351
|
Shen T, Ni T, Chen J, Chen H, Ma X, Cao G, Wu T, Xie H, Zhou B, Wei G, Saiyin H, Shen S, Yu P, Xiao Q, Liu H, Gao Y, Long X, Yin J, Guo Y, Wu J, Wei GH, Hou J, Jiang DK. An enhancer variant at 16q22.1 predisposes to hepatocellular carcinoma via regulating PRMT7 expression. Nat Commun 2022; 13:1232. [PMID: 35264579 PMCID: PMC8907293 DOI: 10.1038/s41467-022-28861-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 02/16/2022] [Indexed: 12/24/2022] Open
Abstract
Most cancer causal variants are found in gene regulatory elements, e.g., enhancers. However, enhancer variants predisposing to hepatocellular carcinoma (HCC) remain unreported. Here we conduct a genome-wide survey of HCC-susceptible enhancer variants through a three-stage association study in 11,958 individuals and identify rs73613962 (T > G) within the intronic region of PRMT7 at 16q22.1 as a susceptibility locus of HCC (OR = 1.41, P = 6.02 × 10-10). An enhancer dual-luciferase assay indicates that the rs73613962-harboring region has allele-specific enhancer activity. CRISPR-Cas9/dCas9 experiments further support the enhancer activity of this region to regulate PRMT7 expression. Mechanistically, transcription factor HNF4A binds to this enhancer region, with preference to the risk allele G, to promote PRMT7 expression. PRMT7 upregulation contributes to in vitro, in vivo, and clinical HCC-associated phenotypes, possibly by affecting the p53 signaling pathway. This concept of HCC pathogenesis may open a promising window for HCC prevention/treatment.
Collapse
Affiliation(s)
- Ting Shen
- State Key Laboratory of Organ Failure Research, Guangdong Key Laboratory of Viral Hepatitis Research, Guangdong Institute of Liver Diseases, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China
- School of Life Sciences, Central South University, 510006, Changsha, China
| | - Ting Ni
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, Human Phenome Institute, School of Life Sciences, Fudan University, 200438, Shanghai, China
| | - Jiaxuan Chen
- State Key Laboratory of Organ Failure Research, Guangdong Key Laboratory of Viral Hepatitis Research, Guangdong Institute of Liver Diseases, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China
| | - Haitao Chen
- State Key Laboratory of Organ Failure Research, Guangdong Key Laboratory of Viral Hepatitis Research, Guangdong Institute of Liver Diseases, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China
- School of Public Health (Shenzhen), Sun Yat-sen University, 528406, Shenzhen, China
| | - Xiaopin Ma
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, Human Phenome Institute, School of Life Sciences, Fudan University, 200438, Shanghai, China
| | - Guangwen Cao
- Department of Epidemiology, Naval Medical University, 200433, Shanghai, China
| | - Tianzhi Wu
- Institute of Bioinformatics, School of Basic Medical Science, Southern Medical University, 510515, Guangzhou, China
| | - Haisheng Xie
- State Key Laboratory of Organ Failure Research, Guangdong Key Laboratory of Viral Hepatitis Research, Guangdong Institute of Liver Diseases, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China
| | - Bin Zhou
- State Key Laboratory of Organ Failure Research, Guangdong Key Laboratory of Viral Hepatitis Research, Guangdong Institute of Liver Diseases, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China
| | - Gang Wei
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, Human Phenome Institute, School of Life Sciences, Fudan University, 200438, Shanghai, China
| | - Hexige Saiyin
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, Human Phenome Institute, School of Life Sciences, Fudan University, 200438, Shanghai, China
| | - Suqin Shen
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, Human Phenome Institute, School of Life Sciences, Fudan University, 200438, Shanghai, China
| | - Peng Yu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, Human Phenome Institute, School of Life Sciences, Fudan University, 200438, Shanghai, China
| | - Qianyi Xiao
- School of Public Health, Fudan University, 200032, Shanghai, China
| | - Hui Liu
- School of Basic Medical Sciences; The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's hospital, Guangzhou Medical University, 510182, Guangzhou, China
| | - Yuzheng Gao
- Department of Forensic Medicine, Medical College of Soochow University, 215123, Suzhou, Jiangsu Province, China
| | - Xidai Long
- Department of Pathology, Youjiang Medical College for Nationalities, 533000, Baise, Guangxi Province, China
| | - Jianhua Yin
- Department of Epidemiology, Naval Medical University, 200433, Shanghai, China
| | - Yanfang Guo
- Institute of Bioinformatics, School of Basic Medical Science, Southern Medical University, 510515, Guangzhou, China
| | - Jiaxue Wu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, Human Phenome Institute, School of Life Sciences, Fudan University, 200438, Shanghai, China
| | - Gong-Hong Wei
- Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, University of Oulu, 90014, Oulu, Finland
- School of Basic Medical Sciences, Fudan University, 200032, Shanghai, China
| | - Jinlin Hou
- State Key Laboratory of Organ Failure Research, Guangdong Key Laboratory of Viral Hepatitis Research, Guangdong Institute of Liver Diseases, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China
| | - De-Ke Jiang
- State Key Laboratory of Organ Failure Research, Guangdong Key Laboratory of Viral Hepatitis Research, Guangdong Institute of Liver Diseases, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China.
| |
Collapse
|
352
|
Chen Z, Gan J, Wei Z, Zhang M, Du Y, Xu C, Zhao H. The Emerging Role of PRMT6 in Cancer. Front Oncol 2022; 12:841381. [PMID: 35311114 PMCID: PMC8931394 DOI: 10.3389/fonc.2022.841381] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/09/2022] [Indexed: 01/01/2023] Open
Abstract
Protein arginine methyltransferase 6 (PRMT6) is a type I PRMT that is involved in epigenetic regulation of gene expression through methylating histone or non-histone proteins, and other processes such as alternative splicing, DNA repair, cell proliferation and senescence, and cell signaling. In addition, PRMT6 also plays different roles in various cancers via influencing cell growth, migration, invasion, apoptosis, and drug resistant, which make PRMT6 an anti-tumor therapeutic target for a variety of cancers. As a result, many PRMT6 inhibitors are being utilized to explore their efficacy as potential drugs for various cancers. In this review, we summarize the current knowledge on the function and structure of PRMT6. At the same time, we highlight the role of PRMT6 in different cancers, including the differentiation of its promotive or inhibitory effects and the underlying mechanisms. Apart from the above, current research progress and the potential mechanisms of PRMT6 behind them were also summarized.
Collapse
Affiliation(s)
- Zhixian Chen
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
- Department of Obstetrics and Gynecology of Shanghai Medical School, Fudan University, Shanghai, China
| | - Jianfeng Gan
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
- Department of Obstetrics and Gynecology of Shanghai Medical School, Fudan University, Shanghai, China
| | - Zhi Wei
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
- Department of Obstetrics and Gynecology of Shanghai Medical School, Fudan University, Shanghai, China
| | - Mo Zhang
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
- Department of Obstetrics and Gynecology of Shanghai Medical School, Fudan University, Shanghai, China
| | - Yan Du
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
- Department of Obstetrics and Gynecology of Shanghai Medical School, Fudan University, Shanghai, China
| | - Congjian Xu
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
- Department of Obstetrics and Gynecology of Shanghai Medical School, Fudan University, Shanghai, China
- *Correspondence: Hongbo Zhao, ; Congjian Xu,
| | - Hongbo Zhao
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
- Department of Obstetrics and Gynecology of Shanghai Medical School, Fudan University, Shanghai, China
- *Correspondence: Hongbo Zhao, ; Congjian Xu,
| |
Collapse
|
353
|
Long noncoding RNA LUCAT1 enhances the survival and therapeutic effects of mesenchymal stromal cells post-myocardial infarction. MOLECULAR THERAPY - NUCLEIC ACIDS 2022; 27:412-426. [PMID: 35036054 PMCID: PMC8733180 DOI: 10.1016/j.omtn.2021.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 12/09/2021] [Indexed: 11/25/2022]
Abstract
Mesenchymal stromal cell (MSC) transplantation has been a promising therapeutic strategy for repairing heart tissues post-myocardial infarction (MI). Nevertheless, its therapeutic efficacy remains low, which is mainly ascribed to the low viability of transplanted MSCs. Recently, long noncoding RNAs (lncRNAs) have been reported to participate in diverse physiological and pathological processes, but little is known about their role in MSC survival. Using unbiased transcriptome profiling of hypoxia-preconditioned MSCs (HP-MSCs) and normoxic MSCs (N-MSCs), we identified a lncRNA named lung cancer-associated transcript 1 (LUCAT1) under hypoxia. LUCAT1 knockdown reduced the survival of engrafted MSCs and decreased the MSC-based therapeutic potency, as shown by impaired cardiac function, reduced cardiomyocyte survival, and increased fibrosis post-MI. Conversely, LUCAT1 overexpression had the opposite results. Mechanistically, LUCAT1 bound with and recruited jumonji domain-containing 6 (JMJD6) to the promoter of forkhead box Q1 (FOXQ1), which demethylated FOXQ1 at H4R3me2(s) and H3R2me2(a), thus downregulating Bax expression and upregulating Bcl-2 expression to attenuate MSC apoptosis. Therefore, our findings revealed the protective effects of LUCAT1 on MSC apoptosis and demonstrated that the LUCAT1-mediated JMJD6-FOXQ1 pathway might represent a novel target to potentiate the therapeutic effect of MSC-based therapy for ischemic cardiovascular diseases.
Collapse
|
354
|
Abstract
Significance: Epigenetic dysregulation plays an important role in the pathogenesis and development of autoimmune diseases. Oxidative stress is associated with autoimmunity and is also known to alter epigenetic mechanisms. Understanding the interplay between oxidative stress and epigenetics will provide insights into the role of environmental triggers in the development of autoimmunity in genetically susceptible individuals. Recent Advances: Abnormal DNA and histone methylation patterns in genes and pathways involved in interferon and tumor necrosis factor signaling, cellular survival, proliferation, metabolism, organ development, and autoantibody production have been described in autoimmunity. Inhibitors of DNA and histone methyltransferases showed potential therapeutic effects in animal models of autoimmune diseases. Oxidative stress can regulate epigenetic mechanisms via effects on DNA damage repair mechanisms, cellular metabolism and the local redox environment, and redox-sensitive transcription factors and pathways. Critical Issues: Studies looking into oxidative stress and epigenetics in autoimmunity are relatively limited. The number of available longitudinal studies to explore the role of DNA methylation in the development of autoimmune diseases is small. Future Directions: Exploring the relationship between oxidative stress and epigenetics in autoimmunity will provide clues for potential preventative measures and treatment strategies. Inception cohorts with longitudinal follow-up would help to evaluate epigenetic marks as potential biomarkers for disease development, progression, and treatment response in autoimmunity. Antioxid. Redox Signal. 36, 423-440.
Collapse
Affiliation(s)
- Xiaoqing Zheng
- Division of Rheumatology, Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Amr H Sawalha
- Division of Rheumatology, Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Lupus Center of Excellence, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
355
|
Iwasaki H, Shichiri M. Protein arginine N-methyltransferase 1 gene polymorphism is associated with proliferative diabetic retinopathy in a Japanese population. Acta Diabetol 2022; 59:319-327. [PMID: 34648085 DOI: 10.1007/s00592-021-01808-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 09/27/2021] [Indexed: 11/26/2022]
Abstract
AIMS To investigate the effects of single-nucleotide polymorphisms (SNPs) around the protein arginine N-methyltransferase 1 (PRMT1) gene on the incidence and severity of diabetic retinopathy (DR). METHODS A total of 310 Japanese patients with type 2 diabetes mellitus (T2DM) were investigated. Genotyping of ten tagged SNPs were performed by quantitative real-time polymerase chain reaction (qRT-PCR). The association between each SNP genotype and diabetic microangiopathy was assessed using univariate analysis in a dominant model of the minor alleles followed by multivariate logistic regression analysis with the propensity score matching (PSM) method. The effect of disease-related SNP on PRMT1 and hypoxia-inducible factor-1α (HIF-1α) mRNA levels in vivo was evaluated by qRT-PCR. RESULTS In the univariate analysis, the minor A allele at rs374569 and the minor C allele at rs3745468 were associated with DR severity (P = 0.047 and P = 0.003, respectively), but not diabetic nephropathy and peripheral polyneuropathy severity. Multivariate analysis showed that the rs3745468 variant caused an increased incidence of proliferative DR (PDR) (odds ratio 9.37, 95% confidence interval 1.12-78.0, P = 0.039). In the PSM cohort, the patients carrying the rs3745468 variant had lower PRMT1 mRNA levels compared to those without the variant (P = 0.037), and there was an inverse correlation between PRMT1 and HIF-1α mRNA levels (r = -0.233, P = 0.035). CONCLUSIONS The rs3745468 variant in the PRMT1 gene was associated with an increased incidence of PDR in Japanese patients with T2DM and might be involved in the HIF-1-dependent hypoxic pathway through altered PRMT1 levels.
Collapse
Affiliation(s)
- Hiroaki Iwasaki
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Toshiba Rinkan Hospital, 7-9-1 Kami-tsuruma, Minami-ku, Sagamihara, Kanagawa, 252-0385, Japan.
- Department of Endocrinology, Diabetes and Metabolism, Kitasato University School of Medicine, Sagamihara, Japan.
| | - Masayoshi Shichiri
- Department of Endocrinology, Diabetes and Metabolism, Kitasato University School of Medicine, Sagamihara, Japan
| |
Collapse
|
356
|
Zuo ZY, Yang GH, Wang HY, Liu SY, Zhang YJ, Cai Y, Chen F, Dai H, Xiao Y, Cheng MB, Huang Y, Zhang Y. Klf4 methylated by Prmt1 restrains the commitment of primitive endoderm. Nucleic Acids Res 2022; 50:2005-2018. [PMID: 35137179 PMCID: PMC8887470 DOI: 10.1093/nar/gkac054] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/11/2022] [Accepted: 01/25/2022] [Indexed: 11/17/2022] Open
Abstract
The second cell fate decision in the early stage of mammalian embryonic development is pivotal; however, the underlying molecular mechanism is largely unexplored. Here, we report that Prmt1 acts as an important regulator in primitive endoderm (PrE) formation. First, Prmt1 depletion promotes PrE gene expression in mouse embryonic stem cells (ESCs). Single-cell RNA sequencing and flow cytometry assays demonstrated that Prmt1 depletion in mESCs contributes to an emerging cluster, where PrE genes are upregulated significantly. Furthermore, the efficiency of extraembryonic endoderm stem cell induction increased in Prmt1-depleted ESCs. Second, the pluripotency factor Klf4 methylated at Arg396 by Prmt1 is required for recruitment of the repressive mSin3a/HDAC complex to silence PrE genes. Most importantly, an embryonic chimeric assay showed that Prmt1 inhibition and mutated Klf4 at Arg 396 induce the integration of mouse ESCs into the PrE lineage. Therefore, we reveal a regulatory mechanism for cell fate decisions centered on Prmt1-mediated Klf4 methylation.
Collapse
Affiliation(s)
- Zhen-yu Zuo
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Guang-hui Yang
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Hai-yu Wang
- State Key Laboratory of Medical Molecular Biology, Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Shu-yu Liu
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Yan-jun Zhang
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Yun Cai
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Fei Chen
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Hui Dai
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Yi Xiao
- State Key Laboratory of Medical Molecular Biology, Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Mo-bin Cheng
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Yue Huang
- State Key Laboratory of Medical Molecular Biology, Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Ye Zhang
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| |
Collapse
|
357
|
Ishino Y, Shimizu S, Tohyama M, Miyata S. Coactivator‐associated arginine methyltransferase 1 controls oligodendrocyte differentiation in the corpus callosum during early brain development. Dev Neurobiol 2022; 82:245-260. [DOI: 10.1002/dneu.22871] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 01/07/2022] [Accepted: 01/27/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Yugo Ishino
- Division of Molecular Brain Science Research Institute of Traditional Asian Medicine Kindai University Osaka‐Sayama Osaka 589–8511 Japan
| | - Shoko Shimizu
- Division of Molecular Brain Science Research Institute of Traditional Asian Medicine Kindai University Osaka‐Sayama Osaka 589–8511 Japan
| | - Masaya Tohyama
- Division of Molecular Brain Science Research Institute of Traditional Asian Medicine Kindai University Osaka‐Sayama Osaka 589–8511 Japan
| | - Shingo Miyata
- Division of Molecular Brain Science Research Institute of Traditional Asian Medicine Kindai University Osaka‐Sayama Osaka 589–8511 Japan
| |
Collapse
|
358
|
Hu R, Zhou B, Chen Z, Chen S, Chen N, Shen L, Xiao H, Zheng Y. PRMT5 Inhibition Promotes PD-L1 Expression and Immuno-Resistance in Lung Cancer. Front Immunol 2022; 12:722188. [PMID: 35111150 PMCID: PMC8801487 DOI: 10.3389/fimmu.2021.722188] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 12/22/2021] [Indexed: 11/13/2022] Open
Abstract
Protein arginine transferase 5 (PRMT5) has been implicated as an important modulator of tumorigenesis as it promotes tumor cell proliferation, invasion, and metastasis. Studies have largely focused on PRMT5 regulating intrinsic changes in tumors; however, the effects of PRMT5 on the tumor microenvironment and particularly immune cells are largely unknown. Here we found that targeting PRMT5 by genetic or pharmacological inhibition reduced lung tumor progression in immunocompromised mice; however, the effects were weakened in immunocompetent mice. PRMT5 inhibition not only decreased tumor cell survival but also increased the tumor cell expression of CD274 in vitro and in vivo, which activated the PD1/PD-L1 axis and eliminated CD8+T cell antitumor immunity. Mechanistically, PRMT5 regulated CD274 gene expression through symmetric dimethylation of histone H4R3, increased deposition of H3R4me2s on CD274 promoter loci, and inhibition of CD274 gene expression. Targeting PRMT5 reduced this inhibitory effect and promoted CD274 expression in lung cancer. However, PRMT5 inhibitors represent a double-edged sword as they may selectively kill cancer cells but may also disrupt the antitumor immune response. The combination of PRMT5 inhibition and ani-PD-L1 therapy resulted in an increase in the number and enhanced the function of tumor-infiltrating T cells. Our findings address an unmet clinical need in which combining PRMT5 inhibition with anti-PD-L1 therapy could be a promising strategy for lung cancer treatment.
Collapse
Affiliation(s)
- Rui Hu
- Department of Thoracic Surgery, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bingqian Zhou
- Department of Laboratory Medicine, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zheyi Chen
- Department of Laboratory Medicine, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shiyu Chen
- Department of Laboratory Medicine, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ningdai Chen
- Department of Laboratory Medicine, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lisong Shen
- Department of Laboratory Medicine, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Faculty of Medical Laboratory Science, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Xin Hua Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haibo Xiao
- Department of Thoracic Surgery, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yingxia Zheng
- Department of Laboratory Medicine, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
359
|
The Novel Protease Activities of JMJD5–JMJD6–JMJD7 and Arginine Methylation Activities of Arginine Methyltransferases Are Likely Coupled. Biomolecules 2022; 12:biom12030347. [PMID: 35327545 PMCID: PMC8945206 DOI: 10.3390/biom12030347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/03/2022] [Accepted: 02/18/2022] [Indexed: 12/23/2022] Open
Abstract
The surreptitious discoveries of the protease activities on arginine-methylated targets of a subfamily of Jumonji domain-containing family including JMJD5, JMJD6, and JMJD7 pose several questions regarding their authenticity, function, purpose, and relations with others. At the same time, despite several decades of efforts and massive accumulating data regarding the roles of the arginine methyltransferase family (PRMTs), the exact function of this protein family still remains a mystery, though it seems to play critical roles in transcription regulation, including activation and inactivation of a large group of genes, as well as other biological activities. In this review, we aim to elucidate that the function of JMJD5/6/7 and PRMTs are likely coupled. Besides roles in the regulation of the biogenesis of membrane-less organelles in cells, they are major players in regulating stimulating transcription factors to control the activities of RNA Polymerase II in higher eukaryotes, especially in the animal kingdom. Furthermore, we propose that arginine methylation by PRMTs could be a ubiquitous action marked for destruction after missions by a subfamily of the Jumonji protein family.
Collapse
|
360
|
Inoue F, Sone K, Toyohara Y, Tanimoto S, Takahashi Y, Kusakabe M, Kukita A, Honjoh H, Nishijima A, Taguchi A, Miyamoto Y, Tanikawa M, Iriyama T, Uchino MM, Tsuruga T, Wada-Hiraike O, Oda K, Osuga Y. Histone arginine methyltransferase CARM1 selective inhibitor TP-064 induces apoptosis in endometrial cancer. Biochem Biophys Res Commun 2022; 601:123-128. [PMID: 35245741 DOI: 10.1016/j.bbrc.2022.02.086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 02/22/2022] [Indexed: 12/11/2022]
Abstract
Histone modification is the key epigenetic mechanism that regulates gene expression. Coactivator-associated arginine methyltransferase 1 (CARM1) is an arginine methyltransferase that catalyzes dimethylation of histone H3 (H3R17) at arginine 17. Lately, it has been suggested that CARM1 is associated with human carcinogenesis, and the CARM1-selective inhibitor, TP-064, has been shown to be a potential therapeutic agent for multiple myeloma. However, the physiological significance of CARM1 in endometrial cancer remains unclear. Therefore, we aimed to explore the role of CARM1 and the effect of TP-064 in endometrial cancer. To this end, we analyzed CARM1 expression in endometrial cancer using quantitative real-time polymerase chain reaction and examined the antitumor mechanism with CARM1 knockdown endometrial cancer cells. Moreover, we evaluated the therapeutic capability of TP-064 in endometrial cancer cells. CARM1 was remarkably overexpressed in 52 endometrial cancer tissues compared to normal endometrial tissues. The growth of CARM1 knockdown endometrial cancer cells was suppressed and CARM1 knockdown induced apoptosis. TP-064 also inhibited endometrial cancer cell growth and declined the number of endometrial cancer cell colonies. These data suggest that CARM1 may be a powerful therapeutic target for endometrial cancer.
Collapse
Affiliation(s)
- Futaba Inoue
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
| | - Kenbun Sone
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan.
| | - Yusuke Toyohara
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
| | - Saki Tanimoto
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
| | - Yu Takahashi
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
| | - Misako Kusakabe
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
| | - Asako Kukita
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
| | - Harunori Honjoh
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
| | - Akira Nishijima
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
| | - Ayumi Taguchi
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
| | - Yuichiro Miyamoto
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
| | - Michihiro Tanikawa
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
| | - Takayuki Iriyama
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
| | - Mayuyo-Mori Uchino
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
| | - Tetsushi Tsuruga
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
| | - Osamu Wada-Hiraike
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
| | - Katsutoshi Oda
- Division of Integrated Genomics, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
| | - Yutaka Osuga
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
| |
Collapse
|
361
|
Ahmed‐Belkacem R, Debart F, Vasseur J. Bisubstrate Strategies to Target Methyltransferases. European J Org Chem 2022. [DOI: 10.1002/ejoc.202101481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
362
|
Yang X, Zeng Z, Jie X, Wang Y, Han J, Zheng Z, Li J, Liu H, Dong X, Wu G, Xu S. Arginine methyltransferase PRMT5 methylates and destabilizes Mxi1 to confer radioresistance in non-small cell lung cancer. Cancer Lett 2022; 532:215594. [PMID: 35149174 DOI: 10.1016/j.canlet.2022.215594] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/26/2022] [Accepted: 02/06/2022] [Indexed: 11/25/2022]
Abstract
Radioresistance is regarded as the main cause of local recurrence and distant metastasis in non-small cell lung cancer. However, the underlying mechanisms of radioresistance remains incompletely understood. In this study, we find that the arginine methyltransferase PRMT5 interacts with and methylates Mxi1, which promotes the binding of the β-Trcp ligase to Mxi1, facilitating the ubiquitination and degradation of Mxi1 in lung cancer. Furthermore, genetic blockade of PRMT5 impairs DNA damage repair and enhances lung cancer radiosensitivity in vitro and in vivo, and these phenotypes are partially reversed by Mxi1 silencing. More importantly, pharmacological inhibition of PRMT5 with the specific inhibitor EPZ015666 leads to extraordinary radiosensitization in vitro and in vivo in lung cancer. Altogether, our data indicate that PRMT5 methylates and destabilizes Mxi1 to confer radioresistance, suggesting that PRMT5 may be a promising radiosensitization target in non-small cell lung cancer.
Collapse
Affiliation(s)
- Xijie Yang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zhen Zeng
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiaohua Jie
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ye Wang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jun Han
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zhikun Zheng
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jinsong Li
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Hongli Liu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiaorong Dong
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Gang Wu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Shuangbing Xu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
363
|
Aslan HG, Kuşçulu NG. Investigation of chemical activity, SCHIFF base reactions and staining effects of some amino acids by spectrophotometric and theorical methods. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2021.100315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
364
|
Li X, Zhang L, Xu J, Liu C, Zhang X, Abdelmoneim AA, Zhang Q, Ke J, Zhang Y, Wang L, Yang F, Luo C, Jin J, Ye F. Identification, Synthesis, and Biological Evaluations of Potent Inhibitors Targeting Type I Protein Arginine Methyltransferases. J Chem Inf Model 2022; 62:692-702. [DOI: 10.1021/acs.jcim.1c01100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xiao Li
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
- The Center for Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Lun Zhang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Jing Xu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Chenyu Liu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, East China Normal University, Shanghai 200062, China
| | - Xiaojian Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, East China Normal University, Shanghai 200062, China
| | - Amr Abbas Abdelmoneim
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Qian Zhang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Jiaqi Ke
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yingnan Zhang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Lei Wang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Fan Yang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, East China Normal University, Shanghai 200062, China
| | - Cheng Luo
- The Center for Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, China
| | - Jia Jin
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Fei Ye
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| |
Collapse
|
365
|
Sun X, Bieber JM, Hammerlindl H, Chalkley RJ, Li KH, Burlingame AL, Jacobson MP, Wu LF, Altschuler SJ. Modulating environmental signals to reveal mechanisms and vulnerabilities of cancer persisters. SCIENCE ADVANCES 2022; 8:eabi7711. [PMID: 35089788 PMCID: PMC8797778 DOI: 10.1126/sciadv.abi7711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 12/08/2021] [Indexed: 06/14/2023]
Abstract
Cancer persister cells are able to survive otherwise lethal doses of drugs through nongenetic mechanisms, which can lead to cancer regrowth and drug resistance. The broad spectrum of molecular differences observed between persisters and their treatment-naïve counterparts makes it challenging to identify causal mechanisms underlying persistence. Here, we modulate environmental signals to identify cellular mechanisms that promote the emergence of persisters and to pinpoint actionable vulnerabilities that eliminate them. We found that interferon-γ (IFNγ) can induce a pro-persistence signal that can be specifically eliminated by inhibition of type I protein arginine methyltransferase (PRMT) (PRMTi). Mechanistic investigation revealed that signal transducer and activator of transcription 1 (STAT1) is a key component connecting IFNγ's pro-persistence and PRMTi's antipersistence effects, suggesting a previously unknown application of PRMTi to target persisters in settings with high STAT1 expression. Modulating environmental signals can accelerate the identification of mechanisms that promote and eliminate cancer persistence.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Lani F. Wu
- Corresponding author. (S.J.A.); (L.F.W.)
| | | |
Collapse
|
366
|
Lee J, An S, Lee SJ, Kang JS. Protein Arginine Methyltransferases in Neuromuscular Function and Diseases. Cells 2022; 11:364. [PMID: 35159176 PMCID: PMC8834056 DOI: 10.3390/cells11030364] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/17/2022] [Accepted: 01/19/2022] [Indexed: 02/07/2023] Open
Abstract
Neuromuscular diseases (NMDs) are characterized by progressive loss of muscle mass and strength that leads to impaired body movement. It not only severely diminishes the quality of life of the patients, but also subjects them to increased risk of secondary medical conditions such as fall-induced injuries and various chronic diseases. However, no effective treatment is currently available to prevent or reverse the disease progression. Protein arginine methyltransferases (PRMTs) are emerging as a potential therapeutic target for diverse diseases, such as cancer and cardiovascular diseases. Their expression levels are altered in the patients and molecular mechanisms underlying the association between PRMTs and the diseases are being investigated. PRMTs have been shown to regulate development, homeostasis, and regeneration of both muscle and neurons, and their association to NMDs are emerging as well. Through inhibition of PRMT activities, a few studies have reported suppression of cytotoxic phenotypes observed in NMDs. Here, we review our current understanding of PRMTs' involvement in the pathophysiology of NMDs and potential therapeutic strategies targeting PRMTs to address the unmet medical need.
Collapse
Affiliation(s)
- Jinwoo Lee
- Research Institute for Aging-Related Diseases, AniMusCure Inc., Suwon 16419, Korea;
| | - Subin An
- Department of Molecular Cell Biology, School of Medicine, Sungkyunkwan University, Suwon 16419, Korea;
- Single Cell Network Research Center, Sungkyunkwan University, Suwon 16419, Korea
| | - Sang-Jin Lee
- Research Institute for Aging-Related Diseases, AniMusCure Inc., Suwon 16419, Korea;
| | - Jong-Sun Kang
- Department of Molecular Cell Biology, School of Medicine, Sungkyunkwan University, Suwon 16419, Korea;
- Single Cell Network Research Center, Sungkyunkwan University, Suwon 16419, Korea
| |
Collapse
|
367
|
Sung BY, Lin YH, Kong Q, Shah PD, Glick Bieler J, Palmer S, Weinhold KJ, Chang HR, Huang H, Avery RK, Schneck J, Chiu YL. Wnt activation promotes memory T cell polyfunctionality via epigenetic regulator PRMT1. J Clin Invest 2022; 132:e140508. [PMID: 35040433 PMCID: PMC8759796 DOI: 10.1172/jci140508] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 09/21/2021] [Indexed: 12/11/2022] Open
Abstract
T cell polyfunctionality is a hallmark of protective immunity against pathogens and cancer, yet the molecular mechanism governing it remains mostly elusive. We found that canonical Wnt agonists inhibited human memory CD8+ T cell differentiation while simultaneously promoting the generation of highly polyfunctional cells. Downstream effects of Wnt activation persisted after removal of the drug, and T cells remained polyfunctional following subsequent cell division, indicating the effect is epigenetically regulated. Wnt activation induced a gene expression pattern that is enriched with stem cell-specific gene signatures and upregulation of protein arginine methyltransferase 1 (PRMT1), a known epigenetic regulator. PRMT1+CD8+ T cells are associated with enhanced polyfunctionality, especially the ability to produce IL-2. In contrast, inhibition of PRMT1 ameliorated the effects of Wnt on polyfunctionality. Chromatin immunoprecipitation revealed that H4R3me2a, a permissive transcription marker mediated by PRMT1, increased at the IL-2 promoter loci following Wnt activation. In vivo, Wnt-treated T cells exhibited superior polyfunctionality and persistence. When applied to cytomegalovirus (CMV) donor-seropositive, recipient-seronegative patients (D+/R-) lung transplant patient samples, Wnt activation enhanced CMV-specific T cell polyfunctionality, which is important in controlling CMV diseases. These findings reveal a molecular mechanism governing T cell polyfunctionality and identify PRMT1 as a potential target for T cell immunotherapy.
Collapse
Affiliation(s)
- Bo-Yi Sung
- Institute of Cell Engineering and
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Microbiology and Immunology
- Department of Biomedical Engineering, and
| | - Yi-Hsin Lin
- Department of Biomedical Engineering, and
- Department of Obstetrics and Gynecology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | | | - Pali D. Shah
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Joan Glick Bieler
- Institute of Cell Engineering and
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | | | - Kent J. Weinhold
- Department of Surgery, and Department of Immunology, Duke University Medical Center, Durham, North Carolina, USA
| | | | - Hailiang Huang
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Robin K. Avery
- Division of Infectious Diseases, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Jonathan Schneck
- Institute of Cell Engineering and
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Medicine and Oncology, School of Medicine, Johns Hopkins University, Baltimore, Maryland. USA
| | - Yen-Ling Chiu
- Institute of Cell Engineering and
- Graduate Institute of Medicine and Graduate Program in Biomedical Informatics, Yuan Ze University, Taoyuan, Taiwan
- Department of Medical Research, Far Eastern Memorial Hospital, Taipei, Taiwan
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
| |
Collapse
|
368
|
Zheng Y, Chen Z, Zhou B, Chen S, Han L, Chen N, Ma Y, Xie G, Yang J, Nie H, Shen L. PRMT5 Deficiency Enforces the Transcriptional and Epigenetic Programs of Klrg1 +CD8 + Terminal Effector T Cells and Promotes Cancer Development. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:501-513. [PMID: 34911774 DOI: 10.4049/jimmunol.2100523] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 11/02/2021] [Indexed: 12/12/2022]
Abstract
Protein arginine methyltransferase 5 (PRMT5) participates in the symmetric dimethylation of arginine residues of proteins and contributes to a wide range of biological processes. However, how PRMT5 affects the transcriptional and epigenetic programs involved in the establishment and maintenance of T cell subset differentiation and roles in antitumor immunity is still incompletely understood. In this study, using single-cell RNA and chromatin immunoprecipitation sequencing, we found that mouse T cell-specific deletion of PRMT5 had greater effects on CD8+ than CD4+ T cell development, enforcing CD8+ T cell differentiation into Klrg1+ terminal effector cells. Mechanistically, T cell deficiency of PRMT5 activated Prdm1 by decreasing H4R3me2s and H3R8me2s deposition on its loci, which promoted the differentiation of Klrg1+CD8+ T cells. Furthermore, effector CD8+ T cells that transited to memory precursor cells were decreased in PRMT5-deficient T cells, thus causing dramatic CD8+ T cell death. In addition, in a mouse lung cancer cell line-transplanted tumor mouse model, the percentage of CD8+ T cells from T cell-specific deletion of PRMT5 mice was dramatically lost, but CD8+Foxp3+ and CD8+PDL1+ regulatory T cells were increased compared with the control group, thus accelerating tumor progression. We further verified these results in a mouse colon cancer cell line-transplanted tumor mouse model. Our study validated the importance of targeting PRMT5 in tumor treatment, because PRMT5 deficiency enforced Klrg1+ terminal CD8+ T cell development and eliminated antitumor activity.
Collapse
Affiliation(s)
- Yingxia Zheng
- Department of Laboratory Medicine, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China;
| | - Zheyi Chen
- Department of Laboratory Medicine, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bingqian Zhou
- Department of Laboratory Medicine, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shiyu Chen
- Department of Laboratory Medicine, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li Han
- Department of Laboratory Medicine, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ningdai Chen
- Department of Laboratory Medicine, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanhui Ma
- Department of Laboratory Medicine, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guohua Xie
- Department of Laboratory Medicine, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junyao Yang
- Department of Laboratory Medicine, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hong Nie
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China;
| | - Lisong Shen
- Department of Laboratory Medicine, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; .,Faculty of Medical Laboratory Science, Shanghai Jiao Tong University School of Medicine, Shanghai, China; and.,Xin Hua Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
369
|
Malbeteau L, Pham HT, Eve L, Stallcup MR, Poulard C, Le Romancer M. How Protein Methylation Regulates Steroid Receptor Function. Endocr Rev 2022; 43:160-197. [PMID: 33955470 PMCID: PMC8755998 DOI: 10.1210/endrev/bnab014] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Indexed: 02/06/2023]
Abstract
Steroid receptors (SRs) are members of the nuclear hormonal receptor family, many of which are transcription factors regulated by ligand binding. SRs regulate various human physiological functions essential for maintenance of vital biological pathways, including development, reproduction, and metabolic homeostasis. In addition, aberrant expression of SRs or dysregulation of their signaling has been observed in a wide variety of pathologies. SR activity is tightly and finely controlled by post-translational modifications (PTMs) targeting the receptors and/or their coregulators. Whereas major attention has been focused on phosphorylation, growing evidence shows that methylation is also an important regulator of SRs. Interestingly, the protein methyltransferases depositing methyl marks are involved in many functions, from development to adult life. They have also been associated with pathologies such as inflammation, as well as cardiovascular and neuronal disorders, and cancer. This article provides an overview of SR methylation/demethylation events, along with their functional effects and biological consequences. An in-depth understanding of the landscape of these methylation events could provide new information on SR regulation in physiology, as well as promising perspectives for the development of new therapeutic strategies, illustrated by the specific inhibitors of protein methyltransferases that are currently available.
Collapse
Affiliation(s)
- Lucie Malbeteau
- Université de Lyon, F-69000 Lyon, France.,Inserm U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France.,CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
| | - Ha Thuy Pham
- Université de Lyon, F-69000 Lyon, France.,Inserm U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France.,CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
| | - Louisane Eve
- Université de Lyon, F-69000 Lyon, France.,Inserm U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France.,CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
| | - Michael R Stallcup
- Department of Biochemistry and Molecular Medicine, Norris Comprehensive Center, University of Southern California, Los Angeles, CA 90089, USA
| | - Coralie Poulard
- Université de Lyon, F-69000 Lyon, France.,Inserm U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France.,CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
| | - Muriel Le Romancer
- Université de Lyon, F-69000 Lyon, France.,Inserm U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France.,CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
| |
Collapse
|
370
|
Wang F, Zhang J, Tang H, Pang Y, Ke X, Peng W, Chen S, Abbas MN, Dong Z, Cui Z, Cui H. Nup54-induced CARM1 nuclear importation promotes gastric cancer cell proliferation and tumorigenesis through transcriptional activation and methylation of Notch2. Oncogene 2022; 41:246-259. [PMID: 34725461 DOI: 10.1038/s41388-021-02078-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/27/2021] [Accepted: 10/11/2021] [Indexed: 11/09/2022]
Abstract
Gastric cancer (GC) has the fifth highest incidence globally, but its molecular mechanisms are not well understood. Here, we report that coactivator-associated arginine methyltransferase 1 (CARM1) is specifically highly expressed in gastric cancer and that its overexpression correlates with poor prognosis in patients with gastric cancer. Nucleoporin 54 (Nup54) was identified as a CARM1-interacting protein that promoted CARM1 nuclear importation. In the nucleus, CARM1 cooperates with transcriptional factor EB (TFEB) to activate Notch2 transcription by inducing H3R17me2 of the Notch2 promoter but not H3R26me2. Additionally, the Notch2 intracellular domain (N2ICD) was identified as a CARM1 substrate. Methylation of N2ICD at R1786, R1838, and R2047 by CARM1 enhanced the binding between N2ICD and mastermind-like protein 1 (MAML1) and increased gastric cancer cell proliferation in vitro and tumor formation in vivo. Our findings reveal a molecular mechanism linking CARM1-mediated transcriptional activation of the Notch2 signaling pathway to Notch2 methylation in gastric cancer progression.
Collapse
Affiliation(s)
- Feng Wang
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, Beibei, Chongqing, 400716, China.,Cancer Center, Medical Research Institute, Southwest University, Beibei, Chongqing, 400716, China
| | - Jiayi Zhang
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, Beibei, Chongqing, 400716, China.,Cancer Center, Medical Research Institute, Southwest University, Beibei, Chongqing, 400716, China
| | - Houyi Tang
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, Beibei, Chongqing, 400716, China.,Cancer Center, Medical Research Institute, Southwest University, Beibei, Chongqing, 400716, China
| | - Yi Pang
- Chongqing Engineering Research Center of Antitumor Natural Drugs, Chongqing Three Gorges Medical College, Chongqing, 404120, China
| | - Xiaoxue Ke
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, Beibei, Chongqing, 400716, China.,Cancer Center, Medical Research Institute, Southwest University, Beibei, Chongqing, 400716, China
| | - Wen Peng
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, Beibei, Chongqing, 400716, China.,Cancer Center, Medical Research Institute, Southwest University, Beibei, Chongqing, 400716, China
| | - Shitong Chen
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, Beibei, Chongqing, 400716, China.,Cancer Center, Medical Research Institute, Southwest University, Beibei, Chongqing, 400716, China
| | - Muhammad Nadeem Abbas
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, Beibei, Chongqing, 400716, China.,Cancer Center, Medical Research Institute, Southwest University, Beibei, Chongqing, 400716, China
| | - Zhen Dong
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, Beibei, Chongqing, 400716, China.,Cancer Center, Medical Research Institute, Southwest University, Beibei, Chongqing, 400716, China
| | - Zhaobo Cui
- Department of Intensive Care Unit, Harrison International Peace Hospital, Hengshui, 053000, Hebei, China.
| | - Hongjuan Cui
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, Beibei, Chongqing, 400716, China. .,Cancer Center, Medical Research Institute, Southwest University, Beibei, Chongqing, 400716, China.
| |
Collapse
|
371
|
Gutiérrez JR, Salgadoa ARM, Arias MDÁ, Vergara HSJ, Rada WR, Gómez CMM. Epigenetic Modulators as Treatment Alternative to Diverse Types of Cancer. Curr Med Chem 2021; 29:1503-1542. [PMID: 34963430 DOI: 10.2174/0929867329666211228111036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/17/2021] [Accepted: 10/21/2021] [Indexed: 01/10/2023]
Abstract
DNA is packaged in rolls in an octamer of histones forming a complex of DNA and proteins called chromatin. Chromatin as a structural matrix of a chromosome and its modifications are nowadays considered relevant aspects for regulating gene expression, which has become of high interest in understanding genetic mechanisms regulating various diseases, including cancer. In various types of cancer, the main modifications are found to be DNA methylation in the CpG dinucleotide as a silencing mechanism in transcription, post-translational histone modifications such as acetylation, methylation and others that affect the chromatin structure, the ATP-dependent chromatin remodeling and miRNA-mediated gene silencing. In this review we analyze the main alterations in gene expression, the epigenetic modification patterns that cancer cells present, as well as the main modulators and inhibitors of each epigenetic mechanism and the molecular evolution of the most representative inhibitors, which have opened a promising future in the study of HAT, HDAC, non-glycoside DNMT inhibitors and domain inhibitors.
Collapse
Affiliation(s)
- Jorseth Rodelo Gutiérrez
- Organic and Biomedical Chemistry Research Group, Faculty of Basic Sciences, Universidad del Atlántico, Barranquilla, Colombia
| | - Arturo René Mendoza Salgadoa
- Organic and Biomedical Chemistry Research Group, Faculty of Basic Sciences, Universidad del Atlántico, Barranquilla, Colombia
| | - Marcio De Ávila Arias
- Department of Medicine, Biotechnology Research Group, Health Sciences Division, Universidad del Norte, Barranquilla, Colombia
| | - Homero San- Juan- Vergara
- Department of Medicine, Biotechnology Research Group, Health Sciences Division, Universidad del Norte, Barranquilla, Colombia
| | - Wendy Rosales Rada
- Advanced Biomedicine Research Group. Faculty of Exact and Natural Sciences, Universidad Libre Seccional, Barranquilla, Colombia
- Advanced Biomedicine Research Group. Faculty of Exact and Natural Sciences, Universidad Libre Seccional, Barranquilla, Colombia
| | - Carlos Mario Meléndez Gómez
- Organic and Biomedical Chemistry Research Group, Faculty of Basic Sciences, Universidad del Atlántico, Barranquilla, Colombia
| |
Collapse
|
372
|
Conery AR, Rocnik JL, Trojer P. Small molecule targeting of chromatin writers in cancer. Nat Chem Biol 2021; 18:124-133. [PMID: 34952934 DOI: 10.1038/s41589-021-00920-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 10/13/2021] [Indexed: 01/10/2023]
Abstract
More than a decade after the launch of DNA methyltransferase and histone deacetylase inhibitors for the treatment of cancer, 2020 heralded the approval of the first histone methyltransferase inhibitor, revitalizing the concept that targeted manipulation of the chromatin regulatory landscape can have profound therapeutic impact. Three chromatin regulatory pathways-DNA methylation, histone acetylation and methylation-are frequently implicated in human cancer but hundreds of potentially druggable mechanisms complicate identification of key targets for therapeutic intervention. In addition to human genetics and functional screening, chemical biology approaches have proven critical for the discovery of key nodes in these pathways and in an ever-increasing complexity of molecularly defined human cancer contexts. This review introduces small molecule targeting approaches, showcases chemical probes and drug candidates for epigenetic writer enzymes, illustrates molecular features that may represent epigenetic dependencies and suggests translational strategies to maximize their impact in cancer therapy.
Collapse
|
373
|
Campos Gudiño R, Farrell AC, Neudorf NM, McManus KJ. A Comprehensive Assessment of Genetic and Epigenetic Alterations Identifies Frequent Variations Impacting Six Prototypic SCF Complex Members. Int J Mol Sci 2021; 23:ijms23010084. [PMID: 35008511 PMCID: PMC8744973 DOI: 10.3390/ijms23010084] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/14/2021] [Accepted: 12/20/2021] [Indexed: 11/24/2022] Open
Abstract
The SKP1, CUL1, F-box protein (SCF) complex represents a family of 69 E3 ubiquitin ligases that poly-ubiquitinate protein substrates marking them for proteolytic degradation via the 26S proteasome. Established SCF complex targets include transcription factors, oncoproteins and tumor suppressors that modulate cell cycle activity and mitotic fidelity. Accordingly, genetic and epigenetic alterations involving SCF complex member genes are expected to adversely impact target regulation and contribute to disease etiology. To gain novel insight into cancer pathogenesis, we determined the prevalence of genetic and epigenetic alterations in six prototypic SCF complex member genes (SKP1, CUL1, RBX1, SKP2, FBXW7 and FBXO5) from patient datasets extracted from The Cancer Genome Atlas (TCGA). Collectively, ~45% of observed SCF complex member mutations are predicted to impact complex structure and/or function in 10 solid tumor types. In addition, the distribution of encoded alterations suggest SCF complex members may exhibit either tumor suppressor or oncogenic mutational profiles in a cancer type dependent manner. Further bioinformatic analyses reveal the potential functional implications of encoded alterations arising from missense mutations by examining predicted deleterious mutations with available crystal structures. The SCF complex also exhibits frequent copy number alterations in a variety of cancer types that generally correspond with mRNA expression levels. Finally, we note that SCF complex member genes are differentially methylated across cancer types, which may effectively phenocopy gene copy number alterations. Collectively, these data show that SCF complex member genes are frequently altered at the genetic and epigenetic levels in many cancer types, which will adversely impact the normal targeting and timely destruction of protein substrates, which may contribute to the development and progression of an extensive array of cancer types.
Collapse
Affiliation(s)
- Rubi Campos Gudiño
- CancerCare Manitoba Research Institute, CancerCare Manitoba, Winnipeg, MB R3E 0V9, Canada; (R.C.G.); (A.C.F.); (N.M.N.)
- Department of Biochemistry & Medical Genetics, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Ally C. Farrell
- CancerCare Manitoba Research Institute, CancerCare Manitoba, Winnipeg, MB R3E 0V9, Canada; (R.C.G.); (A.C.F.); (N.M.N.)
- Department of Biochemistry & Medical Genetics, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Nicole M. Neudorf
- CancerCare Manitoba Research Institute, CancerCare Manitoba, Winnipeg, MB R3E 0V9, Canada; (R.C.G.); (A.C.F.); (N.M.N.)
- Department of Biochemistry & Medical Genetics, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Kirk J. McManus
- Department of Biochemistry & Medical Genetics, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
- Correspondence: ; Tel.: +1-204-787-2833
| |
Collapse
|
374
|
Liu L, Chen YZ, Zhang SS, Chen XP, Lin GQ, Yin H, Feng CG, Zhang F. Multiplexed Analysis of Endogenous Guanidino Compounds via Isotope-Coded Doubly Charged Labeling: Application to Lung Cancer Tissues as a Case. Anal Chem 2021; 93:16862-16872. [PMID: 34894659 DOI: 10.1021/acs.analchem.1c03835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Endogenous guanidino compounds (GCs), nitrogen-containing metabolites, have very important physiological activities and participate in biochemical processes. Therefore, accurately characterizing the distribution of endogenous GCs and monitoring their concentration variations are of great significance. In this work, a new derivatization reagent, 4,4'-bis[3-(dimethylamino)propyl]benzyl (BDMAPB), with isotope-coded reagents was designed and synthesized for doubly charged labeling of GCs. BDMAPB-derivatized GCs not only promote the MS signal but also form multicharged quasimolecular ions and abundant fragment ions. With this reagent, an isotope-coded doubly charged labeling (ICDCL) strategy was developed for endogenous GCs with high-resolution liquid chromatography quadrupole time-of-flight mass spectrometry (LC-QTOF MS). The core of this methodology is a 4-fold multiplexed set of [d0]-/[d4]-/[d8]-/[d12]-BDMAPB that yields isotope-coded derivatized GCs. Following a methodological assessment, good linear responses in the range of 25 nM to 1 μM with correlation coefficients over 0.99 were achieved. The limit of detection and the limit of quantitation were below 5 and 25 nM, respectively. The intra- and interday precisions were less than 18%, and the accuracy was in the range of 77.3-122.0%. The percentage recovery in tissues was in the range of 85.1-113.7%. The results indicate that the developed method facilitates long-term testing and ensures accuracy and reliability. Finally, the method was applied for the simultaneous analysis of endogenous GCs in four types of lung tissues (solid adenocarcinoma, solid squamous-cell carcinoma, ground-glass carcinoma, and paracancerous tissues) for absolute quantification, nontargeted screening, and metabolic difference analysis. It is strongly believed that ICDCL combined with isotope-coded BDMAPB will benefit the analysis and study of endogenous GCs.
Collapse
Affiliation(s)
- Li Liu
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P. R. China
| | - Yan-Zhen Chen
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P. R. China
| | - Shu-Sheng Zhang
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P. R. China
| | - Xiu-Ping Chen
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P. R. China
| | - Guo-Qiang Lin
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P. R. China
| | - Hang Yin
- Department of Thoracic Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, P. R. China
| | - Chen-Guo Feng
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P. R. China
| | - Fang Zhang
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P. R. China
| |
Collapse
|
375
|
Ribavirin inhibits the growth and ascites formation of hepatocellular carcinoma through downregulation of type I CARM1 and type II PRMT5. Toxicol Appl Pharmacol 2021; 435:115829. [PMID: 34919946 DOI: 10.1016/j.taap.2021.115829] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 12/07/2021] [Accepted: 12/10/2021] [Indexed: 12/15/2022]
Abstract
Type I co-activator-associated arginine methyltransferase 1 (CARM1) and type II protein arginine methyltransferase 5 (PRMT5) are highly expressed in multiple cancers including liver cancer and their overexpression contributes to poor prognosis, thus making them promising therapeutic targets. Here, we evaluated anti-tumor activity of ribavirin in hepatocellular carcinoma (HCC). We found that ribavirin significantly inhibited the proliferation of HCC cells in a time- and dose-dependent manner. Furthermore, ribavirin suppressed the growth of subcutaneous and orthotopic xenograft of HCC in mice, decreased vascular endothelial growth factor (VEGF) and peritoneal permeability to reduce ascites production, and prolonged the survival of mice in HCC ascites tumor models. Mechanistically, ribavirin potently down-regulated global protein expression of CARM1 and PRMT5, and concurrently decreased accumulation of H3R17me2a and H3R8me2s/H4R3me2s. However, ribavirin did not affect the activity and mRNA levels of both CARM1 and PRMT5 in vivo and in vitro HCC cells. In addition, our ChIP results shown that ribavirin inhibited CARM1 which in turn decreased the H3R17me2a, binds to the eukaryotic translation initiation factor 4E (eIF4E) and VEGF promoter region, and reduced the relative mRNA expression level of eIF4E and VEGF in HCC cells. Our findings suggested a potential therapeutic strategy for patients with HCC through inhibition of the abnormal activation/expression of both CARM1 and PRMT5.
Collapse
|
376
|
Combining Human Genetics of Multiple Sclerosis with Oxidative Stress Phenotype for Drug Repositioning. Pharmaceutics 2021; 13:pharmaceutics13122064. [PMID: 34959343 PMCID: PMC8705550 DOI: 10.3390/pharmaceutics13122064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/26/2021] [Accepted: 11/30/2021] [Indexed: 01/08/2023] Open
Abstract
In multiple sclerosis (MS), oxidative stress (OS) is implicated in the neurodegenerative processes that occur from the beginning of the disease. Unchecked OS initiates a vicious circle caused by its crosstalk with inflammation, leading to demyelination, axonal damage and neuronal loss. The failure of MS antioxidant therapies relying on the use of endogenous and natural compounds drives the application of novel approaches to assess target relevance to the disease prior to preclinical testing of new drug candidates. To identify drugs that can act as regulators of intracellular oxidative homeostasis, we applied an in silico approach that links genome-wide MS associations and molecular quantitative trait loci (QTLs) to proteins of the OS pathway. We found 10 drugs with both central nervous system and oral bioavailability, targeting five out of the 21 top-scoring hits, including arginine methyltransferase (CARM1), which was first linked to MS. In particular, the direction of brain expression QTLs for CARM1 and protein kinase MAPK1 enabled us to select BIIB021 and PEITC drugs with the required target modulation. Our study highlights OS-related molecules regulated by functional MS variants that could be targeted by existing drugs as a supplement to the approved disease-modifying treatments.
Collapse
|
377
|
Zhang P, Li X, Wang Y, Guo W, Chachar S, Riaz A, Geng Y, Gu X, Yang L. PRMT6 physically associates with nuclear factor Y to regulate photoperiodic flowering in Arabidopsis. ABIOTECH 2021; 2:403-414. [PMID: 36304422 PMCID: PMC9590495 DOI: 10.1007/s42994-021-00065-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 11/12/2021] [Indexed: 05/14/2023]
Abstract
UNLABELLED The timing of floral transition is critical for reproductive success in flowering plants. In long-day (LD) plant Arabidopsis, the floral regulator gene FLOWERING LOCUS T (FT) is a major component of the mobile florigen. FT expression is rhythmically activated by CONSTANS (CO), and specifically accumulated at dusk of LDs. However, the underlying mechanism of adequate regulation of FT transcription in response to day-length cues to warrant flowering time still remains to be investigated. Here, we identify a homolog of human protein arginine methyltransferases 6 (HsPRMT6) in Arabidopsis, and confirm AtPRMT6 physically interacts with three positive regulators of flowering Nuclear Factors YC3 (NF-YC3), NF-YC9, and NF-YB3. Further investigations find that AtPRMT6 and its encoding protein accumulate at dusk of LDs. PRMT6-mediated H3R2me2a modification enhances the promotion of NF-YCs on FT transcription in response to inductive LD signals. Moreover, AtPRMT6 and its homologues proteins AtPRMT4a and AtPRMT4b coordinately inhibit the expression of FLOWERING LOCUS C, a suppressor of FT. Taken together, our study reveals the role of arginine methylation in photoperiodic pathway and how the PRMT6-mediating H3R2me2a system interacts with NF-CO module to dynamically control FT expression and facilitate flowering time. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s42994-021-00065-y.
Collapse
Affiliation(s)
- Pingxian Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Science, Beijing, 100081 China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070 Hubei China
| | - Xiulan Li
- Biotechnology Research Institute, Chinese Academy of Agricultural Science, Beijing, 100081 China
| | - Yifan Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Science, Beijing, 100081 China
| | - Weijun Guo
- Biotechnology Research Institute, Chinese Academy of Agricultural Science, Beijing, 100081 China
| | - Sadaruddin Chachar
- Biotechnology Research Institute, Chinese Academy of Agricultural Science, Beijing, 100081 China
| | - Adeel Riaz
- Biotechnology Research Institute, Chinese Academy of Agricultural Science, Beijing, 100081 China
| | - Yuke Geng
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081 China
| | - Xiaofeng Gu
- Biotechnology Research Institute, Chinese Academy of Agricultural Science, Beijing, 100081 China
| | - Liwen Yang
- Biotechnology Research Institute, Chinese Academy of Agricultural Science, Beijing, 100081 China
| |
Collapse
|
378
|
Tan C, Xiao Y, Huang X, Wu L, Huang Y. Alterations of Asymmetric Dimethylarginine (ADMA)-Containing Protein Profiles Associated with Chronic Pancreatitis Pathogenesis. J Inflamm Res 2021; 14:7381-7392. [PMID: 34992424 PMCID: PMC8714020 DOI: 10.2147/jir.s346575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 12/17/2021] [Indexed: 11/23/2022] Open
Abstract
Objective The pathophysiological mechanisms of chronic pancreatitis (CP) still remain poorly understood. In this study, we aimed to characterize asymmetric dimethylarginine (ADMA)-containing proteins in pancreatic tissues and its relationship with CP pathogenesis. Methods Totally 36 patients with CP were enrolled in this study. Seven other cholangiocarcinoma patients without pancreas involvements or patients with benign pancreatic tumors were included as the control group. Total proteins in human pancreatic tissues were digested by trypsin, and ADMA-containing peptides were enriched via immunoaffinity purification. The LC-MS/MS was performed to characterize ADMA-containing peptides and their modification sites in CP tissues. Relative asymmetric arginine dimethylation levels of HNRNPA3 proteins in human pancreatic tissues were detected by the immunoprecipitation combined with Western blot. The serum inflammatory factors were determined via the ELISA method. Results A total of 134 ADMA sites in the control group and 137 ADMA sites in CP tissues were characterized by mass spectrometry, which belong to 93 and 94 ADMA-containing proteins in the control group and CP tissues, respectively. Glycine and proline residues were significantly overrepresented in the flanking sequences of ADMA sites. ADMA-containing proteins in the CP tissues were associated with various biological processes, especially the RNA metabolism and splicing pathways. Multiple protein members of the spliceosome pathway such as HNRNPA3 possess ADMA sites in the CP tissues. HNRNPA3 dimethylation levels were greatly increased in CP tissues, which were positively correlated with inflammatory factors. Conclusion The pathogenesis of CP is associated with alterations of asymmetric arginine dimethylation in pancreatic tissues.
Collapse
Affiliation(s)
- Chaochao Tan
- Department of Clinical Laboratory, Hunan Provincial People’s Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, People’s Republic of China
| | - Yan Xiao
- Intensive Care Unit, Hunan Provincial People’s Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, People’s Republic of China
| | - Xiangping Huang
- Department of Clinical Laboratory, Hunan Provincial People’s Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, People’s Republic of China
| | - Ling Wu
- Department of Clinical Laboratory, Hunan Provincial People’s Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, People’s Republic of China
| | - Ying Huang
- Department of Emergency, Hunan Provincial People’s Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, People’s Republic of China
- Correspondence: Ying Huang Department of Emergency, Hunan Provincial People’s Hospital (The First Affiliated Hospital of Hunan Normal University), 61 Jiefang Road, Changsha, Hunan, 410005, People’s Republic of ChinaTel +8613974858993 Email
| |
Collapse
|
379
|
Brehmer D, Beke L, Wu T, Millar HJ, Moy C, Sun W, Mannens G, Pande V, Boeckx A, van Heerde E, Nys T, Gustin EM, Verbist B, Zhou L, Fan Y, Bhargava V, Safabakhsh P, Vinken P, Verhulst T, Gilbert A, Rai S, Graubert TA, Pastore F, Fiore D, Gu J, Johnson A, Philippar U, Morschhäuser B, Walker D, De Lange D, Keersmaekers V, Viellevoye M, Diels G, Schepens W, Thuring JW, Meerpoel L, Packman K, Lorenzi MV, Laquerre S. Discovery and Pharmacological Characterization of JNJ-64619178, a Novel Small-Molecule Inhibitor of PRMT5 with Potent Antitumor Activity. Mol Cancer Ther 2021; 20:2317-2328. [PMID: 34583982 PMCID: PMC9398174 DOI: 10.1158/1535-7163.mct-21-0367] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/15/2021] [Accepted: 09/15/2021] [Indexed: 01/07/2023]
Abstract
The protein arginine methyltransferase 5 (PRMT5) methylates a variety of proteins involved in splicing, multiple signal transduction pathways, epigenetic control of gene expression, and mechanisms leading to protein expression required for cellular proliferation. Dysregulation of PRMT5 is associated with clinical features of several cancers, including lymphomas, lung cancer, and breast cancer. Here, we describe the characterization of JNJ-64619178, a novel, selective, and potent PRMT5 inhibitor, currently in clinical trials for patients with advanced solid tumors, non-Hodgkin's lymphoma, and lower-risk myelodysplastic syndrome. JNJ-64619178 demonstrated a prolonged inhibition of PRMT5 and potent antiproliferative activity in subsets of cancer cell lines derived from various histologies, including lung, breast, pancreatic, and hematological malignancies. In primary acute myelogenous leukemia samples, the presence of splicing factor mutations correlated with a higher ex vivo sensitivity to JNJ-64619178. Furthermore, the potent and unique mechanism of inhibition of JNJ-64619178, combined with highly optimized pharmacological properties, led to efficient tumor growth inhibition and regression in several xenograft models in vivo, with once-daily or intermittent oral-dosing schedules. An increase in splicing burden was observed upon JNJ-64619178 treatment. Overall, these observations support the continued clinical evaluation of JNJ-64619178 in patients with aberrant PRMT5 activity-driven tumors.
Collapse
Affiliation(s)
- Dirk Brehmer
- Janssen Research and Development, Beerse, Antwerp, Belgium
| | - Lijs Beke
- Janssen Research and Development, Beerse, Antwerp, Belgium
| | - Tongfei Wu
- Janssen Research and Development, Beerse, Antwerp, Belgium
| | | | - Christopher Moy
- Janssen Research and Development, Spring House, Pennsylvania
| | - Weimei Sun
- Janssen Research and Development, Spring House, Pennsylvania
| | - Geert Mannens
- Janssen Research and Development, Beerse, Antwerp, Belgium
| | - Vineet Pande
- Janssen Research and Development, Beerse, Antwerp, Belgium
| | - An Boeckx
- Janssen Research and Development, Beerse, Antwerp, Belgium
| | | | - Thomas Nys
- Janssen Research and Development, Beerse, Antwerp, Belgium
| | | | - Bie Verbist
- Janssen Research and Development, Beerse, Antwerp, Belgium
| | - Longen Zhou
- Janssen Research and Development, Shanghai, China
| | - Yue Fan
- Janssen Research and Development, Shanghai, China
| | - Vipul Bhargava
- Janssen Research and Development, Spring House, Pennsylvania
| | | | - Petra Vinken
- Janssen Research and Development, Beerse, Antwerp, Belgium
| | - Tinne Verhulst
- Janssen Research and Development, Beerse, Antwerp, Belgium
| | - Angelique Gilbert
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts
| | - Sumit Rai
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts
| | - Timothy A Graubert
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts
| | | | - Danilo Fiore
- Janssen Research and Development, Beerse, Antwerp, Belgium
| | - Junchen Gu
- Janssen Research and Development, Spring House, Pennsylvania
| | - Amy Johnson
- Janssen Research and Development, Spring House, Pennsylvania
| | | | | | - David Walker
- Janssen Research and Development, Spring House, Pennsylvania
| | | | | | | | - Gaston Diels
- Janssen Research and Development, Beerse, Antwerp, Belgium
| | - Wim Schepens
- Janssen Research and Development, Beerse, Antwerp, Belgium
| | | | | | - Kathryn Packman
- Janssen Research and Development, Spring House, Pennsylvania
| | | | - Sylvie Laquerre
- Janssen Research and Development, Spring House, Pennsylvania.
| |
Collapse
|
380
|
Cai Q, Gan C, Tang C, Wu H, Gao J. Mechanism and Therapeutic Opportunities of Histone Modifications in Chronic Liver Disease. Front Pharmacol 2021; 12:784591. [PMID: 34887768 PMCID: PMC8650224 DOI: 10.3389/fphar.2021.784591] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 11/08/2021] [Indexed: 02/05/2023] Open
Abstract
Chronic liver disease (CLD) represents a global health problem, accounting for the heavy burden of disability and increased health care utilization. Epigenome alterations play an important role in the occurrence and progression of CLD. Histone modifications, which include acetylation, methylation, and phosphorylation, represent an essential part of epigenetic modifications that affect the transcriptional activity of genes. Different from genetic mutations, histone modifications are plastic and reversible. They can be modulated pharmacologically without changing the DNA sequence. Thus, there might be chances to establish interventional solutions by targeting histone modifications to reverse CLD. Here we summarized the roles of histone modifications in the context of alcoholic liver disease (ALD), metabolic associated fatty liver disease (MAFLD), viral hepatitis, autoimmune liver disease, drug-induced liver injury (DILI), and liver fibrosis or cirrhosis. The potential targets of histone modifications for translation into therapeutics were also investigated. In prospect, high efficacy and low toxicity drugs that are selectively targeting histone modifications are required to completely reverse CLD and prevent the development of liver cirrhosis and malignancy.
Collapse
Affiliation(s)
- Qiuyu Cai
- Laboratory of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu, China
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Can Gan
- Laboratory of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu, China
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Chengwei Tang
- Laboratory of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu, China
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Hao Wu
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Jinhang Gao
- Laboratory of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu, China
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
381
|
Zhu J, Li X, Sun X, Zhou Z, Cai X, Liu X, Wang J, Xiao W. Zebrafish prmt2 Attenuates Antiviral Innate Immunity by Targeting traf6. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2021; 207:2570-2580. [PMID: 34654690 DOI: 10.4049/jimmunol.2100627] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 09/16/2021] [Indexed: 12/23/2022]
Abstract
TNFR-associated factor 6 (TRAF6) not only recruits TBK1/IKKε to MAVS upon virus infection but also catalyzes K63-linked polyubiquitination on substrate or itself, which is critical for NEMO-dependent and -independent TBK1/IKKε activation, leading to the production of type I IFNs. The regulation at the TRAF6 level could affect the activation of antiviral innate immunity. In this study, we demonstrate that zebrafish prmt2, a type I arginine methyltransferase, attenuates traf6-mediated antiviral response. Prmt2 binds to the C terminus of traf6 to catalyze arginine asymmetric dimethylation of traf6 at arginine 100, preventing its K63-linked autoubiquitination, which results in the suppression of traf6 activation. In addition, it seems that the N terminus of prmt2 competes with mavs for traf6 binding and prevents the recruitment of tbk1/ikkε to mavs. By zebrafish model, we show that loss of prmt2 promotes the survival ratio of zebrafish larvae after challenge with spring viremia of carp virus. Therefore, we reveal, to our knowledge, a novel function of prmt2 in the negative regulation of antiviral innate immunity by targeting traf6.
Collapse
Affiliation(s)
- Junji Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Xiong Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Xueyi Sun
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Ziwen Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Xiaolian Cai
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Xing Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, People's Republic of China.,The Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Wuhan, People's Republic of China.,The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, People's Republic of China; and
| | - Jing Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, People's Republic of China.,The Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Wuhan, People's Republic of China.,The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, People's Republic of China; and
| | - Wuhan Xiao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, People's Republic of China; .,University of Chinese Academy of Sciences, Beijing, People's Republic of China.,The Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Wuhan, People's Republic of China.,The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, People's Republic of China; and.,Hubei Hongshan Laboratory, Wuhan, People's Republic of China
| |
Collapse
|
382
|
Ravel-Chapuis A, Haghandish A, Daneshvar N, Jasmin BJ, Côté J. A novel CARM1-HuR axis involved in muscle differentiation and plasticity misregulated in spinal muscular atrophy. Hum Mol Genet 2021; 31:1453-1470. [PMID: 34791230 DOI: 10.1093/hmg/ddab333] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/19/2021] [Accepted: 10/19/2021] [Indexed: 11/14/2022] Open
Abstract
Spinal muscular atrophy (SMA) is characterized by the loss of alpha motor neurons in the spinal cord and a progressive muscle weakness and atrophy. SMA is caused by loss-of-function mutations and/or deletions in the survival of motor neuron (SMN) gene. The role of SMN in motor neurons has been extensively studied, but its function and the consequences of its loss in muscle has also emerged as a key aspect of SMA pathology. In this study, we explore the molecular mechanisms involved in muscle defects in SMA. First, we show in C2C12 myoblasts, that arginine methylation by CARM1 controls myogenic differentiation. More specifically, the methylation of HuR on K217 regulates HuR levels and subcellular localization during myogenic differentiation, and the formation of myotubes. Furthermore, we demonstrate that SMN and HuR interact in C2C12 myoblasts. Interestingly, the SMA-causing E134K point mutation within the SMN Tudor domain, and CARM1 depletion, modulate the SMN-HuR interaction. In addition, using the Smn2B/- mouse model, we report that CARM1 levels are markedly increased in SMA muscles and that HuR fails to properly respond to muscle denervation, thereby affecting the regulation of its mRNA targets. Altogether, our results show a novel CARM1-HuR axis in the regulation of muscle differentiation and plasticity as well as in the aberrant regulation of this axis caused by the absence of SMN in SMA muscle. With the recent developments of therapeutics targeting motor neurons, this study further indicates the need for more global therapeutic approaches for SMA.
Collapse
Affiliation(s)
- Aymeric Ravel-Chapuis
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Eric Poulin Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Amir Haghandish
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Eric Poulin Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Nasibeh Daneshvar
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Eric Poulin Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Bernard J Jasmin
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Eric Poulin Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Jocelyn Côté
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Eric Poulin Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
383
|
Xu J, Richard S. Cellular pathways influenced by protein arginine methylation: Implications for cancer. Mol Cell 2021; 81:4357-4368. [PMID: 34619091 PMCID: PMC8571027 DOI: 10.1016/j.molcel.2021.09.011] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/24/2021] [Accepted: 09/08/2021] [Indexed: 02/07/2023]
Abstract
Arginine methylation is an influential post-translational modification occurring on histones, RNA binding proteins, and many other cellular proteins, affecting their function by altering their protein-protein and protein-nucleic acid interactions. Recently, a wealth of information has been gathered, implicating protein arginine methyltransferases (PRMTs), enzymes that deposit arginine methylation, in transcription, pre-mRNA splicing, DNA damage signaling, and immune signaling with major implications for cancer therapy, especially immunotherapy. This review summarizes this recent progress and the current state of PRMT inhibitors, some in clinical trials, as promising drug targets for cancer.
Collapse
Affiliation(s)
- Jian Xu
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA; Department of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, and Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| | - Stéphane Richard
- Segal Cancer Center, Lady Davis Institute for Medical Research, Gerald Bronfman Department of Oncology, and Departments of Medicine, Human Genetics, and Biochemistry, McGill University, Montréal, QC H3T 1E2, Canada.
| |
Collapse
|
384
|
Zhang J, Lu X, MoghaddamKohi S, Shi L, Xu X, Zhu WG. Histone lysine modifying enzymes and their critical roles in DNA double-strand break repair. DNA Repair (Amst) 2021; 107:103206. [PMID: 34411909 DOI: 10.1016/j.dnarep.2021.103206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 07/24/2021] [Accepted: 08/05/2021] [Indexed: 10/20/2022]
Abstract
Cells protect the integrity of the genome against DNA double-strand breaks through several well-characterized mechanisms including nonhomologous end-joining repair, homologous recombination repair, microhomology-mediated end-joining and single-strand annealing. However, aberrant DNA damage responses (DDRs) lead to genome instability and tumorigenesis. Clarification of the mechanisms underlying the DDR following lethal damage will facilitate the identification of therapeutic targets for cancer. Histones are small proteins that play a major role in condensing DNA into chromatin and regulating gene function. Histone modifications commonly occur in several residues including lysine, arginine, serine, threonine and tyrosine, which can be acetylated, methylated, ubiquitinated and phosphorylated. Of these, lysine modifications have been extensively explored during DDRs. Here, we focus on discussing the roles of lysine modifying enzymes involved in acetylation, methylation, and ubiquitination during the DDR. We provide a comprehensive understanding of the basis of potential epigenetic therapies driven by histone lysine modifications.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Biochemistry and Molecular Biology, School of Medicine, Shenzhen University, Shenzhen, 518055, China
| | - Xiaopeng Lu
- Department of Biochemistry and Molecular Biology, School of Medicine, Shenzhen University, Shenzhen, 518055, China
| | - Sara MoghaddamKohi
- Department of Biochemistry and Molecular Biology, School of Medicine, Shenzhen University, Shenzhen, 518055, China
| | - Lei Shi
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China.
| | - Xingzhi Xu
- Department of Cell Biology and Medical Genetics, School of Medicine, Shenzhen University, Shenzhen, 518055, China.
| | - Wei-Guo Zhu
- Department of Biochemistry and Molecular Biology, School of Medicine, Shenzhen University, Shenzhen, 518055, China.
| |
Collapse
|
385
|
Price OM, Thakur A, Ortolano A, Towne A, Velez C, Acevedo O, Hevel JM. Naturally occurring cancer-associated mutations disrupt oligomerization and activity of protein arginine methyltransferase 1 (PRMT1). J Biol Chem 2021; 297:101336. [PMID: 34688662 PMCID: PMC8592882 DOI: 10.1016/j.jbc.2021.101336] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 01/13/2023] Open
Abstract
Protein arginine methylation is a posttranslational modification catalyzed by the protein arginine methyltransferase (PRMT) enzyme family. Dysregulated protein arginine methylation is linked to cancer and a variety of other human diseases. PRMT1 is the predominant PRMT isoform in mammalian cells and acts in pathways regulating transcription, DNA repair, apoptosis, and cell proliferation. PRMT1 dimer formation, which is required for methyltransferase activity, is mediated by interactions between a structure called the dimerization arm on one monomer and a surface of the Rossman Fold of the other monomer. Given the link between PRMT1 dysregulation and disease and the link between PRMT1 dimerization and activity, we searched the Catalogue of Somatic Mutations in Cancer (COSMIC) database to identify potential inactivating mutations occurring in the PRMT1 dimerization arm. We identified three mutations that correspond to W215L, Y220N, and M224V substitutions in human PRMT1V2 (isoform 1) (W197L, Y202N, M206V in rat PRMT1V1). Using a combination of site-directed mutagenesis, analytical ultracentrifugation, native PAGE, and activity assays, we found that these conservative substitutions surprisingly disrupt oligomer formation and substantially impair both S-adenosyl-L-methionine (AdoMet) binding and methyltransferase activity. Molecular dynamics simulations suggest that these substitutions introduce novel interactions within the dimerization arm that lock it in a conformation not conducive to dimer formation. These findings provide a clear, if putative, rationale for the contribution of these mutations to impaired arginine methylation in cells and corresponding health consequences.
Collapse
Affiliation(s)
- Owen M Price
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah, USA
| | - Abhishek Thakur
- Department of Chemistry, University of Miami, Coral Gables, Florida, USA
| | - Ariana Ortolano
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah, USA
| | - Arianna Towne
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah, USA
| | - Caroline Velez
- Department of Chemistry, University of Miami, Coral Gables, Florida, USA
| | - Orlando Acevedo
- Department of Chemistry, University of Miami, Coral Gables, Florida, USA.
| | - Joan M Hevel
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah, USA.
| |
Collapse
|
386
|
Chen L, Zhang M, Fang L, Yang X, Cao N, Xu L, Shi L, Cao Y. Coordinated regulation of the ribosome and proteasome by PRMT1 in the maintenance of neural stemness in cancer cells and neural stem cells. J Biol Chem 2021; 297:101275. [PMID: 34619150 PMCID: PMC8546425 DOI: 10.1016/j.jbc.2021.101275] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/19/2021] [Accepted: 09/30/2021] [Indexed: 12/17/2022] Open
Abstract
Previous studies suggested that cancer cells resemble neural stem/progenitor cells in regulatory network, tumorigenicity, and differentiation potential, and that neural stemness might represent the ground or basal state of differentiation and tumorigenicity. The neural ground state is reflected in the upregulation and enrichment of basic cell machineries and developmental programs, such as cell cycle, ribosomes, proteasomes, and epigenetic factors, in cancers and in embryonic neural or neural stem cells. However, how these machineries are concertedly regulated is unclear. Here, we show that loss of neural stemness in cancer or neural stem cells via muscle-like differentiation or neuronal differentiation, respectively, caused downregulation of ribosome and proteasome components and major epigenetic factors, including PRMT1, EZH2, and LSD1. Furthermore, inhibition of PRMT1, an oncoprotein that is enriched in neural cells during embryogenesis, caused neuronal-like differentiation, downregulation of a similar set of proteins downregulated by differentiation, and alteration of subcellular distribution of ribosome and proteasome components. By contrast, PRMT1 overexpression led to an upregulation of these proteins. PRMT1 interacted with these components and protected them from degradation via recruitment of the deubiquitinase USP7, also known to promote cancer and enriched in embryonic neural cells, thereby maintaining a high level of epigenetic factors that maintain neural stemness, such as EZH2 and LSD1. Taken together, our data indicate that PRMT1 inhibition resulted in repression of cell tumorigenicity. We conclude that PRMT1 coordinates ribosome and proteasome activity to match the needs for high production and homeostasis of proteins that maintain stemness in cancer and neural stem cells.
Collapse
Affiliation(s)
- Lu Chen
- Research Institute of Nanjing University in Shenzhen, Shenzhen, China; MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, China; Jiangsu Key Laboratory of Molecular Medicine of the Medical School, Nanjing University, Nanjing, China
| | - Min Zhang
- Research Institute of Nanjing University in Shenzhen, Shenzhen, China; MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, China; Jiangsu Key Laboratory of Molecular Medicine of the Medical School, Nanjing University, Nanjing, China
| | - Lei Fang
- Jiangsu Key Laboratory of Molecular Medicine of the Medical School, Nanjing University, Nanjing, China
| | - Xiaoli Yang
- Research Institute of Nanjing University in Shenzhen, Shenzhen, China; MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, China; Jiangsu Key Laboratory of Molecular Medicine of the Medical School, Nanjing University, Nanjing, China
| | - Ning Cao
- Research Institute of Nanjing University in Shenzhen, Shenzhen, China; MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, China; Jiangsu Key Laboratory of Molecular Medicine of the Medical School, Nanjing University, Nanjing, China
| | - Liyang Xu
- MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, China; Jiangsu Key Laboratory of Molecular Medicine of the Medical School, Nanjing University, Nanjing, China
| | - Lihua Shi
- MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, China; Jiangsu Key Laboratory of Molecular Medicine of the Medical School, Nanjing University, Nanjing, China
| | - Ying Cao
- Research Institute of Nanjing University in Shenzhen, Shenzhen, China; MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, China; Jiangsu Key Laboratory of Molecular Medicine of the Medical School, Nanjing University, Nanjing, China.
| |
Collapse
|
387
|
Protein Arginine Methyltransferase 5 Promotes the Migration of AML Cells by Regulating the Expression of Leukocyte Immunoglobulin-Like Receptor B4. BIOMED RESEARCH INTERNATIONAL 2021; 2021:7329072. [PMID: 34712735 PMCID: PMC8548104 DOI: 10.1155/2021/7329072] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 09/24/2021] [Indexed: 12/22/2022]
Abstract
Acute myeloid leukemia (AML) is the most common type of acute leukemia in adults with poor prognosis. Especially for AML-M5 type, due to the strong cell migration ability, the possibility of extramedullary invasion is large and widespread, which leads to poor therapeutic effect. Previous studies have found that protein arginine methyltransferase 5 (PRMT5) could promote the proliferation and differentiation of leukemic cells in AML, but its regulation on the invasive ability of AML cells remains unclear. This study was designed to explore the role of PRMT5 in regulating the invasion of AML cells and to investigate the mechanisms. Patient samples were collected for detection of PRMT5 expression level. AML cells were used for exploring the function of PRMT5. The results of clinical samples showed that the expression of PRMT5 was significantly increased in newly diagnosed and recurrent AML patients, and the expression of leukocyte immunoglobulin-like receptor B4 (LILRB4) was positively correlated with the level of PRMT5. In the cell experiment in vitro, we found that when PRMT5 was knocked down, the invasion, migration, and adhesion capacities of MV-4-11 cells and THP-1 cells were decreased, and the mRNA and protein levels of LILRB4 were also decreased. Moreover, we screened related signaling pathways and found that PRMT5 affected the expression of downstream LILRB4 by activating mTOR pathway, which in turn enhanced the invasive ability of AML cells. Taken together, PRMT5 plays an important role in the invasion of AML, which acts via regulating the expression of LILRB4. PRMT5 could act as a potential therapeutic candidate for AML.
Collapse
|
388
|
Rajeev R, Dwivedi AP, Sinha A, Agarwaal V, Dev RR, Kar A, Khosla S. Epigenetic interaction of microbes with their mammalian hosts. J Biosci 2021. [PMID: 34728591 PMCID: PMC8550911 DOI: 10.1007/s12038-021-00215-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
The interaction of microbiota with its host has the ability to alter the cellular functions of both, through several mechanisms. Recent work, from many laboratories including our own, has shown that epigenetic mechanisms play an important role in the alteration of these cellular functions. Epigenetics broadly refers to change in the phenotype without a corresponding change in the DNA sequence. This change is usually brought by epigenetic modifications of the DNA itself, the histone proteins associated with the DNA in the chromatin, non-coding RNA or the modifications of the transcribed RNA. These modifications, also known as epigenetic code, do not change the DNA sequence but alter the expression level of specific genes. Microorganisms seem to have learned how to modify the host epigenetic code and modulate the host transcriptome in their favour. In this review, we explore the literature that describes the epigenetic interaction of bacteria, fungi and viruses, with their mammalian hosts.
Collapse
|
389
|
Li Z, Xu J, Song Y, Xin C, Liu L, Hou N, Teng Y, Cheng X, Wang T, Yu Z, Song J, Zhang Y, Wang J, Yang X. PRMT5 Prevents Dilated Cardiomyopathy via Suppression of Protein O-GlcNAcylation. Circ Res 2021; 129:857-871. [PMID: 34503365 DOI: 10.1161/circresaha.121.319456] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Zhenhua Li
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing Institute of Lifeomics, China (Z.L., J.X., C.X., L.L., N.H., Y.T., X.C., T.W., Z.Y., J.W., X.Y.)
| | - Jingping Xu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing Institute of Lifeomics, China (Z.L., J.X., C.X., L.L., N.H., Y.T., X.C., T.W., Z.Y., J.W., X.Y.)
| | - Yao Song
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital; NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education; Beijing Key Laboratory of Cardiovascular Receptors Research, China (Y.S., Y.Z.)
| | - Chong Xin
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing Institute of Lifeomics, China (Z.L., J.X., C.X., L.L., N.H., Y.T., X.C., T.W., Z.Y., J.W., X.Y.)
| | - Lantao Liu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing Institute of Lifeomics, China (Z.L., J.X., C.X., L.L., N.H., Y.T., X.C., T.W., Z.Y., J.W., X.Y.)
| | - Ning Hou
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing Institute of Lifeomics, China (Z.L., J.X., C.X., L.L., N.H., Y.T., X.C., T.W., Z.Y., J.W., X.Y.)
| | - Yan Teng
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing Institute of Lifeomics, China (Z.L., J.X., C.X., L.L., N.H., Y.T., X.C., T.W., Z.Y., J.W., X.Y.)
| | - Xuan Cheng
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing Institute of Lifeomics, China (Z.L., J.X., C.X., L.L., N.H., Y.T., X.C., T.W., Z.Y., J.W., X.Y.)
| | - Tianle Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing Institute of Lifeomics, China (Z.L., J.X., C.X., L.L., N.H., Y.T., X.C., T.W., Z.Y., J.W., X.Y.)
| | - Zhenyang Yu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing Institute of Lifeomics, China (Z.L., J.X., C.X., L.L., N.H., Y.T., X.C., T.W., Z.Y., J.W., X.Y.)
| | - Jiangping Song
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital; National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), China (J.S.)
| | - Youyi Zhang
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital; NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education; Beijing Key Laboratory of Cardiovascular Receptors Research, China (Y.S., Y.Z.)
| | - Jian Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing Institute of Lifeomics, China (Z.L., J.X., C.X., L.L., N.H., Y.T., X.C., T.W., Z.Y., J.W., X.Y.)
| | - Xiao Yang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing Institute of Lifeomics, China (Z.L., J.X., C.X., L.L., N.H., Y.T., X.C., T.W., Z.Y., J.W., X.Y.)
| |
Collapse
|
390
|
Motolani A, Martin M, Sun M, Lu T. The Structure and Functions of PRMT5 in Human Diseases. Life (Basel) 2021; 11:life11101074. [PMID: 34685445 PMCID: PMC8539453 DOI: 10.3390/life11101074] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/06/2021] [Accepted: 10/07/2021] [Indexed: 12/17/2022] Open
Abstract
Since the discovery of protein arginine methyltransferase 5 (PRMT5) and the resolution of its structure, an increasing number of papers have investigated and delineated the structural and functional role of PRMT5 in diseased conditions. PRMT5 is a type II arginine methyltransferase that catalyzes symmetric dimethylation marks on histones and non-histone proteins. From gene regulation to human development, PRMT5 is involved in many vital biological functions in humans. The role of PRMT5 in various cancers is particularly well-documented, and investigations into the development of better PRMT5 inhibitors to promote tumor regression are ongoing. Notably, emerging studies have demonstrated the pathological contribution of PRMT5 in the progression of inflammatory diseases, such as diabetes, cardiovascular diseases, and neurodegenerative disorders. However, more research in this direction is needed. Herein, we critically review the position of PRMT5 in current literature, including its structure, mechanism of action, regulation, physiological and pathological relevance, and therapeutic strategies.
Collapse
Affiliation(s)
- Aishat Motolani
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (A.M.); (M.M.); (M.S.)
| | - Matthew Martin
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (A.M.); (M.M.); (M.S.)
| | - Mengyao Sun
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (A.M.); (M.M.); (M.S.)
| | - Tao Lu
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (A.M.); (M.M.); (M.S.)
- Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Correspondence: ; Tel.: +1-317-278-0520
| |
Collapse
|
391
|
Marsden AJ, Riley DRJ, Barry A, Khalil JS, Guinn BA, Kemp NT, Rivero F, Beltran-Alvarez P. Inhibition of Arginine Methylation Impairs Platelet Function. ACS Pharmacol Transl Sci 2021; 4:1567-1577. [PMID: 34661075 DOI: 10.1021/acsptsci.1c00135] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Indexed: 11/28/2022]
Abstract
Protein arginine methyltransferases (PRMTs) catalyze the transfer of methyl groups to arginine residues in proteins. PRMT inhibitors are novel, promising drugs against cancer that are currently in clinical trials, which include oral administration of the drugs. However, off-target activities of systemically available PRMT inhibitors have not yet been investigated. In this work, we study the relevance of arginine methylation in platelets and investigate the effect of PRMT inhibitors on platelet function and on the expression of relevant platelet receptors. We show that (1) key platelet proteins are modified by arginine methylation; (2) incubation of human platelets with PRMT inhibitors for 4 h results in impaired capacity of platelets to aggregate in response to thrombin and collagen, with IC50 values in the μM range; and (3) treatment with PRMT inhibitors leads to decreased membrane expression and reduced activation of the critical platelet integrin αIIbβ3. Our contribution opens new avenues for research on arginine methylation in platelets, including the repurposing of arginine methylation inhibitors as novel antiplatelet drugs. We also recommend that current and future clinical trials with PRMT inhibitors consider any adverse effects associated with platelet inhibition of these emerging anticancer drugs.
Collapse
Affiliation(s)
| | - David R J Riley
- Centre for Atherothrombosis and Metabolic Disease, Hull York Medical School, Hull HU6 7RX, U.K
| | - Antonia Barry
- Department of Biomedical Sciences, University of Hull, Hull HU6 7RX, U.K
| | - Jawad S Khalil
- Centre for Atherothrombosis and Metabolic Disease, Hull York Medical School, Hull HU6 7RX, U.K
| | - Barbara-Ann Guinn
- Department of Biomedical Sciences, University of Hull, Hull HU6 7RX, U.K
| | - Neil T Kemp
- Department of Physics and Mathematics, University of Hull, Hull HU6 7RX, U.K
| | - Francisco Rivero
- Centre for Atherothrombosis and Metabolic Disease, Hull York Medical School, Hull HU6 7RX, U.K
| | | |
Collapse
|
392
|
Ruta V, Pagliarini V, Sette C. Coordination of RNA Processing Regulation by Signal Transduction Pathways. Biomolecules 2021; 11:biom11101475. [PMID: 34680108 PMCID: PMC8533259 DOI: 10.3390/biom11101475] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/01/2021] [Accepted: 10/05/2021] [Indexed: 02/06/2023] Open
Abstract
Signal transduction pathways transmit the information received from external and internal cues and generate a response that allows the cell to adapt to changes in the surrounding environment. Signaling pathways trigger rapid responses by changing the activity or localization of existing molecules, as well as long-term responses that require the activation of gene expression programs. All steps involved in the regulation of gene expression, from transcription to processing and utilization of new transcripts, are modulated by multiple signal transduction pathways. This review provides a broad overview of the post-translational regulation of factors involved in RNA processing events by signal transduction pathways, with particular focus on the regulation of pre-mRNA splicing, cleavage and polyadenylation. The effects of several post-translational modifications (i.e., sumoylation, ubiquitination, methylation, acetylation and phosphorylation) on the expression, subcellular localization, stability and affinity for RNA and protein partners of many RNA-binding proteins are highlighted. Moreover, examples of how some of the most common signal transduction pathways can modulate biological processes through changes in RNA processing regulation are illustrated. Lastly, we discuss challenges and opportunities of therapeutic approaches that correct RNA processing defects and target signaling molecules.
Collapse
Affiliation(s)
- Veronica Ruta
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, 00168 Rome, Italy; (V.R.); (V.P.)
- Organoids Facility, IRCCS Fondazione Policlinico Universitario Agostino Gemelli, 00168 Rome, Italy
| | - Vittoria Pagliarini
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, 00168 Rome, Italy; (V.R.); (V.P.)
- Organoids Facility, IRCCS Fondazione Policlinico Universitario Agostino Gemelli, 00168 Rome, Italy
| | - Claudio Sette
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, 00168 Rome, Italy; (V.R.); (V.P.)
- Laboratory of Neuroembryology, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy
- Correspondence:
| |
Collapse
|
393
|
Li J, Pan X, Ren Z, Li B, Liu H, Wu C, Dong X, de Vos P, Pan LL, Sun J. Protein arginine methyltransferase 2 (PRMT2) promotes dextran sulfate sodium-induced colitis by inhibiting the SOCS3 promoter via histone H3R8 asymmetric dimethylation. Br J Pharmacol 2021; 179:141-158. [PMID: 34599829 DOI: 10.1111/bph.15695] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 07/12/2021] [Accepted: 07/16/2021] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND AND PURPOSE There is emerging evidence for a critical role for epigenetic modifiers in the development of inflammatory bowel disease (IBD). Protein arginine methyltransferase 2 (PRMT2) is responsible for the methylation of arginine residues on histones and targets transcription factors involved in many cellular processes, including gene transcription, mRNA splicing, cell proliferation, and cell differentiation. In this study, the role and underlying mechanisms of PRMT2 in colitis were studied. EXPERIMENTAL APPROACH A mouse dextran sulfate sodium (DSS)-induced experimental colitis model was used to study PRMT2 in colitis. Lentivirus-induced PRMT2 silencing or overexpression in vivo was applied to address the role of PRMT2 in colitis. Detailed western blot and expression analysis were done to understand epigenetic changes induced by PRMT2 in colitis. KEY RESULTS PRMT2 is highly expressed in inflammatory bowel disease patients, in inflamed murine colon and in TNF-α stimulated murine gut epithelial cells. PRMT2 overexpression aggravates, while knockdown alleviates DSS-induced colitis, suggesting that PRMT2 is a pivotal mediator of colitis in mice. Mechanistically, PRMT2 mediates colitis by increasing repressive histone mark H3R8 asymmetric methylation (H3R8me2a) at the promoter region of the suppressor of cytokine signalling 3 promoter (SOCS3). Resultant inhibition of SOCS3 expression and inhibition of SOCS3-mediated degradation of TNF receptor associated factor 5 (TRAF5) via ubiquitination led to elevated TRAF5 expression and TRAF5-mediated downstream NF-κB/MAPK activation. CONCLUSION AND IMPLICATIONS Our study demonstrates that PRMT2 acts as a transcriptional co-activator for proinflammatory genes during colitis. Hence, targeting PRMT2 may provide a novel therapeutic approach for colitis.
Collapse
Affiliation(s)
- Jiahong Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R. China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R. China
| | - Xiaohua Pan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R. China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R. China
| | - Zhengnan Ren
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R. China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R. China
| | - Binbin Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R. China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R. China
| | - He Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R. China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R. China
| | - Chengfei Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R. China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R. China
| | - Xiaoliang Dong
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, P. R. China
| | - Paul de Vos
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Li-Long Pan
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, P. R. China
| | - Jia Sun
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R. China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R. China
| |
Collapse
|
394
|
Wang X, Qiu T, Wu Y, Yang C, Li Y, Du G, He Y, Liu W, Liu R, Chen CH, Shi Y, Pan J, Zhou J, Jiang D, Chen C. Arginine methyltransferase PRMT5 methylates and stabilizes KLF5 via decreasing its phosphorylation and ubiquitination to promote basal-like breast cancer. Cell Death Differ 2021; 28:2931-2945. [PMID: 33972717 PMCID: PMC8481478 DOI: 10.1038/s41418-021-00793-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 04/19/2021] [Accepted: 04/21/2021] [Indexed: 12/15/2022] Open
Abstract
Krüppel-like factor 5 (KLF5) is an oncogenic factor that is highly expressed in basal-like breast cancer (BLBC) and promotes cell proliferation, survival, migration, stemness, and tumor growth; however, its posttranslational modifications are poorly defined. Protein arginine methyltransferase 5 (PRMT5) is also an oncogene implicated in various carcinomas, including breast cancer. In this study, we found that PRMT5 interacts with KLF5 and catalyzes the di-methylation of KLF5 at Arginine 57 (R57) in a methyltransferase activity-dependent manner in BLBC cells. Depletion or pharmaceutical inhibition (using PJ-68) of PRMT5 decreased the expression of KLF5 and its downstream target genes in vitro and in vivo. PRMT5-induced KLF5R57me2 antagonizes GSK3β-mediated KLF5 phosphorylation and subsequently Fbw7-mediated KLF5 ubiquitination and coupled degradation. Functionally, PRMT5 promotes breast cancer stem cell maintenance and proliferation, at least partially, by stabilizing KLF5. PRMT5 and KLF5 protein levels were positively correlated in clinical BLBCs. Taken together, PRMT5 methylates KLF5 to prevent its phosphorylation, ubiquitination, and degradation, and thus promotes breast cancer stem cell maintenance and proliferation. These findings suggest that PRMT5 is a potential therapeutic target for BLBC.
Collapse
Affiliation(s)
- Xinye Wang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, China
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Kunming, Yunnan, China
- Kunming College of Life Sciences, University of Chinese Academy Sciences, Kunming, Yunnan, China
| | - Ting Qiu
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, China
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Kunming, Yunnan, China
- Kunming College of Life Sciences, University of Chinese Academy Sciences, Kunming, Yunnan, China
| | - Yingying Wu
- Department of Pathology, The First Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Chuanyu Yang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, China
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Kunming, Yunnan, China
| | - Yi Li
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA
| | - Guangshi Du
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, China
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Kunming, Yunnan, China
- Kunming College of Life Sciences, University of Chinese Academy Sciences, Kunming, Yunnan, China
| | - Yaohui He
- School of Pharmaceutical Science, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen, Fujian, China
| | - Wen Liu
- School of Pharmaceutical Science, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen, Fujian, China
| | - Rong Liu
- The First Affiliated Hospital, Peking University, Beijing, China
| | - Chuan-Huizi Chen
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Yujie Shi
- Department of Pathology, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Jingxuan Pan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Jia Zhou
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA
| | - Dewei Jiang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, China.
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Kunming, Yunnan, China.
- Kunming College of Life Sciences, University of Chinese Academy Sciences, Kunming, Yunnan, China.
| | - Ceshi Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, China.
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Kunming, Yunnan, China.
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
395
|
Zhang Y, Marechal N, van Haren MJ, Troffer-Charlier N, Cura V, Cavarelli J, Martin NI. Structural Studies Provide New Insights into the Role of Lysine Acetylation on Substrate Recognition by CARM1 and Inform the Design of Potent Peptidomimetic Inhibitors. Chembiochem 2021; 22:3469-3476. [PMID: 34569136 PMCID: PMC9293414 DOI: 10.1002/cbic.202100506] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 09/25/2021] [Indexed: 12/20/2022]
Abstract
The dynamic interplay of post‐translational modifications (PTMs) in chromatin provides a communication system for the regulation of gene expression. An increasing number of studies have highlighted the role that such crosstalk between PTMs plays in chromatin recognition. In this study, (bio)chemical and structural approaches were applied to specifically probe the impact of acetylation of Lys18 in the histone H3 tail peptide on peptide recognition by the protein methyltransferase coactivator‐associated arginine methyltransferase 1 (CARM1). Peptidomimetics that recapitulate the transition state of protein arginine N‐methyltransferases, were designed based on the H3 peptide wherein the target Arg17 was flanked by either a free or an acetylated lysine. Structural studies with these peptidomimetics and the catalytic domain of CARM1 provide new insights into the binding of the H3 peptide within the enzyme active site. While the co‐crystal structures reveal that lysine acetylation results in minor conformational differences for both CARM1 and the H3 peptide, acetylation of Lys18 does lead to additional interactions (Van der Waals and hydrogen bonding) and likely reduces the cost of desolvation upon binding, resulting in increased affinity. Informed by these findings a series of smaller peptidomimetics were also prepared and found to maintain potent and selective CARM1 inhibition. These findings provide new insights both into the mechanism of crosstalk between arginine methylation and lysine acetylation as well as towards the development of peptidomimetic CARM1 inhibitors.
Collapse
Affiliation(s)
- Yurui Zhang
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE, Leiden (The, Netherlands
| | - Nils Marechal
- Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Université de Strasbourg, CNRS UMR 7104, INSERM U 1258, Illkirch, 67404, France
| | - Matthijs J van Haren
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE, Leiden (The, Netherlands
| | - Nathalie Troffer-Charlier
- Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Université de Strasbourg, CNRS UMR 7104, INSERM U 1258, Illkirch, 67404, France
| | - Vincent Cura
- Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Université de Strasbourg, CNRS UMR 7104, INSERM U 1258, Illkirch, 67404, France
| | - Jean Cavarelli
- Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Université de Strasbourg, CNRS UMR 7104, INSERM U 1258, Illkirch, 67404, France
| | - Nathaniel I Martin
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE, Leiden (The, Netherlands
| |
Collapse
|
396
|
Arginine Methyltransferase PeRmtC Regulates Development and Pathogenicity of Penicilliumexpansum via Mediating Key Genes in Conidiation and Secondary Metabolism. J Fungi (Basel) 2021; 7:jof7100807. [PMID: 34682229 PMCID: PMC8537047 DOI: 10.3390/jof7100807] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 12/18/2022] Open
Abstract
Penicillium expansum is one of the most common and destructive post-harvest fungal pathogens that can cause blue mold rot and produce mycotoxins in fruit, leading to significant post-harvest loss and food safety concerns. Arginine methylation by protein arginine methyltransferases (PRMTs) modulates various cellular processes in many eukaryotes. However, the functions of PRMTs are largely unknown in post-harvest fungal pathogens. To explore their roles in P. expansum, we identified four PRMTs (PeRmtA, PeRmtB, PeRmtC, and PeRmt2). The single deletion of PeRmtA, PeRmtB, or PeRmt2 had minor or no impact on the P. expansum phenotype while deletion of PeRmtC resulted in decreased conidiation, delayed conidial germination, impaired pathogenicity and pigment biosynthesis, and altered tolerance to environmental stresses. Further research showed that PeRmtC could regulate two core regulatory genes, PeBrlA and PeAbaA, in conidiation, a series of backbone genes in secondary metabolism, and affect the symmetric ω-NG, N’G-dimethylarginine (sDMA) modification of proteins with molecular weights of primarily 16–17 kDa. Collectively, this work functionally characterized four PRMTs in P. expansum and showed the important roles of PeRmtC in the development, pathogenicity, and secondary metabolism of P. expansum.
Collapse
|
397
|
Daitoku H, Someya M, Kako K, Hayashi T, Tajima T, Haruki H, Sekiguchi N, Uetake T, Akimoto Y, Fukamizu A. siRNA screening identifies METTL9 as a histidine Nπ-methyltransferase that targets the proinflammatory protein S100A9. J Biol Chem 2021; 297:101230. [PMID: 34562450 PMCID: PMC8571522 DOI: 10.1016/j.jbc.2021.101230] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/16/2021] [Accepted: 09/16/2021] [Indexed: 11/18/2022] Open
Abstract
Protein methylation is one of the most common post-translational modifications observed in basic amino acid residues, including lysine, arginine, and histidine. Histidine methylation occurs on the distal or proximal nitrogen atom of its imidazole ring, producing two isomers: Nτ-methylhistidine or Nπ-methylhistidine. However, the biological significance of protein histidine methylation remains largely unclear owing in part to the very limited knowledge about its contributing enzymes. Here, we identified mammalian seven-β-strand methyltransferase METTL9 as a histidine Nπ-methyltransferase by siRNA screening coupled with methylhistidine analysis using LC–tandem MS. We demonstrated that METTL9 catalyzes Nπ-methylhistidine formation in the proinflammatory protein S100A9, but not that of myosin light chain kinase MYLK2, in vivo and in vitro. METTL9 does not affect the heterodimer formation of S100A9 and S100A8, although Nπ-methylation of S100A9 at His-107 overlaps with a zinc-binding site, attenuating its affinity for zinc. Given that S100A9 exerts an antimicrobial activity, probably by chelation of zinc essential for the growth of bacteria and fungi, METTL9-mediated S100A9 methylation might be involved in the innate immune response to bacterial and fungal infection. Thus, our findings suggest a functional consequence for protein histidine Nπ-methylation and may add a new layer of complexity to the regulatory mechanisms of post-translational methylation.
Collapse
Affiliation(s)
- Hiroaki Daitoku
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba, Ibaraki, Japan.
| | - Momoka Someya
- Master's Program in Agro-Bioresources Science and Technology, Degree Programs in Life and Earth Sciences, Graduate School of Sciences and Technology, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Koichiro Kako
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Takahiro Hayashi
- Doctoral Program in Life and Agricultural Sciences, Degree Programs in Life and Earth Sciences, Graduate School of Sciences and Technology, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Tatsuya Tajima
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Hikari Haruki
- Master's Program in Agro-Bioresources Science and Technology, Degree Programs in Life and Earth Sciences, Graduate School of Sciences and Technology, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Naoki Sekiguchi
- College of Agro-Biological Resource Sciences, School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Toru Uetake
- Master's Program in Agro-Bioresources Science and Technology, Degree Programs in Life and Earth Sciences, Graduate School of Sciences and Technology, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yuto Akimoto
- College of Agro-Biological Resource Sciences, School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Akiyoshi Fukamizu
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba, Ibaraki, Japan; The World Premier International Research Center Initiative (WPI), International Institute for Integrative Sleep Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan; AMED-CREST, Japan Agency for Medical Research and Development, Chiyoda-ku, Tokyo, Japan.
| |
Collapse
|
398
|
Maniaci M, Boffo FL, Massignani E, Bonaldi T. Systematic Analysis of the Impact of R-Methylation on RBPs-RNA Interactions: A Proteomic Approach. Front Mol Biosci 2021; 8:688973. [PMID: 34557518 PMCID: PMC8454774 DOI: 10.3389/fmolb.2021.688973] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 08/11/2021] [Indexed: 12/03/2022] Open
Abstract
RNA binding proteins (RBPs) bind RNAs through specific RNA-binding domains, generating multi-molecular complexes known as ribonucleoproteins (RNPs). Various post-translational modifications (PTMs) have been described to regulate RBP structure, subcellular localization, and interactions with other proteins or RNAs. Recent proteome-wide experiments showed that RBPs are the most representative group within the class of arginine (R)-methylated proteins. Moreover, emerging evidence suggests that this modification plays a role in the regulation of RBP-RNA interactions. Nevertheless, a systematic analysis of how changes in protein-R-methylation can affect globally RBPs-RNA interactions is still missing. We describe here a quantitative proteomics approach to profile global changes of RBP-RNA interactions upon the modulation of type I and II protein arginine methyltransferases (PRMTs). By coupling the recently described Orthogonal Organic Phase Separation (OOPS) strategy with the Stable Isotope Labelling with Amino acids in Cell culture (SILAC) and pharmacological modulation of PRMTs, we profiled RNA-protein interaction dynamics in dependence of protein-R-methylation. Data are available via ProteomeXchange with identifier PXD024601.
Collapse
Affiliation(s)
- Marianna Maniaci
- Laboratory of Nuclear Proteomics to Study Gene Expression Regulation in Cancer, European Institute of Oncology (IEO) IRCSS, Department of Experimental Oncology (DEO), Milan, Italy.,European School of Molecular Medicine (SEMM), Milan, Italy
| | - Francesca Ludovica Boffo
- Laboratory of Nuclear Proteomics to Study Gene Expression Regulation in Cancer, European Institute of Oncology (IEO) IRCSS, Department of Experimental Oncology (DEO), Milan, Italy
| | - Enrico Massignani
- Laboratory of Nuclear Proteomics to Study Gene Expression Regulation in Cancer, European Institute of Oncology (IEO) IRCSS, Department of Experimental Oncology (DEO), Milan, Italy.,European School of Molecular Medicine (SEMM), Milan, Italy
| | - Tiziana Bonaldi
- Laboratory of Nuclear Proteomics to Study Gene Expression Regulation in Cancer, European Institute of Oncology (IEO) IRCSS, Department of Experimental Oncology (DEO), Milan, Italy
| |
Collapse
|
399
|
Ganguly S, Arora I, Tollefsbol TO. Impact of Stilbenes as Epigenetic Modulators of Breast Cancer Risk and Associated Biomarkers. Int J Mol Sci 2021; 22:ijms221810033. [PMID: 34576196 PMCID: PMC8472542 DOI: 10.3390/ijms221810033] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/12/2021] [Accepted: 09/13/2021] [Indexed: 12/12/2022] Open
Abstract
With the recent advancement of genetic screening for testing susceptibility to mammary oncogenesis in women, the relevance of the gene−environment interaction has become progressively apparent in the context of aberrant gene expressions. Fetal exposure to external stressors, hormones, and nutrients, along with the inherited genome, impact its traits, including cancer susceptibility. Currently, there is increasing interest in the role of epigenetic biomarkers such as genomic methylation signatures, plasma microRNAs, and alterations in cell-signaling pathways in the diagnosis and primary prevention of breast cancer, as well as its prognosis. Polyphenols like natural stilbenes have been shown to be effective in chemoprevention by exerting cytotoxic effects that can stall cell proliferation. Besides possessing antioxidant properties against the DNA-damaging effects of reactive oxygen species, stilbenes have also been observed to modulate cell-signaling pathways. With the increasing trend of early-life screening for hereditary breast cancer risks, the potency of different phytochemicals in harnessing the epigenetic biomarkers of breast cancer risk demand more investigation. This review will explore means of exploiting the abilities of stilbenes in altering the underlying factors that influence breast cancer risk, as well as the appearance of associated biomarkers.
Collapse
Affiliation(s)
- Sebanti Ganguly
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (S.G.); (I.A.)
| | - Itika Arora
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (S.G.); (I.A.)
| | - Trygve O. Tollefsbol
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (S.G.); (I.A.)
- Integrative Center for Aging Research, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Nutrition Obesity Research Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Cell Senescence Culture Facility, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Correspondence: ; Tel.: +1-205-934-4573
| |
Collapse
|
400
|
Harrison EE, Carpenter BA, St Louis LE, Mullins AG, Waters ML. Development of "Imprint-and-Report" Dynamic Combinatorial Libraries for Differential Sensing Applications. J Am Chem Soc 2021; 143:14845-14854. [PMID: 34463091 DOI: 10.1021/jacs.1c07068] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Sensor arrays using synthetic receptors have found great utility in analyte detection, resulting from their ability to distinguish analytes based on differential signals via indicator displacement. However, synthesis and characterization of receptors for an array remain a bottleneck in the field. Receptor discovery has been streamlined using dynamic combinatorial libraries (DCLs), but the resulting receptors have primarily been utilized in isolation rather than as part of the entire library, with only a few examples that make use of the complexity of a library of receptors. Herein, we demonstrate a unique sensor array approach using "imprint-and-report" DCLs that obviates the need for receptor synthesis and isolation. This strategy leverages information stored in DCLs in the form of differential library speciation to provide a high-throughput method for both developing a sensor array and analyzing data for analyte differentiation. First, each DCL is templated with analyte to give an imprinted library, followed by in situ fluorescent indicator displacement analysis. We further demonstrate that the reverse strategy, imprinting with the fluorescent reporter followed by displacement with each analyte, provides a more sensitive method for differentiating analytes. We describe the development of this differential sensing system using the methylated Arg and Lys post-translational modifications (PTMs). Altogether, 19 combinations of 3-5 DCL data sets that discriminate all 7 PTMs were identified. Thus, a comparable sensor array workflow results in a larger payoff due to the immense information stored within multiple noncovalent networks.
Collapse
Affiliation(s)
- Emily E Harrison
- Department of Chemistry, CB 3290, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Benjamin A Carpenter
- Department of Chemistry, CB 3290, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Lauren E St Louis
- Department of Chemistry, CB 3290, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Alexandria G Mullins
- Department of Chemistry, CB 3290, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Marcey L Waters
- Department of Chemistry, CB 3290, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|