351
|
Pedro JMBS, Wei Y, Sica V, Maiuri MC, Zou Z, Kroemer G, Levine B. BAX and BAK1 are dispensable for ABT-737-induced dissociation of the BCL2-BECN1 complex and autophagy. Autophagy 2016; 11:452-9. [PMID: 25715028 PMCID: PMC4502763 DOI: 10.1080/15548627.2015.1017191] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Disruption of the complex of BECN1 with BCL2 or BCL2L1/BCL-XL is an essential switch that turns on cellular autophagy in response to environmental stress or treatment with BH3 peptidomimetics. Recently, it has been proposed that BCL2 and BCL2L1/BCL-XL may inhibit autophagy indirectly through a mechanism dependent on the proapoptotic BCL2 family members, BAX and BAK1. Here we report that the BH3 mimetic, ABT-737, induces autophagy in parallel with disruption of BCL2-BECN1 binding in 2 different apoptosis-deficient cell types lacking BAX and BAK1, namely in mouse embryonic fibroblasts cells and in human colon cancer HCT116 cells. We conclude that the BH3 mimetic ABT-737 induces autophagy through a BAX and BAK1-independent mechanism that likely involves disruption of BECN1 binding to antiapoptotic BCL2 family members.
Collapse
Key Words
- ABT-737
- ACTB, actin, β
- BAK1
- BAK1, BCL2-antagonist/killer 1
- BAX
- BAX, BCL2-associated X protein
- BCL2
- BCL2, B-cell CLL/lymphoma 2
- BECN1 (Beclin 1)
- BECN1, Beclin 1, autophagy-related
- Baf A1, bafilomycin A1
- DKO, double-knockout
- FBS, fetal bovine serum
- GAPDH, glyceraldehyde-3-phosphate dehydrogenase
- HBSS, Hanks’ balanced salt solution
- HRP, horseradish peroxidase
- MAP1LC3/LC3, microtubule-associated protein 1 light chain 3
- MCL1, myeloid cell leukemia 1
- MEFs, mouse embryonic fibroblasts
- MTOR, mechanistic target of rapamycin
- PBS, phosphate-buffered saline
- SQSTM1, sequestosome 1
- STS, staurosporine
- WT, wild type
- apoptosis
- autophagy
Collapse
Affiliation(s)
- Jose Manuel Bravo-San Pedro
- a Equipe 11 labellisée pas la Ligue Nationale contre le Cancer ; Center de Recherche des Cordeliers ; Paris , France
| | | | | | | | | | | | | |
Collapse
|
352
|
Sun Y, Liu D, Su P, Lin F, Tang Q. Changes in autophagy in rats after spinal cord injury and the effect of hyperbaric oxygen on autophagy. Neurosci Lett 2016; 618:139-145. [PMID: 26949182 DOI: 10.1016/j.neulet.2016.02.054] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 02/17/2016] [Accepted: 02/26/2016] [Indexed: 11/25/2022]
Abstract
The purpose of this study was to explore the effects of Hyperbaric oxygen (HBO) on the autophagic changes after induction of spinal cord injury (SCI) in rats. A total of 75 rats were randomly divided into the sham-operated group, the spinal cord injury group, and the SCI+HBO group. We found that at 7 d and 14 d after surgery, the BBB scores were higher in the SCI+HBO group in comparison to the SCI group. The expression of Beclin-1 and LC3II was upregulated in the SCI and SCI+HBO groups after SCI. Fluorescently stained Beclin-1 and LC3II proteins were barely detectable in the sham group. In contrast, Beclin-l and LC3II expression was observed in neurons and glial cells from the SCI and SCI+HBO groups. Beclin-1 and LC3II expression appeared at 6h after SCI. At each time point, Beclin-1 and LC3II expression was significantly higher in the SCI+HBO group compared to the SCI group. These results suggest that autophagy is activated in rats after SCI and sustained over a period of time. HBO treatment enhances autophagy expression in rats after SCI and accelerates cell repair rate, which may represent one of the mechanisms of action of HBO in the treatment of SCI.
Collapse
Affiliation(s)
- Yongming Sun
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Soochow University, Jiangsu 215004, China
| | - Dong Liu
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Soochow University, Jiangsu 215004, China
| | - Peng Su
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Soochow University, Jiangsu 215004, China
| | - Fanguo Lin
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Soochow University, Jiangsu 215004, China
| | - Qifeng Tang
- Department of Anesthesiology, Suzhou BenQ Medical Center, Nanjing Medical University, Suzhou 215009, China.
| |
Collapse
|
353
|
Li M, Gao P, Zhang J. Crosstalk between Autophagy and Apoptosis: Potential and Emerging Therapeutic Targets for Cardiac Diseases. Int J Mol Sci 2016; 17:332. [PMID: 26950124 PMCID: PMC4813194 DOI: 10.3390/ijms17030332] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Revised: 02/06/2016] [Accepted: 02/19/2016] [Indexed: 12/19/2022] Open
Abstract
Autophagy is a cell survival process which is related to breaking down and reusing cytoplasm components. Moreover, autophagy regulates cell death under certain conditions. Apoptosis has the characteristics of chromatin agglutination and the shrinking of nuclear and apoptosis body form. Even if the mechanisms of autophagy and apoptosis have differences, some proteins modulate both autophagy and apoptosis. Crosstalk between them exists. This review highlights recent advances in the interaction of autophagy and apoptosis and its importance in the development of cardiovascular diseases.
Collapse
Affiliation(s)
- Meng Li
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China.
| | - Ping Gao
- Department of Medical Imaging, Urumqi General Hospital of Lanzhou Military Area Command, Urumqi 830000, China.
| | - Junping Zhang
- Department of cardiology, First Teaching Hospital of Tianjin University of Traditional Chinese Medcine, Tianjin 300192, China.
| |
Collapse
|
354
|
Abstract
Apoptosis is a primary characteristic in the pathogenesis of liver disease. Hepatic apoptosis is regulated by autophagic activity. However, mechanisms mediating their interaction remain to be determined. Basal level of autophagy ensures the physiological turnover of old and damaged organelles. Autophagy also is an adaptive response under stressful conditions. Autophagy can control cell fate through different cross-talk signals. A complex interplay between hepatic autophagy and apoptosis determines the degree of hepatic apoptosis and the progression of liver disease as demonstrated by pre-clinical models and clinical trials. This review summarizes recent advances on roles of autophagy that plays in pathophysiology of liver. The autophagic pathway can be a novel therapeutic target for liver disease.
Collapse
Key Words
- ALT, alanine aminotransferase
- AMBRA-1, activating molecule in Beclin-1-regulated autophagy
- APAP, N-acetyl-p-aminophenol
- ATP, adenosine triphosphate
- Atg, autophagy-related gene
- BH3, Bcl-2 homology domain-3
- BNIP, Bcl-2/adenovirus E1B 19 kd-interacting protein
- Barkor, Beclin-1-associated autophagy-related key regulator
- Bcl-2, B-cell lymphoma-2
- Bcl-xL, B-cell lymphoma extra long
- Beclin-1, Bcl-2-interacting protein-1
- CSE, cigarette smoke extract
- DISC, death-inducing signaling complex
- DNA, DNA
- DRAM, damage regulated autophagic modulator
- Drp1, dynamin-related protein 1
- ER stress, endoplasmic reticulum stress
- FADD, Fas-associated protein with death domain
- FFA, free fatty acids
- HBV, hepatitis B virus
- HBx, hepatitis B X protein
- HCC, hepatocellular carcinoma
- HCV, hepatitis C virus
- HSC, hepatic stellate cells
- LAMP-2, lysosome-associated membrane protein 2
- LD, lipid droplets
- MDBs, Mallory-Denk bodies
- MOMP, mitochondrial outer membrane permiabilization
- Microtubule LC3, microtubule light chain 3
- PCD, programmed cell death
- PI3KC3, phosphatidylinositol-3-kinase class-3
- RNA, ribonucleic acid
- ROS, reactive oxygen species
- TNFα, tumor necrosis factor-α
- TUNEL, terminal deoxynucleotidyl transferase dUTP nick-end labeling
- UVRAG, UV-resistance-associated gene
- Vps34, vacuolar protein sorting-34
- apoptosis
- autophagy
- c-FLIP, cellular FLICE-like inhibitor protein
- cross-talk
- liver injury
- mTOR, mammalian target of rapamycin
- mechanism
- siRNA, small interfering RNA
Collapse
Affiliation(s)
- Kewei Wang
- a Departments of Surgery; University of Illinois College of Medicine ; Peoria , IL , USA
| |
Collapse
|
355
|
Tai S, Hu XQ, Peng DQ, Zhou SH, Zheng XL. The roles of autophagy in vascular smooth muscle cells. Int J Cardiol 2016; 211:1-6. [PMID: 26954728 DOI: 10.1016/j.ijcard.2016.02.128] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 02/05/2016] [Accepted: 02/22/2016] [Indexed: 12/21/2022]
Abstract
Autophagy, which is an evolutionarily conserved mechanism and links to several cellular pathways, impacts vascular smooth muscle cells (VSMCs) survival and function. Activation of autophagy by intercellular and/or extracellular stimuli has protective effects on VSMCs against cell death, while on the contrary, overloading autophagy has been recognized as a deleterious process by excessive self-digestion. Alterations in autophagy has been documented in VSMC in response to various stimuli, resulting in modulation of VSMC functions, including proliferation, migration, matrix secretion, contraction/relaxation, and differentiation. Each of these changes in VSMC functions plays a critical role in the development of vascular diseases. Importantly, emerging evidence demonstrates that autophagy deficiency in VSMCs would contribute to atherosclerosis and restenosis, shedding novel light on therapeutic target of the vascular disorders. Herein, this review summarizes the recent progress associated with the roles of autophagy in VSMC and offers the perspectives to several challenges and future directions for further studies.
Collapse
Affiliation(s)
- Shi Tai
- Dept. of Biochemistry & Molecular Biology, Faculty of Medicine, Univ. of Calgary, Calgary, Alberta, Canada; Dept. of Cardiology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xin-Qun Hu
- Dept. of Cardiology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Dao-Quan Peng
- Dept. of Cardiology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Sheng-Hua Zhou
- Dept. of Cardiology, The Second Xiangya Hospital of Central South University, Changsha, China.
| | - Xi-Long Zheng
- Dept. of Biochemistry & Molecular Biology, Faculty of Medicine, Univ. of Calgary, Calgary, Alberta, Canada; Dept. of Cardiology, The Second Xiangya Hospital of Central South University, Changsha, China.
| |
Collapse
|
356
|
Li S, Xia Y, Chen K, Li J, Liu T, Wang F, Lu J, Zhou Y, Guo C. Epigallocatechin-3-gallate attenuates apoptosis and autophagy in concanavalin A-induced hepatitis by inhibiting BNIP3. DRUG DESIGN DEVELOPMENT AND THERAPY 2016; 10:631-47. [PMID: 26929598 PMCID: PMC4760659 DOI: 10.2147/dddt.s99420] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Background Epigallocatechin-3-gallate (EGCG) is the most effective compound in green tea, and possesses a wide range of beneficial effects, including anti-inflammatory, antioxidant, antiobesity, and anticancer effects. In this study, we investigated the protective effects of EGCG in concanavalin A (ConA)-induced hepatitis in mice and explored the possible mechanisms involved in these effects. Methods Balb/C mice were injected with ConA (25 mg/kg) to induce acute autoimmune hepatitis, and EGCG (10 or 30 mg/kg) was administered orally twice daily for 10 days before ConA injection. Serum liver enzymes, proinflammatory cytokines, and other marker proteins were determined 2, 8, and 24 hours after the ConA administration. Results BNIP3 mediated cell apoptosis and autophagy in ConA-induced hepatitis. EGCG decreased the immunoreaction and pathological damage by reducing inflammatory factors, such as TNF-α, IL-6, IFN-γ, and IL-1β. EGCG also exhibited an antiapoptotic and antiautophagic effect by inhibiting BNIP3 via the IL-6/JAKs/STAT3 pathway. Conclusion EGCG attenuated liver injury in ConA-induced hepatitis by downregulating IL-6/JAKs/STAT3/BNIP3-mediated apoptosis and autophagy.
Collapse
Affiliation(s)
- Sainan Li
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Yujing Xia
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Kan Chen
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Jingjing Li
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Tong Liu
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Fan Wang
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Jie Lu
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Yingqun Zhou
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Chuanyong Guo
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| |
Collapse
|
357
|
Bento CF, Renna M, Ghislat G, Puri C, Ashkenazi A, Vicinanza M, Menzies FM, Rubinsztein DC. Mammalian Autophagy: How Does It Work? Annu Rev Biochem 2016; 85:685-713. [PMID: 26865532 DOI: 10.1146/annurev-biochem-060815-014556] [Citation(s) in RCA: 518] [Impact Index Per Article: 57.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Autophagy is a conserved intracellular pathway that delivers cytoplasmic contents to lysosomes for degradation via double-membrane autophagosomes. Autophagy substrates include organelles such as mitochondria, aggregate-prone proteins that cause neurodegeneration and various pathogens. Thus, this pathway appears to be relevant to the pathogenesis of diverse diseases, and its modulation may have therapeutic value. Here, we focus on the cell and molecular biology of mammalian autophagy and review the key proteins that regulate the process by discussing their roles and how these may be modulated by posttranslational modifications. We consider the membrane-trafficking events that impact autophagy and the questions relating to the sources of autophagosome membrane(s). Finally, we discuss data from structural studies and some of the insights these have provided.
Collapse
Affiliation(s)
- Carla F Bento
- Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge, Wellcome Trust/MRC Building, Cambridge Biomedical Campus, Cambridge CB2 0XY, United Kingdom;
| | - Maurizio Renna
- Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge, Wellcome Trust/MRC Building, Cambridge Biomedical Campus, Cambridge CB2 0XY, United Kingdom;
| | - Ghita Ghislat
- Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge, Wellcome Trust/MRC Building, Cambridge Biomedical Campus, Cambridge CB2 0XY, United Kingdom;
| | - Claudia Puri
- Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge, Wellcome Trust/MRC Building, Cambridge Biomedical Campus, Cambridge CB2 0XY, United Kingdom;
| | - Avraham Ashkenazi
- Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge, Wellcome Trust/MRC Building, Cambridge Biomedical Campus, Cambridge CB2 0XY, United Kingdom;
| | - Mariella Vicinanza
- Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge, Wellcome Trust/MRC Building, Cambridge Biomedical Campus, Cambridge CB2 0XY, United Kingdom;
| | - Fiona M Menzies
- Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge, Wellcome Trust/MRC Building, Cambridge Biomedical Campus, Cambridge CB2 0XY, United Kingdom;
| | - David C Rubinsztein
- Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge, Wellcome Trust/MRC Building, Cambridge Biomedical Campus, Cambridge CB2 0XY, United Kingdom;
| |
Collapse
|
358
|
Seledtsov VI, Goncharov AG, Seledtsova GV. Clinically feasible approaches to potentiating cancer cell-based immunotherapies. Hum Vaccin Immunother 2016; 11:851-69. [PMID: 25933181 DOI: 10.1080/21645515.2015.1009814] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The immune system exerts both tumor-destructive and tumor-protective functions. Mature dendritic cells (DCs), classically activated macrophages (M1), granulocytes, B lymphocytes, aβ and ɣδ T lymphocytes, natural killer T (NKT) cells, and natural killer (NK) cells may be implicated in antitumor immunoprotection. Conversely, tolerogenic DCs, alternatively activated macrophages (M2), myeloid-derived suppressor cells (MDSCs), and regulatory T (Tregs) and B cells (Bregs) are capable of suppressing antitumor immune responses. Anti-cancer vaccination is a useful strategy to elicit antitumor immune responses, while overcoming immunosuppressive mechanisms. Whole tumor cells or lysates derived thereof hold more promise as cancer vaccines than individual tumor-associated antigens (TAAs), because vaccinal cells can elicit immune responses to multiple TAAs. Cancer cell-based vaccines can be autologous, allogeneic or xenogeneic. Clinical use of xenogeneic vaccines is advantageous in that they can be most effective in breaking the preexisting immune tolerance to TAAs. To potentiate immunotherapy, vaccinations can be combined with other modalities that target different immune pathways. These modalities include 1) genetic or chemical modification of cell-based vaccines; 2) cross-priming TAAs to T cells by engaging dendritic cells; 3) T-cell adoptive therapy; 4) stimulation of cytotoxic inflammation by non-specific immunomodulators, toll-like receptor (TLR) agonists, cytokines, chemokines or hormones; 5) reduction of immunosuppression and/or stimulation of antitumor effector cells using antibodies, small molecules; and 6) various cytoreductive modalities. The authors envisage that combined immunotherapeutic strategies will allow for substantial improvements in clinical outcomes in the near future.
Collapse
Key Words
- ADCC, antibody-dependent cell cytotoxicity
- APC, antigen-presenting cell
- Ab, antibodies
- BCG, Bacillus Calmette-Guérin
- Breg, regulatory B cell
- CAR, chimeric antigen receptor
- COX, cyclooxygenase
- CTA, cancer/testis antigen
- CTL, cytotoxic T lymphocyte
- CTLA-4, cytotoxic T lymphocyte antigen-4
- DC, dendritic cell
- DTH, delayed-type hypersensitivity
- GITR, glucocorticoid-induced tumor necrosis factor receptor
- GM-CSF, granulocyte-macrophage colony stimulating factor
- HIFU, high-intensity focused ultrasound
- IDO, indoleamine-2, 3-dioxygenase
- IFN, interferon
- IL, interleukin
- LAK, lymphokine-activated killer
- M, macrophage
- M1, classically activated macrophage
- M2, alternatively activated macrophage, MDSC, myeloid-derived suppressor cell
- MHC, major histocompatibility complex
- NK, natural killer (cell)
- PD-1, programmed death-1
- PGE2, prostaglandin E2
- RFA, radiofrequency ablation
- RNS, reactive nitrogen species
- ROS
- TAA, tumor-associated antigen
- TGF, transforming growth factor
- TLR, toll-like receptor
- TNF, tumor necrosis factor
- Th, T-helper cell
- Treg, regulatory T cell
- VEGF, vascular endothelial growth factor
- antitumor immunoprotection
- cancer cell-based vaccines
- combined immunotherapy
- immunosuppression
- reactive oxygen species
Collapse
Affiliation(s)
- V I Seledtsov
- a lmmanuel Kant Baltic Federal University ; Kaliningrad , Russia
| | | | | |
Collapse
|
359
|
Ranjan K, Pathak C. Expression of cFLIPL Determines the Basal Interaction of Bcl-2 With Beclin-1 and Regulates p53 Dependent Ubiquitination of Beclin-1 During Autophagic Stress. J Cell Biochem 2016; 117:1757-68. [PMID: 26682748 DOI: 10.1002/jcb.25474] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 12/17/2015] [Indexed: 01/04/2023]
Abstract
Autophagy and apoptosis are two different physiological processes, which is required for the maintenance of cellular homeostasis. The apoptosis associated proteins such as Bcl-2 and p53 have a close association with autophagic proteins HMGB1 and Beclin-1 to modulate autophagic signaling. We demonstrate here the involvement of anti-apoptotic protein cFLIPL in the regulation of autophagy during cellular stress. We found that ectopic expression of cFLIPL decreases the sensitivity of HEK 293T cells against rapamycin and H2 O2 induced autophagic stress. Notably, the selective knockdown of cFLIPL augments autophagic stress in the cells accompanied with JNK1 activation and p53 dependent ubiquitination of Beclin-1. However, re-expression of cFLIPL in cFLIP knockdown cells restores autophagic equilibrium collectively with reversible effects on JNK1 and Beclin-1 integrity. The co-immunoprecipitation analysis suggests that cFLIPL is essential to maintain the canonical interaction of Bcl-2 with Beclin-1 to regulate autophagic stress and cell death. Altogether, our findings suggest that expression of cFLIPL regulates the basal interaction of Bcl-2 with Beclin-1 and substantiates p53 dependent ubiquitination of Beclin-1 during autophagic stress to determine the fate of cell death or survival. J. Cell. Biochem. 117: 1757-1768, 2016. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Kishu Ranjan
- Department of Cell Biology, School of Biological Sciences and Biotechnology, Indian Institute of Advanced Research, Koba Institutional Area, Gandhinagar, Gujarat, 382007, India
| | - Chandramani Pathak
- Department of Cell Biology, School of Biological Sciences and Biotechnology, Indian Institute of Advanced Research, Koba Institutional Area, Gandhinagar, Gujarat, 382007, India
| |
Collapse
|
360
|
Rah B, ur Rasool R, Nayak D, Yousuf SK, Mukherjee D, Kumar LD, Goswami A. PAWR-mediated suppression of BCL2 promotes switching of 3-azido withaferin A (3-AWA)-induced autophagy to apoptosis in prostate cancer cells. Autophagy 2016; 11:314-31. [PMID: 25803782 DOI: 10.1080/15548627.2015.1017182] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
An active medicinal component of plant origin with an ability to overcome autophagy by inducing apoptosis should be considered a therapeutically active lead pharmacophore to control malignancies. In this report, we studied the effect of concentration-dependent 3-AWA (3-azido withaferin A) sensitization to androgen-independent prostate cancer (CaP) cells which resulted in a distinct switching of 2 interrelated conserved biological processes, i.e. autophagy and apoptosis. We have observed 3 distinct parameters which are hallmarks of autophagy in our studies. First, a subtoxic concentration of 3-AWA resulted in an autophagic phenotype with an elevation of autophagy markers in prostate cancer cells. This led to a massive accumulation of MAP1LC3B and EGFP-LC3B puncta coupled with gradual degradation of SQSTM1. Second, higher toxic concentrations of 3-AWA stimulated ER stress in CaP cells to turn on apoptosis within 12 h by elevating the expression of the proapoptotic protein PAWR, which in turn suppressed the autophagy-related proteins BCL2 and BECN1. This inhibition of BECN1 in CaP cells, leading to the disruption of the BCL2-BECN1 interaction by overexpressed PAWR has not been reported so far. Third, we provide evidence that pawr-KO MEFs exhibited abundant autophagy signs even at toxic concentrations of 3-AWA underscoring the relevance of PAWR in switching of autophagy to apoptosis. Last but not least, overexpression of EGFP-LC3B and DS-Red-BECN1 revealed a delayed apoptosis turnover at a higher concentration of 3-AWA in CaP cells. In summary, this study provides evidence that 3-AWA is a strong anticancer candidate to abrogate protective autophagy. It also enhanced chemosensitivity by sensitizing prostate cancer cells to apoptosis through induction of PAWR endorsing its therapeutic potential.
Collapse
Key Words
- 3-AWA, 3-azido withaferin A
- 3-azido withaferin A
- AO, acridine orange
- ATG, autophagy-related
- AVOs, acidic vesicular organelles
- BAD, BCL2-associated agonist of cell death
- BAF A1, bafilomycin A1
- BCL2
- BCL2, B-cell CLL/lymphoma 2
- BECN1
- BECN1, Beclin 1, autophagy-related
- CASP3, caspase 3
- CASP9, caspase 9
- CQ, chloroquine
- CYCS, cytochrome c, somatic
- CaP, prostate cancer cells
- DAPI, 4’6-diamidino-2-phenylindole
- DCF, dichlorofluorescein
- DDIT3/CHOP, DNA-damage-inducible transcript 3
- EIF2AK3/PERK, eukaryotic initiation translation factor 2-α kinase 3
- ER, endoplasmic reticulum
- HSPA5/GRP78, heat shock 70kDa protein 5 (glucose-regulated protein, 78kDa)
- MAP1LC3B/LC3B, microtubule-associated protein 1 light chain 3 β
- MDC, monodansylcadaverine
- MEFs, mouse embryonic fibroblasts
- MMPψ, mitochondrial membrane potential
- MTOR, mechanistic target of rapamycin
- NAC, N-acetyl-L-cysteine
- PARP1, poly (ADP-ribose) polymerase 1
- PAWR
- PAWR/Par-4, PRKC, apoptosis, WT1, regulator
- PRKCZ/PKCζ, protein kinase C, zeta
- SQSTM1/p62, sequestosome 1
- WT1, Wilms tumor 1
- apoptosis
- autophagy
- myrAKT1, myristoylated v-akt murine thymoma viral oncogene homolog 1
Collapse
Affiliation(s)
- Bilal Rah
- a Academy of Scientific & Innovative Research (AcSIR) ; New Delhi , India
| | | | | | | | | | | | | |
Collapse
|
361
|
Autophagy-based survival prognosis in human colorectal carcinoma. Oncotarget 2016; 6:7084-103. [PMID: 25762626 PMCID: PMC4466671 DOI: 10.18632/oncotarget.3054] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 01/07/2015] [Indexed: 12/13/2022] Open
Abstract
The role of autophagy in cancers is controversial. Here we aim to determine the prognostic significance of autophagy in colorectal carcinoma patients, thereby allowing more rational development of therapeutic strategies. Through transmission electron microscopy, our data first demonstrated high frequency of defective mitochondria was strongly associated with poor overall survival in colorectal carcinoma. Next immunohistochemical study showed the expressions of Beclin 1, LC3B and Bcl-xL in both the center of tumor and adjacent noncancerous mucosal region were also correlated with overall survivals. We developed an autophagy signature for prognosis based on these three major autophagic proteins, further analysis suggested it was an independent prognostic biomarker and had its value even within single clinical stage. Combined TNM stage and this signature could significantly improve the accuracy of survival prognosis. To validate these immunohistochemical results, an internal testing cohort and an independent population were also included. Our findings suggest that autophagy plays an important role in the clinical cancer progression. Therefore autophagic proteins may be valuable prognostic biomarkers in the therapy of colorectal carcinoma and possibly other types of cancers.
Collapse
|
362
|
Nepal S, Kim MJ, Hong JT, Kim SH, Sohn DH, Lee SH, Song K, Choi DY, Lee ES, Park PH. Autophagy induction by leptin contributes to suppression of apoptosis in cancer cells and xenograft model: involvement of p53/FoxO3A axis. Oncotarget 2016; 6:7166-81. [PMID: 25704884 PMCID: PMC4466676 DOI: 10.18632/oncotarget.3347] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Accepted: 01/15/2015] [Indexed: 12/19/2022] Open
Abstract
Leptin, a hormone mainly produced from adipose tissue, has been shown to induce proliferation of cancer cells. However, the molecular mechanisms underlying leptin-induced tumor progression have not been clearly elucidated. In the present study, we investigated the role of autophagy in leptin-induced cancer cell proliferation using human hepatoma (HepG2) and breast cancer cells (MCF-7), and tumor growth in a xenograft model. Herein, we showed that leptin treatment caused autophagy induction as assessed by increase in expression of autophagy-related genes, including beclin-1, Atg5 and LC3 II, further induction of autophagosome formation and autophagic flux. Interestingly, inhibition of autophagic process by treatment with inhibitors and LC3B gene silencing blocked leptin-induced increase in cell number and suppression of apoptosis, indicating a crucial role of autophagy in leptin-induced tumor progression. Moreover, gene silencing of p53 or FoxO3A prevented leptin-induced LC3 II protein expression, suggesting an involvement of p53/FoxO3A axis in leptin-induced autophagy activation. Leptin administration also accelerated tumor growth in BALB/c nude mice, which was found to be autophagy dependent. Taken together, our results demonstrate that leptin-induced tumor growth is mediated by autophagy induction and autophagic process would be a promising target to regulate development of cancer caused by leptin production.
Collapse
Affiliation(s)
- Saroj Nepal
- College of Pharmacy, Yeungnam University, Gyeongsangbuk-do, Republic of Korea
| | - Mi Jin Kim
- College of Pharmacy, Yeungnam University, Gyeongsangbuk-do, Republic of Korea
| | - Jin Tae Hong
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Sang Hyun Kim
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Dong-Hwan Sohn
- Institute of Pharmaceutical Research and Development, College of Pharmacy, Wonkwang University, Iksan, Jeonbuk, Republic of Korea
| | - Sung Hee Lee
- Institute of Pharmaceutical Research and Development, College of Pharmacy, Wonkwang University, Iksan, Jeonbuk, Republic of Korea
| | - Kyung Song
- Institute of Pharmaceutical Research and Development, College of Pharmacy, Wonkwang University, Iksan, Jeonbuk, Republic of Korea
| | - Dong Young Choi
- College of Pharmacy, Yeungnam University, Gyeongsangbuk-do, Republic of Korea
| | - Eung Seok Lee
- College of Pharmacy, Yeungnam University, Gyeongsangbuk-do, Republic of Korea
| | - Pil-Hoon Park
- College of Pharmacy, Yeungnam University, Gyeongsangbuk-do, Republic of Korea
| |
Collapse
|
363
|
Huang YN, Yang LY, Wang JY, Lai CC, Chiu CT, Wang JY. L-Ascorbate Protects Against Methamphetamine-Induced Neurotoxicity of Cortical Cells via Inhibiting Oxidative Stress, Autophagy, and Apoptosis. Mol Neurobiol 2016; 54:125-136. [PMID: 26732595 DOI: 10.1007/s12035-015-9561-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 11/29/2015] [Indexed: 12/19/2022]
Abstract
Methamphetamine (METH)-induced cell death contributes to the pathogenesis of neurotoxicity; however, the relative roles of oxidative stress, apoptosis, and autophagy remain unclear. L-Ascorbate, also called vitamin (Vit.) C, confers partial protection against METH neurotoxicity via induction of heme oxygenase-1. We further investigated the role of Vit. C in METH-induced oxidative stress, apoptosis, and autophagy in cortical cells. Exposure to lower concentrations (0.1, 0.5, 1 mM) of METH had insignificant effects on ROS production, whereas cells exposed to 5 mM METH exhibited ROS production in a time-dependent manner. We confirmed METH-induced apoptosis (by nuclear morphology revealed by Hoechst 33258 staining and Western blot showing the protein levels of pro-caspase 3 and cleaved caspase 3) and autophagy (by Western blot showing the protein levels of Belin-1 and conversion of microtubule-associated light chain (LC)3-I to LC3-II and autophagosome staining by monodansylcadaverine). The apoptosis as revealed by cleaved caspase-3 expression marked an increase at 18 h after METH exposure while both autophagic markers, Beclin 1 and LC3-II, marked an increase in cells exposed to METH for 6 and 24 h, respectively. Treating cells with Vit. C 30 min before METH exposure time-dependently attenuated the production of ROS. Vitamin C also attenuated METH-induced Beclin 1 and LC3-II expression and METH toxicity. Treatment of cells with Vit. C before METH exposure attenuated the expression of cleaved caspase-3 and reduced the number of METH-induced apoptotic cells. We suggest that the protective effect of Vit. C against METH toxicity might be through attenuation of ROS production, autophagy, and apoptosis.
Collapse
Affiliation(s)
- Ya-Ni Huang
- Department of Nursing, Hsin Sheng Junior College of Medical Care and Management, Taoyuan, Taiwan
| | - Ling-Yu Yang
- Graduate Institute of Medical Sciences and Department of Physiology, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei, 110, Taiwan
| | - Jing-Ya Wang
- Graduate Institute of Medical Sciences and Department of Physiology, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei, 110, Taiwan
| | - Chien-Cheng Lai
- Division of Orthopedics, Department of Surgery, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Chien-Tsai Chiu
- Department of Neurosurgery, En Chu Kong Hospital, New Taipei City, Taiwan
| | - Jia-Yi Wang
- Graduate Institute of Medical Sciences and Department of Physiology, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei, 110, Taiwan. .,Comprehensive Cancer Center, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
364
|
Palmisano NJ, Meléndez A. Detection of Autophagy in Caenorhabditis elegans Using GFP::LGG-1 as an Autophagy Marker. Cold Spring Harb Protoc 2016; 2016:pdb.prot086496. [PMID: 26729905 PMCID: PMC5292878 DOI: 10.1101/pdb.prot086496] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
In yeast and mammalian cells, the autophagy protein Atg8/LC3 (microtubule-associated proteins 1A/1B light chain 3B encoded by MAP1LC3B) has been the marker of choice to detect double-membraned autophagosomes that are produced during the process of autophagy. A lipid-conjugated form of Atg8/LC3B is localized to the inner and outer membrane of the early-forming structure known as the phagophore. During maturation of autophagosomes, Atg8/LC3 bound to the inner autophagosome membrane remains in situ as the autophagosomes fuse with lysosomes. The nematode Caenorhabditis elegans is thought to conduct a similar process, meaning that tagging the nematode ortholog of Atg8/LC3-known as LGG-1-with a fluorophore has become a widely accepted method to visualize autophagosomes. Under normal growth conditions, GFP-modified LGG-1 displays a diffuse expression pattern throughout a variety of tissues, whereas, when under conditions that induce autophagy, the GFP::LGG-1 tag labels positive punctate structures, and its overall level of expression increases. Here, we present a protocol for using fluorescent reporters of LGG-1 coupled to GFP to monitor autophagosomes in vivo. We also discuss the use of alternative fluorescent markers and the possible utility of the LGG-1 paralog LGG-2.
Collapse
Affiliation(s)
- Nicholas J. Palmisano
- Queens College-CUNY, Department of Biology, Flushing, NY, USA
- The Graduate Center, The City University of New York, New York, USA
| | - Alicia Meléndez
- Queens College-CUNY, Department of Biology, Flushing, NY, USA
- The Graduate Center, The City University of New York, New York, USA
| |
Collapse
|
365
|
Zhou Y, Rucker EB, Zhou BP. Autophagy regulation in the development and treatment of breast cancer. Acta Biochim Biophys Sin (Shanghai) 2016; 48:60-74. [PMID: 26637829 DOI: 10.1093/abbs/gmv119] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 10/21/2015] [Indexed: 12/14/2022] Open
Abstract
Autophagy is a major catabolic process in which intracellular membrane structures, protein complexes, and lysosomes are formed as lysoautophagosome to degrade and renew cytoplasmic components. Autophagy is physiologically a strategy and mechanism for cellular homeostasis as well as adaptation to stress, and thus alterations in the autophagy machinery may lead to diverse pathological conditions. The role of autophagy in cancer is complex, and the current literature reflects this as a 'double-edged sword'. Autophagy shows promise as a novel therapeutic target in various types of breast cancer, inhibiting or increasing treatment efficacy in a context- and cell-type-dependent manner. This review aims to summarize the recent advances in the understanding of the mechanisms by which key modulators of autophagy participate in cancer metastasis, highlight different autophagy-deficient murine models for breast cancer study, and provide further impetus for the modulation of autophagy in anticancer therapy.
Collapse
Affiliation(s)
- Yuting Zhou
- Department of Molecular and Cellular Biochemistry, University of Kentucky School of Medicine, Lexington, KY 40506, USA Department of Markey Cancer Center, University of Kentucky School of Medicine, Lexington, KY 40506, USA
| | - Edmund B Rucker
- Department of Biology, University of Kentucky College of Arts and Sciences, Lexington, KY 40506, USA Department of Markey Cancer Center, University of Kentucky School of Medicine, Lexington, KY 40506, USA
| | - Binhua P Zhou
- Department of Molecular and Cellular Biochemistry, University of Kentucky School of Medicine, Lexington, KY 40506, USA Department of Markey Cancer Center, University of Kentucky School of Medicine, Lexington, KY 40506, USA
| |
Collapse
|
366
|
Lee EF, Perugini MA, Pettikiriarachchi A, Evangelista M, Keizer DW, Yao S, Fairlie WD. The BECN1 N-terminal domain is intrinsically disordered. Autophagy 2016; 12:460-71. [PMID: 27046249 PMCID: PMC4836020 DOI: 10.1080/15548627.2016.1140292] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 12/16/2015] [Accepted: 01/04/2016] [Indexed: 10/22/2022] Open
Abstract
BECN1/Beclin 1 has a critical role in the early stages of autophagosome formation. Recently, structures of its central and C-terminal domains were reported, however, little structural information is available on the N-terminal domain, comprising a third of the protein. This lack of structural information largely stems from the inability to produce this region in a purified form. Here, we describe the expression and purification of the N-terminal domain of BECN1 (residues 1 to 150) and detailed biophysical characterization, including NMR spectroscopy. Combined, our studies demonstrated at the atomic level that the BECN1 N-terminal domain is intrinsically disordered, and apart from the BH3 subdomain, remains disordered following interaction with a binding partner, BCL2L1/BCL-XL. In addition, the BH3 domain α-helix induced upon interaction with BCL2L1 reverts to a disordered state when the complex is dissociated by exposure to a competitive inhibitor. No significant interactions between N- and C-terminal domains were detected.
Collapse
Affiliation(s)
- Erinna F. Lee
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
- Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, Victoria, Australia
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, Melbourne, Victoria, Australia
| | - Matthew A. Perugini
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | | | - Marco Evangelista
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria, Australia
| | - David W. Keizer
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Shenggen Yao
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - W. Douglas Fairlie
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
- Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, Victoria, Australia
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, Melbourne, Victoria, Australia
| |
Collapse
|
367
|
Li X, Zhang L, Yu L, Wei W, Lin X, Hou X, Tian Y. shRNA-mediated AMBRA1 knockdown reduces the cisplatin-induced autophagy and sensitizes ovarian cancer cells to cisplatin. J Toxicol Sci 2016; 41:45-53. [DOI: 10.2131/jts.41.45] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Xiaoyan Li
- Department of Gynaecology and Obstetrics, Shandong Provincial Hospital Affiliated to Shandong University
- Department of Gynaecology and Obstetrics, Yantai Yuhuangding Hospital of Qingdao University
| | - Lijuan Zhang
- Department of Gynaecology and Obstetrics, Yantai Yuhuangding Hospital of Qingdao University
| | - Lili Yu
- Department of Gynaecology and Obstetrics, Yantai Yuhuangding Hospital of Qingdao University
| | - Wei Wei
- Department of Gynaecology and Obstetrics, Shandong Provincial Hospital Affiliated to Shandong University
| | - Xueyan Lin
- Department of Gynaecology and Obstetrics, Shandong Provincial Hospital Affiliated to Shandong University
| | - Xiaoman Hou
- Department of Gynaecology and Obstetrics, Shandong Provincial Hospital Affiliated to Shandong University
| | - Yongjie Tian
- Department of Gynaecology and Obstetrics, Shandong Provincial Hospital Affiliated to Shandong University
| |
Collapse
|
368
|
Korsnes MS, Kolstad H, Kleiveland CR, Korsnes R, Ørmen E. Autophagic activity in BC3H1 cells exposed to yessotoxin. Toxicol In Vitro 2015; 32:166-80. [PMID: 26743762 DOI: 10.1016/j.tiv.2015.12.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 12/01/2015] [Accepted: 12/15/2015] [Indexed: 02/09/2023]
Abstract
The marine toxin yessotoxin (YTX) can induce programmed cell death through both caspase-dependent and -independent pathways in various cellular systems. It appears to stimulate different forms of cellular stress causing instability among cell death mechanisms and making them overlap and cross-talk. Autophagy is one of the key pathways that can be stimulated by multiple forms of cellular stress which may determine cell survival or death. The present work evaluates a plausible link between ribotoxic stress and autophagic activity in BC3H1 cells treated with YTX. Such treatment produces massive cytoplasmic compartments as well as double-membrane vesicles termed autophagosomes which are typically observed in cells undergoing autophagy. The observed autophagosomes contain a large amount of ribosomes associated with the endoplasmic reticulum (ER). Western blotting analysis of Atg proteins and detection of the autophagic markers LC3-II and SQSTM1/p62 by flow cytometry and immunofluorescence verified autophagic activity during YTX-treatment. The present work supports the idea that autophagic activity upon YTX exposure may represent a response to ribotoxic stress.
Collapse
Affiliation(s)
- Mónica Suárez Korsnes
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU) - Campus Ås, P.O. Box 5003, NO-1432 Ås, Norway.
| | - Hilde Kolstad
- Imaging Centre, Norwegian University of Life Sciences (NMBU) - Campus Ås, P.O. Box 5003, NO-1432 Ås, Norway
| | - Charlotte Ramstad Kleiveland
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU) - Campus Ås, P.O. Box 5003, NO-1432 Ås, Norway; Smerud Medical Research, Oslo, Norway
| | - Reinert Korsnes
- Norwegian Institute of Bioeconomy Research (NIBIO), Ås, Norway; Norwegian Defense Research Establishment (FFI), Kjeller, Norway
| | - Elin Ørmen
- Imaging Centre, Norwegian University of Life Sciences (NMBU) - Campus Ås, P.O. Box 5003, NO-1432 Ås, Norway
| |
Collapse
|
369
|
Costa L, Amaral C, Teixeira N, Correia-da-Silva G, Fonseca BM. Cannabinoid-induced autophagy: Protective or death role? Prostaglandins Other Lipid Mediat 2015; 122:54-63. [PMID: 26732541 DOI: 10.1016/j.prostaglandins.2015.12.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 12/07/2015] [Accepted: 12/21/2015] [Indexed: 12/11/2022]
Abstract
Autophagy, the "self-digestion" mechanism of the cells, is an evolutionary conserved catabolic process that targets portions of cytoplasm, damaged organelles and proteins for lysosomal degradation, which plays a crucial role in development and disease. Cannabinoids are active compounds of Cannabis sativa and the most prevalent psychoactive substance is Δ(9)-tetrahydrocannabinol (THC). Cannabinoid compounds can be divided in three types: the plant-derived natural products (phytocannabinoids), the cannabinoids produced endogenously (endocannabinoids) and the synthesized compounds (synthetic cannabinoids). Various studies reported a cannabinoid-induced autophagy mechanism in cancer and non-cancer cells. In this review we focus on the recent advances in the cannabinoid-induced autophagy and highlight the molecular mechanisms involved in these processes.
Collapse
Affiliation(s)
- Lia Costa
- Departamento de Biologia, Universidade de Aveiro, Portugal; UCIBIO, REQUIMTE, Laboratório de Bioquímica, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Portugal
| | - Cristina Amaral
- UCIBIO, REQUIMTE, Laboratório de Bioquímica, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Portugal
| | - Natércia Teixeira
- UCIBIO, REQUIMTE, Laboratório de Bioquímica, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Portugal
| | - Georgina Correia-da-Silva
- UCIBIO, REQUIMTE, Laboratório de Bioquímica, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Portugal
| | - Bruno M Fonseca
- UCIBIO, REQUIMTE, Laboratório de Bioquímica, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Portugal.
| |
Collapse
|
370
|
Zhou A, Li S, Khan FA, Zhang S. Autophagy postpones apoptotic cell death in PRRSV infection through Bad-Beclin1 interaction. Virulence 2015; 7:98-109. [PMID: 26670824 DOI: 10.1080/21505594.2015.1131381] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Autophagy and apoptosis play significant roles in PRRSV infection and replication. However, the interaction between these 2 processes in PRRSV replication is still far from been completely understood. In our studies, the exposure of MARC-145 cells to PRRSV confirmed the activation of autophagy and subsequent induction of apoptosis. The inhibition of autophagy by 3-methyladenine (3-MA) caused a significant increase in PRRSV-induced apoptosis, showing a potential connection between both mechanisms. Moreover, we observed an increase in Bad expression (a pro-apoptotic protein) and Beclin1 (an autophagy regulator) in virus-infected cells up to 36h. Co-immunoprecipitation assays showed the formation of Bad and Beclin1 complex in PRRSV infected cells. Accordingly, Bad co-localized with Beclin1 in MARC-145 infected cells. Knockdown of Beclin1 significantly decreased PRRSV replication and PRRSV-induced autophagy, while Bad silencing resulted in increased autophagy and enhanced viral replication. Furthermore, PRRSV infection phosphorylated Bad (Ser112) to promote cellular survival. These results demonstrate that autophagy can favor PRRSV replication by postponing apoptosis through the formation of a Bad-Beclin1 complex.
Collapse
Affiliation(s)
- Ao Zhou
- a Key Lab of Agricultural Animal Genetics; Breeding and Reproduction of Ministry of Education; Huazhong Agricultural University ; Wuhan , China
| | - Shuaifeng Li
- a Key Lab of Agricultural Animal Genetics; Breeding and Reproduction of Ministry of Education; Huazhong Agricultural University ; Wuhan , China
| | - Faheem Ahmed Khan
- a Key Lab of Agricultural Animal Genetics; Breeding and Reproduction of Ministry of Education; Huazhong Agricultural University ; Wuhan , China
| | - Shujun Zhang
- a Key Lab of Agricultural Animal Genetics; Breeding and Reproduction of Ministry of Education; Huazhong Agricultural University ; Wuhan , China
| |
Collapse
|
371
|
Wesselborg S, Stork B. Autophagy signal transduction by ATG proteins: from hierarchies to networks. Cell Mol Life Sci 2015; 72:4721-57. [PMID: 26390974 PMCID: PMC4648967 DOI: 10.1007/s00018-015-2034-8] [Citation(s) in RCA: 179] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 08/13/2015] [Accepted: 08/31/2015] [Indexed: 02/07/2023]
Abstract
Autophagy represents an intracellular degradation process which is involved in both cellular homeostasis and disease settings. In the last two decades, the molecular machinery governing this process has been characterized in detail. To date, several key factors regulating this intracellular degradation process have been identified. The so-called autophagy-related (ATG) genes and proteins are central to this process. However, several additional molecules contribute to the outcome of an autophagic response. Several review articles describing the molecular process of autophagy have been published in the recent past. In this review article we would like to add the most recent findings to this knowledge, and to give an overview of the network character of the autophagy signaling machinery.
Collapse
Affiliation(s)
- Sebastian Wesselborg
- Institute of Molecular Medicine I, Heinrich-Heine-University, Universitätsstr. 1, Building 23.12, 40225, Düsseldorf, Germany
| | - Björn Stork
- Institute of Molecular Medicine I, Heinrich-Heine-University, Universitätsstr. 1, Building 23.12, 40225, Düsseldorf, Germany.
| |
Collapse
|
372
|
Abstract
In multicellular organisms, cell death is a critical and active process that maintains tissue homeostasis and eliminates potentially harmful cells. There are three major types of morphologically distinct cell death: apoptosis (type I cell death), autophagic cell death (type II), and necrosis (type III). All three can be executed through distinct, and sometimes overlapping, signaling pathways that are engaged in response to specific stimuli. Apoptosis is triggered when cell-surface death receptors such as Fas are bound by their ligands (the extrinsic pathway) or when Bcl2-family proapoptotic proteins cause the permeabilization of the mitochondrial outer membrane (the intrinsic pathway). Both pathways converge on the activation of the caspase protease family, which is ultimately responsible for the dismantling of the cell. Autophagy defines a catabolic process in which parts of the cytosol and specific organelles are engulfed by a double-membrane structure, known as the autophagosome, and eventually degraded. Autophagy is mostly a survival mechanism; nevertheless, there are a few examples of autophagic cell death in which components of the autophagic signaling pathway actively promote cell death. Necrotic cell death is characterized by the rapid loss of plasma membrane integrity. This form of cell death can result from active signaling pathways, the best characterized of which is dependent on the activity of the protein kinase RIP3.
Collapse
Affiliation(s)
- Douglas R Green
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105
| | - Fabien Llambi
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105
| |
Collapse
|
373
|
PATLOLLA JAGANM, KOPELOVICH LEVY, QIAN LI, ZHANG YUTING, KUMAR GAURAV, MADKA VENKATESHWAR, MOHAMMED ALTAF, BIDDICK LAURA, SADEGHI MICHAEL, LIGHTFOOT STAN, RAO CHINTHALAPALLYV. Early and delayed intervention with rapamycin prevents NNK-induced lung adenocarcinoma in A/J mice. Oncol Rep 2015; 34:2925-34. [PMID: 26397133 PMCID: PMC4735698 DOI: 10.3892/or.2015.4277] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 07/09/2015] [Indexed: 12/18/2022] Open
Abstract
In tobacco-associated lung cancers, the protein kinase B/mammalian target of rapamycin (Akt/mTOR) pathway frequently is activated by nicotine and its metabolite 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK). The aim of the present study was to examine the effects of early or late intervention with rapamycin in NNK-induced lung adenoma and progression to adenocarcinoma in female A/J mice. At 7 weeks of age, 40 mice/each carcinogen group received one dose of 10 μmol NNK i.p. Three weeks later, the early intervention groups (25/group) were fed diets containing 0, 8 or 16 ppm rapamycin. The mice were sacrificed after 17 or 34 weeks of drug exposure and tumors were evaluated via histopathology. For late intervention (late adenoma and adenocarcinoma stage), groups of 15 mice were administered diets containing 8 or 16 ppm rapamycin starting 20 weeks after NNK treatment and continuing for 17 weeks before evaluation of tumor progression. Administration of 8 or 16 ppm rapamycin as an early or a late stage intervention significantly suppressed lung adenoma and adenocarcinoma formation (p<0.01-0.0001) after 17 or 34 weeks of exposure. The effect was more pronounced (>50‑60% tumor inihibition; p<0.0001) at the early intervention and the size of NNK-induced tumors decreased from >2.10 to <~0.75 mm3 (p=0.0056). Lung tumors harvested from mice exposed to rapamycin showed a significant decrease in p-mTOR, p-S6K1, PCNA and Bcl-xL as compared with controls in the early and late stage intervention studies. These observations suggest that rapamycin is highly effective even with administration after dysplastic adenoma or early adenocarcinoma stages and is useful for high-risk lung cancer patients.
Collapse
Affiliation(s)
- JAGAN M.R. PATLOLLA
- Center for Chemoprevention and Cancer Drug Development, Department of Medicine, Hem-Onc Section, PCS Oklahoma Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - LEVY KOPELOVICH
- Chemopreventive Agent Development Research Group, Division of Cancer Prevention, National Cancer Institute, Bethesda, MD 20892-9788, USA
| | - LI QIAN
- Center for Chemoprevention and Cancer Drug Development, Department of Medicine, Hem-Onc Section, PCS Oklahoma Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - YUTING ZHANG
- Center for Chemoprevention and Cancer Drug Development, Department of Medicine, Hem-Onc Section, PCS Oklahoma Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - GAURAV KUMAR
- Center for Chemoprevention and Cancer Drug Development, Department of Medicine, Hem-Onc Section, PCS Oklahoma Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - VENKATESHWAR MADKA
- Center for Chemoprevention and Cancer Drug Development, Department of Medicine, Hem-Onc Section, PCS Oklahoma Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - ALTAF MOHAMMED
- Center for Chemoprevention and Cancer Drug Development, Department of Medicine, Hem-Onc Section, PCS Oklahoma Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - LAURA BIDDICK
- Center for Chemoprevention and Cancer Drug Development, Department of Medicine, Hem-Onc Section, PCS Oklahoma Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - MICHAEL SADEGHI
- Center for Chemoprevention and Cancer Drug Development, Department of Medicine, Hem-Onc Section, PCS Oklahoma Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - STAN LIGHTFOOT
- Center for Chemoprevention and Cancer Drug Development, Department of Medicine, Hem-Onc Section, PCS Oklahoma Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - CHINTHALAPALLY V. RAO
- Center for Chemoprevention and Cancer Drug Development, Department of Medicine, Hem-Onc Section, PCS Oklahoma Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
374
|
Kumar R, Sahu SK, Kumar M, Jana K, Gupta P, Gupta UD, Kundu M, Basu J. MicroRNA 17-5p regulates autophagy in Mycobacterium tuberculosis-infected macrophages by targeting Mcl-1 and STAT3. Cell Microbiol 2015; 18:679-91. [PMID: 26513648 DOI: 10.1111/cmi.12540] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Revised: 10/23/2015] [Accepted: 10/23/2015] [Indexed: 12/30/2022]
Abstract
Autophagy plays a crucial role in the control of bacterial burden during Mycobacterium tuberculosis infection. MicroRNAs (miRNAs) are small non-coding RNAs that regulate immune signalling and inflammation in response to challenge by pathogens. Appreciating the potential of host-directed therapies designed to control autophagy during mycobacterial infection, we focused on the role of miRNAs in regulating M. tuberculosis-induced autophagy in macrophages. Here, we demonstrate that M. tuberculosis infection leads to downregulation of miR-17 and concomitant upregulation of its targets Mcl-1 and STAT3, a transcriptional activator of Mcl-1. Forced expression of miR-17 reduces expression of Mcl-1 and STAT3 and also the interaction between Mcl-1 and Beclin-1. This is directly linked to enhanced autophagy, because Mcl-1 overexpression attenuates the effects of miR-17. At the same time, transfection with a kinase-inactive mutant of protein kinase C δ (PKCδ) (an activator of STAT3) augments M. tuberculosis-induced autophagy, and miR-17 overexpression diminishes phosphorylation of PKCδ, suggesting that an miR-17/PKC δ/STAT3 axis regulates autophagy during M. tuberculosis infection.
Collapse
Affiliation(s)
- Ranjeet Kumar
- Department of Chemistry, Bose Institute, Kolkata, 700009, India
| | | | - Manish Kumar
- Department of Chemistry, Bose Institute, Kolkata, 700009, India
| | - Kuladip Jana
- Division of Molecular Medicine, Bose Institute, Kolkata, 700054, India
| | - Pushpa Gupta
- National Jalma Institute for Leprosy and Other Mycobacterial Diseases, Tajganj, Agra, 282006, India
| | - Umesh D Gupta
- National Jalma Institute for Leprosy and Other Mycobacterial Diseases, Tajganj, Agra, 282006, India
| | | | - Joyoti Basu
- Department of Chemistry, Bose Institute, Kolkata, 700009, India
| |
Collapse
|
375
|
Lost in translation: miRNAs and mRNAs in ischemic preconditioning and ischemia/reperfusion injury. J Mol Cell Cardiol 2015; 95:70-7. [PMID: 26582464 DOI: 10.1016/j.yjmcc.2015.11.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 10/28/2015] [Accepted: 11/09/2015] [Indexed: 12/20/2022]
Abstract
Ischemic stress involves nutrient deprivation, hypoxia, acidosis, and altered levels of various ions and metabolites. Reperfusion, which abruptly alters these parameters, is a second stress to already stressed cells. Ischemic preconditioning, in which brief ischemia alternates with reperfusion to elicit a protective response to ischemia/reperfusion (I/R) injury, revealed the existence of a highly conserved, cell-autonomous, and nearly ubiquitous program. While we often assume that evolutionary selection is irrelevant with respect to myocardial infarctions-which generally occur long after reproduction-the program of ischemia tolerance may date back much further, to hibernating squirrels, turtles, and estivating frogs and snails (extremophiles), which must survive by entering a hypometabolic state. This relationship is further strengthened by the presence of similar signaling pathways and regulatory mechanisms such as mRNA localization and miRNA regulation. These parallels may offer new insights into the myocardial response to I/R injury. This review will explore some of the recent advances in our understanding of autophagy and mitochondrial turnover in the setting of I/R injury, and related findings drawn from research on hibernating extremophiles.
Collapse
|
376
|
Maejima Y, Isobe M, Sadoshima J. Regulation of autophagy by Beclin 1 in the heart. J Mol Cell Cardiol 2015; 95:19-25. [PMID: 26546165 DOI: 10.1016/j.yjmcc.2015.10.032] [Citation(s) in RCA: 191] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 10/19/2015] [Accepted: 10/29/2015] [Indexed: 12/12/2022]
Abstract
Dysregulation of autophagy in cardiomyocytes is implicated in various heart disease conditions. Beclin 1, a mammalian ortholog of yeast Atg6 and a core component of the autophagy machinery, plays a central role in the regulation of autophagy through activation of Vps34. Beclin 1's ability to activate Vps34 is tightly regulated via transcriptional regulation, miRNA, post-translational modification, and interaction with Beclin 1 binding proteins. Of these mechanisms, binding of Beclin 1 with Bcl-2 family proteins (Bcl-2/XL) that negatively regulate autophagy activity has been shown to be both positively and negatively regulated by various kinases, including DAPK, ROCK1, Mst1 and JNK1, in response to external stimuli. Beclin 1's interaction with Bcl-2/XL also secondarily affects apoptosis through regulation of pro-apoptotic BH3 domain containing proteins. Thus, modulation of Beclin 1 significantly influences both autophagy and apoptosis, thereby deeply affecting the survival and death of cardiomyocytes in the heart. In this review, we discuss the signaling mechanism of autophagy modulation through Beclin 1 and therapeutic potential of Beclin 1 in heart diseases.
Collapse
Affiliation(s)
- Yasuhiro Maejima
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers-New Jersey Medical School, Newark, NJ, USA; Department of Cardiovascular Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Mitsuaki Isobe
- Department of Cardiovascular Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Junichi Sadoshima
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers-New Jersey Medical School, Newark, NJ, USA.
| |
Collapse
|
377
|
Morris DH, Yip CK, Shi Y, Chait BT, Wang QJ. BECLIN 1-VPS34 COMPLEX ARCHITECTURE: UNDERSTANDING THE NUTS AND BOLTS OF THERAPEUTIC TARGETS. ACTA ACUST UNITED AC 2015; 10:398-426. [PMID: 26692106 DOI: 10.1007/s11515-015-1374-y] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Autophagy is an important lysosomal degradation pathway that aids in the maintenance of cellular homeostasis by breaking down and recycling intracellular contents. Dysregulation of autophagy is linked to a growing number of human diseases. The Beclin 1-Vps34 protein-protein interaction network is critical for autophagy regulation and is therefore essential to cellular integrity. Manipulation of autophagy, in particular via modulation of the action of the Beclin 1-Vps34 complexes, is considered a promising route to combat autophagy-related diseases. Here we summarize recent findings on the core components and structural architecture of the Beclin 1-Vps34 complexes, and how these findings provide valuable insights into the molecular mechanisms that underlie the multiple functions of these complexes and for devising therapeutic strategies.
Collapse
Affiliation(s)
- Deanna H Morris
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40536
| | - Calvin K Yip
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC, Canada V6T1Z3
| | - Yi Shi
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, NY 10065
| | - Brian T Chait
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, NY 10065
| | - Qing Jun Wang
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40536 ; Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40536, USA ; Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
| |
Collapse
|
378
|
Jin Y, Lei J, Lin Y, Gao GY, Jiang JY. Autophagy Inhibitor 3-MA Weakens Neuroprotective Effects of Posttraumatic Brain Injury Moderate Hypothermia. World Neurosurg 2015; 88:433-446. [PMID: 26547006 DOI: 10.1016/j.wneu.2015.10.055] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 10/08/2015] [Accepted: 10/08/2015] [Indexed: 01/29/2023]
Abstract
OBJECTIVE The role of autophagy in moderate hypothermia in posttraumatic brain injury (post-TBI) remains elusive. In this study, we evaluated the protective role of autophagy in post-TBI moderate hypothermia. METHODS Adult male Sprague-Dawley rats were randomly divided into 3 groups (n = 36/group): TBI with hypothermia group (sham), TBI with hypothermia and a single intracerebroventricular injection of saline (saline, 5 μL), and TBI with hypothermia and a single intracerebroventricular injection of 3-methyladenine (600 nmol, diluted in 0.9% saline to a final volume of 5 μL). All rats, except those in the behavioral tests, were killed at 24 hours after fluid percussion TBI. Immunohistochemistry staining, western blot, and transmission electron microscopy were performed to assess changes in apoptosis and autophagy after injection of 3-methyladenine. Motor function (beam-walk test) and spatial learning/memory (Morris water maze) were assessed on postoperative days 1-5 and 11-15, respectively. RESULTS Our results showed downregulation of the expression level of microtubule-associated protein 1 light chain 3 and Beclin-1, aggravation of behavioral outcome, and increase of apoptosis. CONCLUSION Our results suggest that the autophagy pathway is involved in the neuroprotective effect of post-TBI hypothermia and negative modulation of apoptosis may be 1 possible mechanism.
Collapse
Affiliation(s)
- Yichao Jin
- Department of Neurosurgery, Renji Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, People's Republic of China
| | - Jin Lei
- Department of Neurosurgery, Renji Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, People's Republic of China
| | - Yingying Lin
- Department of Neurosurgery, Renji Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, People's Republic of China
| | - Guo-Yi Gao
- Department of Neurosurgery, Renji Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, People's Republic of China
| | - Ji-Yao Jiang
- Department of Neurosurgery, Renji Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, People's Republic of China.
| |
Collapse
|
379
|
Chondrocyte Apoptosis in the Pathogenesis of Osteoarthritis. Int J Mol Sci 2015; 16:26035-54. [PMID: 26528972 PMCID: PMC4661802 DOI: 10.3390/ijms161125943] [Citation(s) in RCA: 638] [Impact Index Per Article: 63.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Revised: 10/03/2015] [Accepted: 10/21/2015] [Indexed: 11/16/2022] Open
Abstract
Apoptosis is a highly-regulated, active process of cell death involved in development, homeostasis and aging. Dysregulation of apoptosis leads to pathological states, such as cancer, developmental anomalies and degenerative diseases. Osteoarthritis (OA), the most common chronic joint disease in the elderly population, is characterized by progressive destruction of articular cartilage, resulting in significant disability. Because articular cartilage depends solely on its resident cells, the chondrocytes, for the maintenance of extracellular matrix, the compromising of chondrocyte function and survival would lead to the failure of the articular cartilage. The role of subchondral bone in the maintenance of proper cartilage matrix has been suggested as well, and it has been proposed that both articular cartilage and subchondral bone interact with each other in the maintenance of articular integrity and physiology. Some investigators include both articular cartilage and subchondral bone as targets for repairing joint degeneration. In late-stage OA, the cartilage becomes hypocellular, often accompanied by lacunar emptying, which has been considered as evidence that chondrocyte death is a central feature in OA progression. Apoptosis clearly occurs in osteoarthritic cartilage; however, the relative contribution of chondrocyte apoptosis in the pathogenesis of OA is difficult to evaluate, and contradictory reports exist on the rate of apoptotic chondrocytes in osteoarthritic cartilage. It is not clear whether chondrocyte apoptosis is the inducer of cartilage degeneration or a byproduct of cartilage destruction. Chondrocyte death and matrix loss may form a vicious cycle, with the progression of one aggravating the other, and the literature reveals that there is a definite correlation between the degree of cartilage damage and chondrocyte apoptosis. Because current treatments for OA act only on symptoms and do not prevent or cure OA, chondrocyte apoptosis would be a valid target to modulate cartilage degeneration.
Collapse
|
380
|
Yang J, Yao S. JNK-Bcl-2/Bcl-xL-Bax/Bak Pathway Mediates the Crosstalk between Matrine-Induced Autophagy and Apoptosis via Interplay with Beclin 1. Int J Mol Sci 2015; 16:25744-25758. [PMID: 26516844 PMCID: PMC4632824 DOI: 10.3390/ijms161025744] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 10/12/2015] [Accepted: 10/12/2015] [Indexed: 02/05/2023] Open
Abstract
Autophagy is associated with drug resistance which has been a threat in chemotherapy of hepatocellular carcinoma (HCC). The interconnected molecular regulators between autophagy and apoptosis serve as switching points critical to the ultimate outcome of the cell. Our study was performed to investigate the crosstalk between autophagy and apoptosis in HCC after the treatment of matrine. Flow cytometry and TUNEL (terminal dexynucleotidyl transferase (TdT)-mediated dUTP nick end labeling) assay were used to detect apoptosis in vitro and in vivo, respectively. Bax oligomerization and Cytochrome c release assay were performed. Immunoprecipitation and siRNA transfection were used to detect the interplay between Bcl-2/Bcl-xL,Bax, and Beclin 1. Our results showed that: (1) matrine not only activated caspase and PARP (poly ADP-ribose polymerase) cleavage, but also triggered autophagy as shown by the increased levels of LC3II, Beclin 1, and PI3KC3, and the decreased level of p62; (2) matrine treatment promoted the JNK-Bcl-2/ Bcl-xL-Bax/Bak pathway; (3) Bax was oligomerized, the mitochondrial membrane potential altered, and Cytochrome c was released subsequently; (4) Bax interacts with Beclin 1 and inhibits autophagy, which may be a new crosstalk point; and (5) finally, we showed that matrine suppressed the growth of a MHCC97L xenograft in vivo for the first time. In conclusion, the JNK-Bcl-2/Bcl-xL-Bax/Bak pathway mediates the crosstalk between matrine-induced autophagy and apoptosis via interplay with Beclin 1.
Collapse
Affiliation(s)
- Jiong Yang
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing 100029, China.
| | - Shukun Yao
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing 100029, China.
- Department of Gastroenterology, China-Japan Friendship Hospital, Ministry of Health, Beijing 100029, China.
| |
Collapse
|
381
|
Hypoxia Inducible Factor Pathway and Physiological Adaptation: A Cell Survival Pathway? Mediators Inflamm 2015; 2015:584758. [PMID: 26491231 PMCID: PMC4600544 DOI: 10.1155/2015/584758] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 12/28/2014] [Indexed: 12/14/2022] Open
Abstract
Oxygen homeostasis reflects the constant body requirement to generate energy. Hypoxia (0.1–1% O2), physioxia or physoxia (∼1–13%), and normoxia (∼20%) are terms used to define oxygen concentration in the cellular environment. A decrease in oxygen (hypoxia) or excess oxygen (hyperoxia) could be deleterious for cellular adaptation and survival. Hypoxia can occur under both physiological (e.g., exercise, embryonic development, underwater diving, or high altitude) and pathological conditions (e.g., inflammation, solid tumor formation, lung disease, or myocardial infarction). Hypoxia plays a key role in the pathophysiology of heart disease, cancers, stroke, and other causes of mortality. Hypoxia inducible factor(s) (HIFs) are key oxygen sensors that mediate the ability of the cell to cope with decreased oxygen tension. These transcription factors regulate cellular adaptation to hypoxia and protect cells by responding acutely and inducing production of endogenous metabolites and proteins to promptly regulate metabolic pathways. Here, we review the role of the HIF pathway as a metabolic adaptation pathway and how this pathway plays a role in cell survival. We emphasize the roles of the HIF pathway in physiological adaptation, cell death, pH regulation, and adaptation during exercise.
Collapse
|
382
|
Li J, Yang D, Wang W, Piao S, Zhou J, Saiyin W, Zheng C, Sun H, Li Y. Inhibition of autophagy by 3-MA enhances IL-24-induced apoptosis in human oral squamous cell carcinoma cells. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2015; 34:97. [PMID: 26361755 PMCID: PMC4567787 DOI: 10.1186/s13046-015-0211-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 08/25/2015] [Indexed: 12/21/2022]
Abstract
Background Interleukin-24(IL-24), also referred to as melanoma differentiation-associated gene-7(mda-7), is a unique member of the IL-10 gene family, which displays nearly ubiquitous cancer-specific toxicity. The most notable feature of IL-24 is selectively induced growth suppression and apoptosis in various cancer cells, with no harmful effects toward normal cells. Autophagy is a self-protective mechanism in many kinds of tumor cells that respond to anticancer treatment. It is reported that autophagy inhibition could enhance the effects of many kinds of anticancer treatments, including gene therapy. However, whether IL-24 is effective to treat oral squamous cell carcinomas (OSCC) and if autophagy inhibition could improve the anticancer effect of IL-24 towards OSCC is has not been detected. Methods MTT assays were carried out to determine the cell proliferation; Transfection was used to gene transfer; Western Blot was performed to detect the protein level of LC3II, P62, Beclin 1, Cleaved caspase-3, β-Tubulin and β-actin; Apoptosis rates and cell cycle alteration were analyzed using flow cytometry; Autophagy induction was confirmed by MDC staining, GFP-LC3 staining and transmission electron microscopy. Amount of IL-24 in the culture medium was quantified by ELISA. Apoptosis in vivo was analyzed by TUNEL assay. HE staining was used to observe the morphology of the samples. Results In the present study, we proved that IL-24 have a novel anticancer effect towards KB cells and that autophagy inhibition could improve the anticancer effect of IL-24. IL-24 treated cells showed autophagy characteristics and autophagy inhibition by 3-methyladenine (3-MA) significantly enhanced IL-24-induced apoptosis. Similar results were obtained in the KB cells xenograft tumor model. Conclusions These results suggest that the combination of autophagy inhibitors and IL-24 based on the AdLTR2EF1α-mediated gene transfer could be a promising way to cure OSCC.
Collapse
Affiliation(s)
- Jichen Li
- School of Life Science and Technology, Harbin Institute of Technology, 2 Yikuang Street, Harbin, 150001, People's Republic of China.
| | - Dezhao Yang
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Harbin Medical University, 141 Yiman Street, Nangang District, Harbin, 150001, People's Republic of China.
| | - Wei Wang
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Harbin Medical University, 141 Yiman Street, Nangang District, Harbin, 150001, People's Republic of China.
| | - Songlin Piao
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Harbin Medical University, 141 Yiman Street, Nangang District, Harbin, 150001, People's Republic of China.
| | - Jianyu Zhou
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Harbin Medical University, 141 Yiman Street, Nangang District, Harbin, 150001, People's Republic of China.
| | - Wuliji Saiyin
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Harbin Medical University, 141 Yiman Street, Nangang District, Harbin, 150001, People's Republic of China.
| | - Changyu Zheng
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA.
| | - Hongchen Sun
- Department of Oral Pathology, School of Stomatology, Jilin University, 1500 Qinghua Road, Changchun, 130021, People's Republic of China.
| | - Yu Li
- School of Life Science and Technology, Harbin Institute of Technology, 2 Yikuang Street, Harbin, 150001, People's Republic of China.
| |
Collapse
|
383
|
Abstract
Cell death is a common and important feature of animal development, and cell death defects underlie many human disease states. The nematode Caenorhabditis elegans has proven fertile ground for uncovering molecular and cellular processes controlling programmed cell death. A core pathway consisting of the conserved proteins EGL-1/BH3-only, CED-9/BCL2, CED-4/APAF1, and CED-3/caspase promotes most cell death in the nematode, and a conserved set of proteins ensures the engulfment and degradation of dying cells. Multiple regulatory pathways control cell death onset in C. elegans, and many reveal similarities with tumor formation pathways in mammals, supporting the idea that cell death plays key roles in malignant progression. Nonetheless, a number of observations suggest that our understanding of developmental cell death in C. elegans is incomplete. The interaction between dying and engulfing cells seems to be more complex than originally appreciated, and it appears that key aspects of cell death initiation are not fully understood. It has also become apparent that the conserved apoptotic pathway is dispensable for the demise of the C. elegans linker cell, leading to the discovery of a previously unexplored gene program promoting cell death. Here, we review studies that formed the foundation of cell death research in C. elegans and describe new observations that expand, and in some cases remodel, this edifice. We raise the possibility that, in some cells, more than one death program may be needed to ensure cell death fidelity.
Collapse
Affiliation(s)
| | - Shai Shaham
- Laboratory of Developmental Genetics, The Rockefeller University, New York, USA.
| |
Collapse
|
384
|
Ordoñez R, Fernández A, Prieto-Domínguez N, Martínez L, García-Ruiz C, Fernández-Checa JC, Mauriz JL, González-Gallego J. Ceramide metabolism regulates autophagy and apoptotic cell death induced by melatonin in liver cancer cells. J Pineal Res 2015; 59:178-89. [PMID: 25975536 PMCID: PMC4523438 DOI: 10.1111/jpi.12249] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 05/08/2015] [Indexed: 12/22/2022]
Abstract
Autophagy is a process that maintains homeostasis during stress, although it also contributes to cell death under specific contexts. Ceramides have emerged as important effectors in the regulation of autophagy, mediating the crosstalk with apoptosis. Melatonin induces apoptosis of cancer cells; however, its role in autophagy and ceramide metabolism has yet to be clearly elucidated. This study was aimed to evaluate the effect of melatonin administration on autophagy and ceramide metabolism and its possible link with melatonin-induced apoptotic cell death in hepatocarcinoma (HCC) cells. Melatonin (2 mm) transiently induced autophagy in HepG2 cells through JNK phosphorylation, characterized by increased Beclin-1 expression, p62 degradation, and LC3II and LAMP-2 colocalization, which translated in decreased cell viability. Moreover, ATG5 silencing sensitized HepG2 cells to melatonin-induced apoptosis, suggesting a dual role of autophagy in cell death. Melatonin enhanced ceramide levels through both de novo synthesis and acid sphingomyelinase (ASMase) stimulation. Serine palmitoyltransferase (SPT) inhibition with myriocin prevented melatonin-induced autophagy and ASMase inhibition with imipramine-impaired autophagy flux. However, ASMase inhibition partially protected HepG2 cells against melatonin, while SPT inhibition significantly enhanced cell death. Findings suggest a crosstalk between SPT-mediated ceramide generation and autophagy in protecting against melatonin, while specific ASMase-induced ceramide production participates in melatonin-mediated cell death. Thus, dual blocking of SPT and autophagy emerges as a potential strategy to potentiate the apoptotic effects of melatonin in liver cancer cells.
Collapse
Affiliation(s)
- Raquel Ordoñez
- Institute of Biomedicine (IBIOMED), University of León, León, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Spain
| | - Ana Fernández
- Institute of Biomedicine (IBIOMED), University of León, León, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Spain
| | - Néstor Prieto-Domínguez
- Institute of Biomedicine (IBIOMED), University of León, León, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Spain
| | - Laura Martínez
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), Consejo Superior Investigaciones Cientificas (CSIC) and Liver Unit-Hospital Clinic, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Spain
| | - Carmen García-Ruiz
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), Consejo Superior Investigaciones Cientificas (CSIC) and Liver Unit-Hospital Clinic, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Spain
- University of Southern California Research Center for Alcohol Liver and Pancreatic Diseases and Cirrhosis, Keck School of Medicine, USC, Los Angeles, CA, USA
| | - José C. Fernández-Checa
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), Consejo Superior Investigaciones Cientificas (CSIC) and Liver Unit-Hospital Clinic, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Spain
- University of Southern California Research Center for Alcohol Liver and Pancreatic Diseases and Cirrhosis, Keck School of Medicine, USC, Los Angeles, CA, USA
| | - José L. Mauriz
- Institute of Biomedicine (IBIOMED), University of León, León, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Spain
| | - Javier González-Gallego
- Institute of Biomedicine (IBIOMED), University of León, León, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Spain
| |
Collapse
|
385
|
Chu B, Wang J, Wang Y, Yang G. Knockdown of PKM2 induces apoptosis and autophagy in human A549 alveolar adenocarcinoma cells. Mol Med Rep 2015; 12:4358-4363. [PMID: 26082202 DOI: 10.3892/mmr.2015.3943] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 04/30/2015] [Indexed: 11/06/2022] Open
Abstract
The M2 isoform of pyruvate kinase (PKM2), which has been identified as the predominant cause of the Warburg effect in cancer cells, is essential in tumor metabolism and growth. However, the role of PKM2 in autophagy remains to be elucidated. The present study investigated the effect of PKM2 knockdown on autophagy and apoptotic cell death in human A549 alveolar adenocarcinoma cells. Two short hairpin (sh)RNAs targeting human PKM2 mRNA were designed and lentiviral vectors were constructed. The A549 cells were infected with lentiviruses, containing shRNAs against PKM2, and the expression of PKM2 was examined by reverse transcription-quantitative polymerase chain reaction (RT‑qPCR) and immonoblotting analysis. A lactose dehydrogenase (LDH)‑coupled enzyme assay was used to detect the pyruvate kinase activity. RT‑qPCR was used to detect the mRNA expression level of glycolysis‑associated enzymes. The quantification of cells with punctate LC3 and expression of LC3II were examined to demonstrate autophagy. An MTT assay was used to detect cell viability and flow cytometry was used to determine cell apoptosis. The activity of caspase 3/7 and the expression of Bcl‑2 were also detected in A549 cells with PKM2 knockdown. The present study demonstrated that the two shRNAs efficiently downregulated the mRNA and protein expression levels of PKM2 in A549 cells. The knockdown of PKM2 decreased pyruvate kinase activity and glycolysis. Autophagy was induced in A549 cells with PKM2 knockdown. Inhibition of autophagy accelerated apoptotic death in PKM2‑knockdown cells and this was dependent on increased caspase 3/7 activity and decreased expression of Bcl‑2. In conclusion, the downregulation of PKM2 induced apoptosis and autophagy in A549 cells and this autophagy protected the cells from apoptotic cell death.
Collapse
Affiliation(s)
- Beibei Chu
- College of Animal Sciences and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan 450002, P.R. China
| | - Jiang Wang
- College of Animal Sciences and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan 450002, P.R. China
| | - Yueying Wang
- College of Animal Sciences and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan 450002, P.R. China
| | - Guoyu Yang
- College of Animal Sciences and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan 450002, P.R. China
| |
Collapse
|
386
|
Zhu H, He L. Beclin 1 biology and its role in heart disease. Curr Cardiol Rev 2015; 11:229-37. [PMID: 25373623 PMCID: PMC4558354 DOI: 10.2174/1573403x10666141106104606] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 10/20/2014] [Accepted: 10/24/2014] [Indexed: 01/01/2023] Open
Abstract
Macroautophagy (hereafter termed autophagy) is a highly evolutionarily conserved pathway that degrades intracellular components such as damaged organelles in lysosome. Autophagy occurs at low basal levels in virtually all types of cells, which is required for the maintenance of cellular homeostasis. Beclin 1 protein, encoded by the beclin 1 gene, plays a central role in the regulation of autophagy. Beclin 1 primarily functions as a scaffolding protein assembling Beclin 1 interactome to regulate Class III PI3K/VPS34 activity, which in turn, tightly controls autophagy at multiple stages. In addition to autophagy, Beclin 1 participates in the regulation of other biological processes such as endocytosis, apoptosis and phagocytosis. Fine-tuning of Beclin 1 protein levels, intracellular localization and the assembly of its interactome is pivotal for the proper execution of these biological functions. Deregulation of Beclin 1 contributes to the pathogenesis of a variety of human diseases. In this review, we summarize biology of Beclin 1 and its role in human pathology, with an emphasis on heart disease.
Collapse
Affiliation(s)
- Hongxin Zhu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China.
| | | |
Collapse
|
387
|
Wu H, Huang S, Chen Z, Liu W, Zhou X, Zhang D. Hypoxia-induced autophagy contributes to the invasion of salivary adenoid cystic carcinoma through the HIF-1α/BNIP3 signaling pathway. Mol Med Rep 2015; 12:6467-74. [PMID: 26323347 PMCID: PMC4626194 DOI: 10.3892/mmr.2015.4255] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 07/21/2015] [Indexed: 12/15/2022] Open
Abstract
Adenoid cystic carcinoma (ACC) is one of the most common types of salivary gland malignancy in the head and neck, and its aggressive ability to invade and metastasize is an important reason for its poor survival rates. Our previous investigations confirmed that autophagy-associated gene expression is closely associated with the occurrence and development of ACC. On this basis, the present study further investigated hypoxia-induced autophagy and its role in tumor invasion. Cobalt chloride (CoCl2) was used to mimic hypoxia. The results of the present study indicated that autophagosome formation and upregulation of autophagy-associated microtubule-associated protein 1 light chain 3 and Beclin 1 were observed in ACC-M cells in response to CoCl2. The hypoxia-inducible factor 1α/B cell lymphoma 2/adenovirus E1B 19K-interacting protein 3 signaling pathway was involved in hypoxia-induced autophagy in ACC. Furthermore, inhibition of autophagy by chloroquine markedly attenuated the tumor invasion induced by mimetic hypoxia in ACC. These results suggested that hypoxia-induced autophagy may serve as a potential target for the future treatment of ACC.
Collapse
Affiliation(s)
- Haiwei Wu
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Shengyun Huang
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Zhanwei Chen
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Wenlei Liu
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Xiaoqing Zhou
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Dongsheng Zhang
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| |
Collapse
|
388
|
Fava LL, Rainer J, Haschka MD, Geley S, Villunger A. Beclin 1 is dispensable for chromosome congression and proper outer kinetochore assembly. EMBO Rep 2015; 16:1233-6. [PMID: 26297610 DOI: 10.15252/embr.201540731] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Affiliation(s)
- Luca L Fava
- Division of Developmental Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Johannes Rainer
- Division of Molecular Pathophysiology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Manuel D Haschka
- Division of Developmental Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Stephan Geley
- Division of Molecular Pathophysiology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Andreas Villunger
- Division of Developmental Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
389
|
RNase L Cleavage Products Promote Switch from Autophagy to Apoptosis by Caspase-Mediated Cleavage of Beclin-1. Int J Mol Sci 2015; 16:17611-36. [PMID: 26263979 PMCID: PMC4581211 DOI: 10.3390/ijms160817611] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 07/17/2015] [Accepted: 07/27/2015] [Indexed: 01/03/2023] Open
Abstract
Autophagy and apoptosis share regulatory molecules enabling crosstalk in pathways that affect cellular homeostasis including response to viral infections and survival of tumor cells. Ribonuclease L (RNase L) is an antiviral endonuclease that is activated in virus-infected cells and cleaves viral and cellular single-stranded RNAs to produce small double-stranded RNAs with roles in amplifying host responses. Activation of RNase L induces autophagy and apoptosis in many cell types. However, the mechanism by which RNase L mediates crosstalk between these two pathways remains unclear. Here we show that small dsRNAs produced by RNase L promote a switch from autophagy to apoptosis by caspase-mediated cleavage of Beclin-1, terminating autophagy. The caspase 3-cleaved C-terminal fragment of Beclin-1 enhances apoptosis by translocating to the mitochondria along with proapoptotic protein, Bax, and inducing release of cytochrome C to the cytosol. Cleavage of Beclin-1 determines switch to apoptosis since expression of caspase-resistant Beclin-1 inhibits apoptosis and sustains autophagy. Moreover, inhibiting RNase L-induced autophagy promotes cell death and inhibiting apoptosis prolongs autophagy in a cross-inhibitory mechanism. Our results demonstrate a novel role of RNase L generated small RNAs in cross-talk between autophagy and apoptosis that impacts the fate of cells during viral infections and cancer.
Collapse
|
390
|
Abstract
One of the major challenges in the field of nucleic acid delivery is the design of delivery vehicles with attributes that render them safe as well as efficient in transfection. To this end, polycationic vectors have been intensely investigated with native polyethylenimines (PEIs) being the gold standard. PEIs are highly efficient transfectants, but depending on their architecture and size they induce cytotoxicity through different modes of cell death pathways. Here, we briefly review dynamic and integrated cell death processes and pathways, and discuss considerations in cell death assay design and their interpretation in relation to PEIs and PEI-based engineered vectors, which are also translatable for the design and studying the safety of other transfectants.
Collapse
|
391
|
Yan MM, Ni JD, Song D, Ding M, Huang J. Interplay between unfolded protein response and autophagy promotes tumor drug resistance. Oncol Lett 2015; 10:1959-1969. [PMID: 26622781 PMCID: PMC4579870 DOI: 10.3892/ol.2015.3508] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 06/23/2015] [Indexed: 02/07/2023] Open
Abstract
The endoplasmic reticulum (ER) is involved in the quality control of secreted protein via promoting the correct folding of nascent protein and mediating the degradation of unfolded or misfolded protein, namely ER-associated degradation. When the unfolded or misfolded proteins are abundant, the unfolded protein response (UPR) is elicited, an adaptive signaling cascade from the ER to the nucleus, which restores the homeostatic functions of the ER. Autophagy is a conserved catabolic process where cellular long-lived proteins and damaged organelles are engulfed and degraded for recycling to maintain homeostasis. The UPR and autophagy occur simultaneously and are involved in pathological processes, including tumorigenesis, chemoresistance of malignancies and neurodegeneration. Accumulative data has indicated that the UPR may induce autophagy and that autophagy is able to alleviate the UPR. However, the detailed mechanism of interplay between autophagy and UPR remains to be fully understood. The present review aimed to depict the core pathways of the two processes and to elucidate how autophagy and UPR are regulated. Moreover, the review also discusses the molecular mechanism of crosstalk between the UPR and autophagy and their roles in malignant survival and drug resistance.
Collapse
Affiliation(s)
- Ming-Ming Yan
- Department of Orthopedic Surgery, Second Xiangya Hospital of Central South University, Changsha, Hunan 410000, P.R. China
| | - Jiang-Dong Ni
- Department of Orthopedic Surgery, Second Xiangya Hospital of Central South University, Changsha, Hunan 410000, P.R. China
| | - Deye Song
- Department of Orthopedic Surgery, Second Xiangya Hospital of Central South University, Changsha, Hunan 410000, P.R. China
| | - Muliang Ding
- Department of Orthopedic Surgery, Second Xiangya Hospital of Central South University, Changsha, Hunan 410000, P.R. China
| | - Jun Huang
- Department of Orthopedic Surgery, Second Xiangya Hospital of Central South University, Changsha, Hunan 410000, P.R. China
| |
Collapse
|
392
|
Huang Y, Wu JZ, Li JY, Xu W. Know the enemy as well as the weapons in hand: the aberrant death pathways and therapeutic agents in chronic lymphocytic leukemia. Am J Cancer Res 2015; 5:2361-2375. [PMID: 26396912 PMCID: PMC4568772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 07/06/2015] [Indexed: 06/05/2023] Open
Abstract
Chronic lymphocytic leukemia (CLL) is a highly heterogeneous hematologic malignancy and characterized by dysregulation of cell death pathways. Apoptosis and necroptosis are the two major cell death processes, and substantial evidence showed up-regulation of several pro-survival factors in CLL cells. Autophagy, as a dual player in mediating cell death and survival, is largely regarded to be an alternative target in the treatment of CLL. Numerous novel drugs have been developed and are being investigated in clinical trials. It is necessary to depict the impaired cell death pathways in CLL and the pro-survival factors targeted by noncytotoxic drugs directly or indirectly. Here we summarize three dysregulated cell death mechanisms in CLL, and present the current knowledge of drugs that orchestrate cell death via targeting pro-survival factors and the clinical effects as well.
Collapse
Affiliation(s)
- Ying Huang
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University Nanjing 210029, Jiangsu, China
| | - Jia-Zhu Wu
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University Nanjing 210029, Jiangsu, China
| | - Jian-Yong Li
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University Nanjing 210029, Jiangsu, China
| | - Wei Xu
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University Nanjing 210029, Jiangsu, China
| |
Collapse
|
393
|
Mutation of kri1l causes definitive hematopoiesis failure via PERK-dependent excessive autophagy induction. Cell Res 2015; 25:946-62. [PMID: 26138676 PMCID: PMC4528055 DOI: 10.1038/cr.2015.81] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 05/03/2015] [Accepted: 05/28/2015] [Indexed: 02/06/2023] Open
Abstract
Dysregulation of ribosome biogenesis causes human diseases, such as Diamond-Blackfan anemia, del (5q-) syndrome and bone marrow failure. However, the mechanisms of blood disorders in these diseases remain elusive. Through genetic mapping, molecular cloning and mechanism characterization of the zebrafish mutant cas002, we reveal a novel connection between ribosomal dysfunction and excessive autophagy in the regulation of hematopoietic stem/progenitor cells (HSPCs). cas002 carries a recessive lethal mutation in kri1l gene that encodes an essential component of rRNA small subunit processome. We show that Kri1l is required for normal ribosome biogenesis, expansion of definitive HSPCs and subsequent lineage differentiation. Through live imaging and biochemical studies, we find that loss of Kri1l causes the accumulation of misfolded proteins and excessive PERK activation-dependent autophagy in HSPCs. Blocking autophagy but not inhibiting apoptosis by Bcl2 overexpression can fully rescue hematopoietic defects, but not the lethality of kri1lcas002 embryos. Treatment with autophagy inhibitors (3-MA and Baf A1) or PERK inhibitor (GSK2656157), or knockdown of beclin1 or perk can markedly restore HSPC proliferation and definitive hematopoietic cell differentiation. These results may provide leads for effective therapeutics that benefit patients with anemia or bone marrow failure caused by ribosome disorders.
Collapse
|
394
|
A2 Adenosine Receptor-mediated Cardioprotection Against Reperfusion Injury in Rat Hearts Is Associated With Autophagy Downregulation. J Cardiovasc Pharmacol 2015; 66:25-34. [DOI: 10.1097/fjc.0000000000000239] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
395
|
MAPK/JNK signalling: a potential autophagy regulation pathway. Biosci Rep 2015; 35:BSR20140141. [PMID: 26182361 PMCID: PMC4613668 DOI: 10.1042/bsr20140141] [Citation(s) in RCA: 329] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 03/17/2015] [Indexed: 01/07/2023] Open
Abstract
Autophagy refers to a lysosomal degradative pathway or a process of self-cannibalization. This pathway maintains nutrients levels for vital cellular functions during periods of starvation and it provides cells with survival advantages under various stress situations. However, the mechanisms responsible for the induction and regulation of autophagy are poorly understood. The c-Jun NH2-terminal kinase (JNK) signal transduction pathway functions to induce defence mechanisms that protect organisms against acute oxidative and xenobiotic insults. This pathway has also been repeatedly linked to the molecular events involved in autophagy regulation. The present review will focus on recent advances in understanding of the relationship between mitogen-activated protein kinase (MAPK)/JNK signalling and autophagic cell death.
Collapse
|
396
|
Wang Y, Huang C, Zhang H, Wu R. Autophagy in glaucoma: Crosstalk with apoptosis and its implications. Brain Res Bull 2015; 117:1-9. [PMID: 26073842 DOI: 10.1016/j.brainresbull.2015.06.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Revised: 05/05/2015] [Accepted: 06/04/2015] [Indexed: 01/07/2023]
Abstract
Glaucoma is characterized by elevated intraocular pressure that causes progressive loss of retinal ganglion cells (RGCs). Autophagy is a lysosomal degradative process that updates the cellular components and plays an important role in cellular homeostasis. Recent studies have shown that autophagy is involved in the pathophysiological process of glaucoma. The role played by autophagy in glaucoma is complex, and conflicting evidence shows that autophagy promotes both RGC survival and death. The understanding of the major pattern of RGC loss and the crosstalk between autophagy and apoptosis remains limited in glaucoma. This review focuses on the relationship between autophagy and glaucoma, particularly on the influence of autophagy on apoptosis in glaucoma. Further research on autophagy in glaucoma may provide a novel understanding of the glaucoma pathology and novel treatment targets for glaucoma in the future.
Collapse
Affiliation(s)
- Yao Wang
- Eye Institute and Affiliated Xiamen Eye Center, Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen, Fujian 361102, China; Department of Ophthalmology, First Hospital of Xi'an, Shaanxi Institute of Ophthalmology, Shaanxi Provincial Key Lab of Ophthalmology, Xi'an, Shaanxi 710002, China
| | - Changquan Huang
- Eye Institute and Affiliated Xiamen Eye Center, Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen, Fujian 361102, China
| | - Hongbing Zhang
- Department of Ophthalmology, First Hospital of Xi'an, Shaanxi Institute of Ophthalmology, Shaanxi Provincial Key Lab of Ophthalmology, Xi'an, Shaanxi 710002, China
| | - Renyi Wu
- Eye Institute and Affiliated Xiamen Eye Center, Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen, Fujian 361102, China.
| |
Collapse
|
397
|
Levine B, Liu R, Dong X, Zhong Q. Beclin orthologs: integrative hubs of cell signaling, membrane trafficking, and physiology. Trends Cell Biol 2015; 25:533-44. [PMID: 26071895 PMCID: PMC4554927 DOI: 10.1016/j.tcb.2015.05.004] [Citation(s) in RCA: 138] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 05/04/2015] [Accepted: 05/07/2015] [Indexed: 12/25/2022]
Abstract
Beclin orthologs are crucial regulators of autophagy and related membrane-trafficking pathways. Multiple signaling pathways converge on Beclin 1 to regulate cellular stress responses, membrane trafficking, and physiology.
The Beclin family, including yeast Atg6 (autophagy related gene 6), its orthologs in higher eukaryotic species, and the more recently characterized mammalian-specific Beclin 2, are essential molecules in autophagy and other membrane-trafficking events. Extensive studies of Beclin orthologs have provided considerable insights into the regulation of autophagy, the diverse roles of autophagy in physiology and disease, and potential new strategies to modulate autophagy in a variety of clinical diseases. In this review we discuss the functions of Beclin orthologs, the regulation of such functions by diverse cellular signaling pathways, and the effects of such regulation on downstream cellular processes including tumor suppression and metabolism. These findings suggest that Beclin orthologs serve as crucial molecules that integrate diverse environmental signals with membrane trafficking events to ensure optimal responses of the cell to stressful stimuli.
Collapse
Affiliation(s)
- Beth Levine
- Center for Autophagy Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Rong Liu
- Center for Autophagy Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xiaonan Dong
- Center for Autophagy Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Qing Zhong
- Center for Autophagy Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
398
|
Han B, Park D, Li R, Xie M, Owonikoko TK, Zhang G, Sica GL, Ding C, Zhou J, Magis AT, Chen ZG, Shin DM, Ramalingam SS, Khuri FR, Curran WJ, Deng X. Small-Molecule Bcl2 BH4 Antagonist for Lung Cancer Therapy. Cancer Cell 2015; 27:852-63. [PMID: 26004684 PMCID: PMC4470473 DOI: 10.1016/j.ccell.2015.04.010] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 10/06/2014] [Accepted: 04/17/2015] [Indexed: 11/28/2022]
Abstract
The BH4 domain of Bcl2 is required for its antiapoptotic function, thus constituting a promising anticancer target. We identified a small-molecule Bcl2-BH4 domain antagonist, BDA-366, that binds BH4 with high affinity and selectivity. BDA-366-Bcl2 binding induces conformational change in Bcl2 that abrogates its antiapoptotic function, converting it from a survival molecule to a cell death inducer. BDA-366 suppresses growth of lung cancer xenografts derived from cell lines and patient without significant normal tissue toxicity at effective doses. mTOR inhibition upregulates Bcl2 in lung cancer cells and tumor tissues from clinical trial patients. Combined BDA-366 and RAD001 treatment exhibits strong synergy against lung cancer in vivo. Development of this Bcl2-BH4 antagonist may provide a strategy to improve lung cancer outcome.
Collapse
Affiliation(s)
- Bingshe Han
- Department of Radiation Oncology, Emory University School of Medicine and Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
| | - Dongkyoo Park
- Department of Radiation Oncology, Emory University School of Medicine and Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
| | - Rui Li
- Department of Radiation Oncology, Emory University School of Medicine and Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
| | - Maohua Xie
- Department of Radiation Oncology, Emory University School of Medicine and Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
| | - Taofeek K Owonikoko
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
| | - Guojing Zhang
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
| | - Gabriel L Sica
- Department of Pathology, Emory University School of Medicine and Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
| | - Chunyong Ding
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Jia Zhou
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | | | - Zhuo G Chen
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
| | - Dong M Shin
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
| | - Suresh S Ramalingam
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
| | - Fadlo R Khuri
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
| | - Walter J Curran
- Department of Radiation Oncology, Emory University School of Medicine and Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
| | - Xingming Deng
- Department of Radiation Oncology, Emory University School of Medicine and Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
399
|
Nonautophagic cytoplasmic vacuolation death induction in human PC-3M prostate cancer by curcumin through reactive oxygen species -mediated endoplasmic reticulum stress. Sci Rep 2015; 5:10420. [PMID: 26013662 PMCID: PMC4445067 DOI: 10.1038/srep10420] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 04/13/2015] [Indexed: 12/13/2022] Open
Abstract
The antiapoptotic and antiautophagic abilities of cancer cells constitute a major challenge for anticancer drug treatment. Strategies for triggering nonapoptotic or nonautophagic cell death may improve therapeutic efficacy against cancer. Curcumin has been reported to exhibit cancer chemopreventive properties. Herein, we report that curcumin induced apoptosis in LNCaP, DU145, and PC-3 cells but triggered extensive cytoplasmic vacuolation in PC-3M cells. Electron microscopic images showed that the vacuoles lacked intracellular organelles and were derived from the endoplasmic reticulum (ER). Moreover, curcumin-induced vacuolation was not reversed by an apoptosis- or autophagy-related inhibitor, suggesting that vacuolation-mediated cell death differs from classical apoptotic and autophagic cell death. Mechanistic investigations revealed that curcumin treatment upregulated the ER stress markers CHOP and Bip/GRP78 and the autophagic marker LC3-II. In addition, curcumin induced ER stress by triggering ROS generation, which was supported by the finding that treating cells with the antioxidant NAC alleviated curcumin-mediated ER stress and vacuolation-mediated death. An in vivo PC-3M orthotopic prostate cancer model revealed that curcumin reduced tumor growth by inducing ROS production followed by vacuolation-mediated cell death. Overall, our results indicated that curcumin acts as an inducer of ROS production, which leads to nonapoptotic and nonautophagic cell death via increased ER stress.
Collapse
|
400
|
Liu X, Huang Z, Zou X, Yang Y, Qiu Y, Wen Y. Possible mechanism of PNS protection against cisplatin-induced nephrotoxicity in rat models. Toxicol Mech Methods 2015; 25:347-54. [DOI: 10.3109/15376516.2015.1006492] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|