351
|
Douarre PE, Sévellec Y, Le Grandois P, Soumet C, Bridier A, Roussel S. FepR as a Central Genetic Target in the Adaptation to Quaternary Ammonium Compounds and Cross-Resistance to Ciprofloxacin in Listeria monocytogenes. Front Microbiol 2022; 13:864576. [PMID: 35663878 PMCID: PMC9158494 DOI: 10.3389/fmicb.2022.864576] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 04/27/2022] [Indexed: 12/05/2022] Open
Abstract
The foodborne pathogen, Listeria monocytogenes, (Lm), frequently undergoes selection pressure associated with the extensive use of disinfectants, such as quaternary ammonium compounds, which are widely used in food processing plants. The repeated exposure to sub-inhibitory biocide concentrations can induce increased tolerance to these compounds, but can also trigger the development of antibiotic resistance, and both increase the risk of food contamination and persistence in food production environments. Although the acquisition of genes can explain biocide tolerance, the genetic mechanisms underlying the adaptive cross-resistance to antibiotics remain unclear. We previously showed that repeated exposure to benzalkonium chloride (BC) and didecyldimethyl ammonium chloride (DDAC) led to reduced susceptibility to ciprofloxacin in Lm strains from diverse sources. Here, we compared the genomes of 16 biocide-adapted and 10 parental strains to identify the molecular mechanisms of fluoroquinolone cross-resistance. A core genome SNP analysis identified various mutations in the transcriptional regulator fepR (lmo2088) for 94% of the adapted strains and mutations in other effectors at a lower frequency. FepR is a local repressor of the MATE fluoroquinolone efflux pump FepA. The impact of the mutations on the structure and function of the protein was assessed by performing in silico prediction and protein homology modeling. Our results show that 75% of the missense mutations observed in fepR are located in the HTH domain of the protein, within the DNA interaction site. These mutations are predicted to reduce the activity of the regulator, leading to the overexpression of the efflux pump responsible for the ciprofloxacin-enhanced resistance.
Collapse
Affiliation(s)
- Pierre-Emmanuel Douarre
- Maisons-Alfort Laboratory for Food Safety, Salmonella and Listeria Unit, University of Paris-Est, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), Maisons-Alfort, France
| | - Yann Sévellec
- Maisons-Alfort Laboratory for Food Safety, Salmonella and Listeria Unit, University of Paris-Est, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), Maisons-Alfort, France
| | - Patricia Le Grandois
- Antibiotics, Biocides, Residues and Resistance Unit, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), Fougères, France
| | - Christophe Soumet
- Antibiotics, Biocides, Residues and Resistance Unit, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), Fougères, France
| | - Arnaud Bridier
- Antibiotics, Biocides, Residues and Resistance Unit, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), Fougères, France
| | - Sophie Roussel
- Maisons-Alfort Laboratory for Food Safety, Salmonella and Listeria Unit, University of Paris-Est, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), Maisons-Alfort, France
| |
Collapse
|
352
|
Hiregange DG, Rivalta A, Yonath A, Zimmerman E, Bashan A, Yonath H. Mutations in RPS19 may affect ribosome function and biogenesis in Diamond Blackfan Anemia. FEBS Open Bio 2022; 12:1419-1434. [PMID: 35583751 PMCID: PMC9249338 DOI: 10.1002/2211-5463.13444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/04/2022] [Accepted: 05/17/2022] [Indexed: 11/12/2022] Open
Abstract
Ribosomes, the cellular organelles translating the genetic code to proteins, are assemblies of RNA chains and many proteins (RPs) arranged in precise fine-tuned interwoven structures. Mutated ribosomal genes cause ribosomopathies, including Diamond Blackfan Anemia (DBA, a rare heterogeneous red-cell aplasia connected to ribosome malfunction) or failed biogenesis. Combined bioinformatical, structural, and predictive analyses of potential consequences of possibly expressed mutations in eS19, the protein product of the highly mutated RPS19, suggests that mutations in its exposed surface could alter its positioning during assembly and consequently prevent biogenesis, implying a natural selective strategy to avoid malfunctions in ribosome assembly. A search for RPS19 pseudogenes indicated >90% sequence identity with the wild type, hinting at its expression in cases of absent or truncated gene products.
Collapse
Affiliation(s)
| | - Andre Rivalta
- The Department of Chemical and Structural Biology, Weizmann Institute of Science, Israel
| | - Ada Yonath
- The Department of Chemical and Structural Biology, Weizmann Institute of Science, Israel
| | - Ella Zimmerman
- The Department of Chemical and Structural Biology, Weizmann Institute of Science, Israel
| | - Anat Bashan
- The Department of Chemical and Structural Biology, Weizmann Institute of Science, Israel
| | - Hagith Yonath
- Internal Medicine A and Genetics Institute Sheba Medical Center, and Sackler School of Medicine, Tel Aviv University, Israel
| |
Collapse
|
353
|
Yang M, Jiang Y, Shao X. Case Report: A Novel Homozygous Frameshift Mutation of the SKIV2L Gene in a Trichohepatoenteric Syndrome Patient Presenting With Short Stature, Premature Ovarian Failure, and Osteoporosis. Front Genet 2022; 13:879899. [PMID: 35571060 PMCID: PMC9094698 DOI: 10.3389/fgene.2022.879899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 04/08/2022] [Indexed: 11/17/2022] Open
Abstract
Background: Trichohepatoenteric syndrome (THES) is a rare Mendelian autosomal recessive genetic disease characterized by intractable diarrhea, woolly hair, facial abnormality, immune dysfunction, and intrauterine growth restriction. THES mutations are found in the TTC37 and SKIV2L genes, which encode two components of the human superkiller (SKI) complex. Methods and results: We report one case of a 32-year-old woman of Chinese descent with THES, who was born with a low weight (2000 g). She had intractable diarrhea during the neonatal period and was allergic to cow’s milk and condensed milk, but did not require total parenteral nutrition. She experienced menarche at age 12 and amenorrhea at age 28. In May 2019, the patient presented with a left fibular head fracture and was diagnosed with osteoporosis. Genetic testing showed a novel mutation in exon1 [p.E5Afs∗37 (c.12_13del)] of SKIV2L, which is composed of 28 exons. After the diagnosis, hormone replacement therapy was prescribed, in addition to the routine calcium and vitamin D supplements. Conclusion: This case expands the clinical characteristic and phenotype spectrum of THES, providing further understanding of SKIV2L and its autoimmune influence.
Collapse
Affiliation(s)
- Minyi Yang
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yu Jiang
- Department of Endocrinology and Metabolism, Dushu Lake Hospital Affiliated to Soochow University, Suzhou, China
| | - Xinyu Shao
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Soochow University, Suzhou, China.,Department of Endocrinology and Metabolism, Dushu Lake Hospital Affiliated to Soochow University, Suzhou, China
| |
Collapse
|
354
|
Duclaux-Loras R, Lebreton C, Berthelet J, Charbit-Henrion F, Nicolle O, Revenu de Courtils C, Waich S, Valovka T, Khiat A, Rabant M, Racine C, Guerrera IC, Baptista J, Mahe MM, Hess MW, Durel B, Lefort N, Banal C, Parisot M, Talbotec C, Lacaille F, Ecochard-Dugelay E, Demir AM, Vogel GF, Faivre L, Rodrigues A, Fowler D, Janecke AR, Müller T, Huber LA, Rodrigues-Lima F, Ruemmele FM, Uhlig HH, Del Bene F, Michaux G, Cerf-Bensussan N, Parlato M. UNC45A deficiency causes microvillus inclusion disease-like phenotype by impairing myosin VB-dependent apical trafficking. J Clin Invest 2022; 132:154997. [PMID: 35575086 PMCID: PMC9106349 DOI: 10.1172/jci154997] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 03/29/2022] [Indexed: 01/03/2023] Open
Abstract
Variants in the UNC45A cochaperone have been recently associated with a syndrome combining diarrhea, cholestasis, deafness, and bone fragility. Yet the mechanism underlying intestinal failure in UNC45A deficiency remains unclear. Here, biallelic variants in UNC45A were identified by next-generation sequencing in 6 patients with congenital diarrhea. Corroborating in silico prediction, variants either abolished UNC45A expression or altered protein conformation. Myosin VB was identified by mass spectrometry as client of the UNC45A chaperone and was found misfolded in UNC45AKO Caco-2 cells. In keeping with impaired myosin VB function, UNC45AKO Caco-2 cells showed abnormal epithelial morphogenesis that was restored by full-length UNC45A, but not by mutant alleles. Patients and UNC45AKO 3D organoids displayed altered luminal development and microvillus inclusions, while 2D cultures revealed Rab11 and apical transporter mislocalization as well as sparse and disorganized microvilli. All those features resembled the subcellular abnormalities observed in duodenal biopsies from patients with microvillus inclusion disease. Finally, microvillus inclusions and shortened microvilli were evidenced in enterocytes from unc45a-deficient zebrafish. Taken together, our results provide evidence that UNC45A plays an essential role in epithelial morphogenesis through its cochaperone function of myosin VB and that UNC45A loss causes a variant of microvillus inclusion disease.
Collapse
Affiliation(s)
- Rémi Duclaux-Loras
- Université Paris Cité, Imagine Institute, Laboratory of Intestinal Immunity, INSERM, UMR1163, Paris, France
- Department of Pediatric Gastroenterology, Assistance Publique-Hopitaux de Paris, Hopital Necker–Enfants Malades, F-75015, Paris, France
| | - Corinne Lebreton
- Université Paris Cité, Imagine Institute, Laboratory of Intestinal Immunity, INSERM, UMR1163, Paris, France
| | | | - Fabienne Charbit-Henrion
- Université Paris Cité, Imagine Institute, Laboratory of Intestinal Immunity, INSERM, UMR1163, Paris, France
- Department of Pediatric Gastroenterology, Assistance Publique-Hopitaux de Paris, Hopital Necker–Enfants Malades, F-75015, Paris, France
| | - Ophelie Nicolle
- Université de Rennes, CNRS, Institut de Génétique et Développement de Rennes (IGDR)–UMR 6290, Rennes, France
| | - Céline Revenu de Courtils
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
- Institut Curie, PSL Research University, INSERM U934, CNRS UMR3215, Paris, France
| | - Stephanie Waich
- Universitätsklinik für Pädiatrie I and
- Institute of Cell Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Taras Valovka
- Universitätsklinik für Pädiatrie I and
- Institute of Cell Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Anis Khiat
- Université Paris Cité, Imagine Institute, Laboratory of Intestinal Immunity, INSERM, UMR1163, Paris, France
| | - Marion Rabant
- Department of Pathology, Assistance Publique–Hopitaux de Paris, Hopital Necker–Enfants Malades, Paris, France
| | - Caroline Racine
- Centre de Référence Anomalies du Développement et Syndromes Malformatifs, Fédération Hospitalo–Universitaire Médecine Translationnelle et Anomalies du Développement (TRANSLAD), Centre Hospitalier Universitaire, and Equipe GAD, Université de Bourgogne Franche-Comté, Faculté de Médecine, INSERM LNC UMR 1231, Dijon, France
| | - Ida Chiara Guerrera
- Proteomics Platform 3P5-Necker, Université Paris Descartes-Structure Fédérative de Recherche Necker, INSERM US24/CNRS UMS3633, Paris, France
| | - Júlia Baptista
- Peninsula Medical School, Faculty of Health, University of Plymouth, Plymouth, United Kingdom
- Royal Devon and Exeter NHS Foundation Trust, Exeter, United Kingdom
| | - Maxime M. Mahe
- Université de Nantes, INSERM, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Nantes, France
| | - Michael W. Hess
- Institut für Histologie und Embryologie Medical University of Innsbruck, Innsbruck, Austria
| | - Béatrice Durel
- Cell Imaging Platform, INSERM-US24-CNRS UMS 3633 Structure Fédérative de Recherche Necker, Université Paris Cité, Paris, France
| | - Nathalie Lefort
- iPS Core Facility, Imagine Institute, INSERM U1163, Paris Descartes University, Paris, France
| | - Céline Banal
- iPS Core Facility, Imagine Institute, INSERM U1163, Paris Descartes University, Paris, France
| | - Mélanie Parisot
- Genomics Core Facility, Institut Imagine–Structure Fédérative de Recherche Necker, INSERM U1163 et INSERM US24/CNRS UMS3633, Paris Descartes Sorbonne Paris Cite University, Paris, France
| | - Cecile Talbotec
- Department of Pediatric Gastroenterology, Assistance Publique-Hopitaux de Paris, Hopital Necker–Enfants Malades, F-75015, Paris, France
| | - Florence Lacaille
- Department of Pediatric Gastroenterology, Assistance Publique-Hopitaux de Paris, Hopital Necker–Enfants Malades, F-75015, Paris, France
| | | | - Arzu Meltem Demir
- Ankara Child Health and Diseases, Training and Research Hospital, Pediatric Gastroenterology, Ankara, Turkey
| | - Georg F. Vogel
- Universitätsklinik für Pädiatrie I and
- Institute of Cell Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Laurence Faivre
- Department of Pathology, Assistance Publique–Hopitaux de Paris, Hopital Necker–Enfants Malades, Paris, France
| | | | | | | | | | - Lukas A. Huber
- Institute of Cell Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Frank M. Ruemmele
- Department of Pediatric Gastroenterology, Assistance Publique-Hopitaux de Paris, Hopital Necker–Enfants Malades, F-75015, Paris, France
| | - Holm H. Uhlig
- Translational Gastroenterology Unit and Department of Paediatrics, John Radcliffe Hospital, NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | - Filippo Del Bene
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
- Institut Curie, PSL Research University, INSERM U934, CNRS UMR3215, Paris, France
| | - Grégoire Michaux
- Université de Rennes, CNRS, Institut de Génétique et Développement de Rennes (IGDR)–UMR 6290, Rennes, France
| | - Nadine Cerf-Bensussan
- Université Paris Cité, Imagine Institute, Laboratory of Intestinal Immunity, INSERM, UMR1163, Paris, France
| | - Marianna Parlato
- Université Paris Cité, Imagine Institute, Laboratory of Intestinal Immunity, INSERM, UMR1163, Paris, France
| |
Collapse
|
355
|
Improved furfural tolerance in Escherichia coli mediated by heterologous NADH-dependent benzyl alcohol dehydrogenases. Biochem J 2022; 479:1045-1058. [PMID: 35502833 PMCID: PMC9162472 DOI: 10.1042/bcj20210811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 04/21/2022] [Accepted: 05/03/2022] [Indexed: 11/18/2022]
Abstract
While lignocellulose is a promising source of renewable sugars for microbial fermentations, the presence of inhibitory compounds in typical lignocellulosic feedstocks, such as furfural, has hindered their utilisation. In Escherichia coli, a major route of furfural toxicity is the depletion of NADPH pools due to its use as a substrate by the YqhD enzyme that reduces furfural to its less toxic alcohol form. Here, we examine the potential of exploiting benzyl alcohol dehydrogenases as an alternative means to provide this same catalytic function but using the more abundant reductant NADH, as a strategy to increase the capacity for furfural removal. We determine the biochemical properties of three of these enzymes, from Pseudomonas putida, Acinetobacter calcoaceticus, and Burkholderia ambifaria, which all demonstrate furfural reductase activity. Furthermore, we show that the P. putida and B. ambifaria enzymes are able to provide substantial increases in furfural tolerance in vivo, by allowing more rapid conversion to furfuryl alcohol and resumption of growth. The study demonstrates that methods to seek alternative cofactor dependent enzymes can improve the intrinsic robustness of microbial chassis to feedstock inhibitors.
Collapse
|
356
|
Mark Mondol S, Das D, Priom DM, Shaminur Rahman M, Rafiul Islam M, Rahaman MM. In Silico Identification and Characterization of a Hypothetical Protein From Rhodobacter capsulatus Revealing S-Adenosylmethionine-Dependent Methyltransferase Activity. Bioinform Biol Insights 2022; 16:11779322221094236. [PMID: 35478993 PMCID: PMC9036352 DOI: 10.1177/11779322221094236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 03/25/2022] [Indexed: 11/15/2022] Open
Abstract
Rhodobacter capsulatus is a purple non-sulfur bacteria widely used as a model organism to study bacterial photosynthesis. It exhibits extensive metabolic activities and demonstrates other distinctive characteristics such as pleomorphism and nitrogen-fixing capability. It can act as a gene transfer agent (GTA). The commercial importance relies on producing polyester polyhydroxyalkanoate (PHA), extracellular nucleic acids, and commercially critical single-cell proteins. These diverse features make the organism an exciting and environmentally and industrially important one to study. This study was aimed to characterize, model, and annotate the function of a hypothetical protein (Accession no. CAA71016.1) of R capsulatus through computational analysis. The urf7 gene encodes the protein. The tertiary structure was predicted through MODELLER and energy minimization and refinement by YASARA Energy Minimization Server and GalaxyRefine tools. Analysis of sequence similarity, evolutionary relationship, and exploration of domain, family, and superfamily inferred that the protein has S-adenosylmethionine (SAM)-dependent methyltransferase activity. This was further verified by active site prediction by CASTp server and molecular docking analysis through Autodock Vina tool and PatchDock server of the predicted tertiary structure of the protein with its ligands (SAM and SAH). Normally, as a part of the gene product of photosynthetic gene cluster (PGC), the established roles of SAM-dependent methyltransferases are bacteriochlorophyll and carotenoid biosynthesis. But the STRING database unveiled its association with NADH-ubiquinone oxidoreductase (Complex I). The assembly and regulation of this Complex I is mediated by the gene products of the nuo operon. As a part of this operon, the urf7 gene encodes SAM-dependent methyltransferase. As a consequence of these findings, it is reasonable to propose that the hypothetical protein of interest in this study is a SAM-dependent methyltransferase associated with bacterial NADH-ubiquinone oxidoreductase assembly. Due to conservation of Complex I from prokaryotes to eukaryotes, R capsulatus can be a model organism of study to understand the common disorders which are linked to the dysfunctions of complex I.
Collapse
Affiliation(s)
| | - Depro Das
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh
| | | | - M Shaminur Rahman
- Department of Microbiology, Jashore University of Science and Technology, Jashore, Bangladesh.,M Shaminur Rahman is now affiliated to Department of Microbiology, University of Dhaka, Dhaka, Bangladesh
| | - M Rafiul Islam
- Department of Microbiology, University of Dhaka, Dhaka, Bangladesh
| | | |
Collapse
|
357
|
Improving Lipid Production of Yarrowia lipolytica by the Aldehyde Dehydrogenase-Mediated Furfural Detoxification. Int J Mol Sci 2022; 23:ijms23094761. [PMID: 35563152 PMCID: PMC9102794 DOI: 10.3390/ijms23094761] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/23/2022] [Accepted: 04/25/2022] [Indexed: 02/01/2023] Open
Abstract
Yarrowia lipolytica, the non-conventional yeast capable of high lipogenesis, is a microbial chassis for producing lipid-based biofuels and chemicals from renewable resources such as lignocellulosic biomass. However, the low tolerance of Y. lipolytica against furfural, a major inhibitory furan aldehyde derived from the pretreatment processes of lignocellulosic biomass, has restricted the efficient conversion of lignocellulosic hydrolysates. In this study, the furfural tolerance of Y. lipolytica has been improved by supporting its endogenous detoxification mechanism. Specifically, the endogenous genes encoding the aldehyde dehydrogenase family proteins were overexpressed in Y. lipolytica to support the conversion of furfural to furoic acid. Among them, YALI0E15400p (FALDH2) has shown the highest conversion rate of furfural to furoic acid and resulted in two-fold increased cell growth and lipid production in the presence of 0.4 g/L of furfural. To our knowledge, this is the first report to identify the native furfural detoxification mechanism and increase furfural resistance through rational engineering in Y. lipolytica. Overall, these results will improve the potential of Y. lipolytica to produce lipids and other value-added chemicals from a carbon-neutral feedstock of lignocellulosic biomass.
Collapse
|
358
|
Yu J, Li X, Huang J, Yu M, Wu Z, Cao S. Molecular dynamics simulation of α‐gliadin in ethanol/aqueous organic solvents. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jie‐Ting Yu
- School of Food Science and Engineering Foshan University Foshan528000China
- Guangdong Key Laboratory of Food Intelligent Manufacturing Foshan University Foshan528000China
| | - Xin‐Yao Li
- School of Food Science and Engineering Foshan University Foshan528000China
- Guangdong Key Laboratory of Food Intelligent Manufacturing Foshan University Foshan528000China
| | - Jia‐Hui Huang
- School of Food College South China Agricultural University Guangzhou510642China
| | - Ming‐Yi Yu
- School of Food Science and Engineering Foshan University Foshan528000China
| | - Zi‐Yi Wu
- School of Food College South China Agricultural University Guangzhou510642China
| | - Shi‐Lin Cao
- School of Food Science and Engineering Foshan University Foshan528000China
- Guangdong Key Laboratory of Food Intelligent Manufacturing Foshan University Foshan528000China
| |
Collapse
|
359
|
Falak S, Saeed MS, Rashid N. Molecular cloning, expression in Escherichia coli and structural-functional analysis of a pyruvate kinase from Pyrobaculum calidifontis. Int J Biol Macromol 2022; 209:1410-1421. [PMID: 35472364 DOI: 10.1016/j.ijbiomac.2022.04.144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/15/2022] [Accepted: 04/19/2022] [Indexed: 11/17/2022]
Abstract
This manuscript describes recombinant production, characterization and structural analysis of wild-type and mutant Pcal_0029, a pyruvate kinase from Pyrobaculum calidifontis. Recombinant Pcal_0029 was produced in soluble and highly active form in Escherichia coli. Purified protein exhibited divalent metal-dependent activity which increased with the increase in temperature till 85 °C. Recombinant Pcal_0029 was highly thermostable with no significant loss in activity even after an incubation of 120 min at 100 °C. The enzyme exhibited apparent S0.5 and Vmax values of 0.44 ± 0.05 mM and 840 ± 39 units, respectively, towards phosphoenolpyruvate. These values towards adenosine-5'-diphosphate were 0.5 ± 0.07 mM and 870 ± 26 units, respectively. In silico structural analysis and comparison with the characterized enzymes revealed the presence of eight conserved regions. Two substitutions, K130E and S155G, resulted in a 10-fold decrease in activity. Secondary structure analysis indicated similar structures for the wild-type and the mutant enzymes. Bioinformatics analysis revealed disruption of interatomic interactions and hydrogen bond formation, leading to a decreased flexibility and solvent accessibility, which may have led to decrease in activity. To the best of our knowledge, Pcal_0029 is the most thermostable pyruvate kinase reported so far. Moreover, this is the first study on the role of non-catalytic residues in a pyruvate kinase.
Collapse
Affiliation(s)
- Samia Falak
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Pakistan
| | - Muhammad Sulaiman Saeed
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Pakistan
| | - Naeem Rashid
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Pakistan.
| |
Collapse
|
360
|
Saetang J, Tipmanee V, Benjakul S. In Silico Prediction of Cross-Reactive Epitopes of Tropomyosin from Shrimp and Other Arthropods Involved in Allergy. Molecules 2022; 27:molecules27092667. [PMID: 35566021 PMCID: PMC9104922 DOI: 10.3390/molecules27092667] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/17/2022] [Accepted: 04/20/2022] [Indexed: 12/10/2022] Open
Abstract
Tropomyosin in shellfish is considered a major cross-reactive allergen in house dust mites and cockroaches; however, the specific epitopes have not been elucidated. Therefore, this study aimed to identify the consensus antigenic determinant among shrimp, house dust mites, and cockroaches using in silico methods. The protein sequences of tropomyosin, including Der f 10, Mac r 1, Pen a 1, Pen m 1, Per a 7, and Bla g 7, were retrieved from the UniProt database. The 3D structures were derived from the AlphaFold or modeled using the Robetta. The determination of linear epitopes was performed by AlgPRED and BepiPRED for B cell epitope, and NetMHCIIpan and NetMHCII for T cell epitope, while Ellipro was used to evaluate conformational epitopes. Fourteen peptides were discovered as the consensus linear B cell epitopes, while seventeen peptides were identified as linear T cell epitopes specific to high-frequency HLA-DR and HLA-DQ alleles. The conformational determination of B cell epitopes provided nine peptides, in which residues 209, 212, 255–256, and 258–259 were found in both linear B cell and linear T cell epitope analysis. This data could be utilized for further in vitro study and may contribute to immunotherapy for allergic diseases associated with tropomyosin.
Collapse
Affiliation(s)
- Jirakrit Saetang
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand;
- EZ-Mol-Design Laboratory, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand;
- Correspondence: ; Tel.: +66-7428-6337
| | - Varomyalin Tipmanee
- EZ-Mol-Design Laboratory, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand;
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| | - Soottawat Benjakul
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand;
| |
Collapse
|
361
|
Zhang J, Mao K, Ren Z, Jin R, Zhang Y, Cai T, He S, Li J, Wan H. Odorant binding protein 3 is associated with nitenpyram and sulfoxaflor resistance in Nilaparvata lugens. Int J Biol Macromol 2022; 209:1352-1358. [PMID: 35460755 DOI: 10.1016/j.ijbiomac.2022.04.100] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/07/2022] [Accepted: 04/14/2022] [Indexed: 11/25/2022]
Abstract
Odorant binding protein (OBP) can interact with small-molecule compounds insecticides and thereby modulate variation in insecticide susceptibility in insects. However, the regulatory mechanism of OBP-mediated insecticide resistance in Nilaparvata lugens, a destructive rice pest in Asia, remains unclear. Here, we explored the role of NlOBP3 in the resistance of N. lugens to nitenpyram and sulfoxaflor. The results showed that NlOBP3 was overexpressed in association with nitenpyram and sulfoxaflor resistance, and NlOBP3 silencing significantly increased the mortality of N. lugens to nitenpyram and sulfoxaflor, suggesting that NlOBP3 may be associated with nitenpyram and sulfoxaflor resistance in N. lugens. OBP localization revealed that NlOBP3 was highly expressed in all nymph stages and was enriched in the antennae, legs, body wall, and fat body. RT-qPCR analyses showed that the mRNA levels of NlOBP3 were significantly affected by nitenpyram and sulfoxaflor. Additionally, molecular docking predicted that there were multiple binding sites that may played key roles in the binding of NlOBP3 with nitenpyram and sulfoxaflor. The current study identifies a previously undescribed mechanism of insecticide resistance in N. lugens, showing that NlOBP3 is likely to be involved in the evolution of nitenpyram and sulfoxaflor resistance in N. lugens.
Collapse
Affiliation(s)
- Junjie Zhang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Kaikai Mao
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China; Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China.
| | - Zhijie Ren
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Ruoheng Jin
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Yunhua Zhang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Tingwei Cai
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Shun He
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Jianhong Li
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Hu Wan
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China.
| |
Collapse
|
362
|
Erath J, Djuranovic S. Association of the receptor for activated C-kinase 1 with ribosomes in Plasmodium falciparum. J Biol Chem 2022; 298:101954. [PMID: 35452681 PMCID: PMC9120242 DOI: 10.1016/j.jbc.2022.101954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 03/31/2022] [Accepted: 04/13/2022] [Indexed: 11/18/2022] Open
Abstract
The receptor for activated C-kinase 1 (RACK1), a highly conserved eukaryotic protein, is known to have many varying biological roles and functions. Previous work has established RACK1 as a ribosomal protein, with defined regions important for ribosome binding in eukaryotic cells. In Plasmodium falciparum, RACK1 has been shown to be required for parasite growth, however, conflicting evidence has been presented about RACK1 ribosome binding and its role in mRNA translation. Given the importance of RACK1 as a regulatory component of mRNA translation and ribosome quality control, the case could be made in parasites that RACK1 either binds or does not bind the ribosome. Here, we used bioinformatics and transcription analyses to further characterize the P. falciparum RACK1 protein. Based on homology modeling and structural analyses, we generated a model of P. falciparum RACK1. We then explored mutant and chimeric human and P. falciparum RACK1 protein binding properties to the human and P. falciparum ribosome. We found that WT, chimeric, and mutant RACK1 exhibit distinct ribosome interactions suggesting different binding characteristics for P. falciparum and human RACK1 proteins. The ribosomal binding of RACK1 variants in human and parasite cells shown here demonstrates that although RACK1 proteins have highly conserved sequences and structures across species, ribosomal binding is affected by species-specific alterations to this protein. In conclusion, we show that in the case of P. falciparum, contrary to the structural data, RACK1 is found to bind ribosomes and actively translating polysomes in parasite cells.
Collapse
Affiliation(s)
- Jessey Erath
- Department of Cell Biology and Physiology, Washington University School of Medicine, St Louis, Missouri, USA
| | - Sergej Djuranovic
- Department of Cell Biology and Physiology, Washington University School of Medicine, St Louis, Missouri, USA.
| |
Collapse
|
363
|
Stalin A, Daniel Reegan A, Rajiv Gandhi M, Saravanan RR, Balakrishna K, Hesham AEL, Ignacimuthu S, Zhang Y. Mosquitocidal efficacy of embelin and its derivatives against Aedes aegypti L. and Culex quinquefasciatus Say. (Diptera: Culicidae) and computational analysis of acetylcholinesterase 1 (AChE1) inhibition. Comput Biol Med 2022; 146:105535. [PMID: 35487124 DOI: 10.1016/j.compbiomed.2022.105535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 11/18/2022]
Abstract
Embelin was isolated from the chloroform extract of Embelia ribes (Burm.f.) fruits; its derivative compounds 6-bromoembelin and vilangin were prepared, and they were evaluated for mosquitocidal activities against the third instar larvae and pupae of Aedes aegypti L. and Culex quinquefasciatus Say. (Diptera: Culicidae). The concentrations used were 0.5, 1.0, 1.5, and 2.0 ppm. Embelin recorded LC50 values of 5.79 and 5.54 ppm against the larvae of Ae. aegypti and Cx. quinquefasciatus, respectively. Similarly, the LC50 values of embelin were 10.23 and 6.93 ppm against the pupae of Ae. aegypti and Cx. quinquefasciatus, respectively. Of the two derivatives tested, vilangin showed the highest larvicidal activity with LC50 values of 1.38 and 1.28 ppm against the larvae of Ae. aegypti and Cx. quinquefasciatus, respectively. Similarly, the LC50 values of vilangin were 1.60 and 1.43 ppm against the pupae of Ae. aegypti and Cx. quinquefasciatus, respectively. The LC50 values of 6-bromoembelin were 3.30 and 2.83 ppm against the larvae and 4.40 and 4.30 ppm against the pupae of Ae. aegypti and Cx. quinquefasciatus, respectively. The histopathological results displayed significant damage on cuboidal cells of the midgut (CU) in vilangin treated larvae of Ae. aegypti and Cx. quinquefasciatus at a concentration of 2.0 ppm. Similarly, peritrophic membrane (PM) was completely impaired in vilangin-treated larvae of Cx. quinquefasciatus and midgut content (MC) was very low in vilangin-treated larvae of Cx. quinquefasciatus. In addition, molecular docking and molecular dynamics studies demonstrated the efficacy of vilangin on the inhibition of acetylcholinesterase (AChE1) in Ae. aegypti and Cx. quinquefasciatus. The present results suggest that vilangin could be used to develop a natural active product against mosquito larvae.
Collapse
Affiliation(s)
- Antony Stalin
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610 054, China.
| | - Appadurai Daniel Reegan
- National Centre for Disease Control, Bengaluru Branch, No:8, NTI Campus, Bellary Road, Bengaluru, 560 003, Karnataka, India; Xavier Research Foundation, St. Xavier's College, Affiliated to the Manonmaniam Sundaranar University, Palayamkottai, 627 002, Tamil Nadu, India.
| | - Munusamy Rajiv Gandhi
- National Biodiversity Authority, 5th Floor, CSIR Road, TICEL Bio Park, Taramani, Chennai, 600 113, India
| | - R R Saravanan
- Department of Physics, Meenakshi Chandrasekaran College of Arts and Science, Karambayam, Pattukkottai, Thanjavur, 614 626, India
| | - Kedike Balakrishna
- Entomology Research Institute, Loyola College, Affiliated to the University of Madras, Chennai, 600 034, Tamil Nadu, India
| | - Abd El-Latif Hesham
- Genetics Department, Faculty of Agriculture, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Savarimuthu Ignacimuthu
- Xavier Research Foundation, St. Xavier's College, Affiliated to the Manonmaniam Sundaranar University, Palayamkottai, 627 002, Tamil Nadu, India
| | - Ying Zhang
- Department of Anesthesiology, Hospital (T.C.M) Affiliated To Southwest Medical University, Luzhou, China.
| |
Collapse
|
364
|
Fusto A, Cassandrini D, Fiorillo C, Codemo V, Astrea G, D’Amico A, Maggi L, Magri F, Pane M, Tasca G, Sabbatini D, Bello L, Battini R, Bernasconi P, Fattori F, Bertini ES, Comi G, Messina S, Mongini T, Moroni I, Panicucci C, Berardinelli A, Donati A, Nigro V, Pini A, Giannotta M, Dosi C, Ricci E, Mercuri E, Minervini G, Tosatto S, Santorelli F, Bruno C, Pegoraro E. Expanding the clinical-pathological and genetic spectrum of RYR1-related congenital myopathies with cores and minicores: an Italian population study. Acta Neuropathol Commun 2022; 10:54. [PMID: 35428369 PMCID: PMC9013059 DOI: 10.1186/s40478-022-01357-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 03/25/2022] [Indexed: 11/10/2022] Open
Abstract
Mutations in the RYR1 gene, encoding ryanodine receptor 1 (RyR1), are a well-known cause of Central Core Disease (CCD) and Multi-minicore Disease (MmD). We screened a cohort of 153 patients carrying an histopathological diagnosis of core myopathy (cores and minicores) for RYR1 mutation. At least one RYR1 mutation was identified in 69 of them and these patients were further studied. Clinical and histopathological features were collected. Clinical phenotype was highly heterogeneous ranging from asymptomatic or paucisymptomatic hyperCKemia to severe muscle weakness and skeletal deformity with loss of ambulation. Sixty-eight RYR1 mutations, generally missense, were identified, of which 16 were novel. The combined analysis of the clinical presentation, disease progression and the structural bioinformatic analyses of RYR1 allowed to associate some phenotypes to mutations in specific domains. In addition, this study highlighted the structural bioinformatics potential in the prediction of the pathogenicity of RYR1 mutations. Further improvement in the comprehension of genotype-phenotype relationship of core myopathies can be expected in the next future: the actual lack of the human RyR1 crystal structure paired with the presence of large intrinsically disordered regions in RyR1, and the frequent presence of more than one RYR1 mutation in core myopathy patients, require designing novel investigation strategies to completely address RyR1 mutation effect.
Collapse
|
365
|
Yang C, Cheng J, Lin J, Zheng Y, Yu X, Sun J. Corrigendum: Sex Pheromone Receptors of Lepidopteran Insects. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.900818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
366
|
Khan MA, Siddiqui MQ, Kuligina E, Varma AK. Evaluation of conformational transitions of h-BRCA2 functional domain and unclassified variant Arg2502Cys using multimodal approach. Int J Biol Macromol 2022; 209:716-724. [PMID: 35413318 DOI: 10.1016/j.ijbiomac.2022.04.049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 04/02/2022] [Accepted: 04/06/2022] [Indexed: 11/26/2022]
Abstract
Breast cancer type 2 susceptibility (BRCA2) protein plays an essential role in the repair mechanism of DNA double-strand breaks and interstrand cross-links by Homologous recombination. Germline mutations identified in the BRCA2 gene confer an increased risk of hereditary breast and ovarian cancer. Missense mutations are identified all over the gene, including the DNA binding region of BRCA2 that interacts with FANCD2. However, the majority of these missense mutations are classified as 'Variants of Uncertain Significance' due to a lack of structural, functional and clinical correlations. Therefore, multi-disciplinary in-silico, in-vitro and biophysical approaches have been explored to characterize an unclassified missense mutation, BRCA2 Arg2502Cys, identified from a case-control study. Circular-dichroism and Fluorescence spectroscopy show that the Arg2502Cys mutation in hBRCA2 (residues 2350-2545) decreases the α-helical/β-sheet propensity of the wild-type protein and perturb the tertiary structure conformation. Molecular dynamics simulations revealed alteration in the intramolecular H-bonds, overall compactness and stability of the hydrophobic core were observed in the mutant protein. Principle component analysis indicated that Arg2502Cys mutant exhibited comparatively large conformational transitions and periodic fluctuation. Therefore, to our conclusion, BRCA2 Arg2502Cys mutant perturbed the structural integrity and conformational dynamics of BRCA2.
Collapse
Affiliation(s)
- Mudassar Ali Khan
- Advanced Centre for Treatment, Research and Education in Cancer, Kharghar, Navi Mumbai, Maharashtra 410210, India; Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, India
| | - M Quadir Siddiqui
- Advanced Centre for Treatment, Research and Education in Cancer, Kharghar, Navi Mumbai, Maharashtra 410210, India; Present address: Alberta RNA Research and Training Institute, Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive, Lethbridge, AB T1K 3M4, Canada
| | - Ekaterina Kuligina
- N.N. Petrov Institute of Oncology, Laboratory of Molecular Oncology, RU-197758, Pesochny-2, St.-Petersburg, Russia
| | - Ashok K Varma
- Advanced Centre for Treatment, Research and Education in Cancer, Kharghar, Navi Mumbai, Maharashtra 410210, India; Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, India.
| |
Collapse
|
367
|
Istifli ES, Netz PA, Sihoglu Tepe A, Husunet MT, Sarikurkcu C, Tepe B. In silico analysis of the interactions of certain flavonoids with the receptor-binding domain of 2019 novel coronavirus and cellular proteases and their pharmacokinetic properties. J Biomol Struct Dyn 2022; 40:2460-2474. [PMID: 33111622 PMCID: PMC7605517 DOI: 10.1080/07391102.2020.1840444] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 10/17/2020] [Indexed: 11/11/2022]
Abstract
Coronavirus Disease 2019 (COVID-19) has infected more than thirty five million people worldwide and caused nearly 1 million deaths as of October 2020. The microorganism causing COVID-19 was named as Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2 or 2019-nCoV). The aim of this study was to investigate the interactions of twenty-three phytochemicals belonging to different flavonoid subgroups with the receptor binding domain (RBD) of the spike glycoprotein of 2019-nCoV, and cellular proteases [transmembrane serine protease 2 (TMPRSS2), cathepsin B and L (CatB/L)]. The compounds interacted more strongly with CatB and CatL than with the other proteins. Van der Waals and hydrogen bonds played an important role in the receptor-ligand interactions. As a result of RBCI (relative binding capacity index) analysis conducted to rank flavonoids in terms of their interactions with the target proteins, (-)-epicatechin gallate interacted strongly with all the proteins studied. The results obtained from molecular dynamics and molecular mechanics Poisson-Boltzmann surface area (MM/PBSA) methods also supported this data. According to Lipinski's rule of five, (-)-epicatechin gallate showed drug-likeness properties. Although this molecule is not capable of crossing the blood-brain barrier (BBB), it was concluded that (-)-epicatechin gallate can be evaluated as a candidate molecule in drug development studies against 2019-nCoV since it was not the substrate of P-gp (P-glycoprotein), did not inhibit any of the cytochrome Ps, and did not show AMES toxicity or hepatotoxicity on eukaryotic cells.
Collapse
Affiliation(s)
- Erman Salih Istifli
- Department of Biology, Faculty of Science and Literature, Cukurova University, Adana, Turkey
| | - Paulo A. Netz
- Theoretical Chemistry Group, Institute of Chemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Arzuhan Sihoglu Tepe
- Department of Biology, Faculty of Science and Literature, Gaziantep University, Gaziantep, Turkey
| | - Mehmet Tahir Husunet
- Department of Biology, Faculty of Science and Literature, Cukurova University, Adana, Turkey
| | - Cengiz Sarikurkcu
- Department of Analytical Chemistry, Faculty of Pharmacy, Afyonkarahisar Health Sciences University, Afyonkarahisar, Turkey
| | - Bektas Tepe
- Department of Molecular Biology and Genetics, Faculty of Science and Literature, Kilis 7 Aralik University, Kilis, Turkey
| |
Collapse
|
368
|
Guo SS, Liu J, Zhou XG, Zhang GJ. DeepUMQA: ultrafast shape recognition-based protein model quality assessment using deep learning. Bioinformatics 2022; 38:1895-1903. [PMID: 35134108 DOI: 10.1093/bioinformatics/btac056] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 12/26/2021] [Accepted: 01/27/2022] [Indexed: 02/03/2023] Open
Abstract
MOTIVATION Protein model quality assessment is a key component of protein structure prediction. In recent research, the voxelization feature was used to characterize the local structural information of residues, but it may be insufficient for describing residue-level topological information. Design features that can further reflect residue-level topology when combined with deep learning methods are therefore crucial to improve the performance of model quality assessment. RESULTS We developed a deep-learning method, DeepUMQA, based on Ultrafast Shape Recognition (USR) for the residue-level single-model quality assessment. In the framework of the deep residual neural network, the residue-level USR feature was introduced to describe the topological relationship between the residue and overall structure by calculating the first moment of a set of residue distance sets and then combined with 1D, 2D and voxelization features to assess the quality of the model. Experimental results on the CASP13, CASP14 test datasets and CAMEO blind test show that USR could supplement the voxelization features to comprehensively characterize residue structure information and significantly improve model assessment accuracy. The performance of DeepUMQA ranks among the top during the state-of-the-art single-model quality assessment methods, including ProQ2, ProQ3, ProQ3D, Ornate, VoroMQA, ProteinGCN, ResNetQA, QDeep, GraphQA, ModFOLD6, ModFOLD7, ModFOLD8, QMEAN3, QMEANDisCo3 and DeepAccNet. AVAILABILITY AND IMPLEMENTATION The DeepUMQA server is freely available at http://zhanglab-bioinf.com/DeepUMQA/. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Sai-Sai Guo
- College of Information Engineering, Zhejiang University of Technology, Hangzhou 310023, China
| | - Jun Liu
- College of Information Engineering, Zhejiang University of Technology, Hangzhou 310023, China
| | - Xiao-Gen Zhou
- College of Information Engineering, Zhejiang University of Technology, Hangzhou 310023, China
| | - Gui-Jun Zhang
- College of Information Engineering, Zhejiang University of Technology, Hangzhou 310023, China
| |
Collapse
|
369
|
Vishwakarma P, Vattekatte AM, Shinada N, Diharce J, Martins C, Cadet F, Gardebien F, Etchebest C, Nadaradjane AA, de Brevern AG. V HH Structural Modelling Approaches: A Critical Review. Int J Mol Sci 2022; 23:3721. [PMID: 35409081 PMCID: PMC8998791 DOI: 10.3390/ijms23073721] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/23/2022] [Accepted: 03/23/2022] [Indexed: 12/20/2022] Open
Abstract
VHH, i.e., VH domains of camelid single-chain antibodies, are very promising therapeutic agents due to their significant physicochemical advantages compared to classical mammalian antibodies. The number of experimentally solved VHH structures has significantly improved recently, which is of great help, because it offers the ability to directly work on 3D structures to humanise or improve them. Unfortunately, most VHHs do not have 3D structures. Thus, it is essential to find alternative ways to get structural information. The methods of structure prediction from the primary amino acid sequence appear essential to bypass this limitation. This review presents the most extensive overview of structure prediction methods applied for the 3D modelling of a given VHH sequence (a total of 21). Besides the historical overview, it aims at showing how model software programs have been shaping the structural predictions of VHHs. A brief explanation of each methodology is supplied, and pertinent examples of their usage are provided. Finally, we present a structure prediction case study of a recently solved VHH structure. According to some recent studies and the present analysis, AlphaFold 2 and NanoNet appear to be the best tools to predict a structural model of VHH from its sequence.
Collapse
Affiliation(s)
- Poonam Vishwakarma
- INSERM UMR_S 1134, BIGR, DSIMB Team, Université de Paris and Université de la Réunion, F-75015 Paris, France; (P.V.); (A.M.V.); (J.D.); (C.M.); (C.E.); (A.A.N.)
- INSERM UMR_S 1134, BIGR, DSIMB Team, Université de Paris and Université de la Réunion, F-97715 Saint Denis Messag, France; (F.C.); (F.G.)
| | - Akhila Melarkode Vattekatte
- INSERM UMR_S 1134, BIGR, DSIMB Team, Université de Paris and Université de la Réunion, F-75015 Paris, France; (P.V.); (A.M.V.); (J.D.); (C.M.); (C.E.); (A.A.N.)
- INSERM UMR_S 1134, BIGR, DSIMB Team, Université de Paris and Université de la Réunion, F-97715 Saint Denis Messag, France; (F.C.); (F.G.)
| | | | - Julien Diharce
- INSERM UMR_S 1134, BIGR, DSIMB Team, Université de Paris and Université de la Réunion, F-75015 Paris, France; (P.V.); (A.M.V.); (J.D.); (C.M.); (C.E.); (A.A.N.)
| | - Carla Martins
- INSERM UMR_S 1134, BIGR, DSIMB Team, Université de Paris and Université de la Réunion, F-75015 Paris, France; (P.V.); (A.M.V.); (J.D.); (C.M.); (C.E.); (A.A.N.)
- INSERM UMR_S 1134, BIGR, DSIMB Team, Université de Paris and Université de la Réunion, F-97715 Saint Denis Messag, France; (F.C.); (F.G.)
| | - Frédéric Cadet
- INSERM UMR_S 1134, BIGR, DSIMB Team, Université de Paris and Université de la Réunion, F-97715 Saint Denis Messag, France; (F.C.); (F.G.)
- PEACCEL, Artificial Intelligence Department, Square Albin Cachot, F-75013 Paris, France
| | - Fabrice Gardebien
- INSERM UMR_S 1134, BIGR, DSIMB Team, Université de Paris and Université de la Réunion, F-97715 Saint Denis Messag, France; (F.C.); (F.G.)
| | - Catherine Etchebest
- INSERM UMR_S 1134, BIGR, DSIMB Team, Université de Paris and Université de la Réunion, F-75015 Paris, France; (P.V.); (A.M.V.); (J.D.); (C.M.); (C.E.); (A.A.N.)
| | - Aravindan Arun Nadaradjane
- INSERM UMR_S 1134, BIGR, DSIMB Team, Université de Paris and Université de la Réunion, F-75015 Paris, France; (P.V.); (A.M.V.); (J.D.); (C.M.); (C.E.); (A.A.N.)
- INSERM UMR_S 1134, BIGR, DSIMB Team, Université de Paris and Université de la Réunion, F-97715 Saint Denis Messag, France; (F.C.); (F.G.)
| | - Alexandre G. de Brevern
- INSERM UMR_S 1134, BIGR, DSIMB Team, Université de Paris and Université de la Réunion, F-75015 Paris, France; (P.V.); (A.M.V.); (J.D.); (C.M.); (C.E.); (A.A.N.)
- INSERM UMR_S 1134, BIGR, DSIMB Team, Université de Paris and Université de la Réunion, F-97715 Saint Denis Messag, France; (F.C.); (F.G.)
| |
Collapse
|
370
|
Weiß L, Gaelings L, Reiner T, Mergner J, Kuster B, Fehér A, Hensel G, Gahrtz M, Kumlehn J, Engelhardt S, Hückelhoven R. Posttranslational modification of the RHO of plants protein RACB by phosphorylation and cross-kingdom conserved ubiquitination. PLoS One 2022; 17:e0258924. [PMID: 35333858 PMCID: PMC8956194 DOI: 10.1371/journal.pone.0258924] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 10/10/2021] [Indexed: 11/19/2022] Open
Abstract
Small RHO-type G-proteins act as signaling hubs and master regulators of polarity in eukaryotic cells. Their activity is tightly controlled, as defective RHO signaling leads to aberrant growth and developmental defects. Two major processes regulate G-protein activity: canonical shuttling between different nucleotide bound states and posttranslational modification (PTM), of which the latter can support or suppress RHO signaling, depending on the individual PTM. In plants, regulation of Rho of plants (ROPs) signaling activity has been shown to act through nucleotide exchange and GTP hydrolysis, as well as through lipid modification, but there is little data available on phosphorylation or ubiquitination of ROPs. Hence, we applied proteomic analyses to identify PTMs of the barley ROP RACB. We observed in vitro phosphorylation by barley ROP binding kinase 1 and in vivo ubiquitination of RACB. Comparative analyses of the newly identified RACB phosphosites and human RHO protein phosphosites revealed conservation of modified amino acid residues, but no overlap of actual phosphorylation patterns. However, the identified RACB ubiquitination site is conserved in all ROPs from Hordeum vulgare, Arabidopsis thaliana and Oryza sativa and in mammalian Rac1 and Rac3. Point mutation of this ubiquitination site leads to stabilization of RACB. Hence, this highly conserved lysine residue may regulate protein stability across different kingdoms.
Collapse
Affiliation(s)
- Lukas Weiß
- Chair of Phytopathology, Technical University of Munich (TUM), Freising, Germany
| | - Lana Gaelings
- Chair of Phytopathology, Technical University of Munich (TUM), Freising, Germany
| | - Tina Reiner
- Chair of Phytopathology, Technical University of Munich (TUM), Freising, Germany
| | - Julia Mergner
- Chair of Proteomics and Bioanalytics, Technical University of Munich (TUM), Freising, Germany
| | - Bernhard Kuster
- Chair of Proteomics and Bioanalytics, Technical University of Munich (TUM), Freising, Germany
- Bavarian Biomolecular Mass Spectrometry Center (BayBioMS), TUM, Freising, Germany
| | - Attila Fehér
- Chair of Plant Biology, University of Szeged, and Institute of Plant Biology, Biological Research Centre, Szeged, Hungary
| | - Götz Hensel
- Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Manfred Gahrtz
- Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Jochen Kumlehn
- Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Stefan Engelhardt
- Chair of Phytopathology, Technical University of Munich (TUM), Freising, Germany
| | - Ralph Hückelhoven
- Chair of Phytopathology, Technical University of Munich (TUM), Freising, Germany
| |
Collapse
|
371
|
Strittmatter CS, Eggers J, Biesgen V, Pauels I, Becker F, Steinbüchel A. The reliance of glycerol utilization by Cupriavidus necator on CO 2 fixation and improved glycerol catabolism. Appl Microbiol Biotechnol 2022; 106:2541-2555. [PMID: 35325274 DOI: 10.1007/s00253-022-11842-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/15/2022] [Accepted: 02/17/2022] [Indexed: 11/29/2022]
Abstract
While crude glycerol is a cheap carbon source for industrial-scale cultivation of microorganisms, its application relies on fast growth and conversion. The biopolymer producing Cupriavidus necator H16 (synonym: Ralstonia eutropha H16) grows poorly on glycerol. The heterologous expression of glycerol facilitator glpF, glycerol kinase glpK, and glycerol dehydrogenase glpD from E. coli accelerated the growth considerably. The naturally occurring glycerol utilization is inhibited by low glycerol kinase activity. A limited heterotrophic growth promotes the dependency on autotrophic growth by carbon dioxide (CO2) fixation and refixation. As mixotrophic growth occurs in the wildtype due to low consumption rates of glycerol, CO2 fixation by the Calvin-Benson-Bassham (CBB) cycle is essential. The deletion of both cbbX copies encoding putative RuBisCO-activases (AAA + ATPase) resulted in a sharp slowdown of growth and glycerol consumption. Activase activity is necessary for functioning carboxylation by RuBisCO. Each of the two copies compensates for the loss of the other, as suggested by observed expression levels. The strong tendency towards autotrophy supports previous investigations of glycerol growth and emphasizes the versatility of the metabolism of C. necator H16. Mixotrophy with glycerol-utilization and CO2 fixation with a high dependence on the CBB is automatically occurring unless transportation and degradation of glycerol are optimized. Parallel engineering of CO2 fixation and glycerol degradation is suggested towards application for value-added production from crude glycerol. KEY POINTS: • Growth on glycerol is highly dependent on efficient carbon fixation via CBB cycle. • CbbX is essential for the efficiency of RuBisCO in C. necator H16. • Expression of glycerol degradation pathway enzymes accelerates glycerol utilization.
Collapse
Affiliation(s)
- Carl Simon Strittmatter
- Insitut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universtität Münster, Münster, Germany
| | - Jessica Eggers
- Insitut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universtität Münster, Münster, Germany
| | - Vanessa Biesgen
- Insitut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universtität Münster, Münster, Germany
| | - Inga Pauels
- Insitut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universtität Münster, Münster, Germany
| | - Florian Becker
- Insitut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universtität Münster, Münster, Germany
| | - Alexander Steinbüchel
- Insitut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universtität Münster, Münster, Germany. .,Environmental Science Department, King Abdulaziz University, Jeddah, Saudi Arabia.
| |
Collapse
|
372
|
Extraction, Cloning and Bioinformatics Analysis of Mycoplasma genitalium MG428 Protein. Jundishapur J Microbiol 2022. [DOI: 10.5812/jjm.121644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background: Mycoplasma genitalium is a sexually transmitted human pathogen, causing numerous reproductive tract diseases in both genders. MG428 is a positive regulator of surface exposure protein gene recombination and an alternative sigma factor of M. genitalium. Objectives: We extracted and cloned the MG428 gene and bioinformatics analyzed its protein structure in this study. Methods: We designed specific primers based on the MG428 gene sequence of M. genitalium. The MG428 gene was amplified using PCR techniques and ligated into the pGEM-T easy vector. The positive clones were verified by DNA sequencing. The MG428 protein biological characteristics and structure was analysed by biological characteristics. Results: The MG428 gene of M. genitalium has a length of 513 bp and encodes 171 amino acids. No coiled-coil conformation, possible transmembrane helices, or signal peptide was found in the MG428 protein. The MG428 protein was located in the nucleoid of bacteria, and its 3D structure was similar to that of the sigma-H factor of Pseudomonas aeruginosa. A total of 14 B cell epitopes in MG428 were predicted. Conclusions: We successfully cloned the MG428 protein of M. genitalium and predicted its structure and function. The results of this study could provide a research direction for medicine screening against M. genitalium.
Collapse
|
373
|
Baeza M, Zúñiga S, Peragallo V, Gutierrez F, Barahona S, Alcaino J, Cifuentes V. Response to Cold: A Comparative Transcriptomic Analysis in Eight Cold-Adapted Yeasts. Front Microbiol 2022; 13:828536. [PMID: 35283858 PMCID: PMC8905146 DOI: 10.3389/fmicb.2022.828536] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 01/19/2022] [Indexed: 02/03/2023] Open
Abstract
Microorganisms have evolved to colonize all biospheres, including extremely cold environments, facing several stressor conditions, mainly low/freezing temperatures. In general, terms, the strategies developed by cold-adapted microorganisms include the synthesis of cryoprotectant and stress-protectant molecules, cold-active proteins, especially enzymes, and membrane fluidity regulation. The strategy could differ among microorganisms and concerns the characteristics of the cold environment of the microorganism, such as seasonal temperature changes. Microorganisms can develop strategies to grow efficiently at low temperatures or tolerate them and grow under favorable conditions. These differences can be found among the same kind of microorganisms and from the same cold habitat. In this work, eight cold-adapted yeasts isolated from King George Island, subAntarctic region, which differ in their growth properties, were studied about their response to low temperatures at the transcriptomic level. Sixteen ORFeomes were assembled and used for gene prediction and functional annotation, determination of gene expression changes, protein flexibilities of translated genes, and codon usage bias. Putative genes related to the response to all main kinds of stress were found. The total number of differentially expressed genes was related to the temperature variation that each yeast faced. The findings from multiple comparative analyses among yeasts based on gene expression changes and protein flexibility by cellular functions and codon usage bias raise significant differences in response to cold among the studied Antarctic yeasts. The way a yeast responds to temperature change appears to be more related to its optimal temperature for growth (OTG) than growth velocity. Yeasts with higher OTG prepare to downregulate their metabolism to enter the dormancy stage. In comparison, yeasts with lower OTG perform minor adjustments to make their metabolism adequate and maintain their growth at lower temperatures.
Collapse
Affiliation(s)
- Marcelo Baeza
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile.,Centro de Biotecnología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Sergio Zúñiga
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Vicente Peragallo
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Fernando Gutierrez
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Salvador Barahona
- Centro de Biotecnología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Jennifer Alcaino
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile.,Centro de Biotecnología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Víctor Cifuentes
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile.,Centro de Biotecnología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| |
Collapse
|
374
|
Wang G, Li J, Pan XL, Bu FQ, Zhu YM, Wang AX, Ouyang L. Discovery of Tyrosinase Inhibitors: Structure-Based Virtual Screening and Biological Evaluation. PHARMACEUTICAL FRONTS 2022. [DOI: 10.1055/s-0041-1742095] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Tyrosinase (EC 1.14.18.1) plays an indispensable role in the rate-limiting steps of melanin biosynthesis, and its uncontrolled activity may result in various diseases, such as albinism, melanoma, freckles, etc. The inhibition of tyrosinase activity may provide a useful and efficient strategy to treat hyperpigmentation disorders. However, the widely used tyrosinase inhibitors, like α-arbutin, hydroquinone, and kojic acid, have many shortcomings, such as lower efficacy and much more side effects. Herein, we reported the use of homology modeling and multistep structure-based virtual screening for the discovery of novel tyrosinase inhibitors. In this study, 10 initial potential hits (compounds T1–T10) were evaluated for enzyme inhibition and kinetic study, with kojic acid being used as a control. Among them, the IC50 values of both T1 (11.56 ± 0.98 μmol/L) and T5 (18.36 ± 0.82 μmol/L) were superior to that of kojic acid (23.12 ± 1.26 μmol/L). Moreover, T1 and T5 were also identified as the effective noncompetitive tyrosinase inhibitors by the subsequent kinetic study. Above all, T1 and T5 may represent the promising drug candidates for hyperpigmentation therapy in pharmaceutical fields, as well as the effective whitening agents in cosmetic applications.
Collapse
Affiliation(s)
- Guan Wang
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Jin Li
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Xiao-Li Pan
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Fa-Qian Bu
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Yu-Meng Zhu
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Ao-Xue Wang
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Liang Ouyang
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| |
Collapse
|
375
|
Abstract
The H9N2 subtype avian influenza virus (AIV) has become endemic in poultry globally; however due to its low pathogenicity, it is not under primary surveillance and control in many countries. Recent reports of human infection caused by H9N2 AIV has increased public concern. This study investigated the genetic and antigenic characteristics of H9N2 AIV isolated from local markets in nine provinces in Southern China from 2013 to 2018. We detected an increasing annual isolation rate of H9N2 AIV. Phylogenetic analyses of hemagglutinin (HA) genes suggests that isolated strains were rooted in BJ94 lineage but have evolved into new subgroups (II and III), which derived from subgroup I. The estimated substitution rate of the subgroup III strains was 6.23 × 10−3 substitutions/site/year, which was 1.5-fold faster than that of the average H9N2 HA rate (3.95 × 10−3 substitutions/site/year). Based on the antigenic distances, subgroup II and III strains resulted in two clear antigenic clusters 2 and 3, separated from the vaccine strain F98, cluster 1. New antigenic properties of subgroup III viruses were associated with 11 amino acid changes in the HA protein, suggesting antigenic drift in H9N2 viruses. Our phylogenetic and antigenic analyses of the H9N2 strains circulating in local markets in Southern China provide new insights on the antigenic diversification of H9N2 viruses. IMPORTANCE The H9N2 low pathogenicity avian influenza (LPAI) virus has become endemic in poultry globally. In several Asian countries, vaccination against H9N2 avian influenza virus (AIV) was approved to reduce economic losses in the poultry industry. However, surveillance programs initiated after the introduction of vaccination identified the persistence of H9N2 AIV in poultry (especially in chicken in South Korea and China). Recent reports of human infection caused by H9N2 AIV has increased public concern. Surveillance of H9N2 circulating in poultry in the fields or markets was essential to update the vaccination strategies. This study investigated the genetic and antigenic characteristics of H9N2 AIVs isolated from local markets in nine provinces in Southern China from 2013 to 2018. The discovery of mutations in the hemagglutinin (HA) gene that result in antigenic changes provides a baseline reference for evolutionary studies of H9N2 viruses and vaccination strategies in poultry.
Collapse
|
376
|
Predicted 3D model of the M protein of Porcine Epidemic Diarrhea Virus and analysis of its immunogenic potential. PLoS One 2022; 17:e0263582. [PMID: 35139120 PMCID: PMC8827446 DOI: 10.1371/journal.pone.0263582] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 01/23/2022] [Indexed: 11/19/2022] Open
Abstract
The membrane protein M of the Porcine Epidemic Diarrhea Virus (PEDV) is the most abundant component of the viral envelope. The M protein plays a central role in the morphogenesis and assembly of the virus through protein interactions of the M-M, M-Spike (S) and M-nucleocapsid (N) type. The M protein is known to induce protective antibodies in pigs and to participate in the antagonistic response of the cellular antiviral system coordinated by the type I and type III interferon pathways. The 3D structure of the PEDV M protein is still unknown. The present work exposes a predicted 3D model of the M protein generated using the Robetta protocol. The M protein model is organized into a transmembrane and a globular region. The obtained 3D model of the PEDV M protein was compared with 3D models of the SARS-CoV-2 M protein created using neural networks and with initial machine learning-based models created using trRosetta. The 3D model of the present study predicted four linear B-cell epitopes (RSVNASSGTG and KHGDYSAVSNPSALT peptides are noteworthy), six discontinuous B-cell epitopes, forty weak binding and fourteen strong binding T-cell epitopes in the CV777 M protein. A high degree of conservation of the epitopes predicted in the PEDV M protein was observed among different PEDV strains isolated in different countries. The data suggest that the M protein could be a potential candidate for the development of new treatments or strategies that activate protective cellular mechanisms against viral diseases.
Collapse
|
377
|
Using Steady-State Kinetics to Quantitate Substrate Selectivity and Specificity: A Case Study with Two Human Transaminases. Molecules 2022; 27:molecules27041398. [PMID: 35209187 PMCID: PMC8875635 DOI: 10.3390/molecules27041398] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/15/2022] [Accepted: 02/16/2022] [Indexed: 11/16/2022] Open
Abstract
We examined the ability of two human cytosolic transaminases, aspartate aminotransferase (GOT1) and alanine aminotransferase (GPT), to transform their preferred substrates whilst discriminating against similar metabolites. This offers an opportunity to survey our current understanding of enzyme selectivity and specificity in a biological context. Substrate selectivity can be quantitated based on the ratio of the kcat/KM values for two alternative substrates (the 'discrimination index'). After assessing the advantages, implications and limits of this index, we analyzed the reactions of GOT1 and GPT with alternative substrates that are metabolically available and show limited structural differences with respect to the preferred substrates. The transaminases' observed selectivities were remarkably high. In particular, GOT1 reacted ~106-fold less efficiently when the side-chain carboxylate of the 'physiological' substrates (aspartate and glutamate) was replaced by an amido group (asparagine and glutamine). This represents a current empirical limit of discrimination associated with this chemical difference. The structural basis of GOT1 selectivity was addressed through substrate docking simulations, which highlighted the importance of electrostatic interactions and proper substrate positioning in the active site. We briefly discuss the biological implications of these results and the possibility of using kcat/KM values to derive a global measure of enzyme specificity.
Collapse
|
378
|
Yang C, Cheng J, Lin J, Zheng Y, Yu X, Sun J. Sex Pheromone Receptors of Lepidopteran Insects. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.797287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The sex pheromone receptors (SPRs) of Lepidopteran insects play important roles in chemical communication. In the sex pheromone detection processes, sex pheromone molecule (SPM), SPR, co-receptor (Orco), pheromone binding protein (PBP), sensory neuron membrane protein (SNMP), and pheromone degradation enzyme (PDE) play individual and cooperative roles. Commonly known as butterfly and moth, the Lepidopteran insects are widely distributed throughout the world, most of which are pests. Comprehensive knowledge of the SPRs of Lepidopteran insects would help the development of sex lure technology and the sex communication pathway research. In this review, we summarized SPR/Orco information from 10 families of Lepidopteran insects from corresponding studies. According to the research progress in the literature, we speculated the evolution of SPRs/Orcos and phylogenetically analyzed the Lepidopteran SPRs and Orcos with the neighbor-joining tree and further concluded the relationship between the cluster of SPRs and their ligands; we analyzed the predicted structural features of SPRs and gave our prediction results of SPRs and Orcos with Consensus Constrained TOPology Prediction (CCTOP) and SwissModel; we summarized the functional characterization of Lepidopteran SPRs and SPR-ligand interaction and then described the progress in the sex pheromone signaling pathways and metabotropic ion channel. Further studies are needed to work out the cryo-electron microscopy (EM) structure of SPR and the SPR-ligand docking pattern in a biophysical perspective, which will directly facilitate the understanding of sex pheromone signal transduction pathways and provide guidance in the sex lure technology in field pest control.
Collapse
|
379
|
Solis CA, Yong MT, Zhou M, Venkataraman G, Shabala L, Holford P, Shabala S, Chen ZH. Evolutionary Significance of NHX Family and NHX1 in Salinity Stress Adaptation in the Genus Oryza. Int J Mol Sci 2022; 23:ijms23042092. [PMID: 35216206 PMCID: PMC8879705 DOI: 10.3390/ijms23042092] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/28/2022] [Accepted: 02/07/2022] [Indexed: 02/06/2023] Open
Abstract
Rice (Oryza sativa), a staple crop for a substantial part of the world’s population, is highly sensitive to soil salinity; however, some wild Oryza relatives can survive in highly saline environments. Sodium/hydrogen antiporter (NHX) family members contribute to Na+ homeostasis in plants and play a major role in conferring salinity tolerance. In this study, we analyzed the evolution of NHX family members using phylogeny, conserved domains, tertiary structures, expression patterns, and physiology of cultivated and wild Oryza species to decipher the role of NHXs in salt tolerance in Oryza. Phylogenetic analysis showed that the NHX family can be classified into three subfamilies directly related to their subcellular localization: endomembrane, plasma membrane, and tonoplast (vacuolar subfamily, vNHX1). Phylogenetic and structural analysis showed that vNHX1s have evolved from streptophyte algae (e.g., Klebsormidium nitens) and are abundant and highly conserved in all major land plant lineages, including Oryza. Moreover, we showed that tissue tolerance is a crucial trait conferring tolerance to salinity in wild rice species. Higher Na+ accumulation and reduced Na+ effluxes in leaf mesophyll were observed in the salt-tolerant wild rice species O. alta, O. latifolia, and O. coarctata. Among the key genes affecting tissue tolerance, expression of NHX1 and SOS1/NHX7 exhibited significant correlation with salt tolerance among the rice species and cultivars. This study provides insights into the evolutionary origin of plant NHXs and their role in tissue tolerance of Oryza species and facilitates the inclusion of this trait during the development of salinity-tolerant rice cultivars.
Collapse
Affiliation(s)
- Celymar Angela Solis
- School of Science, Western Sydney University, Penrith, NSW 2751, Australia; (C.A.S.); (M.-T.Y.); (P.H.)
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS 7001, Australia; (M.Z.); (L.S.)
| | - Miing-Tiem Yong
- School of Science, Western Sydney University, Penrith, NSW 2751, Australia; (C.A.S.); (M.-T.Y.); (P.H.)
| | - Meixue Zhou
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS 7001, Australia; (M.Z.); (L.S.)
| | - Gayatri Venkataraman
- Plant Molecular Biology Laboratory, M. S. Swaminathan Research Foundation, III Cross Street, Taramani Institutional Area, Chennai 600113, India;
| | - Lana Shabala
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS 7001, Australia; (M.Z.); (L.S.)
| | - Paul Holford
- School of Science, Western Sydney University, Penrith, NSW 2751, Australia; (C.A.S.); (M.-T.Y.); (P.H.)
| | - Sergey Shabala
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS 7001, Australia; (M.Z.); (L.S.)
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan 528000, China
- Correspondence: (S.S.); (Z.-H.C.); Tel.: +61-245-701-934 (Z.-H.C.)
| | - Zhong-Hua Chen
- School of Science, Western Sydney University, Penrith, NSW 2751, Australia; (C.A.S.); (M.-T.Y.); (P.H.)
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW 2751, Australia
- Correspondence: (S.S.); (Z.-H.C.); Tel.: +61-245-701-934 (Z.-H.C.)
| |
Collapse
|
380
|
Rykov SV, Selimzyanova AI, Nikolaeva AY, Lazarenko VA, Tsurin NV, Akentyev PI, Zverlov VV, Liebl W, Schwarz WH, Berezina OV. Unusual substrate specificity in GH family 12: structure-function analysis of glucanases Bgh12A and Xgh12B from Aspergillus cervinus, and Egh12 from Thielavia terrestris. Appl Microbiol Biotechnol 2022; 106:1493-1509. [PMID: 35129654 DOI: 10.1007/s00253-022-11811-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 01/17/2022] [Accepted: 01/26/2022] [Indexed: 11/28/2022]
Abstract
In this study, we compared the properties and structures of three fungal GH12 enzymes: the strict endoglucanase Bgh12A and the xyloglucanase Xgh12B from Aspergillus cervinus, and the endoglucanase Egh12 from Thielavia terrestris combining activity on linear β-glucan and branched xyloglucan. Egh12 from T. terrestris was produced in Pichia pastoris, purified, and characterized as a thermostable enzyme with maximal activity at 70 ºC and a half-life time of 138 min at 65 °C. We for the first time demonstrated that the GH12 endoglucanases Egh12 and Bgh12A, but not the strict xyloglucanase Xgh12B, hydrolyzed (1,3)-β-linkages in (1,3;1,4)-β-D-glucooligosaccharides and had transglycosylase activity on (1,3)-β-D-glucooligosaccharides. Phylogenetic analysis indicated that Egh12 from T. terrestris and Bgh12A from A. cervinus are more related than Bgh12A and Xgh12B isolated from one strain. The X-ray structure of Bgh12A was determined with 2.17 Å resolution and compared with 3D-homology models of Egh12 and Xgh12B. The enzymes have a β-jelly roll structure with a catalytic cleft running across the protein. Comparative analysis and a docking study demonstrated the importance of endoglucanase-specific loop 1 partly covering the catalytic cleft for correct placement of the linear substrates. Variability in substrate specificity between the GH12 endoglucanases is determined by non-conservative residues in structural loops framing the catalytic cleft. A residue responsible for the thermostability of Egh12 was predicted. The key structural elements and residues described in this study may serve as potential targets for modification aimed at the improvement of enzymatic properties. KEY POINTS: • Thermostable endoglucanase Egh12 from T. terrestris was produced in P. pastoris, purified, and characterized • The X-ray structure of GH12 endoglucanase Bgh12A from A. cervinus was resolved • GH12 endoglucanases, but not GH12 xyloglucanases, hydrolyze (1,3)-β-linkages in (1,3;1,4)-β-D-glucooligosaccharides.
Collapse
Affiliation(s)
- Sergey V Rykov
- National Research Center «Kurchatov Institute» - GOSNIIGENETIKA, Kurchatov Genomic Center, 1-st Dorozhniy pr. 1, 117545, Moscow, Russian Federation.,National Research Center «Kurchatov Institute», Kurchatov Sq. 1, 123182, Moscow, Russian Federation
| | - Alina I Selimzyanova
- National Research Center «Kurchatov Institute» - GOSNIIGENETIKA, Kurchatov Genomic Center, 1-st Dorozhniy pr. 1, 117545, Moscow, Russian Federation
| | - Alena Y Nikolaeva
- National Research Center «Kurchatov Institute» - Institute of Molecular Genetics, Kurchatov Sq. 2, 123182, Moscow, Russian Federation
| | - Vladimir A Lazarenko
- National Research Center «Kurchatov Institute» - Institute of Molecular Genetics, Kurchatov Sq. 2, 123182, Moscow, Russian Federation
| | - Nikita V Tsurin
- National Research Center «Kurchatov Institute» - GOSNIIGENETIKA, Kurchatov Genomic Center, 1-st Dorozhniy pr. 1, 117545, Moscow, Russian Federation
| | - Philipp I Akentyev
- National Research Center «Kurchatov Institute» - GOSNIIGENETIKA, Kurchatov Genomic Center, 1-st Dorozhniy pr. 1, 117545, Moscow, Russian Federation.,National Research Center «Kurchatov Institute», Kurchatov Sq. 1, 123182, Moscow, Russian Federation
| | - Vladimir V Zverlov
- National Research Center «Kurchatov Institute» - Institute of Molecular Genetics, Kurchatov Sq. 2, 123182, Moscow, Russian Federation. .,Chair of Microbiology, Technical University of Munich, Emil-Ramann-Str. 4, 85354, Freising, Germany.
| | - Wolfgang Liebl
- Chair of Microbiology, Technical University of Munich, Emil-Ramann-Str. 4, 85354, Freising, Germany
| | | | - Oksana V Berezina
- National Research Center «Kurchatov Institute» - GOSNIIGENETIKA, Kurchatov Genomic Center, 1-st Dorozhniy pr. 1, 117545, Moscow, Russian Federation. .,National Research Center «Kurchatov Institute», Kurchatov Sq. 1, 123182, Moscow, Russian Federation.
| |
Collapse
|
381
|
Shah JS, Buckmeier BG, Griffith W, Olafson PU, Perez de Leon AA, Renthal R. Odorant-binding protein from the stable fly (Stomoxys calcitrans) has a high-histidine N-terminal extension that binds transition metals. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2022; 141:103707. [PMID: 34979251 DOI: 10.1016/j.ibmb.2021.103707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 12/19/2021] [Accepted: 12/26/2021] [Indexed: 06/14/2023]
Abstract
The role of odorant- and pheromone-binding proteins (OBPs) in olfactory function is not fully understood. We found an OBP sequence from the stable fly, Stomoxys calcitrans, ScalOBP60, that has a 25 amino acid N-terminal extension with a high content of histidine and acidic amino acids, suggesting a possible metal binding activity. A search of public databases revealed a large number of other fly OBPs with histidine-rich N-terminal extensions, as well as beetle, wasp and ant OBPs with histidine-rich C-terminal extensions. We recombinantly expressed ScalOBP60, as well as a truncated sequence which lacks the histidine-rich N-terminal region, tScalOBP60. Using fluorescence quenching and electrospray quadrupole time-of-flight mass spectrometry (ESI-QTOF), we detected two different types of metal-binding sites. Divalent copper, nickel and zinc bind to the N-terminal histidine-rich region, and divalent copper binds to an internal sequence position. Comparison of the ESI-QTOF spectra of ScalOBP60 and tScalOBP60 showed that the histidine-rich sequence is structurally disordered, but it becomes more ordered in the presence of divalent metal. When copper is bound to the internal site, binding of a hydrophobic ligand to ScalOBP60 is inhibited. The internal and N-terminal metal sites interact allosterically, possibly through a conformational equilibrium, suggesting a mechanism for metal regulation of ligand binding to ScalOBP60. Based on our studies of ScalOBP60, we propose several possible olfactory and non-olfactory functions for this OBP.
Collapse
Affiliation(s)
- Jaee Shailesh Shah
- Department of Biology, University of Texas at San Antonio, San Antonio, TX, 78249, USA
| | | | - Wendell Griffith
- Department of Chemistry, University of Texas at San Antonio, San Antonio, TX, 78249, USA
| | - Pia Untalan Olafson
- USDA-ARS, Knipling-Bushland U.S. Livestock Insects Research Lab, Kerrville, TX, 78028, USA
| | | | - Robert Renthal
- Department of Biology, University of Texas at San Antonio, San Antonio, TX, 78249, USA; Department of Neuroscience, Developmental and Regenerative Biology, University of Texas at San Antonio, San Antonio, TX, 78249, USA.
| |
Collapse
|
382
|
Zhong D, Wan Z, Cai J, Quan L, Zhang R, Teng T, Gao H, Fan C, Wang M, Guo D, Zhang H, Jia Z, Sun Y. mPGES-2 blockade antagonizes β-cell senescence to ameliorate diabetes by acting on NR4A1. Nat Metab 2022; 4:269-283. [PMID: 35228744 DOI: 10.1038/s42255-022-00536-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 01/19/2022] [Indexed: 12/14/2022]
Abstract
β-cell dysfunction is a hallmark of type 1 and type 2 diabetes. Type 2 diabetes is strongly associated with ageing-related β-cell abnormalities that arise through unknown mechanisms. Here we show better β-cell identity, less β-cell senescence, enhanced glucose-stimulated insulin secretion and improved glucose homeostasis in global microsomal prostaglandin E synthase-2 (mPGES-2)-deficient mice challenged with a high-fat diet or bred with a genetic model of type 2 diabetes (db/db mice). Furthermore, the function of mPGES-2 in β-cells is validated using mice with β-cell-specific mPGES-2 deficiency or overexpression. Mechanistically, the protective role of mPGES-2 deletion is induced by antagonizing β-cell senescence via interference of the PGE2-EP3-NR4A1 signalling axis. We also discover an inhibitor of mPGES-2, SZ0232, which protects against β-cell dysfunction and diabetes, similar to mPGES-2 deletion. We conclude that mPGES-2 contributes to ageing-associated β-cell senescence and dysfunction via the PGE2-EP3-NR4A1 signalling axis. Pharmacologic blockade of mPGES-2 might be effective for treating ageing-associated β-cell dysfunction and diabetes.
Collapse
Affiliation(s)
- Dandan Zhong
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, P. R. China
| | - Zhikang Wan
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, P. R. China
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, P. R. China
| | - Jie Cai
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, P. R. China
- Public Experimental Research Center of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, P. R. China
| | - Lingling Quan
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, P. R. China
| | - Rumeng Zhang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, P. R. China
- Public Experimental Research Center of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, P. R. China
| | - Tian Teng
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, P. R. China
| | - Hang Gao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, P. R. China
| | - Chenyu Fan
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, P. R. China
| | - Meng Wang
- Cancer Institute, Xuzhou Medical University, Xuzhou, P. R. China
| | - Dong Guo
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, P. R. China
| | - Hongxing Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, P. R. China
| | - Zhanjun Jia
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, P. R. China.
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, P. R. China.
| | - Ying Sun
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, P. R. China.
| |
Collapse
|
383
|
Voinkov EK, Drokin RA, Fedotov VV, Butorin II, Savateev KV, Lyapustin DN, Gazizov DA, Gorbunov EB, Slepukhin PA, Gerasimova NA, Evstigneeva NP, Zilberberg NV, Kungurov NV, Ulomsky EN, Rusinov VL. Azolo[5,1‐
c
][1,2,4]triazines and Azoloazapurines: Synthesis, Antimicrobial activity and
in silico
Studies. ChemistrySelect 2022. [DOI: 10.1002/slct.202104253] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Egor K. Voinkov
- Department of Organic and Biomolecular Chemistry Institute of Chemical Technology Ural Federal University 19 Mira St. Yekaterinburg Russian Federation
| | - Roman A. Drokin
- Department of Organic and Biomolecular Chemistry Institute of Chemical Technology Ural Federal University 19 Mira St. Yekaterinburg Russian Federation
| | - Victor V. Fedotov
- Department of Organic and Biomolecular Chemistry Institute of Chemical Technology Ural Federal University 19 Mira St. Yekaterinburg Russian Federation
| | - Ilya I. Butorin
- Department of Organic and Biomolecular Chemistry Institute of Chemical Technology Ural Federal University 19 Mira St. Yekaterinburg Russian Federation
| | - Konstantin V. Savateev
- Department of Organic and Biomolecular Chemistry Institute of Chemical Technology Ural Federal University 19 Mira St. Yekaterinburg Russian Federation
| | - Daniil N. Lyapustin
- Department of Organic and Biomolecular Chemistry Institute of Chemical Technology Ural Federal University 19 Mira St. Yekaterinburg Russian Federation
| | - Denis A. Gazizov
- I. Ya. Postovskiy Institute of Organic Synthesis Ural Division of the Russian Academy of Sciences 22/20 S. Kovalevskoy st. / Akademicheskaya st. Yekaterinburg Russian Federation
| | - Evgeny B. Gorbunov
- I. Ya. Postovskiy Institute of Organic Synthesis Ural Division of the Russian Academy of Sciences 22/20 S. Kovalevskoy st. / Akademicheskaya st. Yekaterinburg Russian Federation
| | - Pavel A. Slepukhin
- I. Ya. Postovskiy Institute of Organic Synthesis Ural Division of the Russian Academy of Sciences 22/20 S. Kovalevskoy st. / Akademicheskaya st. Yekaterinburg Russian Federation
| | - Natalya A. Gerasimova
- Ural Research Institute of Dermatovenereology and Immunopathology 8 Shcherbakova st. Yekaterinburg Russian Federation
| | - Natalya P. Evstigneeva
- Ural Research Institute of Dermatovenereology and Immunopathology 8 Shcherbakova st. Yekaterinburg Russian Federation
| | - Natalya V. Zilberberg
- Ural Research Institute of Dermatovenereology and Immunopathology 8 Shcherbakova st. Yekaterinburg Russian Federation
| | - Nikolay V. Kungurov
- Ural Research Institute of Dermatovenereology and Immunopathology 8 Shcherbakova st. Yekaterinburg Russian Federation
| | - Evgeny N. Ulomsky
- Department of Organic and Biomolecular Chemistry Institute of Chemical Technology Ural Federal University 19 Mira St. Yekaterinburg Russian Federation
- I. Ya. Postovskiy Institute of Organic Synthesis Ural Division of the Russian Academy of Sciences 22/20 S. Kovalevskoy st. / Akademicheskaya st. Yekaterinburg Russian Federation
| | - Vladimir L. Rusinov
- Department of Organic and Biomolecular Chemistry Institute of Chemical Technology Ural Federal University 19 Mira St. Yekaterinburg Russian Federation
- I. Ya. Postovskiy Institute of Organic Synthesis Ural Division of the Russian Academy of Sciences 22/20 S. Kovalevskoy st. / Akademicheskaya st. Yekaterinburg Russian Federation
| |
Collapse
|
384
|
Bermúdez-Guzmán MJ, Jiménez-Vargas JM, Possani LD, Zamudio F, Orozco-Gutiérrez G, Oceguera-Contreras E, Enríquez-Vara JN, Vazquez-Vuelvas OF, García-Villalvazo PE, Valdez-Velázquez LL. Biochemical characterization and insecticidal activity of isolated peptides from the venom of the scorpion Centruroides tecomanus. Toxicon 2022; 206:90-102. [PMID: 34973996 DOI: 10.1016/j.toxicon.2021.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/16/2021] [Accepted: 12/20/2021] [Indexed: 11/19/2022]
Abstract
The venom of scorpions is a mixture of components that constitute a source of bioactive molecules. The venom of the scorpion Centruroides tecomanus contains peptides toxic to insects, however, to date no toxin responsible for this activity has yet been isolated and fully characterized. This communication describes two new peptides Ct-IT1 and Ct-IT2 purified from this scorpion. Both peptides contain 63 amino acids with molecular weight 6857.85 for Ct-IT1 and 6987.77 Da for Ct-IT2. The soluble venom was separated using chromatographic techniques of molecular size exclusion, cationic exchange, and reverse phase chromatography, allowing the identification of at least 99 components of which in 53 the insecticidal activity was evaluated. The LD50 determined for Ct-IT1 is 3.81 μg/100 mg of cricket weight, but low amounts of peptides (0.8 μg of peptide) already cause paralysis in crickets. The relative abundance of these two peptides in the venom is 2.1% for Ct-IT1 and 1% for Ct-IT2. The molecular masses and N-terminal sequences of both insecticidal toxins were determined by mass spectrometry and Edman degradation. The primary structure of both toxins was compared with other known peptides isolated from other scorpion venoms. The analysis of the sequence alignments revealed the position of a highly conserved amino acid residue, Gly39, exclusively present in anti-insect selective depressant β-toxins (DBTXs), which in Ct-IT1 and Ct-IT2 is at position Gly40. Similarly, a three-dimensional structure of this toxins was obtained by homology modeling and compared to the structure of known insect toxins of scorpions. An important similarity of the cavity formed by the trapping apparatus region of the depressant toxin LqhIT2, isolated from the scorpion Leiurus quinquestriatus hebraeus, was found in the toxins described here. These results indicate that Ct-IT1 and Ct-IT2 toxins have a high potential to be evaluated on pests that affect economically important crops to eventually consider them as a potential biological control method.
Collapse
Affiliation(s)
- M J Bermúdez-Guzmán
- Facultad de Ciencias Químicas, Universidad de Colima, Km. 9 Carretera Colima-Coquimatlán, C.P. 28400, Coquimatlán, Colima, México; Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP), Km. 35 Carretera Colima-Manzanillo, C.P. 28100, Tecomán, Colima, México
| | - J M Jiménez-Vargas
- CONACYT-Facultad de Ciencias Químicas, Universidad de Colima, Km. 9 Carretera-Coquimatlán, C.P. 28400, Coquimatlán, Colima, México
| | - L D Possani
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad, 2001, Colonia Chamilpa, C.P. 510-3, Cuernavaca, Morelos, México
| | - F Zamudio
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad, 2001, Colonia Chamilpa, C.P. 510-3, Cuernavaca, Morelos, México
| | - G Orozco-Gutiérrez
- Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP), Km. 35 Carretera Colima-Manzanillo, C.P. 28100, Tecomán, Colima, México
| | - E Oceguera-Contreras
- Centro Universitario de los Valles, Universidad de Guadalajara, Km. 45.5 Carretera Guadalajara-Ameca, Ameca, Jalisco, México
| | - J N Enríquez-Vara
- CONACYT-Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C., Camino Arenero 1227, Col. El Bajío C.P. 45019, Zapopan, Jalisco, México
| | - O F Vazquez-Vuelvas
- Facultad de Ciencias Químicas, Universidad de Colima, Km. 9 Carretera Colima-Coquimatlán, C.P. 28400, Coquimatlán, Colima, México
| | - P E García-Villalvazo
- Facultad de Ciencias Químicas, Universidad de Colima, Km. 9 Carretera Colima-Coquimatlán, C.P. 28400, Coquimatlán, Colima, México
| | - L L Valdez-Velázquez
- Facultad de Ciencias Químicas, Universidad de Colima, Km. 9 Carretera Colima-Coquimatlán, C.P. 28400, Coquimatlán, Colima, México.
| |
Collapse
|
385
|
Statistical potentials from the Gaussian scaling behaviour of chain fragments buried within protein globules. PLoS One 2022; 17:e0254969. [PMID: 35085247 PMCID: PMC8794220 DOI: 10.1371/journal.pone.0254969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 10/28/2021] [Indexed: 11/19/2022] Open
Abstract
Knowledge-based approaches use the statistics collected from protein data-bank structures to estimate effective interaction potentials between amino acid pairs. Empirical relations are typically employed that are based on the crucial choice of a reference state associated to the null interaction case. Despite their significant effectiveness, the physical interpretation of knowledge-based potentials has been repeatedly questioned, with no consensus on the choice of the reference state. Here we use the fact that the Flory theorem, originally derived for chains in a dense polymer melt, holds also for chain fragments within the core of globular proteins, if the average over buried fragments collected from different non-redundant native structures is considered. After verifying that the ensuing Gaussian statistics, a hallmark of effectively non-interacting polymer chains, holds for a wide range of fragment lengths, although with significant deviations at short spatial scales, we use it to define a ‘bona fide’ reference state. Notably, despite the latter does depend on fragment length, deviations from it do not. This allows to estimate an effective interaction potential which is not biased by the presence of correlations due to the connectivity of the protein chain. We show how different sequence-independent effective statistical potentials can be derived using this approach by coarse-graining the protein representation at varying levels. The possibility of defining sequence-dependent potentials is explored.
Collapse
|
386
|
Fu AY, Jin QZ, Sun YX. Novel α-galactosidase A gene mutation in a Chinese Fabry disease family: A case report. World J Clin Cases 2022; 10:1067-1076. [PMID: 35127921 PMCID: PMC8790442 DOI: 10.12998/wjcc.v10.i3.1067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/09/2021] [Accepted: 12/23/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Fabry disease (FD) is a rare X-linked lysosomal storage disease caused by a deficiency of the enzyme α-galactosidase A.
CASE SUMMARY Herein, we analyzed a four-generation Chinese family. The proband is a 57-year-old woman who was diagnosed with left ventricular hypertrophy and atrial fibrillation 7 years ago. Echocardiography showed an end-diastolic diameter of the interventricular septum of 19.9 mm, left ventricular end-diastolic diameter of 63.1 mm, and moderate-to-severe mitral regurgitation. Cardiac magnetic resonance indicated an enlarged left heart and right atrium, decreased left ventricular systolic and diastolic function, a left ventricular ejection fraction of 20%, and thickening of the left ventricular septum. In March 2019, gene and enzyme activity tests confirmed the diagnosis of FD. Her son was diagnosed with FD after gene and enzyme activity assay, and was prescribed agalsidase-β for enzyme replacement therapy in July 2020. Two sisters of the proband were also diagnosed with FD by genetic testing. Both of them had a history of atrial fibrillation.
CONCLUSION A novel mutation was identified in a Chinese family with FD, in which the male patient had a low level of enzyme activity, early-onset, and severe organ involvement. Comprehensive analysis of clinical phenotype genetic testing and enzyme activity testing helped in the diagnosis and treatment of this FD family.
Collapse
Affiliation(s)
- An-Yi Fu
- Department of Clinical Medicine, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
- Department of Cardiology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People’s Hospital, Quzhou 325035, Zhejiang Province, China
| | - Qi-Zhi Jin
- Department of Cardiology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People’s Hospital, Quzhou 325035, Zhejiang Province, China
| | - Ya-Xun Sun
- Department of Clinical Medicine, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
- Department of Cardiology, Sir Run Run Shaw Hospital, Clinical Medicine of Zhejiang University, Hangzhou 310016, Zhejiang Province, China
| |
Collapse
|
387
|
Pedersen TB, Nielsen MR, Kristensen SB, Spedtsberg EML, Sørensen T, Petersen C, Muff J, Sondergaard TE, Nielsen KL, Wimmer R, Gardiner DM, Sørensen JL. Speed dating for enzymes! Finding the perfect phosphopantetheinyl transferase partner for your polyketide synthase. Microb Cell Fact 2022; 21:9. [PMID: 35012550 PMCID: PMC8751348 DOI: 10.1186/s12934-021-01734-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 12/29/2021] [Indexed: 11/24/2022] Open
Abstract
The biosynthetic pathways for the fungal polyketides bikaverin and bostrycoidin, from Fusarium verticillioides and Fusarium solani respectively, were reconstructed and heterologously expressed in S. cerevisiae alongside seven different phosphopantetheinyl transferases (PPTases) from a variety of origins spanning bacterial, yeast and fungal origins. In order to gauge the efficiency of the interaction between the ACP-domains of the polyketide synthases (PKS) and PPTases, each were co-expressed individually and the resulting production of target polyketides were determined after 48 h of growth. In co-expression with both biosynthetic pathways, the PPTase from Fusarium verticillioides (FvPPT1) proved most efficient at producing both bikaverin and bostrycoidin, at 1.4 mg/L and 5.9 mg/L respectively. Furthermore, the remaining PPTases showed the ability to interact with both PKS's, except for a single PKS-PPTase combination. The results indicate that it is possible to boost the production of a target polyketide, simply by utilizing a more optimal PPTase partner, instead of the commonly used PPTases; NpgA, Gsp and Sfp, from Aspergillus nidulans, Brevibacillus brevis and Bacillus subtilis respectively.
Collapse
Affiliation(s)
- Tobias Bruun Pedersen
- Department of Chemistry and Bioscience, Aalborg University Esbjerg, Niels Bohrs Vej 8, 6700, Esbjerg, Denmark
| | - Mikkel Rank Nielsen
- Department of Chemistry and Bioscience, Aalborg University Esbjerg, Niels Bohrs Vej 8, 6700, Esbjerg, Denmark
| | | | - Eva Mie Lang Spedtsberg
- Department of Chemistry and Bioscience, Aalborg University Esbjerg, Niels Bohrs Vej 8, 6700, Esbjerg, Denmark
| | - Trine Sørensen
- Department of Chemistry and Bioscience, Aalborg University Aalborg, Fredrik Bajers Vej 7H, 9220, Aalborg, Denmark
| | - Celine Petersen
- Department of Chemistry and Bioscience, Aalborg University Aalborg, Fredrik Bajers Vej 7H, 9220, Aalborg, Denmark
| | - Jens Muff
- Department of Chemistry and Bioscience, Aalborg University Esbjerg, Niels Bohrs Vej 8, 6700, Esbjerg, Denmark
| | - Teis Esben Sondergaard
- Department of Chemistry and Bioscience, Aalborg University Aalborg, Fredrik Bajers Vej 7H, 9220, Aalborg, Denmark
| | - Kåre Lehmann Nielsen
- Department of Chemistry and Bioscience, Aalborg University Aalborg, Fredrik Bajers Vej 7H, 9220, Aalborg, Denmark
| | - Reinhard Wimmer
- Department of Chemistry and Bioscience, Aalborg University Aalborg, Fredrik Bajers Vej 7H, 9220, Aalborg, Denmark
| | - Donald Max Gardiner
- The University of Queensland, 306 Carmody Rd, St Lucia, Brisbane, QLD, 4072, Australia
| | - Jens Laurids Sørensen
- Department of Chemistry and Bioscience, Aalborg University Esbjerg, Niels Bohrs Vej 8, 6700, Esbjerg, Denmark.
| |
Collapse
|
388
|
Predicting pathogenicity for novel hearing loss mutations based on genetic and protein structure approaches. Sci Rep 2022; 12:301. [PMID: 34997062 PMCID: PMC8741999 DOI: 10.1038/s41598-021-04081-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 12/14/2021] [Indexed: 02/04/2023] Open
Abstract
Hearing loss is a heterogeneous disorder. Identification of causative mutations is demanding due to genetic heterogeneity. In this study, we investigated the genetic cause of sensorineural hearing loss in patients with severe/profound deafness. After the exclusion of GJB2-GJB6 mutations, we performed whole exome sequencing in 32 unrelated Argentinean families. Mutations were detected in 16 known deafness genes in 20 patients: ACTG1, ADGRV1 (GPR98), CDH23, COL4A3, COL4A5, DFNA5 (GSDDE), EYA4, LARS2, LOXHD1, MITF, MYO6, MYO7A, TECTA, TMPRSS3, USH2A and WSF1. Notably, 11 variants affecting 9 different non-GJB2 genes resulted novel: c.12829C > T, p.(Arg4277*) in ADGRV1; c.337del, p.(Asp109*) and c.3352del, p.(Gly1118Alafs*7) in CDH23; c.3500G > A, p.(Gly1167Glu) in COL4A3; c.1183C > T, p.(Pro395Ser) and c.1759C > T, p.(Pro587Ser) in COL4A5; c.580 + 2 T > C in EYA4; c.1481dup, p.(Leu495Profs*31) in LARS2; c.1939 T > C, p.(Phe647Leu), in MYO6; c.733C > T, p.(Gln245*) in MYO7A and c.242C > G, p.(Ser81*) in TMPRSS3 genes. To predict the effect of these variants, novel protein modeling and protein stability analysis were employed. These results highlight the value of whole exome sequencing to identify candidate variants, as well as bioinformatic strategies to infer their pathogenicity.
Collapse
|
389
|
Varadi M, Anyango S, Deshpande M, Nair S, Natassia C, Yordanova G, Yuan D, Stroe O, Wood G, Laydon A, Žídek A, Green T, Tunyasuvunakool K, Petersen S, Jumper J, Clancy E, Green R, Vora A, Lutfi M, Figurnov M, Cowie A, Hobbs N, Kohli P, Kleywegt G, Birney E, Hassabis D, Velankar S. AlphaFold Protein Structure Database: massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Res 2022; 50:D439-D444. [PMID: 34791371 PMCID: PMC8728224 DOI: 10.1093/nar/gkab1061] [Citation(s) in RCA: 4489] [Impact Index Per Article: 1496.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/14/2021] [Accepted: 10/19/2021] [Indexed: 12/16/2022] Open
Abstract
The AlphaFold Protein Structure Database (AlphaFold DB, https://alphafold.ebi.ac.uk) is an openly accessible, extensive database of high-accuracy protein-structure predictions. Powered by AlphaFold v2.0 of DeepMind, it has enabled an unprecedented expansion of the structural coverage of the known protein-sequence space. AlphaFold DB provides programmatic access to and interactive visualization of predicted atomic coordinates, per-residue and pairwise model-confidence estimates and predicted aligned errors. The initial release of AlphaFold DB contains over 360,000 predicted structures across 21 model-organism proteomes, which will soon be expanded to cover most of the (over 100 million) representative sequences from the UniRef90 data set.
Collapse
Affiliation(s)
- Mihaly Varadi
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, UK
| | - Stephen Anyango
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, UK
| | - Mandar Deshpande
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, UK
| | - Sreenath Nair
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, UK
| | - Cindy Natassia
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, UK
| | - Galabina Yordanova
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, UK
| | - David Yuan
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, UK
| | - Oana Stroe
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, UK
| | - Gemma Wood
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Gerard Kleywegt
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, UK
| | - Ewan Birney
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, UK
| | | | - Sameer Velankar
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, UK
| |
Collapse
|
390
|
Lone MA, Bourquin F, Hornemann T. Serine Palmitoyltransferase Subunit 3 and Metabolic Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1372:47-56. [DOI: 10.1007/978-981-19-0394-6_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
391
|
Muteeb G, Alsultan A, Aatif M. Abyssomicin W and Neoabyssomicin B are potential inhibitors of New Delhi Metallo-β-Lactamase-1 (NDM -1): A computational approach. Pharmacogn Mag 2022. [DOI: 10.4103/pm.pm_195_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
392
|
Mu J, Zhou J, Gong Q, Xu Q. An allosteric regulation mechanism of Arabidopsis Serine/Threonine kinase 1 (SIK1) through phosphorylation. Comput Struct Biotechnol J 2022; 20:368-379. [PMID: 35035789 PMCID: PMC8749016 DOI: 10.1016/j.csbj.2021.12.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/23/2021] [Accepted: 12/23/2021] [Indexed: 11/21/2022] Open
Abstract
The Arabidopsis Serine/Threonine Kinase 1 (SIK1) is a Sterile 20 (STE20)/Hippo orthologue that is also categorized as a Mitogen-Activated Protein Kinase Kinase Kinase Kinase (MAP4K). Like its animal and fungi orthologues, SIK1 is required for cell cycle exit, cell expansion, polarity establishment, as well as pathogenic response. The catalytic activity of SIK1, like other MAPKs, is presumably regulated by its phosphorylation states. Since no crystal structure for SIK1 has been reported yet, we built structural models for SIK1 kinase domain in different phosphorylation states with different pocket conformation to see how this kinase may be regulated. Using computational structural biology methods, we outlined a conduction path in which a phosphorylation site on the A-loop regulates the catalytic activity of SIK1 by controlling the closing or opening of the catalytic pocket at the G-loop. Furthermore, with analyses on the dynamic motions and in vitro kinase assay, we confirmed that three key residues in this conduction path, Lys278, Glu295, and Arg370, are indeed important for the kinase activity of SIK1. Since these residues are conserved in all STE20 kinases examined, the regulatory mechanism that we discovered may be common in STE20 kinases.
Collapse
|
393
|
Humayun F, Cai Y, Khan A, Farhan SA, Khan F, Rana UI, Qamar AB, Fawad N, Shamas S, Dongqing-Wei. Structure-guided design of multi-epitopes vaccine against variants of concern (VOCs) of SARS-CoV-2 and validation through In silico cloning and immune simulations. Comput Biol Med 2022; 140:105122. [PMID: 34896886 PMCID: PMC8659700 DOI: 10.1016/j.compbiomed.2021.105122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 11/30/2021] [Accepted: 12/03/2021] [Indexed: 12/16/2022]
Abstract
Severe Acute Respiratory Syndrome Corovirus2 (SARS-CoV-2) has been determined to be the cause of the current pandemic. Typical symptoms of patient having COVID-19 are fever, runny nose, cough (dry or not) and dyspnea. Several vaccines are available in markets that are tackling current pandemic. Many different strains of SAR-CoV-2 have been evolved with the passage of time. The emergence of VOCs particularly the B.1.351 ("South African") variant of SARS-CoV-2 has been reported to be more resistant than other SARS-CoV-2 strains to the current vaccines. Thus, the current research is focused to design multi-epitope subunit Vaccine (MEV) using structural vaccinology techniques. As a result, the designed MEV exhibit antigenic properties and possess therapeutic features that can trigger an immunological response against COVID-19. Furthermore, validation of the MEV using immune simulation and in silico cloning revealed that the proposed vaccine candidate effectively triggered the immune response. Conclusively, the developed MEV needs further wet lab exploration and could be a viable vaccine to manage and prevent COVID-19.
Collapse
Affiliation(s)
- Fahad Humayun
- State Key Laboratory of Microbial Metabolism, Shanghai-Islamabad-Belgrade Joint Innovation Center on Antibacterial Resistances, Joint International Research Laboratory of Metabolic & Developmental Sciences and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200030, PR China.
| | - Yutong Cai
- Shenzhen College of International Education 3, Antuoshan 6 Road, Futian, Shenzhen, China.
| | - Abbas Khan
- State Key Laboratory of Microbial Metabolism, Shanghai-Islamabad-Belgrade Joint Innovation Center on Antibacterial Resistances, Joint International Research Laboratory of Metabolic & Developmental Sciences and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200030, PR China.
| | - Syed Ali Farhan
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan.
| | - Fatima Khan
- National Institute of Health, Islamabad, Pakistan.
| | | | - Anum Binte Qamar
- Department of Biosciences and Bioinformatics, COMSATS University, Islamabad, Pakistan.
| | - Nasim Fawad
- Poultry Research Institute, Rawalpindi, Pakistan.
| | - Shazia Shamas
- Department of Zoology, University of Gujrat, Gujrat, Pakistan.
| | - Dongqing-Wei
- State Key Laboratory of Microbial Metabolism, Shanghai-Islamabad-Belgrade Joint Innovation Center on Antibacterial Resistances, Joint International Research Laboratory of Metabolic & Developmental Sciences and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200030, PR China; Peng Cheng National Laboratory, Vanke Cloud City Phase I Building 8, Xili Street, Nashan District, Shenzhen, Guangdong, 518055, PR China.
| |
Collapse
|
394
|
Fatoki T, Awofisayo O, Faleye B. Cipargamin could inhibit human adenosine receptor A3 with higher binding affinity than Plasmodium falciparum P-type ATPase 4: An In silico study. ACTA FACULTATIS MEDICAE NAISSENSIS 2022. [DOI: 10.5937/afmnai39-31499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Aim: This study aimed to predict the molecular targets of cipargamin in humans and estimate the structural dynamics and binding affinity of their interactions compared to that of Plasmodium falciparum P-type ATPase 4 (PfATP4). Methods: In silico methods were used in this study which include target prediction, structure modeling and dynamics, and molecular docking. Results: The results showed that cipargamin had 100% probability of binding to the human adenosine A3 receptor (ADORA3) and about 15% for other human targets which include tyrosine-protein kinase JAK2, adenosine A2a receptor, phosphodiesterase 5A and cathepsin K. The results of molecular docking showed that binding energy of cipargamin to PfATP4 and hADORA3 were-12.40 kcal/mol-1 and-13.40 kcal/mol-1 respectively. The docking was validated by the binding of enprofylline and fostamatinib to PfATP4 and hADORA3. Overall, the binding of cipargamin was closely similar to that of fostamatinib. This study shows the potential of cipargamin to modulate the activities of PfATP4 of the parasite (P. falciparum) as well as ADORA3 of the host (Homo sapiens). Conclusion: All the previous studies of cirpagamin have not implicated its action on hADORA3, thus this study provides an insight into a possible role of hADORA3 in the mechanism of malarial infection.
Collapse
|
395
|
Akter T, Chakma M, Tanzina AY, Rumi MH, Shimu MSS, Saleh MA, Mahmud S, Sami SA, Emran TB. Curcumin Analogues as a Potential Drug against Antibiotic Resistant Protein, β-Lactamases and L, D-Transpeptidases Involved in Toxin Secretion in Salmonella typhi: A Computational Approach. BIOMEDINFORMATICS 2021; 2:77-100. [DOI: 10.3390/biomedinformatics2010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Typhoid fever caused by the bacteria Salmonella typhi gained resistance through multidrug-resistant S. typhi strains. One of the reasons behind β-lactam antibiotic resistance is -lactamase. L, D-Transpeptidases is responsible for typhoid fever as it is involved in toxin release that results in typhoid fever in humans. A molecular modeling study of these targeted proteins was carried out by various methods, such as homology modeling, active site prediction, prediction of disease-causing regions, and by analyzing the potential inhibitory activities of curcumin analogs by targeting these proteins to overcome the antibiotic resistance. The five potent drug candidate compounds were identified to be natural ligands that can inhibit those enzymes compared to controls in our research. The binding affinity of both the Go-Y032 and NSC-43319 were found against β-lactamase was −7.8 Kcal/mol in AutoDock, whereas, in SwissDock, the binding energy was −8.15 and −8.04 Kcal/mol, respectively. On the other hand, the Cyclovalone and NSC-43319 had an equal energy of −7.60 Kcal/mol in AutoDock, whereas −7.90 and −8.01 Kcal/mol in SwissDock against L, D-Transpeptidases. After the identification of proteins, the determination of primary and secondary structures, as well as the gene producing area and homology modeling, was accomplished. The screened drug candidates were further evaluated in ADMET, and pharmacological properties along with positive drug-likeness properties were observed for these ligand molecules. However, further in vitro and in vivo experiments are required to validate these in silico data to develop novel therapeutics against antibiotic resistance.
Collapse
Affiliation(s)
- Tanzina Akter
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Sciences, University of Chittagong, Chittagong 4331, Bangladesh
| | - Mahim Chakma
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Sciences, University of Chittagong, Chittagong 4331, Bangladesh
| | - Afsana Yeasmin Tanzina
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Sciences, University of Chittagong, Chittagong 4331, Bangladesh
| | - Meheadi Hasan Rumi
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Sciences, University of Chittagong, Chittagong 4331, Bangladesh
| | | | - Md. Abu Saleh
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Shafi Mahmud
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Saad Ahmed Sami
- Department of Pharmacy, Faculty of Biological Sciences, University of Chittagong, Chittagong 4331, Bangladesh
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
| |
Collapse
|
396
|
Junk P, Kiel C. HOMELETTE: a unified interface to homology modelling software. Bioinformatics 2021; 38:1749-1751. [PMID: 34954790 PMCID: PMC8896651 DOI: 10.1093/bioinformatics/btab866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/30/2021] [Accepted: 12/23/2021] [Indexed: 02/03/2023] Open
Abstract
SUMMARY Homology modelling, the technique of generating models of 3D protein structures based on experimental structures from related proteins, has become increasingly popular over the years. An abundance of different tools for model generation and model evaluation is available from various research groups. We present HOMELETTE, an interface which implements a unified programmatic access to these tools. This allows for the assemble of custom pipelines from pre- or self-implemented building blocks. AVAILABILITY AND IMPLEMENTATION HOMELETTE is implemented in Python, compatible with version 3.6 and newer. It is distributed under the MIT license. Documentation and tutorials are available at Read the Docs (https://homelette.readthedocs.io/). The latest version of HOMELETTE is available on PyPI (https://pypi.org/project/homelette/) and GitHub (https://github.com/PhilippJunk/homelette). A full installation of the latest version of HOMELETTE with all dependencies is also available as a Docker container (https://hub.docker.com/r/philippjunk/homelette_template). SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Philipp Junk
- Systems Biology Ireland and UCD Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin 4, Ireland,To whom correspondence should be addressed.
| | - Christina Kiel
- Systems Biology Ireland and UCD Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin 4, Ireland
| |
Collapse
|
397
|
Mahfuz AMUB, Khan MA, Deb P, Ansary SJ, Jahan R. Identification of deleterious single nucleotide polymorphism (SNP)s in the human TBX5 gene & prediction of their structural & functional consequences: An in silico approach. Biochem Biophys Rep 2021; 28:101179. [PMID: 34917776 PMCID: PMC8646135 DOI: 10.1016/j.bbrep.2021.101179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 11/23/2021] [Accepted: 11/25/2021] [Indexed: 12/29/2022] Open
Abstract
T-box transcription factor 5 gene (TBX5) encodes the transcription factor TBX5, which plays a crucial role in the development of heart and upper limbs. Damaging single nucleotide variants in this gene alter the protein structure, disturb the functions of TBX5, and ultimately cause Holt-Oram Syndrome (HOS). By analyzing the available single nucleotide polymorphism information in the dbSNP database, this study was designed to identify the most deleterious TBX5 SNPs through insilico approaches and predict their structural and functional consequences. Fifty-eight missense substitutions were found damaging by sequence homology-based tools: SIFT and PROVEAN, and structure homology-based tool PolyPhen-2. Various disease association meta-predictors further scrutinized these SNPs. Additionally, conservation profile of the amino acid residues, their surface accessibility, stability, and structural integrity of the native protein upon mutations were assessed. From these analyses, finally 5 SNPs were detected as the most damaging ones: [rs1565941579 (P85S), rs1269970792 (W121R), rs772248871 (V153D), rs769113870 (E208D), and rs1318021626 (I222N)]. Analyses of stop-lost, nonsense, UTR, and splice site SNPs were also conducted. Through integrative bioinformatics analyses, this study has identified the SNPs that are deleterious to the TBX5 protein structure and have the potential to cause HOS. Further wet-lab experiments can validate these findings. Deleterious SNPs in the human TBX5 gene responsible for Holt-Oram Syndrome have been identified. 58 missense and 2 nonsense SNPs were identified as deleterious. 86 3′ UTR SNPs were predicted to be located on miRNA target sites. Possible effects of missense SNPs on the TBX5 protein structure have been studied.
Collapse
Affiliation(s)
- A M U B Mahfuz
- Department of Biotechnology and Genetic Engineering, Faculty of Life Science, University of Development Alternative, Dhaka, 1209, Bangladesh
| | - Md Arif Khan
- Department of Biotechnology and Genetic Engineering, Faculty of Life Science, University of Development Alternative, Dhaka, 1209, Bangladesh
| | - Promita Deb
- Department of Biotechnology and Genetic Engineering, Faculty of Life Science, University of Development Alternative, Dhaka, 1209, Bangladesh
| | - Sharmin Jahan Ansary
- Department of Biotechnology and Genetic Engineering, Faculty of Life Science, University of Development Alternative, Dhaka, 1209, Bangladesh
| | - Rownak Jahan
- Department of Biotechnology and Genetic Engineering, Faculty of Life Science, University of Development Alternative, Dhaka, 1209, Bangladesh
| |
Collapse
|
398
|
Masibag AN, Bergin CJ, Haebe JR, Zouggar A, Shah MS, Sandouka T, Mendes da Silva A, Desrochers FM, Fournier-Morin A, Benoit YD. Pharmacological targeting of Sam68 functions in colorectal cancer stem cells. iScience 2021; 24:103442. [PMID: 34877499 PMCID: PMC8633986 DOI: 10.1016/j.isci.2021.103442] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 10/09/2021] [Accepted: 11/10/2021] [Indexed: 01/20/2023] Open
Abstract
Cancer stem cells (CSCs) are documented to play a key role in tumorigenesis and therapy resistance. Despite significant progress in clinical oncology, CSC reservoirs remain elusive and difficult to eliminate. Reverse-turn peptidomimetics were characterized as disruptors of CBP/beta-Catenin interactions and represent a promising avenue to curb hyperactive canonical Wnt/beta-Catenin signaling in CSCs. Recent studies suggested Sam68 as a critical mediator of reverse-turn peptidomimetics response in CSC populations. Using computational and biochemical approaches we confirmed Sam68 as a primary target of reverse-turn peptidomimetics. Furthermore, we executed an in silico drug discovery pipeline to identify yet uncharacterized reverse-turn peptidomimetic structures displaying superior anti-CSC activity in transformed pluripotent and colorectal cancer cell models. Thus, we identified YB-0158 as a reverse-turn peptidomimetic small molecule with enhanced translational potential, altering key hallmarks of human colorectal CSCs in patient-derived ex vivo organoids and in vivo serial tumor transplantation. Sam68 is a direct protein target of reverse-turn peptidomimetic small molecules YB-0158 is a peptidomimetic structure with high predicted affinity for Sam68 YB-0158 elicits a cancer-selective response impeding main cancer stem cell hallmarks YB-0158 blocks cancer stem cell activity in tumor organoids and in vivo systems
Collapse
Affiliation(s)
- Angelique N Masibag
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Christopher J Bergin
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Joshua R Haebe
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Aïcha Zouggar
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Muhammad S Shah
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Tamara Sandouka
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Amanda Mendes da Silva
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - François M Desrochers
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Aube Fournier-Morin
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Yannick D Benoit
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
399
|
Saleem H, Ashfaq UA, Nadeem H, Zubair M, Siddique MH, Rasul I. Subtractive genomics and molecular docking approach to identify drug targets against Stenotrophomonas maltophilia. PLoS One 2021; 16:e0261111. [PMID: 34910751 PMCID: PMC8673605 DOI: 10.1371/journal.pone.0261111] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 11/25/2021] [Indexed: 11/18/2022] Open
Abstract
Stenotrophomonas maltophilia is a multidrug resistant pathogen associated with high mortality and morbidity in patients having compromised immunity. The efflux systems of S. maltophilia include SmeABC and SmeDEF proteins, which assist in acquisition of multiple-drug-resistance. In this study, proteome based mapping was utilized to find out the potential drug targets for S. maltophilia strain k279a. Various tools of computational biology were applied to remove the human-specific homologous and pathogen-specific paralogous sequences from the bacterial proteome. The CD-HIT analysis selected 4315 proteins from total proteome count of 4365 proteins. Geptop identified 407 essential proteins, while the BlastP revealed approximately 85 non-homologous proteins in the human genome. Moreover, metabolic pathway and subcellular location analysis were performed for essential bacterial genes, to describe their role in various cellular processes. Only two essential proteins (Acyl-[acyl-carrier-protein]—UDP-N acetyl glucosamine O-acyltransferase and D-alanine-D-alanine ligase) as candidate for potent targets were found in proteome of the pathogen, in order to design new drugs. An online tool, Swiss model was employed to model the 3D structures of both target proteins. A library of 5000 phytochemicals was docked against those proteins through the molecular operating environment (MOE). That resulted in to eight inhibitors for both proteins i.e. enterodiol, aloin, ononin and rhinacanthinF for the Acyl-[acyl-carrier-protein]—UDP-N acetyl glucosamine O-acyltransferase, and rhazin, alkannin beta, aloesin and ancistrocladine for the D-alanine-D-alanine ligase. Finally the ADMET was done through ADMETsar. This study supported the development of natural as well as cost-effective drugs against S. maltophilia. These inhibitors displayed the effective binding interactions and safe drug profiles. However, further in vivo and in vitro validation experiment might be performed to check their drug effectiveness, biocompatibility and their role as effective inhibitors.
Collapse
Affiliation(s)
- Hira Saleem
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Usman Ali Ashfaq
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Habibullah Nadeem
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Zubair
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Hussnain Siddique
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Ijaz Rasul
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
- * E-mail:
| |
Collapse
|
400
|
Stephan OOH. Interactions, structural aspects, and evolutionary perspectives of the yeast 'START'-regulatory network. FEMS Yeast Res 2021; 22:6461095. [PMID: 34905017 DOI: 10.1093/femsyr/foab064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 12/11/2021] [Indexed: 11/12/2022] Open
Abstract
Molecular signal transduction networks which conduct transcription at the G1 to S phase transition of the eukaryotic cell division cycle have been identified in diverse taxa from mammals to baker´s yeast with analogous functional organization. However, regarding some network components, such as the transcriptional regulators STB1 and WHI5, only few orthologs exist which are confined to individual Saccharomycotina species. While Whi5 has been characterized as yeast analog of human Rb protein, in the particular case of Stb1 (Sin three binding protein 1) identification of functional analogs emerges as difficult because to date its exact functionality still remains obscured. By aiming to resolve Stb1´s enigmatic role this Perspectives article especially surveys works covering relations between Cyclin/CDKs, the heteromeric transcription factor complexes SBF (Swi4/Swi6) and MBF (Mbp1/Swi6), as well as additional coregulators (Whi5, Sin3, Rpd3, Nrm1) which are collectively associated with the orderly transcription at 'Start' of the Saccharomyces cerevisiae cell cycle. In this context, interaction capacities of the Sin3-scaffold protein are widely surveyed because its four PAH domains (Paired Amphiphatic Helix) represent a 'recruitment-code' for gene-specific targeting of repressive histone deacetylase activity (Rpd3) via different transcription factors. Here Stb1 plays a role in Sin3´s action on transcription at the G1/S-boundary. Through bioinformatic analyses a potential Sin3-interaction domain (SID) was detected in Stb1, and beyond that, connections within the G1/S-regulatory network are discussed in structural and evolutionary context thereby providing conceptual perspectives.
Collapse
Affiliation(s)
- Octavian O H Stephan
- Department of Biology, Friedrich-Alexander University of Erlangen-Nuremberg, Staudtstr. 5, 91058 Erlangen, Bavaria, Germany
| |
Collapse
|