351
|
Glycans as receptors for influenza pathogenesis. Glycoconj J 2010; 27:561-70. [PMID: 20734133 PMCID: PMC3407351 DOI: 10.1007/s10719-010-9303-4] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2008] [Revised: 10/15/2008] [Accepted: 07/18/2010] [Indexed: 11/16/2022]
Abstract
Influenza A viruses, members of the Orthomyxoviridae family, are responsible for annual seasonal influenza epidemics and occasional global pandemics. The binding of viral coat glycoprotein hemagglutinin (HA) to sialylated glycan receptors on host epithelial cells is the critical initial step in the infection and transmission of these viruses. Scientists believe that a switch in the binding specificity of HA from Neu5Acα2-3Gal linked (α2-3) to Neu5Acα2-6Gal linked (α2-6) glycans is essential for the crossover of the viruses from avian to human hosts. However, studies have shown that the classification of glycan binding preference of HA based on sialic acid linkage alone is insufficient to establish a correlation between receptor specificity of HA and the efficient transmission of influenza A viruses. A recent study reported extensive diversity in the structure and composition of α2-6 glycans (which goes beyond the sialic acid linkage) in human upper respiratory epithelia and identified different glycan structural topologies. Biochemical examination of the multivalent HA binding to these diverse sialylated glycan structures also demonstrated that high affinity binding of HA to α2-6 glycans with a characteristic umbrella-like structural topology is critical for efficient human adaptation and human-human transmission of influenza A viruses. This review summarizes studies which suggest a new paradigm for understanding the role of the structure of sialylated glycan receptors in influenza virus pathogenesis.
Collapse
|
352
|
Bovine colostrum is superior to enriched formulas in stimulating intestinal function and necrotising enterocolitis resistance in preterm pigs. Br J Nutr 2010; 105:44-53. [DOI: 10.1017/s0007114510003168] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Milk contains immunomodulatory compounds that may be important to protect the immature intestine in preterm neonates from harmful inflammatory reactions involved in disorders like necrotising enterocolitis (NEC). We hypothesised that bovine colostrum and milk formulas enriched with sialic acids (SL), gangliosides (Gang) or osteopontin (OPN) would improve gastrointestinal function and NEC resistance in preterm neonates. Forty-seven caesarean-delivered preterm pigs were given total parenteral nutrition for 2 d followed by 1·5 d of enteral feeding. In Expt 1, a control formula was compared with an OPN-enriched formula (n 13), while Expt 2 compared a control formula with bovine colostrum or formulas enriched with Gang or SL (n 4–6). OPN enrichment decreased NEC severity relative to control formula (P < 0·01), without any significant effects on NEC incidence, digestive enzyme activities and hexose absorption. Neither SL- nor Gang-enriched formulas improved NEC resistance or digestive functions, while all the intestinal functional parameters were significantly improved in pigs fed bovine colostrum, relative to formula. The effects in vivo were supported in vitro by bacteria- and dose-dependent modulation by colostrum whey of the cytokine response from bacteria-stimulated murine bone marrow-derived dendritic cells (DC). In conclusion, OPN had only moderate NEC-protective effects, while formulas enriched with Gang or SL were ineffective. The observed modulation of DC cytokine response by bovine colostrum whey in vitro may be due to a synergistic action of various milk bioactives, and it may explain its beneficial effects on NEC development and intestinal function in a piglet model of preterm infants.
Collapse
|
353
|
Barrabés S, Sarrats A, Fort E, De Llorens R, Rudd PM, Peracaula R. Effect of sialic acid content on glycoprotein pI analyzed by two-dimensional electrophoresis. Electrophoresis 2010; 31:2903-12. [DOI: 10.1002/elps.200900764] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
354
|
Stevens J, Chen LM, Carney PJ, Garten R, Foust A, Le J, Pokorny BA, Manojkumar R, Silverman J, Devis R, Rhea K, Xu X, Bucher DJ, Paulson J, Cox NJ, Klimov A, Donis RO. Receptor specificity of influenza A H3N2 viruses isolated in mammalian cells and embryonated chicken eggs. J Virol 2010; 84:8287-99. [PMID: 20519409 PMCID: PMC2916524 DOI: 10.1128/jvi.00058-10] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Accepted: 05/18/2010] [Indexed: 11/20/2022] Open
Abstract
Isolation of human subtype H3N2 influenza viruses in embryonated chicken eggs yields viruses with amino acid substitutions in the hemagglutinin (HA) that often affect binding to sialic acid receptors. We used a glycan array approach to analyze the repertoire of sialylated glycans recognized by viruses from the same clinical specimen isolated in eggs or cell cultures. The binding profiles of whole virions to 85 sialoglycans on the microarray allowed the categorization of cell isolates into two groups. Group 1 cell isolates displayed binding to a restricted set of alpha2-6 and alpha2-3 sialoglycans, whereas group 2 cell isolates revealed receptor specificity broader than that of their egg counterparts. Egg isolates from group 1 showed binding specificities similar to those of cell isolates, whereas group 2 egg isolates showed a significantly reduced binding to alpha2-6- and alpha2-3-type receptors but retained substantial binding to specific O- and N-linked alpha2-3 glycans, including alpha2-3GalNAc and fucosylated alpha2-3 glycans (including sialyl Lewis x), both of which may be important receptors for H3N2 virus replication in eggs. These results revealed an unexpected diversity in receptor binding specificities among recent H3N2 viruses, with distinct patterns of amino acid substitution in the HA occurring upon isolation and/or propagation in eggs. These findings also suggest that clinical specimens containing viruses with group 1-like receptor binding profiles would be less prone to undergoing receptor binding or antigenic changes upon isolation in eggs. Screening cell isolates for appropriate receptor binding properties might help focus efforts to isolate the most suitable viruses in eggs for production of antigenically well-matched influenza vaccines.
Collapse
Affiliation(s)
- James Stevens
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, Department of Microbiology and Immunology, New York Medical College, Valhalla, New York, Departments of Chemical Physiology and Molecular Biology, The Scripps Research Institute, La Jolla, California
| | - Li-Mei Chen
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, Department of Microbiology and Immunology, New York Medical College, Valhalla, New York, Departments of Chemical Physiology and Molecular Biology, The Scripps Research Institute, La Jolla, California
| | - Paul J. Carney
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, Department of Microbiology and Immunology, New York Medical College, Valhalla, New York, Departments of Chemical Physiology and Molecular Biology, The Scripps Research Institute, La Jolla, California
| | - Rebecca Garten
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, Department of Microbiology and Immunology, New York Medical College, Valhalla, New York, Departments of Chemical Physiology and Molecular Biology, The Scripps Research Institute, La Jolla, California
| | - Angie Foust
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, Department of Microbiology and Immunology, New York Medical College, Valhalla, New York, Departments of Chemical Physiology and Molecular Biology, The Scripps Research Institute, La Jolla, California
| | - Jianhua Le
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, Department of Microbiology and Immunology, New York Medical College, Valhalla, New York, Departments of Chemical Physiology and Molecular Biology, The Scripps Research Institute, La Jolla, California
| | - Barbara A. Pokorny
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, Department of Microbiology and Immunology, New York Medical College, Valhalla, New York, Departments of Chemical Physiology and Molecular Biology, The Scripps Research Institute, La Jolla, California
| | - Ramanunninair Manojkumar
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, Department of Microbiology and Immunology, New York Medical College, Valhalla, New York, Departments of Chemical Physiology and Molecular Biology, The Scripps Research Institute, La Jolla, California
| | - Jeanmarie Silverman
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, Department of Microbiology and Immunology, New York Medical College, Valhalla, New York, Departments of Chemical Physiology and Molecular Biology, The Scripps Research Institute, La Jolla, California
| | - Rene Devis
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, Department of Microbiology and Immunology, New York Medical College, Valhalla, New York, Departments of Chemical Physiology and Molecular Biology, The Scripps Research Institute, La Jolla, California
| | - Karen Rhea
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, Department of Microbiology and Immunology, New York Medical College, Valhalla, New York, Departments of Chemical Physiology and Molecular Biology, The Scripps Research Institute, La Jolla, California
| | - Xiyan Xu
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, Department of Microbiology and Immunology, New York Medical College, Valhalla, New York, Departments of Chemical Physiology and Molecular Biology, The Scripps Research Institute, La Jolla, California
| | - Doris J. Bucher
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, Department of Microbiology and Immunology, New York Medical College, Valhalla, New York, Departments of Chemical Physiology and Molecular Biology, The Scripps Research Institute, La Jolla, California
| | - James Paulson
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, Department of Microbiology and Immunology, New York Medical College, Valhalla, New York, Departments of Chemical Physiology and Molecular Biology, The Scripps Research Institute, La Jolla, California
| | - Nancy J. Cox
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, Department of Microbiology and Immunology, New York Medical College, Valhalla, New York, Departments of Chemical Physiology and Molecular Biology, The Scripps Research Institute, La Jolla, California
| | - Alexander Klimov
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, Department of Microbiology and Immunology, New York Medical College, Valhalla, New York, Departments of Chemical Physiology and Molecular Biology, The Scripps Research Institute, La Jolla, California
| | - Ruben O. Donis
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, Department of Microbiology and Immunology, New York Medical College, Valhalla, New York, Departments of Chemical Physiology and Molecular Biology, The Scripps Research Institute, La Jolla, California
| |
Collapse
|
355
|
Chandrasekharan K, Yoon JH, Xu Y, deVries S, Camboni M, Janssen PML, Varki A, Martin PT. A human-specific deletion in mouse Cmah increases disease severity in the mdx model of Duchenne muscular dystrophy. Sci Transl Med 2010; 2:42ra54. [PMID: 20668298 PMCID: PMC2950110 DOI: 10.1126/scitranslmed.3000692] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
During the evolution of humans, an inactivating deletion was introduced in the CMAH (cytidine monophosphate-sialic acid hydroxylase) gene, which eliminated biosynthesis of the common mammalian sialic acid N-glycolylneuraminic acid from all human cells. We found that this human-specific change in sialylation capacity contributes to the marked discrepancy in phenotype between the mdx mouse model for Duchenne muscular dystrophy (DMD) and the human disease. When compared to human patients with DMD, mdx mice show reduced severity or slower development of clinically relevant disease phenotypes, despite lacking dystrophin protein in almost all muscle cells. This is especially true for the loss of ambulation, cardiac and respiratory muscle weakness, and decreased life span, all of which are major phenotypes contributing to DMD morbidity and mortality. These phenotypes occur at an earlier age or to a greater degree in mdx mice that also carry a human-like mutation in the mouse Cmah gene, possibly as a result of reduced strength and expression of the dystrophin-associated glycoprotein complex and increased activation of complement. Cmah-deficient mdx mice are a small-animal model for DMD that better approximates the human glycome and its contributions to muscular dystrophy.
Collapse
Affiliation(s)
- Kumaran Chandrasekharan
- Center for Gene Therapy, Research Institute at Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH 43205, USA
| | | | | | | | | | | | | | | |
Collapse
|
356
|
Permanganate Oxidation Revisited: Synthesis of 3-Deoxy-2-uloses via Indium-Mediated Chain Elongation of Carbohydrates. European J Org Chem 2010. [DOI: 10.1002/ejoc.201000623] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
357
|
Molecular and clinical dissection of CD24 antibody specificity by a comprehensive comparative analysis. J Transl Med 2010; 90:1102-16. [PMID: 20351695 DOI: 10.1038/labinvest.2010.70] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
CD24 is a small, highly glycosylated cell surface protein that is linked to the membrane through a glycosyl-phosphatidylinositol anchor. It is overexpressed in many human carcinomas and its expression is linked to bad prognosis. Lately, lack or low expression of CD24 was used to identify tumor stem cells resulting in conflicting data on the usefulness of this marker. In many immunohistochemical studies, the mAb SN3b was used but the epitope and specificity of this antibody have never been thoroughly investigated. In other studies based mainly on cytofluorographic analysis, the mAb ML-5 was applied. In this study, we compared the epitope of mAb SN3b to the CD24 mAbs SWA-11 and ML-5 that both bind to the core protein of CD24. Using tissue microarrays and affinity-purified CD24 glycoforms, we observed only a partial overlap of SN3b and SWA11 reactivity. The mAb SN3b recognizes sialic acid most likely on O-linked glycans that can occur independently of the CD24 protein backbone. The SN3b epitope was not related to common sialylated cancer-associated glycan structures. Both SN3b epitope positive or negative CD24 glycoforms supported the binding of P-selectin and Siglec-5. In breast cancer, the SN3b reactivity was associated with bad prognosis, whereas SWA11 was not. In renal cell cancer, the SN3b epitope was completely absent but SWA11 reactivity was a prognostic factor. Our results shed new light on the tumorbiological role of CD24 and resolve discrepancies in the literature related to the use of different CD24 mAbs.
Collapse
|
358
|
Beddoe T, Paton AW, Le Nours J, Rossjohn J, Paton JC. Structure, biological functions and applications of the AB5 toxins. Trends Biochem Sci 2010; 35:411-8. [PMID: 20202851 PMCID: PMC2929601 DOI: 10.1016/j.tibs.2010.02.003] [Citation(s) in RCA: 179] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Revised: 02/04/2010] [Accepted: 02/04/2010] [Indexed: 02/07/2023]
Abstract
AB(5) toxins are important virulence factors for several major bacterial pathogens, including Bordetella pertussis, Vibrio cholerae, Shigella dysenteriae and at least two distinct pathotypes of Escherichia coli. The AB(5) toxins are so named because they comprise a catalytic A-subunit, which is responsible for disruption of essential host functions, and a pentameric B-subunit that binds to specific glycan receptors on the target cell surface. The molecular mechanisms by which the AB(5) toxins cause disease have been largely unravelled, including recent insights into a novel AB(5) toxin family, subtilase cytotoxin (SubAB). Furthermore, AB(5) toxins have become a valuable tool for studying fundamental cellular functions, and are now being investigated for potential applications in the clinical treatment of human diseases.
Collapse
Affiliation(s)
- Travis Beddoe
- The Protein Crystallography Unit, ARC Centre of Excellence in Structural and Functional Microbial Genomics, Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - Adrienne W. Paton
- Research Centre for Infectious Diseases, School of Molecular and Biomedical Science, University of Adelaide, South Australia 5005, Australia
| | - Jérôme Le Nours
- The Protein Crystallography Unit, ARC Centre of Excellence in Structural and Functional Microbial Genomics, Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - Jamie Rossjohn
- The Protein Crystallography Unit, ARC Centre of Excellence in Structural and Functional Microbial Genomics, Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - James C. Paton
- Research Centre for Infectious Diseases, School of Molecular and Biomedical Science, University of Adelaide, South Australia 5005, Australia
| |
Collapse
|
359
|
Redondo MJ, Alvarez-Pellitero P. Carbohydrate patterns in the digestive tract of Sparus aurata L. and Psetta maxima (L.) (Teleostei) parasitized by Enteromyxum leei and E. scophthalmi (Myxozoa). Parasitol Int 2010; 59:445-53. [PMID: 20601108 DOI: 10.1016/j.parint.2010.06.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2009] [Revised: 05/12/2010] [Accepted: 06/14/2010] [Indexed: 02/02/2023]
Abstract
The influence of Enteromyxum spp. infections on the carbohydrate patterns of the digestive tract of gilthead sea bream (GSB) Sparus aurata L. and turbot (TB) Psetta maxima (L.) has been studied. Histochemical stainings to differentiate the types of mucins and lectin-binding assays to detect terminal carbohydrate residues were applied to histological sections of GSB and TB uninfected or infected by Enteromyxum leei and E. scophthalmi, respectively. The number of intestinal GC decreased in severely infected fish in both parasitoses, though changes in mucin patterns were limited to the decrease in the staining intensity for acidic mucins in infected GSB. The TB stomach and intestine lacked histochemically detectable acidic mucins, or sialic acid detectable by SNA, in contrast with their abundance in GSB. Glucose/mannose, fucose and GlcNAc residues were less abundant in both infected hosts with respect to uninfected fish. In contrast, D-Gal and D-GalNAc moieties (detectable by BSL I) increased in most parts of E. scophthalmi-infected TB while decreasing (oesophagus) or remaining unchanged (intestine) in E. leei-infected GSB. The decreasing in the expression of acidic mucins and of sialic acid detectable by SNA in E. leei-infected GSB is remarkable. Differences in the carbohydrate patterns between both hosts could aid to explain the differences in the severity of both enteromyxoses. In addition, the changes induced by Enteromyxum spp. infections in the digestive tract of GSB and TB suggest a role of terminal carbohydrate residues in the parasite-host interaction.
Collapse
Affiliation(s)
- María J Redondo
- Instituto de Acuicultura de Torre de la Sal, Consejo Superior de Investigaciones Científicas, Ribera de Cabanes, Castellón, Spain.
| | | |
Collapse
|
360
|
Biotechnological production and applications of N-acetyl-d-neuraminic acid: current state and perspectives. Appl Microbiol Biotechnol 2010; 87:1281-9. [DOI: 10.1007/s00253-010-2700-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Revised: 05/23/2010] [Accepted: 05/25/2010] [Indexed: 11/25/2022]
|
361
|
Abstract
The safety and efficacy of protein therapeutics are limited by three interrelated pharmaceutical issues, in vitro and in vivo instability, immunogenicity and shorter half-lives. Novel drug modifications for overcoming these issues are under investigation and include covalent attachment of poly(ethylene glycol) (PEG), polysialic acid, or glycolic acid, as well as developing new formulations containing nanoparticulate or colloidal systems (e.g., liposomes, polymeric microspheres, polymeric nanoparticles). Such strategies have the potential to develop as next generation protein therapeutics. This review includes a general discussion on these delivery approaches.
Collapse
Affiliation(s)
- Dipak S. Pisal
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Amherst, NY14260, USA
| | - Matthew P. Kosloski
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Amherst, NY14260, USA
| | - Sathy V. Balu-Iyer
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Amherst, NY14260, USA
| |
Collapse
|
362
|
Multiple pathways involved in porcine parvovirus cellular entry and trafficking toward the nucleus. J Virol 2010; 84:7782-92. [PMID: 20484503 DOI: 10.1128/jvi.00479-10] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Porcine parvovirus (PPV) is a major cause of reproductive failure in swine. The mechanisms implicated in the first steps of infection that lead to the delivery of the PPV genome to the nucleus are poorly understood. In the present work, a panel of chemical inhibitors was used to dissect the cellular mechanisms involved in establishing a PPV infection. The results demonstrated that following binding to sialic acids on cell surface glycoproteins, the virus used both clathrin-mediated endocytosis and macropinocytosis pathways to gain access into cells. Virus obtained from infected cells was present either as isolated particles or as aggregates, and these two forms could be separated by low-speed centrifugation. Isolated and purified particles strongly preferred entry by clathrin-mediated endocytosis, whereas aggregates clearly favored macropinocytosis. Subsequent endosomal acidification and traffic to the late endosomes were also shown to be essential for infection. The microtubule network was found to be important during the first 10 h of infection, whereas an intact actin network was required for almost the whole viral cycle. Proteasome processing was found to be essential, and capsid proteins were ubiquitinated relatively early during infection. Taken together, these results provided new insights into the first steps of PPV infection, including the use of alternative entry pathways, unique among members of this viral family.
Collapse
|
363
|
Nystedt J, Anderson H, Hirvonen T, Impola U, Jaatinen T, Heiskanen A, Blomqvist M, Satomaa T, Natunen J, Saarinen J, Lehenkari P, Valmu L, Laine J. Human CMP-N-acetylneuraminic acid hydroxylase is a novel stem cell marker linked to stem cell-specific mechanisms. Stem Cells 2010; 28:258-67. [PMID: 19890979 DOI: 10.1002/stem.250] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Human stem cells contain substantial amounts of the xenoantigen N-glycolylneuraminic acid (Neu5Gc), although the levels of Neu5Gc are low or undetectable in human body fluids and most other human tissues. The lack of Neu5Gc in human tissues has been previously explained by the loss of hydroxylase activity of the human CMP-N-acetylneuraminic acid hydroxylase (CMAH) protein caused by a genetic error in the human Cmah gene. We thus wanted to investigate whether the human redundant Cmah gene could still function in stem cell-specific processes. In this study, we show that CMAH gene expression is significantly upregulated in the adult stem cell populations studied, both of hematopoietic and mesenchymal origin, and identify CMAH as a novel stem cell marker. The CMAH content co-occurs with higher levels of Neu5Gc within stem cells as measured by mass spectrometric profiling. It seems that despite being enzymatically inactive, human CMAH may upregulate the Neu5Gc content of cells by enhancing Neu5Gc uptake from exogenous sources. Furthermore, exposure to exogenous Neu5Gc caused rapid phosphorylation of beta-catenin in both CMAH overexpressing cells and bone marrow-derived mesenchymal stem cells, thereby inactivating Wnt/beta-catenin signaling. The data demonstrate the first molecular evidence for xenoantigen Neu5Gc-induced alteration of crucial stem cell-specific signaling systems for the maintenance of self renewal. These results add further emphasis to the crucial need for completely xenofree culturing conditions for human stem cells.
Collapse
Affiliation(s)
- Johanna Nystedt
- Research and Development, Finnish Red Cross Blood Service, Helsinki, Finland.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
364
|
Lectin Binding Assays for In-Process Monitoring of Sialylation in Protein Production. Mol Biotechnol 2010; 45:248-56. [DOI: 10.1007/s12033-010-9272-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
365
|
Leth-Larsen R, Lund RR, Ditzel HJ. Plasma membrane proteomics and its application in clinical cancer biomarker discovery. Mol Cell Proteomics 2010; 9:1369-82. [PMID: 20382631 DOI: 10.1074/mcp.r900006-mcp200] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Plasma membrane proteins that are exposed on the cell surface have important biological functions, such as signaling into and out of the cells, ion transport, and cell-cell and cell-matrix interactions. The expression level of many of the plasma membrane proteins involved in these key functions is altered on cancer cells, and these proteins may also be subject to post-translational modification, such as altered phosphorylation and glycosylation. Additional protein alterations on cancer cells confer metastatic capacities, and some of these cell surface proteins have already been successfully targeted by protein drugs, such as human antibodies, that have enhanced survival of several groups of cancer patients. The combination of novel analytical approaches and subcellular fractionation procedures has made it possible to study the plasma membrane proteome in more detail, which will elucidate cancer biology, particularly metastasis, and guide future development of novel drug targets. The technical advances in plasma membrane proteomics and the consequent biological revelations will be discussed herein. Many of the advances have been made using cancer cell lines, but because the main goal of this research is to improve individualized treatment and increase cancer patient survival, further development is crucial to direct analysis of clinically relevant patient samples. These efforts include optimized specimen handling and preparation as well as improved proteomics platforms. Identification of potentially useful proteomics-based biomarkers must be validated in larger, well defined retrospective and prospective clinical studies, and these combined efforts should result in identification of biomarkers that will greatly improve early detection, prognosis, and prediction of treatment response.
Collapse
Affiliation(s)
- Rikke Leth-Larsen
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, JB Winsløwsvej 25.3, 5000 Odense C, Denmark
| | | | | |
Collapse
|
366
|
Lin JS, Huang JH, Hung LY, Wu SY, Wu-Hsieh BA. Distinct roles of complement receptor 3, Dectin-1, and sialic acids in murine macrophage interaction with Histoplasma yeast. J Leukoc Biol 2010; 88:95-106. [PMID: 20360401 DOI: 10.1189/jlb.1109717] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The yeast cells of dimorphic fungal pathogen Histoplasma reside primarily within the macrophages of an infected host; the interaction between the yeast and macrophage has a profound impact on host defense against the fungus. We used blocking antibodies and saccharides to identify the receptors that participate in the phagocytosis of and the cytokine response to Histoplasma. The phagocytosis and cytokine response results show that sialic acids on the macrophages were involved in the interaction between macrophages and Histoplasma. CR3, although not the only receptor involved, was responsible for phagocytosis and cytokine response. It is unclear which receptors other than CR3 are responsible for phagocytosis, but we did rule out the participation of TLR2, TLR4, MR, DC-SIGN/SIGNR1, FcgammaR, VLA-5, and Dectin-1. Even though Dectin-1 did not participate in phagocytosis, it collaborated with CR3 in the cytokine response to Histoplasma, suggesting that in the presence of phagocytic receptors, Histoplasma triggers cytokine signals through Dectin-1. Moreover, macrophage phagocytosis of and cytokine response to Histoplasma are Syk kinase-dependent. Our study delineated the distinct roles of CR3, Dectin-1, and sialic acids in the interaction with Histoplasma and suggested that multiple receptor use might be important to host defense against Histoplasma.
Collapse
Affiliation(s)
- Jr-Shiuan Lin
- Graduate Institute of Immunology, National Taiwan University College of Medicine, Taipei, Taiwan
| | | | | | | | | |
Collapse
|
367
|
Abstract
This study illustrates the utility of tetraplex stable isotope coded tags in mass spectrometric glycomics using three carbohydrate classes. The teteraplex tags allow for the direct comparison of glycan compositions within four samples using capillary scale hydrophilic interaction chromatography with online mass spectrometry. In addition, the ability to discern glycan structural isomers is shown based on the tandem mass spectra of each composition using nanospray ionization. Results are shown for chondroitin sulfate proteoglycans, low molecular weight heparins, full length heparins, and N-glycans from alpha-1-acid glycoproteins from four mammalian species. The data demonstrate the value of the tetraplex stable isotope tagging approach for producing high-quality glycomics compositional profiling and fine structural analysis.
Collapse
Affiliation(s)
- Michael J. Bowman
- Boston University School of Medicine, Department of Biochemistry, Center for Biomedical Mass Spectrometry, Boston, MA 02118
| | - Joseph Zaia
- Boston University School of Medicine, Department of Biochemistry, Center for Biomedical Mass Spectrometry, Boston, MA 02118
| |
Collapse
|
368
|
Freire-de-Lima L, Alisson-Silva F, Carvalho ST, Takiya CM, Rodrigues MM, DosReis GA, Mendonça-Previato L, Previato JO, Todeschini AR. Trypanosoma cruzi subverts host cell sialylation and may compromise antigen-specific CD8+ T cell responses. J Biol Chem 2010; 285:13388-96. [PMID: 20106975 DOI: 10.1074/jbc.m109.096305] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Upon activation, cytotoxic CD8(+) T lymphocytes are desialylated exposing beta-galactose residues in a physiological change that enhances their effector activity and that can be monitored on the basis of increased binding of the lectin peanut agglutinin. Herein, we investigated the impact of sialylation mediated by trans-sialidase, a specific and unique Trypanosoma transglycosylase for sialic acid, on CD8(+) T cell response of mice infected with T. cruzi. Our data demonstrate that T. cruzi uses its trans-sialidase enzyme to resialylate the CD8(+) T cell surface, thereby dampening antigen-specific CD8(+) T cell response that might favor its own persistence in the mammalian host. Binding of the monoclonal antibody S7, which recognizes sialic acid-containing epitopes on the 115-kDa isoform of CD43, was augmented on CD8(+) T cells from ST3Gal-I-deficient infected mice, indicating that CD43 is one sialic acid acceptor for trans-sialidase activity on the CD8(+) T cell surface. The cytotoxic activity of antigen-experienced CD8(+) T cells against the immunodominant trans-sialidase synthetic peptide IYNVGQVSI was decreased following active trans-sialidase-mediated resialylation in vitro and in vivo. Inhibition of the parasite's native trans-sialidase activity during infection strongly decreased CD8(+) T cell sialylation, reverting it to the glycosylation status expected in the absence of parasite manipulation increasing mouse survival. Taken together, these results demonstrate, for the first time, that T. cruzi subverts sialylation to attenuate CD8(+) T cell interactions with peptide-major histocompatibility complex class I complexes. CD8(+) T cell resialylation may represent a sophisticated strategy to ensure lifetime host parasitism.
Collapse
Affiliation(s)
- Leonardo Freire-de-Lima
- Instituto de Biofísica Carlos Chagas Filho, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Cidade Universitária, Ilha do Fundão, 21949-900 Rio de Janeiro, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
369
|
Wennekes T, van den Berg RJBHN, Boot RG, van der Marel GA, Overkleeft HS, Aerts JMFG. Glycosphingolipids--nature, function, and pharmacological modulation. Angew Chem Int Ed Engl 2010; 48:8848-69. [PMID: 19862781 DOI: 10.1002/anie.200902620] [Citation(s) in RCA: 227] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The discovery of the glycosphingolipids is generally attributed to Johan L. W. Thudichum, who in 1884 published on the chemical composition of the brain. In his studies he isolated several compounds from ethanolic brain extracts which he coined cerebrosides. He subjected one of these, phrenosin (now known as galactosylceramide), to acid hydrolysis, and this produced three distinct components. One he identified as a fatty acid and another proved to be an isomer of D-glucose, which is now known as D-galactose. The third component, with an "alkaloidal nature", presented "many enigmas" to Thudichum, and therefore he named it sphingosine, after the mythological riddle of the Sphinx. Today, sphingolipids and their glycosidated derivatives are the subjects of intense study aimed at elucidating their role in the structural integrity of the cell membrane, their participation in recognition and signaling events, and in particular their involvement in pathological processes that are at the basis of human disease (for example, sphingolipidoses and diabetes type 2). This Review details some of the recent findings on the biosynthesis, function, and degradation of glycosphingolipids in man, with a focus on the glycosphingolipid glucosylceramide. Special attention is paid to the clinical relevance of compounds directed at interfering with the factors responsible for glycosphingolipid metabolism.
Collapse
Affiliation(s)
- Tom Wennekes
- Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, P.O. Box 9502, Leiden, The Netherlands
| | | | | | | | | | | |
Collapse
|
370
|
Abstract
Increasing numbers of studies are reporting the modification of prokaryotic proteins with novel glycans. These proteins are often associated with virulence factors of medically important pathogens. Herein, we describe the steps required to characterize prokaryotic glycoproteins by mass spectrometry, using flagellin isolated from Clostridium botulinum strain Langeland as an example. Both "top-down" and "bottom-up" approaches will be described for characterizing the purified glycoprotein at the whole protein and peptide levels. The preliminary steps toward structural characterization of novel prokaryotic glycans by mass spectrometry and NMR are also described.
Collapse
Affiliation(s)
- Susan M Twine
- Institute for Biological Sciences, National Research Council Canada, Ottawa, Ontario, Canada
| | | | | |
Collapse
|
371
|
Scursoni AM, Galluzzo L, Camarero S, Pozzo N, Gabri MR, de Acosta CM, Vázquez AM, Alonso DF, de Dávila MTG. Detection and characterization of N-glycolyated gangliosides in Wilms tumor by immunohistochemistry. Pediatr Dev Pathol 2010; 13:18-23. [PMID: 19435393 DOI: 10.2350/08-10-0544.1] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Gangliosides are glycolipids present on the cell surface. The N-glycolylated ganglioside NeuGc-GM3 has been described in some neoplasms, such as breast carcinoma and melanoma, but is usually not detected in normal human cells. Our aim was to evaluate the presence of NeuGc-GM3 in Wilms tumor by immunohistochemistry. Postchemotherapy tumors were grouped into different histologic subtypes considering the main preserved component. Formalin-fixed, paraffin-embedded tumor samples were cut into 5-microm sections. The monoclonal antibody 14F7, a mouse IgG1 that specifically recognizes NeuGc-GM3, and a peroxidase-labeled polymer conjugated to secondary antibodies were used. Sections from breast carcinoma were employed as positive controls. Presence of NeuGc-GM3 was evident in 22 of 25 (88%) cases. The staining was stronger in the epithelial component, with a membrane pattern and cytoplasmic diffusion. The stromal component expressed cytoplasmic NeuGc-GM3 in cells with rhabdomyoblastic differentiation. Tubules of adjacent renal tissue were also positive, but no expression of NeuGc-GM3 was detected in nontumoral fetal kidney. Until now, the expression of N-glycolylated gangliosides in pediatric solid tumors has not been investigated. The present study evidenced the expression of NeuGc-GM3 in a high proportion of Wilms tumors, suggesting its potential utility as a specific target of immunotherapy.
Collapse
Affiliation(s)
- Alejandra M Scursoni
- Pathology Department, Pediatric Hospital, "Prof Dr Juan P. Garrahan", Buenos Aires, Argentina
| | | | | | | | | | | | | | | | | |
Collapse
|
372
|
Determination of sialic acid and gangliosides in biological samples and dairy products: A review. J Pharm Biomed Anal 2010; 51:346-57. [DOI: 10.1016/j.jpba.2009.04.023] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2009] [Revised: 04/17/2009] [Accepted: 04/23/2009] [Indexed: 11/20/2022]
|
373
|
Ciftci G, Cenesiz S, Yarim GF, Nisbet O, Nisbet C, Cenesiz M, Guvenc D. Effect of fluoride exposure on serum glycoprotein pattern and sialic acid level in rabbits. Biol Trace Elem Res 2010; 133:51-9. [PMID: 19904501 DOI: 10.1007/s12011-009-8563-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2008] [Accepted: 10/27/2009] [Indexed: 10/20/2022]
Abstract
This study describes the effects of fluoride exposure on the protein profile, glycoprotein pattern, and total sialic acid concentration of serum in rabbits. For this aim; 20 healthy New Zealand rabbits were used. The rabbits were divided into two equal groups each with ten animals according to their weighing: control group and experimental group. The rabbits in control group were given drinking tap water containing 0.29 mg/l sodium fluoride and experimental group received the same tap water to which was added 40 mg/l sodium fluoride for 70 days. Blood samples were taken from each rabbit on day 70. Serum fluoride concentrations were measured by a fluoride-specific ion electrode in serum. The fluoride levels in the serum were found as 18.4 (+/-1.58) microg/L in control and 301.3 (+/-52.18) microg/L in fluoride exposed rabbits. The sialic acid levels were found as 69.2 (+/-0.32) mg/dL in control and 43.4 (+/-0.13) mg/dL in fluoride exposed group. The electrophoretic patterns of serum proteins, glycoproteins, and total sialic acid concentration were determined. Fifteen different protein fractions with molecular weights ranging from 22 to 249 kDa were displayed in the serum protein electrophoretic gel of both groups. The raw concentrations of the protein fractions decreased in fluoride exposed rabbits as compared with the control rabbits. The serum glycoprotein pattern revealed seven major protein bands from 47 to 167 kDa in experimental and control groups. The slight decrease of raw concentration of the protein bands in glycoprotein pattern of serum was observed in fluoride toxication comparing to control. The results suggest that serum TSA determination and serum protein electrophoresis can be used to evaluate prognosis of fluoride exposure as a supplementary laboratory test in combination with clinical and other laboratory findings of fluorosis.
Collapse
Affiliation(s)
- Gulay Ciftci
- Department of Biochemistry, Faculty of Veterinary Medicine, University of Ondokuz Mayis, 55139 Samsun, Turkey.
| | | | | | | | | | | | | |
Collapse
|
374
|
Abstract
AbstractGangliosides are membrane glycosphingolipids bearing sialic acid residues. Within membranes, gangliosides are specifically enriched in highly organized domains, lipid rafts, and are attributed with diverse functions such as intercellular interactions, cell recognition, neurotransmission, and signal transduction. The highest concentration and variability of ganglioside structures are found in the human brain. Specific temporal and regional distribution of brain gangliosides has been reported; moreover, gangliosides may serve as markers of neurodevelopmental stages, aging and neurodegeneration. Brain ganglioside content and composition as well as ganglioside metabolism are altered in Alzheimer’s disease. It appears that the alterations of ganglioside metabolism leading to changes in membrane physico-chemical properties are not merely a consequence of primary pathology, but may also be involved in the early pathogenesis of Alzheimer’s disease through documented effects on APP proteolytic processing and amyloid aggregation. Investigations of glycolipid metabolic alterations which accompany neurodegenerative disorders provide insight into pathogenetic mechanisms and enable recognition of diagnostic markers as well as molecular structures acting as therapeutic tools interfering with cascade of pathological events.
Collapse
|
375
|
Amano M, Nishimura SI. Large-scale glycomics for discovering cancer-associated N-glycans by integrating glycoblotting and mass spectrometry. Methods Enzymol 2010; 478:109-25. [PMID: 20816476 DOI: 10.1016/s0076-6879(10)78004-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
It has known that the glycosylation plays an important role in the biological states, such as development, aging, and diseases. Although genomic and proteomic approaches have been intensively studied for diagnosis and disease treatment, glycomics have been laggard compared to them due to the hardness of the purification procedure from crude biological materials. Recently, we have developed "glycoblotting" method, a high-throughput and quantitative technique for comprehensive glycomics, which enables to enrich and quantify glycans from crude biological materials, such as serum, tissue biopsy, and cell lysate [Niikura, K., Kamitani, R., Kurogochi, M., Uematsu, R., Shinohara, Y., Nakagawa, H., Deguchi, K., Monde, K., Kondo, H., and Nishimuram S.-I. (2005). Versatile glycoblotting nanoparticles for high-throughput protein glycomics. Chem. Eur. J. 11, 3825-3834; Nishimuara, S.-I., Niikura, K., Kurogochi, M., Matsushita, T., Fumoto, M., Hinou, H., Kamitani, R., Nakagawa, H., Deguchi, K., Miura, N., Monde, K., and Kondo, H. (2005). High-throughput protein glycomics: Combined use of chemoselective glycoblotting and MALDI-TOF/TOF mass spectrometry. Angew. Chem. Int. Ed.44, 91-96]. The automated machine for glycoblotting, "SweetBlot," fixed to use optimized protocol allows us to obtain quantitative profile of 40-50 kinds of major glycoforms from 5mul of human serum within 11h. Based on the method, we have detected potential differences of N-glycome between sera from hepatocellular carcinoma (HCC) and healthy donor [Miura, Y., Hato, M., Shinohara, Y., Kuramoto, H., Furukawa, J.-i, Kurogochi, M., Shimaoka, H., Tada, M., Nakanishi, K., Ozaki, M., Todo, S., and Nishimura, S.-I. (2008). BlotGlycoABC(TM), an integrated glycoblotting technique for rapid and large scale clinical glycomics. Mol. Cell. Proteomics7, 370-377]. The method also permitted cellular quantitative N-glycomics to monitor the process of dynamic cellular differentiation of mouse embryonic stem cells into neural cells [Amano, M., Yamaguchi, M., Takegawa, Y., Yamashita, T., Terashima, M., Furukawa, J.-i., Miura, Y., Shinohara, Y., Iwasaki, N., Minami, A., and Nishimura, S.-I. (2010). Threshold in stage-specific embryonic glycotypes uncovered by a full portrait of dynamic N-glycan expression during cell differentiation. Mol. Cell. Proteomics9, 523-537]. In this chapter, we will discuss glycoblotting method including the potentials not only for exploration of glycan-related cancer biomarker but also for detection of cellular differentiation.
Collapse
Affiliation(s)
- Maho Amano
- Laboratory of Advanced Chemical Biology, Graduate School of Advanced Life Science, Frontier Research Center for Post-Genome Science and Technology, Hokkaido University, Sapporo, Japan
| | | |
Collapse
|
376
|
Newhouse EI, Xu D, Markwick PRL, Amaro RE, Pao HC, Wu KJ, Alam M, McCammon JA, Li WW. Mechanism of glycan receptor recognition and specificity switch for avian, swine, and human adapted influenza virus hemagglutinins: a molecular dynamics perspective. J Am Chem Soc 2009; 131:17430-42. [PMID: 19891427 PMCID: PMC2782351 DOI: 10.1021/ja904052q] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2009] [Indexed: 11/28/2022]
Abstract
Hemagglutinins (HA's) from duck, swine, and human influenza viruses have previously been shown to prefer avian and human glycan receptor analogues with distinct topological profiles, pentasaccharides LSTa (alpha-2,3 linkage) and LSTc (alpha-2,6 linkage), in comparative molecular dynamics studies. On the basis of detailed analyses of the dynamic motions of the receptor binding domains (RBDs) and interaction energy profiles with individual glycan residues, we have identified approximately 30 residue positions in the RBD that present distinct profiles with the receptor analogues. Glycan binding constrained the conformational space sampling by the HA. Electrostatic steering appeared to play a key role in glycan binding specificity. The complex dynamic behaviors of the major SSE and trimeric interfaces with or without bound glycans suggested that networks of interactions might account for species specificity in these low affinity and high avidity (multivalent) interactions between different HA and glycans. Contact frequency, energetic decomposition, and H-bond analyses revealed species-specific differences in HA-glycan interaction profiles, not readily discernible from crystal structures alone. Interaction energy profiles indicated that mutation events at the set of residues such as 145, 156, 158, and 222 would favor human or avian receptor analogues, often through interactions with distal asialo-residues. These results correlate well with existing experimental evidence, and suggest new opportunities for simulation-based vaccine and drug development.
Collapse
|
377
|
Al-qattan MN, Mordi MN. Docking of sialic acid analogues against influenza A hemagglutinin: a correlational study between experimentally measured and computationally estimated affinities. J Mol Model 2009; 16:1047-58. [PMID: 19911202 DOI: 10.1007/s00894-009-0618-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2009] [Accepted: 10/21/2009] [Indexed: 10/20/2022]
Abstract
A molecular docking tool of AutoDock3.05 was evaluated for its ability to reproduce experimentally determined affinities of various sialic acid analogues toward hemagglutinin of influenza A virus. With the exception of those with a C6-modified glycerol side chain, the experimental binding affinities of most sialic acid analogues (C2, C4 and C5-substituted) determined by viral hemadsorption inhibition assay, hemagglutination inhibition assay and nuclear magnetic resonance correlated well with the computationally estimated free energy of binding. Sialic acid analogues with modified glycerol side chains showed only poor correlation between the experimentally determined hemagglutinin inhibitor affinities and AutoDock3.05 scores, suggesting high mobility of the glutamic acid side chain at the glycerol binding pocket, which is difficult to simulate using a flexi-rigid molecular docking approach. In conclusion, except for some glycerol-substituted sialic acid analogues, the results showed the effectiveness of AutoDock3.05 searching and scoring functions in estimating affinities of sialic acid analogues toward influenza A hemagglutinin, making it a reliable tool for screening a database of virtually designed sialic acid analogues for hemagglutinin inhibitors.
Collapse
|
378
|
Wennekes T, van den Berg R, Boot R, van der Marel G, Overkleeft H, Aerts J. Glycosphingolipide - Natur, Funktion und pharmakologische Modulierung. Angew Chem Int Ed Engl 2009. [DOI: 10.1002/ange.200902620] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
379
|
Al-qattan MN, Mordi MN. Site-directed fragment-based generation of virtual sialic acid databases against influenza A hemagglutinin. J Mol Model 2009; 16:975-91. [DOI: 10.1007/s00894-009-0606-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2009] [Accepted: 09/30/2009] [Indexed: 10/20/2022]
|
380
|
Schnaar RL. Brain gangliosides in axon-myelin stability and axon regeneration. FEBS Lett 2009; 584:1741-7. [PMID: 19822144 DOI: 10.1016/j.febslet.2009.10.011] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2009] [Revised: 10/02/2009] [Accepted: 10/05/2009] [Indexed: 01/21/2023]
Abstract
Gangliosides, sialic acid-bearing glycosphingolipids, are expressed at high abundance and complexity in the brain. Altered ganglioside expression results in neural disorders, including seizures and axon degeneration. Brain gangliosides function, in part, by interacting with a ganglioside-binding lectin, myelin-associated glycoprotein (MAG). MAG, on the innermost wrap of the myelin sheath, binds to gangliosides GD1a and GT1b on axons. MAG-ganglioside binding ensures optimal axon-myelin cell-cell interactions, enhances long-term axon-myelin stability and inhibits axon outgrowth after injury. Knowledge of the molecular interactions of brain gangliosides may improve understanding of axon-myelin stability and provide opportunities to enhance recovery after nerve injury.
Collapse
Affiliation(s)
- Ronald L Schnaar
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
381
|
Bork K, Horstkorte R, Weidemann W. Increasing the sialylation of therapeutic glycoproteins: The potential of the sialic acid biosynthetic pathway. J Pharm Sci 2009; 98:3499-508. [DOI: 10.1002/jps.21684] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
382
|
García-Vallejo JJ, van Kooyk Y. Endogenous ligands for C-type lectin receptors: the true regulators of immune homeostasis. Immunol Rev 2009; 230:22-37. [PMID: 19594627 DOI: 10.1111/j.1600-065x.2009.00786.x] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
C-type lectin receptors (CLRs) have long been known as pattern-recognition receptors implicated in the recognition of pathogens by the innate immune system. However, evidence is accumulating that many CLRs are also able to recognize endogenous 'self' ligands and that this recognition event often plays an important role in immune homeostasis. In the present review, we focus on the human and mouse CLRs for which endogenous ligands have been described. Special attention is given to the signaling events initiated upon recognition of the self ligand and the regulation of glycosylation as a switch modulating CLR recognition, and therefore, immune homeostasis.
Collapse
Affiliation(s)
- Juan J García-Vallejo
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, The Netherlands
| | | |
Collapse
|
383
|
Yang B, Chuang H, Yang KD. Sialylated glycans as receptor and inhibitor of enterovirus 71 infection to DLD-1 intestinal cells. Virol J 2009; 6:141. [PMID: 19751532 PMCID: PMC2751754 DOI: 10.1186/1743-422x-6-141] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2009] [Accepted: 09/15/2009] [Indexed: 11/10/2022] Open
Abstract
Background Many viruses recognize specific sugar residues, particularly sulfated or sialylated glycans, as the infection receptors. A change of sialic acid (2-6)-linked galactose (SA-α2,6Gal) to SA-α2,3Gal determines the receptor for avian flu infection. The receptor for enterovirus 71 (EV71) infection that frequently causes fatal encephalitis in Asian children remains unclear. Currently, there is no effective vaccine or anti-virus agent for EV71 infection. Using DLD-1 intestinal cells, this study investigated whether SA-linked glycan on DLD-1 intestinal cells was a receptor for EV71, and whether natural SA-linked sugars from human milk could block EV71 infection. Results EV71 specifically infected DLD-1 intestinal cells but not K562 myeloid cells. Depletion of O-linked glycans or glycolipids, but not N-linked glycans, significantly decreased EV71 infection of DLD-1 cells. Pretreatment of DLD-1 cells with sialidase (10 mU, 2 hours) significantly reduced 20-fold EV71 replication (p < 0.01). Taken together, these results suggest that SA-linked O-glycans and glycolipids, but not N-glycans, on DLD-1 cells were responsible for EV71 infection. Purified SA-α2,3Gal and SA-α2,6Gal from human milk significantly inhibited EV71 infection of DLD-1 cells, indicating terminal SA-linked glycans could be receptors and inhibitors of EV71 infection. Conclusion This is the first in the literature to demonstrate that EV71 uses SA-linked glycans as receptors for infection, and natural SA-linked glycans from human milk can protect intestinal cells from EV71 infection. Further studies will test how a SA-containing glycan can prevent EV71 in the future.
Collapse
Affiliation(s)
- Betsy Yang
- Kaohsiung American School, Taiwan, Republic of China
| | | | | |
Collapse
|
384
|
Berenson CS, Nawar HF, Yohe HC, Castle SA, Ashline DJ, Reinhold VN, Hajishengallis G, Connell TD. Mammalian cell ganglioside-binding specificities of E. coli enterotoxins LT-IIb and variant LT-IIb(T13I). Glycobiology 2009; 20:41-54. [PMID: 19749203 DOI: 10.1093/glycob/cwp141] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
LT-IIb, a type II heat-labile enterotoxin of Escherichia coli, is a potent immunologic adjuvant with high affinity binding for ganglioside GD1a. Earlier study suggested that LT-IIb bound preferentially to the terminal sugar sequence NeuAcalpha2-3Galbeta1-3GalNAc. However, studies in our laboratory suggested a less restrictive binding epitope. LT-IIb(T13I), an LT-IIb variant, engineered by a single isoleucine-threonine substitution, retains biological activity, but with less robust inflammatory effects. We theorized that LT-IIb has a less restrictive binding epitope than previously proposed and that immunologic differences between LT-IIb and LT-IIb (T13I) correlate with subtle ganglioside binding differences. Ganglioside binding epitopes, determined by affinity overlay immunoblotting and enzymatic degradation of ganglioside components of RAW264.7 macrophages, indicated that LT-IIb bound to a broader array of gangliosides than previously recognized. Each possessed NeuAcalpha2-3Galbeta1-3GalNAc, although not necessarily as a terminal sequence. Rather, each had a requisite terminal or penultimate single sialic acid and binding was independent of ceramide composition. RAW264.7 enterotoxin-binding and non-binding ganglioside epitopes were definitively identified as GD1a and GM1a, respectively, by enzymatic degradation and mass spectroscopy. Affinity overlay immunoblots, constructed to the diverse array of known ganglioside structures of murine peritoneal macrophages, established that LT-IIb bound NeuAc- and NeuGc-gangliosides with nearly equal affinity. However, LT-IIb(T13I) exhibited enhanced affinity for NeuGc-gangliosides and more restrictive binding. These studies further elucidate the binding epitope for LT-IIb and suggest that the diminished inflammatory activity of LT-IIb(T13I) is mediated by a subtle shift in ganglioside binding. These studies underscore the high degree of specificity required for ganglioside-protein interactions.
Collapse
Affiliation(s)
- Charles S Berenson
- Infectious Disease Division, Department of Veterans Affairs Western New York Healthcare System, State University of New York at Buffalo School of Medicine, Buffalo, NY 14215, USA.
| | | | | | | | | | | | | | | |
Collapse
|
385
|
Abdel-Hamid NM. Premalignant Variations in Extracellular Matrix Composition in Chemically Induced Hepatocellular Carcinoma in Rats. J Membr Biol 2009; 230:155-162. [DOI: 10.1007/s00232-009-9196-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2009] [Accepted: 07/28/2009] [Indexed: 02/07/2023]
|
386
|
Reinke SO, Lehmer G, Hinderlich S, Reutter W. Regulation and pathophysiological implications of UDP-GlcNAc 2-epimerase/ManNAc kinase (GNE) as the key enzyme of sialic acid biosynthesis. Biol Chem 2009; 390:591-9. [DOI: 10.1515/bc.2009.073] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
AbstractThe key enzyme for the biosynthesis ofN-acetylneuraminic acid, from which all other sialic acids are formed, is the bifunctional enzyme UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase (GNE). GNE is a highly conserved protein found throughout the animal kingdom. Its highest expression is seen in the liver and placenta. GNE is regulated by a variety of biochemical means, including tetramerization promoted by the substrate UDP-GlcNAc, phosphorylation by protein kinase C and feedback inhibition by CMP-Neu5Ac, which is defect in the human disease sialuria. GNE knock-out in mice leads to embryonic lethality, emphasizing the crucial role of this key enzyme for sialic acid biosynthesis. The metabolic capacity to synthesize sialic acid and CMP-sialic acid upon ManNAc loads is amazingly high. An additional characteristic of GNE is its interaction with proteins involved in the regulation of development, which might play a crucial role in the hereditary inclusion body myopathy. Due to the importance of increased concentrations of tumor-surface sialic acid, first attempts to find inhibitors of GNE have been successful.
Collapse
|
387
|
Ghoshal A, Mukhopadhyay S, Saha B, Mandal C. 9-O-acetylated sialoglycoproteins are important immunomodulators in Indian visceral leishmaniasis. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2009; 16:889-98. [PMID: 19403782 PMCID: PMC2691061 DOI: 10.1128/cvi.00453-08] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2008] [Revised: 01/15/2009] [Accepted: 04/22/2009] [Indexed: 11/20/2022]
Abstract
Overexpression of disease-associated 9-O-acetylated sialoglycoproteins (9-O-AcSGPs) on peripheral blood mononuclear cells (PBMC) of visceral leishmaniasis (VL) patients (PBMC(VL)) compared to their levels of expression in healthy individuals has been demonstrated using a lectin, achatinin-H, with specificity toward 9-O-acetylated sialic acid derivatives alpha2-6 linkage with subterminal N-acetylgalactosamine (9-O-AcSAalpha2-6GalNAc). The decreased presence of disease-associated 9-O-AcSGPs on different immune cells of parasitologically cured individuals after successful treatment relative to the levels in patients with active VL prior to treatment was demonstrated. However, their contributory role as immunomodulatory determinants on PBMC(VL) remained unexplored. Accordingly, 9-O-AcSGPs on PBMC(VL) were sensitized with achatinin-H, leading to their enhanced proliferation compared to that observed with different known mitogens or parasite antigen. This lymphoproliferative response was characterized by evaluation of the TH1/TH2 response by intracellular staining and enzyme-linked immunosorbent assay for secreted cytokines, and the results were corroborated by their genetic expression. Sensitized PBMC(VL) evidenced a mixed TH1/TH2 cellular response with a predominance of the TH1 response, indicating the ability of 9-O-AcSGPs to modulate the host cell toward a favorable response. Interestingly, the humoral and cellular responses showed a good correlation. Further, high levels of anti-9-O-AcSGP antibodies with an order of distribution of immunoglobulin M (IgM) > IgG1 = IgG3 > IgG4 > IgG2 > IgE could be explained by a mixed TH1/TH2 response. A good correlation of enhanced 9-O-AcSGPs with both the cell-mediated (r = 0.98) and humoral (r = 0.99) response was observed. In summary, it may be concluded that sensitization of 9-O-AcSGPs on PBMC(VL) may provide a basis for the modulation of the host's immune response by their controlled expression, leading to a beneficial immune response and influencing the disease pathology.
Collapse
Affiliation(s)
- Angana Ghoshal
- Infectious Diseases and Immunology Division, Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata 700032, India
| | | | | | | |
Collapse
|
388
|
Avidan A, Perlmutter M, Tal S, Oraki O, Kapp T, Krelin Y, Elkabets M, Dotan S, Apte RN, Lichtenstein RG. Differences in the sialylation patterns of membrane stress proteins in chemical carcinogen-induced tumors developed in BALB/c and IL-1α deficient mice. Glycoconj J 2009; 26:1181-95. [DOI: 10.1007/s10719-009-9238-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2008] [Revised: 03/06/2009] [Accepted: 04/06/2009] [Indexed: 11/29/2022]
|
389
|
Hidari KI, Oyama KI, Ito G, Nakayama M, Inai M, Goto S, Kanai Y, Watanabe KI, Yoshida K, Furuta T, Kan T, Suzuki T. Identification and characterization of flavonoids as sialyltransferase inhibitors. Biochem Biophys Res Commun 2009; 382:609-13. [DOI: 10.1016/j.bbrc.2009.03.082] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2009] [Accepted: 03/13/2009] [Indexed: 12/29/2022]
|
390
|
Xu D, Newhouse EI, Amaro RE, Pao HC, Cheng LS, Markwick PRL, McCammon JA, Li WW, Arzberger PW. Distinct glycan topology for avian and human sialopentasaccharide receptor analogues upon binding different hemagglutinins: a molecular dynamics perspective. J Mol Biol 2009; 387:465-91. [PMID: 19356594 PMCID: PMC2892341 DOI: 10.1016/j.jmb.2009.01.040] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2008] [Revised: 12/21/2008] [Accepted: 01/17/2009] [Indexed: 11/21/2022]
Abstract
Hemagglutinin (HA) binds to sialylated glycans exposed on the host cell surface in the initial stage of avian influenza virus infection. It has been previously hypothesized that glycan topology plays a critical role in the human adaptation of avian flu viruses, such as the potentially pandemic H5N1. Comparative molecular dynamics studies are complementary to experimental techniques, including glycan microarray, to understand the mechanism of species-specificity switch better. The examined systems comprise explicitly solvated trimeric forms of avian H3, H5, and swine H9 in complex with avian and human glycan receptor analogues--LSTa (alpha-2,3-linked lactoseries tetrasaccharide a) and LSTc (alpha-2,6-linked lactoseries tetrasaccharide c), respectively. The glycans adopted distinct topological profiles with inducible torsional angles when bound to different HAs. The corresponding receptor binding domain amino acid contact profiles were also distinct. Avian H5 was able to accommodate LSTc in a tightly "folded umbrella"-like topology through interactions with all five sugar residues. After considering conformational entropy, the relative binding free-energy changes, calculated using the molecular mechanics-generalized Born surface area technique, were in agreement with previous experimental findings and provided insights on electrostatic, van der Waals, desolvation, and entropic contributions to HA-glycan interactions. The topology profile and the relative abundance of free glycan receptors may influence receptor binding kinetics. Glycan composition and topological changes upon binding different HAs may be important determinants in species-specificity switch.
Collapse
Affiliation(s)
- Dong Xu
- National Biomedical Computation Resource, University of California, San Diego, La Jolla, California 92093-0505
| | | | - Rommie E. Amaro
- Department of Chemistry and Biochemistry and NSF Center for Theoretical Biological Physics (CTBP), University of California San Diego, La Jolla, California 92093-0365
| | - Hsing C. Pao
- National Biomedical Computation Resource, University of California, San Diego, La Jolla, California 92093-0505
| | - Lily S. Cheng
- National Biomedical Computation Resource, University of California, San Diego, La Jolla, California 92093-0505
| | - Phineus R. L. Markwick
- Howard Hughes Medical Institute, University of California San Diego, La Jolla, California 92093-0365
| | - J. Andrew McCammon
- National Biomedical Computation Resource, University of California, San Diego, La Jolla, California 92093-0505
- Department of Chemistry and Biochemistry and NSF Center for Theoretical Biological Physics (CTBP), University of California San Diego, La Jolla, California 92093-0365
- Howard Hughes Medical Institute, University of California San Diego, La Jolla, California 92093-0365
- Department of Pharmacology, University of California San Diego, La Jolla, California 92093-0365
| | - Wilfred W. Li
- National Biomedical Computation Resource, University of California, San Diego, La Jolla, California 92093-0505
| | - Peter W. Arzberger
- National Biomedical Computation Resource, University of California, San Diego, La Jolla, California 92093-0505
| |
Collapse
|
391
|
Schoenhofen IC, Vinogradov E, Whitfield DM, Brisson JR, Logan SM. The CMP-legionaminic acid pathway in Campylobacter: biosynthesis involving novel GDP-linked precursors. Glycobiology 2009; 19:715-25. [PMID: 19282391 DOI: 10.1093/glycob/cwp039] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The sialic acid-like sugar 5,7-diacetamido-3,5,7,9-tetradeoxy-D-glycero-D-galacto-nonulosonic acid, or legion-aminic acid, is found as a virulence-associated cell-surface glycoconjugate in the Gram-negative bacteria Legionella pneumophila and Campylobacter coli. L. pneumophila serogroup 1 strains, causative agents of Legionnaire's disease, contain an alpha2,4-linked homopolymer of legionaminic acid within their lipopolysaccharide O-chains, whereas the gastrointestinal pathogen C. coli modifies its flagellin with this monosaccharide via O-linkage. In this work, we have purified and biochemically characterized 11 candidate biosynthetic enzymes from Campylobacter jejuni, thereby fully reconstituting the biosynthesis of legionaminic acid and its CMP-activated form, starting from fructose-6-P. This pathway involves unique GDP-linked intermediates, likely providing a cellular mechanism for differentiating between this and similar UDP-linked pathways, such as UDP-2,4-diacetamido-bacillosamine biosynthesis involved in N-linked protein glycosylation. Importantly, these findings provide a facile method for efficient large-scale synthesis of legionaminic acid, and since legionaminic acid and sialic acid share the same D-glycero-D-galacto absolute configuration, this sugar may now be evaluated for its potential as a sialic acid mimic.
Collapse
Affiliation(s)
- Ian C Schoenhofen
- Institute for Biological Sciences, National Research Council, Ottawa, Ontario, K1A 0R6 Canada.
| | | | | | | | | |
Collapse
|
392
|
Abstract
Siglecs are cell-surface proteins found primarily on hematopoietic cells. By definition, they are members of the immunoglobulin gene super-family and bind sialic acid. Most contain cytoplasmic tyrosine motifs implicated in cell signaling. This review will first summarize characteristics common and unique to Siglecs, followed by a discussion of each human Siglec in numerical order, mentioning in turn its closest murine ortholog or paralog. Each section will describe its pattern of cellular expression, latest known immune functions, ligands, and signaling pathways, with the focus being predominantly on CD33-related Siglecs. Potential clinical and therapeutic implications of each Siglec will also be covered.
Collapse
Affiliation(s)
- Stephan von Gunten
- Department of Medicine, Division of Allergy and Clinical Immunology, The Johns Hopkins University School of Medicine, Johns Hopkins Asthma and Allergy Center, Baltimore, MD 21224-6821, USA
| | | |
Collapse
|
393
|
Pekosz A, Newby C, Bose PS, Lutz A. Sialic acid recognition is a key determinant of influenza A virus tropism in murine trachea epithelial cell cultures. Virology 2009; 386:61-7. [PMID: 19195676 DOI: 10.1016/j.virol.2009.01.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2008] [Revised: 09/22/2008] [Accepted: 01/08/2009] [Indexed: 02/02/2023]
Abstract
Influenza A virus interacts with specific types of sialic acid during attachment and entry into susceptible cells. The precise amino acids in the hemagglutinin protein that control sialic acid binding specificity and affinity vary among antigenic subtypes. For H3 subtypes, amino acids 226 and 228 are critical for differentiating between alpha2,3- and alpha2,6-linked forms of sialic acid (SA). We demonstrate that position 190 of the HA from A/Udorn/307/72 (H3N2) plays an important role in the recognition of alpha2,3-SA, as changing the residue from a glutamic acid to an aspartic acid led to alteration of red blood cell hemagglutination and a complete loss of replication in differentiated, murine trachea epithelial cell cultures which express only alpha2,3-SA. This amino acid change had a minimal effect on virus replication in MDCK cells, suggesting subtle changes in receptor recognition by the H3 hemagglutinin can lead to significant alterations in cell and species tropism.
Collapse
Affiliation(s)
- Andrew Pekosz
- Dept. of Molecular Microbiology, Washington University in St. Louis School of Medicine, 660 South Euclid Avenue, Campus Box 8230, St. Louis, MO 63110, USA.
| | | | | | | |
Collapse
|
394
|
Crespo HJ, Cabral MG, Teixeira AV, Lau JTY, Trindade H, Videira PA. Effect of sialic acid loss on dendritic cell maturation. Immunology 2009; 128:e621-31. [PMID: 19740323 DOI: 10.1111/j.1365-2567.2009.03047.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Sialic acids are key structural determinants and contribute to the functionality of a number of immune cell receptors. Previously, we demonstrated that differentiation of human dendritic cells (DCs) is accompanied by an increased expression of sialylated cell surface structures, putatively through the activity of the ST3Gal.I and ST6Gal.I sialyltransferases. Furthermore, DC endocytosis was reduced upon removal of the cell surface sialic acid residues by neuraminidase. In the present work, we evaluate the contribution of the sialic acid modifications in DC maturation. We demonstrate that neuraminidase-treated human DCs have increased expression of major histocompatibility complex (MHC) and costimulatory molecules, increased gene expression of specific cytokines and induce a higher proliferative response of T lymphocytes. Together, the data suggest that clearance of cell surface sialic acids contributes to the development of a T helper type 1 proinflammatory response. This postulate is supported by mouse models, where elevated MHC class II and increased maturation of specific DC subsets were observed in DCs harvested from ST3Gal.I(-/-) and ST6Gal.I(-/-) mice. Moreover, important qualitative differences, particularly in the extent of reduced endocytosis and in the peripheral distribution of DC subsets, existed between the ST3Gal.I(-/-) and ST6Gal.I(-/-) strains. Together, the data strongly suggest not only a role of cell surface sialic acid modifications in maturation and functionality of DCs, but also that the sialic acid linkages created by different sialyltransferases are functionally distinct. Consequently, with particular relevance to DC-based therapies, cell surface sialylation, mediated by individual sialyltransferases, can influence the immunogenicity of DCs upon antigen loading.
Collapse
Affiliation(s)
- Hélio J Crespo
- Departamento de Imunologia FCM-UNL, Campo Mártires da Pátria 130, Lisboa, Portugal
| | | | | | | | | | | |
Collapse
|
395
|
Maggioni A, von Itzstein M, Tiralongo J, Haselhorst T. Detection of ligand binding to nucleotide sugar transporters by STD NMR spectroscopy. Chembiochem 2009; 9:2784-6. [PMID: 18973167 DOI: 10.1002/cbic.200800526] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Andrea Maggioni
- Institute for Glycomics, Gold Coast Campus, Griffith University, Queensland, 4222, Australia
| | | | | | | |
Collapse
|
396
|
Abstract
Molecular imaging enables visualization of specific molecules in vivo and without substantial perturbation to the target molecule's environment. Glycans are appealing targets for molecular imaging but are inaccessible with conventional approaches. Classic methods for monitoring glycans rely on molecular recognition with probe-bearing lectins or antibodies, but these techniques are not well suited to in vivo imaging. In an emerging strategy, glycans are imaged by metabolic labeling with chemical reporters and subsequent ligation to fluorescent probes. This technique has enabled visualization of glycans in living cells and in live organisms such as zebrafish. Molecular imaging with chemical reporters offers a new avenue for probing changes in the glycome that accompany development and disease.
Collapse
|
397
|
Kuzmanov U, Jiang N, Smith CR, Soosaipillai A, Diamandis EP. Differential N-glycosylation of kallikrein 6 derived from ovarian cancer cells or the central nervous system. Mol Cell Proteomics 2008; 8:791-8. [PMID: 19088065 DOI: 10.1074/mcp.m800516-mcp200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ovarian cancer causes more deaths than any other gynecological disorder. Perturbed glycosylation is one of the hallmarks of this malignancy. Kallikrein 6 (KLK6) elevation in serum is a diagnostic and prognostic indicator in ovarian cancer. The majority of ovarian carcinomas express high levels of KLK6, which diffuses into the circulation. Under physiological conditions, KLK6 is expressed highly in the central nervous system and found at high levels in cerebrospinal fluid from where it enters the circulation. Our aim was to characterize and compare the N-glycosylation status of this protein in ovarian cancer ascites fluid and cerebrospinal fluid. Anion-exchange chromatography was used to reveal different post-translational modifications on the two isoforms. Mobility gel shift Western blot analysis coupled with glycosidase digestion showed that the molecular weight difference between the two isoforms was because of differential glycosylation patterns. The presence of a single N-glycosylation site on KLK6 was confirmed by site-directed mutagenesis. Using a Sambucus nigra agglutinin-monoclonal antibody sandwich enzyme-linked immunosorbent assay approach, it was shown that ovarian cancer-derived KLK6 was modified with alpha2-6-linked sialic acid. The structure and composition of glycans of both KLK6 isoforms was elucidated by glycopeptide monitoring with electrospray ionization-Orbitrap tandem mass spectrometry. Therefore, the extensive and almost exclusive sialylation of KLK6 from ovarian cancer cells could lead to the development of an improved biomarker for the early diagnosis of ovarian carcinoma.
Collapse
Affiliation(s)
- Uros Kuzmanov
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto M5G 1X5, Ontario, Canada
| | | | | | | | | |
Collapse
|
398
|
Gadhoum SZ, Sackstein R. CD15 expression in human myeloid cell differentiation is regulated by sialidase activity. Nat Chem Biol 2008; 4:751-7. [PMID: 18953356 PMCID: PMC2597094 DOI: 10.1038/nchembio.116] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2008] [Accepted: 09/08/2008] [Indexed: 01/29/2023]
Abstract
The glycan determinant CD15 (also known as Lewis x, or Le(x)) is a distinguishing marker for human myeloid cells and mediates neutrophil adhesion to dendritic cells. Despite broad interest in this structure, the mechanisms underlying CD15 expression remain relatively uncharacterized. Accordingly, we investigated the molecular basis of increasing CD15 expression associated with human myeloid cell differentiation. Flow cytometric analysis of differentiating cells together with biochemical studies using inhibitors of glycan synthesis and of sialidases showed that increased CD15 expression is not due to de novo biosynthesis of CD15, but results predominantly from induction of alpha(2-3)-sialidase activity, which yields CD15 from cell-surface sialyl-CD15 (also known as sialyl-Lewis x, sLe(x) or CD15s). This differentiation-associated conversion of surface CD15s to CD15 occurs mainly on glycoproteins. Until now, modulation of post-translational glycan modifications has been attributed solely to dynamic variations in glycosyltransferase expression. Our results unveil a new paradigm by demonstrating a critical role for post-Golgi membrane glycosidase activity in the 'biosynthesis' of a key glycan determinant.
Collapse
Affiliation(s)
- Samah Zeineb Gadhoum
- Department of Dermatology, Brigham and Women’s Hospital, Boston, Massachusetts 02115
- Harvard Skin Disease Research Center, Harvard Medical School, Boston, Massachusetts, 02115
| | - Robert Sackstein
- Department of Dermatology, Brigham and Women’s Hospital, Boston, Massachusetts 02115
- Harvard Skin Disease Research Center, Harvard Medical School, Boston, Massachusetts, 02115
- Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts 02115
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115
| |
Collapse
|
399
|
Christie DR, Shaikh FM, Lucas JA, Lucas JA, Bellis SL. ST6Gal-I expression in ovarian cancer cells promotes an invasive phenotype by altering integrin glycosylation and function. J Ovarian Res 2008; 1:3. [PMID: 19014651 PMCID: PMC2584051 DOI: 10.1186/1757-2215-1-3] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2008] [Accepted: 10/01/2008] [Indexed: 11/10/2022] Open
Abstract
Background Ovarian adenocarcinoma is not generally discovered in patients until there has been widespread intraperitoneal dissemination, which is why ovarian cancer is the deadliest gynecologic malignancy. Though incompletely understood, the mechanism of peritoneal metastasis relies on primary tumor cells being able to detach themselves from the tumor, escape normal apoptotic pathways while free floating, and adhere to, and eventually invade through, the peritoneal surface. Our laboratory has previously shown that the Golgi glycosyltransferase, ST6Gal-I, mediates the hypersialylation of β1 integrins in colon adenocarcinoma, which leads to a more metastatic tumor cell phenotype. Interestingly, ST6Gal-I mRNA is known to be upregulated in metastatic ovarian cancer, therefore the goal of the present study was to determine whether ST6Gal-I confers a similarly aggressive phenotype to ovarian tumor cells. Methods Three ovarian carcinoma cell lines were screened for ST6Gal-I expression, and two of these, PA-1 and SKOV3, were found to produce ST6Gal-I protein. The third cell line, OV4, lacked endogenous ST6Gal-I. In order to understand the effects of ST6Gal-I on cell behavior, OV4 cells were stably-transduced with ST6Gal-I using a lentiviral vector, and integrin-mediated responses were compared in parental and ST6Gal-I-expressing cells. Results Forced expression of ST6Gal-I in OV4 cells, resulting in sialylation of β1 integrins, induced greater cell adhesion to, and migration toward, collagen I. Similarly, ST6Gal-I expressing cells were more invasive through Matrigel. Conclusion ST6Gal-I mediated sialylation of β1 integrins in ovarian cancer cells may contribute to peritoneal metastasis by altering tumor cell adhesion and migration through extracellular matrix.
Collapse
Affiliation(s)
- Daniel R Christie
- Department of Obstetrics and Gynecology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | | | | | |
Collapse
|
400
|
Mally M, Shin H, Paroz C, Landmann R, Cornelis GR. Capnocytophaga canimorsus: a human pathogen feeding at the surface of epithelial cells and phagocytes. PLoS Pathog 2008; 4:e1000164. [PMID: 18818736 PMCID: PMC2533406 DOI: 10.1371/journal.ppat.1000164] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2008] [Accepted: 08/27/2008] [Indexed: 11/29/2022] Open
Abstract
Capnocytophaga canimorsus, a commensal bacterium of the canine oral flora, has been repeatedly isolated since 1976 from severe human infections transmitted by dog bites. Here, we show that C. canimorsus exhibits robust growth when it is in direct contact with mammalian cells, including phagocytes. This property was found to be dependent on a surface-exposed sialidase allowing C. canimorsus to utilize internal aminosugars of glycan chains from host cell glycoproteins. Although sialidase probably evolved to sustain commensalism, by releasing carbohydrates from mucosal surfaces, it also contributed to bacterial persistence in a murine infection model: the wild type, but not the sialidase-deficient mutant, grew and persisted, both when infected singly or in competition. This study reveals an example of pathogenic bacteria feeding on mammalian cells, including phagocytes by deglycosylation of host glycans, and it illustrates how the adaptation of a commensal to its ecological niche in the host, here the dog's oral cavity, contributes to being a potential pathogen. Capnocytophaga canimorsus is a commensal bacterium of dogs/cats oral flora, which causes rare but severe infections in humans that have been bitten or simply licked by a dog/cat. Fulminant septicemia and peripheral gangrene are most common symptoms. Although splenectomy has been identified as a predisposing factor, some 40% of the patients have no immunosuppression history. C. canimorsus belongs to the phylum Bacteroidetes, which includes many commensals of the human gut flora but few pathogens. C. canimorsus has been shown previously to be immunosuppressive and to resist phagocytosis by macrophages. Here, we show that this bacterium feeds on surface-exposed glycoproteins from cultured mammalian cells. This property, which was found to depend on a bacterial surface-exposed sialidase, suggests that in its natural niche—the dog's oral cavity—C. canimorsus may feed on the dog's mucosal cells. Moreover, we found that C. canimorsus also feeds on phagocytes and that sialidase contributes to persistence and virulence in a mouse infection model. Thus, by adapting to its ecological niche, C. canimorsus also developed the potential to persist within the tissues of an infected host. This observation nicely illustrates how commensalism and pathogenesis are two faces of the same coin.
Collapse
Affiliation(s)
- Manuela Mally
- Infection Biology, Biozentrum, University of Basel, Klingelbergstrasse, Basel, Switzerland
| | - Hwain Shin
- Infection Biology, Biozentrum, University of Basel, Klingelbergstrasse, Basel, Switzerland
| | - Cécile Paroz
- Infection Biology, Biozentrum, University of Basel, Klingelbergstrasse, Basel, Switzerland
| | - Regine Landmann
- Infection Biology, Department of Research, University Hospital Basel, Hebelstrasse, Basel, Switzerland
| | - Guy R. Cornelis
- Infection Biology, Biozentrum, University of Basel, Klingelbergstrasse, Basel, Switzerland
- * E-mail:
| |
Collapse
|