351
|
Barraud O, François B, Chainier D, Vignaud J, Ploy MC. Value of integron detection for predicting antibiotic resistance in patients with Gram-negative septicaemia. Int J Antimicrob Agents 2014; 44:351-3. [PMID: 25130099 DOI: 10.1016/j.ijantimicag.2014.06.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 06/03/2014] [Accepted: 06/08/2014] [Indexed: 10/25/2022]
Abstract
Multidrug-resistant Enterobacteriaceae are a major public health threat and complicate the choice of drugs for empirical antibiotic therapy, especially in sepsis patients who require rapid, appropriate treatment. The objective of this study was to examine the value of integrons as a global predictive marker of acquired antibiotic resistance in septicaemia-causing Enterobacteriaceae by direct detection in positive blood cultures. The integron genetic marker can be detected in a single test, whereas multiple PCRs are needed to detect the hundreds of known antibiotic resistance genes. A total of 166 positive blood cultures were included in the study, and integrons were detected with a quantitative PCR method both in positive blood cultures and isolated Enterobacteriaceae. The results of integron detection directly on positive blood cultures were consistent in 98.8% of cases with integron detection in isolated Enterobacteriaceae. Negative predictive values (NPVs) were >90% for resistance to third-generation cephalosporins, aminoglycosides, ciprofloxacin and trimethoprim/sulfamethoxazole. In the current context of antibiotic stewardship, these good NPVs indicate that this method might be useful for preserving broad-spectrum antibiotics. The results of this proof-of-concept study must be confirmed in order to demonstrate the clinical relevance of integron detection, not only in positive blood cultures but also, to gain time, in raw biological samples.
Collapse
Affiliation(s)
- Olivier Barraud
- INSERM, U1092, Limoges F-87000, France; Université de Limoges, UMR-S1092, Faculté de Médecine, 2 rue du Dr Marcland, Limoges F-87025, France; CHU Limoges, Laboratoire de Bactériologie-Virologie-Hygiène, 2 Av. Martin Luther King, Limoges F-87042, France
| | - Bruno François
- INSERM, U1092, Limoges F-87000, France; Université de Limoges, UMR-S1092, Faculté de Médecine, 2 rue du Dr Marcland, Limoges F-87025, France; CHU Limoges, CIC-1435, 2 Av. Martin Luther King, Limoges F-87042, France
| | - Delphine Chainier
- INSERM, U1092, Limoges F-87000, France; Université de Limoges, UMR-S1092, Faculté de Médecine, 2 rue du Dr Marcland, Limoges F-87025, France; CHU Limoges, Laboratoire de Bactériologie-Virologie-Hygiène, 2 Av. Martin Luther King, Limoges F-87042, France
| | - Julie Vignaud
- CHU Limoges, Laboratoire de Bactériologie-Virologie-Hygiène, 2 Av. Martin Luther King, Limoges F-87042, France
| | - Marie-Cécile Ploy
- INSERM, U1092, Limoges F-87000, France; Université de Limoges, UMR-S1092, Faculté de Médecine, 2 rue du Dr Marcland, Limoges F-87025, France; CHU Limoges, Laboratoire de Bactériologie-Virologie-Hygiène, 2 Av. Martin Luther King, Limoges F-87042, France.
| |
Collapse
|
352
|
Baharoglu Z, Mazel D. SOS, the formidable strategy of bacteria against aggressions. FEMS Microbiol Rev 2014; 38:1126-45. [PMID: 24923554 DOI: 10.1111/1574-6976.12077] [Citation(s) in RCA: 272] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 05/01/2014] [Accepted: 05/07/2014] [Indexed: 12/22/2022] Open
Abstract
The presence of an abnormal amount of single-stranded DNA in the bacterial cell constitutes a genotoxic alarm signal that induces the SOS response, a broad regulatory network found in most bacterial species to address DNA damage. The aim of this review was to point out that beyond being a repair process, SOS induction leads to a very strong but transient response to genotoxic stress, during which bacteria can rearrange and mutate their genome, induce several phenotypic changes through differential regulation of genes, and sometimes acquire characteristics that potentiate bacterial survival and adaptation to changing environments. We review here the causes and consequences of SOS induction, but also how this response can be modulated under various circumstances and how it is connected to the network of other important stress responses. In the first section, we review articles describing the induction of the SOS response at the molecular level. The second section discusses consequences of this induction in terms of DNA repair, changes in the genome and gene expression, and sharing of genomic information, with their effects on the bacteria's life and evolution. The third section is about the fine tuning of this response to fit with the bacteria's 'needs'. Finally, we discuss recent findings linking the SOS response to other stress responses. Under these perspectives, SOS can be perceived as a powerful bacterial strategy against aggressions.
Collapse
Affiliation(s)
- Zeynep Baharoglu
- Institut Pasteur, Département Génomes et Génétique, Unité Plasticité du Génome Bactérien, Paris, France; CNRS, UMR3525, Paris, France
| | | |
Collapse
|
353
|
Zhang C, Pang B, Zhou Z, Wang H, Zhou H, Lu X, Du P, Zhang L, Li J, Cui Z, Chen C, Stokes HW, Kan B. The purifying trend in the chromosomal integron in Vibrio cholerae strains during the seventh pandemic. INFECTION GENETICS AND EVOLUTION 2014; 26:241-9. [PMID: 24905599 DOI: 10.1016/j.meegid.2014.05.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 05/14/2014] [Accepted: 05/17/2014] [Indexed: 12/31/2022]
Abstract
Chromosomal integron (CI) arrays in Vibrio spp. are generally large and display great variation. Here we determined the sequence of CI array in a toxigenic O139 Vibriocholerae strain and compared it with the arrays from the genome of different O1 biotypes available in GenBank. Then PCR scanning was used to determine the CI array variations in 83 epidemic O139 strains and subsequently these variations were compared with that found in toxigenic O1 El Tor strains in our previous work. Few differences were observed in the cohort of toxigenic O139 strains compared to the toxigenic O1 El Tor strains. On the basis of CI arrays, the toxigenic O1 El Tor and O139 strains isolated concurrently in recent years appear to be more similar to each other than to the O1 strains isolated in previous decades, suggesting a closer evolutionary relationship between them. Comparison of CI arrays in toxigenic O1 El Tor and O139 V. cholerae strains isolated between 1961 and 2009 revealed a purifying trend in the CI arrays in the chronological order during the seventh pandemic.
Collapse
Affiliation(s)
- Cuicai Zhang
- State Key Laboratory for Infectious Disease Prevention and Control, Department of Diarrheal Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, People's Republic of China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, People's Republic of China
| | - Bo Pang
- State Key Laboratory for Infectious Disease Prevention and Control, Department of Diarrheal Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, People's Republic of China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, People's Republic of China
| | - Zhemin Zhou
- The University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Haiyin Wang
- State Key Laboratory for Infectious Disease Prevention and Control, Department of Diarrheal Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, People's Republic of China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, People's Republic of China
| | - Haijian Zhou
- State Key Laboratory for Infectious Disease Prevention and Control, Department of Diarrheal Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, People's Republic of China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, People's Republic of China
| | - Xin Lu
- State Key Laboratory for Infectious Disease Prevention and Control, Department of Diarrheal Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, People's Republic of China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, People's Republic of China
| | - Pengcheng Du
- State Key Laboratory for Infectious Disease Prevention and Control, Department of Diarrheal Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, People's Republic of China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, People's Republic of China
| | - Lijuan Zhang
- State Key Laboratory for Infectious Disease Prevention and Control, Department of Diarrheal Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, People's Republic of China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, People's Republic of China
| | - Jie Li
- State Key Laboratory for Infectious Disease Prevention and Control, Department of Diarrheal Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, People's Republic of China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, People's Republic of China
| | - Zhigang Cui
- State Key Laboratory for Infectious Disease Prevention and Control, Department of Diarrheal Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, People's Republic of China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, People's Republic of China
| | - Chen Chen
- State Key Laboratory for Infectious Disease Prevention and Control, Department of Diarrheal Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, People's Republic of China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, People's Republic of China
| | - H W Stokes
- The ithree Institute, University of Technology, Sydney, New South Wales, Australia
| | - Biao Kan
- State Key Laboratory for Infectious Disease Prevention and Control, Department of Diarrheal Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, People's Republic of China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, People's Republic of China.
| |
Collapse
|
354
|
Andersson DI, Hughes D. Microbiological effects of sublethal levels of antibiotics. Nat Rev Microbiol 2014; 12:465-78. [DOI: 10.1038/nrmicro3270] [Citation(s) in RCA: 986] [Impact Index Per Article: 89.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
355
|
Liu CC, Tang CY, Chang KC, Kuo HY, Liou ML. A comparative study of class 1 integrons in Acinetobacter baumannii. Gene 2014; 544:75-82. [PMID: 24768721 DOI: 10.1016/j.gene.2014.04.047] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 04/17/2014] [Accepted: 04/22/2014] [Indexed: 10/25/2022]
Abstract
Multidrug resistance (MDR) in Acinetobacter baumannii is increasingly reported and has become a significant public concern. The method responsible for the acquisition of resistance genes via integrons from the environment or intra-species in A. baumannii remains to be understood. This study was performed to investigate the transmission route of these integrons using a comparative analysis of published A. baumannii complete genomes. The phylogenetic analysis of A. baumannii type 1 integrases (IntI1) showed that the integrons could be transferred across the two evolutionary lineages, the international clone I (IC I) and clone II (IC II) strains. In addition, the integrons in A. baumannii strains were mainly responsible for the transfer of resistance genes for two types of long-term usage antibiotics and antiseptics, such as aminoglycosides, chloramphenicol and the quaternary-ammonium-compound family. The in silico comparative analysis of known integron integrases revealed that the intI genes were phylogenetically related among A. baumannii strains and some microorganisms living in a sediment community, implicating that the integrons of A. baumannii might have originated from those microorganisms belonging to the β-preoteobacterial class in the sediment environment. The data suggest that the gain of class 1 integrons in A. baumannii strains may have started before the antibiotic era. This report shows that the origins of A. baumannii class 1 integrons may be the soil environment and that the resistance genes included in integrons are horizontally transferred across all the A. baumannii genomes, including IC I and IC II.
Collapse
Affiliation(s)
- Chih-Chin Liu
- Department of Bioinformatics, Chung Hua University, Hsin-Chu City, Taiwan; Department of Computer Science and Information Engineering, Providence University, Taichung County, Taiwan
| | - Chuan Yi Tang
- Department of Computer Science and Information Engineering, Providence University, Taichung County, Taiwan; Department of Computer Science, National Tsing Hua University, Hsin-Chu City, Taiwan
| | - Kai-Chih Chang
- Department of Laboratory Medicine and Biotechnology, Tzu Chi University, Hualien City, Taiwan; Department of Laboratory Medicine, Buddhst Tzu Chi General Hospital, Hualien City, Taiwan
| | - Han-Yueh Kuo
- Department of Medicine, National Taiwan University Hospital Hsin-Chu Branch, Hsin-Chu City, Taiwan; School of Medicine, National Taiwan University, Taipei City, Taiwan
| | - Ming-Li Liou
- Department of Computer Science and Information Engineering, Providence University, Taichung County, Taiwan; Department of Medical Laboratory Science and Biotechnology, Yuanpei University, Hsin-Chu City, Taiwan.
| |
Collapse
|
356
|
Muziasari WI, Managaki S, Pärnänen K, Karkman A, Lyra C, Tamminen M, Suzuki S, Virta M. Sulphonamide and trimethoprim resistance genes persist in sediments at Baltic Sea aquaculture farms but are not detected in the surrounding environment. PLoS One 2014; 9:e92702. [PMID: 24651770 PMCID: PMC3961581 DOI: 10.1371/journal.pone.0092702] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 02/24/2014] [Indexed: 12/15/2022] Open
Abstract
Persistence and dispersal of antibiotic resistance genes (ARGs) are important factors for assessing ARG risk in aquaculture environments. Here, we quantitatively detected ARGs for sulphonamides (sul1 and sul2) and trimethoprim (dfrA1) and an integrase gene for a class 1 integron (intI1) at aquaculture facilities in the northern Baltic Sea, Finland. The ARGs persisted in sediments below fish farms at very low antibiotic concentrations during the 6-year observation period from 2006 to 2012. Although the ARGs persisted in the farm sediments, they were less prevalent in the surrounding sediments. The copy numbers between the sul1 and intI1 genes were significantly correlated suggesting that class 1 integrons may play a role in the prevalence of sul1 in the farm sediments through horizontal gene transfer. In conclusion, the presence of ARGs may limit the effectiveness of antibiotics in treating fish illnesses, thereby causing a potential risk to the aquaculture industry. However, the restricted presence of ARGs at the farms is unlikely to cause serious effects in the northern Baltic Sea sediment environments around the farms.
Collapse
Affiliation(s)
- Windi Indra Muziasari
- Department of Food and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Satoshi Managaki
- Department of Environmental Sciences, Musashino University, Tokyo, Japan
| | - Katariina Pärnänen
- Department of Food and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Antti Karkman
- Department of Food and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Christina Lyra
- Department of Food and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Manu Tamminen
- Department of Food and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Satoru Suzuki
- Centre for Marine Environmental Studies (CMES), Ehime University, Matsuyama, Ehime, Japan
| | - Marko Virta
- Department of Food and Environmental Sciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
357
|
Krin E, Cambray G, Mazel D. The superintegron integrase and the cassette promoters are co-regulated in Vibrio cholerae. PLoS One 2014; 9:e91194. [PMID: 24614503 PMCID: PMC3948777 DOI: 10.1371/journal.pone.0091194] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 02/10/2014] [Indexed: 12/23/2022] Open
Abstract
Chromosome 2 of Vibrio cholerae carries a chromosomal superintegron, composed of an integrase, a cassette integration site (attI) and an array of mostly promoterless gene cassettes. We determined the precise location of the promoter, Pc, which drives the transcription of the first cassettes of the V. cholerae superintegron. We found that cassette mRNA starts 65 bp upstream of the attI site, so that the inversely oriented promoters Pc and Pint (integrase promoter) partly overlap, allowing for their potential co-regulation. Pint was previously shown to be induced during the SOS response and is further controlled by the catabolite repression cAMP-CRP complex. We found that cassette expression from Pc was also controlled by the cAMP-CRP complex, but is not part of the SOS regulon. Pint and Pc promoters were both found to be induced in rich medium, at high temperature, high salinity and at the end of exponential growth phase, although at very different levels and independently of sigma factor RpoS. All these results show that expression from the integrase and cassette promoters can take place at the same time, thus leading to coordinated excisions and integrations within the superintegron and potentially coupling cassette shuffling to immediate selective advantage.
Collapse
Affiliation(s)
- Evelyne Krin
- Institut Pasteur, Unité de Plasticité du Génome Bactérien, Département Génomes et Génétique, Paris, France
- CNRS, UMR 3525, Paris, France
| | - Guillaume Cambray
- Institut Pasteur, Unité de Plasticité du Génome Bactérien, Département Génomes et Génétique, Paris, France
| | - Didier Mazel
- Institut Pasteur, Unité de Plasticité du Génome Bactérien, Département Génomes et Génétique, Paris, France
- CNRS, UMR 3525, Paris, France
- * E-mail:
| |
Collapse
|
358
|
Abstract
Bacterial genomes are remarkably stable from one generation to the next but are plastic on an evolutionary time scale, substantially shaped by horizontal gene transfer, genome rearrangement, and the activities of mobile DNA elements. This implies the existence of a delicate balance between the maintenance of genome stability and the tolerance of genome instability. In this review, we describe the specialized genetic elements and the endogenous processes that contribute to genome instability. We then discuss the consequences of genome instability at the physiological level, where cells have harnessed instability to mediate phase and antigenic variation, and at the evolutionary level, where horizontal gene transfer has played an important role. Indeed, this ability to share DNA sequences has played a major part in the evolution of life on Earth. The evolutionary plasticity of bacterial genomes, coupled with the vast numbers of bacteria on the planet, substantially limits our ability to control disease.
Collapse
|
359
|
Nguyen HNK, Van TTH, Nguyen HT, Smooker PM, Shimeta J, Coloe PJ. Molecular characterization of antibiotic resistance in Pseudomonas and Aeromonas isolates from catfish of the Mekong Delta, Vietnam. Vet Microbiol 2014; 171:397-405. [PMID: 24629778 DOI: 10.1016/j.vetmic.2014.01.028] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 01/24/2014] [Accepted: 01/25/2014] [Indexed: 12/01/2022]
Abstract
A collection of 116 motile Pseudomonas spp. and 92 Aeromonas spp. isolated from 15 Vietnamese intensive catfish farms was analyzed to examine the molecular antibiotic resistance characteristics and the transferability of resistance markers within and between species. High levels of resistance to ampicillin, trimethoprim/sulfamethoxazole, nalidixic acid, chloramphenicol, and nitrofurantoin were observed. The percentage of multiple drug resistance of Pseudomonas spp. and Aeromonas spp. isolates was 96.6% and 61.9%, respectively. The multiple antibiotic resistance (MAR) index mean values of 0.457 and 0.293 of Pseudomonas and Aeromonas isolates, respectively, indicated that these isolates were exposed to high risk sources of contamination where antibiotics were commonly used. Approximately 33% of Pseudomonas spp. and 28% of Aeromonas spp. isolates from catfish contained class 1 integrons, but no class 2 integrons were detected. Several common resistance genes including aadA, dfrA and catB were harbored in class 1 integrons. Large plasmids (>55 kb) were frequently detected in 50% and 71.4% of the plasmids extracted from Pseudomonas and Aeromonas isolates, respectively. Conjugation and transformation experiments demonstrated the successful transfer of all or part of the resistance phenotypes of catfish isolates to the recipient strains, including laboratory strains and strains isolated from this study. These results highlight the likely role of catfish bacteria as a reservoir of antibiotic resistant, Gram-negative bacteria harboring a pool of mobile genetic elements that can readily be transferred intra- and interspecies. To our knowledge, this is the first report on molecular characterization of antibiotic resistance of bacteria isolated from catfish in Vietnam.
Collapse
Affiliation(s)
- Hoang Nam Kha Nguyen
- Faculty of Fisheries, Nong Lam University, Thu Duc District, Ho Chi Minh City, Viet Nam; School of Applied Sciences, RMIT University, Bundoora West Campus, Bundoora, Victoria 3083, Australia
| | - Thi Thu Hao Van
- School of Applied Sciences, RMIT University, Bundoora West Campus, Bundoora, Victoria 3083, Australia
| | - Huu Thinh Nguyen
- Faculty of Fisheries, Nong Lam University, Thu Duc District, Ho Chi Minh City, Viet Nam
| | - Peter M Smooker
- School of Applied Sciences, RMIT University, Bundoora West Campus, Bundoora, Victoria 3083, Australia
| | - Jeff Shimeta
- School of Applied Sciences, RMIT University, Bundoora West Campus, Bundoora, Victoria 3083, Australia
| | - Peter J Coloe
- School of Applied Sciences, RMIT University, Bundoora West Campus, Bundoora, Victoria 3083, Australia.
| |
Collapse
|
360
|
Rojo-Bezares B, Estepa V, Cebollada R, de Toro M, Somalo S, Seral C, Castillo FJ, Torres C, Sáenz Y. Carbapenem-resistant Pseudomonas aeruginosa strains from a Spanish hospital: characterization of metallo-beta-lactamases, porin OprD and integrons. Int J Med Microbiol 2014; 304:405-14. [PMID: 24594145 DOI: 10.1016/j.ijmm.2014.01.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2013] [Revised: 01/15/2014] [Accepted: 01/19/2014] [Indexed: 12/31/2022] Open
Abstract
Molecular typing and mechanisms of carbapenem resistance such as alterations in porin OprD and presence of metallo-beta-lactamases (MBLs), as well as integrons have been studied in a collection of carbapenem-resistant Pseudomonas aeruginosa (CRPA) isolates from a Spanish hospital. One hundred and twenty-three CRPA isolates were recovered from different samples of 80 patients. Clonal relationship among CRPA was analyzed by SpeI-PFGE. Susceptibility testing to 11 antibiotics and MBL phenotype was determined by microdilution, IP/IPI E-test and double disc method. The oprD gene was studied by PCR and sequencing, and mutations were determined comparing with P. aeruginosa PAO1 sequence. Characterization of MBLs, and class 1 and 2 integrons were studied by PCR and sequencing. SDS-PAGE analysis of outer membrane proteins of selected strains was performed. Seventy-four-per-cent of patients with CRPA were hospitalised in the ICU setting and 50% had long hospitalization stays. Sixty-four different PFGE patterns were detected, and 87 CRPA strains were further analyzed. MBL phenotype was detected in 43 of 87 strains (49.4%), which contained blaVIM-2 gene inside class 1 integrons. VIM-2-producing strains belonged to lineages ST175, ST235, and ST973. A great diversity of nucleotide insertions, deletions, and mutations in oprD gene, and the presence of a new insertion sequence (ISPa45) truncating oprD were identified among CRPA strains. Class 1 integrons were detected in 75% of CRPA strains, blaVIM-2 and the new arrangement aac(3)-Ia+ISPa34+aadA1 (named as In661) being the most frequent gene-cassette arrays detected. Other gene cassettes detected in integrons were: aadB, aadA6, aadA7, aac(6')-Ib', and blaOXA-46.
Collapse
Affiliation(s)
- Beatriz Rojo-Bezares
- Área de Microbiología Molecular, Centro de Investigación Biomédica de La Rioja (CIBIR), Logroño, Spain
| | - Vanesa Estepa
- Área de Bioquímica y Biología Molecular, Departamento de Agricultura y Alimentación, Universidad de La Rioja, Logroño, Spain
| | - Rocío Cebollada
- Servicio de Microbiología, Hospital Clínico Universitario Lozano Blesa, Zaragoza, Spain
| | - María de Toro
- Área de Microbiología Molecular, Centro de Investigación Biomédica de La Rioja (CIBIR), Logroño, Spain; Área de Bioquímica y Biología Molecular, Departamento de Agricultura y Alimentación, Universidad de La Rioja, Logroño, Spain
| | - Sergio Somalo
- Área de Bioquímica y Biología Molecular, Departamento de Agricultura y Alimentación, Universidad de La Rioja, Logroño, Spain
| | - Cristina Seral
- Servicio de Microbiología, Hospital Clínico Universitario Lozano Blesa, Zaragoza, Spain; Departamento de Microbiología, Facultad de Medicina, Universidad de Zaragoza, Zaragoza, Spain
| | - Francisco Javier Castillo
- Servicio de Microbiología, Hospital Clínico Universitario Lozano Blesa, Zaragoza, Spain; Departamento de Microbiología, Facultad de Medicina, Universidad de Zaragoza, Zaragoza, Spain
| | - Carmen Torres
- Área de Microbiología Molecular, Centro de Investigación Biomédica de La Rioja (CIBIR), Logroño, Spain; Área de Bioquímica y Biología Molecular, Departamento de Agricultura y Alimentación, Universidad de La Rioja, Logroño, Spain
| | - Yolanda Sáenz
- Área de Microbiología Molecular, Centro de Investigación Biomédica de La Rioja (CIBIR), Logroño, Spain.
| |
Collapse
|
361
|
Su HC, Ying GG, He LY, Liu YS, Zhang RQ, Tao R. Antibiotic resistance, plasmid-mediated quinolone resistance (PMQR) genes and ampC gene in two typical municipal wastewater treatment plants. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2014; 16:324-32. [PMID: 24441525 DOI: 10.1039/c3em00555k] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Antibiotic resistant bacteria and plasmid-mediated quinolone resistance genes and ampC gene were investigated for Escherichia coli isolates from two typical municipal wastewater treatment plants in both dry and wet seasons by using the antibiotic susceptibility test and PCR assay, respectively. The results showed that 98.4% of the isolates (1056) were found resistant to antibiotic(s) tested and 90.6% showed multiple resistances to at least three antibiotics. Tetracycline was found to have the highest resistance frequency (70.8%), followed by ampicillin (65.1%), whereas ceftazidime had the lowest resistance frequency of 9.0%. Moreover, 39.2% of the E. coli isolates were carrying plasmids. intI1 had the highest detection rate in the plasmids (38.1%), followed by qnrS, ampC, qnrB, intI2 and aac(6')-Ib-cr. The disinfection process (UV and chlorination) could significantly reduce the number of bacteria, but percentage of the resistant bacteria, resistance frequency for each antibiotic, MAR index and detection rate of the plasmid-mediated resistance genes were all found increasing in the effluents of biological units. The results of this study showed that a more frequent horizontal gene transfer occurred in the biological units. Wastewater treatment plants were an important medium for the recombination and dissemination of antibiotic resistance genes in the environment.
Collapse
Affiliation(s)
- Hao-Chang Su
- State Key Laboratory of Organic Geochemistry, CAS Centre for Pearl River Delta Environmental Pollution and Control Research, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.
| | | | | | | | | | | |
Collapse
|
362
|
Jechalke S, Schreiter S, Wolters B, Dealtry S, Heuer H, Smalla K. Widespread dissemination of class 1 integron components in soils and related ecosystems as revealed by cultivation-independent analysis. Front Microbiol 2014; 4:420. [PMID: 24478761 PMCID: PMC3894453 DOI: 10.3389/fmicb.2013.00420] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 12/20/2013] [Indexed: 01/29/2023] Open
Abstract
Class 1 integrons contribute to the emerging problem of antibiotic resistance in human medicine by acquisition, exchange, and expression of resistance genes embedded within gene cassettes. Besides the clinical setting they were recently reported from environmental habitats and often located on plasmids and transposons, facilitating their transfer and spread within bacterial communities. In this study we aimed to provide insights into the occurrence of genes typically associated with the class 1 integrons in previously not studied environments with or without human impact and their association with IncP-1 plasmids. Total community DNA was extracted from manure-treated and untreated soils, lettuce and potato rhizosphere, digestates, and an on-farm biopurification system and screened by PCR with subsequent Southern blot hybridization for the presence of the class 1 integrase gene intI1 as well as qacE and qacEΔ 1 resistance genes. The results revealed a widespread dissemination of class 1 integrons in the environments analyzed, mainly related to the presence of qacEΔ 1 genes. All 28 IncP-1ε plasmids carrying class 1 integrons, which were captured exogenously in a recent study from piggery manure and soils treated with manure, carried qacEΔ 1 genes. Based on the strong hybridization signals in the rhizosphere of lettuce compared to the potato rhizosphere, the abundances of intI1, qacE/qacEΔ 1, and sul1 genes were quantified relative to the 16S rRNA gene abundance by real-time PCR in the rhizosphere of lettuce planted in three different soils and in the corresponding bulk soil. A significant enrichment of intI1 and qacE/qacEΔ 1 genes was confirmed in the rhizosphere of lettuce compared to bulk soil. Additionally, the relative abundance of korB genes specific for IncP-1 plasmids was enriched in the rhizosphere and correlated to the intI1 gene abundance indicating that IncP-1 plasmids might have contributed to the spread of class 1 integrons in the analyzed soils.
Collapse
Affiliation(s)
- Sven Jechalke
- Institute for Epidemiology and Pathogen Diagnostics, Julius Kühn-Institut, Federal Research Centre for Cultivated Plants (JKI)Braunschweig, Germany
| | - Susanne Schreiter
- Institute for Epidemiology and Pathogen Diagnostics, Julius Kühn-Institut, Federal Research Centre for Cultivated Plants (JKI)Braunschweig, Germany
| | - Birgit Wolters
- Institute for Epidemiology and Pathogen Diagnostics, Julius Kühn-Institut, Federal Research Centre for Cultivated Plants (JKI)Braunschweig, Germany
- Institute of Environmental and Sustainable Chemistry, Technische Universität BraunschweigBraunschweig, Germany
| | - Simone Dealtry
- Institute for Epidemiology and Pathogen Diagnostics, Julius Kühn-Institut, Federal Research Centre for Cultivated Plants (JKI)Braunschweig, Germany
| | - Holger Heuer
- Institute for Epidemiology and Pathogen Diagnostics, Julius Kühn-Institut, Federal Research Centre for Cultivated Plants (JKI)Braunschweig, Germany
| | - Kornelia Smalla
- Institute for Epidemiology and Pathogen Diagnostics, Julius Kühn-Institut, Federal Research Centre for Cultivated Plants (JKI)Braunschweig, Germany
| |
Collapse
|
363
|
Abundant rifampin resistance genes and significant correlations of antibiotic resistance genes and plasmids in various environments revealed by metagenomic analysis. Appl Microbiol Biotechnol 2014; 98:5195-204. [PMID: 24615381 DOI: 10.1007/s00253-014-5511-3] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2013] [Revised: 12/27/2013] [Accepted: 12/28/2013] [Indexed: 01/14/2023]
Abstract
In the present study, a newly developed metagenomic analysis approach was applied to investigate the abundance and diversity of antibiotic resistance genes (ARGs) and mobile genetic elements (MGEs) in aquaculture farm sediments, activated sludge, biofilm, anaerobic digestion sludge, and river water. BLASTX analysis against the Comprehensive Antibiotic Resistance Database was conducted for the metagenomic sequence data of each sample and then the ARG-like sequences were sorted based on structured sub-database using customized scripts. The results showed that freshwater fishpond sediment had the highest abundance (196 ppm), and anaerobic digestion sludge possessed the highest diversity (133 subtypes) of ARGs among the samples in this study. Significantly, rifampin resistance genes were universal in all the diverse samples and consistently accounted for 26.9~38.6 % of the total annotated ARG sequences. Furthermore, a significant linear correlation (R (2) = 0.924) was found between diversities (number of subtypes) of ARGs and diversities of plasmids in diverse samples. This work provided a wide spectrum scan of ARGs and MGEs in different environments and revealed the prevalence of rifampin resistance genes and the strong correlation between ARG diversity and plasmid diversity for the first time.
Collapse
|
364
|
Gaze WH, Krone SM, Larsson DGJ, Li XZ, Robinson JA, Simonet P, Smalla K, Timinouni M, Topp E, Wellington EM, Wright GD, Zhu YG. Influence of humans on evolution and mobilization of environmental antibiotic resistome. Emerg Infect Dis 2014; 19. [PMID: 23764294 PMCID: PMC3713965 DOI: 10.3201/eid1907.120871] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The clinical failure of antimicrobial drugs that were previously effective in controlling infectious disease is a tragedy of increasing magnitude that gravely affects human health. This resistance by pathogens is often the endpoint of an evolutionary process that began billions of years ago in non–disease-causing microorganisms. This environmental resistome, its mobilization, and the conditions that facilitate its entry into human pathogens are at the heart of the current public health crisis in antibiotic resistance. Understanding the origins, evolution, and mechanisms of transfer of resistance elements is vital to our ability to adequately address this public health issue.
Collapse
|
365
|
Wang FH, Qiao M, Lv ZE, Guo GX, Jia Y, Su YH, Zhu YG. Impact of reclaimed water irrigation on antibiotic resistance in public parks, Beijing, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2014; 184:247-253. [PMID: 24071635 DOI: 10.1016/j.envpol.2013.08.038] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 08/26/2013] [Accepted: 08/30/2013] [Indexed: 06/02/2023]
Abstract
The abundance and distribution of antibiotics and antibiotic resistance genes (ARGs) in soils from six parks using reclaimed water in Beijing, China, were characterized. Three classes of commonly used antibiotics (tetracycles, quinolones, and sulfonamides) were analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The highest concentrations of tetracyclines and quinolones were 145.2 μg kg(-1) and 79.2 μg kg(-1), respectively. Detected tetG, tetW, sulI, and sulII genes were quantified by quantitative PCR. ARGs exhibited various abundances for different park soils. The integrase gene (intI1) as an indicator of horizontal gene transfer potential was also detected in high abundance, and had significant positive correlation with tetG, sulI, and sulII genes, suggesting that intI1 may be involved in ARGs dissemination. Both sulII and intI1 clones had high homology with some classes of pathogenic bacteria, such as Klebsiella oxytoca, Acinetobacter baumannii, Shigella flexneri, which could trigger potential public health concern.
Collapse
Affiliation(s)
- Feng-Hua Wang
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | | | | | | | | | | | | |
Collapse
|
366
|
Ghosh TS, Gupta SS, Nair GB, Mande SS. In silico analysis of antibiotic resistance genes in the gut microflora of individuals from diverse geographies and age-groups. PLoS One 2013; 8:e83823. [PMID: 24391833 PMCID: PMC3877126 DOI: 10.1371/journal.pone.0083823] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2013] [Accepted: 11/10/2013] [Indexed: 11/18/2022] Open
Abstract
The spread of antibiotic resistance, originating from the rampant and unrestrictive use of antibiotics in humans and livestock over the past few decades has emerged as a global health problem. This problem has been further compounded by recent reports implicating the gut microbial communities to act as reservoirs of antibiotic resistance. We have profiled the presence of probable antibiotic resistance genes in the gut flora of 275 individuals from eight different nationalities. For this purpose, available metagenomic data sets corresponding to 275 gut microbiomes were analyzed. Sequence similarity searches of the genomic fragments constituting each of these metagenomes were performed against genes conferring resistance to around 240 antibiotics. Potential antibiotic resistance genes conferring resistance against 53 different antibiotics were detected in the human gut microflora analysed in this study. In addition to several geography/country-specific patterns, four distinct clusters of gut microbiomes, referred to as ‘Resistotypes’, exhibiting similarities in their antibiotic resistance profiles, were identified. Groups of antibiotics having similarities in their resistance patterns within each of these clusters were also detected. Apart from this, mobile multi-drug resistance gene operons were detected in certain gut microbiomes. The study highlighted an alarmingly high abundance of antibiotic resistance genes in two infant gut microbiomes. The results obtained in the present study presents a holistic ‘big picture’ on the spectra of antibiotic resistance within our gut microbiota across different geographies. Such insights may help in implementation of new regulations and stringency on the existing ones.
Collapse
Affiliation(s)
- Tarini Shankar Ghosh
- BioSciences R&D Division, TCS Innovation Labs, Tata Consultancy Services Ltd., Pune, Maharashtra, India
| | - Sourav Sen Gupta
- Translational Health Sciences and Technology Institute, Gurgaon, Haryana, India
| | | | - Sharmila S. Mande
- BioSciences R&D Division, TCS Innovation Labs, Tata Consultancy Services Ltd., Pune, Maharashtra, India
- * E-mail:
| |
Collapse
|
367
|
Chao Y, Ma L, Yang Y, Ju F, Zhang XX, Wu WM, Zhang T. Metagenomic analysis reveals significant changes of microbial compositions and protective functions during drinking water treatment. Sci Rep 2013; 3:3550. [PMID: 24352003 PMCID: PMC6506563 DOI: 10.1038/srep03550] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 11/29/2013] [Indexed: 12/12/2022] Open
Abstract
The metagenomic approach was applied to characterize variations of microbial structure and functions in raw (RW) and treated water (TW) in a drinking water treatment plant (DWTP) at Pearl River Delta, China. Microbial structure was significantly influenced by the treatment processes, shifting from Gammaproteobacteria and Betaproteobacteria in RW to Alphaproteobacteria in TW. Further functional analysis indicated the basic metabolic functions of microorganisms in TW did not vary considerably. However, protective functions, i.e. glutathione synthesis genes in ‘oxidative stress’ and ‘detoxification’ subsystems, significantly increased, revealing the surviving bacteria may have higher chlorine resistance. Similar results were also found in glutathione metabolism pathway, which identified the major reaction for glutathione synthesis and supported more genes for glutathione metabolism existed in TW. This metagenomic study largely enhanced our knowledge about the influences of treatment processes, especially chlorination, on bacterial community structure and protective functions (e.g. glutathione metabolism) in ecosystems of DWTPs.
Collapse
Affiliation(s)
- Yuanqing Chao
- Environmental Biotechnology Lab, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Liping Ma
- Environmental Biotechnology Lab, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Ying Yang
- Environmental Biotechnology Lab, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Feng Ju
- Environmental Biotechnology Lab, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Xu-Xiang Zhang
- 1] Environmental Biotechnology Lab, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China [2] State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046, China
| | - Wei-Min Wu
- Department of Civil and Environmental Engineering, Stanford University, Stanford, California 94305, United States
| | - Tong Zhang
- Environmental Biotechnology Lab, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| |
Collapse
|
368
|
Rapa RA, Labbate M. The function of integron-associated gene cassettes in Vibrio species: the tip of the iceberg. Front Microbiol 2013; 4:385. [PMID: 24367362 PMCID: PMC3856429 DOI: 10.3389/fmicb.2013.00385] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 11/25/2013] [Indexed: 12/17/2022] Open
Abstract
The integron is a genetic element that incorporates mobile genes termed gene cassettes into a reserved genetic site via site-specific recombination. It is best known for its role in antibiotic resistance with one type of integron, the class 1 integron, a major player in the dissemination of antibiotic resistance genes across Gram negative pathogens and commensals. However, integrons are ancient structures with over 100 classes (including class 1) present in bacteria from the broader environment. While, the class 1 integron is only one example of an integron being mobilized into the clinical environment, it is by far the most successful. Unlike clinical class 1 integrons which are largely found on plasmids, other integron classes are found on the chromosomes of bacteria and carry diverse gene cassettes indicating a non-antibiotic resistance role(s). However, there is very limited knowledge on what these alternative roles are. This is particularly relevant to Vibrio species where gene cassettes make up approximately 1-3% of their entire genome. In this review, we discuss how emphasis on class 1 integron research has resulted in a limited understanding by the wider research community on the role of integrons in the broader environment. This has the capacity to be counterproductive in solving or improving the antibiotic resistance problem into the future. Furthermore, there is still a significant lack of knowledge on how gene cassettes in Vibrio species drive adaptation and evolution. From research in Vibrio rotiferianus DAT722, new insight into how gene cassettes affect cellular physiology offers new alternative roles for the gene cassette resource. At least a subset of gene cassettes are involved in host surface polysaccharide modification suggesting that gene cassettes may be important in processes such as bacteriophage resistance, adhesion/biofilm formation, protection from grazers and bacterial aggregation.
Collapse
Affiliation(s)
- Rita A Rapa
- ithree Institute, University of Technology Sydney, NSW, Australia ; Department of Medical and Molecular Biosciences, University of Technology Sydney, NSW, Australia
| | - Maurizio Labbate
- ithree Institute, University of Technology Sydney, NSW, Australia ; Department of Medical and Molecular Biosciences, University of Technology Sydney, NSW, Australia
| |
Collapse
|
369
|
Novel Class 1 Integrons in Multi-drug Resistant Isolates from Eastern China. Indian J Microbiol 2013; 54:227-31. [PMID: 25320427 DOI: 10.1007/s12088-013-0441-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2013] [Accepted: 11/21/2013] [Indexed: 02/01/2023] Open
Abstract
Integrons are mobile genetic elements able to capture, express and excise resistance genes, playing an important role in the spread of bacterial resistance. The present study was to investigate the occurrence and diversity of integrons in 120 clinical multi-drug resistant Gram-negative isolates from eastern China. Screening of integrons was performed by PCR and gene cassettes were further characterized by PCR-RFLP and sequencing. Class 1 integrons were detected in 70.8 % of isolates and no class 2 and class 3 integrons were detected in any isolates. A total of 19 resistant gene cassettes were identified, four representative of novel gene cassettes: an aacA3 variant (aacA3c), an aacA4 variant (aacA4'-17), a bla OXA variant (bla OXA-251 ), and a catB8 gene cassette interrupted by an insertion sequence IS10 (catB8::IS10). In addition, 14 cassette arrays were detected, including three novel integrons: gcuD1-aacA4'-17-gcu38B-catB8::IS10 (In712), aacA3c-aadA13-bla OXA-251 (In713) and dfrA1-gcu37-aadA5 (In714). The presence of novel integron structures in clinical isolates suggests hospital environments may favor the formation of novel combination of gene cassettes. Moreover, the high prevalence of integrons in multi-drug resistant isolates highlights the urgent need to employ effective means to avoid dissemination of drug-resistant bacteria.
Collapse
|
370
|
Uyaguari MI, Scott GI, Norman RS. Abundance of class 1-3 integrons in South Carolina estuarine ecosystems under high and low levels of anthropogenic influence. MARINE POLLUTION BULLETIN 2013; 76:77-84. [PMID: 24095050 DOI: 10.1016/j.marpolbul.2013.09.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 09/10/2013] [Accepted: 09/12/2013] [Indexed: 06/02/2023]
Abstract
The impact of human activity on the spread of antibiotic resistant bacteria throughout coastal estuarine ecosystems is not well characterized. It has been suggested that laterally transferred genetic agents, such as integrons, play a role in the spread of resistant bacteria throughout ecosystems. This study compares the distribution of three integron classes throughout a coastal estuarine ecosystem. To determine integron distribution patterns, DNA was extracted from sediment and water collected at seven sites throughout two estuaries with different levels of anthropogenic input and integrons analyzed using quantitative PCR. The data show that while all three integron classes are present, the relative abundance is different, with class 2 integrons significantly elevated in areas of high anthropogenic input and class 1 integrons elevated in areas of low input. Our results provide a foundation for using integron gene distribution as a biomarker of urban impact on antibiotic resistance gene flow and ecosystem health.
Collapse
Affiliation(s)
- Miguel I Uyaguari
- Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA
| | | | | |
Collapse
|
371
|
Cheng W, Chen H, Su C, Yan S. Abundance and persistence of antibiotic resistance genes in livestock farms: a comprehensive investigation in eastern China. ENVIRONMENT INTERNATIONAL 2013; 61:1-7. [PMID: 24091253 DOI: 10.1016/j.envint.2013.08.023] [Citation(s) in RCA: 210] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 08/27/2013] [Accepted: 08/31/2013] [Indexed: 05/21/2023]
Abstract
Increases of antibiotic resistance genes in the environment may pose a threat to public health. The purpose of this study was to investigate the abundance and diversity of tetracycline (tet) and sulfonamide (sul) resistance genes in eight livestock farms in Hangzhou, eastern China. Ten tet genes (tetA, tetB, tetC, tetG, tetL, tetM, tetO, tetQ, tetW, and tetX), two sul genes (sulI and sulII), and one genetic element associated with mobile antibiotic resistance genes [class 1 integron (intI1)] were quantified by real-time polymerase chain reaction. No significant difference was found in the abundance of the tet and sul genes in various scales of pig, chicken, and duck farms (P>0.05). The average abundance of ribosomal protection protein genes (tetQ, tetM, tetW, and tetO) in the manure and wastewater samples was higher than most of the efflux pump genes (tetA, tetB, tetC, and tetL) and enzymatic modification gene (tetX) (P<0.05), except for efflux pump gene tetG, which was abundant and showed no difference from tetM. Most ARGs had higher relative abundance in the wastewater lagoon than in manures even after treatment. Although the three ribosomal protection protein genes (tetQ, tetW, and tetO) had higher relative abundance, numbers were reduced during the complete wastewater treatment process in pig farms (P<0.05). The relative abundance of tetG, sulI, and sulII increased after the wastewater treatment and the removal of these three genes exhibited significant positive correlations with the intI1 gene (tetG: R(2)=0.60, P<0.05; sulI: R(2)=0.72, P<0.05; sulII: R(2)=0.62, P<0.05), suggesting that intI1 may be involved in their proliferation. As for tetM and sulII genes, a highly significant difference was found in manure samples between pig farms and duck farms (P<0.001). Phylogenetic analysis showed that tetM was more diverse in duck farms than in pig farms. Additionally, sulII sequence was conserved both in pig and duck farms. This is the first comprehensive study to detail the relative abundance of specific ARGs in animal manures and agricultural wastewater treatment systems, potentially providing knowledge for managing antibiotic resistance emanating from agricultural activities.
Collapse
Affiliation(s)
- Weixiao Cheng
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | | | | | | |
Collapse
|
372
|
Quantitative and qualitative impact of hospital effluent on dissemination of the integron pool. ISME JOURNAL 2013; 8:768-77. [PMID: 24152716 DOI: 10.1038/ismej.2013.189] [Citation(s) in RCA: 149] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 09/19/2013] [Accepted: 09/22/2013] [Indexed: 01/19/2023]
Abstract
There is increasing evidence that human activity, and especially the resulting effluent, has a major role in the dissemination of bacterial antibiotic-resistance determinants in the environment. Hospitals are the major antibiotic consumers and thus facilitate the spread of antibiotic resistance. Questions are increasingly being raised about the management of hospital effluents, but their involvement in antibiotic-resistance dissemination has never been assessed. Integrons are a paradigm of genetic transfer between the environmental resistome and both commensal and pathogenic bacteria. In order to assess the impact of hospital activities on antibiotic-resistance dissemination in the environment, we monitored integrons and their gene cassettes in hospital effluents, and their release in the environment. We found that bacterial communities present in a hospital effluent contained a high proportion of integrons. In terms of both their gene cassette diversity and gene cassette arrays, the urban effluent and municipal wastewater treatment plant (WWTP) influent were most similar, whereas the hospital effluent and recirculation sludge exhibited very specific patterns. We found that anthropogenic activities led to the release of abundant integrons and antibiotic-resistance gene cassettes, but we observed no specific impact of hospital activities on the receiving environment. Furthermore, although the WWTP did not reduce the normalized integron copy number, it reduced the diversity of gene cassette arrays contained in the raw wastewater, underlining the effect of the biological treatment on the anthropogenic integron pool arriving at the WWTP.
Collapse
|
373
|
Quiroga MP, Arduino SM, Merkier AK, Quiroga C, Petroni A, Roy PH, Centrón D. “Distribution and functional identification of complex class 1 integrons”. INFECTION GENETICS AND EVOLUTION 2013; 19:88-96. [DOI: 10.1016/j.meegid.2013.06.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 06/25/2013] [Accepted: 06/28/2013] [Indexed: 10/26/2022]
|
374
|
Campos MJ, Palomo G, Hormeño L, Ugarte M, Porrero MC, Herrera-León S, Vadillo S, Píriz S, Quesada A. Co-Occurrence of ACSSuT and Cephalosporin Resistance Phenotypes Is Mediated by int1-Associated Elements in Nontyphoidal Salmonella enterica from Human Infections in Spain. Microb Drug Resist 2013; 19:384-91. [DOI: 10.1089/mdr.2012.0261] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Maria Jorge Campos
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de Extremadura, Cáceres, Spain
- Grupo de Investigação em Recursos Marinhos (GIRM), Instituto Politécnico de Leiria (IPL), Peniche, Portugal
| | - Gonzalo Palomo
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de Extremadura, Cáceres, Spain
| | - Lorena Hormeño
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de Extremadura, Cáceres, Spain
| | - María Ugarte
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | - María Concepción Porrero
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | - Silvia Herrera-León
- Servicio de Bacteriología, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Santiago Vadillo
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de Extremadura, Cáceres, Spain
| | - Segundo Píriz
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de Extremadura, Cáceres, Spain
| | - Alberto Quesada
- Departamento de Bioquímica, Facultad de Veterinaria, Universidad de Extremadura, Cáceres, Spain
| |
Collapse
|
375
|
Gündoğdu A, Jennison AV, Smith HV, Stratton H, Katouli M. Extended-spectrum β-lactamase producing Escherichia coli in hospital wastewaters and sewage treatment plants in Queensland, Australia. Can J Microbiol 2013; 59:737-45. [PMID: 24206356 DOI: 10.1139/cjm-2013-0515] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We investigated the prevalence of extended-spectrum β-lactamase (ESBL)-producing Escherichia coli in untreated hospital wastewaters and 2 sewage treatment plants (STPs). A collection of 252 ESBL-producing E. coli isolates from hospital wastewater and STPs were typed and tested for resistance to 17 antimicrobial agents and for the presence of integron-associated integrases (intI gene) and ESBL genes. Eighty-nine percent (n = 176) of the ESBL-producing E. coli strains from hospital wastewater were found in more than 1 sample (common types), with 1 common type accounting for 35% of isolates, found in all samples. These strains were also resistant to up to 9 non-β-lactam antibiotics and showed the same pattern of resistance in all samples. More than 73% of the hospital wastewater isolates possessed SHV-type ESBL as opposed to isolates from STPs that carried only CTX-M-type ESBL genes. The prevalence of the intI gene did not differ between the sources of the isolates. Certain ESBL-producing E. coli were dominant in hospital wastewaters. These strains possessed β-lactamase genes that were different from isolates found in STPs. From a public health point of view, the presence of such a high level of ESBL-producing E. coli strains in hospital wastewaters is of great importance.
Collapse
Affiliation(s)
- Aycan Gündoğdu
- a GeneCology Research Centre, School of Health and Sport Sciences, Faculty of Science, Health and Education, University of the Sunshine Coast, Maroochydore DC 4558, Queensland, Australia
| | | | | | | | | |
Collapse
|
376
|
Chen T, Feng Y, Yuan JL, Qi Y, Cao YX, Wu Y. Class 1 integrons contributes to antibiotic resistance among clinical isolates of Escherichia coli producing extended-spectrum beta-lactamases. Indian J Med Microbiol 2013; 31:385-9. [DOI: 10.4103/0255-0857.118903] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
377
|
Kiddee A, Henghiranyawong K, Yimsabai J, Tiloklurs M, Niumsup PR. Nosocomial spread of class 1 integron-carrying extensively drug-resistant Pseudomonas aeruginosa isolates in a Thai hospital. Int J Antimicrob Agents 2013; 42:301-6. [DOI: 10.1016/j.ijantimicag.2013.05.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 05/14/2013] [Accepted: 05/16/2013] [Indexed: 10/26/2022]
|
378
|
Structural diversity of class 1 integrons and their associated gene cassettes in Klebsiella pneumoniae isolates from a hospital in China. PLoS One 2013; 8:e75805. [PMID: 24098729 PMCID: PMC3786929 DOI: 10.1371/journal.pone.0075805] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2013] [Accepted: 08/20/2013] [Indexed: 12/02/2022] Open
Abstract
Background Klebsiella pneumoniae strains carrying class 1 integrons are becoming more common worldwide, and their role in the dissemination of drug resistance is significant. The aim of this study was to characterize the structural diversity of class 1 integrons and their associated gene cassettes in K. pneumoniae isolates from hospital settings. Methodology/Principal Findings We analyzed a total of 176 K. pneumoniae isolates in a tertiary-care hospital in Beijing, China for the period of November 1, 2010-October 31, 2011. The presence of class 1 integrons and gene cassettes was analyzed by PCR and sequencing. The prevalence of class 1 integrons was 51.1% (90/176). Fourteen different gene cassettes and 10 different gene cassette arrays were detected. dfrA and aadA cassettes were predominant and cassette combination dfrA1-orfC was most frequently found (13.6%, 24/176). Strong association between resistance to a variety of drugs (both phenotypes and the associated genes) and the presence of class 1 integrons was observed. In addition, we also identified an association between some previously identified prevalent sequence types (such as ST11, ST15, ST147, ST562, and ST716) and the presence of class 1 integrons. Conclusions/Significance Data from this study demonstrated that class 1 integrons are highly diverse and are associated with a variety of drug resistance phenotypes, drug resistance genes, as well as genotypes among K. pneumoniae isolates. Continuous monitoring of gene cassettes in class 1 integrons is warranted to improve the understanding and control of drug resistance among hospital settings.
Collapse
|
379
|
Broaders E, Gahan CG, Marchesi JR. Mobile genetic elements of the human gastrointestinal tract: potential for spread of antibiotic resistance genes. Gut Microbes 2013; 4:271-80. [PMID: 23651955 PMCID: PMC3744512 DOI: 10.4161/gmic.24627] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The human intestine is an important location for horizontal gene transfer (HGT) due to the presence of a densely populated community of microorganisms which are essential to the health of the human superorganism. HGT in this niche has the potential to influence the evolution of members of this microbial community and to mediate the spread of antibiotic resistance genes from commensal organisms to potential pathogens. Recent culture-independent techniques and metagenomic studies have provided an insight into the distribution of mobile genetic elements (MGEs) and the extent of HGT in the human gastrointestinal tract. In this mini-review, we explore the current knowledge of mobile genetic elements in the gastrointestinal tract, the progress of research into the distribution of antibiotic resistance genes in the gut and the potential role of MGEs in the spread of antibiotic resistance. In the face of reduced treatment options for many clinical infections, understanding environmental and commensal antibiotic resistance and spread is critical to the future development of meaningful and long lasting anti-microbial therapies.
Collapse
Affiliation(s)
- Eileen Broaders
- Alimentary Pharmabiotic Centre; University College Cork; Cork, Ireland,Department of Microbiology; University College Cork; Cork, Ireland
| | - Cormac G.M. Gahan
- Alimentary Pharmabiotic Centre; University College Cork; Cork, Ireland,Department of Microbiology; University College Cork; Cork, Ireland,School of Pharmacy; University College Cork; Cork, Ireland
| | - Julian R. Marchesi
- School of Biosciences; Cardiff University; Cardiff, United Kingdom,Correspondence to: Julian R. Marchesi,
| |
Collapse
|
380
|
Wei Q, Jiang X, Li M, Li G, Hu Q, Lu H, Chen G, Zhou Y, Lu Y. Diversity of Gene Cassette Promoter Variants of Class 1 Integrons in Uropathogenic Escherichia coli. Curr Microbiol 2013; 67:543-9. [DOI: 10.1007/s00284-013-0399-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Accepted: 05/10/2013] [Indexed: 10/26/2022]
|
381
|
Varela AR, Manaia CM. Human health implications of clinically relevant bacteria in wastewater habitats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2013; 20:3550-3569. [PMID: 23508533 DOI: 10.1007/s11356-013-1594-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Accepted: 02/25/2013] [Indexed: 06/01/2023]
Abstract
The objective of this review is to reflect on the multiple roles of bacteria in wastewater habitats with particular emphasis on their harmful potential for human health. Indigenous bacteria promote a series of biochemical and metabolic transformations indispensable to achieve wastewater treatment. Some of these bacteria may be pathogenic or harbour antibiotic resistance or virulence genes harmful for human health. Several chemical contaminants (heavy metals, disinfectants and antibiotics) may select these bacteria or their genes. Worldwide studies show that treated wastewater contain antibiotic resistant bacteria or genes encoding virulence or antimicrobial resistance, evidencing that treatment processes may fail to remove efficiently these bio-pollutants. The contamination of the surrounding environment, such as rivers or lakes receiving such effluents, is also documented in several studies. The current state of the art suggests that only some of antibiotic resistance and virulence potential in wastewater is known. Moreover, wastewater habitats may favour the evolution and dissemination of new resistance and virulence genes and the emergence of new pathogens. For these reasons, additional research is needed in order to obtain a more detailed assessment of the long-term effects of wastewater discharges. In particular, it is important to measure the human and environmental health risks associated with wastewater reuse.
Collapse
Affiliation(s)
- Ana Rita Varela
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa/Porto, Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
| | | |
Collapse
|
382
|
Multiple Pathways of Genome Plasticity Leading to Development of Antibiotic Resistance. Antibiotics (Basel) 2013; 2:288-315. [PMID: 27029305 PMCID: PMC4790341 DOI: 10.3390/antibiotics2020288] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 05/21/2013] [Accepted: 05/23/2013] [Indexed: 02/05/2023] Open
Abstract
The emergence of multi-resistant bacterial strains is a major source of concern and has been correlated with the widespread use of antibiotics. The origins of resistance are intensively studied and many mechanisms involved in resistance have been identified, such as exogenous gene acquisition by horizontal gene transfer (HGT), mutations in the targeted functions, and more recently, antibiotic tolerance through persistence. In this review, we focus on factors leading to integron rearrangements and gene capture facilitating antibiotic resistance acquisition, maintenance and spread. The role of stress responses, such as the SOS response, is discussed.
Collapse
|
383
|
Power ML, Emery S, Gillings MR. Into the wild: dissemination of antibiotic resistance determinants via a species recovery program. PLoS One 2013; 8:e63017. [PMID: 23717399 PMCID: PMC3661720 DOI: 10.1371/journal.pone.0063017] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 03/27/2013] [Indexed: 11/18/2022] Open
Abstract
Management strategies associated with captive breeding of endangered species can establish opportunities for transfer of pathogens and genetic elements between human and animal microbiomes. The class 1 integron is a mobile genetic element associated with clinical antibiotic resistance in gram-negative bacteria. We examined the gut microbiota of endangered brush-tail rock wallabies Petrogale penicillata to determine if they carried class 1 integrons. No integrons were detected in 65 animals from five wild populations. In contrast, class 1 integrons were detected in 48% of fecal samples from captive wallabies. The integrons contained diverse cassette arrays that encoded resistance to streptomycin, spectinomycin, and trimethoprim. Evidence suggested that captive wallabies had acquired typical class 1 integrons on a number of independent occasions, and had done so in the absence of strong selection afforded by antibiotic therapy. Sufficient numbers of bacteria containing diverse class 1 integrons must have been present in the general environment occupied by the wallabies to account for this acquisition. The captive wallabies have now been released, in an attempt to bolster wild populations of the species. Consequently, they can potentially spread resistance integrons into wild wallabies and into new environments. This finding highlights the potential for genes and pathogens from human sources to be acquired during captive breeding and to be unwittingly spread to other populations.
Collapse
Affiliation(s)
- Michelle L Power
- Department of Biological Sciences, Macquarie University, North Ryde, NSW, Australia.
| | | | | |
Collapse
|
384
|
Ginn AN, Zong Z, Wiklendt AM, Thomas LC, Merlino J, Gottlieb T, van Hal S, Harkness J, Macleod C, Bell SM, Leroi MJ, Partridge SR, Iredell JR. Limited diversity in the gene pool allows prediction of third-generation cephalosporin and aminoglycoside resistance in Escherichia coli and Klebsiella pneumoniae. Int J Antimicrob Agents 2013; 42:19-26. [PMID: 23706544 DOI: 10.1016/j.ijantimicag.2013.03.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Revised: 02/06/2013] [Accepted: 03/12/2013] [Indexed: 11/17/2022]
Abstract
Early appropriate antibiotic treatment reduces mortality in severe sepsis, but current methods to identify antibiotic resistance still generally rely on bacterial culture. Modern diagnostics promise rapid gene detection, but the apparent diversity of relevant resistance genes in Enterobacteriaceae is a problem. Local surveys and analysis of publicly available data sets suggested that the resistance gene pool is dominated by a relatively small subset of genes, with a very high positive predictive value for phenotype. In this study, 152 Escherichia coli and 115 Klebsiella pneumoniae consecutive isolates with a cefotaxime, ceftriaxone and/or ceftazidime minimum inhibitory concentration (MIC) of ≥ 2 μg/mL were collected from seven major hospitals in Sydney (Australia) in 2008-2009. Nearly all of those with a MIC in excess of European Committee on Antimicrobial Susceptibility Testing (EUCAST) resistance breakpoints contained one or more representatives of only seven gene types capable of explaining this phenotype, and this included 96% of those with a MIC ≥ 2 μg/mL to any one of these drugs. Similarly, 97% of associated gentamicin-non-susceptibility (MIC ≥ 8 μg/mL) could be explained by three gene types. In a country like Australia, with a background prevalence of resistance to third-generation cephalosporins of 5-10%, this equates to a negative predictive value of >99.5% for non-susceptibility and is therefore suitable for diagnostic application. This is an important proof-of-principle that should be tested in other geographic locations.
Collapse
Affiliation(s)
- Andrew N Ginn
- Centre for Infectious Diseases and Microbiology, University of Sydney, Westmead Hospital, Sydney, New South Wales, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
385
|
Van Meervenne E, Boon N, Verstraete K, Devlieghere F, De Reu K, Herman L, Buvens G, Piérard D, Van Coillie E. Integron characterization and typing of Shiga toxin-producing Escherichia coli isolates in Belgium. J Med Microbiol 2013; 62:712-719. [DOI: 10.1099/jmm.0.048934-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The presence of integrons and the antibiotic susceptibility profiles of STEC strains isolated in Belgium were analysed. The collection contained 306 strains, of which 225 were human isolates and 81 originated from different food or animal sources. Integrons were detected by PCR in 7.5 % of the tested isolates and all were class 1 integrons. The integron-positive strains all belonged to the human collection. By RFLP, five different types (A, B, C, D, E) were distinguished. The antibiotic-resistance gene cassettes were identified by sequencing representatives of the five different types. Two types of gene cassettes were found in different combinations, one encoding resistance to streptomycin/spectinomycin and the other encoding resistance to trimethoprim. One of the gene cassettes present was the rarely detected aadA23, which was now apparently for the first time reported in Western Europe. Susceptibility profiling of the strains for 11 antibiotics was done by standard disc diffusion assays. Among the 23 integron-positive strains, 17 different antibiotic susceptibility profiles were found. In the 283 integron-negative strains, 24 different antibiotic susceptibility profiles were observed. The majority of these strains were susceptible to all tested antibiotics (n = 218, 77.0 %). The integron-positive strains were significantly more resistant to eight of the eleven tested antibiotics compared to the integron-negative strains (P<0.05). PFGE profiles of integron-positive strains within selected serogroups did not cluster together.
Collapse
Affiliation(s)
- Eva Van Meervenne
- Laboratory of Food Microbiology and Food Preservation (LFMFP), Ghent University, part of Food2Know, Coupure Links 653, B-9000 Gent, Belgium
- Laboratory of Microbial Ecology and Technology (LabMET), Ghent University, part of Food2Know, Coupure Links 653, B-9000 Gent, Belgium
- Institute for Agricultural and Fisheries Research (ILVO), Technology and Food Science Unit, part of Food2Know, Brusselsesteenweg 370, B-9090 Melle, Belgium
| | - Nico Boon
- Laboratory of Microbial Ecology and Technology (LabMET), Ghent University, part of Food2Know, Coupure Links 653, B-9000 Gent, Belgium
| | - Karen Verstraete
- Institute for Agricultural and Fisheries Research (ILVO), Technology and Food Science Unit, part of Food2Know, Brusselsesteenweg 370, B-9090 Melle, Belgium
| | - Frank Devlieghere
- Laboratory of Food Microbiology and Food Preservation (LFMFP), Ghent University, part of Food2Know, Coupure Links 653, B-9000 Gent, Belgium
| | - Koen De Reu
- Institute for Agricultural and Fisheries Research (ILVO), Technology and Food Science Unit, part of Food2Know, Brusselsesteenweg 370, B-9090 Melle, Belgium
| | - Lieve Herman
- Institute for Agricultural and Fisheries Research (ILVO), Technology and Food Science Unit, part of Food2Know, Brusselsesteenweg 370, B-9090 Melle, Belgium
| | - Glenn Buvens
- National Reference Center for VTEC/STEC, Department Microbiology and Infection Control, Universitair Ziekenhuis Brussel, Laarbeeklaan 101, B-1090 Brussel, Belgium
| | - Denis Piérard
- National Reference Center for VTEC/STEC, Department Microbiology and Infection Control, Universitair Ziekenhuis Brussel, Laarbeeklaan 101, B-1090 Brussel, Belgium
| | - Els Van Coillie
- Institute for Agricultural and Fisheries Research (ILVO), Technology and Food Science Unit, part of Food2Know, Brusselsesteenweg 370, B-9090 Melle, Belgium
| |
Collapse
|
386
|
Chen H, Zhang M. Occurrence and removal of antibiotic resistance genes in municipal wastewater and rural domestic sewage treatment systems in eastern China. ENVIRONMENT INTERNATIONAL 2013; 55:9-14. [PMID: 23454279 DOI: 10.1016/j.envint.2013.01.019] [Citation(s) in RCA: 189] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Revised: 01/23/2013] [Accepted: 01/29/2013] [Indexed: 05/21/2023]
Abstract
Antibiotic resistance genes (ARGs) are emerging environmental contaminants and pose a threat to public health. In this study, four tetracycline resistance genes (tetM, tetO, tetQ and tetW) and two sulfonamide resistance genes (sulI and sulII) were evaluated in 4 municipal wastewater and 8 rural domestic sewage treatment systems with different wastewater handling abilities and treatment processes using quantitative polymerase chain reaction (qPCR). In the influents, the relative abundance of different ARGs showed significant variations among the sampling sites. In addition, significant correlations (tetQ: R(2)=0.712, P<0.05; tetO: R(2)=0.394, P<0.05) between the gene copy numbers and wastewater-receiving capacity were observed. Statistical analysis revealed a positive correlation (R(2)=0.756, P<0.05) between the gene copy numbers of sulI and intI1, whereas the gene numbers of tetM and sulI were strongly correlated with 16S rDNA. Significant reductions (1-3 orders of magnitude) in ARGs were observed in municipal wastewater treatment systems, but a smaller reduction was found in the rural domestic sewage treatment systems. These results provide insights into the occurrence and removal of ARGs in wastewater treatment systems in both rural and urban areas in eastern China.
Collapse
Affiliation(s)
- Hong Chen
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
| | | |
Collapse
|
387
|
Ludwig A, Berthiaume P, Boerlin P, Gow S, Léger D, Lewis FI. Identifying associations in Escherichia coli antimicrobial resistance patterns using additive Bayesian networks. Prev Vet Med 2013; 110:64-75. [DOI: 10.1016/j.prevetmed.2013.02.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
388
|
Djordjevic SP, Stokes HW, Roy Chowdhury P. Mobile elements, zoonotic pathogens and commensal bacteria: conduits for the delivery of resistance genes into humans, production animals and soil microbiota. Front Microbiol 2013; 4:86. [PMID: 23641238 PMCID: PMC3639385 DOI: 10.3389/fmicb.2013.00086] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 03/27/2013] [Indexed: 01/07/2023] Open
Abstract
Multiple antibiotic resistant pathogens represent a major clinical challenge in both human and veterinary context. It is now well-understood that the genes that encode resistance are context independent. That is, the same gene is commonly present in otherwise very disparate pathogens in both humans and production and companion animals, and among bacteria that proliferate in an agricultural context. This can be true even for pathogenic species or clonal types that are otherwise confined to a single host or ecological niche. It therefore follows that mechanisms of gene flow must exist to move genes from one part of the microbial biosphere to another. It is widely accepted that lateral (or horizontal) gene transfer (L(H)GT) drives this gene flow. LGT is relatively well-understood mechanistically but much of this knowledge is derived from a reductionist perspective. We believe that this is impeding our ability to deal with the medical ramifications of LGT. Resistance genes and the genetic scaffolds that mobilize them in multiply drug resistant bacteria of clinical significance are likely to have their origins in completely unrelated parts of the microbial biosphere. Resistance genes are increasingly polluting the microbial biosphere by contaminating environmental niches where previously they were not detected. More attention needs to be paid to the way that humans have, through the widespread application of antibiotics, selected for combinations of mobile elements that enhance the flow of resistance genes between remotely linked parts of the microbial biosphere. Attention also needs to be paid to those bacteria that link human and animal ecosystems. We argue that multiply antibiotic resistant commensal bacteria are especially important in this regard. More generally, the post genomics era offers the opportunity for understanding how resistance genes are mobilized from a one health perspective. In the long term, this holistic approach offers the best opportunity to better manage what is an enormous problem to humans both in terms of health and food security.
Collapse
|
389
|
RpoS plays a central role in the SOS induction by sub-lethal aminoglycoside concentrations in Vibrio cholerae. PLoS Genet 2013; 9:e1003421. [PMID: 23613664 PMCID: PMC3623755 DOI: 10.1371/journal.pgen.1003421] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 02/13/2013] [Indexed: 12/30/2022] Open
Abstract
Bacteria encounter sub-inhibitory concentrations of antibiotics in various niches, where these low doses play a key role for antibiotic resistance selection. However, the physiological effects of these sub-lethal concentrations and their observed connection to the cellular mechanisms generating genetic diversification are still poorly understood. It is known that, unlike for the model bacterium Escherichia coli, sub-minimal inhibitory concentrations (sub-MIC) of aminoglycosides (AGs) induce the SOS response in Vibrio cholerae. SOS is induced upon DNA damage, and since AGs do not directly target DNA, we addressed two issues in this study: how sub-MIC AGs induce SOS in V. cholerae and why they do not do so in E. coli. We found that when bacteria are grown with tobramycin at a concentration 100-fold below the MIC, intracellular reactive oxygen species strongly increase in V. cholerae but not in E. coli. Using flow cytometry and gfp fusions with the SOS regulated promoter of intIA, we followed AG-dependent SOS induction. Testing the different mutation repair pathways, we found that over-expression of the base excision repair (BER) pathway protein MutY relieved this SOS induction in V. cholerae, suggesting a role for oxidized guanine in AG-mediated indirect DNA damage. As a corollary, we established that a BER pathway deficient E. coli strain induces SOS in response to sub-MIC AGs. We finally demonstrate that the RpoS general stress regulator prevents oxidative stress-mediated DNA damage formation in E. coli. We further show that AG-mediated SOS induction is conserved among the distantly related Gram negative pathogens Klebsiella pneumoniae and Photorhabdus luminescens, suggesting that E. coli is more of an exception than a paradigm for the physiological response to antibiotics sub-MIC.
Collapse
|
390
|
Rapa RA, Shimmon R, Djordjevic SP, Stokes HW, Labbate M. Deletion of integron-associated gene cassettes impact on the surface properties of Vibrio rotiferianus DAT722. PLoS One 2013; 8:e58430. [PMID: 23484028 PMCID: PMC3590141 DOI: 10.1371/journal.pone.0058430] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Accepted: 02/06/2013] [Indexed: 01/21/2023] Open
Abstract
Background The integron is a genetic recombination system that catalyses the acquisition of genes on mobilisable elements called gene cassettes. In Vibrio species, multiple acquired gene cassettes form a cassette array that can comprise 1–3% of the bacterial genome. Since 75% of these gene cassettes contain genes encoding proteins of uncharacterised function, how the integron has driven adaptation and evolution in Vibrio species remains largely unknown. A feature of cassette arrays is the presence of large indels. Using Vibrio rotiferianus DAT722 as a model organism, the aim of this study was to determine how large cassette deletions affect vibrio physiology with a view to improving understanding into how cassette arrays influence bacterial host adaptation and evolution. Methodology/Principal Findings Biological assays and proteomic techniques were utilised to determine how artificially engineered deletions in the cassette array of V. rotiferianus DAT722 affected cell physiology. Multiple phenotypes were identified including changes to growth and expression of outer membrane porins/proteins and metabolic proteins. Furthermore, the deletions altered cell surface polysaccharide with Proton Nuclear Magnetic Resonance on whole cell polysaccharide identifying changes in the carbohydrate ring proton region indicating that gene cassette products may decorate host cell polysaccharide via the addition or removal of functional groups. Conclusions/Significance From this study, it was concluded that deletion of gene cassettes had a subtle effect on bacterial metabolism but altered host surface polysaccharide. Deletion (and most likely rearrangement and acquisition) of gene cassettes may provide the bacterium with a mechanism to alter its surface properties, thus impacting on phenotypes such as biofilm formation. Biofilm formation was shown to be altered in one of the deletion mutants used in this study. Reworking surface properties may provide an advantage to the bacterium’s interactions with organisms such as bacteriophage, protozoan grazers or crustaceans.
Collapse
Affiliation(s)
- Rita A. Rapa
- The ithree Institute, University of Technology, Sydney, Australia
| | - Ronald Shimmon
- Chemical Technology and Forensic Science, University of Technology, Sydney, Australia
| | | | - H. W. Stokes
- The ithree Institute, University of Technology, Sydney, Australia
| | - Maurizio Labbate
- The ithree Institute, University of Technology, Sydney, Australia
- * E-mail:
| |
Collapse
|
391
|
Xia R, Ren Y, Guo X, Xu H. Molecular diversity of class 2 integrons in antibiotic-resistant gram-negative bacteria found in wastewater environments in China. ECOTOXICOLOGY (LONDON, ENGLAND) 2013; 22:402-14. [PMID: 23264021 DOI: 10.1007/s10646-012-1034-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/11/2012] [Indexed: 05/14/2023]
Abstract
The molecular architecture of class 2 integrons among gram-negative bacteria from wastewater environments was investigated in Jinan, China. Out of the 391 antibiotic-resistant bacteria found, 38 isolates harboring class 2 integrons encoding potentially transferrable genes that could confer antibiotic resistance were found. These isolates were classified into 19 REP-PCR types. These strains were identified using 16S rRNA gene sequencing and found to be as follows: Proteus mirabilis (16), Escherichia coli (7), Providencia spp. (7), Proteus spp. (2), P. vulgaris (3), Shigella sp. (1), Citrobacter freundii (1), and Acinetobacter sp. (1). Their class 2 integron cassette arrays were amplified and then either analyzed using PCR-RFLP or sequenced. The typical array dfrA1-sat2-aadA1 was detected in 27 isolates. Six atypical arrays were observed, including three kinds of novel arrangements (linF2(∆attC1)-dfrA1(∆attC2)-aadA1-orf441 or linF2(∆attC1)-dfrA1(∆attC2)-aadA1, dfrA1-catB2-sat2-aadA1, and estX(Vr)-sat2-aadA1) and a hybrid with the 3'CS of class 1 integrons (dfrA1-sat2-aadA1-qacH), and dfrA1-sat1. Twenty-four isolates were also found to carry class 1 integrons with 10 types of gene cassette arrays. Several non-integron-associated antibiotic resistance genes were found, and their transferability was investigated. Results showed that water sources in the Jinan region harbored a diverse community of both typical and atypical class 2 integrons, raising concerns about the overuse of antibiotics and their careless disposal into the environment.
Collapse
Affiliation(s)
- Ruirui Xia
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, Shandong, China
| | | | | | | |
Collapse
|
392
|
Rizzo L, Manaia C, Merlin C, Schwartz T, Dagot C, Ploy MC, Michael I, Fatta-Kassinos D. Urban wastewater treatment plants as hotspots for antibiotic resistant bacteria and genes spread into the environment: a review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2013; 447:345-60. [PMID: 23396083 DOI: 10.1016/j.scitotenv.2013.01.032] [Citation(s) in RCA: 1327] [Impact Index Per Article: 110.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Revised: 01/08/2013] [Accepted: 01/08/2013] [Indexed: 05/20/2023]
Abstract
Urban wastewater treatment plants (UWTPs) are among the main sources of antibiotics' release into the environment. The occurrence of antibiotics may promote the selection of antibiotic resistance genes (ARGs) and antibiotic resistant bacteria (ARB), which shade health risks to humans and animals. In this paper the fate of ARB and ARGs in UWTPs, focusing on different processes/technologies (i.e., biological processes, advanced treatment technologies and disinfection), was critically reviewed. The mechanisms by which biological processes influence the development/selection of ARB and ARGs transfer are still poorly understood. Advanced treatment technologies and disinfection process are regarded as a major tool to control the spread of ARB into the environment. In spite of intense efforts made over the last years to bring solutions to control antibiotic resistance spread in the environment, there are still important gaps to fill in. In particular, it is important to: (i) improve risk assessment studies in order to allow accurate estimates about the maximal abundance of ARB in UWTPs effluents that would not pose risks for human and environmental health; (ii) understand the factors and mechanisms that drive antibiotic resistance maintenance and selection in wastewater habitats. The final objective is to implement wastewater treatment technologies capable of assuring the production of UWTPs effluents with an acceptable level of ARB.
Collapse
Affiliation(s)
- L Rizzo
- Department of Civil Engineering, University of Salerno, 84084, Fisciano (SA), Italy.
| | | | | | | | | | | | | | | |
Collapse
|
393
|
Xu Y, Luo QQ, Zhou MG. Identification and characterization of integron-mediated antibiotic resistance in the phytopathogen Xanthomonas oryzae pv. oryzae. PLoS One 2013; 8:e55962. [PMID: 23437082 PMCID: PMC3578876 DOI: 10.1371/journal.pone.0055962] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Accepted: 01/04/2013] [Indexed: 12/11/2022] Open
Abstract
Four streptomycin-resistant isolates of Xanthomonas oryzae pv. oryzae (YNA7-1, YNA10-2, YNA11-2, and YNA12-2) were examined via PCR amplification for the presence of class 1, class 2, and class 3 integrons and aadA1 and aadA2 genes, which confer resistance to streptomycin and spectinomycin. The class 1 integrase gene intI1 and the aminoglycoside adenylyltransferase gene aadA1 were identified in all four resistant isolates but not in 25 sensitive isolates. PCR amplifications showed that 7790-bp, 7162-bp, 7790-bp, and 7240-bp resistance integrons with transposition gene modules (tni module) in 3′ conserved segments existed in YNA7-1, YNA10-2, YNA11-2, and YNA12-2, respectively. Subsequent analysis of sequences indicated that the integrons of YNA7-1 and YNA11-2 carried three gene cassettes in the order |aacA3|arr3|aadA1|. The integron of YNA10-2 carried only |arr3|aadA1| gene cassettes. The integron of YNA12-2 lacked a 550-bp sequence including part of intI1 but it still carried |aacA3|arr3|aadA1| gene cassettes. The analysis of inactive mutants and complementation tests confirmed that the aacA3 gene conferred resistance to tobramycin, kanamycin, gentamicin and netilmicin; the arr3 gene conferred resistance to rifampicin; and the aadA1 gene conferred resistance to streptomycin and spectinomycin. The resistance phenotypes of the four isolates corresponded with their resistance gene cassettes, except that YNA7-1 and YNA12-2 did not show rifampicin resistance. Sequence comparison revealed that no gene cassette array in GenBank was in the same order as in the integrons of the four resistant isolates in this study and the aadA1, which was identical in the four resistant isolates, showed 99% identity with aadA1 sequences in GenBank. The result of a stability test showed that the resistance phenotype, the aadA1 gene, and the intI1 gene were completely stable in YNA7-1 and YNA12-2 but unstable in YNA10-2 and YNA11-2. To our knowledge, this is the first report of resistance integron in a phytopathogenic bacteria.
Collapse
Affiliation(s)
- Ying Xu
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- Shanghai Landscape Gardening Research Institute, Shanghai, China
| | - Qing-quan Luo
- Shanghai Landscape Gardening Research Institute, Shanghai, China
| | - Ming-guo Zhou
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- * E-mail:
| |
Collapse
|
394
|
A novel gene cassette potentially conferring resistance to aminoglycosides. Antimicrob Agents Chemother 2013; 56:4566-7. [PMID: 22826289 DOI: 10.1128/aac.00625-12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
395
|
de Toro M, Rodríguez I, Rojo-Bezares B, Helmuth R, Torres C, Guerra B, Sáenz Y. pMdT1, a small ColE1-like plasmid mobilizing a new variant of the aac(6')-Ib-cr gene in Salmonella enterica serovar Typhimurium. J Antimicrob Chemother 2013; 68:1277-80. [PMID: 23361643 DOI: 10.1093/jac/dkt001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES To characterize a 5.9 kb aac(6')-Ib-cr-harbouring plasmid that was detected in a clinical Salmonella Typhimurium DT104B strain. METHODS Extraction and purification of plasmid DNA and electrotransformation assays were carried out in order to obtain kanamycin-resistant transformants. MICs of several fluoroquinolones and aminoglycosides were determined. DNA sequencing was performed by primer walking on purified plasmid preparations. The new plasmid nucleotide sequence was analysed and compared with available sequences using bioinformatic tools. RESULTS pMdT1 is a 5.9 kb mobilizable ColE1-like plasmid that harbours aac(6')-Ib-cr4, a gene encoding a new variant of the AAC(6')-Ib-cr protein (225 amino acids). This active protein conferred resistance to tobramycin and kanamycin, and also decreased susceptibility to ciprofloxacin and norfloxacin in the transformant strain, as MICs demonstrated. The mobilization region, necessary for horizontal transfer and composed of the mobA, mobB, mobC and mobD genes, displayed a high degree of identity with those from representative ColE1-like plasmids. The basis of mobility (bom), oriT and origin of replication regions were also detected. Apart from the acetylase-encoding gene, three other open reading frames (ORFs) were determined. No similarities were found when the ORF1 sequence was compared with the sequences included in GenBank. The deduced ORF2 protein predicted a CopG-like structure characteristic of transcriptional regulators, and the deduced ORF3 protein was identical to macrophage stimulating factors. CONCLUSIONS The pMdT1 is the smallest mobilizable ColE1-like plasmid containing an aac(6')-Ib-cr gene that has been described so far.
Collapse
Affiliation(s)
- María de Toro
- Área de Microbiología Molecular, Centro de Investigación Biomédica de La Rioja (CIBIR), Logroño, Spain
| | | | | | | | | | | | | |
Collapse
|
396
|
Sureshan V, Deshpande CN, Boucher Y, Koenig JE, Stokes HW, Harrop SJ, Curmi PMG, Mabbutt BC. Integron gene cassettes: a repository of novel protein folds with distinct interaction sites. PLoS One 2013; 8:e52934. [PMID: 23349695 PMCID: PMC3548836 DOI: 10.1371/journal.pone.0052934] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2012] [Accepted: 11/26/2012] [Indexed: 11/19/2022] Open
Abstract
Mobile gene cassettes captured within integron arrays encompass a vast and diverse pool of genetic novelty. In most cases, functional annotation of gene cassettes directly recovered by cassette-PCR is obscured by their characteristically high sequence novelty. This inhibits identification of those specific functions or biological features that might constitute preferential factors for lateral gene transfer via the integron system. A structural genomics approach incorporating x-ray crystallography has been utilised on a selection of cassettes to investigate evolutionary relationships hidden at the sequence level. Gene cassettes were accessed from marine sediments (pristine and contaminated sites), as well as a range of Vibrio spp. We present six crystal structures, a remarkably high proportion of our survey of soluble proteins, which were found to possess novel folds. These entirely new structures are diverse, encompassing all-α, α+β and α/β fold classes, and many contain clear binding pocket features for small molecule substrates. The new structures emphasise the large repertoire of protein families encoded within the integron cassette metagenome and which remain to be characterised. Oligomeric association is a notable recurring property common to these new integron-derived proteins. In some cases, the protein–protein contact sites utilised in homomeric assembly could instead form suitable contact points for heterogeneous regulator/activator proteins or domains. Such functional features are ideal for a flexible molecular componentry needed to ensure responsive and adaptive bacterial functions.
Collapse
Affiliation(s)
- Visaahini Sureshan
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Chandrika N. Deshpande
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Yan Boucher
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Jeremy E. Koenig
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | - H. W. Stokes
- ithree institute, University of Technology, Sydney, New South Wales, Australia
| | - Stephen J. Harrop
- School of Physics, University of New South Wales, New South Wales, Australia
| | - Paul M. G. Curmi
- School of Physics, University of New South Wales, New South Wales, Australia
- Centre for Applied Medical Research, St Vincent's Hospital, Sydney, New South Wales, Australia
| | - Bridget C. Mabbutt
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, New South Wales, Australia
- * E-mail:
| |
Collapse
|
397
|
Iyer A, Barbour E, Azhar E, Salabi AAE, Hassan HMA, Qadri I, Chaudhary A, Abuzenadah A, Kumosani T, Damanhouri G, Alawi M, Na’was T, Nour AMA, Harakeh S. Transposable elements in <i>Escherichia coli</i> antimicrobial resistance. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/abb.2013.43a055] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
398
|
Fonseca ÉL, Vicente ACP. Polycistronic transcription of fused cassettes and identification of translation initiation signals in an unusual gene cassette array from Pseudomonas aeruginosa. F1000Res 2013; 2:99. [PMID: 26674490 PMCID: PMC4670013 DOI: 10.12688/f1000research.2-99.v3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/25/2015] [Indexed: 11/20/2022] Open
Abstract
The gene cassettes found in class 1 integrons are generally promoterless units composed by an open reading frame (ORF), a short 5’ untranslated region (UTR) and a 3’ recombination site (
attC). Fused gene cassettes are generated by partial or total loss of the
attC from the first cassette in an array, creating, in some cases, a fusion with the ORF from the next cassette. These structures are rare and little is known about their mechanisms of mobilization and expression. The aim of this study was to evaluate the dynamic of mobilization and transcription of the
gcu14-blaGES-1/aacA4 gene cassette array, which harbours a fused gene cassette represented by
blaGES-1/aacA4. The cassette array was analyzed by Northern blot and real-time reverse transcription-polymerase chain reaction (RT-PCR) in order to assess the transcription mechanism of
blaGES-1/aacA4 fused cassette. Also, inverse polymerase chain reactions (PCR) were performed to detect the free circular forms of
gcu14, blaGES-1 and aacA4. The Northern blot and real time RT-PCR revealed a polycistronic transcription, in which the fused cassette
blaGES-1/aacA4 is transcribed as a unique gene, while
gcu14 (with a canonical
attC recombination site) has a monocistronic transcription. The
gcu14 cassette, closer to the weak configuration of cassette promoter (PcW), had a higher transcription level than
blaGES-1/
aacA4, indicating that the cassette position affects the transcript amounts. The presence of ORF-11 at
attI1, immediately preceding
gcu14, and of a Shine-Dalgarno sequence upstream
blaGES-1/
aacA4 composes a scenario for the occurrence of array translation. Inverse PCR generated amplicons corresponding to
gcu14, gcu14-aacA4 and gcu14-blaGES-1/
aacA4 free circular forms, but not to
blaGES-1 and
aacA4 alone, indicating that the GES-1 truncated
attC is not substrate of integrase activity and that these genes are mobilized together as a unique cassette. This study was original in showing the transcription of fused cassettes and in correlating cassette position with transcription.
Collapse
Affiliation(s)
- Érica L Fonseca
- Laboratório de Genética Molecular de Microrganismos, Instituto Oswaldo Cruz, Rio de Janeiro, 4365, Brazil
| | - Ana Carolina Paulo Vicente
- Laboratório de Genética Molecular de Microrganismos, Instituto Oswaldo Cruz, Rio de Janeiro, 4365, Brazil
| |
Collapse
|
399
|
Aubert D, Naas T, Nordmann P. Integrase-mediated recombination of the veb1 gene cassette encoding an extended-spectrum β-lactamase. PLoS One 2012; 7:e51602. [PMID: 23251590 PMCID: PMC3518468 DOI: 10.1371/journal.pone.0051602] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Accepted: 11/07/2012] [Indexed: 11/18/2022] Open
Abstract
The veb1 gene cassette encodes the extended spectrum β-lactamase, VEB-1 that is increasingly isolated from worldwide Gram-negative rods. Veb1 is commonly inserted into the variable region of different class 1 integrons in which it is always associated with a downstream-located aadB gene cassette encoding an aminoglycoside adenylyltransferase. In Pseudomonas aeruginosa, the majority of veb1-containing integrons also carry an insertion sequence, IS1999 that is inserted upstream of the veb1 gene cassette and disrupts the integron specific recombination site, attI1. Investigation of the recombination properties of the sites surrounding veb1 revealed that insertion of IS1999 reduces significantly the recombination frequency of attI1 and that veb1 attC is not efficient for recombination in contrast to aadB attC. Subsequent sequence optimisation of veb1 attC by mutagenesis, into a more consensual attC site resembling aadB attC, successfully improved recombination efficiency. Overall, this work gives some insights into the organisation of veb1-containing integrons. We propose that IS1999 and the nature of veb1 attC stabilize the veb1 gene cassette environment likely by impairing recombination events upstream or downstream of veb1, respectively.
Collapse
Affiliation(s)
- Daniel Aubert
- Service de Bactériologie-Virologie, INSERM U914 "Emerging Resistance to Antibiotics," LabEx LERMIT, Hôpital de Bicêtre, Assistance Publique/Hôpitaux de Paris, Faculté de Médecine Université Paris-Sud, Paris, France
| | | | | |
Collapse
|
400
|
Roberts MC, Schwarz S, Aarts HJM. Erratum: Acquired antibiotic resistance genes: an overview. Front Microbiol 2012; 3:384. [PMID: 23162539 PMCID: PMC3499791 DOI: 10.3389/fmicb.2012.00384] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Accepted: 10/15/2012] [Indexed: 11/13/2022] Open
Affiliation(s)
- Marilyn C Roberts
- Department of Environmental and Occupational Health Sciences, School of Public Health Seattle, WA, USA
| | | | | |
Collapse
|