351
|
Fu O, Pukin AV, Quarles van Ufford HC, Kemmink J, de Mol NJ, Pieters RJ. Functionalization of a Rigid Divalent Ligand for LecA, a Bacterial Adhesion Lectin. ChemistryOpen 2015; 4:463-70. [PMID: 26478841 PMCID: PMC4603407 DOI: 10.1002/open.201402171] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Indexed: 11/21/2022] Open
Abstract
The bacterial adhesion lectin LecA is an attractive target for interference with the infectivity of its producer P. aeruginosa. Divalent ligands with two terminal galactoside moieties connected by an alternating glucose-triazole spacer were previously shown to be very potent inhibitors. In this study, we chose to prepare a series of derivatives with various new substituents in the spacer in hopes of further enhancing the LecA inhibitory potency of the molecules. Based on the binding mode, modifications were made to the spacer to enable additional spacer–protein interactions. The introduction of positively charged, negatively charged, and also lipophilic functional groups was successful. The compounds were good LecA ligands, but no improved binding was seen, even though altered thermodynamic parameters were observed by isothermal titration calorimetry (ITC).
Collapse
Affiliation(s)
- Ou Fu
- Department of Medicinal Chemistry and Chemical Biology, Utrecht University P.O. Box 80082, 3508 TB, Utrecht, The Netherlands
| | - Aliaksei V Pukin
- Department of Medicinal Chemistry and Chemical Biology, Utrecht University P.O. Box 80082, 3508 TB, Utrecht, The Netherlands
| | - H C Quarles van Ufford
- Department of Medicinal Chemistry and Chemical Biology, Utrecht University P.O. Box 80082, 3508 TB, Utrecht, The Netherlands
| | - Johan Kemmink
- Department of Medicinal Chemistry and Chemical Biology, Utrecht University P.O. Box 80082, 3508 TB, Utrecht, The Netherlands
| | - Nico J de Mol
- Department of Medicinal Chemistry and Chemical Biology, Utrecht University P.O. Box 80082, 3508 TB, Utrecht, The Netherlands
| | - Roland J Pieters
- Department of Medicinal Chemistry and Chemical Biology, Utrecht University P.O. Box 80082, 3508 TB, Utrecht, The Netherlands
| |
Collapse
|
352
|
Daskhan GC, Berthet N, Thomas B, Fiore M, Renaudet O. Multivalent glycocyclopeptides: toward nano-sized glycostructures. Carbohydr Res 2015; 405:13-22. [DOI: 10.1016/j.carres.2014.07.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 07/18/2014] [Accepted: 07/21/2014] [Indexed: 10/25/2022]
|
353
|
Mtashobya L, Quiquempoix L, Linclau B. The synthesis of mono- and difluorinated 2,3-dideoxy-d-glucopyranoses. J Fluor Chem 2015. [DOI: 10.1016/j.jfluchem.2014.08.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
354
|
Fleck C, Memmel E, Fölsing M, Poll B, Hackl T, Seibel J, Maison W. Synthesis and Evaluation of Neoglycoconjugates Based on Adamantyl Scaffolds. European J Org Chem 2015. [DOI: 10.1002/ejoc.201403517] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
355
|
Khanal M, Larsonneur F, Raks V, Barras A, Baumann JS, Martin FA, Boukherroub R, Ghigo JM, Ortiz Mellet C, Zaitsev V, Garcia Fernandez JM, Beloin C, Siriwardena A, Szunerits S. Inhibition of type 1 fimbriae-mediated Escherichia coli adhesion and biofilm formation by trimeric cluster thiomannosides conjugated to diamond nanoparticles. NANOSCALE 2015; 7:2325-2335. [PMID: 25559389 DOI: 10.1039/c4nr05906a] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Recent advances in nanotechnology have seen the development of a number of microbiocidal and/or anti-adhesive nanoparticles displaying activity against biofilms. In this work, trimeric thiomannoside clusters conjugated to nanodiamond particles (ND) were targeted for investigation. NDs have attracted attention as a biocompatible nanomaterial and we were curious to see whether the high mannose glycotope density obtained upon grouping monosaccharide units in triads might lead to the corresponding ND-conjugates behaving as effective inhibitors of E. coli type 1 fimbriae-mediated adhesion as well as of biofilm formation. The required trimeric thiosugar clusters were obtained through a convenient thiol-ene "click" strategy and were subsequently conjugated to alkynyl-functionalized NDs using a Cu(I)-catalysed "click" reaction. We demonstrated that the tri-thiomannoside cluster-conjugated NDs (ND-Man3) show potent inhibition of type 1 fimbriae-mediated E. coli adhesion to yeast and T24 bladder cells as well as of biofilm formation. The biofilm disrupting effects demonstrated here have only rarely been reported in the past for analogues featuring such simple glycosidic motifs. Moreover, the finding that the tri-thiomannoside cluster (Man3N3) is itself a relatively efficient inhibitor, even when not conjugated to any ND edifice, suggests that alternative mono- or multivalent sugar-derived analogues might also be usefully explored for E. coli-mediated biofilm disrupting properties.
Collapse
Affiliation(s)
- Manakamana Khanal
- Institut de Recherche Interdisciplinaire (IRI, USR CNRS 3078), Université Lille 1, Parc de la Haute Borne, 50 Avenue de Halley, BP 70478, 59658 Villeneuve d'Ascq, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
356
|
Vincent SP, Tikad A. β-Selective One-Pot Fluorophosphorylation ofd,d-Heptosylglycals Mediated by Selectfluor. Isr J Chem 2015. [DOI: 10.1002/ijch.201400148] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
357
|
Lindhorst TK, Dubber M. Octopus glycosides: multivalent molecular platforms for testing carbohydrate recognition and bacterial adhesion. Carbohydr Res 2015; 403:90-7. [DOI: 10.1016/j.carres.2014.06.032] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2014] [Revised: 06/26/2014] [Accepted: 06/30/2014] [Indexed: 01/28/2023]
|
358
|
Schnaar RL. Glycans and glycan-binding proteins in immune regulation: A concise introduction to glycobiology for the allergist. J Allergy Clin Immunol 2015; 135:609-15. [PMID: 25649080 DOI: 10.1016/j.jaci.2014.10.057] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 10/28/2014] [Indexed: 12/30/2022]
Abstract
Cells are endowed with a rich surface coat of glycans that are carried as glycoproteins and glycolipids on the outer leaflets of their plasma membranes and constitute a major molecular interface between cells and their environment. Each cell's glycome, the sum of its diverse glycan structures, comprises a distinct cellular signature defined by expression levels of the enzymes responsible for glycan biosynthesis. This signature can be read by complementary glycan-binding proteins (GBPs) that translate glycan recognition into function. Nowhere is this more evident than in the immune system, where glycans and GBPs are integral to pathogen recognition and control of inflammatory responses. Glycobiology, the study of glycan structures and their functions, increasingly provides insight into immunoregulatory mechanisms and thereby provides opportunities for therapeutic intervention. This review briefly examines the makeup of the human glycome and the GBPs that translate glycan recognition into function and provides examples of glycan recognition events that are responsible for immune system regulation to promote wider appreciation of this rapidly expanding area of research.
Collapse
Affiliation(s)
- Ronald L Schnaar
- Department of Pharmacology and Molecular Science and the Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Md.
| |
Collapse
|
359
|
Ramawat KG, Mérillon JM. Major Advances in the Development of Synthetic Oligosaccharide-Based Vaccines. POLYSACCHARIDES 2015. [PMCID: PMC7123674 DOI: 10.1007/978-3-319-16298-0_65] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Because of their involvement in a variety of different biological processes and their occurrence onto pathogens and malignant cell surface, carbohydrates have been identified as ideal candidates for vaccine formulation. However, as free oligosaccharides are poorly immunogenic and do not induce immunological memory in the most at risk population (infants and young children, elderly and immunocompromised patients), glycoconjugate vaccines containing the same carbohydrate antigen covalently linked to an immunogenic carrier protein have gained a prominent role. Accordingly, a number of glycoconjugate vaccines mostly directed against infections caused by bacterial pathogens have been licensed and are currently available on the market. However, also glycoconjugate vaccines suffer from significant drawbacks. The challenging procedures required for the isolation and purification of the carbohydrate antigen from its natural source often lead to poor homogeneity and presence of biological contaminants, resulting in batch-to-batch variability. Moreover, in some cases, the overwhelming immunogenicity of the carrier protein may induce the carbohydrate epitope suppression, causing hyporesponsiveness. The development of synthetic oligosaccharide-based vaccine candidates, characterized by the presence of pure and well-defined synthetic oligosaccharide structures, is expected to meet the requirement of homogeneous and highly reproducible preparations. In the present chapter, we report on the major advances in the development of synthetic carbohydrate-based vaccines. First of all, we describe different strategies developed during the last years to circumvent the inherent difficulties of classical oligosaccharide synthesis, such as the one-pot glycosylation and the solid-phase synthesis, and their application to the preparation of carbohydrate antigens apt to conjugation with protein carriers. Next, we discuss the most representative methodologies employed for the chemical ligation of oligosaccharide structures to proteins. Finally, in the last section, we report significant examples of fully synthetic vaccines exploiting the multivalency effect. These constructs are based on the concept that the conjugation of multiple copies of synthetic oligosaccharide antigens to multivalent scaffolds, such as dendrimers, (cyclo)peptides, gold nanoparticles, and calixarenes, raises cooperative interactions between carbohydrates and immune receptors, leading to strong enhancement of the saccharide antigen immunogenicity.
Collapse
Affiliation(s)
| | - Jean-Michel Mérillon
- Groupe d’Etude des Substances Végétales à Activité Biologique, Université de Bordeaux, Institut des Sciences de la Vigne et du Vin, Villenave d'Ornon, France
| |
Collapse
|
360
|
Mahon CS, Fascione MA, Sakonsinsiri C, McAllister TE, Bruce Turnbull W, Fulton DA. Templating carbohydrate-functionalised polymer-scaffolded dynamic combinatorial libraries with lectins. Org Biomol Chem 2015; 13:2756-61. [DOI: 10.1039/c4ob02587c] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The templation of carbohydrate-functionalised Polymer-Scaffolded Dynamic Combinatorial Libraries affords polymers possessing significantly enhanced affinities for the template, with enhancements in free energy of binding in the range of 5.2–8.8 kJ mol−1 observed.
Collapse
Affiliation(s)
- Clare S. Mahon
- Chemical Nanoscience Laboratory
- School of Chemistry
- Newcastle University
- Newcastle-upon-Tyne
- UK
| | - Martin A. Fascione
- School of Chemistry and Astbury Centre for Structural Molecular Biology
- University of Leeds
- Leeds
- UK
- Department of Chemistry
| | - Chadamas Sakonsinsiri
- School of Chemistry and Astbury Centre for Structural Molecular Biology
- University of Leeds
- Leeds
- UK
| | - Tom E. McAllister
- School of Chemistry and Astbury Centre for Structural Molecular Biology
- University of Leeds
- Leeds
- UK
| | - W. Bruce Turnbull
- School of Chemistry and Astbury Centre for Structural Molecular Biology
- University of Leeds
- Leeds
- UK
| | - David A. Fulton
- Chemical Nanoscience Laboratory
- School of Chemistry
- Newcastle University
- Newcastle-upon-Tyne
- UK
| |
Collapse
|
361
|
Pukin AV, Brouwer AJ, Koomen L, Quarles van Ufford HC, Kemmink J, de Mol NJ, Pieters RJ. Thiourea-based spacers in potent divalent inhibitors of Pseudomonas aeruginosa virulence lectin LecA. Org Biomol Chem 2015; 13:10923-8. [DOI: 10.1039/c5ob01452b] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A thiourea spacer adopts an extended conformation and forms the basis of a potent bivalent ligand for Pseudomonas aeruginosa lectin LecA.
Collapse
Affiliation(s)
- Aliaksei V. Pukin
- Department of Medicinal Chemistry & Chemical Biology
- Utrecht Institute for Pharmaceutical Sciences
- Utrecht University
- Utrecht
- The Netherlands
| | - Arwin J. Brouwer
- Department of Medicinal Chemistry & Chemical Biology
- Utrecht Institute for Pharmaceutical Sciences
- Utrecht University
- Utrecht
- The Netherlands
| | - Leonie Koomen
- Department of Medicinal Chemistry & Chemical Biology
- Utrecht Institute for Pharmaceutical Sciences
- Utrecht University
- Utrecht
- The Netherlands
| | - H. C. Quarles van Ufford
- Department of Medicinal Chemistry & Chemical Biology
- Utrecht Institute for Pharmaceutical Sciences
- Utrecht University
- Utrecht
- The Netherlands
| | - Johan Kemmink
- Department of Medicinal Chemistry & Chemical Biology
- Utrecht Institute for Pharmaceutical Sciences
- Utrecht University
- Utrecht
- The Netherlands
| | - Nico J. de Mol
- Department of Medicinal Chemistry & Chemical Biology
- Utrecht Institute for Pharmaceutical Sciences
- Utrecht University
- Utrecht
- The Netherlands
| | - Roland J. Pieters
- Department of Medicinal Chemistry & Chemical Biology
- Utrecht Institute for Pharmaceutical Sciences
- Utrecht University
- Utrecht
- The Netherlands
| |
Collapse
|
362
|
Thomas B, Fiore M, Daskhan GC, Spinelli N, Renaudet O. A multi-ligation strategy for the synthesis of heterofunctionalized glycosylated scaffolds. Chem Commun (Camb) 2015; 51:5436-9. [DOI: 10.1039/c4cc05451b] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Well-defined heterofunctionalized glycosylated scaffolds with unprecedented molecular combinations have been prepared using up to five different bioorthogonal ligations.
Collapse
|
363
|
Twibanire JDK, Paul NK, Grindley TB. Synthesis of novel types of polyester glycodendrimers as potential inhibitors of urinary tract infections. NEW J CHEM 2015. [DOI: 10.1039/c4nj00992d] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Syntheses of highly mannosylated polyester dendrimers with 2, 4, 8, and 16 α-d-mannopyranose residues on their peripheries connected by different linker arms are presented.
Collapse
Affiliation(s)
| | - Nawal K. Paul
- Department of Chemistry
- Dalhousie University
- Halifax
- Canada
| | | |
Collapse
|
364
|
Buffet K, Gillon E, Holler M, Nierengarten JF, Imberty A, Vincent SP. Fucofullerenes as tight ligands of RSL and LecB, two bacterial lectins. Org Biomol Chem 2015; 13:6482-92. [DOI: 10.1039/c5ob00689a] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A series of water-soluble glycofullerenes containing up to 24 fucose residues were tested against the two bacterial lectins LecB and RSL, and C60(E)12 bearing 24 fucose residues appeared to be the best known inhibitor of both lectins to date.
Collapse
Affiliation(s)
- Kevin Buffet
- University of Namur (UNamur)
- Académie Louvain
- Département de Chimie
- Laboratoire de Chimie Bio-Organique
- B-5000 Namur
| | - Emilie Gillon
- CERMAV - CNRS (affiliated to Université Grenoble Alpes and ICMG)
- Grenoble
- France
| | - Michel Holler
- Laboratoire de Chimie des Matériaux Moléculaires
- Université de Strasbourg et CNRS (UMR 7509)
- Ecole Européenne de Chimie
- Polymères et Matériaux (ECPM)
- 67087 Strasbourg Cedex 2
| | - Jean-François Nierengarten
- Laboratoire de Chimie des Matériaux Moléculaires
- Université de Strasbourg et CNRS (UMR 7509)
- Ecole Européenne de Chimie
- Polymères et Matériaux (ECPM)
- 67087 Strasbourg Cedex 2
| | - Anne Imberty
- CERMAV - CNRS (affiliated to Université Grenoble Alpes and ICMG)
- Grenoble
- France
| | - Stéphane P. Vincent
- University of Namur (UNamur)
- Académie Louvain
- Département de Chimie
- Laboratoire de Chimie Bio-Organique
- B-5000 Namur
| |
Collapse
|
365
|
Abellán-Flos M, Tanç M, Supuran CT, Vincent SP. Exploring carbonic anhydrase inhibition with multimeric coumarins displayed on a fullerene scaffold. Org Biomol Chem 2015; 13:7445-51. [DOI: 10.1039/c5ob01005e] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This study reports the first synthesis of multimeric suicide inhibitors of carbonic anhydrases.
Collapse
Affiliation(s)
- Marta Abellán-Flos
- University of Namur (UNamur)
- Académie Louvain
- Département de Chimie
- Laboratoire de Chimie Bio-Organique
- B-5000 Namur
| | - Muhammet Tanç
- Università degli Studi di Firenze
- Polo Scientifico
- Laboratorio di Chimica Bioinorganica
- Florence
- Italy
| | - Claudiu T. Supuran
- Università degli Studi di Firenze
- Polo Scientifico
- Laboratorio di Chimica Bioinorganica
- Florence
- Italy
| | - Stéphane P. Vincent
- University of Namur (UNamur)
- Académie Louvain
- Département de Chimie
- Laboratoire de Chimie Bio-Organique
- B-5000 Namur
| |
Collapse
|
366
|
Siriwardena A, Khanal M, Barras A, Bande O, Mena-Barragán T, Mellet CO, Garcia Fernández JM, Boukherroub R, Szunerits S. Unprecedented inhibition of glycosidase-catalyzed substrate hydrolysis by nanodiamond-grafted O-glycosides. RSC Adv 2015. [DOI: 10.1039/c5ra21390h] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Carbohydrate-coated nanodiamond particles with lectin recognition capabilities are not only stable towards the hydrolytic action of glycosidases, but also are endowed with the ability to inhibit them.
Collapse
Affiliation(s)
- Aloysius Siriwardena
- Laboratoire de Glycochimie des Antimicrobiennes et Bioresources
- FRE-CNRS 3517
- Université de Picardie Jules Verne
- 80039 Amiens
- France
| | - Manakamana Khanal
- Institute of Electronics
- Microelectronics and Nanotechnology (IEMN)
- UMR-CNRS 8520
- Lille1 University
- Avenue Poincaré-BP 60069
| | - Alexandre Barras
- Institute of Electronics
- Microelectronics and Nanotechnology (IEMN)
- UMR-CNRS 8520
- Lille1 University
- Avenue Poincaré-BP 60069
| | - Omprakash Bande
- Laboratoire de Glycochimie des Antimicrobiennes et Bioresources
- FRE-CNRS 3517
- Université de Picardie Jules Verne
- 80039 Amiens
- France
| | | | | | | | - Rabah Boukherroub
- Institute of Electronics
- Microelectronics and Nanotechnology (IEMN)
- UMR-CNRS 8520
- Lille1 University
- Avenue Poincaré-BP 60069
| | - Sabine Szunerits
- Institute of Electronics
- Microelectronics and Nanotechnology (IEMN)
- UMR-CNRS 8520
- Lille1 University
- Avenue Poincaré-BP 60069
| |
Collapse
|
367
|
Boukerb AM, Rousset A, Galanos N, Méar JB, Thépaut M, Grandjean T, Gillon E, Cecioni S, Abderrahmen C, Faure K, Redelberger D, Kipnis E, Dessein R, Havet S, Darblade B, Matthews SE, de Bentzmann S, Guéry B, Cournoyer B, Imberty A, Vidal S. Antiadhesive properties of glycoclusters against Pseudomonas aeruginosa lung infection. J Med Chem 2014; 57:10275-89. [PMID: 25419855 DOI: 10.1021/jm500038p] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Pseudomonas aeruginosa lung infections are a major cause of death in cystic fibrosis and hospitalized patients. Treating these infections is becoming difficult due to the emergence of conventional antimicrobial multiresistance. While monosaccharides have proved beneficial against such bacterial lung infection, the design of several multivalent glycosylated macromolecules has been shown to be also beneficial on biofilm dispersion. In this study, calix[4]arene-based glycoclusters functionalized with galactosides or fucosides have been synthesized. The characterization of their inhibitory properties on Pseudomonas aeruginosa aggregation, biofilm formation, adhesion on epithelial cells, and destruction of alveolar tissues were performed. The antiadhesive properties of the designed glycoclusters were demonstrated through several in vitro bioassays. An in vivo mouse model of lung infection provided an almost complete protection against Pseudomonas aeruginosa with the designed glycoclusters.
Collapse
Affiliation(s)
- Amine M Boukerb
- Equipe de Recherche, Bactéries Pathogènes Opportunistes et Environnement, UMR CNRS 5557 Ecologie Microbienne, Université Lyon 1 & VetAgro Sup , 43 Boulevard du 11 Novembre 1918, F-69622 Villeurbanne, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
368
|
Bellucci MC, Sani M, Sganappa A, Volonterio A. Diversity oriented combinatorial synthesis of multivalent glycomimetics through a multicomponent domino process. ACS COMBINATORIAL SCIENCE 2014; 16:711-20. [PMID: 25330415 DOI: 10.1021/co5001184] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Both multicomponent reactions and diversity oriented synthesis are indispensable tools for the modern medicinal chemist. However, their employment for the synthesis of multivalent glycomimetics has not been exploited so far although the importance that such compounds play in exploring multivalency on glycoside inhibition. Herein, we report the combinatorial synthesis of diversity oriented hetero di- and trivalent glycomimetics through a multicomponent domino process. The process is high yielding and very general, working efficiently with easily accessible sugar starting materials such as glycosylamines, glycosylazides, and glycosylisothiocyanates, having the reactive functional groups tethered either directly to the anomeric carbon, through a suitable linker, or to the primary 6 position of hexoses (or 5 position of pentoses), leading, in the latter case, to glycomimetics with artificial enzymatically stable backbone. The process has been also exploited for the multicomponent synthesis of aminoglycoside (neomycin) conjugates.
Collapse
Affiliation(s)
- Maria Cristina Bellucci
- Department
of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, via Celoria 2, 20133 Milano, Italy
| | - Monica Sani
- C.N.R. Istituto di Chimica del Riconoscimento Molecolare, via Mancinelli 7, 20131 Milano, Italy
| | - Aurora Sganappa
- Department
of Chemistry, Materials, and Chemical Engineer “G. Natta”, Politecnico di Milano,via Mancinelli 7, 20131 Milano, Italy
| | - Alessandro Volonterio
- Department
of Chemistry, Materials, and Chemical Engineer “G. Natta”, Politecnico di Milano,via Mancinelli 7, 20131 Milano, Italy
| |
Collapse
|
369
|
Kandziora M, Reissig HU. Preparation of Multivalent Carbohydrate Mimetics Based on Enantiopure 1,2-Oxazines by Sonogashira Coupling and Subsequent Reductive Ring-Opening. European J Org Chem 2014. [DOI: 10.1002/ejoc.201403186] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
370
|
Sommer R, Exner TE, Titz A. A biophysical study with carbohydrate derivatives explains the molecular basis of monosaccharide selectivity of the Pseudomonas aeruginosa lectin LecB. PLoS One 2014; 9:e112822. [PMID: 25415418 PMCID: PMC4240550 DOI: 10.1371/journal.pone.0112822] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 10/15/2014] [Indexed: 12/28/2022] Open
Abstract
The rise of resistances against antibiotics in bacteria is a major threat for public health and demands the development of novel antibacterial therapies. Infections with Pseudomonas aeruginosa are a severe problem for hospitalized patients and for patients suffering from cystic fibrosis. These bacteria can form biofilms and thereby increase their resistance towards antibiotics. The bacterial lectin LecB was shown to be necessary for biofilm formation and the inhibition with its carbohydrate ligands resulted in reduced amounts of biofilm. The natural ligands for LecB are glycosides of d-mannose and l-fucose, the latter displaying an unusual strong affinity. Interestingly, although mannosides are much weaker ligands for LecB, they do form an additional hydrogen bond with the protein in the crystal structure. To analyze the individual contributions of the methyl group in fucosides and the hydroxymethyl group in mannosides to the binding, we designed and synthesized derivatives of these saccharides. We report glycomimetic inhibitors that dissect the individual interactions of their saccharide precursors with LecB and give insight into the biophysics of binding by LecB. Furthermore, theoretical calculations supported by experimental thermodynamic data suggest a perturbed hydrogen bonding network for mannose derivatives as molecular basis for the selectivity of LecB for fucosides. Knowledge gained on the mode of interaction of LecB with its ligands at ambient conditions will be useful for future drug design.
Collapse
Affiliation(s)
- Roman Sommer
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus C 2.3, D-66123, Saarbrücken, Germany
- Department of Chemistry and Graduate School Chemical Biology, University of Konstanz, D-78457, Konstanz, Germany
| | - Thomas E. Exner
- Department of Chemistry and Graduate School Chemical Biology, University of Konstanz, D-78457, Konstanz, Germany
- Theoretical Medicinal Chemistry and Biophysics, Institute of Pharmacy, University of Tübingen, D-72076, Tübingen, Germany
| | - Alexander Titz
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus C 2.3, D-66123, Saarbrücken, Germany
- Department of Chemistry and Graduate School Chemical Biology, University of Konstanz, D-78457, Konstanz, Germany
- * E-mail:
| |
Collapse
|
371
|
Lindhorst TK. Multivalent glycosystems for nanoscience. Beilstein J Org Chem 2014; 10:2345-7. [PMID: 25383104 PMCID: PMC4222442 DOI: 10.3762/bjoc.10.244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 09/24/2014] [Indexed: 12/15/2022] Open
Affiliation(s)
- Thisbe K Lindhorst
- Otto Diels Institute of Organic Chemistry, Christiana Albertina University of Kiel, Otto-Hahn-Platz 3/4, 24098 Kiel, Germany
| |
Collapse
|
372
|
Esteve V, Berganzo J, Monge R, Martínez-Bisbal MC, Villa R, Celda B, Fernandez L. Development of a three-dimensional cell culture system based on microfluidics for nuclear magnetic resonance and optical monitoring. BIOMICROFLUIDICS 2014; 8:064105. [PMID: 25553182 PMCID: PMC4240776 DOI: 10.1063/1.4902002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 11/04/2014] [Indexed: 06/02/2023]
Abstract
A new microfluidic cell culture device compatible with real-time nuclear magnetic resonance (NMR) is presented here. The intended application is the long-term monitoring of 3D cell cultures by several techniques. The system has been designed to fit inside commercially available NMR equipment to obtain maximum readout resolution when working with small samples. Moreover, the microfluidic device integrates a fibre-optic-based sensor to monitor parameters such as oxygen, pH, or temperature during NMR monitoring, and it also allows the use of optical microscopy techniques such as confocal fluorescence microscopy. This manuscript reports the initial trials culturing neurospheres inside the microchamber of this device and the preliminary images and spatially localised spectra obtained by NMR. The images show the presence of a necrotic area in the interior of the neurospheres, as is frequently observed in histological preparations; this phenomenon appears whenever the distance between the cells and fresh nutrients impairs the diffusion of oxygen. Moreover, the spectra acquired in a volume of 8 nl inside the neurosphere show an accumulation of lactate and lipids, which are indicative of anoxic conditions. Additionally, a basis for general temperature control and monitoring and a graphical control software have been developed and are also described. The complete platform will allow biomedical assays of therapeutic agents to be performed in the early phases of therapeutic development. Thus, small quantities of drugs or advanced nanodevices may be studied long-term under simulated living conditions that mimic the flow and distribution of nutrients.
Collapse
|
373
|
Ligeour C, Dupin L, Marra A, Vergoten G, Meyer A, Dondoni A, Souteyrand E, Vasseur JJ, Chevolot Y, Morvan F. Synthesis of Galactoclusters by Metal-Free Thiol “Click Chemistry” and Their Binding Affinities forPseudomonas aeruginosaLectin LecA. European J Org Chem 2014. [DOI: 10.1002/ejoc.201402902] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
374
|
Dumitrescu L, Eppe G, Tikad A, Pan W, El Bkassiny S, Gurcha SS, Ardá A, Jiménez-Barbero J, Besra GS, Vincent SP. Selectfluor and NFSI exo-glycal fluorination strategies applied to the enhancement of the binding affinity of galactofuranosyltransferase GlfT2 inhibitors. Chemistry 2014; 20:15208-15. [PMID: 25251918 DOI: 10.1002/chem.201404180] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Indexed: 12/31/2022]
Abstract
Two complementary methods for the synthesis of fluorinated exo-glycals have been developed, for which previously no general reaction had been available. First, a Selectfluor-mediated fluorination was optimized after detailed analysis of all the reaction parameters. A dramatic effect of molecular sieves on the course of the reaction was observed. The reaction was generalized with a set of biologically relevant furanosides and pyranosides. A second direct approach involving carbanionic chemistry and the use of N-fluorobenzenesulfonimide (NFSI) was performed and this method gave better diastereoselectivities. Assignment of the Z/E configuration of all the fluorinated exo-glycals was achieved based on the results of HOESY experiments. Furthermore, fluorinated exo-glycal analogues of UDP-galactofuranose were prepared and assayed against GlfT2, which is a key enzyme involved in the cell-wall biosynthesis of major pathogens. The fluorinated exo-glycals proved to be potent inhibitors as compared with a series of C-glycosidic analogues of UDP-Galf, thus demonstrating the double beneficial effect of the exocyclic enol ether functionality and the fluorine atom.
Collapse
Affiliation(s)
- Lidia Dumitrescu
- University of Namur (UNamur), Département de Chimie, Laboratoire de Chimie Bio-Organique rue de Bruxelles 61, B-5000 Namur (Belgium), Fax: (+32) 81-72-45-17
| | | | | | | | | | | | | | | | | | | |
Collapse
|
375
|
Casoni F, Dupin L, Vergoten G, Meyer A, Ligeour C, Géhin T, Vidal O, Souteyrand E, Vasseur JJ, Chevolot Y, Morvan F. The influence of the aromatic aglycon of galactoclusters on the binding of LecA: a case study with O-phenyl, S-phenyl, O-benzyl, S-benzyl, O-biphenyl and O-naphthyl aglycons. Org Biomol Chem 2014; 12:9166-79. [DOI: 10.1039/c4ob01599a] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
376
|
Claes D, Memmel E, Holzapfel M, Seibel J, Maison W. High-Affinity Carbohydrate Binding by Trimeric Benzoboroxoles Measured on Carbohydrate Arrays. Chembiochem 2014; 15:2450-7. [DOI: 10.1002/cbic.201402297] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Indexed: 11/06/2022]
|
377
|
Dohi H, Kanazawa T, Saito A, Sato K, Uzawa H, Seto Y, Nishida Y. Bis(β-lactosyl)-[60]fullerene as novel class of glycolipids useful for the detection and the decontamination of biological toxins of the Ricinus communis family. Beilstein J Org Chem 2014; 10:1504-12. [PMID: 25161707 PMCID: PMC4142837 DOI: 10.3762/bjoc.10.155] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 05/22/2014] [Indexed: 12/12/2022] Open
Abstract
Glycosyl-[60]fullerenes were first used as decontaminants against ricin, a lactose recognition proteotoxin in the Ricinus communis family. A fullerene glycoconjugate carrying two lactose units was synthesized by a [3 + 2] cycloaddition reaction between C60 and the azide group in 6-azidohexyl β-lactoside per-O-acetate. A colloidal aqueous solution with brown color was prepared from deprotected bis(lactosyl)-C60 and was found stable for more than 6 months keeping its red color. Upon mixing with an aqueous solution of Ricinus communis agglutinin (RCA120), the colloidal solution soon caused precipitations, while becoming colorless and transparent. In contrast, a solution of concanavalin A (Con A) caused no apparent change, indicating that the precipitation was caused specifically by carbohydrate–protein interactions. This notable phenomenon was quantified by means of sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), and the results were discussed in terms of detection and decontamination of the deadly biological toxin in the Ricinus communis family.
Collapse
Affiliation(s)
- Hirofumi Dohi
- Department of Nanobiology, Graduate School of Advanced Integration Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Takeru Kanazawa
- Department of Nanobiology, Graduate School of Advanced Integration Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Akihiro Saito
- Department of Materials and Life Science, Shizuoka Institute of Science and Technology, 2200-2 Toyosawa, Fukuroi, Shizuoka 437-8555, Japan
| | - Keita Sato
- National Research Institute of Police Science, 6-3-1 Kashiwanoha, Kashiwa, Chiba 277-0882, Japan
| | - Hirotaka Uzawa
- Nanosystem Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, 305-8565, Japan
| | - Yasuo Seto
- National Research Institute of Police Science, 6-3-1 Kashiwanoha, Kashiwa, Chiba 277-0882, Japan
| | - Yoshihiro Nishida
- Department of Nanobiology, Graduate School of Advanced Integration Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| |
Collapse
|
378
|
Novoa A, Machida T, Barluenga S, Imberty A, Winssinger N. PNA-encoded synthesis (PES) of a 10 000-member hetero-glycoconjugate library and microarray analysis of diverse lectins. Chembiochem 2014; 15:2058-65. [PMID: 25158314 DOI: 10.1002/cbic.201402280] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Indexed: 11/07/2022]
Abstract
Identification of selective and synthetically tractable ligands to glycan-binding proteins is important in glycoscience. Carbohydrate arrays have had a tremendous impact on profiling glycan-binding proteins and as analytical tools. We report a highly miniaturized synthetic format to access nucleic-acid-encoded hetero-glycoconjugate libraries with an unprecedented diversity in the combinations of glycans, linkers, and capping groups. Novel information about plant and bacterial lectin specificity was obtained by microarray profiling, and we show that a ligand identified on the array can be converted to a high-affinity soluble ligand by straightforward chemistry.
Collapse
Affiliation(s)
- Alexandre Novoa
- Department of Organic Chemistry, University of Geneva, Quai Ernest Ansermet 30, 1211 Geneva 4 (Switzerland)
| | | | | | | | | |
Collapse
|
379
|
Smadhi M, de Bentzmann S, Imberty A, Gingras M, Abderrahim R, Goekjian PG. Expeditive synthesis of trithiotriazine-cored glycoclusters and inhibition of Pseudomonas aeruginosa biofilm formation. Beilstein J Org Chem 2014; 10:1981-90. [PMID: 25246957 PMCID: PMC4168900 DOI: 10.3762/bjoc.10.206] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 07/30/2014] [Indexed: 12/13/2022] Open
Abstract
Readily accessible, low-valency glycoclusters based on a triazine core bearing D-galactose and L-fucose epitopes are able to inhibit biofilm formation by Pseudomonas aeruginosa. These multivalent ligands are simple to synthesize, are highly soluble, and can be either homofunctional or heterofunctional. The galactose-decorated cluster shows good affinity for Pseudomonas aeruginosa lectin lecA. They are convenient biological probes for investigating the roles of lecA and lecB in biofilm formation.
Collapse
Affiliation(s)
- Meriem Smadhi
- Laboratoire Chimie Organique 2 Glycochimie, Université de Lyon, ICBMS, UMR 5246 - CNRS, Université Claude Bernard Lyon 1, Bat. 308 -CPE Lyon, 43 Bd. du 11 Novembre 1918, 69622 Villeurbanne, France. ; Tel: +33-4-72448183 ; Université de Carthage, Faculté des sciences Bizerte, Tunisie
| | - Sophie de Bentzmann
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires, Institut de Biologie Structurale et Microbiologie, CNRS-Aix Marseille University, UMR7255, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France
| | - Anne Imberty
- Centre de Recherches sur les Macromolécules Végétales (CERMAV), UPR 5301 CNRS et Université Grenoble Alpes, BP53, 38041 Grenoble, France
| | - Marc Gingras
- Aix-Marseille Université, CNRS, CINaM UMR 7325, 163 Avenue de Luminy 13288 Marseille, France
| | | | - Peter G Goekjian
- Laboratoire Chimie Organique 2 Glycochimie, Université de Lyon, ICBMS, UMR 5246 - CNRS, Université Claude Bernard Lyon 1, Bat. 308 -CPE Lyon, 43 Bd. du 11 Novembre 1918, 69622 Villeurbanne, France. ; Tel: +33-4-72448183
| |
Collapse
|
380
|
Dix AV, Moss SM, Phan K, Hoppe T, Paoletta S, Kozma E, Gao ZG, Durell SR, Jacobson KA, Appella DH. Programmable nanoscaffolds that control ligand display to a G-protein-coupled receptor in membranes to allow dissection of multivalent effects. J Am Chem Soc 2014; 136:12296-303. [PMID: 25116377 PMCID: PMC4156868 DOI: 10.1021/ja504288s] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
![]()
A programmable
ligand display system can be used to dissect the
multivalent effects of ligand binding to a membrane receptor. An antagonist
of the A2A adenosine receptor, a G-protein-coupled receptor
that is a drug target for neurodegenerative conditions, was displayed
in 35 different multivalent configurations, and binding to A2A was determined. A theoretical model based on statistical mechanics
was developed to interpret the binding data, suggesting the importance
of receptor dimers. Using this model, extended multivalent arrangements
of ligands were constructed with progressive improvements in binding
to A2A. The results highlight the ability to use a highly
controllable multivalent approach to determine optimal ligand valency
and spacing that can be subsequently optimized for binding to a membrane
receptor. Models explaining the multivalent binding data are also
presented.
Collapse
Affiliation(s)
- Andrew V Dix
- Laboratory of Bioorganic Chemistry, NIDDK, ‡Laboratory of Biochemistry and Genetics, NIDDK, and §Laboratory of Cell Biology, CCR, NCI, National Institutes of Health , Bethesda, Maryland 20892, United States
| | | | | | | | | | | | | | | | | | | |
Collapse
|
381
|
Branson TR, McAllister TE, Garcia-Hartjes J, Fascione MA, Ross JF, Warriner SL, Wennekes T, Zuilhof H, Turnbull WB. A protein-based pentavalent inhibitor of the cholera toxin B-subunit. Angew Chem Int Ed Engl 2014; 53:8323-7. [PMID: 24989497 PMCID: PMC4499251 DOI: 10.1002/anie.201404397] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Indexed: 01/04/2023]
Abstract
Protein toxins produced by bacteria are the cause of many life-threatening diarrheal diseases. Many of these toxins, including cholera toxin (CT), enter the cell by first binding to glycolipids in the cell membrane. Inhibiting these multivalent protein/carbohydrate interactions would prevent the toxin from entering cells and causing diarrhea. Here we demonstrate that the site-specific modification of a protein scaffold, which is perfectly matched in both size and valency to the target toxin, provides a convenient route to an effective multivalent inhibitor. The resulting pentavalent neoglycoprotein displays an inhibition potency (IC50) of 104 pM for the CT B-subunit (CTB), which is the most potent pentavalent inhibitor for this target reported thus far. Complexation of the inhibitor and CTB resulted in a protein heterodimer. This inhibition strategy can potentially be applied to many multivalent receptors and also opens up new possibilities for protein assembly strategies.
Collapse
Affiliation(s)
- Thomas R Branson
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, LeedsLS2 9JT (UK)
| | - Tom E McAllister
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, LeedsLS2 9JT (UK)
| | - Jaime Garcia-Hartjes
- Laboratory of Organic Chemistry, Wageningen UniversityDreijenplein 8, 6703 HB Wageningen (The Netherlands)
| | - Martin A Fascione
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, LeedsLS2 9JT (UK)
| | - James F Ross
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, LeedsLS2 9JT (UK)
| | - Stuart L Warriner
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, LeedsLS2 9JT (UK)
| | - Tom Wennekes
- Laboratory of Organic Chemistry, Wageningen UniversityDreijenplein 8, 6703 HB Wageningen (The Netherlands)
| | - Han Zuilhof
- Laboratory of Organic Chemistry, Wageningen UniversityDreijenplein 8, 6703 HB Wageningen (The Netherlands)
- Department of Chemical and Materials Engineering, King Abdulaziz UniversityJeddah (Saudi-Arabia)
| | - W Bruce Turnbull
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, LeedsLS2 9JT (UK)
| |
Collapse
|
382
|
Gouin SG. Multivalent Inhibitors for Carbohydrate-Processing Enzymes: Beyond the “Lock-and-Key” Concept. Chemistry 2014; 20:11616-28. [DOI: 10.1002/chem.201402537] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
383
|
Whitton G, Gillies ER. Functional aqueous assemblies of linear-dendron hybrids. ACTA ACUST UNITED AC 2014. [DOI: 10.1002/pola.27316] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Greg Whitton
- Department of Chemistry; The University of Western Ontario; 1151 Richmond Street London Ontario Canada N6A 5B7
| | - Elizabeth R. Gillies
- Department of Chemistry; The University of Western Ontario; 1151 Richmond Street London Ontario Canada N6A 5B7
- Department of Chemical and Biochemical Engineering; The University of Western Ontario; 1151 Richmond Street London Ontario Canada N6A 5B9
| |
Collapse
|
384
|
Bini D, Nicotra F, Cipolla L. Bifunctional dendrons for multiple carbohydrate presentation via carbonyl chemistry. Beilstein J Org Chem 2014; 10:1686-91. [PMID: 25161728 PMCID: PMC4143090 DOI: 10.3762/bjoc.10.177] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 06/27/2014] [Indexed: 01/01/2023] Open
Abstract
The synthesis of new dendrons of the generations 0, 1 and 2 with a double bond at the focal point and a carbonyl group at the termini has been carried out. The carbonyl group has been exploited for the multivalent conjugation to a sample saccharide by reductive amination and alkoxyamine conjugation.
Collapse
Affiliation(s)
- Davide Bini
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| | - Francesco Nicotra
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| | - Laura Cipolla
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| |
Collapse
|
385
|
Ponader D, Igde S, Wehle M, Märker K, Santer M, Bléger D, Hartmann L. Photoswitchable precision glycooligomers and their lectin binding. Beilstein J Org Chem 2014; 10:1603-12. [PMID: 25161717 PMCID: PMC4143111 DOI: 10.3762/bjoc.10.166] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 06/17/2014] [Indexed: 11/23/2022] Open
Abstract
The synthesis of photoswitchable glycooligomers is presented by applying solid-phase polymer synthesis and functional building blocks. The obtained glycoligands are monodisperse and present azobenzene moieties as well as sugar ligands at defined positions within the oligomeric backbone and side chains, respectively. We show that the combination of molecular precision together with the photoswitchable properties of the azobenzene unit allows for the photosensitive control of glycoligand binding to protein receptors. These stimuli-sensitive glycoligands promote the understanding of multivalent binding and will be further developed as novel biosensors.
Collapse
Affiliation(s)
- Daniela Ponader
- Max Planck Institute of Colloids and Interfaces, Department of Biomolecular Systems, Research Campus Golm, 14424 Potsdam, Germany
| | - Sinaida Igde
- Max Planck Institute of Colloids and Interfaces, Department of Biomolecular Systems, Research Campus Golm, 14424 Potsdam, Germany
| | - Marko Wehle
- Max Planck Institute of Colloids and Interfaces, Department of Theory & Bio-Systems, Research Campus Golm, 14424 Potsdam, Germany
| | - Katharina Märker
- Max Planck Institute of Colloids and Interfaces, Department of Biomolecular Systems, Research Campus Golm, 14424 Potsdam, Germany
| | - Mark Santer
- Max Planck Institute of Colloids and Interfaces, Department of Theory & Bio-Systems, Research Campus Golm, 14424 Potsdam, Germany
| | - David Bléger
- Humboldt University, Department of Chemistry, Brook-Taylor-Str. 2, 12489 Berlin, Germany
| | - Laura Hartmann
- Max Planck Institute of Colloids and Interfaces, Department of Biomolecular Systems, Research Campus Golm, 14424 Potsdam, Germany
| |
Collapse
|
386
|
Novoa A, Eierhoff T, Topin J, Varrot A, Barluenga S, Imberty A, Römer W, Winssinger N. A LecA Ligand Identified from a Galactoside-Conjugate Array Inhibits Host Cell Invasion byPseudomonas aeruginosa. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201402831] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
387
|
Novoa A, Eierhoff T, Topin J, Varrot A, Barluenga S, Imberty A, Römer W, Winssinger N. A LecA ligand identified from a galactoside-conjugate array inhibits host cell invasion by Pseudomonas aeruginosa. Angew Chem Int Ed Engl 2014; 53:8885-9. [PMID: 25044671 DOI: 10.1002/anie.201402831] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 04/24/2014] [Indexed: 11/06/2022]
Abstract
Lectin LecA is a virulence factor of Pseudomonas aeruginosa involved in lung injury, mortality, and cellular invasion. Ligands competing with human glycoconjugates for LecA binding are thus promising candidates to counteract P. aeruginosa infections. We have identified a novel divalent ligand from a focused galactoside(Gal)-conjugate array which binds to LecA with very high affinity (Kd = 82 nM). Crystal structures of LecA complexed with the ligand together with modeling studies confirmed its ability to chelate two binding sites of LecA. The ligand lowers cellular invasiveness of P. aeruginosa up to 90 % when applied in the range of 0.05-5 μM. Hence, this ligand might lead to the development of drugs against P. aeruginosa infection.
Collapse
Affiliation(s)
- Alexandre Novoa
- Department of Organic Chemistry, University of Geneva (Switzerland)
| | | | | | | | | | | | | | | |
Collapse
|
388
|
Branson TR, McAllister TE, Garcia-Hartjes J, Fascione MA, Ross JF, Warriner SL, Wennekes T, Zuilhof H, Turnbull WB. A Protein-Based Pentavalent Inhibitor of the Cholera Toxin B-Subunit. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201404397] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
389
|
Lindhorst TK, Elsner K. Postsynthetic functionalization of glycodendrons at the focal point. Beilstein J Org Chem 2014; 10:1482-7. [PMID: 25161704 PMCID: PMC4142895 DOI: 10.3762/bjoc.10.152] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 06/10/2014] [Indexed: 02/03/2023] Open
Abstract
Glycodendrons are multivalent glycoconjugates bearing an orthogonal functional group at the focal point of the molecule. This allows for their postsynthetic elaboration to achieve amphiphilic glycolipid mimetics, for example, which eventually can be applied in biology, biophysics, or material science. Here, postsynthetic modification of di- and tetravalent polyether glycodendrons has been explored using etherification, thiol-ene reaction and in particular olefin cross metathesis.
Collapse
Affiliation(s)
- Thisbe K Lindhorst
- Otto Diels Institute of Organic Chemistry, Christiana Albertina University of Kiel, Otto-Hahn-Platz 3–4, D-24098 Kiel
| | - Katharina Elsner
- Otto Diels Institute of Organic Chemistry, Christiana Albertina University of Kiel, Otto-Hahn-Platz 3–4, D-24098 Kiel
| |
Collapse
|
390
|
Giorgi ME, Agusti R, de Lederkremer RM. Carbohydrate PEGylation, an approach to improve pharmacological potency. Beilstein J Org Chem 2014; 10:1433-44. [PMID: 24991298 PMCID: PMC4077506 DOI: 10.3762/bjoc.10.147] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 05/26/2014] [Indexed: 12/18/2022] Open
Abstract
Conjugation with polyethylene glycol (PEG), known as PEGylation, has been widely used to improve the bioavailability of proteins and low molecular weight drugs. The covalent conjugation of PEG to the carbohydrate moiety of a protein has been mainly used to enhance the pharmacokinetic properties of the attached protein while yielding a more defined product. Thus, glycoPEGylation was successfully applied to the introduction of a PEGylated sialic acid to a preexisting or enzymatically linked glycan in a protein. Carbohydrates are now recognized as playing an important role in host–pathogen interactions in protozoal, bacterial and viral infections and are consequently candidates for chemotherapy. The short in vivo half-life of low molecular weight glycans hampered their use but methods for the covalent attachment of PEG have been less exploited. In this review, information on the preparation and application of PEG-carbohydrates, in particular multiarm PEGylation, is presented.
Collapse
Affiliation(s)
- M Eugenia Giorgi
- CIHIDECAR-CONICET, Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón II, Ciudad Universitaria, 1428 Buenos Aires, Argentina
| | - Rosalía Agusti
- CIHIDECAR-CONICET, Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón II, Ciudad Universitaria, 1428 Buenos Aires, Argentina
| | - Rosa M de Lederkremer
- CIHIDECAR-CONICET, Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón II, Ciudad Universitaria, 1428 Buenos Aires, Argentina
| |
Collapse
|
391
|
Sutkeviciute I, Thépaut M, Sattin S, Berzi A, McGeagh J, Grudinin S, Weiser J, Le Roy A, Reina JJ, Rojo J, Clerici M, Bernardi A, Ebel C, Fieschi F. Unique DC-SIGN clustering activity of a small glycomimetic: A lesson for ligand design. ACS Chem Biol 2014; 9:1377-85. [PMID: 24749535 DOI: 10.1021/cb500054h] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
DC-SIGN is a dendritic cell-specific C-type lectin receptor that recognizes highly glycosylated ligands expressed on the surface of various pathogens. This receptor plays an important role in the early stages of many viral infections, including HIV, which makes it an interesting therapeutic target. Glycomimetic compounds are good drug candidates for DC-SIGN inhibition due to their high solubility, resistance to glycosidases, and nontoxicity. We studied the structural properties of the interaction of the tetrameric DC-SIGN extracellular domain (ECD), with two glycomimetic antagonists, a pseudomannobioside (1) and a linear pseudomannotrioside (2). Though the inhibitory potency of 2, as measured by SPR competition experiments, was 1 order of magnitude higher than that of 1, crystal structures of the complexes within the DC-SIGN carbohydrate recognition domain showed the same binding mode for both compounds. Moreover, when conjugated to multivalent scaffolds, the inhibitory potencies of these compounds became uniform. Combining isothermal titration microcalorimetry, analytical ultracentrifugation, and dynamic light scattering techniques to study DC-SIGN ECD interaction with these glycomimetics revealed that 2 is able, without any multivalent presentation, to cluster DC-SIGN tetramers leading to an artificially overestimated inhibitory potency. The use of multivalent scaffolds presenting 1 or 2 in HIV trans-infection inhibition assay confirms the loss of potency of 2 upon conjugation and the equal efficacy of chemically simpler compound 1. This study documents a unique case where, among two active compounds chemically derived, the compound with the lower apparent activity is the optimal lead for further drug development.
Collapse
Affiliation(s)
- Ieva Sutkeviciute
- Univ. Grenoble Alpes, Institut de Biologie Structurale (IBS), Grenoble F-38027, France
- CNRS, IBS Grenoble F-38000, France
- CEA, DSV-IBS, Grenoble F-38000, France
| | - Michel Thépaut
- Univ. Grenoble Alpes, Institut de Biologie Structurale (IBS), Grenoble F-38027, France
- CNRS, IBS Grenoble F-38000, France
- CEA, DSV-IBS, Grenoble F-38000, France
| | - Sara Sattin
- Dipartimento
di Chimica, Universita’ di Milano, via Golgi 19, Milano 20133, Italy
| | - Angela Berzi
- Department
of Biomedical and Clinical Sciences, University of Milan, Milan 20157, Italy
| | - John McGeagh
- Anterio Consult&Research GmbH, Augustaanlage 23, Mannheim D-68165, Germany
| | - Sergei Grudinin
- INRIA Grenoble, Saint Ismier Cedex F-38334, France
- CNRS Laboratoire
Jean Kuntzmann, Grenoble 38041, France
| | - Jörg Weiser
- Anterio Consult&Research GmbH, Augustaanlage 23, Mannheim D-68165, Germany
| | - Aline Le Roy
- Univ. Grenoble Alpes, Institut de Biologie Structurale (IBS), Grenoble F-38027, France
- CNRS, IBS Grenoble F-38000, France
- CEA, DSV-IBS, Grenoble F-38000, France
| | - Jose J. Reina
- Glycosystems
Laboratory, Instituto de Investigaciones Químicas (IIQ), CSIC−Universidad de Sevilla, Av. Américo Vespucio 49, Seville 41092, Spain
| | - Javier Rojo
- Glycosystems
Laboratory, Instituto de Investigaciones Químicas (IIQ), CSIC−Universidad de Sevilla, Av. Américo Vespucio 49, Seville 41092, Spain
| | - Mario Clerici
- Department
of Physiopatology and Transplantation, University of Milan and Don C. Gnocchi Foundation ONLUS, IRCCS, Milan 20148, Italy
| | - Anna Bernardi
- Dipartimento
di Chimica, Universita’ di Milano, via Golgi 19, Milano 20133, Italy
| | - Christine Ebel
- Univ. Grenoble Alpes, Institut de Biologie Structurale (IBS), Grenoble F-38027, France
- CNRS, IBS Grenoble F-38000, France
- CEA, DSV-IBS, Grenoble F-38000, France
| | - Franck Fieschi
- Univ. Grenoble Alpes, Institut de Biologie Structurale (IBS), Grenoble F-38027, France
- CNRS, IBS Grenoble F-38000, France
- CEA, DSV-IBS, Grenoble F-38000, France
| |
Collapse
|
392
|
Wang S, Galanos N, Rousset A, Buffet K, Cecioni S, Lafont D, Vincent SP, Vidal S. Fucosylation of triethyleneglycol-based acceptors into 'clickable' α-fucosides. Carbohydr Res 2014; 395:15-8. [PMID: 24995912 DOI: 10.1016/j.carres.2014.06.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 05/20/2014] [Accepted: 06/04/2014] [Indexed: 11/30/2022]
Abstract
Design of multivalent glycoconjugates can find applications such as in anti-adhesive therapy against bacterial infections. Nevertheless, the access to such macromolecules requires functionalized building blocks prepared in a minimum number of steps and on a multi-gram scale at least for the laboratory. Fucose is a representative epitope used by several bacteria for adhesion to their host cells. The stereoselective, rapid, and efficient access to two 'clickable' α-fucosides was re-investigated using PPh3/CBr4-promoted glycosylation of chloro- (as precursors of azido-) and alkyne-functionalized triethyleneglycols with fully unprotected l-fucose. The convenient access to such building blocks paves the way to the design of new multivalent glycoconjugates functionalized with fucose epitopes and their applications.
Collapse
Affiliation(s)
- Shuai Wang
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, CO2-Glyco, UMR 5246, CNRS, Université Claude Bernard Lyon 1, Université de Lyon, 43 Boulevard du 11 Novembre 1918, F-69622 Villeurbanne, France
| | - Nicolas Galanos
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, CO2-Glyco, UMR 5246, CNRS, Université Claude Bernard Lyon 1, Université de Lyon, 43 Boulevard du 11 Novembre 1918, F-69622 Villeurbanne, France
| | - Audric Rousset
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, CO2-Glyco, UMR 5246, CNRS, Université Claude Bernard Lyon 1, Université de Lyon, 43 Boulevard du 11 Novembre 1918, F-69622 Villeurbanne, France
| | - Kevin Buffet
- Department of Chemistry, University of Namur, Rue de Bruxelles 61, 5000 Namur, Belgium
| | - Samy Cecioni
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, CO2-Glyco, UMR 5246, CNRS, Université Claude Bernard Lyon 1, Université de Lyon, 43 Boulevard du 11 Novembre 1918, F-69622 Villeurbanne, France
| | - Dominique Lafont
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, CO2-Glyco, UMR 5246, CNRS, Université Claude Bernard Lyon 1, Université de Lyon, 43 Boulevard du 11 Novembre 1918, F-69622 Villeurbanne, France
| | - Stéphane P Vincent
- Department of Chemistry, University of Namur, Rue de Bruxelles 61, 5000 Namur, Belgium
| | - Sébastien Vidal
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, CO2-Glyco, UMR 5246, CNRS, Université Claude Bernard Lyon 1, Université de Lyon, 43 Boulevard du 11 Novembre 1918, F-69622 Villeurbanne, France.
| |
Collapse
|
393
|
Pussak D, Ponader D, Mosca S, Pompe T, Hartmann L, Schmidt S. Specific adhesion of carbohydrate hydrogel particles in competition with multivalent inhibitors evaluated by AFM. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:6142-6150. [PMID: 24806833 DOI: 10.1021/la5010006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Synthetic glycooligomers have emerged as valuable analogues for multivalent glycan structures in nature. These multivalent carbohydrates bind to specific receptors and play a key role in biological processes. In this work, we investigate the specific interaction between mannose ligand presenting soft colloidal probes (SCPs) attached to an atomic force microscope (AFM) cantilever and a Concanavalin A (ConA) receptor surface in the presence of competing glycooligomer ligands. We studied the SCP-ConA adhesion energy via the JKR approach and AFM pull-off experiments in combination with optical microscopy allowing for simultaneous determination of the contact area between SCP and ConA surface. We varied the contact time, loading rate and loading force and measured the resulting mannose/ConA interaction. The average adhesion energy per mannose ligand on the probe was 5 kJ/mol, suggesting that a fraction of mannose ligands presented on the SCP bound to the receptor surface. Adhesion measurements via competitive binding of the SCP in the presence of multivalent glycooligomer ligands did not indicate an influence of their multivalency on the glycooligomer displacement from the ConA surface. The absence of this "multivalency effect" indicates that glycooligomers and ConA do not associate via chelate complexes and shows that steric shielding by the glycooligomers does not slow their displacement upon competitive binding of a ligand presenting surface. These results highlight the high reversibility of carbohydrate-surface interactions, which could be an essential feature of recognition processes on the cell surface.
Collapse
Affiliation(s)
- Daniel Pussak
- Max-Planck-Institut für Kolloid- und Grenzflächenforschung, Wissenschaftspark Potsdam-Golm, Am Mühlenberg 1 OT Golm, 14426 Potsdam, Germany
| | | | | | | | | | | |
Collapse
|
394
|
Canales Á, Mallagaray Á, Berbís MÁ, Navarro-Vázquez A, Domínguez G, Cañada FJ, André S, Gabius HJ, Pérez-Castells J, Jiménez-Barbero J. Lanthanide-Chelating Carbohydrate Conjugates Are Useful Tools To Characterize Carbohydrate Conformation in Solution and Sensitive Sensors to Detect Carbohydrate–Protein Interactions. J Am Chem Soc 2014; 136:8011-7. [DOI: 10.1021/ja502406x] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Ángeles Canales
- Department
of Química Orgánica I, Fac. C.C. Químicas, Universidad Complutense de Madrid, Avd. Complutense s/n 28040, Madrid, Spain
| | - Álvaro Mallagaray
- Department
of De Biología Físico-Química, Centro de Investigaciones Biológicas, CSIC, 28040, Madrid, Spain
| | - M. Álvaro Berbís
- Department
of De Biología Físico-Química, Centro de Investigaciones Biológicas, CSIC, 28040, Madrid, Spain
| | - Armando Navarro-Vázquez
- Department
of Química Orgánica, Universidade de Vigo, Campus Universitario
Vigo, 36310, Pontevedra, Spain
| | - Gema Domínguez
- Faculty
of De Farmacia, Department of Química, Universidad CEU San Pablo, Urb. Montepríncipe, ctra. Boadilla del Monte, 28668, Madrid, Spain
| | - F. Javier Cañada
- Department
of De Biología Físico-Química, Centro de Investigaciones Biológicas, CSIC, 28040, Madrid, Spain
| | - Sabine André
- Institute
of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians University, 80539, Munich, Germany
| | - Hans-Joachim Gabius
- Institute
of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians University, 80539, Munich, Germany
| | - Javier Pérez-Castells
- Faculty
of De Farmacia, Department of Química, Universidad CEU San Pablo, Urb. Montepríncipe, ctra. Boadilla del Monte, 28668, Madrid, Spain
| | - Jesús Jiménez-Barbero
- Department
of De Biología Físico-Química, Centro de Investigaciones Biológicas, CSIC, 28040, Madrid, Spain
| |
Collapse
|
395
|
Bhatia S, Dimde M, Haag R. Multivalent glycoconjugates as vaccines and potential drug candidates. MEDCHEMCOMM 2014. [DOI: 10.1039/c4md00143e] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
396
|
Fiore M, Berthet N, Marra A, Gillon E, Dumy P, Dondoni A, Imberty A, Renaudet O. Tetravalent glycocyclopeptide with nanomolar affinity to wheat germ agglutinin. Org Biomol Chem 2014; 11:7113-22. [PMID: 24057055 DOI: 10.1039/c3ob41203b] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of tetravalent glycocyclopeptides functionalized with GlcNAc was synthesized using copper(i)-catalysed alkyne-azide cycloaddition, oxime ligation and thiol-ene coupling. The binding ability of these compounds towards wheat germ agglutinin was studied by a competitive ELLA test and ITC experiments. While all compounds were able to inhibit WGA binding to GlcNAc-polymer coated surfaces at low concentrations, derivative 17 having an aliphatic spacer and thioether linkage was 4.9 × 10(6) times more potent on a per sugar basis than GlcNAc. This remarkably strong effect was confirmed by ITC experiments as these revealed an association constant of 9 nM for this compound, therefore presenting a gain of 200,000 times over GlcNAc. These results for compound 17 represent the highest binding properties reported for WGA.
Collapse
Affiliation(s)
- Michele Fiore
- Département de Chimie Moléculaire, UMR-CNRS 5250 & ICMG FR 2607, Université Joseph Fourier, BP 53, 38041 Grenoble Cedex 9, France.
| | | | | | | | | | | | | | | |
Collapse
|
397
|
Rodrigue J, Ganne G, Blanchard B, Saucier C, Giguère D, Shiao TC, Varrot A, Imberty A, Roy R. Aromatic thioglycoside inhibitors against the virulence factor LecA from Pseudomonas aeruginosa. Org Biomol Chem 2014; 11:6906-18. [PMID: 24057051 DOI: 10.1039/c3ob41422a] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Three small families of hydrolytically stable thioaryl glycosides were prepared as inhibitors of the LecA (PA-IL) virulence factor corresponding to the carbohydrate binding lectin from the bacterial pathogen Pseudomonas aeruginosa. The monosaccharidic arylthio β-d-galactopyranosides served as a common template for the major series that was also substituted at the O-3 position. Arylthio disaccharides from lactose and from melibiose constituted the other two series members. In spite of the fact that the natural ligand for LecA is a glycolipid of the globotriaosylceramide having an α-d-galactopyranoside epitope, this study illustrated that the β-d-galactopyranoside configuration having a hydrophobic aglycon could override the requirement toward the anomeric configuration of the natural sugar. The enzyme linked lectin assay together with isothermal titration microcalorimetry established that naphthyl 1-thio-β-d-galactopyranoside () gave the best inhibition with an IC50 twenty-three times better than that of the reference methyl α-d-galactopyranoside. In addition it showed a KD of 6.3 μM which was ten times better than that of the reference compound. The X-ray crystal structure of LecA with was also obtained.
Collapse
Affiliation(s)
- Jacques Rodrigue
- PharmaQAM - Department of Chemistry, Université du Québec à Montréal, P.O. Box 8888, Succ. Centre-ville, Montréal, Québec, Canada H3C 3P8.
| | | | | | | | | | | | | | | | | |
Collapse
|
398
|
Nasir W, Nilsson J, Olofsson S, Bally M, Rydell GE. Parvovirus B19 VLP recognizes globoside in supported lipid bilayers. Virology 2014; 456-457:364-9. [DOI: 10.1016/j.virol.2014.04.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 03/24/2014] [Accepted: 04/03/2014] [Indexed: 11/30/2022]
|
399
|
Nierengarten I, Nierengarten JF. Fullerene sugar balls: a new class of biologically active fullerene derivatives. Chem Asian J 2014; 9:1436-44. [PMID: 24678063 DOI: 10.1002/asia.201400133] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Indexed: 12/12/2022]
Abstract
Among the large variety of bioactive C60 derivatives, fullerene derivatives substituted with sugar residues, that is, glycofullerenes, are of particular interest. The sugar residues are not only solubilizing groups; their intrinsic biological properties also provide additional appealing features to the conjugates. The most recent advances in the synthesis and the biological applications of glycofullerenes are summarized in the present review article with special emphasis on globular glycofullerenes, that is, fullerene sugar balls, constructed on a hexa-substituted fullerene scaffold. The high local concentration of carbohydrates around the C60 core in fullerene sugar balls is perfectly suited to the binding of lectins through the "glycoside cluster effect", and these compounds are potential anti-adhesive agents against bacterial infection. Moreover, mannosylated fullerene sugar balls have shown antiviral activity in an Ebola pseudotyped infection model. Finally, when substituted with peripheral iminosugars, dramatic multivalent effects have been observed for glycosidase inhibition. These unexpected observations have been rationalized by the interplay of interactions involving the catalytic site of the enzyme and non-glycone binding sites with lectin-like abilities.
Collapse
Affiliation(s)
- Iwona Nierengarten
- Laboratoire de Chimie des Matériaux Moléculaires, Université de Strasbourg et CNRS (UMR 7509), Ecole Européenne de Chimie, Polymères et Matériaux, 25 rue Becquerel, 67087 Strasbourg Cedex 2 (France)
| | | |
Collapse
|
400
|
Šimonová A, Kupper CE, Böcker S, Müller A, Hofbauerová K, Pelantová H, Elling L, Křen V, Bojarová P. Chemo-enzymatic synthesis of LacdiNAc dimers of varying length as novel galectin ligands. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.molcatb.2013.12.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|