351
|
Moni BM, Wise BL, Loots GG, Weilhammer DR. Coccidioidomycosis Osteoarticular Dissemination. J Fungi (Basel) 2023; 9:1002. [PMID: 37888258 PMCID: PMC10607509 DOI: 10.3390/jof9101002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/27/2023] [Accepted: 10/07/2023] [Indexed: 10/28/2023] Open
Abstract
Valley fever or coccidioidomycosis is a pulmonary infection caused by species of Coccidioides fungi that are endemic to California and Arizona. Skeletal coccidioidomycosis accounts for about half of disseminated infections, with the vertebral spine being the preferred site of dissemination. Most cases of skeletal coccidioidomycosis progress to bone destruction or spread to adjacent structures such as joints, tendons, and other soft tissues, causing significant pain and restricting mobility. Manifestations of such cases are usually nonspecific, making diagnosis very challenging, especially in non-endemic areas. The lack of basic knowledge and research data on the mechanisms defining susceptibility to extrapulmonary infection, especially when it involves bones and joints, prompted us to survey available clinical and animal data to establish specific research questions that remain to be investigated. In this review, we explore published literature reviews, case reports, and case series on the dissemination of coccidioidomycosis to bones and/or joints. We highlight key differential features with other conditions and opportunities for mechanistic and basic research studies that can help develop novel diagnostic, prognostic, and treatment strategies.
Collapse
Affiliation(s)
- Benedicte M. Moni
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | - Barton L. Wise
- Lawrence J. Ellison Musculoskeletal Research Center, Department of Orthopaedic Surgery, University of California Davis Health, 2700 Stockton Blvd., Sacramento, CA 95817, USA; (B.L.W.)
| | - Gabriela G. Loots
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
- Lawrence J. Ellison Musculoskeletal Research Center, Department of Orthopaedic Surgery, University of California Davis Health, 2700 Stockton Blvd., Sacramento, CA 95817, USA; (B.L.W.)
| | - Dina R. Weilhammer
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| |
Collapse
|
352
|
da Silva PR, Apolinário NDM, da Silva SÂS, Araruna MEC, Costa TB, e Silva YMSDM, da Silva TG, de Moura RO, dos Santos VL. Anti-Inflammatory Activity of N'-(3-(1H-indol-3-yl)benzylidene)-2-cyanoacetohydrazide Derivative via sGC-NO/Cytokine Pathway. Pharmaceuticals (Basel) 2023; 16:1415. [PMID: 37895886 PMCID: PMC10610422 DOI: 10.3390/ph16101415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/13/2023] [Accepted: 09/20/2023] [Indexed: 10/29/2023] Open
Abstract
The N-acylhydrazone function has been reported as a pharmacophore group of molecules with diverse pharmacological activities, including anti-inflammatory effects. Therefore, this study was designed to evaluate the anti-inflammatory potential of the compound N'-(3-(1H-indol-3-yl)benzylidene)-2-cyanoacetohydrazide (JR19) in vivo. The study started with the carrageenan-induced peritonitis model, followed by an investigation of leukocyte migration using the subcutaneous air pouch test and an assessment of the antinociceptive profile using formalin-induced pain. A preliminary molecular docking study focusing on the crystallographic structures of NFκB, iNOS, and sGC was performed to determine the likely mechanism of action. The computational study revealed satisfactory interaction energies with the selected targets, and the same peritonitis model was used to validate the involvement of the nitric oxide pathway and cytokine expression in the peritoneal exudate of mice pretreated with L-NAME or methylene blue. In the peritonitis assay, JR19 (10 and 20 mg/kg) reduced leukocyte migration by 59% and 52%, respectively, compared to the vehicle group, with the 10 mg/kg dose used in subsequent assays. In the subcutaneous air pouch assay, the reduction in cell migration was 66%, and the response to intraplantar formalin was reduced by 39%, particularly during the inflammatory phase, suggesting that the compound lacks central analgesic activity. In addition, a reversal of the anti-inflammatory effect was observed in mice pretreated with L-NAME or methylene blue, indicating the involvement of iNOS and sGC in the anti-inflammatory response of JR19. The compound effectively and significantly decreased the levels of IL-6, TNF-α, IL-17, and IFN-γ, and this effect was reversed in animals pretreated with L-NAME, supporting a NO-dependent anti-inflammatory effect. In contrast, pretreatment with methylene blue only reversed the reduction in TNF-α levels. Therefore, these results demonstrate the pharmacological potential of the novel N-acylhydrazone derivative, which acts through the nitric oxide pathway and cytokine signaling, making it a strong candidate as an anti-inflammatory and immunomodulatory agent.
Collapse
Affiliation(s)
- Pablo Rayff da Silva
- Programa de Pós Graduação em Ciências Farmacêuticas, Universidade Estadual da Paraíba, Campina Grande 58429-500, PB, Brazil; (P.R.d.S.); (N.d.M.A.); (S.Â.S.d.S.); (M.E.C.A.); (T.B.C.); (Y.M.S.d.M.e.S.); (V.L.d.S.)
- Laboratório de Ensaios Farmacológicos, Departamento de Farmácia, Universidade Estadual da Paraíba, Campina Grande 58429-500, PB, Brazil
- Laboratório de Desenvolvimento e Síntese de Fármacos, Departamento de Farmácia, Universidade Estadual da Paraíba, Campina Grande 58429-500, PB, Brazil
| | - Nadjaele de Melo Apolinário
- Programa de Pós Graduação em Ciências Farmacêuticas, Universidade Estadual da Paraíba, Campina Grande 58429-500, PB, Brazil; (P.R.d.S.); (N.d.M.A.); (S.Â.S.d.S.); (M.E.C.A.); (T.B.C.); (Y.M.S.d.M.e.S.); (V.L.d.S.)
- Laboratório de Ensaios Farmacológicos, Departamento de Farmácia, Universidade Estadual da Paraíba, Campina Grande 58429-500, PB, Brazil
| | - Simone Ângela Soares da Silva
- Programa de Pós Graduação em Ciências Farmacêuticas, Universidade Estadual da Paraíba, Campina Grande 58429-500, PB, Brazil; (P.R.d.S.); (N.d.M.A.); (S.Â.S.d.S.); (M.E.C.A.); (T.B.C.); (Y.M.S.d.M.e.S.); (V.L.d.S.)
- Laboratório de Ensaios Farmacológicos, Departamento de Farmácia, Universidade Estadual da Paraíba, Campina Grande 58429-500, PB, Brazil
| | - Maria Elaine Cristina Araruna
- Programa de Pós Graduação em Ciências Farmacêuticas, Universidade Estadual da Paraíba, Campina Grande 58429-500, PB, Brazil; (P.R.d.S.); (N.d.M.A.); (S.Â.S.d.S.); (M.E.C.A.); (T.B.C.); (Y.M.S.d.M.e.S.); (V.L.d.S.)
- Laboratório de Ensaios Farmacológicos, Departamento de Farmácia, Universidade Estadual da Paraíba, Campina Grande 58429-500, PB, Brazil
| | - Thássia Borges Costa
- Programa de Pós Graduação em Ciências Farmacêuticas, Universidade Estadual da Paraíba, Campina Grande 58429-500, PB, Brazil; (P.R.d.S.); (N.d.M.A.); (S.Â.S.d.S.); (M.E.C.A.); (T.B.C.); (Y.M.S.d.M.e.S.); (V.L.d.S.)
- Laboratório de Ensaios Farmacológicos, Departamento de Farmácia, Universidade Estadual da Paraíba, Campina Grande 58429-500, PB, Brazil
| | - Yvnni M. S. de Medeiros e Silva
- Programa de Pós Graduação em Ciências Farmacêuticas, Universidade Estadual da Paraíba, Campina Grande 58429-500, PB, Brazil; (P.R.d.S.); (N.d.M.A.); (S.Â.S.d.S.); (M.E.C.A.); (T.B.C.); (Y.M.S.d.M.e.S.); (V.L.d.S.)
- Laboratório de Desenvolvimento e Síntese de Fármacos, Departamento de Farmácia, Universidade Estadual da Paraíba, Campina Grande 58429-500, PB, Brazil
| | - Teresinha Gonçalves da Silva
- Departamento de Antibióticos, Centro de Biociências, Universidade Federal de Pernambuco, Recife 50740-520, PE, Brazil;
| | - Ricardo Olímpio de Moura
- Programa de Pós Graduação em Ciências Farmacêuticas, Universidade Estadual da Paraíba, Campina Grande 58429-500, PB, Brazil; (P.R.d.S.); (N.d.M.A.); (S.Â.S.d.S.); (M.E.C.A.); (T.B.C.); (Y.M.S.d.M.e.S.); (V.L.d.S.)
- Laboratório de Desenvolvimento e Síntese de Fármacos, Departamento de Farmácia, Universidade Estadual da Paraíba, Campina Grande 58429-500, PB, Brazil
| | - Vanda Lucia dos Santos
- Programa de Pós Graduação em Ciências Farmacêuticas, Universidade Estadual da Paraíba, Campina Grande 58429-500, PB, Brazil; (P.R.d.S.); (N.d.M.A.); (S.Â.S.d.S.); (M.E.C.A.); (T.B.C.); (Y.M.S.d.M.e.S.); (V.L.d.S.)
- Laboratório de Ensaios Farmacológicos, Departamento de Farmácia, Universidade Estadual da Paraíba, Campina Grande 58429-500, PB, Brazil
| |
Collapse
|
353
|
Wang S, Huo J, Liu Y, Chen L, Ren X, Li X, Wang M, Jin P, Huang J, Nie N, Zhang J, Shao Y, Ge M, Zheng Y. Impaired immunosuppressive effect of bone marrow mesenchymal stem cell-derived exosomes on T cells in aplastic anemia. Stem Cell Res Ther 2023; 14:285. [PMID: 37794484 PMCID: PMC10552221 DOI: 10.1186/s13287-023-03496-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 09/13/2023] [Indexed: 10/06/2023] Open
Abstract
BACKGROUND Previous studies have verified the dysfunction of mesenchymal stem cells (MSCs) for immunoregulation in acquired aplastic anemia (AA) patients. Exosomes derived from MSCs can partially substitute MSCs acting as immune regulator. Dysfunction of exosomes (Exos) derived from AA-MSC (AA-Exos) may play a key role in immunologic dissonance. METHOD In this study, CD3 + T cells were collected and cocultured with AA-Exos and exosomes derived from HD-MSC (HD-Exos). The proliferation, differentiation and activation of CD3 + T cells were detected to compare the immunosuppressive effects between AA-Exos and HD-Exos. An immune-mediated murine model of AA was structured to compare the therapeutic effect of AA-Exos and HD-Exos. Furthermore, total RNA including miRNA from exosomes we purified and total RNA of CD3 + T cells were extracted for RNA-seq in order to construct the miRNA-mRNA network for interactions and functional analysis. RESULTS AA-Exos had impaired inhibition effects on CD3 + T cells in terms of cell proliferation, activation and differentiation compared with exosomes from HD-Exos. HD-Exos showed a more effective rescue of AA mice compared to AA-Exos. Importantly, we found some differentially expressed miRNA involved in immune response, such as miR-199, miR-128 and miR-486. The Gene Ontology analysis of differentially expressed genes (DEGs) revealed involvement of various cellular processes, such as lymphocyte chemotaxis, lymphocyte migration and response to interferon-gamma. The Kyoto Encyclopedia of Genes and Genomes analysis illustrated upregulation of critical pathways associated with T cell function after coculturing with AA-Exos compared with HD-Exos, such as graft-versus-host disease, Th17 cell differentiation and JAK-STAT signaling pathway. A miRNA-mRNA network was established to visualize the interaction between them. CONCLUSION In summary, AA-Exos had impaired immunosuppressive effect on T cells, less ability to rescue AA mice and differently expressed miRNA profile, which might partly account for the pathogenesis of AA as well as provide a new target of AA treatment.
Collapse
Affiliation(s)
- Shichong Wang
- Diagnostic and Therapeutic Center for Anemic Diseases, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Department of Hematology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Jiali Huo
- Diagnostic and Therapeutic Center for Anemic Diseases, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Yilin Liu
- Diagnostic and Therapeutic Center for Anemic Diseases, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Lingyun Chen
- Diagnostic and Therapeutic Center for Anemic Diseases, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Xiang Ren
- Diagnostic and Therapeutic Center for Anemic Diseases, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Xingxin Li
- Diagnostic and Therapeutic Center for Anemic Diseases, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Min Wang
- Diagnostic and Therapeutic Center for Anemic Diseases, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Peng Jin
- Diagnostic and Therapeutic Center for Anemic Diseases, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Jinbo Huang
- Diagnostic and Therapeutic Center for Anemic Diseases, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Neng Nie
- Diagnostic and Therapeutic Center for Anemic Diseases, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Jing Zhang
- Diagnostic and Therapeutic Center for Anemic Diseases, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Yingqi Shao
- Diagnostic and Therapeutic Center for Anemic Diseases, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Meili Ge
- Diagnostic and Therapeutic Center for Anemic Diseases, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China.
| | - Yizhou Zheng
- Diagnostic and Therapeutic Center for Anemic Diseases, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China.
| |
Collapse
|
354
|
Pavlova EN, Lepekha LN, Rybalkina EY, Tarasov RV, Sychevskaya KA, Voronezhskaya EE, Masyutin AG, Ergeshov AE, Erokhina MV. High and Low Levels of ABCB1 Expression Are Associated with Two Distinct Gene Signatures in Lung Tissue of Pulmonary TB Patients with High Inflammation Activity. Int J Mol Sci 2023; 24:14839. [PMID: 37834286 PMCID: PMC10573207 DOI: 10.3390/ijms241914839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/23/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
P-glycoprotein (encoded by the ABCB1 gene) has a dual role in regulating inflammation and reducing chemotherapy efficacy in various diseases, but there are few studies focused on pulmonary TB patients. In this study, our objective was to identify a list of genes that correlate with high and low levels of ABCB1 gene expression in the lungs of pulmonary TB patients with different activity of chronic granulomatous inflammation. We compared gene expression in two groups of samples (with moderate and high activity of tuberculomas) to identify their characteristic gene signatures. Gene expression levels were determined using quantitative PCR in samples of perifocal area of granulomas, which were obtained from 65 patients after surgical intervention. Subsequently, two distinct gene signatures associated with high inflammation activity were identified. The first signature demonstrated increased expression of HIF1a, TGM2, IL6, SOCS3, and STAT3, which correlated with high ABCB1 expression. The second signature was characterized by high expression of TNFa and CD163 and low expression of ABCB1. These results provide insight into various inflammatory mechanisms and association with P-gp gene expression in lung tissue of pulmonary TB patients and will be useful in the development of a host-directed therapy approach to improving the effectiveness of anti-TB treatment.
Collapse
Affiliation(s)
- Ekaterina N. Pavlova
- Central Tuberculosis Research Institute, 107564 Moscow, Russia; (E.N.P.); (A.G.M.)
- Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Larisa N. Lepekha
- Central Tuberculosis Research Institute, 107564 Moscow, Russia; (E.N.P.); (A.G.M.)
| | - Ekaterina Yu. Rybalkina
- Central Tuberculosis Research Institute, 107564 Moscow, Russia; (E.N.P.); (A.G.M.)
- FSBI N.N. Blokhin National Medical Research Center of Oncology, 115478 Moscow, Russia
| | - Ruslan V. Tarasov
- Central Tuberculosis Research Institute, 107564 Moscow, Russia; (E.N.P.); (A.G.M.)
| | - Ksenia A. Sychevskaya
- Central Tuberculosis Research Institute, 107564 Moscow, Russia; (E.N.P.); (A.G.M.)
- FSBI N.N. Blokhin National Medical Research Center of Oncology, 115478 Moscow, Russia
| | - Elena E. Voronezhskaya
- Koltzov Institute of Developmental Biology of Russian Academy of Sciences, 119334 Moscow, Russia
| | - Alexander G. Masyutin
- Central Tuberculosis Research Institute, 107564 Moscow, Russia; (E.N.P.); (A.G.M.)
- Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Atadzhan E. Ergeshov
- Director of the Institute, Central Tuberculosis Research Institute, 2 Yauzskaya Alleya, 107564 Moscow, Russia;
| | - Maria V. Erokhina
- Central Tuberculosis Research Institute, 107564 Moscow, Russia; (E.N.P.); (A.G.M.)
- Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| |
Collapse
|
355
|
Kan T, Ran Z, Sun L, Jiang X, Hou L, Yang Y, Jia Z, Zhang W, Wang L, Yan M, Xie K. Cell-free fat extract-loaded microneedles attenuate inflammation-induced apoptosis and mitochondrial damage in tendinopathy. Mater Today Bio 2023; 22:100738. [PMID: 37600349 PMCID: PMC10433131 DOI: 10.1016/j.mtbio.2023.100738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/09/2023] [Accepted: 07/19/2023] [Indexed: 08/22/2023] Open
Abstract
Existing clinical treatments for tendinopathy mainly focus on reducing pain, whereas inhibiting or reversing disease progression remains challenging. Local therapeutic drugs, such as glucocorticoids, cause adverse effects on the metabolism of tendon tissues and injection-related complications. Therefore, new administration modalities for tendinopathy need to be developed. In this study, we designed a hydrogel-based microneedle (MN) system for the long-term transdermal delivery of our novel biological cell-free fat extract (CEFFE) to treat tendinopathies. We found that CEFFE-loaded MNs (CEFFE-MNs) had good biosafety and inhibited lipopolysaccharide (LPS)-induced apoptosis and matrix degradation in Achilles tendon cells of rats. The Achilles tendons of rats returned to their maximum mechanical strength after applying CEFFE-MNs. The administration of CEFFE-MNs had better anti-apoptosis and tendon repair-promoting effects than CEFEF injections in vivo. Transcriptome sequencing indicated that the anti-apoptosis effect of CEFFE-MNs was highly related to tumor necrosis factor (TNF) signaling. CEFFE-MNs inhibited the expression of TNF, TNF receptor 1, and downstream nuclear factor-kappa B signaling. Additionally, CEFFE-MNs rescued LPS-induced mitochondrial dynamics in tendon cells via the TNF-Drp1 axis. Our study reports a novel CEFFE-MN system that exhibits long-term anti-inflammatory and anti-apoptotic effects, suggesting it as a new treatment route for tendinopathy with broad clinical translation prospects.
Collapse
Affiliation(s)
- Tianyou Kan
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China
| | - Zhaoyang Ran
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China
| | - Lin Sun
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China
| | - Xu Jiang
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China
| | - Lingli Hou
- Shanghai Institute of Precision Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China
| | - Yiqi Yang
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China
| | - Zhuoxuan Jia
- Shanghai Key Laboratory of Tissue Engineering, Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Wenjie Zhang
- Shanghai Key Laboratory of Tissue Engineering, Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Liao Wang
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China
| | - Mengning Yan
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China
| | - Kai Xie
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China
| |
Collapse
|
356
|
Li M, Wang M, Wen Y, Zhang H, Zhao G, Gao Q. Signaling pathways in macrophages: molecular mechanisms and therapeutic targets. MedComm (Beijing) 2023; 4:e349. [PMID: 37706196 PMCID: PMC10495745 DOI: 10.1002/mco2.349] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/24/2023] [Accepted: 07/27/2023] [Indexed: 09/15/2023] Open
Abstract
Macrophages play diverse roles in development, homeostasis, and immunity. Accordingly, the dysfunction of macrophages is involved in the occurrence and progression of various diseases, such as coronavirus disease 2019 and atherosclerosis. The protective or pathogenic effect that macrophages exert in different conditions largely depends on their functional plasticity, which is regulated via signal transduction such as Janus kinase-signal transducer and activator of transcription, Wnt and Notch pathways, stimulated by environmental cues. Over the past few decades, the molecular mechanisms of signaling pathways in macrophages have been gradually elucidated, providing more alternative therapeutic targets for diseases treatment. Here, we provide an overview of the basic physiology of macrophages and expound the regulatory pathways within them. We also address the crucial role macrophages play in the pathogenesis of diseases, including autoimmune, neurodegenerative, metabolic, infectious diseases, and cancer, with a focus on advances in macrophage-targeted strategies exploring modulation of components and regulators of signaling pathways. Last, we discuss the challenges and possible solutions of macrophage-targeted therapy in clinical applications. We hope that this comprehensive review will provide directions for further research on therapeutic strategies targeting macrophage signaling pathways, which are promising to improve the efficacy of disease treatment.
Collapse
Affiliation(s)
- Ming Li
- Department of Gynecological OncologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- National Clinical Research Center for Obstetrics and GynecologyCancer Biology Research Center (Key Laboratory of the Ministry of Education)Tongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Mengjie Wang
- Department of Gynecological OncologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- National Clinical Research Center for Obstetrics and GynecologyCancer Biology Research Center (Key Laboratory of the Ministry of Education)Tongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Yuanjia Wen
- Department of Gynecological OncologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- National Clinical Research Center for Obstetrics and GynecologyCancer Biology Research Center (Key Laboratory of the Ministry of Education)Tongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Hongfei Zhang
- Department of Gynecological OncologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- National Clinical Research Center for Obstetrics and GynecologyCancer Biology Research Center (Key Laboratory of the Ministry of Education)Tongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Guang‐Nian Zhao
- Department of Gynecological OncologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- National Clinical Research Center for Obstetrics and GynecologyCancer Biology Research Center (Key Laboratory of the Ministry of Education)Tongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Qinglei Gao
- Department of Gynecological OncologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- National Clinical Research Center for Obstetrics and GynecologyCancer Biology Research Center (Key Laboratory of the Ministry of Education)Tongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
357
|
Zhao M, Wu F, Tang Z, Yang X, Liu Y, Wang F, Chen B. Anti-inflammatory and antioxidant activity of ursolic acid: a systematic review and meta-analysis. Front Pharmacol 2023; 14:1256946. [PMID: 37841938 PMCID: PMC10568483 DOI: 10.3389/fphar.2023.1256946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 09/19/2023] [Indexed: 10/17/2023] Open
Abstract
Introduction: There is currently evidence suggesting that ursolic acid may exert a favorable influence on both anti-inflammatory and antioxidant impact. Nevertheless, the anti-inflammatory and antioxidant activities of ursolic acid have not been systematically evaluated. Consequently, this study aims to conduct a systematic review and meta-analysis regarding the impact of ursolic acid on markers of inflammatory and antioxidant activity in both animal models and in vitro systems. Methods: The search encompassed databases such as PubMed, Web of Science, Google Scholar, and ScienceDirect, up until May 2023. All eligible articles in English were included in the analysis. Standard mean difference (SMD) was pooled using a random-effects model, and the included studies underwent a thorough assessment for potential bias. Results: The final review comprised 31 articles. In disease-model related studies, animal experiments have consistently shown that ursolic acid significantly reduced the levels of inflammatory parameters IL-1β, IL-6 and TNF-α in mouse tissues. In vitro studies have similarly showed that ursolic acid significantly reduced the levels of inflammatory parameters IL-1β, IL-6, IL-8 and TNF-α. Our results showed that ursolic acid could significantly elevate SOD and GSH levels, while significantly reducing MDA levels in animal tissues. The results of in vitro studies shown that ursolic acid significantly increased the level of GSH and decreased the level of MDA. Discussion: Findings from both animal and in vitro studies suggest that ursolic acid decreases inflammatory cytokine levels, elevates antioxidant enzyme levels, and reduces oxidative stress levels (graphical abstract). This meta-analysis furnishes compelling evidence for the anti-inflammatory and antioxidant properties of ursolic acid.
Collapse
Affiliation(s)
- Man Zhao
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
| | - Fengyang Wu
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
| | - Zhaohong Tang
- Hebei Research Institute of Microbiology Co., Ltd., Baoding, China
| | - Xinyu Yang
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
| | - Yanhua Liu
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
| | - Fengxia Wang
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
| | - Baojiang Chen
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
| |
Collapse
|
358
|
Poto R, Pecoraro A, Ferrara AL, Punziano A, Lagnese G, Messuri C, Loffredo S, Spadaro G, Varricchi G. Cytokine dysregulation despite immunoglobulin replacement therapy in common variable immunodeficiency (CVID). Front Immunol 2023; 14:1257398. [PMID: 37841257 PMCID: PMC10568625 DOI: 10.3389/fimmu.2023.1257398] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 09/07/2023] [Indexed: 10/17/2023] Open
Abstract
Introduction Common variable immunodeficiency (CVID) is the most prevalent symptomatic primary immunodeficiency. CVID is a heterogeneous disorder with a presumed multifactorial etiology. Intravenous or subcutaneous immunoglobulin replacement therapy (IgRT) can prevent severe infections but not underlying immune dysregulation. Methods In this study, we evaluated the serum concentrations of proinflammatory (TNF-α, IL-1β, IL-6) and immunoregulatory cytokines (IL-10), as well as lipopolysaccharide (LPS) and soluble CD14 (sCD14) in CVID individuals with infectious only (INF-CVID), and those with additional systemic autoimmune and inflammatory disorders (NIC-CVID), and healthy donors (HD). Results Our results showed increased serum concentrations of TNF-α, IL-1β, IL-6, and IL-10 in both INF-CVID and NIC-CVID subjects compared to HD. However, elevations of TNF-α, IL-1β, IL-6, and IL-10 were significantly more marked in NIC-CVID than INF-CVID. Additionally, LPS concentrations were increased only in NIC-CVID but not in INF-CVID compared to HD. Circulating levels of sCD14 were significantly increased in NIC-CVID compared to both INF-CVID and HD. Discussion These findings indicate persistent cytokine dysregulation despite IgRT in individuals with CVID. Moreover, the circulating cytokine profile reveals the heterogeneity of immune dysregulation in different subgroups of CVID subjects.
Collapse
Affiliation(s)
- Remo Poto
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- World Allergy Organization (WAO), Center of Excellence (CoE), Naples, Italy
| | - Antonio Pecoraro
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- World Allergy Organization (WAO), Center of Excellence (CoE), Naples, Italy
- Unità Operativa (UO) Medicina Trasfusionale, Azienda Sanitaria Territoriale, Ascoli Piceno, Italy
| | - Anne Lise Ferrara
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- World Allergy Organization (WAO), Center of Excellence (CoE), Naples, Italy
| | - Alessandra Punziano
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- World Allergy Organization (WAO), Center of Excellence (CoE), Naples, Italy
| | - Gianluca Lagnese
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- World Allergy Organization (WAO), Center of Excellence (CoE), Naples, Italy
| | - Carla Messuri
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- World Allergy Organization (WAO), Center of Excellence (CoE), Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
| | - Stefania Loffredo
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- World Allergy Organization (WAO), Center of Excellence (CoE), Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
- Institute of Experimental Endocrinology and Oncology, National Research Council (CNR), Naples, Italy
| | - Giuseppe Spadaro
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- World Allergy Organization (WAO), Center of Excellence (CoE), Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
| | - Gilda Varricchi
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- World Allergy Organization (WAO), Center of Excellence (CoE), Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
- Institute of Experimental Endocrinology and Oncology, National Research Council (CNR), Naples, Italy
| |
Collapse
|
359
|
Sun G, Wang B, Zhu H, Ye J, Liu X. Role of sphingosine 1-phosphate (S1P) in sepsis-associated intestinal injury. Front Med (Lausanne) 2023; 10:1265398. [PMID: 37746079 PMCID: PMC10514503 DOI: 10.3389/fmed.2023.1265398] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 08/28/2023] [Indexed: 09/26/2023] Open
Abstract
Sphingosine-1-phosphate (S1P) is a widespread lipid signaling molecule that binds to five sphingosine-1-phosphate receptors (S1PRs) to regulate downstream signaling pathways. Sepsis can cause intestinal injury and intestinal injury can aggravate sepsis. Thus, intestinal injury and sepsis are mutually interdependent. S1P is more abundant in intestinal tissues as compared to other tissues, exerts anti-inflammatory effects, promotes immune cell trafficking, and protects the intestinal barrier. Despite the clinical importance of S1P in inflammation, with a very well-defined mechanism in inflammatory bowel disease, their role in sepsis-induced intestinal injury has been relatively unexplored. In addition to regulating lymphocyte exit, the S1P-S1PR pathway has been implicated in the gut microbiota, intestinal epithelial cells (IECs), and immune cells in the lamina propria. This review mainly elaborates on the physiological role of S1P in sepsis, focusing on intestinal injury. We introduce the generation and metabolism of S1P, emphasize the maintenance of intestinal barrier homeostasis in sepsis, and the protective effect of S1P in the intestine. We also review the link between sepsis-induced intestinal injury and S1P-S1PRs signaling, as well as the underlying mechanisms of action. Finally, we discuss how S1PRs affect intestinal function and become targets for future drug development to improve the translational capacity of preclinical studies to the clinic.
Collapse
Affiliation(s)
- Gehui Sun
- Gannan Medical University, Ganzhou, Jiangxi, China
- The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Bin Wang
- Gannan Medical University, Ganzhou, Jiangxi, China
- The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Hongquan Zhu
- The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Critical Care Medicine, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Junming Ye
- Gannan Medical University, Ganzhou, Jiangxi, China
- Suzhou Medical College of Soochow University, Suzhou, Jiangsu, China
| | - Xiaofeng Liu
- Suzhou Medical College of Soochow University, Suzhou, Jiangsu, China
- Department of Emergency, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| |
Collapse
|
360
|
Hendrick J, Ma JZ, Haughey HM, Coleman R, Nayak U, Kadl A, Sturek JM, Jackson P, Young MK, Allen JE, Petri WA. Pulmonary function and survival one year after dupilumab treatment of acute moderate to severe COVID-19: A follow up study from a Phase IIa trial. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.09.01.23293947. [PMID: 37693596 PMCID: PMC10491385 DOI: 10.1101/2023.09.01.23293947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Background We previously conducted a Phase IIa randomized placebo-controlled trial of 40 subjects to assess the efficacy and safety of dupilumab use in those hospitalized with COVID-19 (NCT04920916). Based on our pre-clinical data suggesting downstream pulmonary dysfunction with COVID-19 induced type 2 inflammation, we contacted patients from our Phase IIa study at 1 year for assessment of Post Covid-19 Conditions (PCC). Methods Subjects at 1 year after treatment underwent pulmonary function testing (PFTs), high resolution computed tomography (HRCT) imaging, symptom questionnaires, neurocognitive assessments, and serum immune biomarker analysis, with subject survival also monitored. The primary outcome was the proportion of abnormal PFTs, defined as an abnormal diffusion capacity for carbon monoxide (DLCO) or 6-minute walk testing (6MWT) at the 1-year visit. Results Sixteen of the 29 one-year survivors consented to the follow up visit. We found that subjects who had originally received dupilumab were less likely to have abnormal PFTs compared to those who received placebo (Fisher's exact p=0.011, adjusted p=0.058). We additionally found that 3 out of 19 subjects (16%) in the dupilumab group died by 1 year compared to 8 out of 21 subjects (38%) in the placebo group (log rank p=0.12). We did not find significant differences in neurocognitive testing, symptoms or CT chest imaging between treatment groups but observed evidence of reduced type 2 inflammation in those who received dupilumab. Conclusions We observed evidence of reduced long-term morbidity and mortality from COVID-19 with dupilumab treatment during acute hospitalization when added to standard of care regimens.
Collapse
Affiliation(s)
- Jennifer Hendrick
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia Health System, Charlottesville, VA, USA
| | - Jennie Z. Ma
- Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Heather M. Haughey
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Virginia Health System, Charlottesville, VA, USA
| | - Rachael Coleman
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia Health System, Charlottesville, VA, USA
| | - Uma Nayak
- Center for Public Health Genomics and Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Alexandra Kadl
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Virginia Health System, Charlottesville, VA, USA
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Jeffrey M. Sturek
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Virginia Health System, Charlottesville, VA, USA
| | - Patrick Jackson
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia Health System, Charlottesville, VA, USA
| | - Mary K. Young
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia Health System, Charlottesville, VA, USA
| | - Judith E. Allen
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, University of Manchester, Manchester Academic Health Sciences Centre, Manchester, United Kingdom
| | - William A. Petri
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia Health System, Charlottesville, VA, USA
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Pathology, University of Virginia Health System, Charlottesville, VA, USA
| |
Collapse
|
361
|
Siegmund D, Wajant H. TNF and TNF receptors as therapeutic targets for rheumatic diseases and beyond. Nat Rev Rheumatol 2023; 19:576-591. [PMID: 37542139 DOI: 10.1038/s41584-023-01002-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/05/2023] [Indexed: 08/06/2023]
Abstract
The cytokine TNF signals via two distinct receptors, TNF receptor 1 (TNFR1) and TNFR2, and is a central mediator of various immune-mediated diseases. Indeed, TNF-neutralizing biologic drugs have been in clinical use for the treatment of many inflammatory pathological conditions, including various rheumatic diseases, for decades. TNF has pleiotropic effects and can both promote and inhibit pro-inflammatory processes. The integrated net effect of TNF in vivo is a result of cytotoxic TNFR1 signalling and the stimulation of pro-inflammatory processes mediated by TNFR1 and TNFR2 and also TNFR2-mediated anti-inflammatory and tissue-protective activities. Inhibition of the beneficial activities of TNFR2 might explain why TNF-neutralizing drugs, although highly effective in some diseases, have limited benefit in the treatment of other TNF-associated pathological conditions (such as graft-versus-host disease) or even worsen the pathological condition (such as multiple sclerosis). Receptor-specific biologic drugs have the potential to tip the balance from TNFR1-mediated activities to TNFR2-mediated activities and enable the treatment of diseases that do not respond to current TNF inhibitors. Accordingly, a variety of reagents have been developed that either selectively inhibit TNFR1 or selectively activate TNFR2. Several of these reagents have shown promise in preclinical studies and are now in, or approaching, clinical trials.
Collapse
Affiliation(s)
- Daniela Siegmund
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital of Würzburg, Würzburg, Germany
| | - Harald Wajant
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital of Würzburg, Würzburg, Germany.
| |
Collapse
|
362
|
Priem D, Huyghe J, Bertrand MJM. LC3-independent autophagy is vital to prevent TNF cytotoxicity. Autophagy 2023; 19:2585-2589. [PMID: 37014272 PMCID: PMC10392734 DOI: 10.1080/15548627.2023.2197760] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/13/2023] [Accepted: 03/28/2023] [Indexed: 04/05/2023] Open
Abstract
The (macro)autophagy field is facing a paradigm shift after the recent discovery that cytosolic cargoes can still be selectively targeted to phagophores (the precursors to autophagosomes) even in the absence of LC3 or other Atg8-protein family members. Several in vitro studies have indeed reported on the existence of an unconventional selective autophagic pathway that involves the in-situ formation of an autophagosome around the cargo through the direct selective autophagy receptor-mediated recruitment of RB1CC1/FIP200, thereby bypassing the requirement of LC3. In an article recently published in Science, we demonstrate the physiological importance of this unconventional autophagic pathway in the context of TNF (tumor necrosis factor) signaling. We show that it promotes the degradation of the cytotoxic TNFRSF1A/TNFR1 (TNF receptor superfamily member 1A) complex II that assembles upon TNF sensing and thereby protects mice from TNFRSF1A-driven embryonic lethality and skin inflammation.Abbreviations: ATG: autophagy related; CASP: caspase; FIR: RB1CC1/FIP200-interacting region; LIR: LC3-interacting region; M1: linear; PAS: phagophore assembly site; PtdIns3K: phosphatidylinositol 3-kinase; TNF: tumor necrosis factor; TNFRSF1A: TNF receptor superfamily member 1A.
Collapse
Affiliation(s)
- Dario Priem
- Cell Death and Inflammation Unit, VIB Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Jon Huyghe
- Cell Death and Inflammation Unit, VIB Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Mathieu JM Bertrand
- Cell Death and Inflammation Unit, VIB Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| |
Collapse
|
363
|
Klaver D, Thurnher M. P2Y 11/IL-1 receptor crosstalk controls macrophage inflammation: a novel target for anti-inflammatory strategies? Purinergic Signal 2023; 19:501-511. [PMID: 37016172 PMCID: PMC10073626 DOI: 10.1007/s11302-023-09932-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/06/2023] [Indexed: 04/06/2023] Open
Abstract
Although first cloning of the human ATP receptor P2Y11 was successful 25 years ago, the exact downstream signaling pathways of P2Y11 receptor, which can couple to Gq and Gs proteins, have remained unclear. Especially the lack of rodent models as well as the limited availability of antibodies and pharmacological tools have hampered examination of P2Y11 expression and function. Many meaningful observations related to P2Y11 have been made in primary immune cells, indicating that P2Y11 receptors are important regulators of inflammation and cell migration, also by controlling mitochondrial activity. Our recent studies have shown that P2Y11 is upregulated during macrophage development and activates signaling through IL-1 receptor, which is well known for its ability to direct inflammatory and migratory processes. This review summarizes the results of the first transcriptomic and secretomic analyses of both, ectopic and native P2Y11 receptors, and discusses how P2Y11 crosstalk with the IL-1 receptor may govern anti-inflammatory and pro-angiogenic processes in human M2 macrophages.
Collapse
Affiliation(s)
- Dominik Klaver
- Immunotherapy Unit, Department of Urology, Medical University of Innsbruck, Innrain 66a, 6020 Innsbruck, Austria
| | - Martin Thurnher
- Immunotherapy Unit, Department of Urology, Medical University of Innsbruck, Innrain 66a, 6020 Innsbruck, Austria
| |
Collapse
|
364
|
Ren J, Ding Y, Li S, Lei M. Predicting the anti-inflammatory mechanism of Radix Astragali using network pharmacology and molecular docking. Medicine (Baltimore) 2023; 102:e34945. [PMID: 37657026 PMCID: PMC10476849 DOI: 10.1097/md.0000000000034945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 08/04/2023] [Indexed: 09/03/2023] Open
Abstract
According to current research, the primary active ingredients of Radix Astragali (RA), such as saponins, flavonoids, and polysaccharides, play an important role in anti-inflammatory effects. However, the exact molecular mechanism underlying the action was not elucidated to date. Our research attempted to determine the active components in RA and to investigate the interaction between the active components and targets involved in the anti-inflammation activity by network pharmacology and molecular docking. The active components and targets of RA were screened out by TCMSP. Thereafter, through the "anti-inflammation effect" and "inflammation" as the keywords, disease targets were obtained from the GeneCards database. The PPI network was constructed with Cytoscape 3.8.0 software to screen core targets. The GO function and KEGG analysis were enriched and analyzed through the Metascape platform, obtaining the 3-dimensional view of the core targets from the PDB database, and then, performing molecular docking in AutoDock Vina, a heatmap was constructed using the binding free energies in GraphPad Prism 8. The Discovery Studio software was used for docking analysis, and eventually, the docking results were visualized. We also explored the targets and signaling pathways of Astragaloside IV acting on anti-inflammatory effects via constructing compound-disease-target-pathway network. 18 active components and 45 targets of RA were screened out. The main anti-inflammatory active components of RA were quercetin, Astragaloside IV, kaempferol, 7-O-methylisomucronulatol, and formononetin, and the strongly interacting core proteins were TNF, IL6, IL1B, TLR4, CXCL8, CCL2, IL10, VEGFA, and MMP9. The signal pathways mainly involved include Lipid and atherosclerosis, IL-17 signaling pathway, Chagas disease, leishmaniasis, and TNF signaling pathway. Moreover, molecular docking showed that the 2 most active compounds, Astragaloside IV and kaempferol, could efficiently bind with the targets TNF, TLR4, and IL10. Astragaloside IV may play a part in anti-inflammatory effects through pathways such as HIF-1 signaling pathway, Inflammatory bowel disease and Hepatitis B ect. RA exhibits the characteristic of multicomponent and multitarget synergistic effects in exerting anti-inflammatory effects and the effective component of RA is Astragaloside IV, targeting TNF, TLR4, and IL10.
Collapse
Affiliation(s)
- Jianwei Ren
- College of Medicine, Tibet University, Lhasa, China
| | - Yuetian Ding
- College of Medicine, Tibet University, Lhasa, China
| | - Shangze Li
- College of Medicine, Tibet University, Lhasa, China
- School of Medicine, Chongqing University, Chongqing, China
| | - Ming Lei
- Department of Science and Technology of Tibet Autonomous Region, Lhasa, China
| |
Collapse
|
365
|
Prasher P, Mall T, Sharma M. Synthesis and biological profile of benzoxazolone derivatives. Arch Pharm (Weinheim) 2023; 356:e2300245. [PMID: 37379239 DOI: 10.1002/ardp.202300245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/07/2023] [Accepted: 06/09/2023] [Indexed: 06/30/2023]
Abstract
The benzoxazolone nucleus is an ideal scaffold for drug design, owing to its discrete physicochemical profile, bioisosteric preference over pharmacokinetically weaker moieties, weakly acidic behavior, presence of both lipophilic and hydrophilic fragments on a single framework, and a wider choice of chemical modification on the benzene and oxazolone rings. These properties apparently influence the interactions of benzoxazolone-based derivatives with their respective biological targets. Hence, the benzoxazolone ring is implicated in the synthesis and development of pharmaceuticals with a diverse biological profile ranging from anticancer, analgesics, insecticides, anti-inflammatory, and neuroprotective agents. This has further led to the commercialization of several benzoxazolone-based molecules and a few others under clinical trials. Nevertheless, the SAR exploration of benzoxazolone derivatives for the identification of potential "hits" followed by the screening of "leads" provides a plethora of opportunities for further exploration of the pharmacological profile of the benzoxazolone nucleus. In this review, we aim to present the biological profile of different derivatives based on the benzoxazolone framework.
Collapse
Affiliation(s)
- Parteek Prasher
- Department of Chemistry, University of Petroleum & Energy Studies, Energy Acres, Dehradun, India
| | - Tanisqa Mall
- Department of Chemistry, University of Petroleum & Energy Studies, Energy Acres, Dehradun, India
| | - Mousmee Sharma
- Department of Chemistry, Uttaranchal University, Dehradun, India
| |
Collapse
|
366
|
Verboom L, Anderson CJ, Jans M, Petta I, Blancke G, Martens A, Sze M, Hochepied T, Ravichandran KS, Vereecke L, van Loo G. OTULIN protects the intestinal epithelium from apoptosis during inflammation and infection. Cell Death Dis 2023; 14:534. [PMID: 37598207 PMCID: PMC10439912 DOI: 10.1038/s41419-023-06058-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/19/2023] [Accepted: 08/10/2023] [Indexed: 08/21/2023]
Abstract
The intestinal epithelium is a single cell layer that is constantly renewed and acts as a physical barrier that separates intestinal microbiota from underlying tissues. In inflammatory bowel disease (IBD) in humans, as well as in experimental mouse models of IBD, this barrier is impaired, causing microbial infiltration and inflammation. Deficiency in OTU deubiquitinase with linear linkage specificity (OTULIN) causes OTULIN-related autoinflammatory syndrome (ORAS), a severe inflammatory pathology affecting multiple organs including the intestine. We show that mice with intestinal epithelial cell (IEC)-specific OTULIN deficiency exhibit increased susceptibility to experimental colitis and are highly sensitive to TNF toxicity, due to excessive apoptosis of OTULIN deficient IECs. OTULIN deficiency also increases intestinal pathology in mice genetically engineered to secrete excess TNF, confirming that chronic exposure to TNF promotes epithelial cell death and inflammation in OTULIN deficient mice. Mechanistically we demonstrate that upon TNF stimulation, OTULIN deficiency impairs TNF receptor complex I formation and LUBAC recruitment, and promotes the formation of the cytosolic complex II inducing epithelial cell death. Finally, we show that OTULIN deficiency in IECs increases susceptibility to Salmonella infection, further confirming the importance of OTULIN for intestinal barrier integrity. Together, these results identify OTULIN as a major anti-apoptotic protein in the intestinal epithelium and provide mechanistic insights into how OTULIN deficiency drives gastrointestinal inflammation in ORAS patients.
Collapse
Affiliation(s)
- Lien Verboom
- VIB Center for Inflammation Research, 9052, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, 9052, Ghent, Belgium
| | - Christopher J Anderson
- VIB Center for Inflammation Research, 9052, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, 9052, Ghent, Belgium
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Maude Jans
- VIB Center for Inflammation Research, 9052, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, 9052, Ghent, Belgium
| | - Ioanna Petta
- VIB Center for Inflammation Research, 9052, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Gillian Blancke
- VIB Center for Inflammation Research, 9052, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Arne Martens
- VIB Center for Inflammation Research, 9052, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, 9052, Ghent, Belgium
| | - Mozes Sze
- VIB Center for Inflammation Research, 9052, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, 9052, Ghent, Belgium
| | - Tino Hochepied
- VIB Center for Inflammation Research, 9052, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, 9052, Ghent, Belgium
| | - Kodi S Ravichandran
- VIB Center for Inflammation Research, 9052, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, 9052, Ghent, Belgium
| | - Lars Vereecke
- VIB Center for Inflammation Research, 9052, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Geert van Loo
- VIB Center for Inflammation Research, 9052, Ghent, Belgium.
- Department of Biomedical Molecular Biology, Ghent University, 9052, Ghent, Belgium.
| |
Collapse
|
367
|
Lee J, Jo SE, Han SI, Kim JH. Ethanol-Extracted Acorn Induces Anti-Inflammatory Effects in Human Keratinocyte and Production of Hyaluronic Acid in Human Fibroblasts. J Med Food 2023; 26:595-604. [PMID: 37594560 DOI: 10.1089/jmf.2022.k.0128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023] Open
Abstract
Acorn (Quercus acutissima CARR.) has been used in traditional food and medicinal ethnopharmacology in Asia, and it has shown multifarious functions such as antidementia, antiobesity, and antiasthma functions. However, there is limited scientific evidence about the efficacy of acorn for ameliorating skin problems. Treatment with ethanol-extracted acorns (EeA's) ablated the expression of inducible nitric oxide synthase (iNOS), cyclooxygenase 2 (COX2), monocyte chemoattractant protein-1 (MCP-1), and interleukin (IL)-8 stimulated by tumor necrosis factor (TNF)-α in human adult low calcium high temperature (HaCaT) cells under sublethal dosages. In addition, treatment with EeA dose dependently inhibited the ex vivo hyper keratin formation induced by TNF-α in HaCaT cells in conjunction with the blockade of cytokeratin-1 (CK-1) and cytokeratin-5 (CK-5) expression. Moreover, EeA treatment stimulated the expression of hyaluronic acid (HA) expression in human fibroblasts in a dose-dependent manner. Linoleamide was identified as the functional component of EeA using preparative high-performance liquid chromatography and ultra high performance liquid chromatography-mass spectrometry-mass spectrometry analysis, and the anti-inflammatory features and enhanced HA expression were verified. Collectively, these results suggest the efficacy of EeA supplementation in improving skin problems via anti-inflammation and upregulating HA production.
Collapse
Affiliation(s)
- Jungwhoi Lee
- Department of Biotechnology, College of Applied Life Science, SARI, Jeju National University, Jeju, Korea
| | | | - Song-I Han
- Department of Biotechnology, College of Applied Life Science, SARI, Jeju National University, Jeju, Korea
| | - Jae-Hoon Kim
- Department of Biotechnology, College of Applied Life Science, SARI, Jeju National University, Jeju, Korea
- Subtropical/Tropical Organism Gene Bank, Jeju National University, Jeju, Korea
| |
Collapse
|
368
|
Ji W, Liu X, Liu P, He Y, Zhao Y, Zheng K, Cui J, Li W. The efficacy of fat-free mass index and appendicular skeletal muscle mass index in cancer malnutrition: a propensity score match analysis. Front Nutr 2023; 10:1172610. [PMID: 37492594 PMCID: PMC10364448 DOI: 10.3389/fnut.2023.1172610] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 06/19/2023] [Indexed: 07/27/2023] Open
Abstract
Background Reduced muscle mass (RMM) is a phenotypic criterion for malnutrition; the appendicular skeletal muscle mass index (ASMI) and fat-free mass index (FFMI) are both applicable indicators in the global leadership initiative on malnutrition (GLIM) guideline. However, their sensitivity and prognostic effect remain unclear. Methods Clinical data of 2,477 patients with malignant tumors were collected. Multi-frequency bioelectrical impedance analysis was used to obtain ASMI and FFMI. RMM was confirmed by ASMI (< 7.0 kg/m2 for men and < 5.7 kg/m2 for women) or FFMI (< 17 kg/m2 for men and < 15 kg/m2 for women). Propensity score match analysis and logistic regression analysis were used to evaluate the efficacy of FFMI and ASMI in diagnosing severe malnutrition and multivariate Cox regression analysis to determine the efficacy of RMM in predicting survival. Results In total, 546 (22.0%) and 659 (26.6%) participants were diagnosed with RMM by ASMI (RMM.ASMI group) and FFMI (RMM.FFMI group); 375 cases overlapped. Body mass index (BMI), midarm circumference, triceps skinfold thickness, and maximum calf circumference were all significantly larger in the RMM.FFMI group for both sexes (P < 0.05). A 1:1 matched dataset constructed by propensity score match contained 810 cases. RMM.FFMI was an influential factor of severe malnutrition with HR = 3.033 (95% CI 2.068-4.449, P < 0.001), and RMM.ASMI was a predictive factor of overall survival (HR = 1.318, 95% CI 1.060-1.639, P = 0.013 in the RMM.ASMI subgroup, HR = 1.315, 95% CI 1.077-1.607, P = 0.007 in the RMM.FFMI subgroup). Conclusion In general, RMM indicates negative clinical outcomes; when defined by FFMI, it predicts nutritional status, and when defined by ASMI, it is related to poor survival in cancer patients.
Collapse
Affiliation(s)
- Wei Ji
- Center of Cancer, The First Affiliated Hospital of Jilin University, Changchun, China
| | - XiangLiang Liu
- Center of Cancer, The First Affiliated Hospital of Jilin University, Changchun, China
| | - Pengfei Liu
- Cancer Department, Longyan First Hospital, Fujian, Longyan, China
| | - YuWei He
- Center of Cancer, The First Affiliated Hospital of Jilin University, Changchun, China
| | - YiXin Zhao
- Center of Cancer, The First Affiliated Hospital of Jilin University, Changchun, China
| | - Kaiwen Zheng
- Center of Cancer, The First Affiliated Hospital of Jilin University, Changchun, China
| | - JiuWei Cui
- Center of Cancer, The First Affiliated Hospital of Jilin University, Changchun, China
| | - Wei Li
- Center of Cancer, The First Affiliated Hospital of Jilin University, Changchun, China
| |
Collapse
|
369
|
Gonzalez Caldito N. Role of tumor necrosis factor-alpha in the central nervous system: a focus on autoimmune disorders. Front Immunol 2023; 14:1213448. [PMID: 37483590 PMCID: PMC10360935 DOI: 10.3389/fimmu.2023.1213448] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 06/14/2023] [Indexed: 07/25/2023] Open
Abstract
Tumor necrosis factor-alpha (TNF-α) is a pleiotropic immune cytokine that belongs to the TNF superfamily of receptor ligands. The cytokine exists as either a transmembrane or a soluble molecule, and targets two distinct receptors, TNF-α receptor 1 (TNFR1) and TNF-α receptor 2 (TNFR2), which activate different signaling cascades and downstream genes. TNF-α cellular responses depend on its molecular form, targeted receptor, and concentration levels. TNF-α plays a multifaceted role in normal physiology that is highly relevant to human health and disease. In the central nervous system (CNS), this cytokine regulates homeostatic functions, such as neurogenesis, myelination, blood-brain barrier permeability and synaptic plasticity. However, it can also potentiate neuronal excitotoxicity and CNS inflammation. The pleiotropism of TNF-α and its various roles in the CNS, whether homeostatic or deleterious, only emphasizes the functional complexity of this cytokine. Anti-TNF-α therapy has demonstrated effectiveness in treating various autoimmune inflammatory diseases and has emerged as a significant treatment option for CNS autoimmune diseases. Nevertheless, it is crucial to recognize that the effects of this therapeutic target are diverse and complex. Contrary to initial expectations, anti-TNF-α therapy has been found to have detrimental effects in multiple sclerosis. This article focuses on describing the various roles, both physiological and pathological, of TNF-α in the CNS. Additionally, it discusses the specific disease processes that are dependent or regulated by TNF-α and the rationale of its use as a therapeutic target.
Collapse
Affiliation(s)
- Natalia Gonzalez Caldito
- Department of Neurology, Northwestern Memorial Hospital, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
370
|
Bao C, Wang S, Jiang L, Fang Z, Zou K, Lin J, Chen S, Fang H. OpenXGR: a web-server update for genomic summary data interpretation. Nucleic Acids Res 2023; 51:W387-W396. [PMID: 37158276 PMCID: PMC10320191 DOI: 10.1093/nar/gkad357] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 05/10/2023] Open
Abstract
How to effectively convert genomic summary data into downstream knowledge discovery represents a major challenge in human genomics research. To address this challenge, we have developed efficient and effective approaches and tools. Extending our previously established software tools, we here introduce OpenXGR (http://www.openxgr.com), a newly designed web server that offers almost real-time enrichment and subnetwork analyses for a user-input list of genes, SNPs or genomic regions. It achieves so through leveraging ontologies, networks, and functional genomic datasets (such as promoter capture Hi-C, e/pQTL and enhancer-gene maps for linking SNPs or genomic regions to candidate genes). Six analysers are provided, each doing specific interpretations tailored to genomic summary data at various levels. Three enrichment analysers are designed to identify ontology terms enriched for input genes, as well as genes linked from input SNPs or genomic regions. Three subnetwork analysers allow users to identify gene subnetworks from input gene-, SNP- or genomic region-level summary data. With a step-by-step user manual, OpenXGR provides a user-friendly and all-in-one platform for interpreting summary data on the human genome, enabling more integrated and effective knowledge discovery.
Collapse
Affiliation(s)
- Chaohui Bao
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai200025, China
| | - Shan Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai200025, China
| | - Lulu Jiang
- Translational Health Sciences, University of Bristol, BristolBS1 3NY, UK
| | - Zhongcheng Fang
- Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai200092, China
| | - Kexin Zou
- School of Life Sciences, Central South University, Hunan410083, China
| | - James Lin
- High Performance Computing Center, Shanghai Jiao Tong University, Shanghai200240, China
| | - Saijuan Chen
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai200025, China
| | - Hai Fang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai200025, China
| |
Collapse
|
371
|
Li X, Li X, Wang H, Zhao X. Exploring hub pyroptosis-related genes, molecular subtypes, and potential drugs in ankylosing spondylitis by comprehensive bioinformatics analysis and molecular docking. BMC Musculoskelet Disord 2023; 24:532. [PMID: 37386410 DOI: 10.1186/s12891-023-06664-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 06/24/2023] [Indexed: 07/01/2023] Open
Abstract
BACKGROUND Ankylosing spondylitis (AS) is a chronic inflammatory autoimmune disease, and the diagnosis and treatment of AS have been limited because its pathogenesis is still unclear. Pyroptosis is a proinflammatory type of cell death that plays an important role in the immune system. However, the relationship between pyroptosis genes and AS has never been elucidated. METHODS GSE73754, GSE25101, and GSE221786 datasets were collected from the Gene Expression Omnibus (GEO) database. Differentially expressed pyroptosis-related genes (DE-PRGs) were identified by R software. Machine learning and PPI networks were used to screen key genes to construct a diagnostic model of AS. AS patients were clustered into different pyroptosis subtypes according to DE-PRGs using consensus cluster analysis and validated using principal component analysis (PCA). WGCNA was used for screening hub gene modules between two subtypes. Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were used for enrichment analysis to elucidate underlying mechanisms. The ESTIMATE and CIBERSORT algorithms were used to reveal immune signatures. The connectivity map (CMAP) database was used to predict potential drugs for the treatment of AS. Molecular docking was used to calculate the binding affinity between potential drugs and the hub gene. RESULTS Sixteen DE-PRGs were detected in AS compared to healthy controls, and some of these genes showed a significant correlation with immune cells such as neutrophils, CD8 + T cells, and resting NK cells. Enrichment analysis showed that DE-PRGs were mainly related to pyroptosis, IL-1β, and TNF signaling pathways. The key genes (TNF, NLRC4, and GZMB) screened by machine learning and the protein-protein interaction (PPI) network were used to establish the diagnostic model of AS. ROC analysis showed that the diagnostic model had good diagnostic properties in GSE73754 (AUC: 0.881), GSE25101 (AUC: 0.797), and GSE221786 (AUC: 0.713). Using 16 DE-PRGs, AS patients were divided into C1 and C2 subtypes, and these two subtypes showed significant differences in immune infiltration. A key gene module was identified from the two subtypes using WGCNA, and enrichment analysis suggested that the module was mainly related to immune function. Three potential drugs, including ascorbic acid, RO 90-7501, and celastrol, were selected based on CMAP analysis. Cytoscape showed GZMB as the highest-scoring hub gene. Finally, molecular docking results showed that GZMB and ascorbic acid formed three hydrogen bonds, including ARG-41, LYS-40, and HIS-57 (affinity: -5.3 kcal/mol). GZMB and RO-90-7501 formed one hydrogen bond, including CYS-136 (affinity: -8.8 kcal/mol). GZMB and celastrol formed three hydrogen bonds, including TYR-94, HIS-57, and LYS-40 (affinity: -9.4 kcal/mol). CONCLUSIONS Our research systematically analyzed the relationship between pyroptosis and AS. Pyroptosis may play an essential role in the immune microenvironment of AS. Our findings will contribute to a further understanding of the pathogenesis of AS.
Collapse
Affiliation(s)
- Xin Li
- Henan University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, China
| | - Xiangying Li
- Henan University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, China
| | - Hongqiang Wang
- Department of Surgery of Spine and Spinal Cord, Henan Provincial People's Hospital, Henan International Joint Laboratory of Intelligentized Orthopedics Innovation and Transformation, Henan Key Laboratory for Intelligent Precision Orthopedics, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, China.
| | - Xiang Zhao
- Department of Surgery of Spine and Spinal Cord, Henan Provincial People's Hospital, Henan International Joint Laboratory of Intelligentized Orthopedics Innovation and Transformation, Henan Key Laboratory for Intelligent Precision Orthopedics, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, China.
| |
Collapse
|
372
|
Zaiachuk M, Suryavanshi SV, Pryimak N, Kovalchuk I, Kovalchuk O. The Anti-Inflammatory Effects of Cannabis sativa Extracts on LPS-Induced Cytokines Release in Human Macrophages. Molecules 2023; 28:4991. [PMID: 37446655 DOI: 10.3390/molecules28134991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/10/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Inflammation is the response of the innate immune system to any type of injury. Although acute inflammation is critical for survival, dysregulation of the innate immune response leads to chronic inflammation. Many synthetic anti-inflammatory drugs have side effects, and thus, natural anti-inflammatory compounds are still needed. Cannabis sativa L. may provide a good source of anti-inflammatory molecules. Here, we tested the anti-inflammatory properties of cannabis extracts and pure cannabinoids in lipopolysaccharide (LPS)-induced inflammation in human THP-1 macrophages. We found that pre-treatment with cannabidiol (CBD), delta-9-tetrahydrocannabinol (THC), or extracts containing high levels of CBD or THC reduced the level of induction of various cytokines. The CBD was more efficient than THC, and the extracts were more efficient than pure cannabinoids. Finally, IL-6, IL-10, and MCP-1 cytokines were most sensitive to pre-treatments with CBD and THC, while IL-1β, IL-8, and TNF-α were less responsive. Thus, our work demonstrates the potential of the use of cannabinoids or/and cannabis extracts for the reduction of inflammation and establishes IL-6 and MCP-1 as the sensitive markers for the analysis of the effect of cannabinoids on inflammation in macrophages.
Collapse
Affiliation(s)
- Mariia Zaiachuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Santosh V Suryavanshi
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Nazar Pryimak
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Igor Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Olga Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| |
Collapse
|
373
|
Huyghe J, Priem D, Bertrand MJM. Cell death checkpoints in the TNF pathway. Trends Immunol 2023:S1471-4906(23)00105-9. [PMID: 37357102 DOI: 10.1016/j.it.2023.05.007] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/19/2023] [Accepted: 05/19/2023] [Indexed: 06/27/2023]
Abstract
Tumor necrosis factor (TNF) plays a central role in orchestrating mammalian inflammatory responses. It promotes inflammation either directly by inducing inflammatory gene expression or indirectly by triggering cell death. TNF-mediated cell death-driven inflammation can be beneficial during infection by providing cell-extrinsic signals that help to mount proper immune responses. Uncontrolled cell death caused by TNF is instead highly detrimental and is believed to cause several human autoimmune diseases. Death is not the default response to TNF sensing. Molecular brakes, or cell death checkpoints, actively repress TNF cytotoxicity to protect the organism from its detrimental consequences. These checkpoints therefore constitute essential safeguards against inflammatory diseases. Recent advances in the field have revealed the existence of several new and unexpected brakes against TNF cytotoxicity and pathogenicity.
Collapse
Affiliation(s)
- Jon Huyghe
- Cell Death and Inflammation Unit, Vlaams Instituut voor Biotechnologie (VIB) Center for Inflammation Research, 9052 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
| | - Dario Priem
- Cell Death and Inflammation Unit, Vlaams Instituut voor Biotechnologie (VIB) Center for Inflammation Research, 9052 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
| | - Mathieu J M Bertrand
- Cell Death and Inflammation Unit, Vlaams Instituut voor Biotechnologie (VIB) Center for Inflammation Research, 9052 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium.
| |
Collapse
|
374
|
Malireddi RS, Bynigeri RR, Mall R, Nadendla EK, Connelly JP, Pruett-Miller SM, Kanneganti TD. Whole-genome CRISPR screen identifies RAVER1 as a key regulator of RIPK1-mediated inflammatory cell death, PANoptosis. iScience 2023; 26:106938. [PMID: 37324531 PMCID: PMC10265528 DOI: 10.1016/j.isci.2023.106938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/24/2023] [Accepted: 05/18/2023] [Indexed: 06/17/2023] Open
Abstract
Transforming growth factor-β-activated kinase 1 (TAK1) is a central regulator of innate immunity, cell death, inflammation, and cellular homeostasis. Therefore, many pathogens carry TAK1 inhibitors (TAK1i). As a host strategy to counteract this, inhibition or deletion of TAK1 induces spontaneous inflammatory cell death, PANoptosis, through the RIPK1-PANoptosome complex, containing the NLRP3 inflammasome and caspase-8/FADD/RIPK3 as integral components; however, PANoptosis also promotes pathological inflammation. Therefore, understanding molecular mechanisms that regulate TAK1i-induced cell death is essential. Here, we report a genome-wide CRISPR screen in macrophages that identified TAK1i-induced cell death regulators, including polypyrimidine tract-binding (PTB) protein 1 (PTBP1), a known regulator of RIPK1, and a previously unknown regulator RAVER1. RAVER1 blocked alternative splicing of Ripk1, and its genetic depletion inhibited TAK1i-induced, RIPK1-mediated inflammasome activation and PANoptosis. Overall, our CRISPR screen identified several positive regulators of PANoptosis. Moreover, our study highlights the utility of genome-wide CRISPR-Cas9 screens in myeloid cells for comprehensive characterization of complex cell death pathways to discover therapeutic targets.
Collapse
Affiliation(s)
| | - Ratnakar R. Bynigeri
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Raghvendra Mall
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Eswar Kumar Nadendla
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Jon P. Connelly
- Center for Advanced Genome Engineering (CAGE), St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Shondra M. Pruett-Miller
- Center for Advanced Genome Engineering (CAGE), St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | | |
Collapse
|
375
|
Simão Raimundo D, Cordeiro AI, Parente Freixo J, Valente Pinto M, Neves C, Farela Neves J. Case Report: Patient with deficiency of ADA2 presenting leukocytoclastic vasculitis and pericarditis during infliximab treatment. Front Pediatr 2023; 11:1200401. [PMID: 37388286 PMCID: PMC10303984 DOI: 10.3389/fped.2023.1200401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 05/15/2023] [Indexed: 07/01/2023] Open
Abstract
Deficiency of adenosine deaminase 2 (DADA2), first reported in 2014, is a disease with great phenotypic variability, which has been increasingly reported. Therapeutic response depends on the phenotype. We present a case of an adolescent with recurrent fever, oral aphthous ulcers, and lymphadenopathy from 8 to 12 years of age and subsequently presented with symptomatic neutropenia. After the diagnosis of DADA2, therapy with infliximab was started, but after the second dose, she developed leukocytoclastic vasculitis and showed symptoms of myopericarditis. Infliximab was switched to etanercept, with no relapses. Despite the safety of tumor necrosis factor alpha inhibitors (TNFi), paradoxical adverse effects have been increasingly reported. The differential diagnosis between disease new-onset manifestations of DADA2 and side effects of TNFi can be challenging and warrants further clarification.
Collapse
Affiliation(s)
- Diana Simão Raimundo
- Pediatrics Department, Hospital do Divino Espírito Santo, Ponta Delgada, Portugal
| | - Ana Isabel Cordeiro
- Primary Immunodeficiencies Unit, Hospital Dona Estefânia, Centro Hospitalar Universitário de Lisboa Central, Lisboa, Portugal
| | - João Parente Freixo
- Centro de Genética Preditiva e Preventiva, Instituto de Biologia Molecular e Celular, Instituto de Investigação e Inovação em Saúde, Porto, Portugal
| | - Marta Valente Pinto
- Primary Immunodeficiencies Unit, Hospital Dona Estefânia, Centro Hospitalar Universitário de Lisboa Central, Lisboa, Portugal
- Egas Moniz Center for Interdisciplinary Research (CiiEM); Egas Moniz School of Health & Science, Caparica, Almada, Portugal
| | - Conceição Neves
- Primary Immunodeficiencies Unit, Hospital Dona Estefânia, Centro Hospitalar Universitário de Lisboa Central, Lisboa, Portugal
| | - João Farela Neves
- Primary Immunodeficiencies Unit, Hospital Dona Estefânia, Centro Hospitalar Universitário de Lisboa Central, Lisboa, Portugal
- NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Lisboa, Portugal
- CHRC, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Lisboa, Portugal
| |
Collapse
|
376
|
Yang Y, Klionsky DJ. A novel role of ATG9A and RB1CC1/FIP200 in mediating cell-death checkpoints to repress TNF cytotoxicity. Autophagy 2023; 19:1617-1618. [PMID: 36892222 PMCID: PMC10262787 DOI: 10.1080/15548627.2023.2187609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023] Open
Abstract
TNF (tumor necrosis factor) is an important cytokine that regulates immune responses in response to microbial infection. Two fates can be induced by TNF sensing, including activation of NFKB/NF-κB and cell death, which are mainly regulated by the formation of TNFRSF1A/TNFR1 (TNF receptor superfamily member 1A) complex I and complex II, respectively. Abnormal TNF-induced cell death leads to detrimental outcomes, underlying several human inflammatory diseases. The actions of "protective brakes", or so-called specific "cell death checkpoints", are important to prevent TNF cytotoxicity. A recent study published in Science characterizes novel functions of ATG9A, RB1CC1/FIP200 and TAX1BP1 as components of a previously undiscovered TNF-induced cell death checkpoint, independent of its roles in canonical macroautophagy/autophagy. Notably, this ATG9A-controlled cell-death checkpoint contributes to the prevention of inflammatory skin disease, demonstrating its crucial role in serving as a safeguard against the threat of TNF cytotoxicity.
Collapse
Affiliation(s)
- Ying Yang
- Life Sciences Institute and Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Daniel J. Klionsky
- Life Sciences Institute and Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
377
|
Zheng X, Chen X, Wu W. The Regulatory Axis of PD-L1 Isoform 2/TNF/T Cell Proliferation Is Required for the Canonical Immune-Suppressive Effects of PD-L1 Isoform 1 in Liver Cancer. Int J Mol Sci 2023; 24:ijms24076314. [PMID: 37047287 PMCID: PMC10094247 DOI: 10.3390/ijms24076314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/26/2023] [Accepted: 03/24/2023] [Indexed: 03/30/2023] Open
Abstract
Despite the well-studied effects of the full-length membrane-locating isoform Iso1 of Programmed Cell Death Protein-Ligand 1 (PD-L1) on immunosuppression, little is known about another membrane-locating isoform, Iso2. While expressional and survival analysis of liver cancer patients indicated that Iso2 plays a tumor-suppressive role, our results also indicated that the tumor-promoting and immune-suppressive effects of Iso1 depended on the positive expression of Iso2. Through mediation analysis, we discovered several downstream genes or pathways of Iso2 and investigated their effects on the Iso1-regulating survival. Among all potential downstream immune factors, Iso2 was inclined to activate the proliferation of T cells by regulating chemokine activity and increasing CD3 levels by promoting TNF expression. Similar results were confirmed in the Mongolian liver cancer cohort, and the Iso2/TNF/T-cell axis was verified in several other cancers in the TCGA cohort. Finally, we demonstrated the promoting effects of Iso2 in terms of producing TNF and increasing T cells both in vitro and in vivo. Our findings illustrate that PD-L1 Iso2 can increase the number of T cells in the tumor microenvironment by elevating TNF levels, which is a necessary part of the tumor-suppressive effects of Iso1 in liver cancer.
Collapse
Affiliation(s)
- Xixi Zheng
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Xingdong Chen
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, School of Life Sciences, Fudan University, Shanghai 200438, China
- Taizhou Institute of Health Sciences, Fudan University, Taizhou 225316, China
- Correspondence: (X.C.); (W.W.)
| | - Weicheng Wu
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, School of Life Sciences, Fudan University, Shanghai 200438, China
- Rugao Joint Research Institute of Longevity and Aging, Fudan University, Rugao 226599, China
- Correspondence: (X.C.); (W.W.)
| |
Collapse
|
378
|
Niu Y, Du SZ, He R. TNF-α interference ameliorates brain damage in neonatal hypoxic-ischemic encephalopathy rats by regulating the expression of NT-3 and TRKC. IBRAIN 2023; 9:381-389. [PMID: 38680513 PMCID: PMC11045181 DOI: 10.1002/ibra.12089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 01/06/2023] [Accepted: 01/13/2023] [Indexed: 05/01/2024]
Abstract
The aim of this study is to explore the effect of tumor necrosis factor-α (TNF-α) inhibition in rats with neonatal hypoxic-ischemic encephalopathy (HIE) and ascertain the relevant signaling pathways. The Zea-Longa score was used to evaluate the neurological function of the rats. ImageJ was used for quantification of the brain edema volume. Triphenyl tetrazolium chloride (TTC) staining of brain tissue was performed 24 h after hypoxic-ischemic (HI) to detect right brain infarction. The expression of TNF-α was detected by real-time quantitative polymerase chain reaction (RT-qPCR). Immunofluorescence staining was used to identify the localization of TNF-α; Then, the effective shRNA fragment of TNF-α was used to validate the role of TNF-α in HIE rats, and the change of neurotrofin-3 (NT-3) and tyrosine kinase receptor-C (TRKC) was examined after TNF-α-shRNA lentivirus transfection to determine downstream signaling associated with TNF-α. Protein interaction analysis was carried out to predict the links among TNF-α, NT-3, and TRKC. Cerebral edema volume and infarction increased in the right brain after the HI operation. The Zea-Longa score significantly increased within 24 h after the HI operation. The relative expression of TNF-α was upregulated after the HI operation. TNF-α was highly expressed in the right hippocampus post HI through immunofluorescence staining. Bioinformatics analysis found a direct or an indirect link among TNF-α, NT-3, and TRKC. Moreover, the interference of TNF-α increased the expression of NT-3 and TRKC. TNF-α interference might alleviate brain injury in HIE by upregulating NT-3 and TRKC.
Collapse
Affiliation(s)
- Yong‐Min Niu
- Institute of NeuroscienceKunming Medical UniversityKunmingChina
| | - Steven Z. Du
- Department of Integrative BiologyUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Rong He
- Animal Zoology DepartmentKunming Medical UniversityKunmingChina
| |
Collapse
|
379
|
Novick D. A natural goldmine of binding proteins and soluble receptors simplified their translation to blockbuster drugs, all in one decade. Front Immunol 2023; 14:1151620. [PMID: 36875111 PMCID: PMC9980337 DOI: 10.3389/fimmu.2023.1151620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 02/03/2023] [Indexed: 02/18/2023] Open
Abstract
Human urinary proteins are a goldmine of natural proteins a feature that simplifies their translation to biologics. Combining this goldmine together with the ligand-affinity-chromatography (LAC) purification method, proved a winning formula in their isolation. LAC specificity, efficiency, simplicity and inherent indispensability in the search for predictable and unpredictable proteins, is superior to other separation techniques. Unlimited amounts of recombinant cytokines and monoclonal antibodies (mAb) accelerated the "triumph". My approach concluded 35 years of worldwide pursuit for Type I IFN receptor (IFNAR2) and advanced the understanding of the signal transduction of this Type of IFN. TNF, IFNγ and IL-6 as baits enabled the isolation of their corresponding soluble receptors and N-terminal amino acid sequence of the isolated proteins facilitated the cloning of their cell surface counterparts. IL-18, IL-32, and heparanase as the baits yielded the corresponding unpredictable proteins: the antidote IL-18 Binding Protein (IL-18BP), the enzyme Proteinase 3 (PR3) and the hormone Resistin. IFNβ proved beneficial in Multiple Sclerosis and is a blockbuster drug, Rebif®. TNF mAbs translated into Remicade® to treat Crohn's disease. Enbrel® based on TBPII is for Rheumatoid Arthritis. Both are blockbusters. Tadekinig alfa™, a recombinant IL-18BP, is in phase III clinical study for inflammatory and autoimmune diseases. Seven years of continuous compassionate use of Tadekinig alfa™ in children born with mutations (NLRC4, XIAP) proved life-saving and is an example of tailored made medicine. IL-18 is a checkpoint biomarker in cancer and IL-18BP is planned recently to target cytokine storms resulting from CAR-T treatment and in COVID 19.
Collapse
Affiliation(s)
- Daniela Novick
- Molecular Genetics, The Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
380
|
Dobrek L. A Synopsis of Current Theories on Drug-Induced Nephrotoxicity. Life (Basel) 2023; 13:life13020325. [PMID: 36836682 PMCID: PMC9960203 DOI: 10.3390/life13020325] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/11/2023] [Accepted: 01/18/2023] [Indexed: 01/26/2023] Open
Abstract
The overriding goal of the treatment of patients is its effectiveness and safety. However, all medications currently being used also exert some adverse pharmaceutical reactions, which may be regarded as an unintended but inevitable cost of pharmacotherapy. The kidney, as the main organ that eliminates xenobiotics, is an organ especially predisposed and vulnerable to the toxic effects of drugs and their metabolites during their excretion from the body. Moreover, some drugs (e.g., aminoglycosides, cyclosporin A, cisplatin, amphotericin B, and others) have a "preferential" nephrotoxicity potential, and their use is associated with an increased risk of kidney damage. Drug nephrotoxicity is, therefore, both a significant problem and a complication of pharmacotherapy. It should be noted that, currently, there is no generally recognized definition of drug-induced nephrotoxicity and no clear criteria for its diagnosis. This review briefly describes the epidemiology and diagnosis of drug-induced nephrotoxicity and characterizes its pathomechanisms, including immunological and inflammatory disturbances, altered kidney blood flow, tubulointerstitial injury, increased lithogenesis-crystal nephropathy, rhabdomyolysis, and thrombotic microangiopathy. The study also lists the basic drugs with nephrotoxicity potential and provides a short overview of the preventive methods for reducing the risk of drug-related kidney damage developing.
Collapse
Affiliation(s)
- Lukasz Dobrek
- Department of Clinical Pharmacology, Wroclaw Medical University, Wroclaw, Poland
| |
Collapse
|
381
|
Steiner CA, Koch SD, Evanoff T, Welch N, Kostelecky R, Callahan R, Murphy EM, Hall CHT, Lu S, Weiser-Evans MC, Cartwright IM, Colgan SP. The TNF ΔARE mouse as a model of intestinal fibrosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.13.523973. [PMID: 36712048 PMCID: PMC9882211 DOI: 10.1101/2023.01.13.523973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Background & Aims Crohn's disease (CD) is a highly morbid chronic inflammatory disease. The majority of CD patients also develop fibrostenosing complications. Despite this, there are no medical therapies for intestinal fibrosis. This is in part due to lack of high-fidelity biomimetic models to enhance understanding and drug development. There is a need to develop in vivo models of inflammatory bowel disease-related intestinal fibrosis. We sought to determine if the TNF ΔARE mouse, a model of ileal inflammation, may also develop intestinal fibrosis. Methods Several clinically relevant outcomes were studied including features of structural fibrosis, histological fibrosis, and gene expression. These include the use of a luminal casting technique we developed, traditional histological outcomes, use of second harmonic imaging, and quantitative PCR. These features were studied in aged TNF ΔARE mice as well as in cohorts of numerous ages. Results At ages of 24+ weeks, TNF ΔARE mice develop structural, histological, and genetic changes of ileal fibrosis. Genetic expression profiles have changes as early as six weeks, followed by histological changes occurring as early as 14-15 weeks, and overt structural fibrosis delayed until after 24 weeks. Discussion The TNF ΔARE mouse is a viable and highly tractable model of intestinal fibrosis. This model and the techniques employed can be leveraged for both mechanistic studies and therapeutic development for the treatment of intestinal fibrosis.
Collapse
|
382
|
Alteration in Serum Levels of Tumor Necrosis Factor Alpha is associated with Histopathologic Progression of Gastric Cancer. IRANIAN BIOMEDICAL JOURNAL 2023; 27:72-8. [PMID: 36624700 PMCID: PMC9971713 DOI: 10.52547/ibj.3847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Background The role of inflammatory cytokines, such as tumor necrosis-α (TNF-α) and IL-8, in gastric carcinogenesis has been investigated, but their impact remains to be further elucidated. Methods In this study, we measured the serum concentrations of these cytokines and H. pylori serostatus in dyspeptic patients, presenting with normal mucosa (NM = 53), chronic gastritis (CG = 94), and gastric cancer (GC = 82), by ELISA. Results Moderate levels of TNF-α were detected in the NM group (19.9 ± 19.5 pg/ml), which were nearly doubled in patients with CG (35.7 ± 28.0 pg/ml) and drastically declined in GC patients (1.8 ± 5.9 pg/ml). The serum levels of IL-8, however, were not statistically different amongst these three groups. Conclusion TNF-α serum concentration seemed to undergo up- and downregulation, when moving from NM to CG and from CG to GC, respectively. If confirmed in a prospective study, this cytokine can behave as a serum indicator of gastric inflammation and malignant transformation.
Collapse
|
383
|
Chang C, Cai R, Wu Q, Su Q. Uncovering the Genetic Link between Acute Myocardial Infarction and Ulcerative Colitis Co-Morbidity through a Systems Biology Approach. CARDIOVASCULAR INNOVATIONS AND APPLICATIONS 2023; 8. [DOI: 10.15212/cvia.2023.0034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
Abstract
Background: Cardiovascular diseases, particularly acute myocardial infarction, are the leading cause of disability and death. Atherosclerosis, the pathological basis of AMI, can be accelerated by chronic inflammation. Ulcerative colitis (UC), a chronic inflammatory disease associated with immunity, contributes to the risk of AMI development. However, controversy continues to surround the relationship between these two diseases. The present study unravels the pathogenesis of AMI and UC, to provide a new perspective on the clinical management of patients with these comorbidities.
Methods: Microarray datasets GSE66360 and GSE87473 were downloaded from the Gene Expression Omnibus database. Common differentially expressed genes (co-DEGs) between AMI and UC were identified, and the following analyses were performed: enrichment analysis, protein-protein interaction network construction, hub gene identification and co-expression analysis.
Results: A total of 267 co-DEGs (233 upregulated and 34 downregulated) were screened for further analysis. GO enrichment analysis suggested important roles of chemokines and cytokines in AMI and UC. In addition, the lipopolysaccharide-mediated signaling pathway was found to be closely associated with both diseases. KEGG enrichment analysis revealed that lipid and atherosclerosis, NF-κB, TNF and IL-17 signaling pathways are the core mechanisms involved in the progression of both diseases. Finally, 11 hub genes were identified with cytoHubba: TNF, IL1B, TLR2, CXCL8, STAT3, MMP9, ITGAX, CCL4, CSF1R, ICAM1 and CXCL1.
Conclusion: This study reveals a co-pathogenesis mechanism of AMI and UC regulated by specific hub genes, thus providing ideas for further mechanistic studies, and new perspectives on the clinical management of patients with these comorbidities.
Collapse
|
384
|
An JW, Pimpale-Chavan P, Stone DL, Bandeira M, Dedeoglu F, Lo J, Bohnsack J, Rosenzweig S, Schnappauf O, Dissanayake D, Hiraki LT, Kastner DL, Pelajo C, Laxer RM, Aksentijevich I. Case report: Novel variants in RELA associated with familial Behcet's-like disease. Front Immunol 2023; 14:1127085. [PMID: 36926348 PMCID: PMC10011480 DOI: 10.3389/fimmu.2023.1127085] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 02/09/2023] [Indexed: 03/08/2023] Open
Abstract
RELA haploinsufficiency is a recently described autoinflammatory condition presenting with intermittent fevers and mucocutaneous ulcerations. The RELA gene encodes the p65 protein, one of five NF-κB family transcription factors. As RELA is an essential regulator of mucosal homeostasis, haploinsufficiency leads to decreased NF-κB signaling which promotes TNF-driven mucosal apoptosis with impaired epithelial recovery. Thus far, only eight cases have been reported in the literature. Here, we report four families with three novel and one previously described pathogenic variant in RELA. These four families included 23 affected individuals for which genetic testing was available in 16. Almost half of these patients had been previously diagnosed with more common rheumatologic entities (such as Behcet's Disease; BD) prior to the discovery of their pathogenic RELA variants. The most common clinical features were orogenital ulcers, rash, joint inflammation, and fever. The least common were conjunctivitis and recurrent infections. Clinical variability was remarkable even among familial cases, and incomplete penetrance was observed. Patients in our series were treated with a variety of medications, and benefit was observed with glucocorticoids, colchicine, and TNF inhibitors. Altogether, our work adds to the current literature and doubles the number of reported cases with RELA-Associated Inflammatory Disease (RAID). It reaffirms the central importance of the NF-κB pathway in immunity and inflammation, as well as the important regulatory role of RELA in mucosal homeostasis. RELA associated inflammatory disease should be considered in all patients with BD, particularly those with early onset and/or with a strong family history.
Collapse
Affiliation(s)
- Jason W An
- Division of Rheumatology, Department of Medicine, St. Michael's Hospital, University of Toronto, Toronto, ON, Canada.,Division of Rheumatology, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Pallavi Pimpale-Chavan
- National Human Genome Research Institute (NHGRI), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Deborah L Stone
- National Human Genome Research Institute (NHGRI), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Marcia Bandeira
- Division of Rheumatology, Hospital Pequeno Príncipe e Hospital de Clínicas, University Federal do Parana, Curitiba, Brazil
| | - Fatma Dedeoglu
- Division of Immunology, Rheumatology Program, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Jeffrey Lo
- Division of Immunology, Rheumatology Program, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - John Bohnsack
- Department of Pediatrics, Spencer Fox Eccles School of Medicine, University of Utah, Salt Lake City, UT, United States
| | - Sofia Rosenzweig
- National Human Genome Research Institute (NHGRI), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Oskar Schnappauf
- National Human Genome Research Institute (NHGRI), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Dilan Dissanayake
- Division of Rheumatology, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Linda T Hiraki
- Division of Rheumatology, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Daniel L Kastner
- National Human Genome Research Institute (NHGRI), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Christina Pelajo
- Division of Rheumatology, Hospital Pequeno Príncipe e Hospital de Clínicas, University Federal do Parana, Curitiba, Brazil
| | - Ronald M Laxer
- Division of Rheumatology, Department of Medicine, St. Michael's Hospital, University of Toronto, Toronto, ON, Canada.,Division of Rheumatology, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Ivona Aksentijevich
- National Human Genome Research Institute (NHGRI), National Institutes of Health (NIH), Bethesda, MD, United States
| |
Collapse
|