351
|
Yu R, Sun C, Liu Y, Zhou R. Shifts from cis-to trans-splicing of five mitochondrial introns in Tolypanthus maclurei. PeerJ 2021; 9:e12260. [PMID: 34703675 PMCID: PMC8489412 DOI: 10.7717/peerj.12260] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 09/15/2021] [Indexed: 01/20/2023] Open
Abstract
Shifts from cis-to trans-splicing of mitochondrial introns tend to correlate with relative genome rearrangement rates during vascular plant evolution, as is particularly apparent in some lineages of gymnosperms. However, although many angiosperms have also relatively high mitogenomic rearrangement rates, very few cis-to trans-splicing shifts except for five trans-spliced introns shared in seed plants have been reported. In this study, we sequenced and characterized the mitogenome of Tolypanthus maclurei, a hemiparasitic plant from the family Loranthaceae (Santalales). The mitogenome was assembled into a circular chromosome of 256,961 bp long, relatively small compared with its relatives from Santalales. It possessed a gene content of typical angiosperm mitogenomes, including 33 protein-coding genes, three rRNA genes and ten tRNA genes. Plastid-derived DNA fragments took up 9.1% of the mitogenome. The mitogenome contained one group I intron (cox1i729) and 23 group II introns. We found shifts from cis-to trans-splicing of five additional introns in its mitogenome, of which two are specific in T. maclurei. Moreover, atp1 is a chimeric gene and phylogenetic analysis indicated that a 356 bp region near the 3′ end of atp1 of T. maclurei was acquired from Lamiales via horizontal gene transfer. Our results suggest that shifts to trans-splicing of mitochondrial introns may not be uncommon among angiosperms.
Collapse
Affiliation(s)
- Runxian Yu
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Chenyu Sun
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Ying Liu
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Renchao Zhou
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, China
| |
Collapse
|
352
|
Baeza N, Delgado L, Comas J, Mercade E. Phage-Mediated Explosive Cell Lysis Induces the Formation of a Different Type of O-IMV in Shewanella vesiculosa M7 T. Front Microbiol 2021; 12:713669. [PMID: 34690958 PMCID: PMC8529241 DOI: 10.3389/fmicb.2021.713669] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 09/14/2021] [Indexed: 11/13/2022] Open
Abstract
Shewanella vesiculosa M7T is a cold-adapted Antarctic bacterium that has a great capacity to secrete membrane vesicles (MVs), making it a potentially excellent model for studying the vesiculation process. S. vesiculosa M7T undergoes a blebbing mechanism to produce different types of MVs, including outer membrane vesicles and outer-inner membrane vesicles (O-IMVs). More recently, other mechanisms have been considered that could lead to the formation of O-IMVs derived from prophage-mediated explosive cell lysis in other bacteria, but it is not clear if they are of the same type. The bacterial growth phase could also have a great impact on the type of MVs, although there are few studies on the subject. In this study, we used high-resolution flow cytometry, transmission electron microscopy, and cryo-electron microscopy (Cryo-EM) analysis to determine the amount and types of MVs S. vesiculosa M7T secreted during different growth phases. We show that MV secretion increases during the transition from the late exponential to the stationary phase. Moreover, prophage-mediated explosive cell lysis is activated in S. vesiculosa M7T, increasing the heterogeneity of both single- and double-layer MVs. The sequenced DNA fragments from the MVs covered the entire genome, confirming this explosive cell lysis mechanism. A different structure and biogenesis mechanisms for the explosive cell lysis-derived double-layered MVs was observed, and we propose to name them explosive O-IMVs, distinguishing them from the blebbing O-IMVs; their separation is a first step to elucidate their different functions. In our study, we used for the first time sorting by flow cytometry and Cryo-EM analyses to isolate bacterial MVs based on their nucleic acid content. Further improvements and implementation of bacterial MV separation techniques is essential to develop more in-depth knowledge of MVs.
Collapse
Affiliation(s)
- Nicolás Baeza
- Secció de Microbiologia, Departament de Biologia, Sanitat i Medi Ambient, Universitat de Barcelona, Barcelona, Spain
| | - Lidia Delgado
- Crio-Microscòpia Electrònica, Centres Científics i Tecnològics, Universitat de Barcelona (CCiTUB), Barcelona, Spain
| | - Jaume Comas
- Citometria, Centres Científics i Tecnològics, Universitat de Barcelona (CCiTUB), Barcelona, Spain
| | - Elena Mercade
- Secció de Microbiologia, Departament de Biologia, Sanitat i Medi Ambient, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
353
|
Whole-Genome Sequencing Evaluation of MALDI-TOF MS as a Species Identification Tool for Streptococcus suis. J Clin Microbiol 2021; 59:e0129721. [PMID: 34469186 DOI: 10.1128/jcm.01297-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Streptococcus suis is an important bacterial pathogen in pigs that may also cause zoonotic disease in humans. The aim of the study was to evaluate matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) identification of S. suis case isolates from diseased pigs and tonsil isolates from healthy pigs and wild boar using sequence analysis methods. Isolates (n = 348) that had been classified as S. suis by MALDI-TOF MS were whole-genome sequenced and investigated using analyses of (i) the 16S rRNA gene, (ii) the recN gene, and (iii) whole-genome average nucleotide identity (ANI). Analysis of the 16S rRNA gene indicated that 82.8% (288 out of 348) of the isolates were S. suis, while recN gene analysis indicated that 75.6% (263 out of 348) were S. suis. ANI analysis classified 44.3% (154 out of 348) as S. suis. In total, 44% (153 out of 348) of the investigated isolates were classified as S. suis by all of the species identification methods employed. The mean MALDI-TOF MS score was significantly higher for the S. suis case isolates than for the tonsil isolates; however, the difference is of limited practical use. The results show that species confirmation beyond MALDI-TOF MS is needed for S. suis isolates. Since the resolution of 16S rRNA gene analysis is too low for Streptococcus spp., ANI analysis with a slightly lowered cutoff of 94% may be used instead of, or in addition to, recN gene analysis. Supplementation of the MALDI-TOF MS reference library with mass spectra from S. orisratti, S. parasuis, S. ruminantium, and additional S. suis serotypes should be considered in order to produce more accurate classifications.
Collapse
|
354
|
Kroeske K, Arévalo Sureda E, Uerlings J, Deforce D, Van Nieuwerburgh F, Heyndrickx M, Millet S, Everaert N, Schroyen M. The Impact of Maternal and Piglet Low Protein Diet and Their Interaction on the Porcine Liver Transcriptome around the Time of Weaning. Vet Sci 2021; 8:233. [PMID: 34679062 PMCID: PMC8540021 DOI: 10.3390/vetsci8100233] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/05/2021] [Accepted: 10/08/2021] [Indexed: 02/07/2023] Open
Abstract
Maternal diet during early gestation affects offspring phenotype, but it is unclear whether maternal diet during late gestation influences piglet metabolism. We evaluated the impact of two dietary protein levels in sow late gestation diet and piglet nursery diet on piglet metabolism. Diets met or exceeded the crude protein and amino acid requirements. Sows received either 12% (Lower, L) or 17% (Higher, H) crude protein (CP) during the last five weeks of gestation, and piglets received 16.5% (L) or 21% (H) CP from weaning at age 3.5 weeks. This resulted in a 2 × 2 factorial design with four sow/piglet diet treatment groups: HH and LL (match), HL and LH (mismatch). Piglet hepatic tissues were sampled and differentially expressed genes (DEGs) were determined by RNA sequencing. At age 4.5 weeks, 25 genes were downregulated and 22 genes were upregulated in the mismatch compared to match groups. Several genes involved in catabolic pathways were upregulated in the mismatch compared to match groups, as were genes involved in lipid metabolism and inflammation. The results show a distinct interaction effect between maternal and nursery diets, implying that sow late gestation diet could be used to optimize piglet metabolism.
Collapse
Affiliation(s)
- Kikianne Kroeske
- Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, TERRA Teaching and Research Centre, University of Liège, 5030 Gembloux, Belgium; (K.K.); (E.A.S.); (J.U.); (N.E.)
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), 9090 Melle, Belgium; (M.H.); (S.M.)
| | - Ester Arévalo Sureda
- Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, TERRA Teaching and Research Centre, University of Liège, 5030 Gembloux, Belgium; (K.K.); (E.A.S.); (J.U.); (N.E.)
| | - Julie Uerlings
- Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, TERRA Teaching and Research Centre, University of Liège, 5030 Gembloux, Belgium; (K.K.); (E.A.S.); (J.U.); (N.E.)
| | - Dieter Deforce
- Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium; (D.D.); (F.V.N.)
| | - Filip Van Nieuwerburgh
- Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium; (D.D.); (F.V.N.)
| | - Marc Heyndrickx
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), 9090 Melle, Belgium; (M.H.); (S.M.)
- Department of Pathology, Bacteriology and Poultry Diseases, Ghent University, 9820 Merelbeke, Belgium
| | - Sam Millet
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), 9090 Melle, Belgium; (M.H.); (S.M.)
- Department of Nutrition, Genetics and Ethology, Ghent University, 9820 Merelbeke, Belgium
| | - Nadia Everaert
- Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, TERRA Teaching and Research Centre, University of Liège, 5030 Gembloux, Belgium; (K.K.); (E.A.S.); (J.U.); (N.E.)
| | - Martine Schroyen
- Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, TERRA Teaching and Research Centre, University of Liège, 5030 Gembloux, Belgium; (K.K.); (E.A.S.); (J.U.); (N.E.)
| |
Collapse
|
355
|
Cobo-Díaz JF, Alvarez-Molina A, Alexa EA, Walsh CJ, Mencía-Ares O, Puente-Gómez P, Likotrafiti E, Fernández-Gómez P, Prieto B, Crispie F, Ruiz L, González-Raurich M, López M, Prieto M, Cotter P, Alvarez-Ordóñez A. Microbial colonization and resistome dynamics in food processing environments of a newly opened pork cutting industry during 1.5 years of activity. MICROBIOME 2021; 9:204. [PMID: 34645520 PMCID: PMC8515711 DOI: 10.1186/s40168-021-01131-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 07/17/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND The microorganisms that inhabit food processing environments (FPE) can strongly influence the associated food quality and safety. In particular, the possibility that FPE may act as a reservoir of antibiotic-resistant microorganisms, and a hotspot for the transmission of antibiotic resistance genes (ARGs) is a concern in meat processing plants. Here, we monitor microbial succession and resistome dynamics relating to FPE through a detailed analysis of a newly opened pork cutting plant over 1.5 years of activity. RESULTS We identified a relatively restricted principal microbiota dominated by Pseudomonas during the first 2 months, while a higher taxonomic diversity, an increased representation of other taxa (e.g., Acinetobacter, Psychrobacter), and a certain degree of microbiome specialization on different surfaces was recorded later on. An increase in total abundance, alpha diversity, and β-dispersion of ARGs, which were predominantly assigned to Acinetobacter and associated with resistance to certain antimicrobials frequently used on pig farms of the region, was detected over time. Moreover, a sharp increase in the occurrence of extended-spectrum β-lactamase-producing Enterobacteriaceae and vancomycin-resistant Enterococcaceae was observed when cutting activities started. ARGs associated with resistance to β-lactams, tetracyclines, aminoglycosides, and sulphonamides frequently co-occurred, and mobile genetic elements (i.e., plasmids, integrons) and lateral gene transfer events were mainly detected at the later sampling times in drains. CONCLUSIONS The observations made suggest that pig carcasses were a source of resistant bacteria that then colonized FPE and that drains, together with some food-contact surfaces, such as equipment and table surfaces, represented a reservoir for the spread of ARGs in the meat processing facility. Video Abstract.
Collapse
Affiliation(s)
- José F. Cobo-Díaz
- Department of Food Hygiene and Technology, Universidad de León, León, Spain
| | | | - Elena A. Alexa
- Department of Food Hygiene and Technology, Universidad de León, León, Spain
- Present address: Microbiology Department, National University of Ireland, Galway, Ireland
| | - Calum J. Walsh
- Teagasc Food Research Centre, Fermoy, Co. Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | | | - Paula Puente-Gómez
- Department of Food Hygiene and Technology, Universidad de León, León, Spain
| | - Eleni Likotrafiti
- Department of Food Science & Technology, International Hellenic University, Thessaloniki, Greece
| | | | - Bernardo Prieto
- Department of Food Hygiene and Technology, Universidad de León, León, Spain
- Institute of Food Science and Technology, Universidad de León, León, Spain
| | - Fiona Crispie
- Teagasc Food Research Centre, Fermoy, Co. Cork, Ireland
| | - Lorena Ruiz
- Dairy Research Institute, Spanish National Research Council, Instituto de Productos Lácteos de Asturias-CSIC, Villaviciosa, Spain
- MicroHealth Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Asturias Spain
| | - Montserrat González-Raurich
- Department of Food Hygiene and Technology, Universidad de León, León, Spain
- Institute of Food Science and Technology, Universidad de León, León, Spain
| | - Mercedes López
- Department of Food Hygiene and Technology, Universidad de León, León, Spain
- Institute of Food Science and Technology, Universidad de León, León, Spain
| | - Miguel Prieto
- Department of Food Hygiene and Technology, Universidad de León, León, Spain
- Institute of Food Science and Technology, Universidad de León, León, Spain
| | - Paul Cotter
- Teagasc Food Research Centre, Fermoy, Co. Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Avelino Alvarez-Ordóñez
- Department of Food Hygiene and Technology, Universidad de León, León, Spain
- Institute of Food Science and Technology, Universidad de León, León, Spain
| |
Collapse
|
356
|
Adams AND, Azam MS, Costliow ZA, Ma X, Degnan PH, Vanderpool CK. A Novel Family of RNA-Binding Proteins Regulate Polysaccharide Metabolism in Bacteroides thetaiotaomicron. J Bacteriol 2021; 203:e0021721. [PMID: 34251866 PMCID: PMC8508124 DOI: 10.1128/jb.00217-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 07/08/2021] [Indexed: 11/20/2022] Open
Abstract
Human gut microbiome composition is constantly changing, and diet is a major driver of these changes. Gut microbial species that persist in mammalian hosts for long periods of time must possess mechanisms for sensing and adapting to nutrient shifts to avoid being outcompeted. Global regulatory mechanisms mediated by RNA-binding proteins (RBPs) that govern responses to nutrient shifts have been characterized in Proteobacteria and Firmicutes but remain undiscovered in the Bacteroidetes. Here, we report the identification of RBPs that are broadly distributed across the Bacteroidetes, with many genomes encoding multiple copies. Genes encoding these RBPs are highly expressed in many Bacteroides species. A purified RBP, RbpB, from Bacteroides thetaiotaomicron binds to single-stranded RNA in vitro with an affinity similar to other characterized regulatory RBPs. B. thetaiotaomicron mutants lacking RBPs show dramatic shifts in expression of polysaccharide utilization and capsular polysaccharide loci, suggesting that these RBPs may act as global regulators of polysaccharide metabolism. A B. thetaiotaomicron ΔrbpB mutant shows a growth defect on dietary sugars belonging to the raffinose family of oligosaccharides (RFOs). The ΔrbpB mutant had reduced expression of BT1871, encoding a predicted RFO-degrading melibiase, compared to the wild-type strain. Mutation of BT1871 confirmed that the enzyme it encodes is essential for growth on melibiose and promotes growth on the RFOs raffinose and stachyose. Our data reveal that RbpB is required for optimal expression of BT1871 and other polysaccharide-related genes, suggesting that we have identified an important new family of global regulatory proteins in the Bacteroidetes. IMPORTANCE The human colon houses hundreds of bacterial species, including many belonging to the genus Bacteroides, that aid in breaking down our food to keep us healthy. Bacteroides have many genes responsible for breaking down different dietary carbohydrates, and complex regulatory mechanisms ensure that specific genes are only expressed when the right carbohydrates are available. In this study, we discovered that Bacteroides use a family of RNA-binding proteins as global regulators to coordinate expression of carbohydrate utilization genes. The ability to turn different carbohydrate utilization genes on and off in response to changing nutrient conditions is critical for Bacteroides to live successfully in the gut, and thus the new regulators we have identified may be important for life in the host.
Collapse
Affiliation(s)
- Amanda N. D. Adams
- Department of Microbiology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Muhammad S. Azam
- Department of Microbiology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Zachary A. Costliow
- Department of Microbiology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Xiangqian Ma
- Department of Microbiology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Patrick H. Degnan
- Department of Microbiology and Plant Pathology, University of California-Riverside, Riverside, California, USA
| | - Carin K. Vanderpool
- Department of Microbiology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
357
|
Shirasawa K, Chahota R, Hirakawa H, Nagano S, Nagasaki H, Sharma T, Isobe S. A chromosome-scale draft genome sequence of horsegram ( Macrotyloma uniflorum). GIGABYTE 2021; 2021:gigabyte30. [PMID: 36824333 PMCID: PMC9650294 DOI: 10.46471/gigabyte.30] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 10/05/2021] [Indexed: 11/09/2022] Open
Abstract
Horsegram (Macrotyloma uniflorum [Lam.] Verdc.) is an underutilized warm-season diploid legume (2n = 20, 22). Because of its ability to grow under water-deficient and marginal soil conditions, horsegram is a preferred choice in the era of global climate change. In recognition of its potential as a crop species, we generated and analyzed a draft genome sequence for a horsegram variety, HPK-4. Ten chromosome-scale pseudomolecules were created by aligning Illumina scaffold sequences onto a linkage map. The total length of the ten pseudomolecules was 259.2 Mbp, covering 89% of the total length of the assembled sequences. A total of 36,105 genes were predicted on the assembled sequences. Diversity analysis of 89 horsegram accessions by dd-RAD-Seq identified 277 single nucleotide polymorphisms (SNPs), suggesting narrow genetic diversity among the horsegram accessions. This is the first attempt to generate a draft genome sequence of horsegram and will provide a reference for sequence-based analysis of horsegram germplasm.
Collapse
Affiliation(s)
- Kenta Shirasawa
- Kazusa DNA Research Institute, 2-6-7 Kazusa-kamatari, Kisarazu, Chiba 292-0818, Japan
| | - Rakesh Chahota
- Department of Agricultural Biotechnology, CSK Himachal Pradesh Agricultural University, Palampur, Himachal Pradesh 176062, India
| | - Hideki Hirakawa
- Kazusa DNA Research Institute, 2-6-7 Kazusa-kamatari, Kisarazu, Chiba 292-0818, Japan
| | - Soichiro Nagano
- Kazusa DNA Research Institute, 2-6-7 Kazusa-kamatari, Kisarazu, Chiba 292-0818, Japan
- Forest Tree Breeding Center, Forestry and Forest Products Research Institute, 3809-1 Ishi, Juo, Hitachi, Ibaraki 319-1301, Japan
| | - Hideki Nagasaki
- Kazusa DNA Research Institute, 2-6-7 Kazusa-kamatari, Kisarazu, Chiba 292-0818, Japan
| | - Tilak Sharma
- ICAR – Indian Institute of Agricultural Biotechnology, Ranchi, Jharkhand 834010, India
| | - Sachiko Isobe
- Kazusa DNA Research Institute, 2-6-7 Kazusa-kamatari, Kisarazu, Chiba 292-0818, Japan
| |
Collapse
|
358
|
Liu H, Sun H, Bao L, Han S, Hui T, Zhang R, Zhang M, Su C, Qian Y, Jiao F. Secondary Metabolism and Hormone Response Reveal the Molecular Mechanism of Triploid Mulberry ( Morus Alba L.) Trees Against Drought. FRONTIERS IN PLANT SCIENCE 2021; 12:720452. [PMID: 34691101 PMCID: PMC8528201 DOI: 10.3389/fpls.2021.720452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 09/01/2021] [Indexed: 06/13/2023]
Abstract
The improvement of a plant's tolerance to drought is a major endeavor in agriculture. Polyploid plants often exhibit enhanced stress tolerance relative to their diploid progenitor, but the matching stress tolerance is still little understood. Own-rooted stem cuttings of mulberry (Morus alba L.) cultivar Shinichinose (2n = 2x = 28) and Shaansang-305 (2n = 3x = 42) were used in this study, of which the latter (triploid) has more production and application purposes. The responses of triploid Shaansang-305 and diploid progenitor ShinIchinose under drought stress were compared through an investigation of their physiological traits, RNA-seq, and secondary metabolome analysis. The results showed that the triploid exhibited an augmented abscisic acid (ABA) content and a better stress tolerance phenotype under severe drought stress. Further, in the triploid plant some genes (TSPO, NCED3, and LOC21398866) and ATG gene related to ABA signaling showed significantly upregulated expression. Interestingly, the triploid accumulated higher levels of RWC and SOD activity, as well as more wax on the leaf surface, but with less reductive flavonoid than in diploid. Our results suggest triploid plants may better adapt to with drought events. Furthermore, the flavonoid metabolism involved in drought resistance identified here may be of great value to medicinal usage of mulberry. The findings presented here could have substantial implications for future studies of crop breeding.
Collapse
Affiliation(s)
- Hui Liu
- The Sericultural and Silk Research Institute, College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Hongmei Sun
- The Sericultural and Silk Research Institute, College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Lijun Bao
- The Sericultural and Silk Research Institute, College of Animal Science and Technology, Northwest A&F University, Xianyang, China
- Shaanxi Key Laboratory of Sericulture, Ankang University, Ankang, China
| | - Shuhua Han
- The Sericultural and Silk Research Institute, College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Tian Hui
- The Sericultural and Silk Research Institute, College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Rui Zhang
- The Sericultural and Silk Research Institute, College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Minjuan Zhang
- The Sericultural and Silk Research Institute, College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Chao Su
- The Sericultural and Silk Research Institute, College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Yonghua Qian
- The Sericultural and Silk Research Institute, College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Feng Jiao
- The Sericultural and Silk Research Institute, College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| |
Collapse
|
359
|
Li L, Luo H, Lim DH, Han L, Li Y, Fu XD, Qi Y. Global profiling of RNA-chromatin interactions reveals co-regulatory gene expression networks in Arabidopsis. NATURE PLANTS 2021; 7:1364-1378. [PMID: 34650265 DOI: 10.1038/s41477-021-01004-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 08/11/2021] [Indexed: 06/13/2023]
Abstract
It is increasingly evident that various RNAs can bind chromatin to regulate gene expression and genome organization. Here we adapted a sequencing-based technique to profile RNA-chromatin interactions at a genome-wide scale in Arabidopsis seedlings. We identified more than 10,000 RNA-chromatin interactions mediated by protein-coding RNAs and non-coding RNAs. Cis and intra-chromosomal interactions are mainly mediated by protein-coding RNAs, whereas inter-chromosomal interactions are primarily mediated by non-coding RNAs. Many RNA-chromatin interactions tend to positively correlate with DNA-DNA interactions, suggesting their mutual influence and reinforcement. We further show that some RNA-chromatin interactions undergo alterations in response to biotic and abiotic stresses and that altered RNA-chromatin interactions form co-regulatory networks. Our study provides a global view on RNA-chromatin interactions in Arabidopsis and a rich resource for future investigations of regulatory roles of RNAs in gene expression and genome organization.
Collapse
Affiliation(s)
- Lanxia Li
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Haofei Luo
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Do-Hwan Lim
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
- Institute of Genomic Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Lu Han
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Yan Li
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Xiang-Dong Fu
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA.
- Institute of Genomic Medicine, University of California, San Diego, La Jolla, CA, USA.
| | - Yijun Qi
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China.
- Tsinghua-Peking Center for Life Sciences, Beijing, China.
| |
Collapse
|
360
|
Tolstyko EA, Chergintsev DA, Tolicheva OA, Vinogradova DS, Konevega AL, Morozov SY, Solovyev AG. RNA Binding by Plant Serpins in vitro. BIOCHEMISTRY. BIOKHIMIIA 2021; 86:1214-1224. [PMID: 34903159 DOI: 10.1134/s0006297921100059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Serpins constitute a large family of protease inhibitors with regulatory functions found in all living organisms. Most plant serpins have not been functionally characterized, with the exception of Arabidopsis thaliana AtSerpin1, an inhibitor of pro-apoptotic proteases, which is involved in the regulation of the programmed cell death induction, and Cucurbita maxima CmPS1, a phloem protein, which presumably inhibits insect digestive proteases and binds RNA. CmPS1 interacts most efficiently with highly structured RNA; in particular, it forms a specific complex with tRNA. Here, we demonstrated that AtSerpin1 also forms a complex with tRNA. Analysis of tRNA species bound by AtSerpin1 and CmPS1 in the presence of tRNA excess revealed that both proteins have no strict selectivity for individual tRNAs, suggesting specific interaction of AtSerpin1 and CmPS1 proteins with elements of the secondary/tertiary structure universal for all tRNAs. Analysis of CmPS1 binding of the microRNA precursor pre-miR390 and its mutants demonstrated that the pre-miR390 mutant with a perfect duplex in the hairpin stem lost the ability to form a discrete complex with CmPS1, whereas another variant of pre-miR390 with the native unpaired nucleotide residues in the stem retained this ability. These data indicate that specific interactions of plant serpins with structured RNA are based on the recognition of structurally unique spatial motifs formed with the participation of unpaired nucleotide residues in the RNA duplexes.
Collapse
Affiliation(s)
- Eugene A Tolstyko
- Department of Virology, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia.,Konstantinov St.-Petersburg Nuclear Physics Institute of National Research Center "Kurchatov Institute", Gatchina, Leningrad Region, 188300, Russia
| | - Denis A Chergintsev
- Department of Plant Physiology, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Olga A Tolicheva
- Konstantinov St.-Petersburg Nuclear Physics Institute of National Research Center "Kurchatov Institute", Gatchina, Leningrad Region, 188300, Russia
| | - Dariya S Vinogradova
- Konstantinov St.-Petersburg Nuclear Physics Institute of National Research Center "Kurchatov Institute", Gatchina, Leningrad Region, 188300, Russia.,NanoTemper Technologies Rus, Saint Petersburg, 191167, Russia
| | - Andrey L Konevega
- Konstantinov St.-Petersburg Nuclear Physics Institute of National Research Center "Kurchatov Institute", Gatchina, Leningrad Region, 188300, Russia.,Peter the Great Saint Petersburg Polytechnic University, Saint Petersburg, 195251, Russia.,National Research Center "Kurchatov Institute", Moscow, 123182, Russia
| | - Sergey Y Morozov
- Department of Virology, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia.,Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
| | - Andrey G Solovyev
- Department of Virology, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia. .,Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
| |
Collapse
|
361
|
Jiao JY, Fu L, Hua ZS, Liu L, Salam N, Liu PF, Lv AP, Wu G, Xian WD, Zhu Q, Zhou EM, Fang BZ, Oren A, Hedlund BP, Jiang HC, Knight R, Cheng L, Li WJ. Insight into the function and evolution of the Wood-Ljungdahl pathway in Actinobacteria. THE ISME JOURNAL 2021; 15:3005-3018. [PMID: 33953361 PMCID: PMC8443620 DOI: 10.1038/s41396-021-00935-9] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 02/07/2021] [Accepted: 02/10/2021] [Indexed: 02/03/2023]
Abstract
Carbon fixation by chemoautotrophic microbes such as homoacetogens had a major impact on the transition from the inorganic to the organic world. Recent reports have shown the presence of genes for key enzymes associated with the Wood-Ljungdahl pathway (WLP) in the phylum Actinobacteria, which adds to the diversity of potential autotrophs. Here, we compiled 42 actinobacterial metagenome-assembled genomes (MAGs) from new and existing metagenomic datasets and propose three novel classes, Ca. Aquicultoria, Ca. Geothermincolia and Ca. Humimicrobiia. Most members of these classes contain genes coding for acetogenesis through the WLP, as well as a variety of hydrogenases (NiFe groups 1a and 3b-3d; FeFe group C; NiFe group 4-related hydrogenases). We show that the three classes acquired the hydrogenases independently, yet the carbon monoxide dehydrogenase/acetyl-CoA synthase complex (CODH/ACS) was apparently present in their last common ancestor and was inherited vertically. Furthermore, the Actinobacteria likely donated genes for CODH/ACS to multiple lineages within Nitrospirae, Deltaproteobacteria (Desulfobacterota), and Thermodesulfobacteria through multiple horizontal gene transfer events. Finally, we show the apparent growth of Ca. Geothermincolia and H2-dependent acetate production in hot spring enrichment cultures with or without the methanogenesis inhibitor 2-bromoethanesulfonate, which is consistent with the proposed homoacetogenic metabolism.
Collapse
Affiliation(s)
- Jian-Yu Jiao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, PR China
| | - Li Fu
- Key Laboratory of Development and Application of Rural Renewable Energy, Biogas Institute of Ministry of Agriculture and Rural Areas, Chengdu, PR China
| | - Zheng-Shuang Hua
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, PR China
| | - Lan Liu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, PR China
| | - Nimaichand Salam
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, PR China
| | - Peng-Fei Liu
- Key Laboratory of Development and Application of Rural Renewable Energy, Biogas Institute of Ministry of Agriculture and Rural Areas, Chengdu, PR China
| | - Ai-Ping Lv
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, PR China
| | - Geng Wu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, PR China
| | - Wen-Dong Xian
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, PR China
| | - Qiyun Zhu
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - En-Min Zhou
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, PR China
| | - Bao-Zhu Fang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, PR China
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, PR China
| | - Aharon Oren
- The Alexander Silberman Institute of Life Sciences, The Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Brian P Hedlund
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV, USA
- Nevada Institute of Personalized Medicine, University of Nevada, Las Vegas, Las Vegas, NV, USA
| | - Hong-Chen Jiang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, PR China
| | - Rob Knight
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA, USA
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA
| | - Lei Cheng
- Key Laboratory of Development and Application of Rural Renewable Energy, Biogas Institute of Ministry of Agriculture and Rural Areas, Chengdu, PR China.
| | - Wen-Jun Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, PR China.
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, PR China.
| |
Collapse
|
362
|
Krohn I, Bergmann L, Qi M, Indenbirken D, Han Y, Perez-Garcia P, Katzowitsch E, Hägele B, Lübcke T, Siry C, Riemann R, Alawi M, Streit WR. Deep (Meta)genomics and (Meta)transcriptome Analyses of Fungal and Bacteria Consortia From Aircraft Tanks and Kerosene Identify Key Genes in Fuel and Tank Corrosion. Front Microbiol 2021; 12:722259. [PMID: 34675897 PMCID: PMC8525681 DOI: 10.3389/fmicb.2021.722259] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 08/19/2021] [Indexed: 11/29/2022] Open
Abstract
Microbial contamination of fuels, associated with a wide variety of bacteria and fungi, leads to decreased product quality and can compromise equipment performance by biofouling or microbiologically influenced corrosion. Detection and quantification of microorganisms are critical in monitoring fuel systems for an early detection of microbial contaminations. To address these challenges, we have analyzed six metagenomes, one transcriptome, and more than 1,200 fluid and swab samples taken from fuel tanks or kerosene. Our deep metagenome sequencing and binning approaches in combination with RNA-seq data and qPCR methods implied a metabolic symbiosis between fungi and bacteria. The most abundant bacteria were affiliated with α-, β-, and γ-Proteobacteria and the filamentous fungi Amorphotheca. We identified a high number of genes, which are related to kerosene degradation and biofilm formation. Surprisingly, a large number of genes coded enzymes involved in polymer degradation and potential bio-corrosion processes. Thereby, the transcriptionally most active microorganisms were affiliated with the genera Methylobacteria, Pseudomonas, Kocuria, Amorpotheka, Aspergillus, Fusarium, and Penicillium. Many not yet cultured bacteria and fungi appeared to contribute to the biofilm transcriptional activities. The largest numbers of transcripts were observed for dehydrogenase, oxygenase, and exopolysaccharide production, attachment and pili/flagella-associated proteins, efflux pumps, and secretion systems as well as lipase and esterase activity.
Collapse
Affiliation(s)
- Ines Krohn
- Department of Microbiology and Biotechnology, Institute of Plant Science and Microbiology, University of Hamburg, Hamburg, Germany
| | - Lutgardis Bergmann
- Department of Microbiology and Biotechnology, Institute of Plant Science and Microbiology, University of Hamburg, Hamburg, Germany
| | - Minyue Qi
- Bioinformatics Core, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Daniela Indenbirken
- Virus Genomics, Heinrich-Pette-Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Yuchen Han
- Department of Microbiology and Biotechnology, Institute of Plant Science and Microbiology, University of Hamburg, Hamburg, Germany
| | - Pablo Perez-Garcia
- Institute of General Microbiology, Molecular Microbiology, Kiel University, Kiel, Germany
| | - Elena Katzowitsch
- Faculty of Medicine, Core Unit Systems Medicine, University of Würzburg, Würzburg, Germany
| | | | - Tim Lübcke
- T/TQ-MN, Lufthansa Technik AG HAM, Hamburg, Germany
| | | | - Ralf Riemann
- T/TQ-MN, Lufthansa Technik AG HAM, Hamburg, Germany
| | - Malik Alawi
- Bioinformatics Core, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Wolfgang R Streit
- Department of Microbiology and Biotechnology, Institute of Plant Science and Microbiology, University of Hamburg, Hamburg, Germany
| |
Collapse
|
363
|
Makeyeva YV, Shirayama M, Mello CC. Cues from mRNA splicing prevent default Argonaute silencing in C. elegans. Dev Cell 2021; 56:2636-2648.e4. [PMID: 34547227 DOI: 10.1016/j.devcel.2021.08.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 06/28/2021] [Accepted: 08/27/2021] [Indexed: 12/12/2022]
Abstract
In animals, Argonaute small-RNA pathways scan germline transcripts to silence self-replicating genetic elements. However, little is known about how endogenous gene expression is recognized and licensed. Here, we show that the presence of introns and, by inference, the process of mRNA splicing prevents default Argonaute-mediated silencing in the C. elegans germline. The silencing of intronless genes is initiated independently of the piRNA pathway but nevertheless engages multiple components of the downstream amplification and maintenance mechanisms that mediate transgenerational silencing, including both nuclear and cytoplasmic members of the worm-specific Argonaute gene family (WAGOs). Small RNAs amplified from intronless mRNAs can trans-silence cognate intron-containing genes. Interestingly, a second, small RNA-independent cis-acting mode of silencing also acts on intronless mRNAs. Our findings suggest that cues put in place during mRNA splicing license germline gene expression and provide evidence for a splicing-dependent and dsRNA- and piRNA-independent mechanism that can program Argonaute silencing.
Collapse
Affiliation(s)
- Yekaterina V Makeyeva
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Masaki Shirayama
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA; Howard Hughes Medical Institute, Worcester, MA 01605, USA
| | - Craig C Mello
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA; Howard Hughes Medical Institute, Worcester, MA 01605, USA.
| |
Collapse
|
364
|
Hoang AC, Yu H, Röszer T. Transcriptional Landscaping Identifies a Beige Adipocyte Depot in the Newborn Mouse. Cells 2021; 10:2368. [PMID: 34572017 PMCID: PMC8470180 DOI: 10.3390/cells10092368] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 08/31/2021] [Accepted: 09/05/2021] [Indexed: 12/12/2022] Open
Abstract
The present study sought to identify gene networks that are hallmarks of the developing inguinal subcutaneous adipose tissue (iWAT) and the interscapular brown adipose tissue (BAT) in the mouse. RNA profiling revealed that the iWAT of postnatal (P) day 6 mice expressed thermogenic and lipid catabolism transcripts, along with the abundance of transcripts associated with the beige adipogenesis program. This was an unexpected finding, as thermogenic BAT was believed to be the only site of nonshivering thermogenesis in the young mouse. However, the transcriptional landscape of BAT in P6 mice suggests that it is still undergoing differentiation and maturation, and that the iWAT temporally adopts thermogenic and lipolytic potential. Moreover, P6 iWAT and adult (P56) BAT were similar in their expression of immune gene networks, but P6 iWAT was unique in the abundant expression of antimicrobial proteins and virus entry factors, including a possible receptor for SARS-CoV-2. In summary, postnatal iWAT development is associated with a metabolic shift from thermogenesis and lipolysis towards fat storage. However, transcripts of beige-inducing signal pathways including β-adrenergic receptors and interleukin-4 signaling were underrepresented in young iWAT, suggesting that the signals for thermogenic fat differentiation may be different in early postnatal life and in adulthood.
Collapse
MESH Headings
- Adipocytes, Beige/metabolism
- Adipose Tissue, Brown/metabolism
- Adipose Tissue, White/metabolism
- Animals
- Animals, Newborn
- Biomarkers/metabolism
- Cell Cycle/genetics
- Gene Expression Regulation, Developmental
- Gene Ontology
- Gene Regulatory Networks
- Male
- Mice, Inbred C57BL
- Models, Biological
- Muscle Development/genetics
- Neuropeptides/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Signal Transduction
- Transcription, Genetic
- Mice
Collapse
Affiliation(s)
| | | | - Tamás Röszer
- Institute of Neurobiology, Ulm University, 89081 Ulm, Germany; (A.C.H.); (H.Y.)
| |
Collapse
|
365
|
Zhang P, Sui P, Chen S, Guo Y, Li Y, Ge G, Zhu G, Yang H, Rogers CM, Sung P, Nimer SD, Xu M, Yang FC. INTS11 regulates hematopoiesis by promoting PRC2 function. SCIENCE ADVANCES 2021; 7:eabh1684. [PMID: 34516911 PMCID: PMC8442872 DOI: 10.1126/sciadv.abh1684] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 07/09/2021] [Indexed: 06/13/2023]
Abstract
INTS11, the catalytic subunit of the Integrator (INT) complex, is crucial for the biogenesis of small nuclear RNAs and enhancer RNAs. However, the role of INTS11 in hematopoietic stem and progenitor cell (HSPC) biology is unknown. Here, we report that INTS11 is required for normal hematopoiesis and hematopoietic-specific genetic deletion of Ints11 leads to cell cycle arrest and impairment of fetal and adult HSPCs. We identified a novel INTS11-interacting protein complex, Polycomb repressive complex 2 (PRC2), that maintains HSPC functions. Loss of INTS11 destabilizes the PRC2 complex, decreases the level of histone H3 lysine 27 trimethylation (H3K27me3), and derepresses PRC2 target genes. Reexpression of INTS11 or PRC2 proteins in Ints11-deficient HSPCs restores the levels of PRC2 and H3K27me3 as well as HSPC functions. Collectively, our data demonstrate that INTS11 is an essential regulator of HSPC homeostasis through the INTS11-PRC2 axis.
Collapse
Affiliation(s)
- Peng Zhang
- Department of Cell Systems & Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Pinpin Sui
- Department of Cell Systems & Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Shi Chen
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Ying Guo
- Department of Cell Systems & Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Ying Li
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Guo Ge
- Department of Cell Systems & Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Ganqian Zhu
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Hui Yang
- Department of Cell Systems & Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Cody M. Rogers
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Patrick Sung
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Stephen D. Nimer
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Mingjiang Xu
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
- Mays Cancer Center, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Feng-Chun Yang
- Department of Cell Systems & Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
- Mays Cancer Center, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
366
|
Xu M, Mehl L, Zhang T, Thakur R, Sowards H, Myers T, Jessop L, Chesi A, Johnson ME, Wells AD, Michael HT, Bunda P, Jones K, Higson H, Hennessey RC, Jermusyk A, Kovacs MA, Landi MT, Iles MM, Goldstein AM, Choi J, Chanock SJ, Grant SF, Chari R, Merlino G, Law MH, Brown KM, Brown KM. A UVB-responsive common variant at chromosome band 7p21.1 confers tanning response and melanoma risk via regulation of the aryl hydrocarbon receptor, AHR. Am J Hum Genet 2021; 108:1611-1630. [PMID: 34343493 DOI: 10.1016/j.ajhg.2021.07.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/07/2021] [Indexed: 10/20/2022] Open
Abstract
Genome-wide association studies (GWASs) have identified a melanoma-associated locus on chromosome band 7p21.1 with rs117132860 as the lead SNP and a secondary independent signal marked by rs73069846. rs117132860 is also associated with tanning ability and cutaneous squamous cell carcinoma (cSCC). Because ultraviolet radiation (UVR) is a key environmental exposure for all three traits, we investigated the mechanisms by which this locus contributes to melanoma risk, focusing on cellular response to UVR. Fine-mapping of melanoma GWASs identified four independent sets of candidate causal variants. A GWAS region-focused Capture-C study of primary melanocytes identified physical interactions between two causal sets and the promoter of the aryl hydrocarbon receptor (AHR). Subsequent chromatin state annotation, eQTL, and luciferase assays identified rs117132860 as a functional variant and reinforced AHR as a likely causal gene. Because AHR plays critical roles in cellular response to dioxin and UVR, we explored links between this SNP and AHR expression after both 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and ultraviolet B (UVB) exposure. Allele-specific AHR binding to rs117132860-G was enhanced following both, consistent with predicted weakened AHR binding to the risk/poor-tanning rs117132860-A allele, and allele-preferential AHR expression driven from the protective rs117132860-G allele was observed following UVB exposure. Small deletions surrounding rs117132860 introduced via CRISPR abrogates AHR binding, reduces melanocyte cell growth, and prolongs growth arrest following UVB exposure. These data suggest AHR is a melanoma susceptibility gene at the 7p21.1 risk locus and rs117132860 is a functional variant within a UVB-responsive element, leading to allelic AHR expression and altering melanocyte growth phenotypes upon exposure.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Kevin M Brown
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD 20892, USA.
| |
Collapse
|
367
|
Faux T, Rytkönen KT, Mahmoudian M, Paulin N, Junttila S, Laiho A, Elo LL. Differential ATAC-seq and ChIP-seq peak detection using ROTS. NAR Genom Bioinform 2021; 3:lqab059. [PMID: 34235431 PMCID: PMC8253552 DOI: 10.1093/nargab/lqab059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 05/12/2021] [Accepted: 06/11/2021] [Indexed: 12/30/2022] Open
Abstract
Changes in cellular chromatin states fine-tune transcriptional output and ultimately lead to phenotypic changes. Here we propose a novel application of our reproducibility-optimized test statistics (ROTS) to detect differential chromatin states (ATAC-seq) or differential chromatin modification states (ChIP-seq) between conditions. We compare the performance of ROTS to existing and widely used methods for ATAC-seq and ChIP-seq data using both synthetic and real datasets. Our results show that ROTS outperformed other commonly used methods when analyzing ATAC-seq data. ROTS also displayed the most accurate detection of small differences when modeling with synthetic data. We observed that two-step methods that require the use of a separate peak caller often more accurately called enrichment borders, whereas one-step methods without a separate peak calling step were more versatile in calling sub-peaks. The top ranked differential regions detected by the methods had marked correlation with transcriptional differences of the closest genes. Overall, our study provides evidence that ROTS is a useful addition to the available differential peak detection methods to study chromatin and performs especially well when applied to study differential chromatin states in ATAC-seq data.
Collapse
Affiliation(s)
- Thomas Faux
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Tykistökatu 6, 20520, Turku, Finland
| | - Kalle T Rytkönen
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Tykistökatu 6, 20520, Turku, Finland
- Institute of Biomedicine, University of Turku, Kiinamyllynkatu 10, 20014, Finland
| | - Mehrad Mahmoudian
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Tykistökatu 6, 20520, Turku, Finland
- Department of Future Technologies, University of Turku, FI-20014 Turku, Finland
| | - Niklas Paulin
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Tykistökatu 6, 20520, Turku, Finland
| | - Sini Junttila
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Tykistökatu 6, 20520, Turku, Finland
| | - Asta Laiho
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Tykistökatu 6, 20520, Turku, Finland
| | - Laura L Elo
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Tykistökatu 6, 20520, Turku, Finland
- Institute of Biomedicine, University of Turku, Kiinamyllynkatu 10, 20014, Finland
| |
Collapse
|
368
|
Spatial rearrangement of the Streptomyces venezuelae linear chromosome during sporogenic development. Nat Commun 2021; 12:5222. [PMID: 34471115 PMCID: PMC8410768 DOI: 10.1038/s41467-021-25461-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 08/12/2021] [Indexed: 12/13/2022] Open
Abstract
Bacteria of the genus Streptomyces have a linear chromosome, with a core region and two ‘arms’. During their complex life cycle, these bacteria develop multi-genomic hyphae that differentiate into chains of exospores that carry a single copy of the genome. Sporulation-associated cell division requires chromosome segregation and compaction. Here, we show that the arms of Streptomyces venezuelae chromosomes are spatially separated at entry to sporulation, but during sporogenic cell division they are closely aligned with the core region. Arm proximity is imposed by segregation protein ParB and condensin SMC. Moreover, the chromosomal terminal regions are organized into distinct domains by the Streptomyces-specific HU-family protein HupS. Thus, as seen in eukaryotes, there is substantial chromosomal remodelling during the Streptomyces life cycle, with the chromosome undergoing rearrangements from an ‘open’ to a ‘closed’ conformation. Streptomyces bacteria have a linear chromosome and a complex life cycle, including development of multi-genomic hyphae that differentiate into mono-genomic exospores. Here, Szafran et al. show that the chromosome of Streptomyces venezuelae undergoes substantial remodelling during sporulation, from an ‘open’ to a ‘closed’ conformation.
Collapse
|
369
|
Targeted High-Resolution Taxonomic Identification of Bifidobacterium longum subsp. infantis Using Human Milk Oligosaccharide Metabolizing Genes. Nutrients 2021; 13:nu13082833. [PMID: 34444993 PMCID: PMC8401031 DOI: 10.3390/nu13082833] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 07/31/2021] [Accepted: 08/08/2021] [Indexed: 01/05/2023] Open
Abstract
Bifidobacterium longum subsp. infantis (B. infantis) is one of a few microorganisms capable of metabolizing human breast milk and is a pioneer colonizer in the guts of breastfed infants. One current challenge is differentiating B. infantis from its close relatives, B. longum and B. suis. All three organisms are classified in the same species group but only B. infantis can metabolize human milk oligosaccharides (HMOs). We compared HMO-metabolizing genes across different Bifidobacterium genomes and developed B. infantis-specific primers to determine if the genes alone or the primers can be used to quickly characterize B. infantis. We showed that B. infantis is uniquely identified by the presence of five HMO-metabolizing gene clusters, tested for its prevalence in infant gut metagenomes, and validated the results using the B. infantis-specific primers. We observed that only 15 of 203 (7.4%) children under 2 years old from a cohort of US children harbored B. infantis. These results highlight the importance of developing and improving approaches to identify B. infantis. A more accurate characterization may provide insights into regional differences of B. infantis prevalence in infant gut microbiota.
Collapse
|
370
|
Kopp ND, Nygaard KR, Liu Y, McCullough KB, Maloney SE, Gabel HW, Dougherty JD. Functions of Gtf2i and Gtf2ird1 in the developing brain: transcription, DNA binding and long-term behavioral consequences. Hum Mol Genet 2021; 29:1498-1519. [PMID: 32313931 DOI: 10.1093/hmg/ddaa070] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 02/19/2020] [Accepted: 04/13/2020] [Indexed: 12/13/2022] Open
Abstract
Gtf2ird1 and Gtf2i are two transcription factors (TFs) among the 28 genes deleted in Williams syndrome, and prior mouse models of each TF show behavioral phenotypes. Here we identify their genomic binding sites in the developing brain and test for additive effects of their mutation on transcription and behavior. GTF2IRD1 binding targets were enriched for transcriptional and chromatin regulators and mediators of ubiquitination. GTF2I targets were enriched for signal transduction proteins, including regulators of phosphorylation and WNT. Both TFs are highly enriched at promoters, strongly overlap CTCF binding and topological associating domain boundaries and moderately overlap each other, suggesting epistatic effects. Shared TF targets are enriched for reactive oxygen species-responsive genes, synaptic proteins and transcription regulators such as chromatin modifiers, including a significant number of highly constrained genes and known ASD genes. We next used single and double mutants to test whether mutating both TFs will modify transcriptional and behavioral phenotypes of single Gtf2ird1 mutants, though with the caveat that our Gtf2ird1 mutants, like others previously reported, do produce low levels of a truncated protein product. Despite little difference in DNA binding and transcriptome-wide expression, homozygous Gtf2ird1 mutation caused balance, marble burying and conditioned fear phenotypes. However, mutating Gtf2i in addition to Gtf2ird1 did not further modify transcriptomic or most behavioral phenotypes, suggesting Gtf2ird1 mutation alone was sufficient for the observed phenotypes.
Collapse
Affiliation(s)
- Nathan D Kopp
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA.,Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Kayla R Nygaard
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA.,Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Yating Liu
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA.,Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Katherine B McCullough
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA.,Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Susan E Maloney
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA.,Intellectual and Developmental Disabilities Research Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Harrison W Gabel
- Department of Neuroscience, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Joseph D Dougherty
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA.,Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA.,Intellectual and Developmental Disabilities Research Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
371
|
Rachtman E, Bafna V, Mirarab S. CONSULT: accurate contamination removal using locality-sensitive hashing. NAR Genom Bioinform 2021; 3:lqab071. [PMID: 34377979 PMCID: PMC8340999 DOI: 10.1093/nargab/lqab071] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 06/30/2021] [Accepted: 07/19/2021] [Indexed: 12/27/2022] Open
Abstract
A fundamental question appears in many bioinformatics applications: Does a sequencing read belong to a large dataset of genomes from some broad taxonomic group, even when the closest match in the set is evolutionarily divergent from the query? For example, low-coverage genome sequencing (skimming) projects either assemble the organelle genome or compute genomic distances directly from unassembled reads. Using unassembled reads needs contamination detection because samples often include reads from unintended groups of species. Similarly, assembling the organelle genome needs distinguishing organelle and nuclear reads. While k-mer-based methods have shown promise in read-matching, prior studies have shown that existing methods are insufficiently sensitive for contamination detection. Here, we introduce a new read-matching tool called CONSULT that tests whether k-mers from a query fall within a user-specified distance of the reference dataset using locality-sensitive hashing. Taking advantage of large memory machines available nowadays, CONSULT libraries accommodate tens of thousands of microbial species. Our results show that CONSULT has higher true-positive and lower false-positive rates of contamination detection than leading methods such as Kraken-II and improves distance calculation from genome skims. We also demonstrate that CONSULT can distinguish organelle reads from nuclear reads, leading to dramatic improvements in skim-based mitochondrial assemblies.
Collapse
Affiliation(s)
- Eleonora Rachtman
- Bioinformatics and Systems Biology Graduate Program, UC San Diego, CA 92093, USA
| | - Vineet Bafna
- Department of Computer Science and Engineering, UC San Diego, CA 92093, USA
| | - Siavash Mirarab
- Department of Electrical and Computer Engineering, UC San Diego, CA 92093, USA
| |
Collapse
|
372
|
Quintanilha-Peixoto G, Fonseca PLC, Raya FT, Marone MP, Bortolini DE, Mieczkowski P, Olmo RP, Carazzolle MF, Voigt CA, Soares ACF, Pereira GAG, Góes-Neto A, Aguiar ERGR. The Sisal Virome: Uncovering the Viral Diversity of Agave Varieties Reveals New and Organ-Specific Viruses. Microorganisms 2021; 9:microorganisms9081704. [PMID: 34442783 PMCID: PMC8400513 DOI: 10.3390/microorganisms9081704] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/30/2021] [Accepted: 08/01/2021] [Indexed: 12/29/2022] Open
Abstract
Sisal is a common name for different plant varieties in the genus Agave (especially Agave sisalana) used for high-quality natural leaf fiber extraction. Despite the economic value of these plants, we still lack information about the diversity of viruses (virome) in non-tequilana species from the genus Agave. In this work, by associating RNA and DNA deep sequencing we were able to identify 25 putative viral species infecting A. sisalana, A. fourcroydes, and Agave hybrid 11648, including one strain of Cowpea Mild Mottle Virus (CPMMV) and 24 elements likely representing new viruses. Phylogenetic analysis indicated they belong to at least six viral families: Alphaflexiviridae, Betaflexiviridae, Botourmiaviridae, Closteroviridae, Partitiviridae, Virgaviridae, and three distinct unclassified groups. We observed higher viral taxa richness in roots when compared to leaves and stems. Furthermore, leaves and stems are very similar diversity-wise, with a lower number of taxa and dominance of a single viral species. Finally, approximately 50% of the identified viruses were found in all Agave organs investigated, which suggests that they likely produce a systemic infection. This is the first metatranscriptomics study focused on viral identification in species from the genus Agave. Despite having analyzed symptomless individuals, we identified several viruses supposedly infecting Agave species, including organ-specific and systemic species. Surprisingly, some of these putative viruses are probably infecting microorganisms composing the plant microbiota. Altogether, our results reinforce the importance of unbiased strategies for the identification and monitoring of viruses in plant species, including those with asymptomatic phenotypes.
Collapse
Affiliation(s)
- Gabriel Quintanilha-Peixoto
- Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (G.Q.-P.); (P.L.C.F.); (D.E.B.); (R.P.O.)
| | - Paula Luize Camargos Fonseca
- Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (G.Q.-P.); (P.L.C.F.); (D.E.B.); (R.P.O.)
| | - Fábio Trigo Raya
- Department of Genetics and Evolution, Institute of Biology, Universidade Estadual de Campinas, Campinas 13083-872, Brazil; (F.T.R.); (M.P.M.); (M.F.C.); (G.A.G.P.)
| | - Marina Pupke Marone
- Department of Genetics and Evolution, Institute of Biology, Universidade Estadual de Campinas, Campinas 13083-872, Brazil; (F.T.R.); (M.P.M.); (M.F.C.); (G.A.G.P.)
| | - Dener Eduardo Bortolini
- Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (G.Q.-P.); (P.L.C.F.); (D.E.B.); (R.P.O.)
| | - Piotr Mieczkowski
- High-Throughput Sequencing Facility, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27516, USA;
| | - Roenick Proveti Olmo
- Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (G.Q.-P.); (P.L.C.F.); (D.E.B.); (R.P.O.)
- CNRS UPR9022, INSERM U1257, Université de Strasbourg, 67084 Strasbourg, France
| | - Marcelo Falsarella Carazzolle
- Department of Genetics and Evolution, Institute of Biology, Universidade Estadual de Campinas, Campinas 13083-872, Brazil; (F.T.R.); (M.P.M.); (M.F.C.); (G.A.G.P.)
| | | | - Ana Cristina Fermino Soares
- Center of Agricultural, Environmental and Biological Sciences, Universidade Federal do Recôncavo da Bahia, Cruz das Almas 44380-000, Brazil;
| | - Gonçalo Amarante Guimarães Pereira
- Department of Genetics and Evolution, Institute of Biology, Universidade Estadual de Campinas, Campinas 13083-872, Brazil; (F.T.R.); (M.P.M.); (M.F.C.); (G.A.G.P.)
| | - Aristóteles Góes-Neto
- Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (G.Q.-P.); (P.L.C.F.); (D.E.B.); (R.P.O.)
- Correspondence: (A.G.-N.); (E.R.G.R.A.)
| | - Eric Roberto Guimarães Rocha Aguiar
- Center of Biotechnology and Genetics, Department of Biological Science, Universidade Estadual de Santa Cruz, Ilhéus 45662-900, Brazil
- Correspondence: (A.G.-N.); (E.R.G.R.A.)
| |
Collapse
|
373
|
Sawayama E, Handa Y, Nakano K, Noguchi D, Takagi M, Akiba Y, Sanada S, Yoshizaki G, Usui H, Kawamoto K, Suzuki M, Asahina K. Identification of the causative gene of a transparent phenotype of juvenile red sea bream Pagrus major. Heredity (Edinb) 2021; 127:167-175. [PMID: 34175895 PMCID: PMC8322342 DOI: 10.1038/s41437-021-00448-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Deformities in cultured fish species may be genetic, and identifying causative genes is essential to expand production and maintain farmed animal welfare. We previously reported a genetic deformity in juvenile red sea bream, designated a transparent phenotype. To identify its causative gene, we conducted genome-wide linkage analysis and identified two single nucleotide polymorphisms (SNP) located on LG23 directly linked to the transparent phenotype. The scaffold on which the two SNPs were located contained two candidate genes, duox and duoxa, which are related to thyroid hormone synthesis. Four missense mutations were found in duox and one in duoxa, with that in duoxa showing perfect association with the transparent phenotype. The mutation of duoxa was suggested to affect the transmembrane structure and thyroid-related traits, including an enlarged thyroid gland and immature erythrocytes, and lower thyroxine (T4) concentrations were observed in the transparent phenotype. The transparent phenotype was rescued by T4 immersion. Loss-of-function of duoxa by CRISPR-Cas9 induced the transparent phenotype in zebrafish. Evidence suggests that the transparent phenotype of juvenile red sea bream is caused by the missense mutation of duoxa and that this mutation disrupts thyroid hormone synthesis. The newly identified missense mutation will contribute to effective selective breeding of red sea bream to purge the causative gene of the undesirable phenotype and improve seed production of red sea bream as well as provide basic information of the mechanisms of thyroid hormones and its related diseases in fish and humans.
Collapse
Affiliation(s)
- Eitaro Sawayama
- grid.260969.20000 0001 2149 8846Department of Marine Science and Resources, College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa Japan
| | | | | | - Daiki Noguchi
- Nippon Total Science, Inc., Fukuyama, Hiroshima Japan
| | - Motohiro Takagi
- grid.255464.40000 0001 1011 3808South Ehime Fisheries Research Center, Ehime University, Ehime, Japan
| | - Yosuke Akiba
- grid.412785.d0000 0001 0695 6482Department of Marine Biosciences, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Shuwa Sanada
- grid.412785.d0000 0001 0695 6482Department of Marine Biosciences, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Goro Yoshizaki
- grid.412785.d0000 0001 0695 6482Department of Marine Biosciences, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Hayato Usui
- grid.260969.20000 0001 2149 8846Department of Marine Science and Resources, College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa Japan
| | - Kenta Kawamoto
- grid.260969.20000 0001 2149 8846Department of Marine Science and Resources, College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa Japan
| | - Miwa Suzuki
- grid.260969.20000 0001 2149 8846Department of Marine Science and Resources, College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa Japan
| | - Kiyoshi Asahina
- grid.260969.20000 0001 2149 8846Department of Marine Science and Resources, College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa Japan
| |
Collapse
|
374
|
Herman AB, Anerillas C, Harris SC, Munk R, Martindale J, Yang X, Mazan-Mamczarz K, Zhang Y, Heckenbach I, Scheibye-Knudsen M, De S, Sen P, Abdelmohsen K, Gorospe M. Reduction of lamin B receptor levels by miR-340-5p disrupts chromatin, promotes cell senescence and enhances senolysis. Nucleic Acids Res 2021; 49:7389-7405. [PMID: 34181735 PMCID: PMC8287953 DOI: 10.1093/nar/gkab538] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 06/06/2021] [Accepted: 06/10/2021] [Indexed: 01/10/2023] Open
Abstract
A major stress response influenced by microRNAs (miRNAs) is senescence, a state of indefinite growth arrest triggered by sublethal cell damage. Here, through bioinformatic analysis and experimental validation, we identified miR-340-5p as a novel miRNA that foments cellular senescence. miR-340-5p was highly abundant in diverse senescence models, and miR-340-5p overexpression in proliferating cells rendered them senescent. Among the target mRNAs, miR-340-5p prominently reduced the levels of LBR mRNA, encoding lamin B receptor (LBR). Loss of LBR by ectopic overexpression of miR-340-5p derepressed heterochromatin in lamina-associated domains, promoting the expression of DNA repetitive elements characteristic of senescence. Importantly, overexpressing miR-340-5p enhanced cellular sensitivity to senolytic compounds, while antagonization of miR-340-5p reduced senescent cell markers and engendered resistance to senolytic-induced cell death. We propose that miR-340-5p can be exploited for removing senescent cells to restore tissue homeostasis and mitigate damage by senescent cells in pathologies of human aging.
Collapse
Affiliation(s)
- Allison B Herman
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, 251 Bayview Blvd, Baltimore, MD 21224, USA
| | - Carlos Anerillas
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, 251 Bayview Blvd, Baltimore, MD 21224, USA
| | - Sophia C Harris
- Confocal Imaging Facility, Laboratory of Cardiovascular Sciences, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Rachel Munk
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, 251 Bayview Blvd, Baltimore, MD 21224, USA
| | - Jennifer L Martindale
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, 251 Bayview Blvd, Baltimore, MD 21224, USA
| | - Xiaoling Yang
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, 251 Bayview Blvd, Baltimore, MD 21224, USA
| | - Krystyna Mazan-Mamczarz
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, 251 Bayview Blvd, Baltimore, MD 21224, USA
| | - Yongqing Zhang
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, 251 Bayview Blvd, Baltimore, MD 21224, USA
| | - Indra J Heckenbach
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, DK-2200, Denmark
| | - Morten Scheibye-Knudsen
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, DK-2200, Denmark
| | - Supriyo De
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, 251 Bayview Blvd, Baltimore, MD 21224, USA
| | - Payel Sen
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, 251 Bayview Blvd, Baltimore, MD 21224, USA
| | - Kotb Abdelmohsen
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, 251 Bayview Blvd, Baltimore, MD 21224, USA
| | - Myriam Gorospe
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, 251 Bayview Blvd, Baltimore, MD 21224, USA
| |
Collapse
|
375
|
Lee AK, Gilman IS, Srivastav M, Lerner AD, Donoghue MJ, Clement WL. Reconstructing Dipsacales phylogeny using Angiosperms353: issues and insights. AMERICAN JOURNAL OF BOTANY 2021; 108:1122-1142. [PMID: 34254290 PMCID: PMC8362060 DOI: 10.1002/ajb2.1695] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 05/12/2021] [Indexed: 05/04/2023]
Abstract
PREMISE Phylogenetic relationships within major angiosperm clades are increasingly well resolved, but largely informed by plastid data. Areas of poor resolution persist within the Dipsacales, including placement of Heptacodium and Zabelia, and relationships within the Caprifolieae and Linnaeeae, hindering our interpretation of morphological evolution. Here, we sampled a significant number of nuclear loci using a Hyb-Seq approach and used these data to infer the Dipsacales phylogeny and estimate divergence times. METHODS Sampling all major clades within the Dipsacales, we applied the Angiosperms353 probe set to 96 species. Data were filtered based on locus completeness and taxon recovery per locus, and trees were inferred using RAxML and ASTRAL. Plastid loci were assembled from off-target reads, and 10 fossils were used to calibrate dated trees. RESULTS Varying numbers of targeted loci and off-target plastomes were recovered from most taxa. Nuclear and plastid data confidently place Heptacodium with Caprifolieae, implying homoplasy in calyx morphology, ovary development, and fruit type. Placement of Zabelia, and relationships within the Caprifolieae and Linnaeeae, remain uncertain. Dipsacales diversification began earlier than suggested by previous angiosperm-wide dating analyses, but many major splitting events date to the Eocene. CONCLUSIONS The Angiosperms353 probe set facilitated the assembly of a large, single-copy nuclear dataset for the Dipsacales. Nevertheless, many relationships remain unresolved, and resolution was poor for woody clades with low rates of molecular evolution. We favor expanding the Angiosperms353 probe set to include more variable loci and loci of special interest, such as developmental genes, within particular clades.
Collapse
Affiliation(s)
- Aaron K. Lee
- Department of BiologyThe College of New JerseyEwingNJ08628USA
- Department of Plant and Microbial BiologyUniversity of Minnesota ‐ Twin CitiesSaint PaulMN55108USA
| | - Ian S. Gilman
- Department of Ecology and Evolutionary BiologyYale UniversityNew HavenCT06520USA
| | - Mansa Srivastav
- Department of Ecology and Evolutionary BiologyYale UniversityNew HavenCT06520USA
| | - Ariel D. Lerner
- Department of BiologyThe College of New JerseyEwingNJ08628USA
| | - Michael J. Donoghue
- Department of Ecology and Evolutionary BiologyYale UniversityNew HavenCT06520USA
| | | |
Collapse
|
376
|
Trumbić Ž, Hrabar J, Palevich N, Carbone V, Mladineo I. Molecular and evolutionary basis for survival, its failure, and virulence factors of the zoonotic nematode Anisakis pegreffii. Genomics 2021; 113:2891-2905. [PMID: 34186188 DOI: 10.1016/j.ygeno.2021.06.032] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 11/30/2022]
Abstract
Parasitism is a highly successful life strategy and a driving force in genetic diversity that has evolved many times over. Accidental infections of non-targeted hosts represent an opportunity for lateral host switches and parasite niche expansion. However, if directed toward organisms that are phylogenetically distant from parasite's natural host, such as humans, it may present a dead-end environment where the parasite fails to mature or is even killed by host immunity. One example are nematodes of Anisakidae family, genus Anisakis, that through evolution have lost the ability to propagate in terrestrial hosts, but can survive for a limited time in humans causing anisakiasis. To scrutinize versatility of Anisakis to infect an evolutionary-distant host, we performed transcriptomic profiling of larvae successfully migrating through the rat, a representative model of accidental human infection and compared it to that of larvae infecting an evolutionary-familiar, paratenic host (fish). In a homeothermic accidental host Anisakis upregulated ribosome-related genes, cell division, cuticle constituents, oxidative phosphorylation, in an unsuccessful attempt to molt to the next stage. In contrast, in the paratenic poikilothermic host where metabolic pathways were moderately upregulated or silenced, larvae prepared for dormancy by triggering autophagy and longevity pathways. Identified differences and the modelling of handful of shared transcripts, provide the first insights into evolution of larval nematode virulence, warranting their further investigation as potential drug therapy targets.
Collapse
Affiliation(s)
- Željka Trumbić
- University Department of Marine Studies, University of Split, 21000 Split, Croatia
| | - Jerko Hrabar
- Laboratory of Aquaculture, Institute of Oceanography & Fisheries, 21000 Split, Croatia
| | - Nikola Palevich
- AgResearch Limited, Grasslands Research Centre, Palmerston North 4410, New Zealand
| | - Vincenzo Carbone
- AgResearch Limited, Grasslands Research Centre, Palmerston North 4410, New Zealand
| | - Ivona Mladineo
- Laboratory of Functional Helminthology, Institute of Parasitology, Biology Centre of Czech Academy of Science, 37005 Ceske Budejovice, Czech Republic.
| |
Collapse
|
377
|
Mouftah SF, Cobo-Díaz JF, Álvarez-Ordóñez A, Elserafy M, Saif NA, Sadat A, El-Shibiny A, Elhadidy M. High-throughput sequencing reveals genetic determinants associated with antibiotic resistance in Campylobacter spp. from farm-to-fork. PLoS One 2021; 16:e0253797. [PMID: 34166472 PMCID: PMC8224912 DOI: 10.1371/journal.pone.0253797] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 06/12/2021] [Indexed: 11/18/2022] Open
Abstract
Campylobacter species are one of the most common causative agents of gastroenteritis worldwide. Resistance against quinolone and macrolide antimicrobials, the most commonly used therapeutic options, poses a serious risk for campylobacteriosis treatment. Owing to whole genome sequencing advancements for rapid detection of antimicrobial resistance mechanisms, phenotypic and genotypic resistance trends along the "farm-to-fork" continuum can be determined. Here, we examined the resistance trends in 111 Campylobacter isolates (90 C. jejuni and 21 C. coli) recovered from clinical samples, commercial broiler carcasses and dairy products in Cairo, Egypt. Multidrug resistance (MDR) was observed in 10% of the isolates, mostly from C. coli. The prevalence of MDR was the highest in isolates collected from broiler carcasses (13.3%), followed by clinical isolates (10.5%), and finally isolates from dairy products (4%). The highest proportion of antimicrobial resistance in both species was against quinolones (ciprofloxacin and/or nalidixic acid) (68.4%), followed by tetracycline (51.3%), then erythromycin (12.6%) and aminoglycosides (streptomycin and/or gentamicin) (5.4%). Similar resistance rates were observed for quinolones, tetracycline, and erythromycin among isolates recovered from broiler carcasses and clinical samples highlighting the contribution of food of animal sources to human illness. Significant associations between phenotypic resistance and putative gene mutations was observed, with a high prevalence of the gyrA T86I substitution among quinolone resistant isolates, tet(O), tet(W), and tet(32) among tetracycline resistant isolates, and 23S rRNA A2075G and A2074T mutations among erythromycin resistant isolates. Emergence of resistance was attributed to the dissemination of resistance genes among various lineages, with the dominance of distinctive clones. For example, sub-lineages of CC828 in C. coli and CC21 in C. jejuni and the genetically related clonal complexes 'CC206 and CC48' and 'CC464, CC353, CC354, CC574', respectively, propagated across different niches sharing semi-homogenous resistance patterns.
Collapse
Affiliation(s)
- Shaimaa F. Mouftah
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
| | - José F. Cobo-Díaz
- Department of Food Hygiene and Technology and Institute of Food Science and Technology, Universidad de León, León, Spain
| | - Avelino Álvarez-Ordóñez
- Department of Food Hygiene and Technology and Institute of Food Science and Technology, Universidad de León, León, Spain
| | - Menattallah Elserafy
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt
| | - Nehal A. Saif
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
| | - Asmaa Sadat
- Department of Bacteriology, Mycology and Immunology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Ayman El-Shibiny
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
- Faculty of Environmental Agricultural Sciences, Arish University, Arish, Egypt
| | - Mohamed Elhadidy
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
- Department of Bacteriology, Mycology and Immunology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
- * E-mail:
| |
Collapse
|
378
|
Li Z, Han L, Luo Z, Li L. Single-molecule long-read sequencing reveals extensive genomic and transcriptomic variation between maize and its wild relative teosinte (Zea mays ssp. parviglumis). Mol Ecol Resour 2021; 22:272-282. [PMID: 34157795 DOI: 10.1111/1755-0998.13454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 06/10/2021] [Accepted: 06/11/2021] [Indexed: 11/27/2022]
Abstract
Teosinte (Zea mays ssp. parviglumis), the wild progenitor of maize (Zea mays L.), is an important germplasm resource for improvement of modern maize lines. However, we have limited genetic and genomic information about teosinte and lack state-of-the-art tools to annotate transcriptomes assembled by single-molecule long-read sequencing without a reference genome. Here, we employed single-molecule long-read sequencing of cDNA libraries from five tissues of the teosinte inbred line TIL11 and identified 70,044 nonredundant transcript isoforms. We devised a state-of-the-art, machine learning-based bioinformatics pipeline DenovoAS_Finder to annotate the TIL11 transcriptome without a complete reference genome with an accuracy of up to 91%, providing a robust gene classifier of complex genomes. Additionally, we constructed a draft TIL11 genome with 16,633 high-quality contigs and a N50 of 112 kb by Nanopore sequencing. Genes from families that expanded from teosinte to maize were significantly enriched in the gene ontology (GO) term "RNA modification pathway" and had more transcript isoforms in TIL11 than in the maize inbred line B73. Genes showed collinearity between TIL11 and B73, and intergenic regions were extensively altered by transposable elements. Our study furthers the understanding of maize domestication and provides a resource for the utilization of wild germplasm in maize breeding.
Collapse
Affiliation(s)
- Zhao Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Linqian Han
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Zi Luo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Lin Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
379
|
Rosenkrantz JL, Gaffney JE, Roberts VHJ, Carbone L, Chavez SL. Transcriptomic analysis of primate placentas and novel rhesus trophoblast cell lines informs investigations of human placentation. BMC Biol 2021; 19:127. [PMID: 34154587 PMCID: PMC8218487 DOI: 10.1186/s12915-021-01056-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 05/25/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Proper placentation, including trophoblast differentiation and function, is essential for the health and well-being of both the mother and baby throughout pregnancy. Placental abnormalities that occur during the early stages of development are thought to contribute to preeclampsia and other placenta-related pregnancy complications. However, relatively little is known about these stages in humans due to obvious ethical and technical limitations. Rhesus macaques are considered an ideal surrogate for studying human placentation, but the unclear translatability of known human placental markers and lack of accessible rhesus trophoblast cell lines can impede the use of this animal model. RESULTS Here, we performed a cross-species transcriptomic comparison of human and rhesus placenta and determined that while the majority of human placental marker genes (HPGs) were similarly expressed, 952 differentially expressed genes (DEGs) were identified between the two species. Functional enrichment analysis of the 447 human-upregulated DEGs, including ADAM12, ERVW-1, KISS1, LGALS13, PAPPA2, PGF, and SIGLEC6, revealed over-representation of genes implicated in preeclampsia and other pregnancy disorders. Additionally, to enable in vitro functional studies of early placentation, we generated and thoroughly characterized two highly pure first trimester telomerase (TERT) immortalized rhesus trophoblast cell lines (iRP-D26 and iRP-D28A) that retained crucial features of isolated primary trophoblasts. CONCLUSIONS Overall, our findings help elucidate the molecular translatability between human and rhesus placenta and reveal notable expression differences in several HPGs and genes implicated in pregnancy complications that should be considered when using the rhesus animal model to study normal and pathological human placentation.
Collapse
Affiliation(s)
- Jimi L. Rosenkrantz
- Department of Molecular and Medical Genetics, Oregon Health and Science University, 3181 S.W. Sam Jackson Park Road, Portland, OR 97239 USA
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, 505 NW 185th Avenue, Beaverton, OR 97006 USA
| | - Jessica E. Gaffney
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, 505 NW 185th Avenue, Beaverton, OR 97006 USA
| | - Victoria H. J. Roberts
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, 505 NW 185th Avenue, Beaverton, OR 97006 USA
| | - Lucia Carbone
- Department of Molecular and Medical Genetics, Oregon Health and Science University, 3181 S.W. Sam Jackson Park Road, Portland, OR 97239 USA
- Division of Genetics, Oregon National Primate Research Center, Beaverton, OR 97006 USA
- Department of Medicine, Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR 97239 USA
- Department of Medical Informatics and Clinical Epidemiology, Oregon Health and Science University, Portland, OR 97239 USA
| | - Shawn L. Chavez
- Department of Molecular and Medical Genetics, Oregon Health and Science University, 3181 S.W. Sam Jackson Park Road, Portland, OR 97239 USA
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, 505 NW 185th Avenue, Beaverton, OR 97006 USA
- Department of Obstetrics and Gynecology, Oregon Health and Science University School of Medicine, Portland, OR 97239 USA
- Department of Biomedical Engineering, Oregon Health and Science University School of Medicine, Portland, OR 97239 USA
| |
Collapse
|
380
|
Dvorianinova EM, Pushkova EN, Novakovskiy RO, Povkhova LV, Bolsheva NL, Kudryavtseva LP, Rozhmina TA, Melnikova NV, Dmitriev AA. Nanopore and Illumina Genome Sequencing of Fusarium oxysporum f. sp. lini Strains of Different Virulence. Front Genet 2021; 12:662928. [PMID: 34220940 PMCID: PMC8248858 DOI: 10.3389/fgene.2021.662928] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 05/06/2021] [Indexed: 11/15/2022] Open
Affiliation(s)
- Ekaterina M Dvorianinova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.,Moscow Institute of Physics and Technology, Moscow, Russia
| | - Elena N Pushkova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Roman O Novakovskiy
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Liubov V Povkhova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.,Moscow Institute of Physics and Technology, Moscow, Russia
| | - Nadezhda L Bolsheva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | | | | | - Nataliya V Melnikova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Alexey A Dmitriev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
381
|
Shi Z, Campanaro S, Usman M, Treu L, Basile A, Angelidaki I, Zhang S, Luo G. Genome-Centric Metatranscriptomics Analysis Reveals the Role of Hydrochar in Anaerobic Digestion of Waste Activated Sludge. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:8351-8361. [PMID: 34029058 DOI: 10.1021/acs.est.1c01995] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Anaerobic digestion (AD) of waste activated sludge (WAS) has been widely used, while it poses problems including low methane yield and production rate. Hydrochar is produced by hydrothermal liquefaction of biomass; however, little is known about the role of hydrochar in promoting AD of WAS. The present study showed that hydrochar increased the methane production rate by 30.8% and yield by 31.4% of hydrothermal pretreated dewatered WAS. Hydrochar increased the methane production rate and yield by enhancing the acidification and methanogenesis processes. Genomic-centric metatranscriptomics were used to identify the metabolic activities and transcriptomic response of individual metagenome-assembled genomes that were enriched by hydrochar. Although Methanosarcina sp. FDU0106 had been shown unable to used H2, it had the complete pathway for the reduction of CO2 to methane. Syntrophomonas sp. FDU0164 expressed genes for extracellular electron transfer via electrically pili, suggesting that Syntrophomonas sp. FDU0164 and Methanosarcina sp. FDU0106 were exchanging electrons via direct interspecies electron transfer. The expression of pili was decreased, indicating that hydrochar could replace its roles. Additionally, Firmicutes sp. FDU0048, Proteiniphilum sp. FDU0082, and Aminobacterium mobile FDU0089 were related to the degradation of organics, which could be related to the enhanced methane yield.
Collapse
Affiliation(s)
- Zhijian Shi
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Stefano Campanaro
- Department of Biology, University of Padova, Via U. Bassi 58/b, 35121 Padua, Italy
| | - Muhammad Usman
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
- Bioproducts Science and Engineering Laboratory, Washington State University (WSU), Tri-Cities, Washington 99354, United States
| | - Laura Treu
- Department of Biology, University of Padova, Via U. Bassi 58/b, 35121 Padua, Italy
| | - Arianna Basile
- Department of Biology, University of Padova, Via U. Bassi 58/b, 35121 Padua, Italy
| | - Irini Angelidaki
- Department of Environmental Engineering, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Shicheng Zhang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
- Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai 200438, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Gang Luo
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
- Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai 200438, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| |
Collapse
|
382
|
Figueiredo VC, Wen Y, Alkner B, Fernandez-Gonzalo R, Norrbom J, Vechetti IJ, Valentino T, Mobley CB, Zentner GE, Peterson CA, McCarthy JJ, Murach KA, von Walden F. Genetic and epigenetic regulation of skeletal muscle ribosome biogenesis with exercise. J Physiol 2021; 599:3363-3384. [PMID: 33913170 DOI: 10.1113/jp281244] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 04/20/2021] [Indexed: 12/16/2022] Open
Abstract
KEY POINTS Ribosome biogenesis and MYC transcription are associated with acute resistance exercise (RE) and are distinct from endurance exercise in human skeletal muscle throughout a 24 h time course of recovery. A PCR-based method for relative ribosomal DNA (rDNA) copy number estimation was validated by whole genome sequencing and revealed that rDNA dosage is positively correlated with ribosome biogenesis in response to RE. Acute RE modifies rDNA methylation patterns in enhancer, intergenic spacer and non-canonical MYC-associated regions, but not the promoter. Myonuclear-specific rDNA methylation patterns with acute mechanical overload in mice corroborate and expand on rDNA findings with RE in humans. A genetic predisposition for hypertrophic responsiveness may exist based on rDNA gene dosage. ABSTRACT Ribosomes are the macromolecular engines of protein synthesis. Skeletal muscle ribosome biogenesis is stimulated by exercise, although the contribution of ribosomal DNA (rDNA) copy number and methylation to exercise-induced rDNA transcription is unclear. To investigate the genetic and epigenetic regulation of ribosome biogenesis with exercise, a time course of skeletal muscle biopsies was obtained from 30 participants (18 men and 12 women; 31 ± 8 years, 25 ± 4 kg m-2 ) at rest and 30 min, 3 h, 8 h and 24 h after acute endurance (n = 10, 45 min cycling, 70% V ̇ O 2 max ) or resistance exercise (n = 10, 4 × 7 × 2 exercises); 10 control participants underwent biopsies without exercise. rDNA transcription and dosage were assessed using quantitative PCR and whole genome sequencing. rDNA promoter methylation was investigated using massARRAY EpiTYPER and global rDNA CpG methylation was assessed using reduced-representation bisulphite sequencing. Ribosome biogenesis and MYC transcription were associated primarily with resistance but not endurance exercise, indicating preferential up-regulation during hypertrophic processes. With resistance exercise, ribosome biogenesis was associated with rDNA gene dosage, as well as epigenetic changes in enhancer and non-canonical MYC-associated areas in rDNA, but not the promoter. A mouse model of in vivo metabolic RNA labelling and genetic myonuclear fluorescence labelling validated the effects of an acute hypertrophic stimulus on ribosome biogenesis and Myc transcription, and also corroborated rDNA enhancer and Myc-associated methylation alterations specifically in myonuclei. The present study provides the first information on skeletal muscle genetic and rDNA gene-wide epigenetic regulation of ribosome biogenesis in response to exercise, revealing novel roles for rDNA dosage and CpG methylation.
Collapse
Affiliation(s)
- Vandré C Figueiredo
- Department of Physical Therapy, College of Health Sciences, University of Kentucky, Lexington, KY, USA.,The Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
| | - Yuan Wen
- The Center for Muscle Biology, University of Kentucky, Lexington, KY, USA.,Department of Physiology, University of Kentucky, Lexington, KY, USA
| | - Björn Alkner
- Department of Orthopaedics, Eksjö, Region Jönköping County and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Rodrigo Fernandez-Gonzalo
- Division of Clinical Physiology, Department of Laboratory Medicine, Karolinska Institutet, and Unit of Clinical Physiology, Karolinska University Hospital, Stockholm, Sweden
| | - Jessica Norrbom
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Ivan J Vechetti
- The Center for Muscle Biology, University of Kentucky, Lexington, KY, USA.,Department of Nutrition and Health Sciences, University of Nebraska, Lincoln, NE, USA
| | - Taylor Valentino
- The Center for Muscle Biology, University of Kentucky, Lexington, KY, USA.,Department of Physiology, University of Kentucky, Lexington, KY, USA
| | - C Brooks Mobley
- The Center for Muscle Biology, University of Kentucky, Lexington, KY, USA.,Department of Physiology, University of Kentucky, Lexington, KY, USA
| | | | - Charlotte A Peterson
- Department of Physical Therapy, College of Health Sciences, University of Kentucky, Lexington, KY, USA.,The Center for Muscle Biology, University of Kentucky, Lexington, KY, USA.,Department of Physiology, University of Kentucky, Lexington, KY, USA
| | - John J McCarthy
- The Center for Muscle Biology, University of Kentucky, Lexington, KY, USA.,Department of Physiology, University of Kentucky, Lexington, KY, USA
| | - Kevin A Murach
- Department of Physical Therapy, College of Health Sciences, University of Kentucky, Lexington, KY, USA.,The Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
| | - Ferdinand von Walden
- The Center for Muscle Biology, University of Kentucky, Lexington, KY, USA.,Department of Physiology, University of Kentucky, Lexington, KY, USA.,Division of Pediatric Neurology, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
383
|
Cordoba J, Perez E, Van Vlierberghe M, Bertrand AR, Lupo V, Cardol P, Baurain D. De Novo Transcriptome Meta-Assembly of the Mixotrophic Freshwater Microalga Euglena gracilis. Genes (Basel) 2021; 12:842. [PMID: 34072576 PMCID: PMC8227486 DOI: 10.3390/genes12060842] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/24/2021] [Accepted: 05/27/2021] [Indexed: 01/01/2023] Open
Abstract
Euglena gracilis is a well-known photosynthetic microeukaryote considered as the product of a secondary endosymbiosis between a green alga and a phagotrophic unicellular belonging to the same eukaryotic phylum as the parasitic trypanosomatids. As its nuclear genome has proven difficult to sequence, reliable transcriptomes are important for functional studies. In this work, we assembled a new consensus transcriptome by combining sequencing reads from five independent studies. Based on a detailed comparison with two previously released transcriptomes, our consensus transcriptome appears to be the most complete so far. Remapping the reads on it allowed us to compare the expression of the transcripts across multiple culture conditions at once and to infer a functionally annotated network of co-expressed genes. Although the emergence of meaningful gene clusters indicates that some biological signal lies in gene expression levels, our analyses confirm that gene regulation in euglenozoans is not primarily controlled at the transcriptional level. Regarding the origin of E. gracilis, we observe a heavily mixed gene ancestry, as previously reported, and rule out sequence contamination as a possible explanation for these observations. Instead, they indicate that this complex alga has evolved through a convoluted process involving much more than two partners.
Collapse
Affiliation(s)
- Javier Cordoba
- InBioS—PhytoSYSTEMS, Laboratoire de Génétique et Physiologie des Microalgues, ULiège, B-4000 Liège, Belgium; (J.C.); (E.P.); (P.C.)
| | - Emilie Perez
- InBioS—PhytoSYSTEMS, Laboratoire de Génétique et Physiologie des Microalgues, ULiège, B-4000 Liège, Belgium; (J.C.); (E.P.); (P.C.)
- InBioS—PhytoSYSTEMS, Unit of Eukaryotic Phylogenomics, ULiège, B-4000 Liège, Belgium; (M.V.V.); (A.R.B.); (V.L.)
| | - Mick Van Vlierberghe
- InBioS—PhytoSYSTEMS, Unit of Eukaryotic Phylogenomics, ULiège, B-4000 Liège, Belgium; (M.V.V.); (A.R.B.); (V.L.)
| | - Amandine R. Bertrand
- InBioS—PhytoSYSTEMS, Unit of Eukaryotic Phylogenomics, ULiège, B-4000 Liège, Belgium; (M.V.V.); (A.R.B.); (V.L.)
| | - Valérian Lupo
- InBioS—PhytoSYSTEMS, Unit of Eukaryotic Phylogenomics, ULiège, B-4000 Liège, Belgium; (M.V.V.); (A.R.B.); (V.L.)
| | - Pierre Cardol
- InBioS—PhytoSYSTEMS, Laboratoire de Génétique et Physiologie des Microalgues, ULiège, B-4000 Liège, Belgium; (J.C.); (E.P.); (P.C.)
| | - Denis Baurain
- InBioS—PhytoSYSTEMS, Unit of Eukaryotic Phylogenomics, ULiège, B-4000 Liège, Belgium; (M.V.V.); (A.R.B.); (V.L.)
| |
Collapse
|
384
|
Forcone K, Coutinho FH, Cavalcanti GS, Silveira CB. Prophage Genomics and Ecology in the Family Rhodobacteraceae. Microorganisms 2021; 9:microorganisms9061115. [PMID: 34064105 PMCID: PMC8224337 DOI: 10.3390/microorganisms9061115] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/12/2021] [Accepted: 05/17/2021] [Indexed: 12/20/2022] Open
Abstract
Roseobacters are globally abundant bacteria with critical roles in carbon and sulfur biogeochemical cycling. Here, we identified 173 new putative prophages in 79 genomes of Rhodobacteraceae. These prophages represented 1.3 ± 0.15% of the bacterial genomes and had no to low homology with reference and metagenome-assembled viral genomes from aquatic and terrestrial ecosystems. Among the newly identified putative prophages, 35% encoded auxiliary metabolic genes (AMGs), mostly involved in secondary metabolism, amino acid metabolism, and cofactor and vitamin production. The analysis of integration sites and gene homology showed that 22 of the putative prophages were actually gene transfer agents (GTAs) similar to a GTA of Rhodobacter capsulatus. Twenty-three percent of the predicted prophages were observed in the TARA Oceans viromes generated from free viral particles, suggesting that they represent active prophages capable of induction. The distribution of these prophages was significantly associated with latitude and temperature. The prophages most abundant at high latitudes encoded acpP, an auxiliary metabolic gene involved in lipid synthesis and membrane fluidity at low temperatures. Our results show that prophages and gene transfer agents are significant sources of genomic diversity in roseobacter, with potential roles in the ecology of this globally distributed bacterial group.
Collapse
Affiliation(s)
- Kathryn Forcone
- Department of Biology, University of Miami, 1301 Memorial Dr., Coral Gables, Miami, FL 33146, USA; (K.F.); (G.S.C.)
| | - Felipe H. Coutinho
- Evolutionary Genomics Group, Departamento de Producción Vegetal y Microbiología, Universidad Miguel Hernández de Elche, Aptdo. 18, Ctra. Alicante-Valencia, s/n, 03550 San Juan de Alicante, Spain;
| | - Giselle S. Cavalcanti
- Department of Biology, University of Miami, 1301 Memorial Dr., Coral Gables, Miami, FL 33146, USA; (K.F.); (G.S.C.)
| | - Cynthia B. Silveira
- Department of Biology, University of Miami, 1301 Memorial Dr., Coral Gables, Miami, FL 33146, USA; (K.F.); (G.S.C.)
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Sciences, University of Miami, 4600 Rickenbacker Causeway, Miami, FL 33149, USA
- Correspondence:
| |
Collapse
|
385
|
Computational based design and tracking of synthetic variants of Porcine circovirus reveal relations between silent genomic information and viral fitness. Sci Rep 2021; 11:10620. [PMID: 34012100 PMCID: PMC8134455 DOI: 10.1038/s41598-021-89918-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 04/29/2021] [Indexed: 12/17/2022] Open
Abstract
Viral genomes not only code the protein content, but also include silent, overlapping codes which are important to the regulation of the viral life cycle and affect its evolution. Due to the high density of these codes, their non-modular nature and the complex intracellular processes they encode, the ability of current approaches to decipher them is very limited. We describe the first computational-experimental pipeline for studying the effects of viral silent and non-silent information on its fitness. The pipeline was implemented to study the Porcine Circovirus type 2 (PCV2), the shortest known eukaryotic virus, and includes the following steps: (1) Based on the analyses of 2100 variants of PCV, suspected silent codes were inferred. (2) Five hundred variants of the PCV2 were designed to include various ‘smart’ silent mutations. (3) Using state of the art synthetic biology approaches, the genomes of these five hundred variants were generated. (4) Competition experiments between the variants were performed in Porcine kidney-15 (PK15) cell-lines. (5) The variant titers were analyzed based on novel next-generation sequencing (NGS) experiments. (6) The features related to the titer of the variants were inferred and their analyses enabled detection of various novel silent functional sequence and structural motifs. Furthermore, we demonstrate that 50 of the silent variants exhibit higher fitness than the wildtype in the analyzed conditions.
Collapse
|
386
|
Izawa K, Okamoto-Shibayama K, Kita D, Tomita S, Saito A, Ishida T, Ohue M, Akiyama Y, Ishihara K. Taxonomic and Gene Category Analyses of Subgingival Plaques from a Group of Japanese Individuals with and without Periodontitis. Int J Mol Sci 2021; 22:ijms22105298. [PMID: 34069916 PMCID: PMC8157553 DOI: 10.3390/ijms22105298] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/12/2021] [Accepted: 05/15/2021] [Indexed: 12/11/2022] Open
Abstract
Periodontitis is an inflammation of tooth-supporting tissues, which is caused by bacteria in the subgingival plaque (biofilm) and the host immune response. Traditionally, subgingival pathogens have been investigated using methods such as culturing, DNA probes, or PCR. The development of next-generation sequencing made it possible to investigate the whole microbiome in the subgingival plaque. Previous studies have implicated dysbiosis of the subgingival microbiome in the etiology of periodontitis. However, details are still lacking. In this study, we conducted a metagenomic analysis of subgingival plaque samples from a group of Japanese individuals with and without periodontitis. In the taxonomic composition analysis, genus Bacteroides and Mycobacterium demonstrated significantly different compositions between healthy sites and sites with periodontal pockets. The results from the relative abundance of functional gene categories, carbohydrate metabolism, glycan biosynthesis and metabolism, amino acid metabolism, replication and repair showed significant differences between healthy sites and sites with periodontal pockets. These results provide important insights into the shift in the taxonomic and functional gene category abundance caused by dysbiosis, which occurs during the progression of periodontal disease.
Collapse
Affiliation(s)
- Kazuki Izawa
- Department of Computer Science, School of Computing, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8550, Japan; (K.I.); (T.I.); (M.O.); (Y.A.)
| | | | - Daichi Kita
- Department of Periodontology, Tokyo Dental College, Chiyoda-ku, Tokyo 101-0061, Japan; (D.K.); (S.T.); (A.S.)
- Oral Health Science Center, Tokyo Dental College, Chiyoda-ku, Tokyo 101-0061, Japan
| | - Sachiyo Tomita
- Department of Periodontology, Tokyo Dental College, Chiyoda-ku, Tokyo 101-0061, Japan; (D.K.); (S.T.); (A.S.)
| | - Atsushi Saito
- Department of Periodontology, Tokyo Dental College, Chiyoda-ku, Tokyo 101-0061, Japan; (D.K.); (S.T.); (A.S.)
- Oral Health Science Center, Tokyo Dental College, Chiyoda-ku, Tokyo 101-0061, Japan
| | - Takashi Ishida
- Department of Computer Science, School of Computing, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8550, Japan; (K.I.); (T.I.); (M.O.); (Y.A.)
| | - Masahito Ohue
- Department of Computer Science, School of Computing, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8550, Japan; (K.I.); (T.I.); (M.O.); (Y.A.)
| | - Yutaka Akiyama
- Department of Computer Science, School of Computing, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8550, Japan; (K.I.); (T.I.); (M.O.); (Y.A.)
| | - Kazuyuki Ishihara
- Department of Microbiology, Tokyo Dental College, Chiyoda-ku, Tokyo 101-0061, Japan;
- Oral Health Science Center, Tokyo Dental College, Chiyoda-ku, Tokyo 101-0061, Japan
- Correspondence: ; Tel.: +81–3-6380−9558
| |
Collapse
|
387
|
Shibuta MK, Sakamoto T, Yamaoka T, Yoshikawa M, Kasamatsu S, Yagi N, Fujimoto S, Suzuki T, Uchino S, Sato Y, Kimura H, Matsunaga S. A live imaging system to analyze spatiotemporal dynamics of RNA polymerase II modification in Arabidopsis thaliana. Commun Biol 2021; 4:580. [PMID: 33990678 PMCID: PMC8121908 DOI: 10.1038/s42003-021-02106-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 04/12/2021] [Indexed: 02/04/2023] Open
Abstract
Spatiotemporal changes in general transcription levels play a vital role in the dynamic regulation of various critical activities. Phosphorylation levels at Ser2 in heptad repeats within the C-terminal domain of RNA polymerase II, representing the elongation form, is an indicator of transcription. However, rapid transcriptional changes during tissue development and cellular phenomena are difficult to capture in living organisms. We introduced a genetically encoded system termed modification-specific intracellular antibody (mintbody) into Arabidopsis thaliana. We developed a protein processing- and 2A peptide-mediated two-component system for real-time quantitative measurement of endogenous modification level. This system enables quantitative tracking of the spatiotemporal dynamics of transcription. Using this method, we observed that the transcription level varies among tissues in the root and changes dynamically during the mitotic phase. The approach is effective for achieving live visualization of the transcription level in a single cell and facilitates an improved understanding of spatiotemporal transcription dynamics.
Collapse
Affiliation(s)
- Mio K Shibuta
- Graduate School of Frontier Sciences, Department of Integrated Biosciences, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Takuya Sakamoto
- Faculty of Science and Technology, Department of Applied Biological Science, Tokyo University of Science, Noda, Chiba, Japan
| | - Tamako Yamaoka
- Faculty of Science and Technology, Department of Applied Biological Science, Tokyo University of Science, Noda, Chiba, Japan
| | - Mayu Yoshikawa
- Faculty of Science and Technology, Department of Applied Biological Science, Tokyo University of Science, Noda, Chiba, Japan
| | - Shusuke Kasamatsu
- Academic Assembly (Faculty of Science), Yamagata University, Yamagata, Japan
| | - Noriyoshi Yagi
- Faculty of Science and Technology, Department of Applied Biological Science, Tokyo University of Science, Noda, Chiba, Japan
| | - Satoru Fujimoto
- Faculty of Science and Technology, Department of Applied Biological Science, Tokyo University of Science, Noda, Chiba, Japan
| | - Takamasa Suzuki
- College of Bioscience and Biotechnology, Chubu University, Kasugai, Aichi, Japan
| | - Satoshi Uchino
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Midori-Ku, Yokohama, Japan
| | - Yuko Sato
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Midori-Ku, Yokohama, Japan
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Midori-Ku, Yokohama, Japan
| | - Hiroshi Kimura
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Midori-Ku, Yokohama, Japan
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Midori-Ku, Yokohama, Japan
| | - Sachihiro Matsunaga
- Graduate School of Frontier Sciences, Department of Integrated Biosciences, The University of Tokyo, Kashiwa, Chiba, Japan.
| |
Collapse
|
388
|
Sabater C, Ruiz L, Margolles A. A Machine Learning Approach to Study Glycosidase Activities from Bifidobacterium. Microorganisms 2021; 9:1034. [PMID: 34064844 PMCID: PMC8151561 DOI: 10.3390/microorganisms9051034] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 04/30/2021] [Accepted: 05/05/2021] [Indexed: 12/27/2022] Open
Abstract
This study aimed to recover metagenome-assembled genomes (MAGs) from human fecal samples to characterize the glycosidase profiles of Bifidobacterium species exposed to different prebiotic oligosaccharides (galacto-oligosaccharides, fructo-oligosaccharides and human milk oligosaccharides, HMOs) as well as high-fiber diets. A total of 1806 MAGs were recovered from 487 infant and adult metagenomes. Unsupervised and supervised classification of glycosidases codified in MAGs using machine-learning algorithms allowed establishing characteristic hydrolytic profiles for B. adolescentis, B. bifidum, B. breve, B. longum and B. pseudocatenulatum, yielding classification rates above 90%. Glycosidase families GH5 44, GH32, and GH110 were characteristic of B. bifidum. The presence or absence of GH1, GH2, GH5 and GH20 was characteristic of B. adolescentis, B. breve and B. pseudocatenulatum, while families GH1 and GH30 were relevant in MAGs from B. longum. These characteristic profiles allowed discriminating bifidobacteria regardless of prebiotic exposure. Correlation analysis of glycosidase activities suggests strong associations between glycosidase families comprising HMOs-degrading enzymes, which are often found in MAGs from the same species. Mathematical models here proposed may contribute to a better understanding of the carbohydrate metabolism of some common bifidobacteria species and could be extrapolated to other microorganisms of interest in future studies.
Collapse
Affiliation(s)
- Carlos Sabater
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA), Consejo Superior de Investigaciones Científicas (CSIC), Paseo Río Linares S/N, 33300 Villaviciosa, Asturias, Spain; (L.R.); (A.M.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Asturias, Spain
| | - Lorena Ruiz
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA), Consejo Superior de Investigaciones Científicas (CSIC), Paseo Río Linares S/N, 33300 Villaviciosa, Asturias, Spain; (L.R.); (A.M.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Asturias, Spain
| | - Abelardo Margolles
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA), Consejo Superior de Investigaciones Científicas (CSIC), Paseo Río Linares S/N, 33300 Villaviciosa, Asturias, Spain; (L.R.); (A.M.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Asturias, Spain
| |
Collapse
|
389
|
Andras JP, Fields PD, Du Pasquier L, Fredericksen M, Ebert D. Genome-Wide Association Analysis Identifies a Genetic Basis of Infectivity in a Model Bacterial Pathogen. Mol Biol Evol 2021; 37:3439-3452. [PMID: 32658956 PMCID: PMC7743900 DOI: 10.1093/molbev/msaa173] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 06/22/2020] [Accepted: 07/08/2020] [Indexed: 12/22/2022] Open
Abstract
Knowledge of the genetic architecture of pathogen infectivity and host resistance is essential for a mechanistic understanding of coevolutionary processes, yet the genetic basis of these interacting traits remains unknown for most host-pathogen systems. We used a comparative genomic approach to explore the genetic basis of infectivity in Pasteuria ramosa, a Gram-positive bacterial pathogen of planktonic crustaceans that has been established as a model for studies of Red Queen host-pathogen coevolution. We sequenced the genomes of a geographically, phenotypically, and genetically diverse collection of P. ramosa strains and performed a genome-wide association study to identify genetic correlates of infection phenotype. We found multiple polymorphisms within a single gene, Pcl7, that correlate perfectly with one common and widespread infection phenotype. We then confirmed this perfect association via Sanger sequencing in a large and diverse sample set of P. ramosa clones. Pcl7 codes for a collagen-like protein, a class of adhesion proteins known or suspected to be involved in the infection mechanisms of a number of important bacterial pathogens. Consistent with expectations under Red Queen coevolution, sequence variation of Pcl7 shows evidence of balancing selection, including extraordinarily high diversity and absence of geographic structure. Based on structural homology with a collagen-like protein of Bacillus anthracis, we propose a hypothesis for the structure of Pcl7 and the physical location of the phenotype-associated polymorphisms. Our results offer strong evidence for a gene governing infectivity and provide a molecular basis for further study of Red Queen dynamics in this model host-pathogen system.
Collapse
Affiliation(s)
- Jason P Andras
- Department of Biological Sciences, Mount Holyoke College, South Hadley, MA
| | - Peter D Fields
- Division of Zoology, Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | - Louis Du Pasquier
- Division of Zoology, Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | - Maridel Fredericksen
- Division of Zoology, Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | - Dieter Ebert
- Division of Zoology, Department of Environmental Sciences, University of Basel, Basel, Switzerland
| |
Collapse
|
390
|
Tian H, Li Y, Wang C, Xu X, Zhang Y, Zeb Q, Zicola J, Fu Y, Turck F, Li L, Lu Z, Liu L. Photoperiod-responsive changes in chromatin accessibility in phloem companion and epidermis cells of Arabidopsis leaves. THE PLANT CELL 2021; 33:475-491. [PMID: 33955490 PMCID: PMC8136901 DOI: 10.1093/plcell/koaa043] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 11/29/2020] [Indexed: 05/04/2023]
Abstract
Photoperiod plays a key role in controlling the phase transition from vegetative to reproductive growth in flowering plants. Leaves are the major organs perceiving day-length signals, but how specific leaf cell types respond to photoperiod remains unknown. We integrated photoperiod-responsive chromatin accessibility and transcriptome data in leaf epidermis and vascular companion cells of Arabidopsis thaliana by combining isolation of nuclei tagged in specific cell/tissue types with assay for transposase-accessible chromatin using sequencing and RNA-sequencing. Despite a large overlap, vasculature and epidermis cells responded differently. Long-day predominantly induced accessible chromatin regions (ACRs); in the vasculature, more ACRs were induced and these were located at more distal gene regions, compared with the epidermis. Vascular ACRs induced by long days were highly enriched in binding sites for flowering-related transcription factors. Among the highly ranked genes (based on chromatin and expression signatures in the vasculature), we identified TREHALOSE-PHOSPHATASE/SYNTHASE 9 (TPS9) as a flowering activator, as shown by the late flowering phenotypes of T-DNA insertion mutants and transgenic lines with phloem-specific knockdown of TPS9. Our cell-type-specific analysis sheds light on how the long-day photoperiod stimulus impacts chromatin accessibility in a tissue-specific manner to regulate plant development.
Collapse
Affiliation(s)
| | | | | | | | - Yajie Zhang
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, and College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Qudsia Zeb
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, and College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Johan Zicola
- Max Planck Institute for Plant Breeding Research, Cologne, D-50829, Germany
| | - Yongfu Fu
- National Key Facility of Crop Gene Resource and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Franziska Turck
- Max Planck Institute for Plant Breeding Research, Cologne, D-50829, Germany
| | - Legong Li
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, and College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Zefu Lu
- Author for correspondence: (L.L) and (Z.L.)
| | | |
Collapse
|
391
|
Bi Y, Tu Y, Zhang N, Wang S, Zhang F, Suen G, Shao D, Li S, Diao Q. Multiomics analysis reveals the presence of a microbiome in the gut of fetal lambs. Gut 2021; 70:853-864. [PMID: 33589511 PMCID: PMC8040156 DOI: 10.1136/gutjnl-2020-320951] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 01/08/2021] [Accepted: 01/13/2021] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Microbial exposure is critical to neonatal and infant development, growth and immunity. However, whether a microbiome is present in the fetal gut prior to birth remains debated. In this study, lambs delivered by aseptic hysterectomy at full term were used as an animal model to investigate the presence of a microbiome in the prenatal gut using a multiomics approach. DESIGN Lambs were euthanised immediately after aseptic caesarean section and their cecal content and umbilical cord blood samples were aseptically acquired. Cecal content samples were assessed using metagenomic and metatranscriptomic sequencing to characterise any existing microbiome. Both sample types were analysed using metabolomics in order to detect microbial metabolites. RESULTS We detected a low-diversity and low-biomass microbiome in the prenatal fetal gut, which was mainly composed of bacteria belonging to the phyla Proteobacteria, Actinobacteria and Firmicutes. Escherichia coli was the most abundant species in the prenatal fetal gut. We also detected multiple microbial metabolites including short chain fatty acids, deoxynojirimycin, mitomycin and tobramycin, further indicating the presence of metabolically active microbiota. Additionally, bacteriophage phiX174 and Orf virus, as well as antibiotic resistance genes, were detected in the fetal gut, suggesting that bacteriophage, viruses and bacteria carrying antibiotic resistance genes can be transmitted from the mother to the fetus during the gestation period. CONCLUSIONS This study provides strong evidence that the prenatal gut harbours a microbiome and that microbial colonisation of the fetal gut commences in utero.
Collapse
Affiliation(s)
- Yanliang Bi
- Feed Research Institute, Chinese Academy of Agricultural Sciences, National Engineering Research Center of Biological Feed, Beijing, China
| | - Yan Tu
- Feed Research Institute, Chinese Academy of Agricultural Sciences, National Engineering Research Center of Biological Feed, Beijing, China
| | - Naifeng Zhang
- Feed Research Institute, Chinese Academy of Agricultural Sciences, National Engineering Research Center of Biological Feed, Beijing, China
| | - Shiqing Wang
- Feed Research Institute, Chinese Academy of Agricultural Sciences, National Engineering Research Center of Biological Feed, Beijing, China
| | - Fan Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Garret Suen
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Dafu Shao
- Agricultural Informaition Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shengli Li
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Qiyu Diao
- Feed Research Institute, Chinese Academy of Agricultural Sciences, National Engineering Research Center of Biological Feed, Beijing, China
| |
Collapse
|
392
|
Abstract
Synthesis and degradation of cellular constituents must be balanced to maintain cellular homeostasis, especially during adaptation to environmental stress. The role of autophagy in the degradation of proteins and organelles is well-characterized. However, autophagy-mediated RNA degradation in response to stress and the potential preference of specific RNAs to undergo autophagy-mediated degradation have not been examined. In this study, we demonstrate selective mRNA degradation by rapamycin-induced autophagy in yeast. Profiling of mRNAs from the vacuole reveals that subsets of mRNAs, such as those encoding amino acid biosynthesis and ribosomal proteins, are preferentially delivered to the vacuole by autophagy for degradation. We also reveal that autophagy-mediated mRNA degradation is tightly coupled with translation by ribosomes. Genome-wide ribosome profiling suggested a high correspondence between ribosome association and targeting to the vacuole. We propose that autophagy-mediated mRNA degradation is a unique and previously-unappreciated function of autophagy that affords post-transcriptional gene regulation.
Collapse
|
393
|
Brosnan CA, Palmer AJ, Zuryn S. Cell-type-specific profiling of loaded miRNAs from Caenorhabditis elegans reveals spatial and temporal flexibility in Argonaute loading. Nat Commun 2021; 12:2194. [PMID: 33850152 PMCID: PMC8044110 DOI: 10.1038/s41467-021-22503-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 03/18/2021] [Indexed: 12/13/2022] Open
Abstract
Multicellularity has coincided with the evolution of microRNAs (miRNAs), small regulatory RNAs that are integrated into cellular differentiation and homeostatic gene-regulatory networks. However, the regulatory mechanisms underpinning miRNA activity have remained largely obscured because of the precise, and thus difficult to access, cellular contexts under which they operate. To resolve these, we have generated a genome-wide map of active miRNAs in Caenorhabditis elegans by revealing cell-type-specific patterns of miRNAs loaded into Argonaute (AGO) silencing complexes. Epitope-labelled AGO proteins were selectively expressed and immunoprecipitated from three distinct tissue types and associated miRNAs sequenced. In addition to providing information on biological function, we define adaptable miRNA:AGO interactions with single-cell-type and AGO-specific resolution. We demonstrate spatial and temporal dynamicism, flexibility of miRNA loading, and suggest miRNA regulatory mechanisms via AGO selectivity in different tissues and during ageing. Additionally, we resolve widespread changes in AGO-regulated gene expression by analysing translatomes specifically in neurons.
Collapse
Affiliation(s)
- Christopher A Brosnan
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Australia.
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Australia.
| | - Alexander J Palmer
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | - Steven Zuryn
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Australia.
| |
Collapse
|
394
|
The long-term genetic stability and individual specificity of the human gut microbiome. Cell 2021; 184:2302-2315.e12. [PMID: 33838112 DOI: 10.1016/j.cell.2021.03.024] [Citation(s) in RCA: 214] [Impact Index Per Article: 53.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 12/02/2020] [Accepted: 03/11/2021] [Indexed: 12/11/2022]
Abstract
By following up the gut microbiome, 51 human phenotypes and plasma levels of 1,183 metabolites in 338 individuals after 4 years, we characterize microbial stability and variation in relation to host physiology. Using these individual-specific and temporally stable microbial profiles, including bacterial SNPs and structural variations, we develop a microbial fingerprinting method that shows up to 85% accuracy in classifying metagenomic samples taken 4 years apart. Application of our fingerprinting method to the independent HMP cohort results in 95% accuracy for samples taken 1 year apart. We further observe temporal changes in the abundance of multiple bacterial species, metabolic pathways, and structural variation, as well as strain replacement. We report 190 longitudinal microbial associations with host phenotypes and 519 associations with plasma metabolites. These associations are enriched for cardiometabolic traits, vitamin B, and uremic toxins. Finally, mediation analysis suggests that the gut microbiome may influence cardiometabolic health through its metabolites.
Collapse
|
395
|
Integrated genomic analysis reveals key features of long undecoded transcript isoform-based gene repression. Mol Cell 2021; 81:2231-2245.e11. [PMID: 33826921 PMCID: PMC8153250 DOI: 10.1016/j.molcel.2021.03.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 02/05/2021] [Accepted: 03/09/2021] [Indexed: 12/31/2022]
Abstract
Long undecoded transcript isoforms (LUTIs) represent a class of non-canonical mRNAs that downregulate gene expression through the combined act of transcriptional and translational repression. While single gene studies revealed important aspects of LUTI-based repression, how these features affect gene regulation on a global scale is unknown. Using transcript leader and direct RNA sequencing, here, we identify 74 LUTI candidates that are specifically induced in meiotic prophase. Translational repression of these candidates appears to be ubiquitous and is dependent on upstream open reading frames. However, LUTI-based transcriptional repression is variable. In only 50% of the cases, LUTI transcription causes downregulation of the protein-coding transcript isoform. Higher LUTI expression, enrichment of histone 3 lysine 36 trimethylation, and changes in nucleosome position are the strongest predictors of LUTI-based transcriptional repression. We conclude that LUTIs downregulate gene expression in a manner that integrates translational repression, chromatin state changes, and the magnitude of LUTI expression.
Collapse
|
396
|
Reti D, O'Brien A, Wetzel P, Tay A, Bauer DC, Wilson LOW. GOANA: A Universal High-Throughput Web Service for Assessing and Comparing the Outcome and Efficiency of Genome Editing Experiments. CRISPR J 2021; 4:243-252. [PMID: 33876955 DOI: 10.1089/crispr.2020.0068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The increased development of functionally diverse and highly specialized genome editors has created the need for comparative analytics tools that are able to profile the mutational outcomes, particularly rare and complex outcomes, to assess the editor's applicability to different domains. To address this need, we have developed Generalizable On-target activity ANAlyzer (GOANA), a high-throughput web-based software for determining editing efficiency and cataloguing rare outcomes from next-generation sequencing data. GOANA calculates mutation frequency and outcomes relative to a supplied control sample. It is scalable to thousands of target sites across the entire genome and is 4,000% faster than CRISPResso2. Mutations are reported on a "per-read" level rather than individually, enabling the identification of co-occurring mutations. GOANA is editor agnostic and can be applied to data generated from any targeted editing experiment, including base editors. Requiring only that control and treated reads are aligned to the same reference, GOANA can handle data from any library preparation method, including pooled amplicon and whole-genome sequencing. As a proof of principle, we analyze two large data sets of CRISPR-Cas9 and CRISPR-Cas12a editing, demonstrating the power of GOANA and highlighting several key differences between the two enzymes. GOANA is available for use at https://gt-scan.csiro.au/goana/ and as a command line tool from https://github.com/BauerLab/GOANA.
Collapse
Affiliation(s)
- Daniel Reti
- Australian e-Health Research Centre, Commonwealth Scientific and Industrial Research Organization, North Ryde, Australia; Department of Biomedical Sciences, Macquarie Park, Australia
| | - Aidan O'Brien
- Australian e-Health Research Centre, Commonwealth Scientific and Industrial Research Organization, North Ryde, Australia; Department of Biomedical Sciences, Macquarie Park, Australia.,John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia; Department of Biomedical Sciences, Macquarie Park, Australia
| | - Pascal Wetzel
- Australian e-Health Research Centre, Commonwealth Scientific and Industrial Research Organization, North Ryde, Australia; Department of Biomedical Sciences, Macquarie Park, Australia
| | - Aidan Tay
- Australian e-Health Research Centre, Commonwealth Scientific and Industrial Research Organization, North Ryde, Australia; Department of Biomedical Sciences, Macquarie Park, Australia
| | - Denis C Bauer
- Australian e-Health Research Centre, Commonwealth Scientific and Industrial Research Organization, North Ryde, Australia; Department of Biomedical Sciences, Macquarie Park, Australia.,Macquarie University, Department of Biomedical Sciences, Macquarie Park, Australia
| | - Laurence O W Wilson
- Australian e-Health Research Centre, Commonwealth Scientific and Industrial Research Organization, North Ryde, Australia; Department of Biomedical Sciences, Macquarie Park, Australia
| |
Collapse
|
397
|
Du C, Li W, Fu Z, Yi C, Liu X, Yue B. De novo transcriptome assemblies of Epicauta tibialis provide insights into the sexual dimorphism in the production of cantharidin. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2021; 106:e21784. [PMID: 33719055 DOI: 10.1002/arch.21784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 02/28/2021] [Accepted: 03/01/2021] [Indexed: 06/12/2023]
Abstract
Blister beetles have medicinal uses for their defensive secretion cantharidin, which has curative effects on many cancers and other diseases. It was demonstrated that sexual dimorphism exists in the production of cantharidin between male and female adults. This study performed a de novo assembly of Epicauta tibialis transcriptomes and analyzed the differentially expressed genes (DEGs) between male and female adults to help to find genes and pathways associated with cantharidin biosynthesis. A total of 99,295,624 paired reads were generated, and more than 7 Gb transcriptome data for each sample were obtained after trimming. The clean data were used to de novo assemble and then cluster into 27,355 unigenes, with a mean length of 1442 bp and an N50 of 2725 bp. Of these, 14,314 (52.33%) unigenes were annotated by protein databases. Differential expression analysis identified 284 differentially expressed genes (DEGs) between male and female adults. Nearly 239 DEGs were up-regulated in male adults than in female adults, while 45 DEGs were down-regulated. The Kyoto Encyclopedia of Gene and Genomes pathway enrichment manifested that seven up-regulated DEGs in male adults were assigned to the terpenoid biosynthesis pathway, to which 19 unigenes were annotated. The DEGs in the terpenoid biosynthesis pathway between male and female adults may be responsible for the sexual dimorphism in cantharidin production. The up-regulated genes assigned to the pathway in male adults may play a significant role in cantharidin biosynthesis, and its biosynthesis process is probably via the mevalonate pathway. The results would be helpful to better understand and reveal the complicated mechanism of the cantharidin biosynthesis.
Collapse
Affiliation(s)
- Chao Du
- Baotou Teachers College, Inner Mongolia University of Science and Technology, Bautou, P.R. China
- Key Laboratory of Bio-resources and Eco-environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, P.R. China
| | - Wujiao Li
- Key Laboratory of Bio-resources and Eco-environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, P.R. China
- Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, P.R. China
| | - Zhaohui Fu
- Baotou Teachers College, Inner Mongolia University of Science and Technology, Bautou, P.R. China
| | - Chunyan Yi
- Key Laboratory of Integrated Pest Management of Southwest Crops, Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Chengdu, P.R. China
| | - Xu Liu
- Key Laboratory of Integrated Pest Management of Southwest Crops, Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Chengdu, P.R. China
| | - Bisong Yue
- Key Laboratory of Bio-resources and Eco-environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, P.R. China
| |
Collapse
|
398
|
Metagenomic Analysis of the Respiratory Microbiome of a Broiler Flock from Hatching to Processing. Microorganisms 2021; 9:microorganisms9040721. [PMID: 33807233 PMCID: PMC8065701 DOI: 10.3390/microorganisms9040721] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 03/30/2021] [Indexed: 12/15/2022] Open
Abstract
Elucidating the complex microbial interactions in biological environments requires the identification and characterization of not only the bacterial component but also the eukaryotic viruses, bacteriophage, and fungi. In a proof of concept experiment, next generation sequencing approaches, accompanied by the development of novel computational and bioinformatics tools, were utilized to examine the evolution of the microbial ecology of the avian trachea during the growth of a healthy commercial broiler flock. The flock was sampled weekly, beginning at placement and concluding at 49 days, the day before processing. Metagenomic sequencing of DNA and RNA was utilized to examine the bacteria, virus, bacteriophage, and fungal components during flock growth. The utility of using a metagenomic approach to study the avian respiratory virome was confirmed by detecting the dysbiosis in the avian respiratory virome of broiler chickens diagnosed with infection with infectious laryngotracheitis virus. This study provides the first comprehensive analysis of the ecology of the avian respiratory microbiome and demonstrates the feasibility for the use of this approach in future investigations of avian respiratory diseases.
Collapse
|
399
|
Deparis Q, Duitama J, Foulquié-Moreno MR, Thevelein JM. Whole-Genome Transformation Promotes tRNA Anticodon Suppressor Mutations under Stress. mBio 2021; 12:e03649-20. [PMID: 33758086 PMCID: PMC8092322 DOI: 10.1128/mbio.03649-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 02/16/2021] [Indexed: 11/20/2022] Open
Abstract
tRNAs are encoded by a large gene family, usually with several isogenic tRNAs interacting with the same codon. Mutations in the anticodon region of other tRNAs can overcome specific tRNA deficiencies. Phylogenetic analysis suggests that such mutations have occurred in evolution, but the driving force is unclear. We show that in yeast suppressor mutations in other tRNAs are able to overcome deficiency of the essential TRT2-encoded tRNAThrCGU at high temperature (40°C). Surprisingly, these tRNA suppressor mutations were obtained after whole-genome transformation with DNA from thermotolerant Kluyveromyces marxianus or Ogataea polymorpha strains but from which the mutations did apparently not originate. We suggest that transient presence of donor DNA in the host facilitates proliferation at high temperature and thus increases the chances for occurrence of spontaneous mutations suppressing defective growth at high temperature. Whole-genome sequence analysis of three transformants revealed only four to five nonsynonymous mutations of which one causing TRT2 anticodon stem stabilization and two anticodon mutations in non-threonyl-tRNAs, tRNALysCUU and tRNAeMetCAU, were causative. Both anticodon mutations suppressed lethality of TRT2 deletion and apparently caused the respective tRNAs to become novel substrates for threonyl-tRNA synthetase. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) data could not detect any significant mistranslation, and reverse transcription-quantitative PCR results contradicted induction of the unfolded protein response. We suggest that stress conditions have been a driving force in evolution for the selection of anticodon-switching mutations in tRNAs as revealed by phylogenetic analysis.IMPORTANCE In this work, we have identified for the first time the causative elements in a eukaryotic organism introduced by applying whole-genome transformation and responsible for the selectable trait of interest, i.e., high temperature tolerance. Surprisingly, the whole-genome transformants contained just a few single nucleotide polymorphisms (SNPs), which were unrelated to the sequence of the donor DNA. In each of three independent transformants, we have identified a SNP in a tRNA, either stabilizing the essential tRNAThrCGU at high temperature or switching the anticodon of tRNALysCUU or tRNAeMetCAU into CGU, which is apparently enough for in vivo recognition by threonyl-tRNA synthetase. LC-MS/MS analysis indeed indicated absence of significant mistranslation. Phylogenetic analysis showed that similar mutations have occurred throughout evolution and we suggest that stress conditions may have been a driving force for their selection. The low number of SNPs introduced by whole-genome transformation may favor its application for improvement of industrial yeast strains.
Collapse
Affiliation(s)
- Quinten Deparis
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Belgium
- Center for Microbiology, VIB, Leuven-Heverlee, Flanders, Belgium
| | - Jorge Duitama
- Systems and Computing Engineering Department, Universidad de los Andes, Bogotá, Colombia
| | - Maria R Foulquié-Moreno
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Belgium
- Center for Microbiology, VIB, Leuven-Heverlee, Flanders, Belgium
| | - Johan M Thevelein
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Belgium
- Center for Microbiology, VIB, Leuven-Heverlee, Flanders, Belgium
- NovelYeast bv, Open Bio-Incubator, Erasmus High School, Brussels (Jette), Belgium
| |
Collapse
|
400
|
Kissane S, Dhandapani V, Orsini L. Protocol for assay of transposase accessible chromatin sequencing in non-model species. STAR Protoc 2021; 2:100341. [PMID: 33659905 PMCID: PMC7896190 DOI: 10.1016/j.xpro.2021.100341] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The assay for transposase accessible chromatin (ATAC-seq) is a method for mapping genome-wide chromatin accessibility. Coupled with high-throughput sequencing, it enables integrative epigenomics analyses. ATAC-seq requires direct access to cell nuclei, a major challenge in non-model species such as small invertebrates, whose soft tissue is surrounded by a protective exoskeleton. Here, we present modifications of the ATAC-seq protocol for applications in small crustaceans, extending applications to non-model species. For complete information on the use and execution of this protocol, please refer to Buenrostro et al. (2013). ATAC-seq modified protocol for applications in non-model species Transposase titration identifies thresholds for optimal transposition at lower costs Minimal number of cells/tissue is identified for low input reactions Proof of concept ATAC-seq analysis for the waterflea Daphnia magna
Collapse
Affiliation(s)
- Stephen Kissane
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK
| | | | - Luisa Orsini
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK
- Corresponding author
| |
Collapse
|