genome is not fully understood. Yng1, a subunit of NuA3 and a member of the Inhibitor of Growth (ING) protein family, is required for the interaction of NuA3 with chromatin. This protein contains a C-terminal plant homeodomain (PHD) finger that specifically interacts with lysine 4-trimethylated histone H3 (H3K4me3) in vitro. This initially suggested that NuA3 is targeted to regions bearing the H3K4me3 mark; however, deletion of the Yng1 PHD finger does not disrupt the interaction of NuA3 with chromatin or result in a phenotype consistent with loss of NuA3 function in vivo. In this study, we uncovered the molecular basis for the discrepancies in these data. We present both genetic and biochemical evidence that full-length Yng1 has two independent histone-binding motifs: an amino-terminal motif that binds unmodified H3 tails and a carboxyl-terminal PHD finger that specifically recognizes H3K4me3. Although these motifs can bind histones independently, together they increase the apparent association of Yng1 for the H3 tail.
Collapse
|
398
|
Chen JQ, Li Y, Pan X, Lei BK, Chang C, Liu ZX, Lu H. The fission yeast inhibitor of growth (ING) protein Png1p functions in response to DNA damage. J Biol Chem 2010; 285:15786-93. [PMID: 20299455 DOI: 10.1074/jbc.m110.101832] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
In budding yeast and human cells, ING (inhibitor of growth) tumor suppressor proteins play important roles in response to DNA damage by modulating chromatin structure through collaborating with histone acetyltransferase or histone deacetylase complexes. However, the biological functions of ING family proteins in fission yeast are poorly defined. Here, we report that Png1p, a fission yeast ING homolog protein, is required for cell growth under normal and DNA-damaged conditions. Png1p was further confirmed to regulate histone H4 acetylation through collaboration with the MYST family histone acetyltransferase 1 (Mst1). Additionally, both fission yeast PNG1 and MST1 can functionally complement their budding yeast correspondence homologs YNG2 and ESA1, respectively. These results suggest that ING proteins in fission yeast might also conserve function, similar to ING proteins in budding yeast and human cells. We also showed that decreased acetylation in Deltapng1 cells resulted in genome-wide down-regulation of 756 open reading frames, including the central DNA repair gene RAD22. Overexpression of RAD22 partially rescued the png1 mutant phenotype under both normal and DNA-damaged conditions. Furthermore, decreased expression of RAD22 in Deltapng1 cells was confirmed to be caused by decreased H4 acetylation at its promoter. Altogether, these results indicate that Png1p is required for histone H4 acetylation and functions upstream of RAD22 in the DNA damage response pathway.
Collapse
Affiliation(s)
- Jian-Qiang Chen
- State Key Laboratory of Genetic Engineering, School of Life Sciences, and Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, China
| | | | | | | | | | | | | |
Collapse
|
399
|
Miotto B, Struhl K. HBO1 histone acetylase activity is essential for DNA replication licensing and inhibited by Geminin. Mol Cell 2010; 37:57-66. [PMID: 20129055 DOI: 10.1016/j.molcel.2009.12.012] [Citation(s) in RCA: 191] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2009] [Revised: 09/16/2009] [Accepted: 11/16/2009] [Indexed: 12/15/2022]
Abstract
HBO1, an H4-specific histone acetylase, is a coactivator of the DNA replication licensing factor Cdt1. HBO1 acetylase activity is required for licensing, because a histone acetylase (HAT)-defective mutant of HBO1 bound at origins is unable to load the MCM complex. H4 acetylation at origins is cell-cycle regulated, with maximal activity at the G1/S transition, and coexpression of HBO1 and Jade-1 increases histone acetylation and MCM complex loading. Overexpression of the Set8 histone H4 tail-binding domain specifically inhibits MCM loading, suggesting that histones are a physiologically relevant target for licensing. Lastly, Geminin inhibits HBO1 acetylase activity in the context of a Cdt1-HBO1 complex, and it associates with origins and inhibits H4 acetylation and licensing in vivo. Thus, H4 acetylation at origins by HBO1 is critical for replication licensing by Cdt1, and negative regulation of licensing by Geminin is likely to involve inhibition of HBO1 histone acetylase activity.
Collapse
Affiliation(s)
- Benoit Miotto
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
400
|
Palacios A, Moreno A, Oliveira BL, Rivera T, Prieto J, García P, Fernández-Fernández MR, Bernadó P, Palmero I, Blanco FJ. The Dimeric Structure and the Bivalent Recognition of H3K4me3 by the Tumor Suppressor ING4 Suggests a Mechanism for Enhanced Targeting of the HBO1 Complex to Chromatin. J Mol Biol 2010; 396:1117-27. [DOI: 10.1016/j.jmb.2009.12.049] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Revised: 12/23/2009] [Accepted: 12/23/2009] [Indexed: 01/03/2023]
|