351
|
Franke J, Ishida K, Hertweck C. Plasticity of the Malleobactin Pathway and Its Impact on Siderophore Action in Human Pathogenic Bacteria. Chemistry 2015; 21:8010-4. [DOI: 10.1002/chem.201500757] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Indexed: 12/23/2022]
|
352
|
Azeredo da Silveira S, Perez A. Liposomes as novel anti-infectives targeting bacterial virulence factors? Expert Rev Anti Infect Ther 2015; 13:531-3. [DOI: 10.1586/14787210.2015.1028367] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
353
|
Abstract
SUMMARY Autoinduction (AI), the response to self-produced chemical signals, is widespread in the bacterial world. This process controls vastly different target functions, such as luminescence, nutrient acquisition, and biofilm formation, in different ways and integrates additional environmental and physiological cues. This diversity raises questions about unifying principles that underlie all AI systems. Here, we suggest that such core principles exist. We argue that the general purpose of AI systems is the homeostatic control of costly cooperative behaviors, including, but not limited to, secreted public goods. First, costly behaviors require preassessment of their efficiency by cheaper AI signals, which we encapsulate in a hybrid "push-pull" model. The "push" factors cell density, diffusion, and spatial clustering determine when a behavior becomes effective. The relative importance of each factor depends on each species' individual ecological context and life history. In turn, "pull" factors, often stress cues that reduce the activation threshold, determine the cellular demand for the target behavior. Second, control is homeostatic because AI systems, either themselves or through accessory mechanisms, not only initiate but also maintain the efficiency of target behaviors. Third, AI-controlled behaviors, even seemingly noncooperative ones, are generally cooperative in nature, when interpreted in the appropriate ecological context. The escape of individual cells from biofilms, for example, may be viewed as an altruistic behavior that increases the fitness of the resident population by reducing starvation stress. The framework proposed here helps appropriately categorize AI-controlled behaviors and allows for a deeper understanding of their ecological and evolutionary functions.
Collapse
Affiliation(s)
- Burkhard A Hense
- Institute for Computational Biology, Helmholtz Zentrum München, Neuherberg/Munich, Germany
| | - Martin Schuster
- Department of Microbiology, Oregon State University, Corvallis, Oregon, USA
| |
Collapse
|
354
|
Bacterial fitness shapes the population dynamics of antibiotic-resistant and -susceptible bacteria in a model of combined antibiotic and anti-virulence treatment. J Theor Biol 2015; 372:1-11. [PMID: 25701634 PMCID: PMC4396697 DOI: 10.1016/j.jtbi.2015.02.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 12/12/2014] [Accepted: 02/10/2015] [Indexed: 11/20/2022]
Abstract
Bacterial resistance to antibiotic treatment is a huge concern: introduction of any new antibiotic is shortly followed by the emergence of resistant bacterial isolates in the clinic. This issue is compounded by a severe lack of new antibiotics reaching the market. The significant rise in clinical resistance to antibiotics is especially problematic in nosocomial infections, where already vulnerable patients may fail to respond to treatment, causing even greater health concern. A recent focus has been on the development of anti-virulence drugs as a second line of defence in the treatment of antibiotic-resistant infections. This treatment, which weakens bacteria by reducing their virulence rather than killing them, should allow infections to be cleared through the body׳s natural defence mechanisms. In this way there should be little to no selective pressure exerted on the organism and, as such, a predominantly resistant population should be less likely to emerge. However, before the likelihood of resistance to these novel drugs emerging can be predicted, we must first establish whether such drugs can actually be effective. Many believe that anti-virulence drugs would not be powerful enough to clear existing infections, restricting their potential application to prophylaxis. We have developed a mathematical model that provides a theoretical framework to reveal the circumstances under which anti-virulence drugs may or may not be successful. We demonstrate that by harnessing and combining the advantages of antibiotics with those provided by anti-virulence drugs, given infection-specific parameters, it is possible to identify treatment strategies that would efficiently clear bacterial infections, while preventing the emergence of antibiotic-resistant subpopulations. Our findings strongly support the continuation of research into anti-virulence drugs and demonstrate that their applicability may reach beyond infection prevention.
Collapse
|
355
|
Collective antibiotic tolerance: mechanisms, dynamics and intervention. Nat Chem Biol 2015; 11:182-8. [PMID: 25689336 DOI: 10.1038/nchembio.1754] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 01/12/2015] [Indexed: 12/14/2022]
Abstract
Bacteria have developed resistance against every antibiotic at a rate that is alarming considering the timescale at which new antibiotics are developed. Thus, there is a critical need to use antibiotics more effectively, extend the shelf life of existing antibiotics and minimize their side effects. This requires understanding the mechanisms underlying bacterial drug responses. Past studies have focused on survival in the presence of antibiotics by individual cells, as genetic mutants or persisters. Also important, however, is the fact that a population of bacterial cells can collectively survive antibiotic treatments lethal to individual cells. This tolerance can arise by diverse mechanisms, including resistance-conferring enzyme production, titration-mediated bistable growth inhibition, swarming and interpopulation interactions. These strategies can enable rapid population recovery after antibiotic treatment and provide a time window during which otherwise susceptible bacteria can acquire inheritable genetic resistance. Here, we emphasize the potential for targeting collective antibiotic tolerance behaviors as an antibacterial treatment strategy.
Collapse
|
356
|
Ruer S, Pinotsis N, Steadman D, Waksman G, Remaut H. Virulence-targeted Antibacterials: Concept, Promise, and Susceptibility to Resistance Mechanisms. Chem Biol Drug Des 2015; 86:379-99. [DOI: 10.1111/cbdd.12517] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 12/23/2014] [Accepted: 01/06/2015] [Indexed: 12/25/2022]
Affiliation(s)
- Ségolène Ruer
- Structural and Molecular Microbiology; Structural Biology Research Center; VIB; Pleinlaan 2 Brussels 1050 Belgium
- Structural Biology Brussels; Vrije Universiteit Brussel; Pleinlaan 2 Brussels 1050 Belgium
| | - Nikos Pinotsis
- Institute of Structural and Molecular Biology (ISMB); UCL and Birkbeck College; London WC1E 7HX UK
| | - David Steadman
- Wolfson Institute for Biomedical Research (WIBR); UCL; London WC1E 6BT UK
| | - Gabriel Waksman
- Institute of Structural and Molecular Biology (ISMB); UCL and Birkbeck College; London WC1E 7HX UK
| | - Han Remaut
- Structural and Molecular Microbiology; Structural Biology Research Center; VIB; Pleinlaan 2 Brussels 1050 Belgium
- Structural Biology Brussels; Vrije Universiteit Brussel; Pleinlaan 2 Brussels 1050 Belgium
| |
Collapse
|
357
|
Popat R, Cornforth DM, McNally L, Brown SP. Collective sensing and collective responses in quorum-sensing bacteria. J R Soc Interface 2015; 12:20140882. [PMID: 25505130 PMCID: PMC4305403 DOI: 10.1098/rsif.2014.0882] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 11/12/2014] [Indexed: 11/21/2022] Open
Abstract
Bacteria often face fluctuating environments, and in response many species have evolved complex decision-making mechanisms to match their behaviour to the prevailing conditions. Some environmental cues provide direct and reliable information (such as nutrient concentrations) and can be responded to individually. Other environmental parameters are harder to infer and require a collective mechanism of sensing. In addition, some environmental challenges are best faced by a group of cells rather than an individual. In this review, we discuss how bacteria sense and overcome environmental challenges as a group using collective mechanisms of sensing, known as 'quorum sensing' (QS). QS is characterized by the release and detection of small molecules, potentially allowing individuals to infer environmental parameters such as density and mass transfer. While a great deal of the molecular mechanisms of QS have been described, there is still controversy over its functional role. We discuss what QS senses and how, what it controls and why, and how social dilemmas shape its evolution. Finally, there is a growing focus on the use of QS inhibitors as antibacterial chemotherapy. We discuss the claim that such a strategy could overcome the evolution of resistance. By linking existing theoretical approaches to data, we hope this review will spur greater collaboration between experimental and theoretical researchers.
Collapse
Affiliation(s)
- R Popat
- Centre for Immunity, Infection and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JT, UK
| | - D M Cornforth
- Centre for Immunity, Infection and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JT, UK Molecular Biosciences, University of Texas at Austin, 2500 Speedway NMS 3.254, Austin, TX 78712, USA
| | - L McNally
- Centre for Immunity, Infection and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JT, UK
| | - S P Brown
- Centre for Immunity, Infection and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JT, UK
| |
Collapse
|
358
|
Miller LC, O'Loughlin CT, Zhang Z, Siryaporn A, Silpe JE, Bassler BL, Semmelhack MF. Development of potent inhibitors of pyocyanin production in Pseudomonas aeruginosa. J Med Chem 2015; 58:1298-306. [PMID: 25597392 DOI: 10.1021/jm5015082] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The development of new approaches for the treatment of antimicrobial-resistant infections is an urgent public health priority. The Pseudomonas aeruginosa pathogen, in particular, is a leading source of infection in hospital settings, with few available treatment options. In the context of an effort to develop antivirulence strategies to combat bacterial infection, we identified a series of highly effective small molecules that inhibit the production of pyocyanin, a redox-active virulence factor produced by P. aeruginosa. Interestingly, these new antagonists appear to suppress P. aeruginosa virulence factor production through a pathway that is independent of LasR and RhlR.
Collapse
Affiliation(s)
- Laura C Miller
- Department of Chemistry and ‡Department of Molecular Biology, Princeton University , Washington Road, Princeton, New Jersey 08544, United States
| | | | | | | | | | | | | |
Collapse
|
359
|
Welsh MA, Eibergen NR, Moore JD, Blackwell HE. Small molecule disruption of quorum sensing cross-regulation in pseudomonas aeruginosa causes major and unexpected alterations to virulence phenotypes. J Am Chem Soc 2015; 137:1510-9. [PMID: 25574853 DOI: 10.1021/ja5110798] [Citation(s) in RCA: 132] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The opportunistic pathogen Pseudomonas aeruginosa uses three interwoven quorum-sensing (QS) circuits-Las, Rhl, and Pqs-to regulate the global expression of myriad virulence-associated genes. Interception of these signaling networks with small molecules represents an emerging strategy for the development of anti-infective agents against this bacterium. In the current study, we applied a chemical approach to investigate how the Las-Rhl-Pqs QS hierarchy coordinates key virulence phenotypes in wild-type P. aeruginosa. We screened a focused library of synthetic, non-native N-acyl l-homoserine lactones and identified compounds that can drastically alter production of two important virulence factors: pyocyanin and rhamnolipid. We demonstrate that these molecules act by targeting RhlR in P. aeruginosa, a QS receptor that has seen far less scrutiny to date relative to other circuitry. Unexpectedly, modulation of RhlR activity by a single compound induces inverse regulation of pyocyanin and rhamnolipid, a result that was not predicted using genetic approaches to interrogate QS in P. aeruginosa. Further, we show that certain RhlR agonists strongly repress Pqs signaling, revealing disruption of Rhl-Pqs cross-regulation as a novel mechanism for QS inhibition. These compounds significantly expand the known repertoire of chemical probes available to study RhlR in P. aeruginosa. Moreover, our results suggest that designing chemical agents to disrupt Rhl-Pqs crosstalk could be an effective antivirulence strategy to fight this common pathogen.
Collapse
Affiliation(s)
- Michael A Welsh
- Department of Chemistry, University of Wisconsin-Madison , 1101 University Avenue, Madison, Wisconsin 53706, United States
| | | | | | | |
Collapse
|
360
|
Xie F, Dai S, Shen J, Ren B, Huang P, Wang Q, Liu X, Zhang B, Dai H, Zhang L. A new salicylate synthase AmS is identified for siderophores biosynthesis in Amycolatopsis methanolica 239(T). Appl Microbiol Biotechnol 2015; 99:5895-905. [PMID: 25586582 DOI: 10.1007/s00253-014-6370-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 12/17/2014] [Accepted: 12/26/2014] [Indexed: 12/14/2022]
Abstract
Siderophores are important for the growth of bacteria or the applications in treatment of iron overload-associated diseases due to the iron-chelating property. Salicylate synthase played a key role in the biosynthesis of some NRPS-derived siderophores by the providing of an iron coordination moiety as the initial building block. A new salicylate synthase, namely AmS, was identified in the biosynthesis pathway of siderophore amychelin in Amycolatopsis methanolica 239(T), since it shunt chorismate, an integrant precursor, from primary to secondary metabolite flow. The amino acid sequence alignment and phylogenetic analysis showed that AmS grouped into a new cluster. In vitro assays of AmS revealed its wide temperature tolerance ranged from 0 to 40 °C and narrow pH tolerant ranged from 7.0 to 9.0. AmS was resistant to organic solvents and non-ionic detergents. Moreover, AmS converted chorismate to salicylate with K m of 129.05 μM, k cat of 2.20 min(-1) at optimal conditions, indicating its low substrate specificity and comparable velocity to reported counterparts (Irp9 and MbtI). These properties of AmS may improve the iron-seizing ability of A. methanolica to compete with its neighbors growing in natural environments. Most importantly, serine and cysteine residues were found to be important for the catalytic activity of AmS. This study presented AmS as a new cluster of salicylate synthase and the reaction mechanism and potential applications of salicylate synthase were highlighted as well.
Collapse
Affiliation(s)
- Feng Xie
- School of Life Sciences, University of Science and Technology of China, No. 443 HuangShan Road, Hefei, 230061, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
361
|
Dimitriu T, Misevic D, Lindner AB, Taddei F. Mobile genetic elements are involved in bacterial sociality. Mob Genet Elements 2015; 5:7-11. [PMID: 26435881 PMCID: PMC4588217 DOI: 10.1080/2159256x.2015.1006110] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 12/19/2014] [Accepted: 01/07/2015] [Indexed: 12/02/2022] Open
Abstract
Mobile genetic elements in bacteria are enriched in genes participating in social behaviors, suggesting an evolutionary link between gene mobility and social evolution. Cooperative behaviors, like the production of secreted public good molecules, are susceptible to the invasion of non-cooperative individuals, and their evolutionary maintenance requires mechanisms ensuring that benefits are directed preferentially to cooperators. In order to investigate the reasons for the mobility of public good genes, we designed a synthetic bacterial system where we control and quantify the transfer of public good production genes. In our recent study, we have experimentally shown that horizontal transfer helps maintain public good production in the face of both non-producer organisms and non-producer plasmids. Transfer spreads genes to neighboring cells, thus increasing relatedness and directing a higher proportion of public good benefits to producers. The effect is the strongest when public good genes undergo epidemics dynamics, making horizontal transfer especially relevant for pathogenic bacteria that repeatedly infect new hosts and base their virulence on costly public goods. The promotion of cooperation may be a general consequence of horizontal gene transfer in prokaryotes. Our work has an intriguing parallel, cultural transmission, where horizontal transfer, such as teaching, may preferentially promote cooperative behaviors.
Collapse
Affiliation(s)
- Tatiana Dimitriu
- Institut National de la Santé et de la Recherche Médicale; Université Paris Descartes; Paris, France
| | - Dusan Misevic
- Institut National de la Santé et de la Recherche Médicale; Université Paris Descartes; Paris, France
| | - Ariel B Lindner
- Institut National de la Santé et de la Recherche Médicale; Université Paris Descartes; Paris, France
| | - François Taddei
- Institut National de la Santé et de la Recherche Médicale; Université Paris Descartes; Paris, France
| |
Collapse
|
362
|
Adams LA, Sharma P, Mohanty B, Ilyichova OV, Mulcair MD, Williams ML, Gleeson EC, Totsika M, Doak BC, Caria S, Rimmer K, Horne J, Shouldice SR, Vazirani M, Headey SJ, Plumb BR, Martin JL, Heras B, Simpson JS, Scanlon MJ. Application of Fragment-Based Screening to the Design of Inhibitors ofEscherichia coliDsbA. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201410341] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
363
|
Adams LA, Sharma P, Mohanty B, Ilyichova OV, Mulcair MD, Williams ML, Gleeson EC, Totsika M, Doak BC, Caria S, Rimmer K, Horne J, Shouldice SR, Vazirani M, Headey SJ, Plumb BR, Martin JL, Heras B, Simpson JS, Scanlon MJ. Application of fragment-based screening to the design of inhibitors of Escherichia coli DsbA. Angew Chem Int Ed Engl 2014; 54:2179-84. [PMID: 25556635 DOI: 10.1002/anie.201410341] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 11/25/2014] [Indexed: 12/11/2022]
Abstract
The thiol-disulfide oxidoreductase enzyme DsbA catalyzes the formation of disulfide bonds in the periplasm of Gram-negative bacteria. DsbA substrates include proteins involved in bacterial virulence. In the absence of DsbA, many of these proteins do not fold correctly, which renders the bacteria avirulent. Thus DsbA is a critical mediator of virulence and inhibitors may act as antivirulence agents. Biophysical screening has been employed to identify fragments that bind to DsbA from Escherichia coli. Elaboration of one of these fragments produced compounds that inhibit DsbA activity in vitro. In cell-based assays, the compounds inhibit bacterial motility, but have no effect on growth in liquid culture, which is consistent with selective inhibition of DsbA. Crystal structures of inhibitors bound to DsbA indicate that they bind adjacent to the active site. Together, the data suggest that DsbA may be amenable to the development of novel antibacterial compounds that act by inhibiting bacterial virulence.
Collapse
Affiliation(s)
- Luke A Adams
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052 (Australia) http://www.pharm.monash.edu.au
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
364
|
Resistance-resistant antibiotics. Trends Pharmacol Sci 2014; 35:664-74. [PMID: 25458541 DOI: 10.1016/j.tips.2014.10.007] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 10/10/2014] [Accepted: 10/14/2014] [Indexed: 01/27/2023]
Abstract
New antibiotics are needed because drug resistance is increasing while the introduction of new antibiotics is decreasing. We discuss here six possible approaches to develop 'resistance-resistant' antibiotics. First, multitarget inhibitors in which a single compound inhibits more than one target may be easier to develop than conventional combination therapies with two new drugs. Second, inhibiting multiple targets in the same metabolic pathway is expected to be an effective strategy owing to synergy. Third, discovering multiple-target inhibitors should be possible by using sequential virtual screening. Fourth, repurposing existing drugs can lead to combinations of multitarget therapeutics. Fifth, targets need not be proteins. Sixth, inhibiting virulence factor formation and boosting innate immunity may also lead to decreased susceptibility to resistance. Although it is not possible to eliminate resistance, the approaches reviewed here offer several possibilities for reducing the effects of mutations and, in some cases, suggest that sensitivity to existing antibiotics may be restored in otherwise drug-resistant organisms.
Collapse
|
365
|
Engineered liposomes sequester bacterial exotoxins and protect from severe invasive infections in mice. Nat Biotechnol 2014; 33:81-8. [PMID: 25362245 DOI: 10.1038/nbt.3037] [Citation(s) in RCA: 165] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 09/09/2014] [Indexed: 12/25/2022]
Abstract
Gram-positive bacterial pathogens that secrete cytotoxic pore-forming toxins, such as Staphylococcus aureus and Streptococcus pneumoniae, cause a substantial burden of disease. Inspired by the principles that govern natural toxin-host interactions, we have engineered artificial liposomes that are tailored to effectively compete with host cells for toxin binding. Liposome-bound toxins are unable to lyse mammalian cells in vitro. We use these artificial liposomes as decoy targets to sequester bacterial toxins that are produced during active infection in vivo. Administration of artificial liposomes within 10 h after infection rescues mice from septicemia caused by S. aureus and S. pneumoniae, whereas untreated mice die within 24-33 h. Furthermore, liposomes protect mice against invasive pneumococcal pneumonia. Composed exclusively of naturally occurring lipids, tailored liposomes are not bactericidal and could be used therapeutically either alone or in conjunction with antibiotics to combat bacterial infections and to minimize toxin-induced tissue damage that occurs during bacterial clearance.
Collapse
|
366
|
Bernardo SM, Allen CP, Waller A, Young SM, Oprea T, Sklar LA, Lee SA. An automated high-throughput cell-based multiplexed flow cytometry assay to identify novel compounds to target Candida albicans virulence-related proteins. PLoS One 2014; 9:e110354. [PMID: 25350399 PMCID: PMC4211665 DOI: 10.1371/journal.pone.0110354] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 09/18/2014] [Indexed: 11/19/2022] Open
Abstract
Although three major classes of systemic antifungal agents are clinically available, each is characterized by important limitations. Thus, there has been considerable ongoing effort to develop novel and repurposed agents for the therapy of invasive fungal infections. In an effort to address these needs, we developed a novel high-throughput, multiplexed screening method that utilizes small molecules to probe candidate drug targets in the opportunistic fungal pathogen Candida albicans. This method is amenable to high-throughput automated screening and is based upon detection of changes in GFP levels of individually tagged target proteins. We first selected four GFP-tagged membrane-bound proteins associated with virulence or antifungal drug resistance in C. albicans. We demonstrated proof-of-principle that modulation of fluorescence intensity can be used to assay the expression of specific GFP-tagged target proteins to inhibitors (and inducers), and this change is measurable within the HyperCyt automated flow cytometry sampling system. Next, we generated a multiplex of differentially color-coded C. albicans strains bearing C-terminal GFP-tags of each gene encoding candidate drug targets incubated in the presence of small molecules from the Prestwick Chemical Library in 384-well microtiter plate format. Following incubation, cells were sampled through the HyperCyt system and modulation of protein levels, as indicated by changes in GFP-levels of each strain, was used to identify compounds of interest. The hit rate for both inducers and inhibitors identified in the primary screen did not exceed 1% of the total number of compounds in the small-molecule library that was probed, as would be expected from a robust target-specific, high-throughput screening campaign. Secondary assays for virulence characteristics based on null mutant strains were then used to further validate specificity. In all, this study presents a method for the identification and verification of new antifungal drugs targeted to fungal virulence proteins using C. albicans as a model fungal pathogen.
Collapse
Affiliation(s)
- Stella M. Bernardo
- Section of Infectious Diseases, New Mexico Veterans Healthcare System, Albuquerque, NM, United States of America
- Division of Infectious Diseases, University of New Mexico Health Science Center, Albuquerque, NM, United States of America
| | - Christopher P. Allen
- Center for Molecular Discovery, University of New Mexico, Albuquerque, NM, United States of America
| | - Anna Waller
- Center for Molecular Discovery, University of New Mexico, Albuquerque, NM, United States of America
| | - Susan M. Young
- Center for Molecular Discovery, University of New Mexico, Albuquerque, NM, United States of America
| | - Tudor Oprea
- Center for Molecular Discovery, University of New Mexico, Albuquerque, NM, United States of America
| | - Larry A. Sklar
- Center for Molecular Discovery, University of New Mexico, Albuquerque, NM, United States of America
| | - Samuel A. Lee
- Section of Infectious Diseases, New Mexico Veterans Healthcare System, Albuquerque, NM, United States of America
- Division of Infectious Diseases, University of New Mexico Health Science Center, Albuquerque, NM, United States of America
- * E-mail:
| |
Collapse
|
367
|
Heisig M, Abraham NM, Liu L, Neelakanta G, Mattessich S, Sultana H, Shang Z, Ansari JM, Killiam C, Walker W, Cooley L, Flavell RA, Agaisse H, Fikrig E. Antivirulence properties of an antifreeze protein. Cell Rep 2014; 9:417-24. [PMID: 25373896 PMCID: PMC4223805 DOI: 10.1016/j.celrep.2014.09.034] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 07/26/2014] [Accepted: 09/03/2014] [Indexed: 12/17/2022] Open
Abstract
As microbial drug-resistance increases, there is a critical need for new classes of compounds to combat infectious diseases. The Ixodes scapularis tick antifreeze glycoprotein, IAFGP, functions as an antivirulence agent against diverse bacteria, including methicillin-resistant Staphylococcus aureus. Recombinant IAFGP and a peptide, P1, derived from this protein bind to microbes and alter biofilm formation. Transgenic iafgp-expressing flies and mice challenged with bacteria, as well as wild-type animals administered P1, were resistant to infection, septic shock, or biofilm development on implanted catheter tubing. These data show that an antifreeze protein facilitates host control of bacterial infections and suggest therapeutic strategies for countering pathogens.
Collapse
Affiliation(s)
- Martin Heisig
- Department of Internal Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT 06520, USA.
| | - Nabil M Abraham
- Department of Internal Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT 06520, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Lei Liu
- Department of Internal Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Girish Neelakanta
- Department of Internal Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Sarah Mattessich
- Department of Internal Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Hameeda Sultana
- Department of Internal Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Zhengling Shang
- Department of Internal Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Juliana M Ansari
- Department of Internal Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Charlotte Killiam
- Department of Internal Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Wendy Walker
- Department of Internal Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Lynn Cooley
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Richard A Flavell
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Herve Agaisse
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Erol Fikrig
- Department of Internal Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT 06520, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.
| |
Collapse
|
368
|
Gerdt JP, Blackwell HE. Competition studies confirm two major barriers that can preclude the spread of resistance to quorum-sensing inhibitors in bacteria. ACS Chem Biol 2014; 9:2291-9. [PMID: 25105594 PMCID: PMC4201345 DOI: 10.1021/cb5004288] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The growing threat of antibiotic resistance necessitates the development of novel antimicrobial therapies. Antivirulence agents that target group-beneficial traits in microorganisms (i.e., phenotypes that help the cells surrounding the producer cell instead of selfishly benefiting only the producer cell) represent a new antimicrobial approach that may be robust against the spread of resistant mutants. One prominent group-beneficial antivirulence target in bacteria is quorum sensing (QS). While scientists are producing new QS inhibitors (QSIs) at an increasing pace for use as research tools and potential therapeutic leads, substantial work remains in empirically demonstrating a robustness against resistance. Herein we report the results of in vitro competition studies in Pseudomonas aeruginosa that explicitly confirm that two separate barriers can impede the spread of resistance to QSIs: (1) insufficient native QS signal levels prevent rare QSI-resistant bacteria from expressing their QS regulon, and (2) group-beneficial QS-regulated phenotypes produced by resistant bacteria are susceptible to cheating by QSI-sensitive neighbors, even when grown on a solid substrate with limited mixing to mimic infected tissue. These results underscore the promise of QSIs and other antivirulence molecules that target group beneficial traits as resistance-robust antimicrobial treatments and provide support for their further development.
Collapse
Affiliation(s)
- Joseph P. Gerdt
- Department of Chemistry, University of Wisconsin—Madison, 1101 University Avenue, Madison, Wisconsin 53706-1322, United States
| | - Helen E. Blackwell
- Department of Chemistry, University of Wisconsin—Madison, 1101 University Avenue, Madison, Wisconsin 53706-1322, United States
| |
Collapse
|
369
|
Zhou L, Slamti L, Nielsen-LeRoux C, Lereclus D, Raymond B. The Social Biology of Quorum Sensing in a Naturalistic Host Pathogen System. Curr Biol 2014; 24:2417-22. [DOI: 10.1016/j.cub.2014.08.049] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 07/28/2014] [Accepted: 08/21/2014] [Indexed: 01/12/2023]
|
370
|
Beckham KSH, Roe AJ. From screen to target: insights and approaches for the development of anti-virulence compounds. Front Cell Infect Microbiol 2014; 4:139. [PMID: 25325019 PMCID: PMC4179734 DOI: 10.3389/fcimb.2014.00139] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2014] [Accepted: 09/11/2014] [Indexed: 01/10/2023] Open
Abstract
A detailed understanding of host-pathogen interactions provides exciting opportunities to interfere with the infection process. Anti-virulence compounds aim to modulate or pacify pathogenesis by reducing expression of critical virulence determinants. In particular, prevention of attachment by inhibiting adhesion mechanisms has been the subject of intense research. Whilst it has proven relatively straightforward to develop robust screens for potential anti-virulence compounds, understanding their precise mode of action has proven much more challenging. In this review we illustrate this challenge from our own experiences working with the salicylidene acylhydrazide group of compounds. We aim to provide a useful perspective to guide researchers interested in this field and to avoid some of the obvious pitfalls.
Collapse
Affiliation(s)
| | - Andrew J. Roe
- *Correspondence: Andrew J. Roe, Glasgow Biomedical Research Centre, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, 120 University Place, Glasgow G12 8TA, UK e-mail:
| |
Collapse
|
371
|
Small-molecule inhibitors of the pseudaminic acid biosynthetic pathway: targeting motility as a key bacterial virulence factor. Antimicrob Agents Chemother 2014; 58:7430-40. [PMID: 25267679 DOI: 10.1128/aac.03858-14] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Helicobacter pylori is motile by means of polar flagella, and this motility has been shown to play a critical role in pathogenicity. The major structural flagellin proteins have been shown to be glycosylated with the nonulosonate sugar, pseudaminic acid (Pse). This glycan is unique to microorganisms, and the process of flagellin glycosylation is required for H. pylori flagellar assembly and consequent motility. As such, the Pse biosynthetic pathway offers considerable potential as an antivirulence drug target, especially since motility is required for H. pylori colonization and persistence in the host. This report describes screening the five Pse biosynthetic enzymes for small-molecule inhibitors using both high-throughput screening (HTS) and in silico (virtual screening [VS]) approaches. Using a 100,000-compound library, 1,773 hits that exhibited a 40% threshold inhibition at a 10 μM concentration were identified by HTS. In addition, VS efforts using a 1.6-million compound library directed at two pathway enzymes identified 80 hits, 4 of which exhibited reasonable inhibition at a 10 μM concentration in vitro. Further secondary screening which identified 320 unique molecular structures or validated hits was performed. Following kinetic studies and structure-activity relationship (SAR) analysis of selected inhibitors from our refined list of 320 compounds, we demonstrated that three inhibitors with 50% inhibitory concentrations (IC50s) of approximately 14 μM, which belonged to a distinct chemical cluster, were able to penetrate the Gram-negative cell membrane and prevent formation of flagella.
Collapse
|
372
|
Gerdt JP, McInnis CE, Schell TL, Rossi FM, Blackwell HE. Mutational analysis of the quorum-sensing receptor LasR reveals interactions that govern activation and inhibition by nonlactone ligands. ACTA ACUST UNITED AC 2014; 21:1361-1369. [PMID: 25242287 DOI: 10.1016/j.chembiol.2014.08.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 08/05/2014] [Accepted: 08/18/2014] [Indexed: 01/03/2023]
Abstract
Gram-negative bacteria use N-acyl L-homoserine lactone (AHL) quorum-sensing (QS) signals to regulate the expression of myriad phenotypes. Non-native AHL analogs can strongly attenuate QS receptor activity and thereby QS signaling; however, we currently lack a molecular understanding of the mechanisms by which most of these compounds elicit their agonistic or antagonistic profiles. In this study, we investigated the origins of striking activity profile switches (i.e., receptor activator to inhibitor, and vice versa) observed upon alteration of the lactone head group in certain AHL analogs. Reporter gene assays of mutant versions of the Pseudomonas aeruginosa QS receptor LasR revealed that interactions between the ligands and Trp60, Tyr56, and Ser129 govern whether these ligands behave as LasR activators or inhibitors. Using this knowledge, we propose a model for the modulation of LasR by AHL analogs-encompassing a subtly different interaction with the binding pocket to a global change in LasR conformation.
Collapse
Affiliation(s)
- Joseph P Gerdt
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Christine E McInnis
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Trevor L Schell
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Francis M Rossi
- Department of Chemistry, SUNY Cortland, Cortland, NY 13045, USA
| | - Helen E Blackwell
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
373
|
Ross-Gillespie A, Kümmerli R. 'Evolution-proofing' antibacterials. EVOLUTION MEDICINE AND PUBLIC HEALTH 2014; 2014:134-5. [PMID: 25125554 PMCID: PMC4202175 DOI: 10.1093/emph/eou020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Adin Ross-Gillespie
- Microbial Evolutionary Ecology, Institute of Plant Biology, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Rolf Kümmerli
- Microbial Evolutionary Ecology, Institute of Plant Biology, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| |
Collapse
|
374
|
Cell-based assay to identify inhibitors of the Hfq-sRNA regulatory pathway. Antimicrob Agents Chemother 2014; 58:5500-9. [PMID: 25001303 DOI: 10.1128/aac.03311-14] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Noncoding small RNAs (sRNAs) act in conjunction with the RNA chaperone Hfq to regulate gene expression in bacteria. Because Hfq is required for virulence in several bacterial pathogens, the Hfq-sRNA system is an attractive target for antibiotic development. A reporter strain in which the expression of yellow fluorescent protein (YFP) is controlled by Hfq-sRNA was engineered to identify inhibitors of this system. A reporter that is targeted by Hfq in conjunction with the RybB sRNA was used in a genetic screen to identify inhibitors from a library of cyclic peptides produced in Escherichia coli using split-intein circular ligation of peptides and proteins (SICLOPPS), an intein-based technology. One cyclic peptide identified in this screen, RI20, inhibited Hfq-mediated repression of gene expression in conjunction with both RybB and an unrelated sRNA, MicF. Gel mobility shift assays showed that RI20 inhibited binding of Hfq to RybB and MicF with similar Ki values. These data suggest that RI20 inhibits Hfq activity by blocking interactions with sRNAs and provide a paradigm for inhibiting virulence genes in Gram-negative pathogens.
Collapse
|
375
|
Leggett HC, Brown SP, Reece SE. War and peace: social interactions in infections. Philos Trans R Soc Lond B Biol Sci 2014; 369:20130365. [PMID: 24686936 PMCID: PMC3982666 DOI: 10.1098/rstb.2013.0365] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
One of the most striking facts about parasites and microbial pathogens that has emerged in the fields of social evolution and disease ecology in the past few decades is that these simple organisms have complex social lives, indulging in a variety of cooperative, communicative and coordinated behaviours. These organisms have provided elegant experimental tests of the importance of relatedness, kin discrimination, cooperation and competition, in driving the evolution of social strategies. Here, we briefly review the social behaviours of parasites and microbial pathogens, including their contributions to virulence, and outline how inclusive fitness theory has helped to explain their evolution. We then take a mechanistically inspired ‘bottom-up’ approach, discussing how key aspects of the ways in which parasites and pathogens exploit hosts, namely public goods, mobile elements, phenotypic plasticity, spatial structure and multi-species interactions, contribute to the emergent properties of virulence and transmission. We argue that unravelling the complexities of within-host ecology is interesting in its own right, and also needs to be better incorporated into theoretical evolution studies if social behaviours are to be understood and used to control the spread and severity of infectious diseases.
Collapse
Affiliation(s)
- Helen C Leggett
- Department of Zoology, Oxford University, , South Parks Road, Oxford OX1 3PS, UK
| | | | | |
Collapse
|
376
|
Combinatorial quorum sensing allows bacteria to resolve their social and physical environment. Proc Natl Acad Sci U S A 2014; 111:4280-4. [PMID: 24594597 DOI: 10.1073/pnas.1319175111] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Quorum sensing (QS) is a cell-cell communication system that controls gene expression in many bacterial species, mediated by diffusible signal molecules. Although the intracellular regulatory mechanisms of QS are often well-understood, the functional roles of QS remain controversial. In particular, the use of multiple signals by many bacterial species poses a serious challenge to current functional theories. Here, we address this challenge by showing that bacteria can use multiple QS signals to infer both their social (density) and physical (mass-transfer) environment. Analytical and evolutionary simulation models show that the detection of, and response to, complex social/physical contrasts requires multiple signals with distinct half-lives and combinatorial (nonadditive) responses to signal concentrations. We test these predictions using the opportunistic pathogen Pseudomonas aeruginosa and demonstrate significant differences in signal decay between its two primary signal molecules, as well as diverse combinatorial responses to dual-signal inputs. QS is associated with the control of secreted factors, and we show that secretome genes are preferentially controlled by synergistic "AND-gate" responses to multiple signal inputs, ensuring the effective expression of secreted factors in high-density and low mass-transfer environments. Our results support a new functional hypothesis for the use of multiple signals and, more generally, show that bacteria are capable of combinatorial communication.
Collapse
|
377
|
Ross-Gillespie A, Weigert M, Brown SP, Kümmerli R. Gallium-mediated siderophore quenching as an evolutionarily robust antibacterial treatment. EVOLUTION MEDICINE AND PUBLIC HEALTH 2014; 2014:18-29. [PMID: 24480613 PMCID: PMC3935367 DOI: 10.1093/emph/eou003] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND AND OBJECTIVES Conventional antibiotics select strongly for resistance and are consequently losing efficacy worldwide. Extracellular quenching of shared virulence factors could represent a more promising strategy because (i) it reduces the available routes to resistance (as extracellular action precludes any mutations blocking a drug's entry into cells or hastening its exit) and (ii) it weakens selection for resistance, as fitness benefits to emergent mutants are diluted across all cells in a cooperative collective. Here, we tested this hypothesis empirically. METHODOLOGY We used gallium to quench the iron-scavenging siderophores secreted and shared among pathogenic Pseudomonas aeruginosa bacteria, and quantitatively monitored its effects on growth in vitro. We assayed virulence in acute infections of caterpillar hosts (Galleria mellonella), and tracked resistance emergence over time using experimental evolution. RESULTS Gallium strongly inhibited bacterial growth in vitro, primarily via its siderophore quenching activity. Moreover, bacterial siderophore production peaked at intermediate gallium concentrations, indicating additional metabolic costs in this range. In vivo, gallium attenuated virulence and growth-even more so than in infections with siderophore-deficient strains. Crucially, while resistance soon evolved against conventional antibiotic treatments, gallium treatments retained their efficacy over time. CONCLUSIONS Extracellular quenching of bacterial public goods could offer an effective and evolutionarily robust control strategy.
Collapse
Affiliation(s)
- Adin Ross-Gillespie
- Institute of Plant Biology, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland; Swiss Federal Institute of Aquatic Science and Technology (Eawag), Environmental Microbiology, Überlandstrasse 133, 8600 Dübendorf, Switzerland; Institute of Evolutionary Biology and Centre for Immunity, Infection and Evolution, University of Edinburgh, West Mains Road, Ashworth Laboratories, Edinburgh EH9 3JT, UK
| | | | | | | |
Collapse
|
378
|
Vale PF, Fenton A, Brown SP. Limiting damage during infection: lessons from infection tolerance for novel therapeutics. PLoS Biol 2014; 12:e1001769. [PMID: 24465177 PMCID: PMC3897360 DOI: 10.1371/journal.pbio.1001769] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
In the field of infectious disease control, novel therapies are focusing on reducing illness caused by pathogens rather than on reducing the pathogen burden itself. Here, Vale and colleagues highlight some potential consequences of such therapeutics for pathogen spread and evolution.
Collapse
Affiliation(s)
- Pedro F. Vale
- Centre for Immunity, Infection, and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
- * E-mail:
| | - Andy Fenton
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Sam P. Brown
- Centre for Immunity, Infection, and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|