351
|
McGinniss JE, Imai I, Simon-Soro A, Brown MC, Knecht VR, Frye L, Ravindran PM, Dothard MI, Wadell DA, Sohn MB, Li H, Christie JD, Diamond JM, Haas AR, Lanfranco AR, DiBardino DM, Bushman FD, Collman RG. Molecular analysis of the endobronchial stent microbial biofilm reveals bacterial communities that associate with stent material and frequent fungal constituents. PLoS One 2019; 14:e0217306. [PMID: 31141557 PMCID: PMC6541290 DOI: 10.1371/journal.pone.0217306] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 05/08/2019] [Indexed: 12/19/2022] Open
Abstract
Endobronchial stents are increasingly used to treat airway complications in multiple conditions including lung transplantation but little is known about the biofilms that form on these devices. We applied deep sequencing to profile luminal biofilms of 46 endobronchial stents removed from 20 subjects primarily with lung transplantation-associated airway compromise. Microbial communities were analyzed by bacterial 16S rRNA and fungal ITS marker gene sequencing. Corynebacterium was the most common bacterial taxa across biofilm communities. Clustering analysis revealed three bacterial biofilm types: one low diversity and dominated by Corynebacterium; another was polymicrobial and characterized by Staphylococcus; and the third was polymicrobial and associated with Pseudomonas, Streptococcus, and Prevotella. Biofilm type was significantly correlated with stent material: covered metal with the Staphylococcus-type biofilm, silicone with the Corynebacterium-dominated biofilm, and uncovered metal with the polymicrobial biofilm. Subjects with sequential stents had frequent transitions between community types. Fungal analysis found Candida was most prevalent, Aspergillus was common and highly enriched in two of three stents associated with airway anastomotic dehiscence, and fungal taxa not typically considered pathogens were highly enriched in some stents. Thus, molecular analysis revealed a complex and dynamic endobronchial stent biofilm with three bacterial types that associate with stent material, a central role for Corynebacterium, and that both expected and unexpected fungi inhabit this unique niche. The current work provides a foundation for studies to investigate the relationship between stent biofilm composition and clinical outcomes, mechanisms of biofilm establishment, and strategies for improved stent technology and use in airway compromise.
Collapse
Affiliation(s)
- John E. McGinniss
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Ize Imai
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Aurea Simon-Soro
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Melanie C. Brown
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Vincent R. Knecht
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Laura Frye
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Priyanka M. Ravindran
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Marisol I. Dothard
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Dylan A. Wadell
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Michael B. Sohn
- Department of Epidemiology, Biostatistics and Informatics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Hongzhe Li
- Department of Epidemiology, Biostatistics and Informatics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Jason D. Christie
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Epidemiology, Biostatistics and Informatics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Joshua M. Diamond
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Andrew R. Haas
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Anthony R. Lanfranco
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - David M. DiBardino
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Frederic D. Bushman
- Department of Microbiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail: (RGC); (FDB)
| | - Ronald G. Collman
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Microbiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail: (RGC); (FDB)
| |
Collapse
|
352
|
Córdova-Alcántara IM, Venegas-Cortés DL, Martínez-Rivera MÁ, Pérez NO, Rodriguez-Tovar AV. Biofilm characterization of Fusarium solani keratitis isolate: increased resistance to antifungals and UV light. J Microbiol 2019; 57:485-497. [DOI: 10.1007/s12275-019-8637-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 01/23/2019] [Accepted: 01/28/2019] [Indexed: 12/27/2022]
|
353
|
Huang MY, Woolford CA, May G, McManus CJ, Mitchell AP. Circuit diversification in a biofilm regulatory network. PLoS Pathog 2019; 15:e1007787. [PMID: 31116789 PMCID: PMC6530872 DOI: 10.1371/journal.ppat.1007787] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 04/23/2019] [Indexed: 11/18/2022] Open
Abstract
Genotype-phenotype relationships can vary extensively among members of a species. One cause of this variation is circuit diversification, the alteration of gene regulatory relationships among members of a species. Circuit diversification is thought to be a starting point for the circuit divergence or rewiring that occurs during speciation. How widespread is circuit diversification? Here we address this question with the fungal pathogen Candida albicans, which forms biofilms rich in distinctive hyphal cells as a prelude to infection. Our understanding of the biofilm/hyphal regulatory network comes primarily from studies of one clinical isolate, strain SC5314, and its marked derivatives. We used CRISPR-based methods to create mutations of four key biofilm transcription factor genes–BCR1, UME6, BRG1, and EFG1 –in SC5314 and four additional clinical isolates. Phenotypic analysis revealed that mutations in BCR1 or UME6 have variable impact across strains, while mutations in BRG1 or EFG1 had uniformly severe impact. Gene expression, sampled with Nanostring probes and examined comprehensively for EFG1 via RNA-Seq, indicates that regulatory relationships are highly variable among isolates. Our results suggest that genotype-phenotype relationships vary in this strain panel in part because of differences in control of BRG1 by BCR1, a hypothesis that is supported through engineered constitutive expression of BRG1. Overall, the data show that circuit diversification is the rule, not the exception, in this biofilm/hyphal regulatory network. Much of what we know about microbial pathogens is derived from in-depth analysis of one or a few standard laboratory strains. This statement is especially true for the fungal pathogen Candida albicans, because most studies have centered on strain SC5314 and its genetically marked derivatives. Here we examine the functional impact of mutations of four key biofilm regulators across five different clinical isolates. We observe that functional impact of the mutations, based on biological phenotypes and gene expression effects, varies extensively among the isolates. Our results support the idea that gene function should be validated with multiple strain isolates. In addition, our results indicate that a core regulatory network, which comprises regulatory relationships common to multiple isolates, may be enriched for functionally relevant genes.
Collapse
Affiliation(s)
- Manning Y. Huang
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, United States of America
| | - Carol A. Woolford
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, United States of America
| | - Gemma May
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, United States of America
| | - C. Joel McManus
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, United States of America
| | - Aaron P. Mitchell
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, United States of America
- * E-mail:
| |
Collapse
|
354
|
Galocha M, Pais P, Cavalheiro M, Pereira D, Viana R, Teixeira MC. Divergent Approaches to Virulence in C. albicans and C. glabrata: Two Sides of the Same Coin. Int J Mol Sci 2019; 20:E2345. [PMID: 31083555 PMCID: PMC6539081 DOI: 10.3390/ijms20092345] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 05/08/2019] [Accepted: 05/08/2019] [Indexed: 12/27/2022] Open
Abstract
Candida albicans and Candida glabrata are the two most prevalent etiologic agents of candidiasis worldwide. Although both are recognized as pathogenic, their choice of virulence traits is highly divergent. Indeed, it appears that these different approaches to fungal virulence may be equally successful in causing human candidiasis. In this review, the virulence mechanisms employed by C. albicans and C. glabrata are analyzed, with emphasis on the differences between the two systems. Pathogenesis features considered in this paper include dimorphic growth, secreted enzymes and signaling molecules, and stress resistance mechanisms. The consequences of these traits in tissue invasion, biofilm formation, immune system evasion, and macrophage escape, in a species dependent manner, are discussed. This review highlights the observation that C. albicans and C. glabrata follow different paths leading to a similar outcome. It also highlights the lack of knowledge on some of the specific mechanisms underlying C. glabrata pathogenesis, which deserve future scrutiny.
Collapse
Affiliation(s)
- Mónica Galocha
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal.
- iBB-Institute for Bioengineering and Biosciences, Biological Sciences Research Group, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| | - Pedro Pais
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal.
- iBB-Institute for Bioengineering and Biosciences, Biological Sciences Research Group, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| | - Mafalda Cavalheiro
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal.
- iBB-Institute for Bioengineering and Biosciences, Biological Sciences Research Group, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| | - Diana Pereira
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal.
- iBB-Institute for Bioengineering and Biosciences, Biological Sciences Research Group, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| | - Romeu Viana
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal.
- iBB-Institute for Bioengineering and Biosciences, Biological Sciences Research Group, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| | - Miguel C Teixeira
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal.
- iBB-Institute for Bioengineering and Biosciences, Biological Sciences Research Group, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| |
Collapse
|
355
|
Wall G, Montelongo-Jauregui D, Vidal Bonifacio B, Lopez-Ribot JL, Uppuluri P. Candida albicans biofilm growth and dispersal: contributions to pathogenesis. Curr Opin Microbiol 2019; 52:1-6. [PMID: 31085405 DOI: 10.1016/j.mib.2019.04.001] [Citation(s) in RCA: 154] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 04/02/2019] [Indexed: 12/20/2022]
Abstract
The fungal species Candida albicans is most frequently associated with biofilm formation in immune-compromised and medically compromised patients, and it is now firmly established that biofilm formation represents a major virulence factor during candidiasis. A growing body of evidence has demonstrated that C. albicans biofilm development is a highly regulated and coordinated process, where adhesive interactions, morphogenetic conversions, and consortial behavior play significant roles. Cells within the biofilms are protected from environmental stresses including host immune defenses and antifungal treatment, which carries important clinical consequences for the treatment of biofilm-associated infections. Dispersal of cells from biofilms represents one of the hallmarks of the biofilm life-style, and in the case of C. albicans dispersed cells are responsible for candidemia and dissemination leading to the establishment of invasive disease.
Collapse
Affiliation(s)
- Gina Wall
- Department of Biology and South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Daniel Montelongo-Jauregui
- Department of Biology and South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Bruna Vidal Bonifacio
- Department of Biology and South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Jose L Lopez-Ribot
- Department of Biology and South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX 78249, USA.
| | - Priya Uppuluri
- Division of Infectious Diseases, Los Angeles Biomedical Research Institute, Harbor-UCLA Medical Center, Torrance, CA, 90509, USA.
| |
Collapse
|
356
|
Antimicrobial, Cytotoxic, and Anti-Inflammatory Activities of Pimenta dioica and Rosmarinus officinalis Essential Oils. BIOMED RESEARCH INTERNATIONAL 2019; 2019:1639726. [PMID: 31205934 PMCID: PMC6530202 DOI: 10.1155/2019/1639726] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 04/23/2019] [Accepted: 04/24/2019] [Indexed: 12/16/2022]
Abstract
Essential oils (EOs) are natural products composed of a mixture of volatile and aromatic compounds extracted from different parts of plants that have shown antimicrobial activities against pathogens. In this study, EOs extracted from Pimenta dioica (Myrtaceae) and Rosmarinus officinalis (Lamiaceae) were assessed for their antimicrobial activities using a panel of pathogenic Gram-positive, Gram-negative, and fungal strains. The antimicrobial activity was measured by the minimal inhibitory concentration required for the growth inhibition of the microorganisms. The cytotoxicity of the EOs was tested ex vivo using the model of human-derived macrophage THP-1 cells. In addition, an inflammatory response was evaluated using the anti-inflammatory cytokine IL-10 and the proinflammatory cytokines IL-6 and TNF-α. Results showed that both EOs had antimicrobial activity and different pathogens were exposed to concentrations ranging between 600 and 2000 μg/mL. In addition, the EOs showed no inflammatory activity when exposed to human macrophages, but a potent anti-inflammatory activity was measured when the oil from Rosmarinus officinalis was exposed to macrophages. This study demonstrates that the use of EOs is an effective alternative for pathogenic bacterial and fungal control, alone or in combination with antibiotic therapy. Moreover, the oil extracted from Rosmarinus officinalis could be used as potent anti-inflammatory agent.
Collapse
|
357
|
Phenotypic characteristics and transcriptome profile of Cryptococcus gattii biofilm. Sci Rep 2019; 9:6438. [PMID: 31015652 PMCID: PMC6478838 DOI: 10.1038/s41598-019-42896-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 04/08/2019] [Indexed: 12/23/2022] Open
Abstract
In this study, we characterized Cryptococcus gattii biofilm formation in vitro. There was an increase in the density of metabolically active sessile cells up to 72 h of biofilm formation on polystyrene and glass surfaces. Scanning electron microscopy and confocal laser scanning microscopy analysis revealed that in the early stage of biofilm formation, yeast cells adhered to the abiotic surface as a monolayer. After 12 h, extracellular fibrils were observed projecting from C. gattii cells, connecting the yeast cells to each other and to the abiotic surface; mature biofilm consisted of a dense network of cells deeply encased in an extracellular polymeric matrix. These features were also observed in biofilms formed on polyvinyl chloride and silicone catheter surfaces. We used RNA-Seq-based transcriptome analysis to identify changes in gene expression associated with C. gattii biofilm at 48 h compared to the free-floating planktonic cells. Differential expression analysis showed that 97 and 224 transcripts were up-regulated and down-regulated in biofilm, respectively. Among the biological processes, the highest enriched term showed that the transcripts were associated with cellular metabolic processes, macromolecule biosynthetic processes and translation.
Collapse
|
358
|
Kanugala S, Jinka S, Puvvada N, Banerjee R, Kumar CG. Phenazine-1-carboxamide functionalized mesoporous silica nanoparticles as antimicrobial coatings on silicone urethral catheters. Sci Rep 2019; 9:6198. [PMID: 30996286 PMCID: PMC6470230 DOI: 10.1038/s41598-019-42722-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 04/04/2019] [Indexed: 12/12/2022] Open
Abstract
Microbial infections due to biofilms on medical implants can be prevented by antimicrobial coatings on biomaterial surfaces. Mesoporous silica nanoparticles (MSNPs) were synthesized via base-catalyzed sol-gel process at room temperature, functionalized with phenazine-1-carboxamide (PCN) and characterized by UV-visible, FT-IR, DLS, XRD spectroscopic techniques, SEM, TEM, TGA and BET analysis. Native MSNPs, PCN and PCN-MSNPs were evaluated for anti-Candida minimum inhibitory concentration (MIC), minimum fungicidal concentration (MFC), Candida albicans (C. albicans) biofilms and C. albicans-Staphylococcus aureus (S. aureus) polymicrobial biofilm inhibition. PCN-MSNPs were four-fold effective (MIC 3.9 µg mL-1; 17.47 µM) and MFC (7.8 µg mL-1; 34.94 µM) as compared to pure PCN (MIC 15.6 µg mL-1; 69.88 µM) and MFC (31.2 µg mL-1; 139.76 µM). PCN-MSNPs inhibited in vitro C. albicans MTCC 227-S. aureus MTCC 96 biofilms at very low concentration (10 µg mL-1; 44.79 µM) as compared to pure PCN (40 µg mL-1; 179.18 µM). Mechanistic studies revealed that PCN induced intracellular ROS accumulation in C. albicans MTCC 227, S. aureus MTCC 96 and S. aureus MLS-16 MTCC 2940, reduction in total ergosterol content, membrane permeability, disruption of ionic homeostasis followed by Na+, K+ and Ca2+ leakage leading to cell death in C. albicans MTCC 227 as confirmed by confocal laser scanning micrographs. The silicone urethral catheters coated with PCN-MSNPs (500 µg mL-1; 2.23 mM) exhibited no formation of C. albicans MTCC 227 - S. aureus MTCC 96 and C. albicans MTCC 227 - S. aureus MLS -16 MTCC 2940 biofilms. This is the first report on PCN-MSNPs for use as antimicrobial coatings against microbial adhesion and biofilm formation on silicone urethral catheters.
Collapse
Affiliation(s)
- Sirisha Kanugala
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad, 500007, India
- Academy of Scientific and Innovative Research, Ghaziabad, 201002, India
| | - Sudhakar Jinka
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad, 500007, India
| | - Nagaprasad Puvvada
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad, 500007, India
| | - Rajkumar Banerjee
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad, 500007, India
- Academy of Scientific and Innovative Research, Ghaziabad, 201002, India
| | - C Ganesh Kumar
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad, 500007, India.
- Academy of Scientific and Innovative Research, Ghaziabad, 201002, India.
| |
Collapse
|
359
|
Di Domenico EG, Cavallo I, Guembe M, Prignano G, Gallo MT, Bordignon V, D'Agosto G, Sperduti I, Toma L, Ensoli F. The clinical Biofilm Ring Test: a promising tool for the clinical assessment of biofilm-producing Candida species. FEMS Yeast Res 2019. [PMID: 29518199 DOI: 10.1093/femsyr/foy025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Candida species are opportunistic pathogens responsible for a variety of diseases, ranging from skin and mucosal lesions to severe systemic, life-threatening infections. Candida albicans accounts for more than 70% of all Candida infections, however, the clinical relevance of other species such as Candida parapsilosis and Candida krusei are being increasingly recognized. Biofilm-producing yeasts cells acquire an increased resistance to antifungal agents, often leading to therapeutic failure and chronic infection. Conventional methods such as crystal violet (CV) and tetrazolium (XTT) reduction assay, developed to evaluate biofilm formation in Candida species are usually time-consuming, present a high intra- and inter-assay variability of the results and are therefore hardly applicable to routine diagnostics. This study describes an in-vitro assay developed for the measurement of biofilm formation in Candida species based on the clinical Biofilm Ring Test® (cBRT). We found a significant concordance between the cBRT and both CV (k = 0.74) and XTT (k = 0.62), respectively. Nevertheless, the cBRT resulted more reliable and reproducible than CV and XTT, requiring a minimal sample manipulation and allowing a high throughput assessment, directly on viable cells. The results indicate that the cBRT may provide a suitable, cost-effective technique for routine biofilm testing in clinical microbiology.
Collapse
Affiliation(s)
- Enea Gino Di Domenico
- San Gallicano Institute, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00144 Rome, Italy
| | - Ilaria Cavallo
- San Gallicano Institute, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00144 Rome, Italy
| | - Maria Guembe
- Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain
| | - Grazia Prignano
- San Gallicano Institute, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00144 Rome, Italy
| | - Maria Teresa Gallo
- San Gallicano Institute, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00144 Rome, Italy
| | - Valentina Bordignon
- San Gallicano Institute, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00144 Rome, Italy
| | - Giovanna D'Agosto
- San Gallicano Institute, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00144 Rome, Italy
| | - Isabella Sperduti
- San Gallicano Institute, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00144 Rome, Italy
| | - Luigi Toma
- Regina Elena National Cancer Institute, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00144 Rome, Italy
| | - Fabrizio Ensoli
- San Gallicano Institute, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00144 Rome, Italy
| |
Collapse
|
360
|
Maciel EI, Jiang C, Barghouth PG, Nobile CJ, Oviedo NJ. The planarian Schmidtea mediterranea is a new model to study host-pathogen interactions during fungal infections. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 93:18-27. [PMID: 30571995 PMCID: PMC6333478 DOI: 10.1016/j.dci.2018.12.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 11/07/2018] [Accepted: 12/11/2018] [Indexed: 05/06/2023]
Abstract
Candida albicans is one of the most common fungal pathogens of humans. Currently, there are limitations in the evaluation of C. albicans infection in existing animal models, especially in terms of understanding the influence of specific infectious stages of the fungal pathogen on the host. We show that C. albicans infects, grows and invades tissues in the planarian flatworm Schmidtea mediterranea, and that the planarian responds to infection by activating components of the host innate immune system to clear and repair host tissues. We study different stages of C. albicans infection and demonstrate that planarian stem cells increase division in response to fungal infection, a process that is likely evolutionarily conserved in metazoans. Our results implicate MORN2 and TAK1/p38 signaling pathways as possible mediators of the host innate immune response to fungal infection. We propose the use of planarians as a model system to investigate host-pathogen interactions during fungal infections.
Collapse
Affiliation(s)
- Eli Isael Maciel
- Department of Molecular & Cell Biology, University of California, Merced, USA; Quantitative and Systems Biology Graduate Program, University of California, Merced, USA
| | - Cen Jiang
- Department of Molecular & Cell Biology, University of California, Merced, USA; Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Paul G Barghouth
- Department of Molecular & Cell Biology, University of California, Merced, USA; Quantitative and Systems Biology Graduate Program, University of California, Merced, USA
| | - Clarissa J Nobile
- Department of Molecular & Cell Biology, University of California, Merced, USA; Health Sciences Research Institute, University of California, Merced, USA.
| | - Néstor J Oviedo
- Department of Molecular & Cell Biology, University of California, Merced, USA; Health Sciences Research Institute, University of California, Merced, USA.
| |
Collapse
|
361
|
Váchová L, Palková Z. How structured yeast multicellular communities live, age and die? FEMS Yeast Res 2019; 18:4950397. [PMID: 29718174 DOI: 10.1093/femsyr/foy033] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 03/20/2018] [Indexed: 12/28/2022] Open
Abstract
Yeasts, like other microorganisms, create numerous types of multicellular communities, which differ in their complexity, cell differentiation and in the occupation of different niches. Some of the communities, such as colonies and some types of biofilms, develop by division and subsequent differentiation of cells growing on semisolid or solid surfaces to which they are attached or which they can penetrate. Aggregation of individual cells is important for formation of other community types, such as multicellular flocs, which sediment to the bottom or float to the surface of liquid cultures forming flor biofilms, organized at the border between liquid and air under specific circumstances. These examples together with the existence of more obscure communities, such as stalks, demonstrate that multicellularity is widespread in yeast. Despite this fact, identification of mechanisms and regulations involved in complex multicellular behavior still remains one of the challenges of microbiology. Here, we briefly discuss metabolic differences between particular yeast communities as well as the presence and functions of various differentiated cells and provide examples of the ability of these cells to develop different ways to cope with stress during community development and aging.
Collapse
Affiliation(s)
- Libuše Váchová
- Institute of Microbiology of the Czech Academy of Sciences, BIOCEV, 252 50 Vestec, Czech Republic
| | - Zdena Palková
- Faculty of Science, Charles University, BIOCEV, 252 50 Vestec, Czech Republic
| |
Collapse
|
362
|
Patange A, Boehm D, Ziuzina D, Cullen PJ, Gilmore B, Bourke P. High voltage atmospheric cold air plasma control of bacterial biofilms on fresh produce. Int J Food Microbiol 2019; 293:137-145. [PMID: 30711711 DOI: 10.1016/j.ijfoodmicro.2019.01.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 01/02/2019] [Accepted: 01/09/2019] [Indexed: 12/24/2022]
Abstract
Atmospheric cold plasma (ACP) offers great potential for decontamination of food borne pathogens. This study examined the antimicrobial efficacy of ACP against a range of pathogens of concern to fresh produce comparing planktonic cultures, monoculture biofilms (Escherichia coli, Salmonella enterica, Listeria monocytogenes, Pseudomonas fluorescens) and mixed culture biofilms (Listeria monocytogenes and Pseudomonas fluorescens). Biotic and abiotic surfaces commonly occurring in the fresh food industry were investigated. Microorganisms showed varying susceptibility to ACP treatment depending on target and process factors. Bacterial biofilm populations treated with high voltage (80 kV) ACP were reduced significantly (p < 0.05) in both mono- and mixed species biofilms after 60 s of treatment and yielded non-detectable levels after extending treatment time to 120 s. However, an extended time was required to reduce the challenge mixed culture biofilm of L. monocytogenes and P. fluorescens inoculated on lettuce, which was dependent on biofilm formation conditions and substrate. Contained treatment for 120 s reduced L. monocytogenes and P. fluorescens inoculated as mixed cultures on lettuce (p < 0.05) by 2.2 and 4.2 Log10 CFU/ml respectively. When biofilms were grown at 4 °C on lettuce, there was an increased resistance to ACP treatment by comparison with biofilm grown at temperature abuse conditions of 15 °C. Similarly, L. monocytogenes and P. fluorescens exposed to cold stress (4 °C) for 1 h demonstrated increased tolerance to ACP treatment compared to non-stressed cells. These finding demonstrates that bacterial form, mono versus mixed challenges as well as environmental stress conditions play an important role in ACP inactivation efficacy.
Collapse
Affiliation(s)
- Apurva Patange
- Plasma Research Group, School of Food Science and Environmental Health, Technological University Dublin, Dublin 1, Ireland
| | - D Boehm
- Plasma Research Group, School of Food Science and Environmental Health, Technological University Dublin, Dublin 1, Ireland
| | - Dana Ziuzina
- Plasma Research Group, School of Food Science and Environmental Health, Technological University Dublin, Dublin 1, Ireland
| | - P J Cullen
- Plasma Research Group, School of Food Science and Environmental Health, Technological University Dublin, Dublin 1, Ireland
| | - Brendan Gilmore
- Biofilm Research Group, School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT97BL, UK
| | - Paula Bourke
- Plasma Research Group, School of Food Science and Environmental Health, Technological University Dublin, Dublin 1, Ireland.
| |
Collapse
|
363
|
Bartnicka D, Karkowska-Kuleta J, Zawrotniak M, Satała D, Michalik K, Zielinska G, Bochenska O, Kozik A, Ciaston I, Koziel J, Dutton LC, Nobbs AH, Potempa B, Baster Z, Rajfur Z, Potempa J, Rapala-Kozik M. Adhesive protein-mediated cross-talk between Candida albicans and Porphyromonas gingivalis in dual species biofilm protects the anaerobic bacterium in unfavorable oxic environment. Sci Rep 2019; 9:4376. [PMID: 30867500 PMCID: PMC6416349 DOI: 10.1038/s41598-019-40771-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 01/22/2019] [Indexed: 12/13/2022] Open
Abstract
The oral cavity contains different types of microbial species that colonize human host via extensive cell-to-cell interactions and biofilm formation. Candida albicans-a yeast-like fungus that inhabits mucosal surfaces-is also a significant colonizer of subgingival sites in patients with chronic periodontitis. It is notable however that one of the main infectious agents that causes periodontal disease is an anaerobic bacterium-Porphyromonas gingivalis. In our study, we evaluated the different strategies of both pathogens in the mutual colonization of an artificial surface and confirmed that a protective environment existed for P. gingivalis within developed fungal biofilm formed under oxic conditions where fungal cells grow mainly in their filamentous form i.e. hyphae. A direct physical contact between fungi and P. gingivalis was initiated via a modulation of gene expression for the major fungal cell surface adhesin Als3 and the aspartic proteases Sap6 and Sap9. Proteomic identification of the fungal surfaceome suggested also an involvement of the Mp65 adhesin and a "moonlighting" protein, enolase, as partners for the interaction with P. gingivalis. Using mutant strains of these bacteria that are defective in the production of the gingipains-the proteolytic enzymes that also harbor hemagglutinin domains-significant roles of these proteins in the formation of bacteria-protecting biofilm were clearly demonstrated.
Collapse
Affiliation(s)
- Dominika Bartnicka
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
| | - Justyna Karkowska-Kuleta
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
| | - Marcin Zawrotniak
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
| | - Dorota Satała
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
| | - Kinga Michalik
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
| | - Gabriela Zielinska
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
| | - Oliwia Bochenska
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
| | - Andrzej Kozik
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
| | - Izabela Ciaston
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
| | - Joanna Koziel
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
| | - Lindsay C Dutton
- Bristol Dental School, University of Bristol, Bristol, United Kingdom
| | - Angela H Nobbs
- Bristol Dental School, University of Bristol, Bristol, United Kingdom
| | - Barbara Potempa
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY, USA
| | - Zbigniew Baster
- Institute of Physics; Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Krakow, Poland
| | - Zenon Rajfur
- Institute of Physics; Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Krakow, Poland
| | - Jan Potempa
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY, USA
| | - Maria Rapala-Kozik
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland.
| |
Collapse
|
364
|
Liu H, Chen H, Sun Y, Zhang X, Lu H, Li J, Cao J, Zhou T. Characterization of the mechanism and impact of staphylokinase on the formation of Candida albicans and Staphylococcus aureus polymicrobial biofilms. J Med Microbiol 2019; 68:355-367. [PMID: 30628885 DOI: 10.1099/jmm.0.000914] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Haiyang Liu
- 1Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, PR China
| | - Huale Chen
- 2Department of Laboratory Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, PR China
| | - Yao Sun
- 1Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, PR China
| | - Xiaoxiao Zhang
- 1Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, PR China
| | - Hong Lu
- 1Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, PR China
| | - Jiahui Li
- 1Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, PR China
| | - Jianming Cao
- 3School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang Province, PR China
| | - Tieli Zhou
- 1Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, PR China
| |
Collapse
|
365
|
Legrand M, Jaitly P, Feri A, d'Enfert C, Sanyal K. Candida albicans: An Emerging Yeast Model to Study Eukaryotic Genome Plasticity. Trends Genet 2019; 35:292-307. [PMID: 30826131 DOI: 10.1016/j.tig.2019.01.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 01/25/2019] [Accepted: 01/25/2019] [Indexed: 01/07/2023]
Abstract
Saccharomyces cerevisiae and Schizosaccharomyces pombe have served as uncontested unicellular model organisms, as major discoveries made in the field of genome biology using yeast genetics have proved to be relevant from yeast to humans. The yeast Candida albicans has attracted much attention because of its ability to switch between a harmless commensal and a dreaded human pathogen. C. albicans bears unique features regarding its life cycle, genome structure, and dynamics, and their links to cell biology and adaptation to environmental challenges. Examples include a unique reproduction cycle with haploid, diploid, and tetraploid forms; a distinctive organisation of chromosome hallmarks; a highly dynamic genome, with extensive karyotypic variations, including aneuploidies, isochromosome formation, and loss-of-heterozygosity; and distinctive links between the response to DNA alterations and cell morphology. These features have made C. albicans emerge as a new and attractive unicellular model to study genome biology and dynamics in eukaryotes.
Collapse
Affiliation(s)
- Mélanie Legrand
- Fungal Biology and Pathogenicity Unit, Department of Mycology, Institut Pasteur, INRA, Paris, France
| | - Priya Jaitly
- Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| | - Adeline Feri
- Fungal Biology and Pathogenicity Unit, Department of Mycology, Institut Pasteur, INRA, Paris, France; Université Paris Diderot, Sorbonne Paris Cité, Cellule Pasteur, Paris, France; Current address: Pathoquest, BioPark, 11 rue Watt, 75013 Paris, France
| | - Christophe d'Enfert
- Fungal Biology and Pathogenicity Unit, Department of Mycology, Institut Pasteur, INRA, Paris, France.
| | - Kaustuv Sanyal
- Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India.
| |
Collapse
|
366
|
Kovács ÁT, Dragoš A. Evolved Biofilm: Review on the Experimental Evolution Studies of Bacillus subtilis Pellicles. J Mol Biol 2019; 431:4749-4759. [PMID: 30769118 DOI: 10.1016/j.jmb.2019.02.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 01/21/2019] [Accepted: 02/04/2019] [Indexed: 12/25/2022]
Abstract
For several decades, laboratory evolution has served as a powerful method to manipulate microorganisms and to explore long-term dynamics in microbial populations. Next to canonical Escherichia coli planktonic cultures, experimental evolution has expanded into alternative cultivation methods and species, opening the doors to new research questions. Bacillus subtilis, the spore-forming and root-colonizing bacterium, can easily develop in the laboratory as a liquid-air interface colonizing pellicle biofilm. Here, we summarize recent findings derived from this tractable experimental model. Clonal pellicle biofilms of B. subtilis can rapidly undergo morphological and genetic diversification creating new ecological interactions, for example, exploitation by biofilm non-producers. Moreover, long-term exposure to such matrix non-producers can modulate cooperation in biofilms, leading to different phenotypic heterogeneity pattern of matrix production with larger subpopulation of "ON" cells. Alternatively, complementary variants of biofilm non-producers, each lacking a distinct matrix component, can engage in a genetic division of labor, resulting in superior biofilm productivity compared to the "generalist" wild type. Nevertheless, inter-genetic cooperation appears to be evanescent and rapidly vanquished by individual biofilm formation strategies altering the amount or the properties of the remaining matrix component. Finally, fast-evolving mobile genetic elements can unpredictably shift intra-species interactions in B. subtilis biofilms. Understanding evolution in clonal biofilm populations will facilitate future studies in complex multispecies biofilms that are more representative of nature.
Collapse
Affiliation(s)
- Ákos T Kovács
- Bacterial Interactions and Evolution Group, Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Kongens Lyngby, Denmark.
| | - Anna Dragoš
- Bacterial Interactions and Evolution Group, Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Kongens Lyngby, Denmark.
| |
Collapse
|
367
|
Pais P, Galocha M, Viana R, Cavalheiro M, Pereira D, Teixeira MC. Microevolution of the pathogenic yeasts Candida albicans and Candida glabrata during antifungal therapy and host infection. MICROBIAL CELL 2019; 6:142-159. [PMID: 30854392 PMCID: PMC6402363 DOI: 10.15698/mic2019.03.670] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Infections by the pathogenic yeasts Candida albicans and Candida glabrata are among the most common fungal diseases. The success of these species as human pathogens is contingent on their ability to resist antifungal therapy and thrive within the human host. C. glabrata is especially resilient to azole antifungal treatment, while C. albicans is best known for its wide array of virulence features. The core mechanisms that underlie antifungal resistance and virulence in these pathogens has been continuously addressed, but the investigation on how such mechanisms evolve according to each environment is scarcer. This review aims to explore current knowledge on micro-evolution experiments to several treatment and host-associated conditions in C. albicans and C. glabrata. The analysis of adaptation strategies that evolve over time will allow to better understand the mechanisms by which Candida species are able to achieve stable phenotypes in real-life scenarios, which are the ones that should constitute the most interesting drug targets.
Collapse
Affiliation(s)
- Pedro Pais
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal.,iBB - Institute for Bioengineering and Biosciences, Biological Sciences Research Group, Instituto Superior Técnico, Lisboa, Portugal
| | - Mónica Galocha
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal.,iBB - Institute for Bioengineering and Biosciences, Biological Sciences Research Group, Instituto Superior Técnico, Lisboa, Portugal
| | - Romeu Viana
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal.,iBB - Institute for Bioengineering and Biosciences, Biological Sciences Research Group, Instituto Superior Técnico, Lisboa, Portugal
| | - Mafalda Cavalheiro
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal.,iBB - Institute for Bioengineering and Biosciences, Biological Sciences Research Group, Instituto Superior Técnico, Lisboa, Portugal
| | - Diana Pereira
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal.,iBB - Institute for Bioengineering and Biosciences, Biological Sciences Research Group, Instituto Superior Técnico, Lisboa, Portugal
| | - Miguel Cacho Teixeira
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal.,iBB - Institute for Bioengineering and Biosciences, Biological Sciences Research Group, Instituto Superior Técnico, Lisboa, Portugal
| |
Collapse
|
368
|
Weiland-Bräuer N, Malek I, Schmitz RA. Metagenomic quorum quenching enzymes affect biofilm formation of Candida albicans and Staphylococcus epidermidis. PLoS One 2019; 14:e0211366. [PMID: 30689669 PMCID: PMC6349329 DOI: 10.1371/journal.pone.0211366] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 01/13/2019] [Indexed: 12/15/2022] Open
Abstract
Biofilm formation in the clinical environment is of increasing concern since a significant part of human infections is associated, and caused by biofilm establishment of (opportunistic) pathogens, for instance Candida albicans and Staphylococcus epidermidis. The rapidly increasing number of antibiotic-resistant biofilms urgently requires the development of novel and effective strategies to prevent biofilm formation ideally targeting a wide range of infectious microorganisms. Both, synthesis of extracellular polymeric substances and quorum sensing are crucial for biofilm formation, and thus potential attractive targets to combat undesirable biofilms.We evaluated the ability of numerous recently identified metagenome-derived bacterial quorum quenching (QQ) proteins to inhibit biofilm formation of C. albicans and S. epidermidis. Here, proteins QQ-5 and QQ-7 interfered with the morphogenesis of C. albicans by inhibiting the yeast-to-hyphae transition, ultimately leading to impaired biofilm formation. Moreover, QQ5 and QQ-7 inhibited biofilm formation of S. epidermidis; in case of QQ7 most likely due to induced expression of the icaR gene encoding the repressor for polysaccharide intercellular adhesin (PIA) synthesis, the main determinant for staphylococcal biofilm formation. Our results indicate that QQ-5 and QQ-7 are attractive potential anti-biofilm agents in the prevention and treatment of C. albicans and S. epidermidis mono-species biofilms, and potentially promising anti-biofilm drugs in also combating multi-species infections.
Collapse
Affiliation(s)
| | - Irene Malek
- Kiel University, Institute for General Microbiology, Kiel, Germany
| | - Ruth A. Schmitz
- Kiel University, Institute for General Microbiology, Kiel, Germany
| |
Collapse
|
369
|
Dekkerová J, Lopez-Ribot JL, Bujdáková H. Activity of anti-CR3-RP polyclonal antibody against biofilms formed by Candida auris, a multidrug-resistant emerging fungal pathogen. Eur J Clin Microbiol Infect Dis 2019; 38:101-108. [PMID: 30327897 DOI: 10.1007/s10096-018-3400-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 10/03/2018] [Indexed: 01/02/2023]
Abstract
Fungal biofilm has remained a serious medical problem that complicates treatment of mycoses. In particular, once biofilms are formed, they display high levels of resistance against most common antifungals. Candida auris is currently considered as a serious emerging fungal pathogen frequently exhibiting high levels of resistance to antifungals. Recent studies have confirmed that C. auris shares similarity with Candida albicans in regards to virulence-associated proteins involved in adherence and biofilm development. Complement receptor 3-related protein (CR3-RP) is one of the key surface antigens expressed by Candida species during biofilm formation. Here, we have investigated the presence of this cell surface moiety on the surface of C. auris, as well as the potential of anti-CR3-RP polyclonal antibody (Ab) to inhibit biofilm formation by this emerging fungal pathogen. Using indirect immunofluorescence and ELISA, we were able to confirm the presence of CR3-RP in C. auris cells within biofilms. Further, not only anti-CR3-RP Ab was able to inhibit biofilm formation by multiple C. auris strains when added during the adherence phase, but it also demonstrated activity against C. auris 24-h pre-formed biofilms, which compared favorably to levels of inhibition achieved by treatment with current conventional antifungals fluconazole, amphotericin B, and caspofungin. Overall, our data demonstrate the presence of this antigen on the surface of C. auris and points to the potential of anti-CR3-RP Ab in eradication of biofilms formed by this novel fungal pathogen.
Collapse
Affiliation(s)
- Jaroslava Dekkerová
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 84215, Bratislava, Slovakia
| | - Jose L Lopez-Ribot
- Department of Biology and South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX, 78249, USA
| | - Helena Bujdáková
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 84215, Bratislava, Slovakia.
| |
Collapse
|
370
|
Černáková L, Light C, Salehi B, Rogel-Castillo C, Victoriano M, Martorell M, Sharifi-Rad J, Martins N, Rodrigues CF. Novel Therapies for Biofilm-Based Candida spp. Infections. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1214:93-123. [DOI: 10.1007/5584_2019_400] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
371
|
Negrini TDC, Koo H, Arthur RA. Candida–Bacterial Biofilms and Host–Microbe Interactions in Oral Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1197:119-141. [DOI: 10.1007/978-3-030-28524-1_10] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
372
|
Swidsinski A, Guschin A, Tang Q, Dörffel Y, Verstraelen H, Tertychnyy A, Khayrullina G, Luo X, Sobel JD, Jiang X. Vulvovaginal candidiasis: histologic lesions are primarily polymicrobial and invasive and do not contain biofilms. Am J Obstet Gynecol 2019; 220:91.e1-91.e8. [PMID: 30595144 DOI: 10.1016/j.ajog.2018.10.023] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 09/28/2018] [Accepted: 10/17/2018] [Indexed: 11/26/2022]
Abstract
BACKGROUND The recent demonstration of a vaginal biofilm in bacterial vaginosis and its postulated importance in the pathogenesis of recurrent bacterial vaginosis, including relative resistance to therapy, has led to the hypothesis that biofilms are crucial for the development of vulvovaginal candidiasis. The histopathology and microbial architecture of vulvovaginal candidiasis have not been previously defined; neither has Candida, containing biofilm been reported in situ. The present study aimed at clarifying the histopathology of vulvovaginal candidiasis including the presence or absence of vaginal biofilm. STUDY DESIGN In a cross-sectional study, vaginal tissue biopsies were obtained from 35 women with clinically, microscopically, and culture-proven vulvovaginal candidiasis and compared with specimens obtained from 25 healthy women and 30 women with active bacterial vaginosis. Vaginal Candida infection was visualized using fluorescent in situ hybridization with ribosomal gene-based probes. RESULTS Candida microorganisms were confirmed in 26 of 35 biopsies obtained from women with vulvovaginal candidiasis; however, Candida containing biofilm were not detected in any of the cases. Histopathological lesions were exclusively invasive and accompanied by co-invasion with Gardnerella or Lactobacillus species organisms. CONCLUSION Histopathological lesions of vulvovaginal candidiasis are primarily invasive in nature and polymicrobial and do not resemble biofilms. The clinical significance of Candida tissue invasion is unknown.
Collapse
|
373
|
The Significance of Lipids to Biofilm Formation in Candida albicans: An Emerging Perspective. J Fungi (Basel) 2018; 4:jof4040140. [PMID: 30567300 PMCID: PMC6308932 DOI: 10.3390/jof4040140] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 12/13/2018] [Accepted: 12/15/2018] [Indexed: 01/03/2023] Open
Abstract
Candida albicans, the dimorphic opportunistic human fungal pathogen, is capable of forming highly drug-resistant biofilms in the human host. Formation of biofilm is a multistep and multiregulatory process involving various adaptive mechanisms. The ability of cells in a biofilm to alter membrane lipid composition is one such adaptation crucial for biofilm development in C. albicans. Lipids modulate mixed species biofilm formation in vivo and inherent antifungal resistance associated with these organized communities. Cells in C. albicans biofilms display phase-dependent changes in phospholipid classes and in levels of lipid raft formation. Systematic studies with genetically modified strains in which the membrane phospholipid composition can be manipulated are limited in C. albicans. In this review, we summarize the knowledge accumulated on the impact that alterations in phospholipids may have on the biofilm forming ability of C. albicans in the human host. This review may provide the requisite impetus to analyze lipids from a therapeutic standpoint in managing C. albicans biofilms.
Collapse
|
374
|
|
375
|
Kerkoub N, Panda SK, Yang MR, Lu JG, Jiang ZH, Nasri H, Luyten W. Bioassay-Guided Isolation of Anti-Candida Biofilm Compounds From Methanol Extracts of the Aerial Parts of Salvia officinalis (Annaba, Algeria). Front Pharmacol 2018; 9:1418. [PMID: 30618736 PMCID: PMC6295571 DOI: 10.3389/fphar.2018.01418] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 11/19/2018] [Indexed: 01/12/2023] Open
Abstract
Salvia officinalis is frequently used in traditional Algerian medicine to treat diverse microbial infections, including oral and vaginal candidiasis. The aerial parts of S. officinalis collected in Annaba, Algeria were extracted in parallel by maceration with four solvents viz. hexane, acetone, methanol and water. All the extracts were tested in vitro against several Candida species: C. albicans, C. glabrata, and C. parapsilosis. Furthermore, the activity against biofilm-forming C. albicans was investigated using bioassay-guided fractionation. A large-scale extract was prepared via maceration in methanol, followed by fractionation on a silica gel column using increasingly polar mixtures of n-hexane, ethyl acetate, methanol, and acetic acid as mobile phase, to yield a total of 150 fractions. Two major active fractions (F-31 and F-39), were further separated by HPLC, resulting in several active chromatographic peaks. Carnosol and 12-methoxy-trans-carnosic acid were isolated as two major active compounds, and identified by a combination of NMR and mass spectrometry. The biofilm inhibitory concentration showed that 12-methoxy-trans-carnosic acid is more effective than carnosol with BIC50 values of 94 μM (95% confidence interval, 78.9-112.1 μM) and 314 μM (95% confidence interval, 200.7-491.2 μM), respectively. The present study supports the traditional use of sage in the treatment of various fungal infections caused by Candida. Further studies of the bioactive compounds in an in vivo Candida biofilm model are required to validate their clinical potential as antifungals.
Collapse
Affiliation(s)
- Neila Kerkoub
- Laboratory of Biodiversity and Pollution of Ecosystems, Department of Biology, University Chadli Bendjedid, El Tarf, Algeria
| | | | - Ming-Rong Yang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, China
| | - Jing-Guang Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, China
| | - Zhi-Hong Jiang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, China
| | - Hichem Nasri
- Laboratory of Biodiversity and Pollution of Ecosystems, Department of Biology, University Chadli Bendjedid, El Tarf, Algeria
| | | |
Collapse
|
376
|
Rodríguez-Cerdeira C, Gregorio MC, Molares-Vila A, López-Barcenas A, Fabbrocini G, Bardhi B, Sinani A, Sánchez-Blanco E, Arenas-Guzmán R, Hernandez-Castro R. Biofilms and vulvovaginal candidiasis. Colloids Surf B Biointerfaces 2018; 174:110-125. [PMID: 30447520 DOI: 10.1016/j.colsurfb.2018.11.011] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 11/04/2018] [Accepted: 11/05/2018] [Indexed: 01/18/2023]
Abstract
Candida species, including C. albicans, are part of the mucosal flora of most healthy women, and inhabit the gastrointestinal and genitourinary tracts. Under favourable conditions, they can colonize the vulvovaginal mucosa, giving rise to symptomatic vulvovaginal candidiasis (VVC). The mechanism by which Candida spp. produces inflammation is unknown. Both, the blastoconidia and the pseudohyphae are capable of destroying the vaginal epithelium by direct invasion. Although the symptoms are not always related to the fungal burden, in general, VVC is associated with a greater number of yeasts and pseudohyphae. Some years ago, C. albicans was the species most frequently involved in the different forms of VVC. However, infections by different species have emerged during the last two decades producing an increase in causative species of VVC such as C. glabrata, C. parapsilosis, C. krusei and C. tropicalis. Candida species are pathogenic organisms that have two forms of development: planktonic and biofilm. A biofilm is defined as a community of microorganisms attached to a surface and encompassed by an extracellular matrix. This form of presentation gives microorganisms greater resistance to antifungal agents. This review, about Candia spp. with a special emphasis on Candida albicans discusses specific areas such as biofilm structure and development, cell morphology and biofilm formation, biofilm-associated gene expression, the cell surface and adherence, the extracellular matrix, biofilm metabolism, and biofilm drug resistance in vulvovaginitis biofilms as an important virulence factor in fungi.
Collapse
Affiliation(s)
- Carmen Rodríguez-Cerdeira
- Efficiency, Quality and Costs in Health Services Research Group (EFISALUD), Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Spain; Dermatology Department, Hospital do Meixoeiro and University of Vigo, Vigo, Spain; European Women's Dermatologic and Venereologic Society (EWDVS), Vigo, Spain.
| | - Miguel Carnero Gregorio
- Efficiency, Quality and Costs in Health Services Research Group (EFISALUD), Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Spain; Department of Biochemistry, Genetics and Immunology, University of Vigo, Vigo, Spain
| | - Alberto Molares-Vila
- Efficiency, Quality and Costs in Health Services Research Group (EFISALUD), Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Spain; Department of Department of Analytical & Food Chemistry, Universidade de Vigo (UVIGO), Spain
| | - Adriana López-Barcenas
- Efficiency, Quality and Costs in Health Services Research Group (EFISALUD), Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Spain; Mycology Service, Hospital Manuel Gea González, Mexico City, Mexico
| | | | | | - Ardiana Sinani
- Dermatology Service, Military Medical Unit, University Trauma Hospital, Tirana, Albania
| | | | | | | |
Collapse
|
377
|
Willaert RG. Adhesins of Yeasts: Protein Structure and Interactions. J Fungi (Basel) 2018; 4:jof4040119. [PMID: 30373267 PMCID: PMC6308950 DOI: 10.3390/jof4040119] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 10/23/2018] [Accepted: 10/24/2018] [Indexed: 12/14/2022] Open
Abstract
The ability of yeast cells to adhere to other cells or substrates is crucial for many yeasts. The budding yeast Saccharomyces cerevisiae can switch from a unicellular lifestyle to a multicellular one. A crucial step in multicellular lifestyle adaptation is self-recognition, self-interaction, and adhesion to abiotic surfaces. Infectious yeast diseases such as candidiasis are initiated by the adhesion of the yeast cells to host cells. Adhesion is accomplished by adhesin proteins that are attached to the cell wall and stick out to interact with other cells or substrates. Protein structures give detailed insights into the molecular mechanism of adhesin-ligand interaction. Currently, only the structures of a very limited number of N-terminal adhesion domains of adhesins have been solved. Therefore, this review focuses on these adhesin protein families. The protein architectures, protein structures, and ligand interactions of the flocculation protein family of S. cerevisiae; the epithelial adhesion family of C. glabrata; and the agglutinin-like sequence protein family of C. albicans are reviewed and discussed.
Collapse
Affiliation(s)
- Ronnie G Willaert
- Alliance Research Group VUB-UGent NanoMicrobiology (NAMI), IJRG VUB-EPFL NanoBiotechnology & NanoMedicine (NANO), Research Group Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, Belgium.
- Department Bioscience Engineering, University Antwerp, 2020 Antwerp, Belgium.
| |
Collapse
|
378
|
Abstract
Persister cells are a small subpopulation within fungal biofilms that are highly resistant to high concentrations of antifungals and therefore most likely contribute to the resistance and recalcitrance of biofilm infections. Moreover, this subpopulation is defined as a nongrowing, phenotypic variant of wild-type cells that can survive high doses of antifungals. There are high degrees of heterogeneity and plasticity associated with biofilm formation, resulting in a strong variation in the amount of persister cells. The fraction of these cells in fungal biofilms also appear to be dependent on the type of substrate. The cells can be observed immediately after their adhesion to that substrate, which makes up the initial step of biofilm formation. Thus far, persister cells have primarily been studied in Candida spp. These fungi are the fourth most common cause of nosocomial systemic infections in the United States, with C. albicans being the most prevalent species. Remarkably, persisters exhibit characteristics of a dormant state similar to what is observed in cells deprived of glucose. This dormant state, together with attachment to a substrate, appears to provide the cells with characteristics that help them overcome the challenges with fungicidal drugs such as amphotericin B (AmB). AmB is known to induce apoptosis, and persister cells are able to cope with the increase in reactive oxygen species (ROS) by activating stress response pathways and the accumulation of high amounts of glycogen and trehalose-two known stress-protecting molecules. In this review, we discuss the molecular pathways that are involved in persister cell formation in fungal species and highlight that the eradication of persister cells could lead to a strong reduction of treatment failure in a clinical setting.
Collapse
Affiliation(s)
- Jurgen Wuyts
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium
- KU Leuven Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, Leuven, Belgium
| | - Patrick Van Dijck
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium
- KU Leuven Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, Leuven, Belgium
- * E-mail:
| | - Michelle Holtappels
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium
- KU Leuven Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, Leuven, Belgium
| |
Collapse
|
379
|
Íñigo M, Pozo JLD. Fungal biofilms: From bench to bedside. REVISTA ESPANOLA DE QUIMIOTERAPIA : PUBLICACION OFICIAL DE LA SOCIEDAD ESPANOLA DE QUIMIOTERAPIA 2018; 31 Suppl 1:35-38. [PMID: 30209921 PMCID: PMC6459572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Biofilms cause recurrent invasive infections that are difficult to eradicate because of their high resistance to antimicrobials and host defence mechanisms. Fungal biofilm-related infections are associated with high mortality rates. Although current guidelines recommend catheter removal for catheter-related bloodstream infections due to Candida species, several studies have shown that the efficacy of the antifungal lock technique. The use of combinations of antifungal agents may improve the management of biofilm-related fungal infections and prevent the emergence of resistance associated with monotherapy. Since the presence of mixed bacterial-fungal biofilm infections is very prevalent, a combination of antibacterial and antifungal agents should be considered.
Collapse
Affiliation(s)
- Melania Íñigo
- Department of Clinical Microbiology, Clínica Universidad de Navarra, Pamplona/Madrid, Spain
| | - José Luís Del Pozo
- Department of Clinical Microbiology, Clínica Universidad de Navarra, Pamplona/Madrid, Spain,Infectious Diseases Division, Clínica Universidad de Navarra, Pamplona, Spain,Laboratory of Microbial Biofilms, Clínica Universidad de Navarra, Pamplona, Spain
| |
Collapse
|
380
|
Candel FJ, Emilov T, Diaz de la Torre I, Ruedas A, Viñuela Prieto JM, Visiedo C, Martínez-Jordán J, López-González L, Matesanz M, Arribi A. Update in Infectious Diseases 2018. REVISTA ESPANOLA DE QUIMIOTERAPIA : PUBLICACION OFICIAL DE LA SOCIEDAD ESPANOLA DE QUIMIOTERAPIA 2018; 31 Suppl 1:1-8. [PMID: 30209913 PMCID: PMC6459573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
VIII Updating Course of Antimicrobials and Infectious Diseases has reviewed useful microbiological, epidemiological and clinical aspects for a current approach of infectious pathology. Present manuscript summarizes a chronicle about the main infection related meetings during 2017 (ECCMID, IAS, ASM and ID Week). In addition, the course proposed a practical approach for understanding different type of pathogens and our selected topics this year were the epidemiology of bacterial nosocomial infection, a practical approach to Clostridium difficile infection patients, a two year selection of the top ten papers about fungal infection and an update in fungal biofilms. Finally, proffesors made a practical approach by main clinical syndromes like sepsis, infections in oncohematological patients, CNS infections in immunosuppressed patients and reviewed the top ten papers in transplant infectious diseases and infection control during the last two years.
Collapse
Affiliation(s)
- F J Candel
- Francisco Javier Candel González, Department of Clínical Microbiology. Health Research Institute (IdISSC). Hospital Clínico Universitario San Carlos. UCM. Avda Profesor Martín Lagos S/N. 28040. Madrid. Spain.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
381
|
Camacho E, Casadevall A. Cryptococcal Traits Mediating Adherence to Biotic and Abiotic Surfaces. J Fungi (Basel) 2018; 4:jof4030088. [PMID: 30060601 PMCID: PMC6162697 DOI: 10.3390/jof4030088] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 07/25/2018] [Accepted: 07/27/2018] [Indexed: 01/22/2023] Open
Abstract
Several species in the genus Cryptococcus are facultative intracellular pathogens capable of causing disease associated with high mortality and morbidity in humans. These fungi interact with other organisms in the soil, and these interactions may contribute to the development of adaptation mechanisms that function in virulence by promoting fungal survival in animal hosts. Fungal adhesion molecules, also known as adhesins, have been classically considered as cell-surface or secreted proteins that play critical roles in microbial pathogenesis or in biofilm formation as structural components. Pathogenic Cryptococcus spp. differ from other pathogenic yeasts in having a polysaccharide capsule that covers the cell wall surface and precludes interactions of those structures with host cell receptors. Hence, pathogenic Cryptococcus spp. use unconventional tools for surface attachment. In this essay, we review the unique traits and mechanisms favoring adhesion of Cryptococcus spp. to biotic and abiotic surfaces. Knowledge of the traits that mediate adherence could be exploited in the development of therapeutic, biomedical, and/or industrial products.
Collapse
Affiliation(s)
- Emma Camacho
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, 615 N Wolfe St Room E5132, Baltimore, MD 21205, USA.
| | - Arturo Casadevall
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, 615 N Wolfe St Room E5132, Baltimore, MD 21205, USA.
| |
Collapse
|
382
|
Gulati M, Lohse MB, Ennis CL, Gonzalez RE, Perry AM, Bapat P, Arevalo AV, Rodriguez DL, Nobile CJ. In Vitro Culturing and Screening of Candida albicans Biofilms. ACTA ACUST UNITED AC 2018; 50:e60. [PMID: 29995344 DOI: 10.1002/cpmc.60] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Candida albicans is a normal member of the human microbiota that asymptomatically colonizes healthy individuals, however it is also an opportunistic pathogen that can cause severe infections, especially in immunocompromised individuals. The medical impact of C. albicans depends, in part, on its ability to form biofilms, communities of adhered cells encased in an extracellular matrix. Biofilms can form on both biotic and abiotic surfaces, such as tissues and implanted medical devices. Once formed, biofilms are highly resistant to antifungal agents and the host immune system, and can act as a protected reservoir to seed disseminated infections. Here, we present several in vitro biofilm protocols, including protocols that are optimized for high-throughput screening of mutant libraries and antifungal compounds. We also present protocols to examine specific stages of biofilm development and protocols to evaluate interspecies biofilms that C. albicans forms with interacting microbial partners. © 2018 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Megha Gulati
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, Merced, California
| | - Matthew B Lohse
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, California.,Department of Biology, BioSynesis, Inc., San Francisco, California
| | - Craig L Ennis
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, Merced, California.,Quantitative and Systems Biology Graduate Program, University of California, Merced, Merced, California
| | - Ruth E Gonzalez
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, Merced, California
| | - Austin M Perry
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, Merced, California.,Quantitative and Systems Biology Graduate Program, University of California, Merced, Merced, California
| | - Priyanka Bapat
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, Merced, California.,Quantitative and Systems Biology Graduate Program, University of California, Merced, Merced, California
| | - Ashley Valle Arevalo
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, Merced, California.,Quantitative and Systems Biology Graduate Program, University of California, Merced, Merced, California
| | - Diana L Rodriguez
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, Merced, California.,Quantitative and Systems Biology Graduate Program, University of California, Merced, Merced, California
| | - Clarissa J Nobile
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, Merced, California
| |
Collapse
|
383
|
Kean R, Delaney C, Sherry L, Borman A, Johnson EM, Richardson MD, Rautemaa-Richardson R, Williams C, Ramage G. Transcriptome Assembly and Profiling of Candida auris Reveals Novel Insights into Biofilm-Mediated Resistance. mSphere 2018; 3:e00334-18. [PMID: 29997121 PMCID: PMC6041501 DOI: 10.1128/msphere.00334-18] [Citation(s) in RCA: 147] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 06/21/2018] [Indexed: 12/13/2022] Open
Abstract
Candida auris has emerged as a significant global nosocomial pathogen. This is primarily due to its antifungal resistance profile but also its capacity to form adherent biofilm communities on a range of clinically important substrates. While we have a comprehensive understanding of how other Candida species resist and respond to antifungal challenge within the sessile phenotype, our current understanding of C. auris biofilm-mediated resistance is lacking. In this study, we are the first to perform transcriptomic analysis of temporally developing C. auris biofilms, which were shown to exhibit phase- and antifungal class-dependent resistance profiles. A de novo transcriptome assembly was performed, where sequenced sample reads were assembled into an ~11.5-Mb transcriptome consisting of 5,848 genes. Differential expression (DE) analysis demonstrated that 791 and 464 genes were upregulated in biofilm formation and planktonic cells, respectively, with a minimum 2-fold change. Adhesin-related glycosylphosphatidylinositol (GPI)-anchored cell wall genes were upregulated at all time points of biofilm formation. As the biofilm developed into intermediate and mature stages, a number of genes encoding efflux pumps were upregulated, including ATP-binding cassette (ABC) and major facilitator superfamily (MFS) transporters. When we assessed efflux pump activity biochemically, biofilm efflux was greater than that of planktonic cells at 12 and 24 h. When these were inhibited, fluconazole sensitivity was enhanced 4- to 16-fold. This study demonstrates the importance of efflux-mediated resistance within complex C. auris communities and may explain the resistance of C. auris to a range of antimicrobial agents within the hospital environment.IMPORTANCE Fungal infections represent an important cause of human morbidity and mortality, particularly if the fungi adhere to and grow on both biological and inanimate surfaces as communities of cells (biofilms). Recently, a previously unrecognized yeast, Candida auris, has emerged globally that has led to widespread concern due to the difficulty in treating it with existing antifungal agents. Alarmingly, it is also able to grow as a biofilm that is highly resistant to antifungal agents, yet we are unclear about how it does this. Here, we used a molecular approach to investigate the genes that are important in causing the cells to be resistant within the biofilm. The work provides significant insights into the importance of efflux pumps, which actively pump out toxic antifungal drugs and therefore enhance fungal survival within a variety of harsh environments.
Collapse
Affiliation(s)
- Ryan Kean
- Oral Sciences Research Group, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
- Institute of Healthcare, Policy and Practise, University of the West of Scotland, Paisley, United Kingdom
| | - Christopher Delaney
- Oral Sciences Research Group, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Leighann Sherry
- Oral Sciences Research Group, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Andrew Borman
- National Mycology Reference Laboratory, Public Health England South-West, Bristol, United Kingdom
| | - Elizabeth M Johnson
- National Mycology Reference Laboratory, Public Health England South-West, Bristol, United Kingdom
| | - Malcolm D Richardson
- Mycology Reference Centre Manchester, University Hospital of South Manchester & University of Manchester, Manchester Academic Health Sciences Centre, Faculty of Biology, Medicine and Health, Division of Infection, Immunity and Respiratory Medicine, Manchester, United Kingdom
| | - Riina Rautemaa-Richardson
- Mycology Reference Centre Manchester, University Hospital of South Manchester & University of Manchester, Manchester Academic Health Sciences Centre, Faculty of Biology, Medicine and Health, Division of Infection, Immunity and Respiratory Medicine, Manchester, United Kingdom
| | - Craig Williams
- Institute of Healthcare, Policy and Practise, University of the West of Scotland, Paisley, United Kingdom
- ESCMID Study Group for Biofilms (ESGB)‡
| | - Gordon Ramage
- Oral Sciences Research Group, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
- ESCMID Study Group for Biofilms (ESGB)‡
| |
Collapse
|
384
|
Lipke PN. What We Do Not Know about Fungal Cell Adhesion Molecules. J Fungi (Basel) 2018; 4:jof4020059. [PMID: 29772751 PMCID: PMC6023273 DOI: 10.3390/jof4020059] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 04/27/2018] [Accepted: 05/10/2018] [Indexed: 12/16/2022] Open
Abstract
There has been extensive research on structure and function of fungal cell adhesion molecules, but the most of the work has been about adhesins in Candida albicans and Saccharomyces cerevisiae. These yeasts are members of a single ascomycete order, and adhesion molecules from the six other fungal phyla are only sparsely described in the literature. In these other phyla, most of the research is at the cellular level, rather than at the molecular level, so there has been little characterization of the adhesion molecules themselves. A catalog of known adhesins shows some common features: high Ser/Thr content, tandem repeats, N- and O-glycosylations, GPI anchors, dibasic sequence motifs, and potential amyloid-forming sequences. However, none of these features is universal. Known ligands include proteins and glycans on homologous cells and host cells. Existing and novel tools can exploit the availability of genome sequences to identify and characterize new fungal adhesins. These include bioinformatics tools and well-established yeast surface display models, which could be coupled with an adhesion substrate array. Thus, new knowledge could be exploited to answer key questions in fungal ecology, animal and plant pathogenesis, and roles of biofilms in infection and biomass turnover.
Collapse
Affiliation(s)
- Peter N Lipke
- Biology Department, Brooklyn College, City University of New York, Brooklyn, NY 11210, USA.
- The Graduate Center, City University of New York, New York, NY 10016, USA.
| |
Collapse
|
385
|
Bioactivity Assessment of Indian Origin-Mangrove Actinobacteria against Candida albicans. Mar Drugs 2018; 16:md16020060. [PMID: 29439535 PMCID: PMC5852488 DOI: 10.3390/md16020060] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 02/06/2018] [Accepted: 02/09/2018] [Indexed: 12/30/2022] Open
Abstract
Actinobacteria is found to have a potent metabolic activity against pathogens. The present study reveals the assessment of potent antifungal secondary metabolites from actinobacteria isolated from Indian marine mangrove sediments. The samples were collected from the coastal regions of Muthupet, Andaman and the Nicobar Islands. Identification was carried out using 16S rRNA analysis and biosynthetic genes (Polyketide synthase type I/II and Non-ribosomal peptide synthase) were screened. Actinobacteria were assayed for their antifungal activity against 16 clinical Candida albicans and the compound analysis was performed using gas chromatography-mass spectrometry GC-MS. The 31 actinobacterial strains were isolated and 16S rRNA gene sequencing revealed that this ecosystem is rich on actinobacteria, with Streptomyces as the predominant genus. The PCR based screening of biosynthetic genes revealed the presence of PKS-I in six strains, PKS-II in four strains and NRPS in 11 strains. The isolated actinobacteria VITGAP240 and VITGAP241 (two isolates) were found to have a potential antifungal activity against all the tested C. albicans. GC-MS results revealed that the actinobacterial compounds were belonging to heterocyclic, polyketides and peptides. Overall, the strains possess a wide spectrum of antifungal properties which affords the production of significant bioactive metabolites as potential antibiotics.
Collapse
|
386
|
Mionić Ebersold M, Petrović M, Fong WK, Bonvin D, Hofmann H, Milošević I. Hexosomes with Undecylenic Acid Efficient against Candida albicans. NANOMATERIALS (BASEL, SWITZERLAND) 2018; 8:E91. [PMID: 29414873 PMCID: PMC5853723 DOI: 10.3390/nano8020091] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 01/28/2018] [Accepted: 02/01/2018] [Indexed: 11/22/2022]
Abstract
Due to the growing issues with fungal infections, especially with Candida, there is still a need to develop novel anti-Candida materials. One of the known antifungal agents is undecylenic acid (UA), which still cannot be efficiently used due to its oily nature, and thus limited solubility. By taking advantage of the properties of UA, we developed an emulsion with hexagonal phase, i.e., hexosomes, whose structure and morphology was studied by small-angle X-ray scattering and cryo-electron microscopy, respectively. The presence of UA in the hexosome was confirmed by spectroscopy. Moreover, we studied the anti-Candida effect of hexosomes and their cytotoxicity toward human cells. The minimal inhibitory concentration for the 50% and 90% Candida-growth reduction was found at 0.01 and 0.16 wt % hexosomes, respectively (i.e., 2 and 32 pghex/C.a.cell, respectively). The percentage of metabolically active Candida was reduced by 72-96% at hexosome concentrations of 1.0-8.2 pghex/C.a.cell as compared to untreated Candida. Furthermore, at the same concentration range the embedded filamentation test after 24 and 48 h showed the inhibition of both the filamentation and growth of Candida, while the preliminary toxicity test showed that hexosomes were nontoxic for human cells. All these render the here-developed hexosomes with UA efficient and promising anti-Candida agents.
Collapse
Affiliation(s)
- Marijana Mionić Ebersold
- Powder Technology Laboratory, Institute of Materials, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland.
| | - Milica Petrović
- Powder Technology Laboratory, Institute of Materials, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland.
- Faculty of Medicine, University of Niš, 18000 Niš, Serbia.
| | - Wye-Khay Fong
- Adolphe Merkle Institute, University of Fribourg, 1700 Fribourg, Switzerland.
| | - Debora Bonvin
- Powder Technology Laboratory, Institute of Materials, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland.
| | - Heinrich Hofmann
- Powder Technology Laboratory, Institute of Materials, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland.
| | - Irena Milošević
- Powder Technology Laboratory, Institute of Materials, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland.
| |
Collapse
|
387
|
Transcription factor network efficiency in the regulation of Candida albicans biofilms: it is a small world. Curr Genet 2018; 64:883-888. [PMID: 29318385 DOI: 10.1007/s00294-018-0804-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 12/29/2017] [Accepted: 01/02/2018] [Indexed: 10/18/2022]
Abstract
Complex biological processes are frequently regulated through networks comprised of multiple signaling pathways, transcription factors, and effector molecules. The identity of specific genes carrying out these functions is usually determined by single mutant genetic analysis. However, to understand how the individual genes/gene products function, it is necessary to determine how they interact with other components of the larger network; one approach to this is to use genetic interaction analysis. The human fungal pathogen Candida albicans regulates biofilm formation through an interconnected set of transcription factor hubs and is, therefore, an example of this type of complex network. Here, we describe experiments and analyses designed to understand how the C. albicans biofilm transcription factor hubs interact and to explore the role of network structure in its overall function. To do so, we analyzed published binding and genetic interaction data to characterize the topology of the network. The hubs are best characterized as a small world network that functions with high efficiency and low robustness (high fragility). Highly efficient networks rapidly transmit perturbations at given nodes to the rest of the network. Consistent with this model, we have found that relatively modest perturbations, such as reduction in the gene dosage of hub transcription factors by one-half, lead to significant alterations in target gene expression and biofilm fitness. C. albicans biofilm formation occurs under very specific environmental conditions and we propose that the fragile, small world structure of the genetic network is part of the mechanism that imposes this stringency.
Collapse
|
388
|
Petrović M, Bonvin D, Hofmann H, Mionić Ebersold M. Fungicidal PMMA-Undecylenic Acid Composites. Int J Mol Sci 2018; 19:E184. [PMID: 29316713 PMCID: PMC5796133 DOI: 10.3390/ijms19010184] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 12/24/2017] [Accepted: 01/01/2018] [Indexed: 12/12/2022] Open
Abstract
Undecylenic acid (UA), known as antifungal agent, still cannot be used to efficiently modify commercial dental materials in such a way that this affects Candida. Actually, issues with Candida infections and fungal resistance compromise the use of Poly(methyl-methacrylate) (PMMA) as dental material. The challenge remains to turn PMMA into an antifugal material, which can ideally affect both sessile (attached) and planktonic (free-floating) Candida cells. We aimed to tackle this challenge by designing PMMA-UA composites with different UA concentrations (3-12%). We studied their physico-chemical properties, the antifungal effect on Candida and the cytotoxicity toward human cells. We found that UA changes the PMMA surface into a more hydrophilic one. Mainly, as-preparation composites with ≥6% UA reduced sessile Candida for >90%. After six days, the composites were still efficiently reducing the sessile Candida cells (for ~70% for composites with ≥6% UA). Similar results were recorded for planktonic Candida. Moreover, the inhibition zone increased along with the UA concentration. The antifungal effect of UA was also examined at the surface of an UA-loaded agar and the minimal inhibitory concentration (MIC90) was below the lowest-studied 0.0125% UA. Furthermore, the embedded filamentation test after 24 h and 48 h showed complete inhibition of the Candida growth at 0.4% UA.
Collapse
Affiliation(s)
- Milica Petrović
- Powder Technology Laboratory, Institute of Materials, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland.
- Faculty of Medicine, University of Nis, 18006 Niš, Serbia.
| | - Debora Bonvin
- Powder Technology Laboratory, Institute of Materials, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland.
| | - Heinrich Hofmann
- Powder Technology Laboratory, Institute of Materials, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland.
| | - Marijana Mionić Ebersold
- Powder Technology Laboratory, Institute of Materials, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland.
| |
Collapse
|
389
|
Sahu SK, Zheng P, Yao N. Niclosamide Blocks Rice Leaf Blight by Inhibiting Biofilm Formation of Xanthomonas oryzae. FRONTIERS IN PLANT SCIENCE 2018; 9:408. [PMID: 29651297 PMCID: PMC5884940 DOI: 10.3389/fpls.2018.00408] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 03/14/2018] [Indexed: 05/05/2023]
Abstract
Rice (Oryza sativa) is the leading source of nutrition for more than half of the world's population, and by far it is the most important commercial food crop. But, its growth and production are significantly hampered by the bacterial pathogen Xanthomonas oryzae pv. oryzae (Xoo) which causes leaf blight disease. Earlier studies have reported the antibacterial ability of FDA-approved niclosamide drug against Xoo. However, the underlying mechanism by which niclosamide blocks the growth of Xoo remained elusive. In the present study, by employing the microbiological, microscopical, molecular, bioinformatics and analytical tools we found that niclosamide can directly inhibit the growth of the Xoo by hampering the biofilm formation and the production of xanthomonadin and exopolysaccharide substances (EPS) required for relentless growth and virulence of Xoo. Interestingly, niclosamide was found to specifically suppress the growth of Xoo without affecting other bacteria like Escherichia coli. Our electron microscopic observations disclosed that niclosamide disrupts the membrane permeability of Xoo and causes the release of intracellular components. Similarly, the molecular docking analysis disclosed the molecular interaction of niclosamide with the biofilm, virulence and quorum sensing related proteins, which was further substantiated by relative gene expression analysis where niclosamide was found to significantly downregulate the expression of these key regulatory genes. In addition, considerable changes in chemical structures were detected by Fourier Transform Infrared Spectroscopy (FTIR) in response to niclosamide treatment. Overall, our findings advocate the utilization of niclosamide as a safe and potent alternative antibacterial compound to control bacterial blight disease in rice.
Collapse
Affiliation(s)
| | | | - Nan Yao
- *Correspondence: Sunil Kumar Sahu, Nan Yao,
| |
Collapse
|