351
|
Quantitative magnetic resonance imaging of cortical multiple sclerosis pathology. Mult Scler Int 2012; 2012:742018. [PMID: 23213531 PMCID: PMC3506905 DOI: 10.1155/2012/742018] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Revised: 08/14/2012] [Accepted: 09/05/2012] [Indexed: 12/28/2022] Open
Abstract
Although significant improvements have been made regarding the visualization and characterization of cortical multiple sclerosis (MS) lesions using magnetic resonance imaging (MRI), cortical lesions (CL) continue to be under-detected in vivo, and we have a limited understanding of the causes of GM pathology. The objective of this study was to characterize the MRI signature of CLs to help interpret the changes seen in vivo and elucidate the factors limiting their visualization. A quantitative 3D high-resolution (350 μm isotropic) MRI study at 3 Tesla of a fixed post mortem cerebral hemisphere from a patient with MS is presented in combination with matched immunohistochemistry. Type III subpial lesions are characterized by an increase in T1, T2 and M0, and a decrease in MTR in comparison to the normal appearing cortex (NAC). All quantitative MR parameters were associated with cortical GM myelin content, while T1 showed the strongest correlation. The histogram analysis showed extensive overlap between CL and NAC for all MR parameters and myelin content. This is due to the poor contrast in myelin content between CL and NAC in comparison to the variability in myelo-architecture throughout the healthy cortex. This latter comparison is highlighted by the representation of T1 times on cortical surfaces at several laminar depths.
Collapse
|
352
|
Contrast-based fully automatic segmentation of white matter hyperintensities: method and validation. PLoS One 2012; 7:e48953. [PMID: 23152828 PMCID: PMC3495958 DOI: 10.1371/journal.pone.0048953] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Accepted: 10/03/2012] [Indexed: 11/19/2022] Open
Abstract
White matter hyperintensities (WMH) on T2 or FLAIR sequences have been commonly observed on MR images of elderly people. They have been associated with various disorders and have been shown to be a strong risk factor for stroke and dementia. WMH studies usually required visual evaluation of WMH load or time-consuming manual delineation. This paper introduced WHASA (White matter Hyperintensities Automated Segmentation Algorithm), a new method for automatically segmenting WMH from FLAIR and T1 images in multicentre studies. Contrary to previous approaches that were based on intensities, this method relied on contrast: non linear diffusion filtering alternated with watershed segmentation to obtain piecewise constant images with increased contrast between WMH and surroundings tissues. WMH were then selected based on subject dependant automatically computed threshold and anatomical information. WHASA was evaluated on 67 patients from two studies, acquired on six different MRI scanners and displaying a wide range of lesion load. Accuracy of the segmentation was assessed through volume and spatial agreement measures with respect to manual segmentation; an intraclass correlation coefficient (ICC) of 0.96 and a mean similarity index (SI) of 0.72 were obtained. WHASA was compared to four other approaches: Freesurfer and a thresholding approach as unsupervised methods; k-nearest neighbours (kNN) and support vector machines (SVM) as supervised ones. For these latter, influence of the training set was also investigated. WHASA clearly outperformed both unsupervised methods, while performing at least as good as supervised approaches (ICC range: 0.87–0.91 for kNN; 0.89–0.94 for SVM. Mean SI: 0.63–0.71 for kNN, 0.67–0.72 for SVM), and did not need any training set.
Collapse
|
353
|
Raznahan A, Lenroot R, Thurm A, Gozzi M, Hanley A, Spence SJ, Swedo SE, Giedd JN. Mapping cortical anatomy in preschool aged children with autism using surface-based morphometry. NEUROIMAGE-CLINICAL 2012; 2:111-9. [PMID: 24179764 PMCID: PMC3777762 DOI: 10.1016/j.nicl.2012.10.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Revised: 10/10/2012] [Accepted: 10/18/2012] [Indexed: 12/30/2022]
Abstract
The challenges of gathering in-vivo measures of brain anatomy from young children have limited the number of independent studies examining neuroanatomical differences between children with autism and typically developing controls (TDCs) during early life, and almost all studies in this critical developmental window focus on global or lobar measures of brain volume. Using a novel cohort of young males with Autistic Disorder and TDCs aged 2 to 5 years, we (i) tested for group differences in traditional measures of global anatomy (total brain, total white, total gray and total cortical volume), and (ii) employed surface-based methods for cortical morphometry to directly measure the two biologically distinct sub-components of cortical volume (CV) at high spatial resolution—cortical thickness (CT) and surface area (SA). While measures of global brain anatomy did not show statistically significant group differences, children with autism showed focal, and CT-specific anatomical disruptions compared to TDCs, consisting of relative cortical thickening in regions with central roles in behavioral regulation, and the processing of language, biological movement and social information. Our findings demonstrate the focal nature of brain involvement in early autism, and provide more spatially and morphometrically specific anatomical phenotypes for subsequent translational study.
Collapse
|
354
|
Pénicaud S, Klein D, Zatorre RJ, Chen JK, Witcher P, Hyde K, Mayberry RI. Structural brain changes linked to delayed first language acquisition in congenitally deaf individuals. Neuroimage 2012; 66:42-9. [PMID: 23063844 DOI: 10.1016/j.neuroimage.2012.09.076] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Revised: 09/13/2012] [Accepted: 09/30/2012] [Indexed: 11/18/2022] Open
Abstract
Early language experience is essential for the development of a high level of linguistic proficiency in adulthood and in a recent functional Magnetic Resonance Imaging (fMRI) experiment, we showed that a delayed acquisition of a first language results in changes in the functional organization of the adult brain (Mayberry et al., 2011). The present study extends the question to explore if delayed acquisition of a first language also modulates the structural development of the brain. To this end, we carried out anatomical MRI in the same group of congenitally deaf individuals who varied in the age of acquisition of a first language, American Sign Language -ASL (Mayberry et al., 2011) and used a neuroanatomical technique, Voxel-Based Morphometry (VBM), to explore changes in gray and white matter concentrations across the brain related to the age of first language acquisition. The results show that delayed acquisition of a first language is associated with changes in tissue concentration in the occipital cortex close to the area that has been found to show functional recruitment during language processing in these deaf individuals with a late age of acquisition. These findings suggest that a lack of early language experience affects not only the functional but also the anatomical organization of the brain.
Collapse
Affiliation(s)
- Sidonie Pénicaud
- Cognitive Neuroscience Unit, Montreal Neurological Institute, McGill University, 3801 University Street, Montreal, Quebec, Canada H3A 2B4.
| | - Denise Klein
- Cognitive Neuroscience Unit, Montreal Neurological Institute, McGill University, 3801 University Street, Montreal, Quebec, Canada H3A 2B4.
| | - Robert J Zatorre
- Cognitive Neuroscience Unit, Montreal Neurological Institute, McGill University, 3801 University Street, Montreal, Quebec, Canada H3A 2B4.
| | - Jen-Kai Chen
- Cognitive Neuroscience Unit, Montreal Neurological Institute, McGill University, 3801 University Street, Montreal, Quebec, Canada H3A 2B4.
| | - Pamela Witcher
- Cognitive Neuroscience Unit, Montreal Neurological Institute, McGill University, 3801 University Street, Montreal, Quebec, Canada H3A 2B4
| | - Krista Hyde
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada H3A 2B4.
| | - Rachel I Mayberry
- Department of Linguistics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| |
Collapse
|
355
|
Grant JA, Duerden EG, Courtemanche J, Cherkasova M, Duncan GH, Rainville P. Cortical thickness, mental absorption and meditative practice: possible implications for disorders of attention. Biol Psychol 2012; 92:275-81. [PMID: 23046904 DOI: 10.1016/j.biopsycho.2012.09.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Revised: 09/12/2012] [Accepted: 09/12/2012] [Indexed: 11/20/2022]
Abstract
Mental training techniques rooted in meditation are associated with attention improvement, increased activation and cortical thickening of attention/executive-related brain areas. Interestingly, attention-deficit/hyperactivity disorder (ADHD) is associated with behavioural deficits, hypo-activation and cortical thinning of similar networks. This study assessed the relationship between prior meditative training, attentional absorption, and cortical thickness. Grey matter thickness was measured in 18 meditators and 18 controls. Subjective reports of attentional absorption were modestly higher in meditators and across the entire sample correlated positively with cortical thickness in several regions corresponding to cingulo-fronto-parietal attention networks. Within these regions the meditation group had greater cortical thickness which was positively related to the extent of prior training. Evidence suggesting that meditative practice activates these cortical areas, improves attention and may ameliorate symptoms of ADHD by targeting vulnerable brain regions is discussed.
Collapse
Affiliation(s)
- Joshua A Grant
- Département de Physiologie, Université de Montréal, Montréal, QC, Canada.
| | | | | | | | | | | |
Collapse
|
356
|
Quddus A, Fieguth P, Basir O. Adaboost and Support Vector Machines for White Matter Lesion Segmentation in MR Images. CONFERENCE PROCEEDINGS : ... ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL CONFERENCE 2012; 2006:463-6. [PMID: 17282216 DOI: 10.1109/iembs.2005.1616447] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The use of two powerful classification techniques (boosting and SVM) is explored for the segmentation of white-matter lesions in the MRI scans of human brain. Simple features are generated from Proton Density (PD) scans. Radial Basis Function (RBF) based Adaboost technique and Support Vector Machines (SVM) are employed for this task. The classifiers are trained on severe, moderate and mild cases. The segmentation is performed in T1 acquisition space rather than standard space (with more slices). Hence, the proposed approach requires less time for manual verification. The results indicate that the proposed approach can handle MR field inhomogeneities quite well and is completely independent from manual selection process so that it can be run under batch mode. Segmentation performance comparison with manual detection is also provided.
Collapse
Affiliation(s)
- Azhar Quddus
- PAMI Lab, Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON, Canada.
| | | | | |
Collapse
|
357
|
Prabhakaran V, Nair VA, Austin BP, La C, Gallagher TA, Wu Y, McLaren DG, Xu G, Turski P, Rowley H. Current status and future perspectives of magnetic resonance high-field imaging: a summary. Neuroimaging Clin N Am 2012; 22:373-97, xii. [PMID: 22548938 DOI: 10.1016/j.nic.2012.02.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
There are several magnetic resonance (MR) imaging techniques that benefit from high-field MR imaging. This article describes a range of novel techniques that are currently being used clinically or will be used in the future for clinical purposes as they gain popularity. These techniques include functional MR imaging, diffusion tensor imaging, cortical thickness assessment, arterial spin labeling perfusion, white matter hyperintensity lesion assessment, and advanced MR angiography.
Collapse
Affiliation(s)
- Vivek Prabhakaran
- Division of Neuroradiology, Department of Radiology, University of Wisconsin, 600 Highland Avenue, Madison, WI 53792-3252, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
358
|
Fahim C, Yoon U, Nashaat NH, Khalil AK, El-Belbesy M, Mancini-Marie A, Evans AC, Meguid N. Williams syndrome: a relationship between genetics, brain morphology and behaviour. JOURNAL OF INTELLECTUAL DISABILITY RESEARCH : JIDR 2012; 56:879-894. [PMID: 22044458 DOI: 10.1111/j.1365-2788.2011.01490.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
BACKGROUND Genetically Williams syndrome (WS) promises to provide essential insight into the pathophysiology of cortical development because its ∼28 deleted genes are crucial for cortical neuronal migration and maturation. Phenotypically, WS is one of the most puzzling childhood neurodevelopmental disorders affecting most intellectual deficiencies (i.e. low-moderate intelligence quotient, visuospatial deficits) yet relatively preserving what is uniquely human (i.e. language and social-emotional cognition). Therefore, WS provides a privileged setting for investigating the relationship between genes, brain and the consequent complex human behaviour. METHODS We used in vivo anatomical magnetic resonance imaging analysing cortical surface-based morphometry, (i.e. surface area, cortical volume, cortical thickness, gyrification index) and cortical complexity, which is of particular relevance to the WS genotype-phenotype relationship in 22 children (2.27-14.6 years) to compare whole hemisphere and lobar surface-based morphometry between WS (n = 10) and gender/age matched normal controls healthy controls (n = 12). RESULTS Compared to healthy controls, WS children had a (1) relatively preserved Cth; (2) significantly reduced SA and CV; (3) significantly increased GI mostly in the parietal lobe; and (4) decreased CC specifically in the frontal and parietal lobes. CONCLUSION Our findings are then discussed with reference to the Rakic radial-unit hypothesis of cortical development, arguing that WS gene deletions may spare Cth yet affecting the number of founder cells/columns/radial units, hence decreasing the SA and CV. In essence, cortical brain structure in WS may be shaped by gene-dosage abnormalities.
Collapse
Affiliation(s)
- C Fahim
- Institute of Psychology, Faculty of Social Sciences and Politics, University of Lausanne, Lausanne, Switzerland.
| | | | | | | | | | | | | | | |
Collapse
|
359
|
Gogtay N, Weisinger B, Bakalar JL, Stidd R, Fernandez de la Vega O, Miller R, Clasen L, Greenstein D, Rapoport JL. Psychotic symptoms and gray matter deficits in clinical pediatric populations. Schizophr Res 2012; 140:149-54. [PMID: 22835806 PMCID: PMC3448116 DOI: 10.1016/j.schres.2012.07.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Revised: 06/27/2012] [Accepted: 07/02/2012] [Indexed: 11/19/2022]
Abstract
BACKGROUND Neuroanatomic studies have not yet addressed how subtle phenotypic distinctions in psychosis alter the underlying brain changes, and whether there is evidence for psychosis as a dimensional construct. We explored the relationship of cortical GM thickness to psychotic phenotypes in children. METHODS Cross-sectional comparison of anatomic brain imaging between patients referred as childhood-onset schizophrenia (COS) but ruled out after a drug free inpatient observation. Groups included: patients with no evidence of psychosis (n=22) after drug free observation, patients with psychosis not otherwise specified (PNOS; total n=29) further divided into those without other axis I diagnoses (n=13) and those with other axis I comorbidities (n=16), age/sex matched COS patients (n=48), and 51 matched healthy controls. GM cortical thickness was compared between the groups, and regressed on patients' SAPS, SANS and GAS scores. RESULTS Patients with no evidence of psychosis showed no cortical GM deficits. Presence of psychosis (PNOS with or without co-morbidities) showed some areas of temporal and prefrontal deficits, more subtle compared to the extensive bilateral cortical deficits seen for COS. GAS SAPS and SANS scores showed a relationship with cortical GM thickness although it did not survive adjustment for multiple comparisons. CONCLUSIONS These results highlight the need for careful phenotypic characterization, as subtle diagnostic distinctions appear to reflect distinct underlying patterns of brain deficits. The incremental nature of cortical deficits from no psychosis to PNOS to COS may further support dimensional model for psychosis.
Collapse
Affiliation(s)
- Nitin Gogtay
- Child Psychiatry Branch, National Institutes of Health, Building 10, Center Dr., Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
360
|
Tohka J, He Y, Evans AC. The impact of sampling density upon cortical network analysis: regions or points. Magn Reson Imaging 2012; 30:978-92. [DOI: 10.1016/j.mri.2012.02.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Revised: 11/26/2011] [Accepted: 02/14/2012] [Indexed: 10/28/2022]
|
361
|
Evans AC, Janke AL, Collins DL, Baillet S. Brain templates and atlases. Neuroimage 2012; 62:911-22. [DOI: 10.1016/j.neuroimage.2012.01.024] [Citation(s) in RCA: 234] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Revised: 11/19/2011] [Accepted: 01/01/2012] [Indexed: 12/21/2022] Open
|
362
|
Shaw P, Malek M, Watson B, Sharp W, Evans A, Greenstein D. Development of cortical surface area and gyrification in attention-deficit/hyperactivity disorder. Biol Psychiatry 2012; 72:191-7. [PMID: 22418014 PMCID: PMC10376909 DOI: 10.1016/j.biopsych.2012.01.031] [Citation(s) in RCA: 238] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Revised: 01/06/2012] [Accepted: 01/06/2012] [Indexed: 11/29/2022]
Abstract
BACKGROUND Delineation of the cortical anomalies underpinning attention-deficit/hyperactivity disorder (ADHD) can powerfully inform pathophysiological models. We previously found that ADHD is characterized by a delayed maturation of prefrontal cortical thickness. We now ask if this extends to the maturation of cortical surface area and gyrification. METHODS Two hundred thirty-four children with ADHD and 231 typically developing children participated in the study, with 837 neuroanatomic magnetic resonance images acquired longitudinally. We defined the developmental trajectories of cortical surfaces and gyrification and the sequence of cortical maturation, as indexed by the age at which each cortical vertex attained its peak surface area. RESULTS In both groups, the maturation of cortical surface area progressed in centripetal waves, both lateral (starting at the central sulcus and frontopolar regions, sweeping toward the mid and superior frontal gyrus) and medial (descending down the medial prefrontal cortex, toward the cingulate gyrus). However, the surface area developmental trajectory was delayed in ADHD. For the right prefrontal cortex, the median age by which 50% of cortical vertices attained peak area was 14.6 years (SE = .03) in ADHD, significantly later than in typically developing group at 12.7 years (SE = .03) [log-rank test χ(¹)² = 1300, p < .00001]. Similar, but less pronounced, delay was found in the left hemispheric lobes. There were no such diagnostic differences in the developmental trajectories of cortical gyrification. CONCLUSIONS The congruent delay in cortical thickness and surface area direct attention away from processes that selectively affect one cortical component toward mechanisms controlling the maturation of multiple cortical dimensions.
Collapse
Affiliation(s)
- Philip Shaw
- Child Psychiatry Branch, National Institute of Mental Health, Bethesda, Maryland 20892, USA.
| | | | | | | | | | | |
Collapse
|
363
|
Buchy L, Ad-Dab'bagh Y, Lepage C, Malla A, Joober R, Evans A, Lepage M. Symptom attribution in first episode psychosis: a cortical thickness study. Psychiatry Res 2012; 203:6-13. [PMID: 22917501 DOI: 10.1016/j.pscychresns.2011.09.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Revised: 08/31/2011] [Accepted: 09/20/2011] [Indexed: 01/08/2023]
Abstract
One dimension of insight in psychosis is the ability to attribute correctly one's symptoms to a mental disorder. Recent work suggests that gray matter volumes of the orbitofrontal cortex (OFC) are correlated with aggregate symptom attribution scores in first-episode schizophrenia. Whether regions beyond the OFC are important for symptom attribution remains to be established. Further, whether common or separable neural systems underlie attribution of specific symptoms (e.g., delusions, asociality) has not been studied. In the current magnetic resonance imaging study, 52 people with a first-episode psychosis (FEP) were rated with the Scale for Assessment of Unawareness of Mental Disorder on attribution of hallucinations, delusions, flat affect and asociality. Attribution ratings were regressed on cortical thickness at 81,924 vertices. Mapping statistics revealed that delusion misattribution was associated with thickness in the OFC [Brodmann's area (BA) 11/47]. Delusion, flat affect and asociality misattribution were associated with cortical thinness in the dorsolateral prefrontal cortex (BA 9/46). Differential associations emerged between each attribution item and cortical thickness/thinness in a variety of frontal, temporal, parietal and occipital areas. The results imply a selective role for the OFC in delusion misattribution in FEP. Evidence for cortical thickness covariation in a variety of regions suggests partial independence in the neural architecture underlying attribution for different symptoms in FEP.
Collapse
Affiliation(s)
- Lisa Buchy
- Brain Imaging Group, Douglas Mental Health University Institute, Verdun, Canada
| | | | | | | | | | | | | |
Collapse
|
364
|
Badea A, Gewalt S, Avants BB, Cook JJ, Johnson GA. Quantitative mouse brain phenotyping based on single and multispectral MR protocols. Neuroimage 2012; 63:1633-45. [PMID: 22836174 DOI: 10.1016/j.neuroimage.2012.07.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Revised: 06/26/2012] [Accepted: 07/07/2012] [Indexed: 12/13/2022] Open
Abstract
Sophisticated image analysis methods have been developed for the human brain, but such tools still need to be adapted and optimized for quantitative small animal imaging. We propose a framework for quantitative anatomical phenotyping in mouse models of neurological and psychiatric conditions. The framework encompasses an atlas space, image acquisition protocols, and software tools to register images into this space. We show that a suite of segmentation tools (Avants, Epstein et al., 2008) designed for human neuroimaging can be incorporated into a pipeline for segmenting mouse brain images acquired with multispectral magnetic resonance imaging (MR) protocols. We present a flexible approach for segmenting such hyperimages, optimizing registration, and identifying optimal combinations of image channels for particular structures. Brain imaging with T1, T2* and T2 contrasts yielded accuracy in the range of 83% for hippocampus and caudate putamen (Hc and CPu), but only 54% in white matter tracts, and 44% for the ventricles. The addition of diffusion tensor parameter images improved accuracy for large gray matter structures (by >5%), white matter (10%), and ventricles (15%). The use of Markov random field segmentation further improved overall accuracy in the C57BL/6 strain by 6%; so Dice coefficients for Hc and CPu reached 93%, for white matter 79%, for ventricles 68%, and for substantia nigra 80%. We demonstrate the segmentation pipeline for the widely used C57BL/6 strain, and two test strains (BXD29, APP/TTA). This approach appears promising for characterizing temporal changes in mouse models of human neurological and psychiatric conditions, and may provide anatomical constraints for other preclinical imaging, e.g. fMRI and molecular imaging. This is the first demonstration that multiple MR imaging modalities combined with multivariate segmentation methods lead to significant improvements in anatomical segmentation in the mouse brain.
Collapse
Affiliation(s)
- Alexandra Badea
- Center for InVivo Microscopy, Box 3302, Duke University Medical Center, Durham, NC 27710, USA.
| | | | | | | | | |
Collapse
|
365
|
Čeko M, Seminowicz DA, Bushnell MC, Olausson HW. Anatomical and functional enhancements of the insula after loss of large primary somatosensory fibers. ACTA ACUST UNITED AC 2012; 23:2017-24. [PMID: 22819967 DOI: 10.1093/cercor/bhs157] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Brain changes associated with the loss of a sensory modality such as vision and audition have previously been reported. Here, we examined the effect of loss of discriminative touch and proprioception on cortical thickness and functional connectivity. We performed structural magnetic resonance imaging and resting-state functional magnetic resonance imaging scans on a 60-year-old female who at age 31 suffered a selective loss of large-diameter myelinated primary afferents and, therefore, relies mainly on her intact thin-fiber senses (temperature, pain, itch, and C-fiber touch) and vision to negotiate her environment. The patient showed widespread cortical thinning compared with 12 age-matched female controls. In contrast, her right anterior insula was significantly thick. Seed-based resting-state analysis revealed that her right anterior insula had increased connectivity to bilateral posterior insula. A separate independent component analysis revealed the increased connectivity between the insula and visual cortex in the patient. As the insula is an important processing area for temperature and C-fiber tactile information, the increased intrainsular and insular-visual functional connectivity could be related to the patient's use of C-fiber (gentle) touch and temperature information in conjunction with visual information to navigate her environment. We, thus, demonstrated plasticity in networks involving the insular cortex following denervation of large-diameter somatosensory afferents.
Collapse
Affiliation(s)
- Marta Čeko
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada H3A 2T5.
| | | | | | | |
Collapse
|
366
|
Khundrakpam BS, Reid A, Brauer J, Carbonell F, Lewis J, Ameis S, Karama S, Lee J, Chen Z, Das S, Evans AC. Developmental changes in organization of structural brain networks. ACTA ACUST UNITED AC 2012; 23:2072-85. [PMID: 22784607 DOI: 10.1093/cercor/bhs187] [Citation(s) in RCA: 158] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Recent findings from developmental neuroimaging studies suggest that the enhancement of cognitive processes during development may be the result of a fine-tuning of the structural and functional organization of brain with maturation. However, the details regarding the developmental trajectory of large-scale structural brain networks are not yet understood. Here, we used graph theory to examine developmental changes in the organization of structural brain networks in 203 normally growing children and adolescents. Structural brain networks were constructed using interregional correlations in cortical thickness for 4 age groups (early childhood: 4.8-8.4 year; late childhood: 8.5-11.3 year; early adolescence: 11.4-14.7 year; late adolescence: 14.8-18.3 year). Late childhood showed prominent changes in topological properties, specifically a significant reduction in local efficiency, modularity, and increased global efficiency, suggesting a shift of topological organization toward a more random configuration. An increase in number and span of distribution of connector hubs was found in this age group. Finally, inter-regional connectivity analysis and graph-theoretic measures indicated early maturation of primary sensorimotor regions and protracted development of higher order association and paralimbic regions. Our finding reveals a time window of plasticity occurring during late childhood which may accommodate crucial changes during puberty and the new developmental tasks that an adolescent faces.
Collapse
Affiliation(s)
- Budhachandra S Khundrakpam
- McConnell Brain Imaging Center, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
367
|
Yoon U, Perusse D, Evans AC. Mapping genetic and environmental influences on cortical surface area of pediatric twins. Neuroscience 2012; 220:169-78. [PMID: 22728098 DOI: 10.1016/j.neuroscience.2012.06.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Revised: 06/11/2012] [Accepted: 06/13/2012] [Indexed: 10/28/2022]
Abstract
Cortical surface area has been largely overlooked in genetic studies of human brain morphometry, even though phylogenetic differences in cortical surface area between individuals are known to be influenced by differences in genetic endowment. In this study, we examined the relative contribution of genetic and environmental influences on cortical surface areas in both the native and stereotaxic spaces for a cohort of homogeneously-aged healthy pediatric twins. Bilateral hemispheric surface and all lobar surface areas except the occipital lobes in native space showed high heritable estimates, while the common environmental effect on bilateral occipital lobes reached statistical significance. The proportion of genetic variance for cortical surface areas measured in stereotaxic space was lower than that measured in native space, whereas the unique environmental influences increased. This is reasonable since whole brain volume is also known to be heritable itself and so removing that component of areal variance due to overall brain size via stereotaxic transformation will reduce the genetic proportion. These findings further suggest that cortical surface areas involved in cognitive, attention and emotional processing, as well as in creating and retaining of long-term memories are likely to be more useful for examining the relationship between genotype and behavioral phenotypes.
Collapse
Affiliation(s)
- U Yoon
- Department of Biomedical Engineering, Catholic University of Daegu, 13-13 Hayang-ro, Hayang-eup, Gyeongsan-si, Gyeongsangbuk-do 712-702, South Korea.
| | | | | |
Collapse
|
368
|
Mak-Fan KM, Taylor MJ, Roberts W, Lerch JP. Measures of cortical grey matter structure and development in children with autism spectrum disorder. J Autism Dev Disord 2012; 42:419-27. [PMID: 21556969 DOI: 10.1007/s10803-011-1261-6] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The current study examined group differences in cortical volume, surface area, and thickness with age, in a group of typically developing children and a group of children with ASD aged 6-15 years. Results showed evidence of age by group interactions, suggesting atypicalities in the relation between these measures and age in the ASD group. Additional vertex-based analyses of cortical thickness revealed that specific regions in the left inferior frontal gyrus (BA 44) and left precuneus showed thicker cortex for the ASD group at younger ages only. These data support the hypothesis of an abnormal developmental trajectory of the cortex in ASD, which could have profound effects on other aspects of neural development in children with ASD.
Collapse
|
369
|
Karimaghaloo Z, Shah M, Francis SJ, Arnold DL, Collins DL, Arbel T. Automatic detection of gadolinium-enhancing multiple sclerosis lesions in brain MRI using conditional random fields. IEEE TRANSACTIONS ON MEDICAL IMAGING 2012; 31:1181-1194. [PMID: 22318484 DOI: 10.1109/tmi.2012.2186639] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Gadolinium-enhancing lesions in brain magnetic resonance imaging of multiple sclerosis (MS) patients are of great interest since they are markers of disease activity. Identification of gadolinium-enhancing lesions is particularly challenging because the vast majority of enhancing voxels are associated with normal structures, particularly blood vessels. Furthermore, these lesions are typically small and in close proximity to vessels. In this paper, we present an automatic, probabilistic framework for segmentation of gadolinium-enhancing lesions in MS using conditional random fields. Our approach, through the integration of different components, encodes different information such as correspondence between the intensities and tissue labels, patterns in the labels, or patterns in the intensities. The proposed algorithm is evaluated on 80 multimodal clinical datasets acquired from relapsing-remitting MS patients in the context of multicenter clinical trials. The experimental results exhibit a sensitivity of 98% with a low false positive lesion count. The performance of the proposed algorithm is also compared to a logistic regression classifier, a support vector machine and a Markov random field approach. The results demonstrate superior performance of the proposed algorithm at successfully detecting all of the gadolinium-enhancing lesions while maintaining a low false positive lesion count.
Collapse
Affiliation(s)
- Zahra Karimaghaloo
- Centre for Intelligent Machines, McGill University, Montreal, QC H3A 2A7, Canada.
| | | | | | | | | | | |
Collapse
|
370
|
Shaw P, Gilliam M, Malek M, Rodriguez N, Greenstein D, Clasen L, Evans A, Rapoport J, Giedd J. Parental age effects on cortical morphology in offspring. Cereb Cortex 2012; 22:1256-62. [PMID: 21817090 PMCID: PMC3357175 DOI: 10.1093/cercor/bhr194] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The age at which a parent has a child impacts the child's cognition and risk for mental illness. It appears that this risk is curvilinear, with both age extremes associated with lower intelligence and increased prevalence of some neuropsychiatric disorders. Little is known of the neural mechanisms underpinning this phenomenon. We extracted lobar volumes, surface areas, and cortical thickness from 489 neuroanatomic magnetic resonance images acquired on 171 youth. Using linear mixed model regression, we determined the association between parental age and offspring's neuroanatomy, adjusting for offspring's age, sex, intelligence, and parental socioeconomic class. For gray matter volumes, quadratic paternal and maternal age terms contributed significantly (maternal quadratic age effect: t = -2.2, P = 0.03; paternal quadratic age effect: t = -2.4, P = 0.02) delineating an inverted "U" relationship between parental age and gray matter volume. Cortical volume increased with both advancing paternal and maternal age until around the early 30s after which it fell. Paternal age effects were more pronounced on cortical surface area, whereas maternal age impacted more on cortical thickness. There were no significant effects of parental age on white matter volumes. These parental age effects on cerebral morphology may form part of the link between parental age extremes and suboptimal neurocognitive outcomes.
Collapse
Affiliation(s)
- P. Shaw
- Child Psychiatry Branch, Intramural Program of the National Institute of Mental Health
| | - M. Gilliam
- Child Psychiatry Branch, Intramural Program of the National Institute of Mental Health
| | - M. Malek
- Child Psychiatry Branch, Intramural Program of the National Institute of Mental Health
| | - N. Rodriguez
- Child Psychiatry Branch, Intramural Program of the National Institute of Mental Health
| | - D. Greenstein
- Child Psychiatry Branch, Intramural Program of the National Institute of Mental Health
| | - L. Clasen
- Child Psychiatry Branch, Intramural Program of the National Institute of Mental Health
| | - A. Evans
- Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - J. Rapoport
- Child Psychiatry Branch, Intramural Program of the National Institute of Mental Health
| | - J. Giedd
- Child Psychiatry Branch, Intramural Program of the National Institute of Mental Health
| |
Collapse
|
371
|
Distinct cortical correlates of autistic versus antisocial traits in a longitudinal sample of typically developing youth. J Neurosci 2012; 32:4856-60. [PMID: 22492041 DOI: 10.1523/jneurosci.6214-11.2012] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In humans, behaviors associated with autism and antisociality, disorders characterized by distinct social impairments, can be viewed as quantitative traits that range from frank impairment to normal variation, as found in the general population. Neuroimaging investigations of autism and antisociality demonstrate diagnostically specific aberrant cortical brain structure. However, little is known about structural brain correlates of social behavior in nonclinical populations. Therefore, we sought to determine whether autistic and antisocial traits exhibit dissociable cortical correlates and whether these associations are stable across development among typically developing youth. Three hundred twenty-three typically developing youth (age at first scan: mean = 10.63, SD = 3.71 years) underwent anatomic magnetic resonance imaging (1-6 scans each; total = 742 scans), and provided ratings of autistic and antisocial traits. Higher autistic trait ratings were associated with thinner cortex most prominently in right superior temporal sulcus while higher antisocial trait ratings were associated with thinner cortex in primarily bilateral anterior prefrontal cortices. There was no interaction with age, indicating that these brain-behavior associations were stable across development. Using assessments of both subclinical autistic and subclinical antisocial traits within a large longitudinal sample of typically developing youth, we demonstrate dissociable neuroanatomic correlations that parallel those found in the frank clinical disorders of autism (e.g., superior temporal cortex) and antisociality (e.g., anterior prefrontal cortex). Moreover, these correlations appear to be established in early childhood and remain fixed into early adulthood. These results support the dimensional view of psychopathology and provide neural signatures that can serve as informative endophenotypes for future genetic studies.
Collapse
|
372
|
Nguyen TV, McCracken J, Ducharme S, Botteron KN, Mahabir M, Johnson W, Israel M, Evans AC, Karama S. Testosterone-related cortical maturation across childhood and adolescence. Cereb Cortex 2012; 23:1424-32. [PMID: 22617851 DOI: 10.1093/cercor/bhs125] [Citation(s) in RCA: 135] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Neuroendocrine theories of brain development hold testosterone as the predominant factor mediating sex-specific cortical growth and the ensuing lateralization of hemispheric function. However, studies to date have focussed on prenatal testosterone rather than pubertal changes in testosterone. Yet, animal studies have shown a high density of androgen-sensitive receptors in multiple key cortical areas, and puberty is known to coincide with both a significant rise in testosterone and the emergence of behavioral sex differences, suggesting peripubertal influences of testosterone on brain development. Here, we used linear mixed models to examine sex-specific cortical maturation associated with changes in testosterone levels in a longitudinal sample of developmentally healthy children and adolescents. A significant "sex by age by testosterone" interaction on cortical thickness (CTh) involving widespread areas of the developing brain was found. Testosterone levels were associated with CTh changes in regions of the left hemisphere in males and of the right hemisphere in females. In both sexes, the relationship between testosterone and CTh varied across the age span. These findings show the association between testosterone and CTh to be complex, highly dynamic, and to vary, depending on sex and age; they also suggest sex-related hemispheric lateralization effects of testosterone in humans.
Collapse
Affiliation(s)
- Tuong-Vi Nguyen
- McConnell Brain Imaging Center, Montreal Neurological Institute, Montreal, Québec, Canada H3A 2B4
| | | | | | | | | | | | | | | | | | | |
Collapse
|
373
|
Neuroanatomical consequences of very preterm birth in middle childhood. Brain Struct Funct 2012; 218:575-85. [PMID: 22572806 DOI: 10.1007/s00429-012-0417-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2011] [Accepted: 04/07/2012] [Indexed: 01/08/2023]
Abstract
Individuals born preterm can demonstrate reductions in brain volume, cortical surface area and thickness. However, the extent of these neuroanatomical deficits and the relation among these measures in middle childhood, a critical developmental period, have not been determined. We assessed differences in brain structure by acquiring high-resolution T(1)-weighted scans in 25 children born very preterm (<32 weeks gestational age) without significant post-natal neurological sequelae and 32 age-matched term-born children (7-10 years). Children born very preterm had decreased brain volume, surface area and cortical thickness compared to term-born children. Furthermore, children born preterm did not display the robust relation between total brain volume and basal ganglia and thalamic volume apparent in the term-born children. Cortical thickness analyses revealed that the cortex was thinner for children born preterm than term-born children in the anterior cingulate cortex/supplementary motor area, isthmus of the cingulate gyrus, right superior temporal sulcus, right anterior insula, postcentral gyrus and precuneus. Follow-up analyses revealed that right precuneus thickness was correlated with gestational age. Thus, even without significant postnatal medical sequelae, very preterm-born children showed atypical brain structure and developmental patterns in areas related to higher cognitive function. Disruptions of the typical neurodevelopmental trajectory in the third trimester of pregnancy likely underlie these differences persisting into middle childhood.
Collapse
|
374
|
Abdullah BA, Younis AA, John NM. Multi-Sectional Views Textural Based SVM for MS Lesion Segmentation in Multi-Channels MRIs. Open Biomed Eng J 2012. [DOI: 10.2174/1874120701206010056] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In this paper, a new technique is proposed for automatic segmentation of multiple sclerosis (MS) lesions from brain magnetic resonance imaging (MRI) data. The technique uses a trained support vector machine (SVM) to discriminate between the blocks in regions of MS lesions and the blocks in non-MS lesion regions mainly based on the textural features with aid of the other features. The classification is done on each of the axial, sagittal and coronal sectional brain view independently and the resultant segmentations are aggregated to provide more accurate output segmentation. The main contribution of the proposed technique described in this paper is the use of textural features to detect MS lesions in a fully automated approach that does not rely on manually delineating the MS lesions. In addition, the technique introduces the concept of the multi-sectional view segmentation to produce verified segmentation. The proposed textural-based SVM technique was evaluated using three simulated datasets and more than fifty real MRI datasets. The results were compared with state of the art methods. The obtained results indicate that the proposed method would be viable for use in clinical practice for the detection of MS lesions in MRI.
Collapse
|
375
|
Abdullah BA, Younis AA, John NM. Multi-Sectional Views Textural Based SVM for MS Lesion Segmentation in Multi-Channels MRIs. Open Biomed Eng J 2012; 6:56-72. [PMID: 22741026 PMCID: PMC3382289 DOI: 10.2174/1874230001206010056] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Revised: 11/11/2011] [Accepted: 12/23/2011] [Indexed: 11/24/2022] Open
Abstract
In this paper, a new technique is proposed for automatic segmentation of multiple sclerosis (MS) lesions from brain magnetic resonance imaging (MRI) data. The technique uses a trained support vector machine (SVM) to discriminate between the blocks in regions of MS lesions and the blocks in non-MS lesion regions mainly based on the textural features with aid of the other features. The classification is done on each of the axial, sagittal and coronal sectional brain view independently and the resultant segmentations are aggregated to provide more accurate output segmentation. The main contribution of the proposed technique described in this paper is the use of textural features to detect MS lesions in a fully automated approach that does not rely on manually delineating the MS lesions. In addition, the technique introduces the concept of the multi-sectional view segmentation to produce verified segmentation. The proposed textural-based SVM technique was evaluated using three simulated datasets and more than fifty real MRI datasets. The results were compared with state of the art methods. The obtained results indicate that the proposed method would be viable for use in clinical practice for the detection of MS lesions in MRI.
Collapse
Affiliation(s)
- Bassem A Abdullah
- Department of Electrical and Computer Engineering, University of Miami, Miami, Fl, USA
| | | | | |
Collapse
|
376
|
Nagano-Saito A, Cisek P, Perna AS, Shirdel FZ, Benkelfat C, Leyton M, Dagher A. From anticipation to action, the role of dopamine in perceptual decision making: an fMRI-tyrosine depletion study. J Neurophysiol 2012; 108:501-12. [PMID: 22552189 DOI: 10.1152/jn.00592.2011] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
During simple sensorimotor decision making, neurons in the parietal cortex extract evidence from sensory information provided by visual areas until a decision is reached. Contextual information can bias parietal activity during the task and change the decision-making parameters. One type of contextual information is the availability of reward for correct decisions. We tested the hypothesis that the frontal lobes and basal ganglia use contextual information to bias decision making to maximize reward. Human volunteers underwent functional MRI while making decisions about the motion of dots on a computer monitor. On rewarded trials, subjects responded more slowly by increasing the threshold to decision. Rewarded trials were associated with activation in the ventral striatum and prefrontal cortex in the period preceding coherent dot motion, and the degree of activation predicted the increased decision threshold. Decreasing dopamine transmission, using a tyrosine-depleting amino acid mixture, abolished the reward-related corticostriatal activation and eliminated the correlation between striatal activity and decision threshold. These observations provide direct evidence that some reward-related functional MRI signals in the striatum are the result of dopamine neuron activity and demonstrate that mesolimbic dopamine transmission can influence perceptual and decision-making neural processes engaged to maximize reward harvest.
Collapse
Affiliation(s)
- Atsuko Nagano-Saito
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | | | | | | | | | | | | |
Collapse
|
377
|
Wang Y, Catindig JA, Hilal S, Soon HW, Ting E, Wong TY, Venketasubramanian N, Chen C, Qiu A. Multi-stage segmentation of white matter hyperintensity, cortical and lacunar infarcts. Neuroimage 2012; 60:2379-88. [DOI: 10.1016/j.neuroimage.2012.02.034] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Revised: 02/13/2012] [Accepted: 02/15/2012] [Indexed: 01/18/2023] Open
|
378
|
Koskenkorva P, Niskanen E, Hyppönen J, Könönen M, Mervaala E, Soininen H, Kälviäinen R, Vanninen R. Sensorimotor, visual, and auditory cortical atrophy in Unverricht-Lundborg disease mapped with cortical thickness analysis. AJNR Am J Neuroradiol 2012; 33:878-83. [PMID: 22268086 DOI: 10.3174/ajnr.a2882] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE EPM1, caused by mutations in the CSTB gene, is the most common form of PME. The most incapacitating symptom of EPM1 is action-activated and stimulus-sensitive myoclonus. The clinical severity of the disease varies considerably among patients, but so far, no correlations have been observed between quantitative structural changes in the brain and clinical parameters such as duration of the disease, age at onset, or myoclonus severity. The aim of this study was to evaluate possible changes in CTH of patients with EPM1 compared with healthy controls and to correlate those changes with clinical parameters. MATERIALS AND METHODS Fifty-three genetically verified patients with EPM1 and 70 healthy volunteers matched for age and sex underwent 1.5T MR imaging. T1-weighted 3D images were analyzed with CTH analysis to detect alterations. The patients were clinically evaluated for myoclonus severity by using the UMRS. Higher UMRS scores indicate more severe myoclonus. RESULTS CTH analysis revealed significant thinning of the sensorimotor and visual and auditory cortices of patients with EPM1 compared with healthy controls. CTH was reduced with increasing age in both groups, but in patients, the changes were confined specifically to the aforementioned areas, while in controls, the changes were more diffuse. Duration of the disease and the severity of myoclonus correlated negatively with CTH. CONCLUSIONS Cortical thinning in the sensorimotor areas in EPM1 correlated significantly with the degree of the severity of the myoclonus and is most likely related to the widespread stimulus sensitivity in EPM1.
Collapse
Affiliation(s)
- P Koskenkorva
- Department of Clinical Radiology, Kuopio University Hospital, Puijonlaaksontie 2, FIN-70210 Kuopio, Finland.
| | | | | | | | | | | | | | | |
Collapse
|
379
|
Carbonell F, Bellec P, Shmuel A. Global and system-specific resting-state fMRI fluctuations are uncorrelated: principal component analysis reveals anti-correlated networks. Brain Connect 2012; 1:496-510. [PMID: 22444074 PMCID: PMC3604782 DOI: 10.1089/brain.2011.0065] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The influence of the global average signal (GAS) on functional-magnetic resonance imaging (fMRI)-based resting-state functional connectivity is a matter of ongoing debate. The global average fluctuations increase the correlation between functional systems beyond the correlation that reflects their specific functional connectivity. Hence, removal of the GAS is a common practice for facilitating the observation of network-specific functional connectivity. This strategy relies on the implicit assumption of a linear-additive model according to which global fluctuations, irrespective of their origin, and network-specific fluctuations are super-positioned. However, removal of the GAS introduces spurious negative correlations between functional systems, bringing into question the validity of previous findings of negative correlations between fluctuations in the default-mode and the task-positive networks. Here we present an alternative method for estimating global fluctuations, immune to the complications associated with the GAS. Principal components analysis was applied to resting-state fMRI time-series. A global-signal effect estimator was defined as the principal component (PC) that correlated best with the GAS. The mean correlation coefficient between our proposed PC-based global effect estimator and the GAS was 0.97±0.05, demonstrating that our estimator successfully approximated the GAS. In 66 out of 68 runs, the PC that showed the highest correlation with the GAS was the first PC. Since PCs are orthogonal, our method provides an estimator of the global fluctuations, which is uncorrelated to the remaining, network-specific fluctuations. Moreover, unlike the regression of the GAS, the regression of the PC-based global effect estimator does not introduce spurious anti-correlations beyond the decrease in seed-based correlation values allowed by the assumed additive model. After regressing this PC-based estimator out of the original time-series, we observed robust anti-correlations between resting-state fluctuations in the default-mode and the task-positive networks. We conclude that resting-state global fluctuations and network-specific fluctuations are uncorrelated, supporting a Resting-State Linear-Additive Model. In addition, we conclude that the network-specific resting-state fluctuations of the default-mode and task-positive networks show artifact-free anti-correlations.
Collapse
Affiliation(s)
- Felix Carbonell
- Brain Imaging Centre, Montreal Neurological Institute, Montreal, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, Canada
| | - Pierre Bellec
- Département de recherche de l'institut de Gériatrie de Montréal, Université de Montréal, Montreal, Canada
| | - Amir Shmuel
- Brain Imaging Centre, Montreal Neurological Institute, Montreal, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, Canada
- Departments of Physiology and Biomedical Engineering, McGill University, Montreal, Canada
| |
Collapse
|
380
|
Lladó X, Oliver A, Cabezas M, Freixenet J, Vilanova JC, Quiles A, Valls L, Ramió-Torrentà L, Rovira À. Segmentation of multiple sclerosis lesions in brain MRI: A review of automated approaches. Inf Sci (N Y) 2012. [DOI: 10.1016/j.ins.2011.10.011] [Citation(s) in RCA: 161] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
381
|
Fahim C, Fiori M, Evans AC, Pérusse D. The Relationship between Social Defiance, Vindictiveness, Anger, and Brain Morphology in Eight-year-old Boys and Girls. SOCIAL DEVELOPMENT 2012. [DOI: 10.1111/j.1467-9507.2011.00644.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
382
|
Sigurdsson S, Aspelund T, Forsberg L, Fredriksson J, Kjartansson O, Oskarsdottir B, Jonsson PV, Eiriksdottir G, Harris TB, Zijdenbos A, van Buchem MA, Launer LJ, Gudnason V. Brain tissue volumes in the general population of the elderly: the AGES-Reykjavik study. Neuroimage 2012; 59:3862-3870. [PMID: 22119006 PMCID: PMC4712156 DOI: 10.1016/j.neuroimage.2011.11.024] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Revised: 11/03/2011] [Accepted: 11/04/2011] [Indexed: 10/15/2022] Open
Abstract
Imaging studies have reported conflicting findings on how brain structure differs with age and sex. This may be explained by discrepancies and limitations in study population and study design. We report a study on brain tissue volumes in one of the largest cohorts of individuals studied to date of subjects with high mean age (mean ± standard deviation (SD) 76 ± 6 years). These analyses are based on magnetic resonance imaging (MRI) scans acquired at baseline on 4303 non-demented elderly, and 367 who had a second MRI, on average 2.5 ± 0.2 years later. Tissue segmentation was performed with an automatic image analysis pipeline. Total brain parenchymal (TBP) volume decreased with increasing age while there was an increase in white matter hyperintensities (WMH) in both sexes. A reduction in both normal white matter (NWM)- and gray matter (GM) volume contributed to the brain shrinkage. After adjusting for intra-cranial volume, women had larger brain volumes compared to men (3.32%, p < 0.001) for TBP volume in the cross-sectional analysis. The longitudinal analysis showed a significant age-sex interaction in TBP volume with a greater rate of annual change in men (-0.70%, 95%CI: -0.78% to -0.63%) than women (-0.55%, 95%CI: -0.61% to -0.49%). The annual change in the cross-sectional data was approximately 40% less than the annual change in the longitudinal data and did not show significant age-sex interaction. The findings indicate that the cross-sectional data underestimate the rate of change in tissue volumes with age as the longitudinal data show greater rate of change in tissue volumes with age for all tissues.
Collapse
Affiliation(s)
| | - Thor Aspelund
- The Icelandic Heart Association, Kopavogur, Iceland
- The University of Iceland, Reykjavik, Iceland
| | | | | | | | | | - Palmi V. Jonsson
- The Icelandic Heart Association, Kopavogur, Iceland
- The University of Iceland, Reykjavik, Iceland
| | | | - Tamara B. Harris
- Laboratory of Epidemiology, Demography, and Biometry, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | | | - Mark A. van Buchem
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Lenore J. Launer
- Laboratory of Epidemiology, Demography, and Biometry, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Vilmundur Gudnason
- The Icelandic Heart Association, Kopavogur, Iceland
- The University of Iceland, Reykjavik, Iceland
| |
Collapse
|
383
|
Raznahan A, Lerch JP, Lee N, Greenstein D, Wallace GL, Stockman M, Clasen L, Shaw PW, Giedd JN. Patterns of coordinated anatomical change in human cortical development: a longitudinal neuroimaging study of maturational coupling. Neuron 2012; 72:873-84. [PMID: 22153381 DOI: 10.1016/j.neuron.2011.09.028] [Citation(s) in RCA: 231] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2011] [Indexed: 12/24/2022]
Abstract
Understanding of human structural brain development has rapidly advanced in recent years, but remains fundamentally "localizational" in nature. Here, we use 376 longitudinally acquired structural brain scans from 108 typically developing adolescents to conduct the first study of coordinated anatomical change within the developing cortex. Correlation in rates of anatomical change was regionally heterogeneous, with fronto-temporal association cortices showing the strongest and most widespread maturational coupling with other cortical areas, and lower-order sensory cortices showing the least. Canonical cortical systems with rich structural and functional interconnectivity showed significantly elevated maturational coupling. Evidence for sexually dimorphic maturational coupling was found within a frontopolar-centered prefrontal system involved in complex decision-making. By providing the first link between cortical connectivity and the coordination of cortical development, we reveal a hitherto unseen property of healthy brain maturation, which may represent a target for neurodevelopmental disease processes, and a substrate for sexually dimorphic behavior in adolescence.
Collapse
Affiliation(s)
- Armin Raznahan
- Child Psychiatry Branch, National Institute of Health, National Institutes of Mental Health, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
384
|
Duerden EG, Tannock R, Dockstader C. Altered cortical morphology in sensorimotor processing regions in adolescents and adults with attention-deficit/hyperactivity disorder. Brain Res 2012; 1445:82-91. [PMID: 22325095 DOI: 10.1016/j.brainres.2012.01.034] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Revised: 12/23/2011] [Accepted: 01/14/2012] [Indexed: 11/30/2022]
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is a neurodevelopmental disorder that is common in children and frequently persists into adulthood. While ADHD is characterized by developmentally inappropriate, persistent and impairing levels of inattention, impulsiveness and hyperactivity, it is also associated with sensorimotor deficits and altered neural processing of somatosensory stimuli, as well as with executive function deficits. The latter are associated with thinning of frontal lobe structures in ADHD; however, few structural neuroimaging studies have focused on changes in brain morphology in sensorimotor regions in this population. Moreover, little is known about morphological changes that occur in these regions throughout the developmental trajectory into adulthood. In this preliminary cross-sectional study, we examined cortical thickness with a focus on brain regions involved in sensorimotor processing in adolescents and adults with ADHD compared to neurotypical cohorts. Compared to controls, adolescents with ADHD showed significant increased cortical thickness in the pre-supplementary motor area (SMA) and adults with ADHD showed increased thickness in the primary somatosensory cortex (SI). Based on these differences, we collated the data from the adolescents and adults and examined possible age×group interaction effects on cortical thickness. A significant interaction effect was found in SI where healthy participants showed decreased thickness in this region at older ages, whereas the ADHD cohort showed little change. Results suggest that sensorimotor brain regions are altered in ADHD and these changes may not dissipate in adolescence, but rather persist into adulthood.
Collapse
Affiliation(s)
- Emma G Duerden
- Department of Diagnostic Imaging, The Hospital for Sick Children, Toronto, Ontario Canada
| | | | | |
Collapse
|
385
|
Mitchell GF, van Buchem MA, Sigurdsson S, Gotal JD, Jonsdottir MK, Kjartansson Ó, Garcia M, Aspelund T, Harris TB, Gudnason V, Launer LJ. Arterial stiffness, pressure and flow pulsatility and brain structure and function: the Age, Gene/Environment Susceptibility--Reykjavik study. ACTA ACUST UNITED AC 2012; 134:3398-407. [PMID: 22075523 DOI: 10.1093/brain/awr253] [Citation(s) in RCA: 662] [Impact Index Per Article: 50.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Aortic stiffness increases with age and vascular risk factor exposure and is associated with increased risk for structural and functional abnormalities in the brain. High ambient flow and low impedance are thought to sensitize the cerebral microcirculation to harmful effects of excessive pressure and flow pulsatility. However, haemodynamic mechanisms contributing to structural brain lesions and cognitive impairment in the presence of high aortic stiffness remain unclear. We hypothesized that disproportionate stiffening of the proximal aorta as compared with the carotid arteries reduces wave reflection at this important interface and thereby facilitates transmission of excessive pulsatile energy into the cerebral microcirculation, leading to microvascular damage and impaired function. To assess this hypothesis, we evaluated carotid pressure and flow, carotid-femoral pulse wave velocity, brain magnetic resonance images and cognitive scores in participants in the community-based Age, Gene/Environment Susceptibility--Reykjavik study who had no history of stroke, transient ischaemic attack or dementia (n = 668, 378 females, 69-93 years of age). Aortic characteristic impedance was assessed in a random subset (n = 422) and the reflection coefficient at the aorta-carotid interface was computed. Carotid flow pulsatility index was negatively related to the aorta-carotid reflection coefficient (R = -0.66, P<0.001). Carotid pulse pressure, pulsatility index and carotid-femoral pulse wave velocity were each associated with increased risk for silent subcortical infarcts (hazard ratios of 1.62-1.71 per standard deviation, P<0.002). Carotid-femoral pulse wave velocity was associated with higher white matter hyperintensity volume (0.108 ± 0.045 SD/SD, P = 0.018). Pulsatility index was associated with lower whole brain (-0.127 ± 0.037 SD/SD, P<0.001), grey matter (-0.079 ± 0.038 SD/SD, P = 0.038) and white matter (-0.128 ± 0.039 SD/SD, P<0.001) volumes. Carotid-femoral pulse wave velocity (-0.095 ± 0.043 SD/SD, P = 0.028) and carotid pulse pressure (-0.114 ± 0.045 SD/SD, P = 0.013) were associated with lower memory scores. Pulsatility index was associated with lower memory scores (-0.165 ± 0.039 SD/SD, P<0.001), slower processing speed (-0.118 ± 0.033 SD/SD, P<0.001) and worse performance on tests assessing executive function (-0.155 ± 0.041 SD/SD, P<0.001). When magnetic resonance imaging measures (grey and white matter volumes, white matter hyperintensity volumes and prevalent subcortical infarcts) were included in cognitive models, haemodynamic associations were attenuated or no longer significant, consistent with the hypothesis that increased aortic stiffness and excessive flow pulsatility damage the microcirculation, leading to quantifiable tissue damage and reduced cognitive performance. Marked stiffening of the aorta is associated with reduced wave reflection at the interface between carotid and aorta, transmission of excessive flow pulsatility into the brain, microvascular structural brain damage and lower scores in various cognitive domains.
Collapse
|
386
|
Hasan KM, Walimuni IS, Abid H, Wolinsky JS, Narayana PA. Multi-modal quantitative MRI investigation of brain tissue neurodegeneration in multiple sclerosis. J Magn Reson Imaging 2012; 35:1300-11. [PMID: 22241681 DOI: 10.1002/jmri.23539] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2011] [Accepted: 11/22/2011] [Indexed: 12/22/2022] Open
Abstract
PURPOSE To investigate the utility of multimodal quantitative MRI (qMRI) and atlas-based methods to identify characteristics of lesion-driven injury and neurodegeneration in relapsing remitting multiple sclerosis (RRMS). MATERIALS AND METHODS This work is health insurance portability and accountability act compliant. High resolution T1-weighted, dual echo, and fluid-attenuated inversion recovery and diffusion tensor MRI images were prospectively acquired on 68 RRMS patients (range, 25-58 years) and 68 age-matched controls. The data were analyzed using standardized human brain atlas-based tissue segmentation procedures to obtain regional volumes and their corresponding T2 relaxation times and DTI maps. RESULTS Group-averaged brain atlas-based qMRI maps of T2, fractional anisotropy and diffusivities are visually presented and compared between controls and RRMS. The analysis shows a widespread injury in RRMS. Atrophy of the corpus callosum (CC) was substantial in RRMS. The qMRI attributes of the neocortex in combination with the CC such as T2 and diffusivities were elevated and correlated with disability. CONCLUSION Using a standardized multimodal qMRI acquisition and analyses that accounted for lesion distribution we demonstrate that cerebral pathology is widespread in RRMS. Our analysis of CC and neocortex qMRI metrics in relation to disability points to a neurodegenerative injury component that is independent from lesions.
Collapse
Affiliation(s)
- Khader M Hasan
- Department of Diagnostic and Interventional Imaging, University of Texas Health Science Center at Houston, Houston, Texas, USA.
| | | | | | | | | |
Collapse
|
387
|
Felsky D, Voineskos AN, Lerch JP, Nazeri A, Shaikh SA, Rajji TK, Mulsant BH, Kennedy JL. Myelin-associated glycoprotein gene and brain morphometry in schizophrenia. Front Psychiatry 2012; 3:40. [PMID: 22563322 PMCID: PMC3342517 DOI: 10.3389/fpsyt.2012.00040] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Accepted: 04/14/2012] [Indexed: 11/13/2022] Open
Abstract
Myelin and oligodendrocyte disruption may be a core feature of schizophrenia pathophysiology. The purpose of the present study was to localize the effects of previously identified risk variants in the myelin-associated glycoprotein (MAG) gene on brain morphometry in schizophrenia patients and healthy controls. Forty-five schizophrenia patients and 47 matched healthy controls underwent clinical, structural magnetic resonance imaging, and genetics procedures. Gray and white matter cortical lobe volumes along with hippocampal volumes were calculated from T1-weighted MRI scans. Each subject was also genotyped for the two disease-associated MAG single nucleotide polymorphisms (rs720308 and rs720309). Repeated measures general linear model (GLM) analysis found significant region by genotype and region by genotype by diagnosis interactions for the effects of MAG risk variants on lobar gray matter volumes. No significant associations were found with lobar white matter volumes or hippocampal volumes. Follow-up univariate GLMs found the AA genotype of rs720308 predisposed schizophrenia patients to left temporal and parietal gray matter volume deficits. These results suggest that the effects of the MAG gene on cortical gray matter volume in schizophrenia patients can be localized to temporal and parietal cortices. Our results support a role for MAG gene variation in brain morphometry in schizophrenia, align with other lines of evidence implicating MAG in schizophrenia, and provide genetically based insight into the heterogeneity of brain imaging findings in this disorder.
Collapse
Affiliation(s)
- Daniel Felsky
- Neuroscience Research Department, Centre for Addiction and Mental Health, University of Toronto Toronto, ON, Canada
| | | | | | | | | | | | | | | |
Collapse
|
388
|
Chakravarty MM, Felsky D, Tampakeras M, Lerch JP, Mulsant BH, Kennedy JL, Voineskos AN. DISC1 and Striatal Volume: A Potential Risk Phenotype For mental Illness. Front Psychiatry 2012; 3:57. [PMID: 22723785 PMCID: PMC3378182 DOI: 10.3389/fpsyt.2012.00057] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Accepted: 05/24/2012] [Indexed: 12/26/2022] Open
Abstract
Disrupted-in-schizophrenia 1 was originally discovered in a large Scottish family with abnormally high rates of severe mental illness, including schizophrenia, bipolar disorder, and depression. An accumulating body of evidence from genetic, postmortem, and animal data supports a role for DISC1 in different forms of mental illness. DISC1 may play an important role in determining structure and function of several brain regions. One brain region of particular importance for several mental disorders is the striatum, and DISC1 mutant mice have demonstrated an increase in dopamine (D2) receptors in this structure. However, association between DISC1 functional polymorphisms and striatal structure have not been examined in humans. We, therefore hypothesized that there would be a relationship between human striatal volume and DISC1 genotype, specifically in the Leu607Phe (rs6675281) and Ser704Cys (rs821618) single nucleotide polymorphisms. We tested our hypothesis by automatically identifying the striatum in 54 healthy volunteers recruited for this study. We also performed an exploratory analysis of cortical thickness, cortical surface area, and structure volume. Our results demonstrate that Phe allele carriers have larger striatal volume bilaterally (left striatum: p = 0.017; right striatum: p = 0.016). From the exploratory analyses we found that the Phe carriers also had larger left hemisphere volumes (p = 0.0074) and right occipital lobe surface area (p = 0.014) compared to LeuLeu homozygotes. However, these exploratory findings do not survive a conservative correction for multiple comparisons. Our findings demonstrate that a functional DISC1 variant influences striatal volumes. Taken together with animal data that this gene influences D2 receptor levels in striatum, a key risk pathway for mental illnesses such as schizophrenia and bipolar disorder may be conferred via DISC1's effects on the striatum.
Collapse
Affiliation(s)
- M Mallar Chakravarty
- Kimel Family Translational Imaging Genetics Research Laboratory, Research Imaging Centre, Centre for Addiction and Mental Health Toronto, ON, Canada
| | | | | | | | | | | | | |
Collapse
|
389
|
Total and regional brain volumes in a population-based normative sample from 4 to 18 years: the NIH MRI Study of Normal Brain Development. Cereb Cortex 2012; 22:1-12. [PMID: 21613470 PMCID: PMC3236790 DOI: 10.1093/cercor/bhr018] [Citation(s) in RCA: 277] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Using a population-based sampling strategy, the National Institutes of Health (NIH) Magnetic Resonance Imaging Study of Normal Brain Development compiled a longitudinal normative reference database of neuroimaging and correlated clinical/behavioral data from a demographically representative sample of healthy children and adolescents aged newborn through early adulthood. The present paper reports brain volume data for 325 children, ages 4.5-18 years, from the first cross-sectional time point. Measures included volumes of whole-brain gray matter (GM) and white matter (WM), left and right lateral ventricles, frontal, temporal, parietal and occipital lobe GM and WM, subcortical GM (thalamus, caudate, putamen, and globus pallidus), cerebellum, and brainstem. Associations with cross-sectional age, sex, family income, parental education, and body mass index (BMI) were evaluated. Key observations are: 1) age-related decreases in lobar GM most prominent in parietal and occipital cortex; 2) age-related increases in lobar WM, greatest in occipital, followed by the temporal lobe; 3) age-related trajectories predominantly curvilinear in females, but linear in males; and 4) small systematic associations of brain tissue volumes with BMI but not with IQ, family income, or parental education. These findings constitute a normative reference on regional brain volumes in children and adolescents.
Collapse
|
390
|
Arimura H, Tokunaga C, Yamashita Y, Kuwazuru J. Magnetic Resonance Image Analysis for Brain CAD Systems with Machine Learning. MACHINE LEARNING IN COMPUTER-AIDED DIAGNOSIS 2012. [DOI: 10.4018/978-1-4666-0059-1.ch013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This chapter describes the image analysis for brain Computer-Aided Diagnosis (CAD) systems with machine learning techniques, which could assist radiologists in the detection of such brain diseases as asymptomatic unruptured aneurysms, Alzheimer’s Disease (AD), vascular dementia, and Multiple Sclerosis (MS) by magnetic resonance imaging. Image analysis in CAD systems consists of image enhancement, initial detection, and image feature extraction, including segmentation. In addition, the authors review the classification of true and false positives using machine learning techniques, as well as the evaluation methods and development cycle for CAD systems.
Collapse
|
391
|
Cerasa A, Bilotta E, Augimeri A, Cherubini A, Pantano P, Zito G, Lanza P, Valentino P, Gioia MC, Quattrone A. A Cellular Neural Network methodology for the automated segmentation of multiple sclerosis lesions. J Neurosci Methods 2012; 203:193-9. [DOI: 10.1016/j.jneumeth.2011.08.047] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Revised: 08/29/2011] [Accepted: 08/30/2011] [Indexed: 12/18/2022]
|
392
|
Proal E, Reiss PT, Klein RG, Mannuzza S, Gotimer K, Ramos-Olazagasti MA, Lerch JP, He Y, Zijdenbos A, Kelly C, Milham MP, Castellanos FX. Brain gray matter deficits at 33-year follow-up in adults with attention-deficit/hyperactivity disorder established in childhood. ACTA ACUST UNITED AC 2011; 68:1122-34. [PMID: 22065528 DOI: 10.1001/archgenpsychiatry.2011.117] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
CONTEXT Volumetric studies have reported relatively decreased cortical thickness and gray matter volumes in adults with attention-deficit/hyperactivity disorder (ADHD) whose childhood status was retrospectively recalled. We present, to our knowledge, the first prospective study combining cortical thickness and voxel-based morphometry in adults diagnosed as having ADHD in childhood. OBJECTIVES To test whether adults with combined-type childhood ADHD exhibit cortical thinning and decreased gray matter in regions hypothesized to be related to ADHD and to test whether anatomic differences are associated with a current ADHD diagnosis, including persistent vs remitting ADHD. DESIGN Cross-sectional analysis embedded in a 33-year prospective follow-up at a mean age of 41.2 years. SETTING Research outpatient center. PARTICIPANTS We recruited probands with ADHD from a cohort of 207 white boys aged 6 to 12 years. Male comparison participants (n = 178) were free of ADHD in childhood. We obtained magnetic resonance images in 59 probands and 80 comparison participants (28.5% and 44.9% of the original samples, respectively). MAIN OUTCOME MEASURES Whole-brain voxel-based morphometry and vertexwise cortical thickness analyses. RESULTS The cortex was significantly thinner in ADHD probands than in comparison participants in the dorsal attentional network and limbic areas (false discovery rate < 0.05, corrected). In addition, gray matter was significantly decreased in probands in the right caudate, right thalamus, and bilateral cerebellar hemispheres. Probands with persistent ADHD (n = 17) did not differ significantly from those with remitting ADHD (n = 26) (false discovery rate < 0.05). At uncorrected P < .05, individuals with remitting ADHD had thicker cortex relative to those with persistent ADHD in the medial occipital cortex, insula, parahippocampus, and prefrontal regions. CONCLUSIONS Anatomic gray matter reductions are observable in adults with childhood ADHD, regardless of the current diagnosis. The most affected regions underpin top-down control of attention and regulation of emotion and motivation. Exploratory analyses suggest that diagnostic remission may result from compensatory maturation of prefrontal, cerebellar, and thalamic circuitry.
Collapse
Affiliation(s)
- Erika Proal
- Phyllis Green and Randolph Cowen Institute for Pediatric Neuroscience, Child Study Center, New York University Langone School of Medicine, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
393
|
Thambisetty M, Simmons A, Hye A, Campbell J, Westman E, Zhang Y, Wahlund LO, Kinsey A, Causevic M, Killick R, Kloszewska I, Mecocci P, Soininen H, Tsolaki M, Vellas B, Spenger C, Lovestone S. Plasma biomarkers of brain atrophy in Alzheimer's disease. PLoS One 2011; 6:e28527. [PMID: 22205954 PMCID: PMC3244409 DOI: 10.1371/journal.pone.0028527] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Accepted: 11/09/2011] [Indexed: 01/09/2023] Open
Abstract
Peripheral biomarkers of Alzheimer's disease (AD) reflecting early neuropathological change are critical to the development of treatments for this condition. The most widely used indicator of AD pathology in life at present is neuroimaging evidence of brain atrophy. We therefore performed a proteomic analysis of plasma to derive biomarkers associated with brain atrophy in AD. Using gel based proteomics we previously identified seven plasma proteins that were significantly associated with hippocampal volume in a combined cohort of subjects with AD (N = 27) and MCI (N = 17). In the current report, we validated this finding in a large independent cohort of AD (N = 79), MCI (N = 88) and control (N = 95) subjects using alternative complementary methods—quantitative immunoassays for protein concentrations and estimation of pathology by whole brain volume. We confirmed that plasma concentrations of five proteins, together with age and sex, explained more than 35% of variance in whole brain volume in AD patients. These proteins are complement components C3 and C3a, complement factor-I, γ-fibrinogen and alpha-1-microglobulin. Our findings suggest that these plasma proteins are strong predictors of in vivo AD pathology. Moreover, these proteins are involved in complement activation and coagulation, providing further evidence for an intrinsic role of these pathways in AD pathogenesis.
Collapse
Affiliation(s)
- Madhav Thambisetty
- Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
394
|
Automated detection of multiple sclerosis lesions in serial brain MRI. Neuroradiology 2011; 54:787-807. [DOI: 10.1007/s00234-011-0992-6] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Accepted: 11/29/2011] [Indexed: 01/29/2023]
|
395
|
Rajah MN, Languay R, Grady CL. Age-related changes in right middle frontal gyrus volume correlate with altered episodic retrieval activity. J Neurosci 2011; 31:17941-54. [PMID: 22159109 PMCID: PMC6634153 DOI: 10.1523/jneurosci.1690-11.2011] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Revised: 07/29/2011] [Accepted: 09/04/2011] [Indexed: 11/21/2022] Open
Abstract
Age-related deficits in episodic retrieval have been associated with volume reductions in the middle frontal gyrus (MFG). However, it remains unclear how this age-related reduction in MFG volume correlates with neural activity during retrieval. To address this, we conducted in vivo volumetry of the frontal cortex in young and older human adults and found more volume loss on the right than on the left MFG with age. We then examined how left and right MFG volume correlated with fMRI activity during successful retrieval of item, spatial context, and temporal context information in both age groups. In young adults, larger right MFG volume was positively correlated with greater activity in a commonly found episodic retrieval network that included bilateral dorsolateral prefrontal cortex (DLPFC) and bilateral inferior parietal cortex. Within this network, left DLPFC and right inferior parietal cortex activity predicted memory performance. In older adults, a positive structure-function association in DLPFC for either left or right MFG/DLPFC was not observed. Instead, right MFG volume was negatively correlated with activity in several regions in older adults, including the parahippocampal cortex (PHC) and anterior cingulate. Less activity in the PHC region predicted better item memory, and less activity in the anterior cingulate predicted better spatial context accuracy in older adults. We conclude that age-related change in the structure-function association in MFG/DLPFC impacts retrieval activity and performance, and those older adults with larger right MFG volume attempt to compensate for this change by modifying activity in other brain regions to help retrieval performance.
Collapse
Affiliation(s)
- M Natasha Rajah
- Douglas Mental Health University Institute and Department of Psychiatry, McGill University, Montreal, Quebec H4H 1R3, Canada.
| | | | | |
Collapse
|
396
|
Cabezas M, Oliver A, Lladó X, Freixenet J, Cuadra MB. A review of atlas-based segmentation for magnetic resonance brain images. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2011; 104:e158-e177. [PMID: 21871688 DOI: 10.1016/j.cmpb.2011.07.015] [Citation(s) in RCA: 225] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Revised: 07/26/2011] [Accepted: 07/27/2011] [Indexed: 05/31/2023]
Abstract
Normal and abnormal brains can be segmented by registering the target image with an atlas. Here, an atlas is defined as the combination of an intensity image (template) and its segmented image (the atlas labels). After registering the atlas template and the target image, the atlas labels are propagated to the target image. We define this process as atlas-based segmentation. In recent years, researchers have investigated registration algorithms to match atlases to query subjects and also strategies for atlas construction. In this paper we present a review of the automated approaches for atlas-based segmentation of magnetic resonance brain images. We aim to point out the strengths and weaknesses of atlas-based methods and suggest new research directions. We use two different criteria to present the methods. First, we refer to the algorithms according to their atlas-based strategy: label propagation, multi-atlas methods, and probabilistic techniques. Subsequently, we classify the methods according to their medical target: the brain and its internal structures, tissue segmentation in healthy subjects, tissue segmentation in fetus, neonates and elderly subjects, and segmentation of damaged brains. A quantitative comparison of the results reported in the literature is also presented.
Collapse
Affiliation(s)
- Mariano Cabezas
- Institute of Informatics and Applications, Ed. P-IV, Campus Montilivi, University of Girona, 17071 Girona, Spain
| | | | | | | | | |
Collapse
|
397
|
Lepage JF, Clouchoux C, Lassonde M, Evans AC, Deal CL, Théoret H. Abnormal motor cortex excitability is associated with reduced cortical thickness in X monosomy. Hum Brain Mapp 2011; 34:936-44. [PMID: 22102524 DOI: 10.1002/hbm.21481] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Revised: 07/27/2011] [Accepted: 09/09/2011] [Indexed: 11/05/2022] Open
Abstract
Turner syndrome (TS) is a noninherited genetic disorder caused by the absence of one or part of one X chromosome. It is characterized by physical and cognitive phenotypes that include motor deficits that may be related to neuroanatomical abnormalities of sensorimotor pathways. Here, we used transcranial magnetic stimulation (TMS) and cortical thickness analysis to assess motor cortex excitability and cortical morphology in 17 individuals with TS (45, X) and 17 healthy controls. Exploratory analysis was performed to detect the effect of parental origin of the X chromosome (X(mat), X(pat)) on both measures. Results showed that long-interval intracortical inhibition was reduced and motor threshold (MT) was increased in TS relative to controls. Areas of reduced thickness were observed in the precentral gyrus of individuals with TS that correlated with MT. A significant difference between X(mat) (n = 11) and X(pat) (n = 6) individuals was found on the measure of long-interval intracortical inhibition. These findings demonstrate the presence of converging anatomical and neurophysiological abnormalities of the motor system in X monosomy.
Collapse
|
398
|
Voss P, Zatorre RJ. Occipital cortical thickness predicts performance on pitch and musical tasks in blind individuals. Cereb Cortex 2011; 22:2455-65. [PMID: 22095215 DOI: 10.1093/cercor/bhr311] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The behavioral and neurofunctional consequences of blindness often include performance enhancements and recruitment of occipital regions for nonvisual tasks. How the neuroanatomical changes resulting from this sensory loss relate to these functional changes is, however, less clear. Previous studies using cortical thickness (CT) measures have shown thicker occipital cortex in early-blind (EB) individuals compared with sighted controls. We hypothesized that this finding reflects the crossmodal plasticity often observed in blind individuals and thus could reflect behavioral adaptations. To address this issue, CT measures in blind (early and late) and sighted subjects were obtained along with several auditory behavioral measures in an attempt to relate behavioral and neuroanatomical changes. Group contrasts confirmed previous results in showing thicker occipital cortex in the EB. Regression analyses between CT measures across the whole brain of all blind individuals with the behavioral scores from 2 tasks in which EB subjects were superior (pitch and melody discrimination) showed that CT of occipital areas was directly related to behavioral enhancements. These findings constitute a compelling demonstration that anatomical changes in occipital areas are directly related to heightened behavioral abilities in the blind and hence support the idea that these anatomical features reflect adaptive compensatory plasticity.
Collapse
Affiliation(s)
- Patrice Voss
- Cognitive Neuroscience Unit, Montreal Neurological Institute, McGill University, Montreal, Québec, Canada H3A 2B4.
| | | |
Collapse
|
399
|
Meguid NA, Fahim C, Sami R, Nashaat NH, Yoon U, Anwar M, El-Dessouky HM, Shahine EA, Ibrahim AS, Mancini-Marie A, Evans AC. Cognition and lobar morphology in full mutation boys with fragile X syndrome. Brain Cogn 2011; 78:74-84. [PMID: 22070923 DOI: 10.1016/j.bandc.2011.09.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Revised: 09/13/2011] [Accepted: 09/15/2011] [Indexed: 01/05/2023]
Abstract
The aims of the present study are twofold: (1) to examine cortical morphology (CM) associated with alterations in cognition in fragile X syndrome (FXS); (2) to characterize the CM profile of FXS versus FXS with an autism diagnosis (FXS+Aut) as a preliminary attempt to further elucidate the behavioral distinctions between the two sub-groups. We used anatomical magnetic resonance imaging surface-based morphometry in 21 male children (FXS N=11 and age [2.27-13.3] matched controls [C] N=10). We found (1) increased whole hemispheric and lobar cortical volume, cortical thickness and cortical complexity bilaterally, yet insignificant changes in hemispheric surface area and gyrification index in FXS compared to C; (2) linear regression analyses revealed significant negative correlations between CM and cognition; (3) significant CM differences between FXS and FXS+Aut associated with their distinctive behavioral phenotypes. These findings are critical in understanding the neuropathophysiology of one of the most common intellectual deficiency syndromes associated with altered cognition as they provide human in vivo information about genetic control of CM and cognition.
Collapse
Affiliation(s)
- Nagwa A Meguid
- Department of Research on Children with Special Needs, Medical Genetics Division, The National Research Centre, Cairo, Egypt
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
400
|
Hasan KM, Walimuni IS, Abid H, Datta S, Wolinsky JS, Narayana PA. Human brain atlas-based multimodal MRI analysis of volumetry, diffusimetry, relaxometry and lesion distribution in multiple sclerosis patients and healthy adult controls: implications for understanding the pathogenesis of multiple sclerosis and consolidation of quantitative MRI results in MS. J Neurol Sci 2011; 313:99-109. [PMID: 21978603 DOI: 10.1016/j.jns.2011.09.015] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Revised: 08/31/2011] [Accepted: 09/13/2011] [Indexed: 01/18/2023]
Abstract
Multiple sclerosis (MS) is the most common immune-mediated disabling neurological disease of the central nervous system. The pathogenesis of MS is not fully understood. Histopathology implicates both demyelination and axonal degeneration as the major contributors to the accumulation of disability. The application of several in vivo quantitative magnetic resonance imaging (MRI) methods to both lesioned and normal-appearing brain tissue has not yet provided a solid conclusive support of the hypothesis that MS might be a diffuse disease. In this work, we adopted FreeSurfer to provide standardized macrostructure or volumetry of lesion free normal-appearing brain tissue in combination with multiple quantitative MRI metrics (T(2) relaxation time, diffusion tensor anisotropy and diffusivities) that characterize tissue microstructural integrity. By incorporating a large number of healthy controls, we have attempted to separate the natural age-related change from the disease-induced effects. Our work shows elevation in diffusivity and relaxation times and reduction in volume in a number of normal-appearing white matter and gray matter structures in relapsing-remitting multiple sclerosis patients. These changes were related in part with the spatial distribution of lesions. The whole brain lesion load and age-adjusted expanded disability status score showed strongest correlations in regions such as corpus callosum with qMRI metrics that are believed to be specific markers of axonal dysfunction, consistent with histologic data of others indicating axonal loss that is independent of focal lesions. Our results support that MS at least in part has a neurodegenerative component.
Collapse
Affiliation(s)
- Khader M Hasan
- The University of Texas Health Science Center at Houston, Department of Diagnostic & Interventional Imaging, 6431 Fannin Street, MSB 2.100, Houston, Texas 77030, USA.
| | | | | | | | | | | |
Collapse
|