351
|
Long noncoding RNA ANRIL is activated by hypoxia-inducible factor-1α and promotes osteosarcoma cell invasion and suppresses cell apoptosis upon hypoxia. Cancer Cell Int 2016; 16:73. [PMID: 27688736 PMCID: PMC5035454 DOI: 10.1186/s12935-016-0349-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 09/16/2016] [Indexed: 01/17/2023] Open
Abstract
Background Osteosarcoma is the most common malignancy of bone. Intratumoral hypoxia occurs in many solid tumors, where it is associated with the development of aggressive phenotype. ANRIL has been shown to be a long noncoding RNA that facilitates the progression of a number of malignancies. Yet, few studies have explored the expression pattern of ANRIL in osteosarcoma and the effect of hypoxia on ANRIL. Methods We evaluated the expression levels of ANRIL in osteosarcoma tissues, adjacent normal tissues and cells with quantitative real-time polymerase chain reaction. Multiple approaches including luciferase reporter assay with nucleotide substitutions, chromatin immunoprecipitation assay and electrophoretic mobility shift assay were used to confirm the direct binding of HIF-1α to the ANRIL promoter region. SiRNA-based knockdown and other molecular biology techniques were employed to measure the effect of HIF-1α on the expression of ANRIL. Results We found that the expression of ANRIL was upregulated in 15 pairs of osteosarcoma compared with adjacent normal tissues. We found that hypoxia is sufficient to upregulate ANRIL expression in osteosarcoma cells (MNNG and U2OS). HIF-1α directly binds to the putative hypoxia response element in the upstream region of ANRIL. What’s more, siRNA and small molecular inhibitors-mediated HIF-1α suppression attenuated ANRIL upregulation under hypoxic conditions. Upon hypoxia, ANRIL promoted cancer cell invasion and suppressed cell apoptosis. Conclusion Taken together, these data suggest that HIF-1α may contribute to the upregulation of ANRIL in osteosarcoma under hypoxic conditions. ANRIL is involved in hypoxia-induced aggressive phenotype in osteosarcoma.
Collapse
|
352
|
Wang J, Lei ZJ, Guo Y, Wang T, Qin ZY, Xiao HL, Fan LL, Chen DF, Bian XW, Liu J, Wang B. miRNA-regulated delivery of lincRNA-p21 suppresses β-catenin signaling and tumorigenicity of colorectal cancer stem cells. Oncotarget 2016; 6:37852-70. [PMID: 26497997 PMCID: PMC4741970 DOI: 10.18632/oncotarget.5635] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Accepted: 10/06/2015] [Indexed: 12/11/2022] Open
Abstract
Cancer stem cells (CSCs) are key cellular targets for effective cancer therapy, due to their critical roles in cancer progression and chemo/radio-resistance. Emerging evidence demonstrates that long non-coding RNAs (lncRNAs) are important players in the biology of cancers. However, it remains unknown whether lncRNAs could be exploited to target CSCs. We report that large intergenic non-coding RNA p21 (lincRNA-p21) is a potent suppressor of stem-like traits of CSCs purified from both primary colorectal cancer (CRC) tissues and cell lines. A novel lincRNA-p21-expressing adenoviral vector, which was armed with miRNA responsive element (MRE) of miR-451 (Ad-lnc-p21-MRE), was generated to eliminate CRC CSCs. Integration of miR-451 MREs into the adenovirus efficiently delivered lincRNA-p21 into CSCs that contained low levels of miR-451. Moreover, lincRNA-p21 inhibited the activity of β-catenin signaling, thereby attenuating the viability, self-renewal, and glycolysis of CSCs in vitro. By limiting dilution and serial tumor formation assay, we demonstrated that Ad-lnc-p21-MRE significantly suppressed the self-renewal potential and tumorigenicity of CSCs in nude mice. Importantly, application of miR-451 MREs appeared to protect normal liver cells from off-target expression of lincRNA-p21 in both tumor-bearing and naïve mice. Taken together, these findings suggest that lncRNAs may be promising therapeutic molecules to eradicate CSCs and MREs of tumor-suppressor miRNAs, such as miR-451, may be exploited to ensure the specificity of CSC-targeting strategies.
Collapse
Affiliation(s)
- Jun Wang
- Department of Gastroenterology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Zeng-jie Lei
- Department of Gastroenterology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Yan Guo
- Department of Gastroenterology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Tao Wang
- Department of Gastroenterology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Zhong-yi Qin
- Department of Gastroenterology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Hua-liang Xiao
- Department of Pathology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Li-lin Fan
- Department of Gastroenterology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Dong-feng Chen
- Department of Gastroenterology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Xiu-wu Bian
- Institute of Pathology and Southwest Cancer Center, Key Laboratory of Tumor Immunopathology of Ministry of Education of China, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Jia Liu
- Institute of Translational Medicine, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Bin Wang
- Department of Gastroenterology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| |
Collapse
|
353
|
Wang DW, Peng ZJ, Ren GF, Wang GX. The different roles of selective autophagic protein degradation in mammalian cells. Oncotarget 2016; 6:37098-116. [PMID: 26415220 PMCID: PMC4741918 DOI: 10.18632/oncotarget.5776] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 08/31/2015] [Indexed: 01/01/2023] Open
Abstract
Autophagy is an intracellular pathway for bulk protein degradation and the removal of damaged organelles by lysosomes. Autophagy was previously thought to be unselective; however, studies have increasingly confirmed that autophagy-mediated protein degradation is highly regulated. Abnormal autophagic protein degradation has been associated with multiple human diseases such as cancer, neurological disability and cardiovascular disease; therefore, further elucidation of protein degradation by autophagy may be beneficial for protein-based clinical therapies. Macroautophagy and chaperone-mediated autophagy (CMA) can both participate in selective protein degradation in mammalian cells, but the process is quite different in each case. Here, we summarize the various types of macroautophagy and CMA involved in determining protein degradation. For this summary, we divide the autophagic protein degradation pathways into four categories: the post-translational modification dependent and independent CMA pathways and the ubiquitin dependent and independent macroautophagy pathways, and describe how some non-canonical pathways and modifications such as phosphorylation, acetylation and arginylation can influence protein degradation by the autophagy lysosome system (ALS). Finally, we comment on why autophagy can serve as either diagnostics or therapeutic targets in different human diseases.
Collapse
Affiliation(s)
- Da-wei Wang
- Department of Biochemistry and Molecular Biology, School of Medicine, Shandong University, Jinan, Shandong, China
| | - Zhen-ju Peng
- Medical Institute of Paediatrics, Qilu Children's Hospital of Shandong University, Jinan, Shandong, China
| | - Guang-fang Ren
- Medical Institute of Paediatrics, Qilu Children's Hospital of Shandong University, Jinan, Shandong, China
| | - Guang-xin Wang
- Medical Institute of Paediatrics, Qilu Children's Hospital of Shandong University, Jinan, Shandong, China
| |
Collapse
|
354
|
Han D, Zhang X, Zhang J, Guo X, Zheng Y, Sui S, Zheng J. Oleanolic acid suppresses vascular smooth muscle cell proliferation by increasing lincRNA-p21 expression. Oncol Lett 2016; 12:3519-3522. [PMID: 27900030 DOI: 10.3892/ol.2016.5096] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 07/07/2016] [Indexed: 11/06/2022] Open
Abstract
Arteriosclerosis poses a significant risk to human health and involves the thickening and hardening of the walls of arteries. Accumulated evidence demonstrates that aberrant proliferation of vascular smooth muscle cells (VSMCs) accounts for the onset and progression of arteriosclerosis. Suppression of their proliferation has been demonstrated to be an effective anti-arteriosclerosis strategy. Long non-coding RNAs (lncRNAs) have recently been observed to be implicated in the proliferation of VSMCs and arteriosclerosis. In this study, we observed that oleanolic acid (OA), a natural compound from plants, inhibited the proliferation of VSMCs. The expression of lincRNA-p21, an arteriosclerosis-associated lncRNA, was demonstrated to be elevated by OA treatment. Suppression of lincRNA-p21 rescued the effect of OA on the proliferation of VSMCs. Collectively, targeting lncRNA is a promising strategy for arteriosclerosis prevention and treatment, and OA ameliorates arteriosclerosis by increasing lncRNA levels.
Collapse
Affiliation(s)
- Di Han
- Department of General Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266031, P.R. China
| | - Xuejuan Zhang
- Department of General Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266031, P.R. China
| | - Jietao Zhang
- Department of General Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266031, P.R. China
| | - Xiaozi Guo
- Department of General Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266031, P.R. China
| | - Yu Zheng
- Department of General Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266031, P.R. China
| | - Shihua Sui
- Department of Neurology, People's Hospital of Rizhao, Rizhao, Shandong 276800, P.R. China
| | - Jiaping Zheng
- Department of Neurology, People's Hospital of Rizhao, Rizhao, Shandong 276800, P.R. China
| |
Collapse
|
355
|
Wang Y, Zhang L, Zheng X, Zhong W, Tian X, Yin B, Tian K, Zhang W. Long non-coding RNA LINC00161 sensitises osteosarcoma cells to cisplatin-induced apoptosis by regulating the miR-645-IFIT2 axis. Cancer Lett 2016; 382:137-146. [PMID: 27609068 DOI: 10.1016/j.canlet.2016.08.024] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 08/25/2016] [Accepted: 08/28/2016] [Indexed: 12/20/2022]
Abstract
Chemotherapeutic insensitivity remains a major obstacle to osteosarcoma treatment. Recently, increasing evidence has suggested that long non-coding RNAs (lncRNAs) play an essential role in tumourigenesis. However, the potential biological roles and regulatory mechanisms of novel lncRNAs in response to cisplatin treatment are poorly understood. Here, we found that lncRNA LINC00161 was induced by cisplatin in osteosarcoma cells. Elevated LINC00161 increased cisplatin-induced apoptosis and reversed the cisplatin-resistant phenotype of osteosarcoma cells by upregulating IFIT2. Further mechanistic studies revealed that LINC00161 could sponge endogenous miR-645 and inhibit its activity leading to IFIT2 increase. In addition, we identified that LINC00161 enhanced cisplatin-induced apoptosis through regulation of the miR-645-IFIT2 pathway. Thus, these findings demonstrate that LINC00161 is an essential regulator in cisplatin-induced apoptosis, and the LINC00161-miR-645-IFIT2 signalling axis plays an important role in reducing osteosarcoma chemoresistance.
Collapse
Affiliation(s)
- Yuan Wang
- Department of Orthopaedics, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116044, China
| | - Li Zhang
- Laboratory of Pathogenic Biology, College of Basic Medical Science of Dalian Medical University, Dalian 116027, China
| | - Xifu Zheng
- Department of Orthopaedics, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116044, China
| | - Weiliang Zhong
- Department of Orthopaedics, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116044, China
| | - Xiliang Tian
- Department of Orthopaedics, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116044, China
| | - Baosheng Yin
- Department of Orthopaedics, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116044, China
| | - Kang Tian
- Department of Orthopaedics, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116044, China
| | - Weiguo Zhang
- Department of Orthopaedics, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116044, China.
| |
Collapse
|
356
|
The lncRNA MALAT1, acting through HIF-1α stabilization, enhances arsenite-induced glycolysis in human hepatic L-02 cells. Biochim Biophys Acta Mol Basis Dis 2016; 1862:1685-95. [DOI: 10.1016/j.bbadis.2016.06.004] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Revised: 05/27/2016] [Accepted: 06/05/2016] [Indexed: 02/06/2023]
|
357
|
LncSox4 promotes the self-renewal of liver tumour-initiating cells through Stat3-mediated Sox4 expression. Nat Commun 2016; 7:12598. [PMID: 27553854 PMCID: PMC4999516 DOI: 10.1038/ncomms12598] [Citation(s) in RCA: 163] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 07/13/2016] [Indexed: 12/27/2022] Open
Abstract
Liver cancer has a tendency to develop asymptomatically in patients, so most patients are diagnosed at a later stage. Accumulating evidence implicates that liver tumour-initiating cells (TICs) as being responsible for liver cancer initiation and recurrence. However, the molecular mechanism of liver TIC self-renewal is poorly understood. Here we discover that a long noncoding RNA (lncRNA) termed LncSox4 is highly expressed in hepatocellular carcinoma (HCC) tissues and in liver TICs. We find that LncSox4 is required for liver TIC self-renewal and tumour initiation. LncSox4 interacts with and recruits Stat3 to the Sox4 promoter to initiate the expression of Sox4, which is highly expressed in liver TICs and required for liver TIC self-renewal. The expression level of Sox4 correlates with HCC development, clinical severity and prognosis of patients. Altogether, we find that LncSox4 is highly expressed in liver TICs and is required for their self-renewal. Liver tumour-initiating cells (TICs) may be responsible for liver cancer initiation and recurrence. In this article, the authors show that a previously unidentified lncRNA, LncSox4, is highly expressed in liver cancer TICs and regulates TIC self-renewal through the Stat3/SOX4 axis.
Collapse
|
358
|
Groff AF, Sanchez-Gomez DB, Soruco MML, Gerhardinger C, Barutcu AR, Li E, Elcavage L, Plana O, Sanchez LV, Lee JC, Sauvageau M, Rinn JL. In Vivo Characterization of Linc-p21 Reveals Functional cis-Regulatory DNA Elements. Cell Rep 2016; 16:2178-2186. [PMID: 27524623 PMCID: PMC5014909 DOI: 10.1016/j.celrep.2016.07.050] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 06/08/2016] [Accepted: 07/19/2016] [Indexed: 12/26/2022] Open
Abstract
The Linc-p21 locus, encoding a long non-coding RNA, plays an important role in p53 signaling, cell-cycle regulation, and tumor suppression. However, despite extensive study, confusion exists regarding its mechanism of action: is activity driven by the transcript acting in trans, in cis, or by an underlying functional enhancer? Here, using a knockout mouse model and a massively parallel enhancer assay, we delineate the functional elements at this locus. We observe that, even in tissues with no detectable Linc-p21 transcript, deletion of the locus significantly affects local gene expression, including of the cell-cycle regulator Cdkn1a. To characterize this RNA-independent regulatory effect, we systematically interrogated the underlying DNA sequence for enhancer activity at nucleotide resolution and confirmed the existence of multiple enhancer elements. Together, these data suggest that, in vivo, the cis-regulatory effects mediated by Linc-p21, in the presence or absence of transcription, are due to DNA enhancer elements.
Collapse
Affiliation(s)
- Abigail F Groff
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA; The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Diana B Sanchez-Gomez
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Marcela M L Soruco
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Chiara Gerhardinger
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - A Rasim Barutcu
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Eric Li
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Lara Elcavage
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Olivia Plana
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Lluvia V Sanchez
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - James C Lee
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Martin Sauvageau
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - John L Rinn
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA.
| |
Collapse
|
359
|
Abstract
Altered cellular metabolism is an emerging hallmark of cancer. Accumulating recent evidence links long non-coding RNAs (lncRNAs), a still poorly understood class of non-coding RNAs, to cancer metabolism. Here we review the emerging findings on the functions of lncRNAs in cancer metabolism, with particular emphasis on how lncRNAs regulate glucose and glutamine metabolism in cancer cells, discuss how lncRNAs regulate various aspects of cancer metabolism through their cross-talk with other macromolecules, explore the mechanistic conceptual framework of lncRNAs in reprogramming metabolism in cancers, and highlight the challenges in this field. A more in-depth understanding of lncRNAs in cancer metabolism may enable the development of novel and effective therapeutic strategies targeting cancer metabolism.
Collapse
Affiliation(s)
- Zhen-Dong Xiao
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Li Zhuang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Boyi Gan
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
360
|
Beltrán-Anaya FO, Cedro-Tanda A, Hidalgo-Miranda A, Romero-Cordoba SL. Insights into the Regulatory Role of Non-coding RNAs in Cancer Metabolism. Front Physiol 2016; 7:342. [PMID: 27551267 PMCID: PMC4976125 DOI: 10.3389/fphys.2016.00342] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 07/25/2016] [Indexed: 12/12/2022] Open
Abstract
Cancer represents a complex disease originated from alterations in several genes leading to disturbances in important signaling pathways in tumor biology, favoring heterogeneity that promotes adaptability and pharmacological resistance of tumor cells. Metabolic reprogramming has emerged as an important hallmark of cancer characterized by the presence of aerobic glycolysis, increased glutaminolysis and fatty acid biosynthesis, as well as an altered mitochondrial energy production. The metabolic switches that support energetic requirements of cancer cells are closely related to either activation of oncogenes or down-modulation of tumor-suppressor genes, finally leading to dysregulation of cell proliferation, metastasis and drug resistance signals. Non-coding RNAs (ncRNAs) have emerged as one important kind of molecules that can regulate altered genes contributing, to the establishment of metabolic reprogramming. Moreover, diverse metabolic signals can regulate ncRNA expression and activity at genetic, transcriptional, or epigenetic levels. The regulatory landscape of ncRNAs may provide a new approach for understanding and treatment of different types of malignancies. In this review we discuss the regulatory role exerted by ncRNAs on metabolic enzymes and pathways involved in glucose, lipid, and amino acid metabolism. We also review how metabolic stress conditions and tumoral microenvironment influence ncRNA expression and activity. Furthermore, we comment on the therapeutic potential of metabolism-related ncRNAs in cancer.
Collapse
Affiliation(s)
- Fredy O Beltrán-Anaya
- Cancer Genomics Laboratory, National Institute of Genomic Medicine Mexico City, Mexico
| | - Alberto Cedro-Tanda
- Cancer Genomics Laboratory, National Institute of Genomic Medicine Mexico City, Mexico
| | | | | |
Collapse
|
361
|
Yang N, Fu Y, Zhang H, Sima H, Zhu N, Yang G. LincRNA-p21 activates endoplasmic reticulum stress and inhibits hepatocellular carcinoma. Oncotarget 2016; 6:28151-63. [PMID: 26305675 PMCID: PMC4695050 DOI: 10.18632/oncotarget.4661] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Accepted: 07/08/2015] [Indexed: 11/25/2022] Open
Abstract
LincRNA-p21 is a downstream long non-coding RNA (lncRNA) transcript of p53. LincRNA-p21 serves as a repressor in p53-dependent transcriptional responses and participates in diverse biological processes, including apoptosis, cell cycle, metabolism and pluripotency. However, the role of lincRNA-p21 in human hepatocellular carcinoma remains to be defined. Here in this work, we demonstrated that lincRNA-p21 acted as a tumor suppressive lncRNA in human hepatocellular carcinoma. We firstly found the downregulation of lincRNA-p21 level in human hepatocellular carcinoma tissues, and showed that low expression of lincRNA-p21 was associated with high disease stage and predicted poor survival. Further we showed that lincRNA-p21 knockdown promoted proliferation and colony formation of HepG2, Huh7 and Bel-7042 cells in vitro, while lincRNA-p21 overexpression obtained oppose results. Using tumor xenograft experiments, we also demonstrated that lincRNA-p21 inhibited HepG2 cell growth in vivo and lincRNA-p21 contributed to sorafenib-induced growth regression of HepG2 cell in vivo. Further mechanism analysis revealed that lincRNA-p21 promoted ER stress both in vitro and in vivo, which facilitated apoptosis of hepatocellular carcinoma cells. Finally, we demonstrated that ER stress accounted for lincRNA-p21 effects on apoptosis, proliferation and in vivo growth of hepatocellular carcinoma. These findings implicate that lincRNA-p21 is a potential prognostic factor and therapeutic target for human hepatocellular carcinoma.
Collapse
Affiliation(s)
- Ning Yang
- Hepatobiliary Surgery Department V, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Yong Fu
- Hepatobiliary Surgery Department V, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Haibin Zhang
- Hepatobiliary Surgery Department V, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Hui Sima
- Hepatobiliary Surgery Department V, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Nan Zhu
- Hepatobiliary Surgery Department V, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Guangshun Yang
- Hepatobiliary Surgery Department V, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| |
Collapse
|
362
|
Abstract
The number of long noncoding RNAs (lncRNAs) has grown rapidly; however, our understanding of their function remains limited. Although cultured cells have facilitated investigations of lncRNA function at the molecular level, the use of animal models provides a rich context in which to investigate the phenotypic impact of these molecules. Promising initial studies using animal models demonstrated that lncRNAs influence a diverse number of phenotypes, ranging from subtle dysmorphia to viability. Here, we highlight the diversity of animal models and their unique advantages, discuss the use of animal models to profile lncRNA expression, evaluate experimental strategies to manipulate lncRNA function in vivo, and review the phenotypes attributable to lncRNAs. Despite a limited number of studies leveraging animal models, lncRNAs are already recognized as a notable class of molecules with important implications for health and disease.
Collapse
|
363
|
Zhang P, Cao L, Fan P, Mei Y, Wu M. LncRNA-MIF, a c-Myc-activated long non-coding RNA, suppresses glycolysis by promoting Fbxw7-mediated c-Myc degradation. EMBO Rep 2016; 17:1204-20. [PMID: 27317567 PMCID: PMC4967955 DOI: 10.15252/embr.201642067] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 05/17/2016] [Accepted: 05/23/2016] [Indexed: 01/26/2023] Open
Abstract
The c-Myc proto-oncogene is activated in more than half of all human cancers. However, the precise regulation of c-Myc protein stability is unknown. Here, we show that the lncRNA-MIF (c-Myc inhibitory factor), a c-Myc-induced long non-coding RNA, is a competing endogenous RNA for miR-586 and attenuates the inhibitory effect of miR-586 on Fbxw7, an E3 ligase for c-Myc, leading to increased Fbxw7 expression and subsequent c-Myc degradation. Our data reveal the existence of a feedback loop between c-Myc and lncRNA-MIF, through which c-Myc protein stability is finely controlled. Additionally, we show that the lncRNA-MIF inhibits aerobic glycolysis and tumorigenesis by suppressing c-Myc and miR-586.
Collapse
Affiliation(s)
- Pengfei Zhang
- CAS Key Laboratory of Innate Immunity and Chronic Disease, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, School of Life Sciences, University of Science & Technology of China, Hefei, Anhui, China
| | - Limian Cao
- CAS Key Laboratory of Innate Immunity and Chronic Disease, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, School of Life Sciences, University of Science & Technology of China, Hefei, Anhui, China
| | - Pingsheng Fan
- Affiliated Provincial Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yide Mei
- CAS Key Laboratory of Innate Immunity and Chronic Disease, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, School of Life Sciences, University of Science & Technology of China, Hefei, Anhui, China
| | - Mian Wu
- CAS Key Laboratory of Innate Immunity and Chronic Disease, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, School of Life Sciences, University of Science & Technology of China, Hefei, Anhui, China
| |
Collapse
|
364
|
Noncoding RNAs Regulating p53 and c-Myc Signaling. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 927:337-65. [DOI: 10.1007/978-981-10-1498-7_13] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
365
|
Xue M, Chen W, Li X. Urothelial cancer associated 1: a long noncoding RNA with a crucial role in cancer. J Cancer Res Clin Oncol 2016; 142:1407-19. [PMID: 26341664 DOI: 10.1007/s00432-015-2042-y] [Citation(s) in RCA: 127] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 08/27/2015] [Indexed: 02/06/2023]
Abstract
BACKGROUND Urothelial cancer associated 1 (UCA1) is a long noncoding RNA (lncRNA) which has gained more attention in recent years due to its aberrant expression in embryogenesis and a broad range of cancer tissues and cells. Importantly, multiple studies have shown that UCA1 plays oncogenic roles in tumor growth and metastasis, and it may act as a potential biomarker and therapeutic target for human cancers. However, the molecular mechanism of UCA1 in cancer initiation, progression and metastasis remains incompletely understood. Thus, gaining a better understanding of the functional mechanism of UCA1 in cancer onset and progression is of the utmost significance for evaluating the potential application of UCA1. RESULTS AND DISCUSSION In this review, we discuss UCA1 expression profiling, isoform, expression regulation, biological role and mechanism for UCA1 tumor-promoting effect. We further discuss the potential clinical application of UCA1 as a promising diagnostic biomarker or therapeutic target for human cancers. CONCLUSION UCA1 functions as an oncogenic lncRNA in several malignancies, and it might become a potential biomarker or therapeutic target for human cancers.
Collapse
Affiliation(s)
- Mei Xue
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, People's Republic of China
| | - Wei Chen
- Clinical Laboratory, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China
| | - Xu Li
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, People's Republic of China.
| |
Collapse
|
366
|
Lan X, Yan J, Ren J, Zhong B, Li J, Li Y, Liu L, Yi J, Sun Q, Yang X, Sun J, Meng L, Zhu W, Holmdahl R, Li D, Lu S. A novel long noncoding RNA Lnc-HC binds hnRNPA2B1 to regulate expressions of Cyp7a1 and Abca1 in hepatocytic cholesterol metabolism. Hepatology 2016; 64:58-72. [PMID: 26663205 DOI: 10.1002/hep.28391] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 12/06/2015] [Indexed: 12/11/2022]
Abstract
UNLABELLED Cholesterol metabolism disorder in hepatocytes predicts a higher risk of metabolic syndrome (MetS). Long noncoding RNAs (lncRNAs) have emerged as critical players in cellular cholesterol metabolism, but their functions are not systematically clarified. Here, we have identified a novel lncRNA named lnc-HC negatively regulating cholesterol metabolism within hepatocytes through physical interaction with hnRNPA2B1. By further binding to the target messenger RNA of Cyp7a1 or Abca1, the lnc-HC-hnRNPA2B1 complex decreases expressions of the two genes that are implicated in cellular cholesterol excretion. lnc-HC knockdown can strongly recover the cholesterol disorder in vivo. In the upstream pathway, lnc-HC is up-regulated by high cholesterol by the transcription activator, CCAAT/enhancer-binding protein beta. CONCLUSION These findings suggest a subtle feed-forward regulation of lnc-HC in cholesterol metabolism and define a novel line of evidence by which lncRNAs modulate the metabolic system at the post-transcriptional level. (Hepatology 2016;64:58-72).
Collapse
Affiliation(s)
- Xi Lan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education of China, Beijing, China
| | - Jidong Yan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education of China, Beijing, China
| | - Juan Ren
- Department of Reproductive Medicine, the Fourth Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Bo Zhong
- Department of Pediatrics, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jing Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education of China, Beijing, China
| | - Yue Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education of China, Beijing, China
| | - Li Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education of China, Beijing, China
| | - Jing Yi
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education of China, Beijing, China
| | - Qingzhu Sun
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education of China, Beijing, China
| | - Xudong Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education of China, Beijing, China
| | - Jian Sun
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education of China, Beijing, China
| | - Liesu Meng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education of China, Beijing, China
| | - Wenhua Zhu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education of China, Beijing, China
| | - Rikard Holmdahl
- Division of Medical Inflammation Research, Department of Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Dongmin Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education of China, Beijing, China
| | - Shemin Lu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education of China, Beijing, China
| |
Collapse
|
367
|
A Positive Regulatory Loop between a Wnt-Regulated Non-coding RNA and ASCL2 Controls Intestinal Stem Cell Fate. Cell Rep 2016; 15:2588-96. [DOI: 10.1016/j.celrep.2016.05.038] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 04/04/2016] [Accepted: 05/06/2016] [Indexed: 12/21/2022] Open
|
368
|
Long noncoding RNAs in cancer: mechanisms of action and technological advancements. Mol Cancer 2016; 15:43. [PMID: 27233618 PMCID: PMC4884374 DOI: 10.1186/s12943-016-0530-6] [Citation(s) in RCA: 350] [Impact Index Per Article: 38.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 05/12/2016] [Indexed: 02/06/2023] Open
Abstract
The previous decade has seen long non-coding RNAs (lncRNAs) rise from obscurity to being defined as a category of genetic elements, leaving its mark on the field of cancer biology. With the current number of curated lncRNAs increasing by 10,000 in the last five years, the field is moving from annotation of lncRNA expression in various tumours to understanding their importance in the key cancer signalling networks and characteristic behaviours. Here, we summarize the previously identified as well as recently discovered mechanisms of lncRNA function and their roles in the hallmarks of cancer. Furthermore, we identify novel technologies for investigation of lncRNA properties and their function in carcinogenesis, which will be important for their translation to the clinic as novel biomarkers and therapeutic targets.
Collapse
|
369
|
Insight Into the Role of Long Noncoding RNA in Cancer Development and Progression. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 326:33-65. [PMID: 27572126 DOI: 10.1016/bs.ircmb.2016.04.001] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Long noncoding RNA (LncRNA) is a large class of RNA molecules with size larger than 200 nucleotides. They exhibit cellular functions although having no protein-coding capability. Accumulating evidence suggests that long noncoding RNA play crucial roles in cancer biology. Studies showed that deregulation of lncRNA was frequently observed in various types of cancers which contributed heavily to malignant phenotypical changes. Aberration of lncRNA can be induced by a number of factors such as dysregulated signaling pathway, response to catastrophic effect, viral infection, and contact with carcinogens. Meanwhile, alterations of lncRNA expression or function drive subsequent malignant development such as cell transformation or acquisition of stemness characteristics. Here, we give perspectives on recent findings on the involvement of lncRNAs in carcinogenesis and response to adverse tumor environment. Then, we discuss the role of lncRNAs in cancer stem cell which is an important model of cancer emergence. Last, we provide insight on the potential of lncRNAs in modulating environment favorable of cancer development and progression, and evaluate the diagnostic and prognostic value of lncRNAs in cancer management.
Collapse
|
370
|
Feedback modulation of cholesterol metabolism by the lipid-responsive non-coding RNA LeXis. Nature 2016; 534:124-8. [PMID: 27251289 PMCID: PMC4896091 DOI: 10.1038/nature17674] [Citation(s) in RCA: 168] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 03/18/2016] [Indexed: 01/21/2023]
Abstract
Liver X receptors (LXRs) are transcriptional regulators of cellular and systemic cholesterol homeostasis. Under conditions of excess cholesterol, LXR activation induces the expression of several genes involved in cholesterol efflux, facilitates cholesterol esterification by promoting fatty acid synthesis, and inhibits cholesterol uptake by the low-density lipoprotein receptor. The fact that sterol content is maintained in a narrow range in most cell types and in the organism as a whole suggests that extensive crosstalk between regulatory pathways must exist. However, the molecular mechanisms that integrate LXRs with other lipid metabolic pathways are incompletely understood. Here we show that ligand activation of LXRs in mouse liver not only promotes cholesterol efflux, but also simultaneously inhibits cholesterol biosynthesis. We further identify the long non-coding RNA LeXis as a mediator of this effect. Hepatic LeXis expression is robustly induced in response to a Western diet (high in fat and cholesterol) or to pharmacological LXR activation. Raising or lowering LeXis levels in the liver affects the expression of genes involved in cholesterol biosynthesis and alters the cholesterol levels in the liver and plasma. LeXis interacts with and affects the DNA interactions of RALY, a heterogeneous ribonucleoprotein that acts as a transcriptional cofactor for cholesterol biosynthetic genes in the mouse liver. These findings outline a regulatory role for a non-coding RNA in lipid metabolism and advance our understanding of the mechanisms that coordinate sterol homeostasis.
Collapse
|
371
|
Long Non-coding RNAs in the Cytoplasm. GENOMICS PROTEOMICS & BIOINFORMATICS 2016; 14:73-80. [PMID: 27163185 PMCID: PMC4880952 DOI: 10.1016/j.gpb.2016.03.005] [Citation(s) in RCA: 284] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 02/03/2016] [Accepted: 03/02/2016] [Indexed: 12/11/2022]
Abstract
An enormous amount of long non-coding RNAs (lncRNAs) transcribed from eukaryotic genome are important regulators in different aspects of cellular events. Cytoplasm is the residence and the site of action for many lncRNAs. The cytoplasmic lncRNAs play indispensable roles with multiple molecular mechanisms in animal and human cells. In this review, we mainly talk about functions and the underlying mechanisms of lncRNAs in the cytoplasm. We highlight relatively well-studied examples of cytoplasmic lncRNAs for their roles in modulating mRNA stability, regulating mRNA translation, serving as competing endogenous RNAs, functioning as precursors of microRNAs, and mediating protein modifications. We also elaborate the perspectives of cytoplasmic lncRNA studies.
Collapse
|
372
|
Abstract
Activation of hypoxia pathways is both associated with and contributes to an aggressive phenotype across multiple types of solid cancers. The regulation of gene transcription by hypoxia-inducible factor (HIF) is a key element in this response. HIF directly upregulates the expression of many hundreds of protein-coding genes, which act to both improve oxygen delivery and to reduce oxygen demand. However, it is now becoming apparent that many classes of noncoding RNAs are also regulated by hypoxia, with several (e.g. micro RNAs, long noncoding RNAs and antisense RNAs) under direct transcriptional regulation by HIF. These hypoxia-regulated, noncoding RNAs may act as effectors of the indirect response to HIF by acting on specific coding transcripts or by affecting generic RNA-processing pathways. In addition, noncoding RNAs may also act as modulators of the HIF pathway, either by integrating other physiological responses or, in the case of HIF-regulated, noncoding RNAs, by providing negative or positive feedback and feedforward loops that affect upstream or downstream components of the HIF cascade. These hypoxia-regulated, noncoding transcripts play important roles in the aggressive hypoxic phenotype observed in cancer.
Collapse
|
373
|
Abstract
Tumor suppresser gene TP53 is one of the most frequently deleted
or mutated genes in gastrointestinal cancers. As a transcription factor, p53
regulates a number of important protein coding genes to control cell cycle, cell
death, DNA damage/repair, stemness, differentiation and other key cellular
functions. In addition, p53 is also able to activate the expression of a number
of small non-coding microRNAs (miRNAs) through direct binding to the promoter
region of these miRNAs. Many miRNAs have been identified to be potential tumor
suppressors by regulating key effecter target mRNAs. Our understanding of the
regulatory network of p53 has recently expanded to include long non-coding RNAs
(lncRNAs). Like miRNA, lncRNAs have been found to play important roles in cancer
biology. With our increased understanding of the important functions of these
non-coding RNAs and their relationship with p53, we are gaining exciting new
insights into the biology and function of cells in response to various growth
environment changes. In this review we summarize the current understanding of
the ever expanding involvement of non-coding RNAs in the p53 regulatory network
and its implications for our understanding of gastrointestinal cancer.
Collapse
Affiliation(s)
- Andrew Fesler
- Translational Research Laboratory, Department of Pathology, Stony Brook University, Stony Brook, USA
| | - Ning Zhang
- Department of Pharmacy, Dalian Medical University, Dalian, China
| | - Jingfang Ju
- Translational Research Laboratory, Department of Pathology, Stony Brook University, Stony Brook, USA
| |
Collapse
|
374
|
Implication of Long noncoding RNAs in the endothelial cell response to hypoxia revealed by RNA-sequencing. Sci Rep 2016; 6:24141. [PMID: 27063004 PMCID: PMC4827084 DOI: 10.1038/srep24141] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 03/21/2016] [Indexed: 01/01/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) are non-protein coding RNAs regulating gene expression. Although for some lncRNAs a relevant role in hypoxic endothelium has been shown, the regulation and function of lncRNAs is still largely unknown in the vascular physio-pathology. Taking advantage of next-generation sequencing techniques, transcriptomic changes induced by endothelial cell exposure to hypoxia were investigated. Paired-end sequencing of polyadenylated RNA derived from human umbilical vein endothelial cells (HUVECs) exposed to 1% O2 or normoxia was performed. Bioinformatics analysis identified ≈2000 differentially expressed genes, including 122 lncRNAs. Extensive validation was performed by both microarray and qPCR. Among the validated lncRNAs, H19, MIR210HG, MEG9, MALAT1 and MIR22HG were also induced in a mouse model of hindlimb ischemia. To test the functional relevance of lncRNAs in endothelial cells, knockdown of H19 expression was performed. H19 inhibition decreased HUVEC growth, inducing their accumulation in G1 phase of the cell cycle; accordingly, p21 (CDKN1A) expression was increased. Additionally, H19 knockdown also diminished HUVEC ability to form capillary like structures when plated on matrigel. In conclusion, a high-confidence signature of lncRNAs modulated by hypoxia in HUVEC was identified and a significant impact of H19 lncRNA was shown.
Collapse
|
375
|
Abstract
Long noncoding RNAs (lncRNAs) are dysregulated in many cancer types and are believed to play crucial roles in regulating several hallmarks of cancer biology. Currently, most studies support the concept that lncRNAs are involved in either transcriptional or post-transcriptional processes via binding/targeting epigenetic modifiers or hRNP complexes. The discovery of new biological functions of lncRNA and novel RNA binding proteins suggests that lncRNAs may be implicated in a broad spectrum of biological processes such as signal transduction, allosteric regulation of cytoplasmic enzymatic activities, among other potential processes. In a recent report that we have made, based on open-ended lncRNA pulldown technology and a series of systematic analyses, we suggest that lncRNAs also play critical roles in the regulation of noncanonical Hedgehog/GLI 2 signal transduction pathways in cancer cells, which further broadens the scope of known lncRNA functions and aids in the discovery and design of more effective and evidence-based therapeutic targets for the treatment of human cancers and other diseases.
Collapse
Affiliation(s)
- Zhen Xing
- a Department of Molecular and Cellular Oncology; MD Anderson Cancer Center; The University of Texas ; Houston , TX , USA
| | | | | | | |
Collapse
|
376
|
Zhang D, Cao C, Liu L, Wu D. Up-regulation of LncRNA SNHG20 Predicts Poor Prognosis in Hepatocellular Carcinoma. J Cancer 2016; 7:608-17. [PMID: 27053960 PMCID: PMC4820738 DOI: 10.7150/jca.13822] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 02/02/2016] [Indexed: 12/30/2022] Open
Abstract
Recent studies indicated that long noncoding RNAs (lncRNAs) played important regulatory roles in carcinogenesis and cancer progression. However, the contribution of small nucleolar RNA host gene 20 (SNHG20) to cancer development remains largely unknown. The aim of the study is to investigate the expression of SNHG20 and its clinical significance in hepatocellular carcinoma (HCC). Our results showed that the expression of SNHG20 was remarkably up-regulated in HCC tissues compared with adjacent non-tumor liver tissues from 49 fresh HCC samples (cohort 1) detected by quantitative reverse-transcription polymerase chain reaction (qRT-PCR, P = 0.004). The results were confirmed in 144 formalin-fixed, paraffin-embedded HCC tissues (cohort 2) by in situ hybridization (ISH). Meanwhile, the expression of SNHG20 was associated with tumor size (P = 0.027 for cohort 1 and P = 0.046 for cohort 2) and clinical stage (P = 0.027 for cohort 1 and P = 0.028 for cohort 2). Importantly, patients with high expression of SNHG20 had a shorter overall survival (OS, P < 0.001) and disease-free survival (DFS, P < 0.001) than those with low expression of SNHG20. Univatiate and multivariate analysis showed that SNHG20 was a significant and independent prognostic predictor for OS of HCC patients (hazard ratio = 3.985, 95% CI = 1.981-8.017, P < 0.001). In addition, a total of 331 HCC patients' data from the Caner Genome Atlas project (TCGA) were used to validate our findings. Consistently, the results from TCGA HCC cohort demonstrated that SNHG20 were overexpressed in HCC tissues compared with non-tumor liver tissues (P < 0.001). Patients with higher expression levels of SNHG20 had poorer OS (P = 0.021) and DFS (P < 0.001). Functionally, knockdown of SNHG20 in SK-Hep-1 cells significantly inhibited cellular proliferation, migration, and invasion. In conclusion, SNHG20, up-regulated in patients with HCC, may serve as an independent prognostic predictor for HCC patients.
Collapse
Affiliation(s)
- Dongyan Zhang
- 1. Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, GuangDong Province, 510515, China
| | - Chuanhui Cao
- 1. Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, GuangDong Province, 510515, China
| | - Li Liu
- 2. Hepatology Unit and Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, GuangDong Province, 510515, China
| | - Dehua Wu
- 1. Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, GuangDong Province, 510515, China
| |
Collapse
|
377
|
Zhai W, Sun Y, Jiang M, Wang M, Gasiewicz TA, Zheng J, Chang C. Differential regulation of LncRNA-SARCC suppresses VHL-mutant RCC cell proliferation yet promotes VHL-normal RCC cell proliferation via modulating androgen receptor/HIF-2α/C-MYC axis under hypoxia. Oncogene 2016; 35:4866-80. [PMID: 26973243 DOI: 10.1038/onc.2016.19] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 11/22/2015] [Accepted: 12/07/2015] [Indexed: 02/06/2023]
Abstract
It is well established that hypoxia contributes to tumor progression in a hypoxia inducible factor-2α (HIF-2α)-dependent manner in renal cell carcinoma (RCC), yet the role of long noncoding RNAs (LncRNAs) involved in hypoxia-mediated RCC progression remains unclear. Here we demonstrate that LncRNA-SARCC (Suppressing Androgen Receptor in Renal Cell Carcinoma) is differentially regulated by hypoxia in a von Hippel-Lindau (VHL)-dependent manner both in RCC cell culture and clinical specimens. LncRNA-SARCC can suppress hypoxic cell cycle progression in the VHL-mutant RCC cells while derepress it in the VHL-restored RCC cells. Mechanism dissection reveals that LncRNA-SARCC can post-transcriptionally regulate androgen receptor (AR) by physically binding and destablizing AR protein to suppress AR/HIF-2α/C-MYC signals. In return, HIF-2α can transcriptionally regulate the LncRNA-SARCC expression via binding to hypoxia-responsive elements on the promoter of LncRNA-SARCC. The negative feedback modulation between LncRNA-SARCC/AR complex and HIF-2α signaling may then lead to differentially modulated RCC progression in a VHL-dependent manner. Together, these results may provide us a new therapeutic approach via targeting this newly identified signal from LncRNA-SARCC to AR-mediated HIF-2α/C-MYC signals against RCC progression.
Collapse
Affiliation(s)
- W Zhai
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China.,George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology and the Wilmot Cancer Center, University of Rochester Medical Center, Rochester, NY, USA
| | - Y Sun
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology and the Wilmot Cancer Center, University of Rochester Medical Center, Rochester, NY, USA
| | - M Jiang
- Lab of Nuclear Receptors and Cancer Research, School of Medicine, Nantong University, Nantong, Jiangsu, China
| | - M Wang
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology and the Wilmot Cancer Center, University of Rochester Medical Center, Rochester, NY, USA
| | - T A Gasiewicz
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - J Zheng
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - C Chang
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology and the Wilmot Cancer Center, University of Rochester Medical Center, Rochester, NY, USA.,Sex Hormone Research Center, China Medical University/Hospital, Taichung, Taiwan
| |
Collapse
|
378
|
Abstract
Epigenetics is currently one of the most promising areas of study in the field of biomedical research. Scientists have dedicated their efforts to studying epigenetic mechanisms in cancer for centuries. Additionally, the field has expanded from simply studying DNA methylation to other areas, such as histone modification, non-coding RNA, histone variation, nucleosome location, and chromosome remodeling. In ocular tumors, a large amount of epigenetic exploration has expanded from single genes to the genome-wide level. Most importantly, because epigenetic changes are reversible, several epigenetic drugs have been developed for the treatment of cancer. Herein, we review the current understanding of epigenetic mechanisms in ocular tumors, including but not limited to retinoblastoma and uveal melanoma. Furthermore, the development of new pharmacological strategies is summarized.
Collapse
Affiliation(s)
- Xuyang Wen
- Department of Ophthalmology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Linna Lu
- Department of Ophthalmology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Zhang He
- Department of Ophthalmology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Xianqun Fan
- Department of Ophthalmology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| |
Collapse
|
379
|
Cai Y, Yang Y, Chen X, Wu G, Zhang X, Liu Y, Yu J, Wang X, Fu J, Li C, Jose PA, Zeng C, Zhou L. Circulating 'lncRNA OTTHUMT00000387022' from monocytes as a novel biomarker for coronary artery disease. Cardiovasc Res 2016; 112:714-724. [PMID: 26857419 DOI: 10.1093/cvr/cvw022] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 01/12/2016] [Accepted: 01/16/2016] [Indexed: 01/14/2023] Open
Abstract
AIMS Long non-coding RNAs (lncRNAs) have been found to be involved in the pathogenesis of coronary artery disease (CAD). However, it remains to be established whether or not circulating lncRNAs can serve as biomarkers of CAD. METHODS AND RESULTS Using a microarray-based lncRNA expression profiling, we found 86 lncRNAs that were differentially expressed in circulating peripheral blood monocytes and plasma from 15 CAD patients and 15 control subjects. After choosing a consistent criterion (average normalized intensity ≥7 with significance <0.005) and confirmed by quantitative PCR, only three lncRNAs (CoroMarker, BAT5, and IL21R-AS1) remained as candidate CAD biomarkers. Using the analysis of area under the curve (AUC) of the receiver-operating characteristic in another pilot group and another larger cohort, CoroMarker was found to be the best candidate biomarker for CAD with an AUC of 0.920 and 95% confidence interval of 0.892-0.947. CoroMarker was independent from known CAD risk factors and other cardiovascular diseases. In a prospective study, we found that the sensitivity and specificity of CoroMarker were 76 and 92.5%, respectively. Functional enrichment analysis showed CoroMarker to be clustered with genes positively associated with signal transduction, transmembrane transport, synaptic transmission, and innate immunity and negatively associated with inflammation. These findings were validated in THP-1 cells; CoroMarker siRNA treatment decreased the concentrations of proinflammatory cytokines [interleukin (IL)-1β, IL-6, and tumour necrosis factor α] in the culture medium. CONCLUSION The present study suggests that CoroMarker is a novel and specific biomarker of CAD.
Collapse
Affiliation(s)
- Yue Cai
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, P.R. China.,Chongqing Institute of Cardiology, Chongqing, P.R. China
| | - Yujia Yang
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, P.R. China.,Chongqing Institute of Cardiology, Chongqing, P.R. China.,Department of Neurology, Daping Hospital, The Third Military Medical University, Chongqing, P.R. China
| | - Xiongwen Chen
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, P.R. China.,Cardiovascular Research Center and Department of Physiology, Temple University School of Medicine, Philadelphia, PA, USA
| | - Genze Wu
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, P.R. China.,Chongqing Institute of Cardiology, Chongqing, P.R. China
| | - Xiaoqun Zhang
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, P.R. China.,Chongqing Institute of Cardiology, Chongqing, P.R. China
| | - Yukai Liu
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, P.R. China.,Chongqing Institute of Cardiology, Chongqing, P.R. China
| | - Junyi Yu
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, P.R. China.,Chongqing Institute of Cardiology, Chongqing, P.R. China
| | - Xinquan Wang
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, P.R. China.,Chongqing Institute of Cardiology, Chongqing, P.R. China
| | - Jinjuan Fu
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, P.R. China.,Chongqing Institute of Cardiology, Chongqing, P.R. China
| | - Chuanwei Li
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, P.R. China.,Chongqing Institute of Cardiology, Chongqing, P.R. China
| | - Pedro A Jose
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA.,Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Chunyu Zeng
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, P.R. China .,Chongqing Institute of Cardiology, Chongqing, P.R. China
| | - Lin Zhou
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, P.R. China .,Chongqing Institute of Cardiology, Chongqing, P.R. China
| |
Collapse
|
380
|
Redis RS, Vela LE, Lu W, Ferreira de Oliveira J, Ivan C, Rodriguez-Aguayo C, Adamoski D, Pasculli B, Taguchi A, Chen Y, Fernandez AF, Valledor L, Van Roosbroeck K, Chang S, Shah M, Kinnebrew G, Han L, Atlasi Y, Cheung LH, Huang GY, Monroig P, Ramirez MS, Catela Ivkovic T, Van L, Ling H, Gafà R, Kapitanovic S, Lanza G, Bankson JA, Huang P, Lai SY, Bast RC, Rosenblum MG, Radovich M, Ivan M, Bartholomeusz G, Liang H, Fraga MF, Widger WR, Hanash S, Berindan-Neagoe I, Lopez-Berestein G, Ambrosio ALB, Gomes Dias SM, Calin GA. Allele-Specific Reprogramming of Cancer Metabolism by the Long Non-coding RNA CCAT2. Mol Cell 2016; 61:520-534. [PMID: 26853146 DOI: 10.1016/j.molcel.2016.01.015] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 10/23/2015] [Accepted: 01/08/2016] [Indexed: 12/31/2022]
Abstract
Altered energy metabolism is a cancer hallmark as malignant cells tailor their metabolic pathways to meet their energy requirements. Glucose and glutamine are the major nutrients that fuel cellular metabolism, and the pathways utilizing these nutrients are often altered in cancer. Here, we show that the long ncRNA CCAT2, located at the 8q24 amplicon on cancer risk-associated rs6983267 SNP, regulates cancer metabolism in vitro and in vivo in an allele-specific manner by binding the Cleavage Factor I (CFIm) complex with distinct affinities for the two subunits (CFIm25 and CFIm68). The CCAT2 interaction with the CFIm complex fine-tunes the alternative splicing of Glutaminase (GLS) by selecting the poly(A) site in intron 14 of the precursor mRNA. These findings uncover a complex, allele-specific regulatory mechanism of cancer metabolism orchestrated by the two alleles of a long ncRNA.
Collapse
Affiliation(s)
- Roxana S Redis
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Luz E Vela
- Department of Biology & Biochemistry, University of Houston, Houston, TX 77204, USA
| | - Weiqin Lu
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Juliana Ferreira de Oliveira
- Laboratório Nacional de Biociências, Centro Nacional de Pesquisa em Energia e Materiais, Campinas 13083-100, Brazil
| | - Cristina Ivan
- Center for RNA Interference and Non-coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Cristian Rodriguez-Aguayo
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Douglas Adamoski
- Laboratório Nacional de Biociências, Centro Nacional de Pesquisa em Energia e Materiais, Campinas 13083-100, Brazil
| | - Barbara Pasculli
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ayumu Taguchi
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yunyun Chen
- Department of Head & Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Agustin F Fernandez
- Cancer Epigenetics Laboratory, Institute of Oncology of Asturias (IUOPA), HUCA, Universidad de Oviedo, Oviedo 33006, Spain
| | - Luis Valledor
- Department of Organisms and Systems Biology, University of Oviedo, Ovideo 33006, Spain
| | - Katrien Van Roosbroeck
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Samuel Chang
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Maitri Shah
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Garrett Kinnebrew
- Department of Surgery, Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Leng Han
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX 77030, USA
| | - Yaser Atlasi
- Department of Pathology, Josephine Nefkens Institute, Erasmus Medical Center, Rotterdam 3015, the Netherlands
| | - Lawrence H Cheung
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Gilbert Y Huang
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Paloma Monroig
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Marc S Ramirez
- Department of Imaging Physics, Division of Diagnostic Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Tina Catela Ivkovic
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Laboratory for Personalized Medicine, Division of Molecular Medicine, Ruder Boskovic Institute, Zagreb 10000, Croatia
| | - Long Van
- Department of Biology & Biochemistry, University of Houston, Houston, TX 77204, USA
| | - Hui Ling
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Roberta Gafà
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara 44121, Italy
| | - Sanja Kapitanovic
- Laboratory for Personalized Medicine, Division of Molecular Medicine, Ruder Boskovic Institute, Zagreb 10000, Croatia
| | - Giovanni Lanza
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara 44121, Italy
| | - James A Bankson
- Department of Imaging Physics, Division of Diagnostic Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Peng Huang
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Stephen Y Lai
- Department of Head & Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Robert C Bast
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Michael G Rosenblum
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Milan Radovich
- Department of Surgery, Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Mircea Ivan
- Department of Medicine, Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Geoffrey Bartholomeusz
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Han Liang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Mario F Fraga
- Nanomaterials and Nanotechnology Research Center (CINN-CSIC), Asturias 33424, Spain
| | - William R Widger
- Department of Biology & Biochemistry, University of Houston, Houston, TX 77204, USA
| | - Samir Hanash
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ioana Berindan-Neagoe
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Research Center for Functional Genomics, Biomedicine and Translational Medicine, University of Medicine and Pharmacy Iuliu Hatieganu, Cluj-Napoca 400012, Romania; Department of Functional Genomics, The Oncology Institute, Cluj-Napoca 400015, Romania
| | - Gabriel Lopez-Berestein
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Center for RNA Interference and Non-coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Andre L B Ambrosio
- Laboratório Nacional de Biociências, Centro Nacional de Pesquisa em Energia e Materiais, Campinas 13083-100, Brazil
| | - Sandra M Gomes Dias
- Laboratório Nacional de Biociências, Centro Nacional de Pesquisa em Energia e Materiais, Campinas 13083-100, Brazil
| | - George A Calin
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Center for RNA Interference and Non-coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
381
|
Fiedler J, Breckwoldt K, Remmele CW, Hartmann D, Dittrich M, Pfanne A, Just A, Xiao K, Kunz M, Müller T, Hansen A, Geffers R, Dandekar T, Eschenhagen T, Thum T. Development of Long Noncoding RNA-Based Strategies to Modulate Tissue Vascularization. J Am Coll Cardiol 2016; 66:2005-2015. [PMID: 26516004 PMCID: PMC4631810 DOI: 10.1016/j.jacc.2015.07.081] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 07/30/2015] [Accepted: 07/30/2015] [Indexed: 12/20/2022]
Abstract
Background Long noncoding ribonucleic acids (lncRNAs) are a subclass of regulatory noncoding ribonucleic acids for which expression and function in human endothelial cells and angiogenic processes is not well studied. Objectives The authors discovered hypoxia-sensitive human lncRNAs via next-generation ribonucleic acid sequencing and microarray approaches. To address their functional importance in angiogenic processes, several endothelial lncRNAs were characterized for their angiogenic characteristics in vitro and ex vivo. Methods Ribonucleic acid sequencing and microarray-derived data showed specific endothelial lncRNA expression changes after hypoxia. Validation experiments confirmed strong hypoxia-dependent activation of 2 intergenic lncRNAs: LINC00323 and MIR503HG. Results Silencing of these lncRNA transcripts led to angiogenic defects, including repression of growth factor signaling and/or the key endothelial transcription factor GATA2. Endothelial loss of these hypoxia-driven lncRNAs impaired cell-cycle control and inhibited capillary formation. The potential clinical importance of these endothelial lncRNAs to vascular structural integrity was demonstrated in an ex vivo model of human induced pluripotent stem cell–based engineered heart tissue. Conclusions The authors report an expression atlas of human hypoxia-sensitive lncRNAs and identified 2 lncRNAs with important functions to sustain endothelial cell biology. LncRNAs hold great promise to serve as important future therapeutic targets of cardiovascular disease.
Collapse
Affiliation(s)
- Jan Fiedler
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hannover, Germany; Integrated Research and Treatment Center Transplantation, Hannover Medical School, Hannover, Germany
| | - Kaja Breckwoldt
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg, Eppendorf, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site, Hamburg/Kiel/Lübeck, Germany
| | | | - Dorothee Hartmann
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hannover, Germany
| | - Marcus Dittrich
- Department of Bioinformatics, University of Würzburg, Würzburg, Germany; Institute of Human Genetics, University of Würzburg, Würzburg, Germany
| | - Angelika Pfanne
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hannover, Germany
| | - Annette Just
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hannover, Germany; Integrated Research and Treatment Center Transplantation, Hannover Medical School, Hannover, Germany
| | - Ke Xiao
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hannover, Germany
| | - Meik Kunz
- Department of Bioinformatics, University of Würzburg, Würzburg, Germany
| | - Tobias Müller
- Department of Bioinformatics, University of Würzburg, Würzburg, Germany
| | - Arne Hansen
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg, Eppendorf, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site, Hamburg/Kiel/Lübeck, Germany
| | - Robert Geffers
- Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Thomas Dandekar
- Department of Bioinformatics, University of Würzburg, Würzburg, Germany
| | - Thomas Eschenhagen
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg, Eppendorf, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site, Hamburg/Kiel/Lübeck, Germany
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hannover, Germany; Integrated Research and Treatment Center Transplantation, Hannover Medical School, Hannover, Germany; National Heart and Lung Institute, Imperial College London, London, United Kingdom; REBIRTH Excellence Cluster, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
382
|
Abstract
Recent investigations have highlighted the importance of the non-coding genome in regions of hypoxia in tumours. Such regions are frequently found in solid tumours, and are associated with worse patient survival and therapy resistance. Hypoxia stabilises the transcription factors, hypoxia inducible factors (HIF1α and HIF2α) which coordinate transcriptomic changes that occur in hypoxia. The changes in gene expression induced by HIF1α and HIF2α contribute to many of the hallmarks of cancer phenotypes and enable tumour growth, survival and invasion in the hypoxic tumour microenvironment. Non-coding RNAs, in particular microRNAs (miRNAs), which regulate mRNA stability and translation, and long-non-coding RNAs (lncRNAs), which have diverse functions including chromatin modification and transcriptional regulation, are also important in enabling the key hypoxia regulated processes. They have roles in the regulation of metabolism, angiogenesis, autophagy, invasion and metastasis in the hypoxic microenvironment. Furthermore, HIF1α and HIF2α expression and stabilisation are also regulated by both miRNAs and lncRNAs. Here we review the recent developments in the expression, regulation and functions of miRNAs, lncRNAs and other non-coding RNA classes in tumour hypoxia.
Collapse
Affiliation(s)
- Hani Choudhry
- Department of Biochemistry, Faculty of Science, Center of Innovation in Personalized Medicine, King Fahd Center for Medical Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Adrian L Harris
- Molecular Oncology Laboratories, Department of Oncology, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK.
| | - Alan McIntyre
- Cancer Biology, Division of Cancer and Stem Cells, QMC, University of Nottingham, Nottingham, NG7 2UH, UK.
| |
Collapse
|
383
|
Long noncoding RNA UPAT promotes colon tumorigenesis by inhibiting degradation of UHRF1. Proc Natl Acad Sci U S A 2016; 113:1273-8. [PMID: 26768845 DOI: 10.1073/pnas.1500992113] [Citation(s) in RCA: 126] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Many long noncoding RNAs (lncRNAs) are reported to be dysregulated in human cancers and play critical roles in tumor development and progression. Furthermore, it has been reported that many lncRNAs regulate gene expression by recruiting chromatin remodeling complexes to specific genomic loci or by controlling transcriptional or posttranscriptional processes. Here we show that an lncRNA termed UPAT [ubiquitin-like plant homeodomain (PHD) and really interesting new gene (RING) finger domain-containing protein 1 (UHRF1) Protein Associated Transcript] is required for the survival and tumorigenicity of colorectal cancer cells. UPAT interacts with and stabilizes the epigenetic factor UHRF1 by interfering with its β-transducin repeat-containing protein (TrCP)-mediated ubiquitination. Furthermore, we demonstrate that UHRF1 up-regulates Stearoyl-CoA desaturase 1 and Sprouty 4, which are required for the survival of colon tumor cells. Our study provides evidence for an lncRNA that regulates protein ubiquitination and degradation and thereby plays a critical role in the survival and tumorigenicity of tumor cells. Our results suggest that UPAT and UHRF1 may be promising molecular targets for the therapy of colon cancer.
Collapse
|
384
|
RANTES mediates kidney ischemia reperfusion injury through a possible role of HIF-1α and LncRNA PRINS. Sci Rep 2016; 6:18424. [PMID: 26725683 PMCID: PMC4698731 DOI: 10.1038/srep18424] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 11/10/2015] [Indexed: 01/09/2023] Open
Abstract
RANTES (Regulated on activation, normal T-cell expressed and secreted), recruits circulating leukocytes and augments inflammatory responses in many clinical conditions. Inflammatory responses in ischemia-reperfusion injury (IRI) significantly affect the unfavorable outcomes of acute kidney injury (AKI), and that infiltrating immune cells are important mediators of AKI. However, the significance of RANTES in AKI and whether hypoxia-induced LncRNAs are involved in the regulatory process of AKI are not known. Here we show that, in the kidney IRI mice model, significant RANTES expression was observed in renal tubular cells of wild type mice. RANTES deficient (RANTES−/−) mice showed better renal function by reducing the acute tubular necrosis, serum creatinine levels, infiltration of inflammatory cells and cytokine expressions compared to wild type. In vitro, we found that RANTES expression was regulated by NF-κB. Further, renal tubular cells showed deregulated LncRNA expression under hypoxia. Among HIF-1α dependent LncRNAs, PRINS (Psoriasis susceptibility-related RNA Gene Induced by Stress) was significantly up regulated in hypoxic conditions and had specific interaction with RANTES as confirmed through reporter assay. These observations show first evidence for RANTES produced by renal tubular cells act as a key chemokine in AKI and HIF-1α regulated LncRNA-PRINS might be involved in RANTES production.
Collapse
|
385
|
Aune TM, Spurlock CF. Long non-coding RNAs in innate and adaptive immunity. Virus Res 2016; 212:146-60. [PMID: 26166759 PMCID: PMC4706828 DOI: 10.1016/j.virusres.2015.07.003] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 06/30/2015] [Accepted: 07/02/2015] [Indexed: 11/20/2022]
Abstract
Long noncoding RNAs (lncRNAs) represent a newly discovered class of regulatory molecules that impact a variety of biological processes in cells and organ systems. In humans, it is estimated that there may be more than twice as many lncRNA genes than protein-coding genes. However, only a handful of lncRNAs have been analyzed in detail. In this review, we describe expression and functions of lncRNAs that have been demonstrated to impact innate and adaptive immunity. These emerging paradigms illustrate remarkably diverse mechanisms that lncRNAs utilize to impact the transcriptional programs of immune cells required to fight against pathogens and maintain normal health and homeostasis.
Collapse
Affiliation(s)
- Thomas M Aune
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37212, United States.
| | - Charles F Spurlock
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37212, United States.
| |
Collapse
|
386
|
Abstract
All living organisms sense and respond to harmful changes in their intracellular and extracellular environment through complex signaling pathways that lead to changes in gene expression and cellular function in order to maintain homeostasis. Long non-coding RNAs (lncRNAs), a large and heterogeneous group of functional RNAs, play important roles in cellular response to stressful conditions. lncRNAs constitute a significant fraction of the genes differentially expressed in response to diverse stressful stimuli and, once induced, contribute to the regulation of downstream cellular processes, including feedback regulation of key stress response proteins. While many lncRNAs seem to be induced in response to a specific stress, there is significant overlap between lncRNAs induced in response to different stressful stimuli. In addition to stress-induced RNAs, several constitutively expressed lncRNAs also exert a strong regulatory impact on the stress response. Although our understanding of the contribution of lncRNAs to the cellular stress response is still highly rudimentary, the existing data point to the presence of a complex network of lncRNAs, miRNAs, and proteins in regulation of the cellular response to stress.
Collapse
Affiliation(s)
- Saba Valadkhan
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA.
| | - Alberto Valencia-Hipólito
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| |
Collapse
|
387
|
Noncoding RNAs in Regulation of Cancer Metabolic Reprogramming. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 927:191-215. [PMID: 27376736 DOI: 10.1007/978-981-10-1498-7_7] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Since the description of the Warburg effect 90 years ago, metabolic reprogramming has been gradually recognized as a major hallmark of cancer cells. Mounting evidence now indicates that cancer is a kind of metabolic disease, quite distinct from conventional perception. While metabolic alterations in cancer cells have been extensively observed in glucose, lipid, and amino acid metabolisms, its underlying regulatory mechanisms are still poorly understood. Noncoding RNA, also known as the "dark matter in life," functions through various mechanisms at RNA level regulating different biological pathways. The last two decades have witnessed the booming of noncoding RNA study on microRNA (miRNA), long noncoding RNA (lncRNA), circular RNA (circRNA), PIWI-interacting RNA (piRNA), etc. In this chapter, we will discuss the regulatory roles of noncoding RNAs on cancer metabolism.
Collapse
|
388
|
Audas TE, Lee S. Stressing out over long noncoding RNA. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1859:184-91. [PMID: 26142536 PMCID: PMC9479161 DOI: 10.1016/j.bbagrm.2015.06.010] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 06/17/2015] [Accepted: 06/19/2015] [Indexed: 12/26/2022]
Abstract
Genomic studies have revealed that humans possess far fewer protein-encoding genes than originally predicted. These over-estimates were drawn from the inherent developmental and stimuli-responsive complexity found in humans and other mammals, when compared to lower eukaryotic organisms. This left a conceptual void in many cellular networks, as a new class of functional molecules was necessary for "fine-tuning" the basic proteomic machinery. Transcriptomics analyses have determined that the vast majority of the genetic material is transcribed as noncoding RNA, suggesting that these molecules could provide the functional diversity initially sought from proteins. Indeed, as discussed in this review, long noncoding RNAs (lncRNAs), the largest family of noncoding transcripts, have emerged as common regulators of many cellular stressors; including heat shock, metabolic deprivation and DNA damage. These stimuli, while divergent in nature, share some common stress-responsive pathways, notably inhibition of cell proliferation. This role intrinsically makes stress-responsive lncRNA regulators potential tumor suppressor or proto-oncogenic genes. As the list of functional RNA molecules continues to rapidly expand it is becoming increasingly clear that the significance and functionality of this family may someday rival that of proteins. This article is part of a Special Issue entitled: Clues to long noncoding RNA taxonomy1, edited by Dr. Tetsuro Hirose and Dr. Shinichi Nakagawa.
Collapse
Affiliation(s)
- Timothy E Audas
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Stephen Lee
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| |
Collapse
|
389
|
Hypoxia-regulated lncRNAs in cancer. Gene 2016; 575:1-8. [DOI: 10.1016/j.gene.2015.08.049] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Revised: 08/23/2015] [Accepted: 08/24/2015] [Indexed: 12/13/2022]
|
390
|
Shih JW, Wang LY, Hung CL, Kung HJ, Hsieh CL. Non-Coding RNAs in Castration-Resistant Prostate Cancer: Regulation of Androgen Receptor Signaling and Cancer Metabolism. Int J Mol Sci 2015; 16:28943-78. [PMID: 26690121 PMCID: PMC4691085 DOI: 10.3390/ijms161226138] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 11/17/2015] [Accepted: 11/26/2015] [Indexed: 12/19/2022] Open
Abstract
Hormone-refractory prostate cancer frequently relapses from therapy and inevitably progresses to a bone-metastatic status with no cure. Understanding of the molecular mechanisms conferring resistance to androgen deprivation therapy has the potential to lead to the discovery of novel therapeutic targets for type of prostate cancer with poor prognosis. Progression to castration-resistant prostate cancer (CRPC) is characterized by aberrant androgen receptor (AR) expression and persistent AR signaling activity. Alterations in metabolic activity regulated by oncogenic pathways, such as c-Myc, were found to promote prostate cancer growth during the development of CRPC. Non-coding RNAs represent a diverse family of regulatory transcripts that drive tumorigenesis of prostate cancer and various other cancers by their hyperactivity or diminished function. A number of studies have examined differentially expressed non-coding RNAs in each stage of prostate cancer. Herein, we highlight the emerging impacts of microRNAs and long non-coding RNAs linked to reactivation of the AR signaling axis and reprogramming of the cellular metabolism in prostate cancer. The translational implications of non-coding RNA research for developing new biomarkers and therapeutic strategies for CRPC are also discussed.
Collapse
Affiliation(s)
- Jing-Wen Shih
- Integrated Translational Lab, The Center of Translational Medicine, Taipei Medical University, Taipei 11031, Taiwan.
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan.
| | - Ling-Yu Wang
- Department of Biochemistry and Molecular Medicine, Comprehensive Cancer Center, University of California at Davis, Sacramento, CA 95817, USA.
| | - Chiu-Lien Hung
- Department of Biochemistry and Molecular Medicine, Comprehensive Cancer Center, University of California at Davis, Sacramento, CA 95817, USA.
| | - Hsing-Jien Kung
- Integrated Translational Lab, The Center of Translational Medicine, Taipei Medical University, Taipei 11031, Taiwan.
- Department of Biochemistry and Molecular Medicine, Comprehensive Cancer Center, University of California at Davis, Sacramento, CA 95817, USA.
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli County 35053, Taiwan.
| | - Chia-Ling Hsieh
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan.
| |
Collapse
|
391
|
Phan AT, Goldrath AW. Hypoxia-inducible factors regulate T cell metabolism and function. Mol Immunol 2015; 68:527-35. [PMID: 26298577 PMCID: PMC4679538 DOI: 10.1016/j.molimm.2015.08.004] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 07/15/2015] [Accepted: 08/05/2015] [Indexed: 02/06/2023]
Abstract
Resolution of infection requires the coordinated response of heterogeneous cell types to a range of physiological and pathological signals to regulate their proliferation, migration, differentiation, and effector functions. One mechanism by which immune cells integrate these signals is through modulating metabolic activity. A well-studied regulator of cellular metabolism is the hypoxia-inducible factor (HIF) family, the highly conserved central regulators of adaptation to limiting oxygen tension. HIF's regulation of cellular metabolism and a variety of effector, signaling, and trafficking molecules has made these transcription factors a recent topic of interest in T cell biology. Low oxygen availability, or hypoxia, increases expression and stabilization of HIF in immune cells, activating molecular programs both unique and common among cell types, including glycolytic metabolism. Notably, numerous oxygen-independent signals, many of which are active in T cells, also result in enhanced HIF activity. Here, we discuss both oxygen-dependent and -independent regulation of HIF activity in T cells and the resulting impacts on metabolism, differentiation, function, and immunity.
Collapse
Affiliation(s)
- Anthony T Phan
- Division of Biological Sciences, Molecular Biology Section, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| | - Ananda W Goldrath
- Division of Biological Sciences, Molecular Biology Section, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| |
Collapse
|
392
|
Ruan X. Long Non-Coding RNA Central of Glucose Homeostasis. J Cell Biochem 2015; 117:1061-5. [DOI: 10.1002/jcb.25427] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 11/03/2015] [Indexed: 02/06/2023]
Affiliation(s)
- Xiangbo Ruan
- Center for Molecular Medicine, National Heart, Lung and Blood Institute, NIH; Bethesda 20892 Maryland
| |
Collapse
|
393
|
Influence of the interaction between long noncoding RNAs and hypoxia on tumorigenesis. Tumour Biol 2015; 37:1379-85. [DOI: 10.1007/s13277-015-4457-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 11/17/2015] [Indexed: 01/01/2023] Open
|
394
|
Generating a long DNA fragment of the target ncRNA for quantitative polymerase chain reaction by combining ncRNA-oligos hybridization and oligos ligation. J Biotechnol 2015; 217:41-8. [PMID: 26593981 DOI: 10.1016/j.jbiotec.2015.11.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 09/28/2015] [Accepted: 11/10/2015] [Indexed: 11/20/2022]
Abstract
The poor reproducibility of the reverse transcription combined with quantitative polymerase chain reaction (RT-qPCR) results in an unacceptable reliability of publications based on these data. We established a novel method, in which two short complementary DNA oligos were hybridized with target ncRNA molecules and linked by DNA ligase to obtain a long DNA strand (HL-DNA) replacing cDNA for qPCR detection (HL-qPCR). A series of diluted samples prepared from the same total RNA resource were measured by HL-qPCR and RT-qPCR respectively to acquire their relative concentration of RNU4-1, AK026510 and SNORA73B. For every tested sample, the relative concentration of RNU4-1, AK026510 and SNORA73B obtained by HL-qPCR instead of RT-qPCR is closer to its corresponding true value without significant difference, demonstrating that HL-qPCR exhibits higher accuracy compared with RT-qPCR. With three independent repeats, no significant difference was observed among AK026510/RNU4-1 values of four samples diluted from the same RNA resource, by employing HL-qPCR but not RT-qPCR. It strongly suggests that the good reproducibility of HL-qPCR results from the stable efficiency of HL-DNA production regardless of the concentration and individual features of ncRNA. The novel HL-qPCR could be applied for the regular relative ncRNA concentration detection in the future.
Collapse
|
395
|
Aune TM, Crooke PS, Spurlock CF. Long noncoding RNAs in T lymphocytes. J Leukoc Biol 2015; 99:31-44. [PMID: 26538526 DOI: 10.1189/jlb.1ri0815-389r] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 10/07/2015] [Indexed: 01/04/2023] Open
Abstract
Long noncoding RNAs are recently discovered regulatory RNA molecules that do not code for proteins but influence a vast array of biologic processes. In vertebrates, the number of long noncoding RNA genes is thought to greatly exceed the number of protein-coding genes. It is also thought that long noncoding RNAs drive the biologic complexity observed in vertebrates compared with that in invertebrates. Evidence of this complexity has been found in the T-lymphocyte compartment of the adaptive immune system. In the present review, we describe our current level of understanding of the expression of specific long or large intergenic or intervening long noncoding RNAs during T-lymphocyte development in the thymus and differentiation in the periphery and highlight the mechanisms of action that specific long noncoding RNAs employ to regulate T-lymphocyte function, both in vitro and in vivo.
Collapse
Affiliation(s)
- Thomas M Aune
- Departments of *Medicine and Mathematics, Vanderbilt University, Nashville, Tennessee, USA
| | - Phillip S Crooke
- Departments of *Medicine and Mathematics, Vanderbilt University, Nashville, Tennessee, USA
| | - Charles F Spurlock
- Departments of *Medicine and Mathematics, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
396
|
He C, Ding JW, Li S, Wu H, Jiang YR, Yang W, Teng L, Yang J, Yang J. The Role of Long Intergenic Noncoding RNA p21 in Vascular Endothelial Cells. DNA Cell Biol 2015; 34:677-683. [PMID: 26273737 DOI: 10.1089/dna.2015.2966] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Large intergenic long noncoding RNA p21 (lincRNA-p21) has recently shown to play an important role in biological functions. However, the biological role of lincRNA-p21 in vascular endothelial cells remains unclear. In the present study, we investigated the role of lincRNA-p21 in vascular endothelial cells through gain- and loss-of-function studies and found that lincRNA-p21 promoted cell apoptosis and induced cell cycle progression. Furthermore, lincRNA-p21 acted as an endogenous sponge by directly binding to miR-130b and decreased miR-130b expression. In addition, miR-130b reversed the inhibitory effect of lincRNA-p21 on the growth of vascular endothelial cells. Taken together, our data highlight the pivotal role of lincRNA-p21 in the growth of vascular endothelial cells.
Collapse
Affiliation(s)
- Chao He
- Institute of Cardiology, Medical Science College of China Three Gorges University , Yichang, Hubei Province, People's Republic of China
| | - Jia-Wang Ding
- Institute of Cardiology, Medical Science College of China Three Gorges University , Yichang, Hubei Province, People's Republic of China
| | - Song Li
- Institute of Cardiology, Medical Science College of China Three Gorges University , Yichang, Hubei Province, People's Republic of China
| | - Hui Wu
- Institute of Cardiology, Medical Science College of China Three Gorges University , Yichang, Hubei Province, People's Republic of China
| | - Yu-Rong Jiang
- Institute of Cardiology, Medical Science College of China Three Gorges University , Yichang, Hubei Province, People's Republic of China
| | - Wei Yang
- Institute of Cardiology, Medical Science College of China Three Gorges University , Yichang, Hubei Province, People's Republic of China
| | - Lin Teng
- Institute of Cardiology, Medical Science College of China Three Gorges University , Yichang, Hubei Province, People's Republic of China
| | - Jun Yang
- Institute of Cardiology, Medical Science College of China Three Gorges University , Yichang, Hubei Province, People's Republic of China
| | - Jian Yang
- Institute of Cardiology, Medical Science College of China Three Gorges University , Yichang, Hubei Province, People's Republic of China
| |
Collapse
|
397
|
Jiang Y, Li Z, Zheng S, Chen H, Zhao X, Gao W, Bi Z, You K, Wang Y, Li W, Li L, Liu Y, Chen R. The long non-coding RNA HOTAIR affects the radiosensitivity of pancreatic ductal adenocarcinoma by regulating the expression of Wnt inhibitory factor 1. Tumour Biol 2015; 37:3957-67. [DOI: 10.1007/s13277-015-4234-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 10/12/2015] [Indexed: 01/09/2023] Open
|
398
|
Lelli A, Nolan KA, Santambrogio S, Gonçalves AF, Schönenberger MJ, Guinot A, Frew IJ, Marti HH, Hoogewijs D, Wenger RH. Induction of long noncoding RNA MALAT1 in hypoxic mice. HYPOXIA 2015; 3:45-52. [PMID: 27774481 PMCID: PMC5045088 DOI: 10.2147/hp.s90555] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Long thought to be “junk DNA”, in recent years it has become clear that a substantial fraction of intergenic genomic DNA is actually transcribed, forming long noncoding RNA (lncRNA). Like mRNA, lncRNA can also be spliced, capped, and polyadenylated, affecting a multitude of biological processes. While the molecular mechanisms underlying the function of lncRNAs have just begun to be elucidated, the conditional regulation of lncRNAs remains largely unexplored. In genome-wide studies our group and others recently found hypoxic transcriptional induction of a subset of lncRNAs, whereof nuclear-enriched abundant/autosomal transcript 1 (NEAT1) and metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) appear to be the lncRNAs most ubiquitously and most strongly induced by hypoxia in cultured cells. Hypoxia-inducible factor (HIF)-2 rather than HIF-1 seems to be the preferred transcriptional activator of these lncRNAs. For the first time, we also found strong induction primarily of MALAT1 in organs of mice exposed to inspiratory hypoxia. Most abundant hypoxic levels of MALAT1 lncRNA were found in kidney and testis. In situ hybridization revealed that the hypoxic induction in the kidney was confined to proximal rather than distal tubular epithelial cells. Direct oxygen-dependent regulation of MALAT1 lncRNA was confirmed using isolated primary kidney epithelial cells. In summary, high expression levels and acute, profound hypoxic induction of MALAT1 suggest a hitherto unrecognized role of this lncRNA in renal proximal tubular function.
Collapse
Affiliation(s)
- Aurelia Lelli
- Institute of Physiology and Zurich Center for Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland; National Center of Competence in Research "Kidney.CH", Zurich, Switzerland
| | - Karen A Nolan
- Institute of Physiology and Zurich Center for Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland; National Center of Competence in Research "Kidney.CH", Zurich, Switzerland
| | - Sara Santambrogio
- Institute of Physiology and Zurich Center for Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland; National Center of Competence in Research "Kidney.CH", Zurich, Switzerland
| | - Ana Filipa Gonçalves
- Institute of Physiology and Zurich Center for Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland; National Center of Competence in Research "Kidney.CH", Zurich, Switzerland
| | - Miriam J Schönenberger
- Institute of Physiology and Zurich Center for Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland; National Center of Competence in Research "Kidney.CH", Zurich, Switzerland
| | - Anna Guinot
- Institute of Physiology and Zurich Center for Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland; National Center of Competence in Research "Kidney.CH", Zurich, Switzerland
| | - Ian J Frew
- Institute of Physiology and Zurich Center for Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland; National Center of Competence in Research "Kidney.CH", Zurich, Switzerland
| | - Hugo H Marti
- Institute of Physiology and Pathophysiology, University of Heidelberg, Heidelberg, Germany
| | - David Hoogewijs
- Institute of Physiology and Zurich Center for Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland; National Center of Competence in Research "Kidney.CH", Zurich, Switzerland; Institute of Physiology, University of Duisburg-Essen, Essen, Germany
| | - Roland H Wenger
- Institute of Physiology and Zurich Center for Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland; National Center of Competence in Research "Kidney.CH", Zurich, Switzerland
| |
Collapse
|
399
|
Guo W, Qiu Z, Wang Z, Wang Q, Tan N, Chen T, Chen Z, Huang S, Gu J, Li J, Yao M, Zhao Y, He X. MiR-199a-5p is negatively associated with malignancies and regulates glycolysis and lactate production by targeting hexokinase 2 in liver cancer. Hepatology 2015; 62:1132-44. [PMID: 26054020 DOI: 10.1002/hep.27929] [Citation(s) in RCA: 190] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 06/04/2015] [Indexed: 12/18/2022]
Abstract
UNLABELLED Cancer cells possess a unique metabolic phenotype that allows them to preferentially utilize glucose through aerobic glycolysis. This phenomenon is referred to as the "Warburg effect." Accumulating evidence suggests that microRNAs (miRNAs), a class of small noncoding regulatory RNAs, interact with oncogenes/tumor suppressors and induce such metabolic reprograming in cancer cells. To systematically study the metabolic roles of miRNAs in cancer cells, we developed a gain-of-function miRNA screen in HeLa cells. Subsequent investigation of the characterized miRNAs indicated that miR-199a-5p acts as a suppressor for glucose metabolism. Furthermore, miR-199a-5p is often down-regulated in human liver cancer, and its low expression level was correlated with a low survival rate, large tumor size, poor tumor differentiation status, high tumor-node-metastasis stage and the presence of tumor thrombus of patients. MicroRNA-199a-5p directly targets the 3'-untranslated region of hexokinase 2 (HK2), an enzyme that catalyzes the irreversible first step of glycolysis, thereby suppressing glucose consumption, lactate production, cellular glucose-6-phosphate and adenosine triphosphate levels, cell proliferation, and tumorigenesis of liver cancer cells. Moreover, HK2 is frequently up-regulated in liver cancer tissues and associated with poor patient outcomes. The up-regulation of hypoxia-inducible factor-1α under hypoxic conditions suppresses the expression of miR-199a-5p and promotes glycolysis, whereas reintroduction of miR-199a-5p interferes with the expression of HK2, abrogating hypoxia-enhanced glycolysis. CONCLUSION miR-199a-5p/HK2 reprograms the metabolic process in liver cancer cells and provides potential prognostic predictors for liver cancer patients.
Collapse
Affiliation(s)
- Weijie Guo
- Shanghai Medical College, Fudan University, Shanghai, China.,State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhaoping Qiu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhichao Wang
- Liver Cancer Institute, Zhongshan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qifeng Wang
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ning Tan
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, Guilin Medical College, Guilin, Guangxi, China
| | - Taoyang Chen
- Qidong Liver Cancer Institute, Qidong, Jiangsu, China
| | - Zhiao Chen
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shenglin Huang
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jianren Gu
- Shanghai Medical College, Fudan University, Shanghai, China.,State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinjun Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ming Yao
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yingjun Zhao
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xianghuo He
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
400
|
Zhou Z, Shen Y, Khan MR, Li A. LncReg: a reference resource for lncRNA-associated regulatory networks. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2015; 2015:bav083. [PMID: 26363021 PMCID: PMC4565966 DOI: 10.1093/database/bav083] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Accepted: 08/18/2015] [Indexed: 12/13/2022]
Abstract
Long non-coding RNAs (lncRNAs) are critical in the regulation of various biological processes. In recent years, plethora of lncRNAs have been identified in mammalian genomes through different approaches, and the researchers are constantly reporting the regulatory roles of these lncRNAs, which leads to complexity of literature about particular lncRNAs. Therefore, for the convenience of the researchers, we collected regulatory relationships of the lncRNAs and built a database called ‘LncReg’. This database is developed by collecting 1081 validated lncRNA-associated regulatory entries, including 258 non-redundant lncRNAs and 571 non-redundant genes. With regulatory relationships information, LncReg can provide overall perspectives of regulatory networks of lncRNAs and comprehensive data for bioinformatics research, which is useful for understanding the functional roles of lncRNAs. Database URL: http://bioinformatics.ustc.edu.cn/lncreg/
Collapse
Affiliation(s)
- Zhong Zhou
- School of Information Science and Technology, Centers for Biomedical Engineering and
| | - Yi Shen
- School of Information Science and Technology, Centers for Biomedical Engineering and
| | - Muhammad Riaz Khan
- School of Life Science, University of Science and Technology of China, 443 Huangshan Road, Hefei 230027, China
| | - Ao Li
- School of Information Science and Technology, Centers for Biomedical Engineering and
| |
Collapse
|