351
|
Seidl V, Gamauf C, Druzhinina IS, Seiboth B, Hartl L, Kubicek CP. The Hypocrea jecorina (Trichoderma reesei) hypercellulolytic mutant RUT C30 lacks a 85 kb (29 gene-encoding) region of the wild-type genome. BMC Genomics 2008; 9:327. [PMID: 18620557 PMCID: PMC2483294 DOI: 10.1186/1471-2164-9-327] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2007] [Accepted: 07/11/2008] [Indexed: 11/10/2022] Open
Abstract
Background The hypercellulolytic mutant Hypocrea jecorina (anamorph Trichoderma reesei) RUT C30 is the H. jecorina strain most frequently used for cellulase fermentations and has also often been employed for basic research on cellulase regulation. This strain has been reported to contain a truncated carbon catabolite repressor gene cre1 and is consequently carbon catabolite derepressed. To date this and an additional frame-shift mutation in the glycoprotein-processing β-glucosidase II encoding gene are the only known genetic differences in strain RUT C30. Results In the present paper we show that H. jecorina RUT C30 lacks an 85 kb genomic fragment, and consequently misses additional 29 genes comprising transcription factors, enzymes of the primary metabolism and transport proteins. This loss is already present in the ancestor of RUT C30 – NG 14 – and seems to have occurred in a palindromic AT-rich repeat (PATRR) typically inducing chromosomal translocations, and is not linked to the cre1 locus. The mutation of the cre1 locus has specifically occurred in RUT C30. Some of the genes that are lacking in RUT C30 could be correlated with pronounced alterations in its phenotype, such as poor growth on α-linked oligo- and polyglucosides (loss of maltose permease), or disturbance of osmotic homeostasis. Conclusion Our data place a general caveat on the use of H. jecorina RUT C30 for further basic research.
Collapse
Affiliation(s)
- Verena Seidl
- Research Area Gene Technology and Applied Biochemistry, Institute of Chemical Engineering, Vienna University of Technology, Getreidemarkt 9/166-5, A-1060 Wien, Austria.
| | | | | | | | | | | |
Collapse
|
352
|
Ramsdale M. Programmed cell death in pathogenic fungi. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1783:1369-80. [DOI: 10.1016/j.bbamcr.2008.01.021] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2007] [Revised: 01/22/2008] [Accepted: 01/24/2008] [Indexed: 01/27/2023]
|
353
|
Williams B, Dickman M. Plant programmed cell death: can't live with it; can't live without it. MOLECULAR PLANT PATHOLOGY 2008; 9:531-44. [PMID: 18705866 PMCID: PMC6640338 DOI: 10.1111/j.1364-3703.2008.00473.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The decision of whether a cell should live or die is fundamental for the wellbeing of all organisms. Despite intense investigation into cell growth and proliferation, only recently has the essential and equally important idea that cells control/programme their own demise for proper maintenance of cellular homeostasis gained recognition. Furthermore, even though research into programmed cell death (PCD) has been an extremely active area of research there are significant gaps in our understanding of the process in plants. In this review, we discuss PCD during plant development and pathogenesis, and compare/contrast this with mammalian apoptosis.
Collapse
Affiliation(s)
- Brett Williams
- Institute for Plant Genomics and Biotechnology, Texas A&M University, Department of Plant Pathology and Microbiology, College Station, TX 77843, USA
| | | |
Collapse
|
354
|
Soanes DM, Alam I, Cornell M, Wong HM, Hedeler C, Paton NW, Rattray M, Hubbard SJ, Oliver SG, Talbot NJ. Comparative genome analysis of filamentous fungi reveals gene family expansions associated with fungal pathogenesis. PLoS One 2008; 3:e2300. [PMID: 18523684 PMCID: PMC2409186 DOI: 10.1371/journal.pone.0002300] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2008] [Accepted: 04/15/2008] [Indexed: 12/30/2022] Open
Abstract
Fungi and oomycetes are the causal agents of many of the most serious diseases of plants. Here we report a detailed comparative analysis of the genome sequences of thirty-six species of fungi and oomycetes, including seven plant pathogenic species, that aims to explore the common genetic features associated with plant disease-causing species. The predicted translational products of each genome have been clustered into groups of potential orthologues using Markov Chain Clustering and the data integrated into the e-Fungi object-oriented data warehouse (http://www.e-fungi.org.uk/). Analysis of the species distribution of members of these clusters has identified proteins that are specific to filamentous fungal species and a group of proteins found only in plant pathogens. By comparing the gene inventories of filamentous, ascomycetous phytopathogenic and free-living species of fungi, we have identified a set of gene families that appear to have expanded during the evolution of phytopathogens and may therefore serve important roles in plant disease. We have also characterised the predicted set of secreted proteins encoded by each genome and identified a set of protein families which are significantly over-represented in the secretomes of plant pathogenic fungi, including putative effector proteins that might perturb host cell biology during plant infection. The results demonstrate the potential of comparative genome analysis for exploring the evolution of eukaryotic microbial pathogenesis.
Collapse
Affiliation(s)
- Darren M. Soanes
- School of Biosciences, Geoffrey Pope Building, University of Exeter, Exeter, United Kingdom
| | - Intikhab Alam
- School of Computer Science, University of Manchester, Manchester, United Kingdom
| | - Mike Cornell
- School of Computer Science, University of Manchester, Manchester, United Kingdom
| | - Han Min Wong
- School of Biosciences, Geoffrey Pope Building, University of Exeter, Exeter, United Kingdom
| | - Cornelia Hedeler
- School of Computer Science, University of Manchester, Manchester, United Kingdom
| | - Norman W. Paton
- School of Computer Science, University of Manchester, Manchester, United Kingdom
| | - Magnus Rattray
- School of Computer Science, University of Manchester, Manchester, United Kingdom
| | - Simon J. Hubbard
- Faculty of Life Sciences, Michael Smith Building, University of Manchester, Manchester, United Kingdom
| | - Stephen G. Oliver
- Department of Biochemistry, University of Cambridge, Sanger Building, Cambridge, United Kingdom
| | - Nicholas J. Talbot
- School of Biosciences, Geoffrey Pope Building, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
355
|
Giesbert S, Schürg T, Scheele S, Tudzynski P. The NADPH oxidase Cpnox1 is required for full pathogenicity of the ergot fungus Claviceps purpurea. MOLECULAR PLANT PATHOLOGY 2008; 9:317-27. [PMID: 18705873 PMCID: PMC6640299 DOI: 10.1111/j.1364-3703.2008.00466.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The role of reactive oxygen species (ROS) in interactions between phytopathogenic fungi and their hosts is well established. An oxidative burst mainly caused by superoxide formation by membrane-associated NADPH oxidases is an essential element of plant defence reactions. Apart from primary effects, ROS play a major role as a second messenger in host response. Recently, NADPH oxidase (nox)-encoding genes have been identified in filamentous fungi. Functional analyses have shown that these fungal enzymes are involved in sexual differentiation, and there is growing evidence that they also affect developmental programmes involved in fungus-plant interactions. Here we show that in the biotrophic plant pathogen Claviceps purpurea deletion of the cpnox1 gene, probably encoding an NADPH oxidase, has impact on germination of conidia and pathogenicity: Deltacpnox1 mutants can penetrate the host epidermis, but they are impaired in colonization of the plant ovarian tissue. In the few cases where macroscopic signs of infection (honeydew) appear, they are extremely delayed and fully developed sclerotia have never been observed. C. purpurea Nox1 is important for the interaction with its host, probably by directly affecting pathogenic differentiation of the fungus.
Collapse
Affiliation(s)
- Sabine Giesbert
- Institut für Botanik, Westf. Wilhelms-Universität, Schlossgarten 3, D-48149 Münster, Germany
| | | | | | | |
Collapse
|
356
|
MADS-box transcription factor mig1 is required for infectious growth in Magnaporthe grisea. EUKARYOTIC CELL 2008; 7:791-9. [PMID: 18344407 DOI: 10.1128/ec.00009-08] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Magnaporthe grisea is a model fungus for studying fungus-plant interactions. Two mitogen-activated protein (MAP) kinase genes, PMK1 and MPS1, have been implicated in regulating plant infection processes in M. grisea. However, transcription factors activated by these MAP kinases are not well studied. In this study we functionally characterized the MIG1 gene that encodes a MADS-box transcription factor homologous to Saccharomyces cerevisiae Rlm1. In yeast two-hybrid assays, MIG1 interacts with MPS1, suggesting that MIG1 may function downstream from the MPS1 pathway. The mig1 deletion mutant had a normal growth rate and formed melanized appressoria, but it was nonpathogenic and failed to infect rice leaves through wounds. Appressoria formed by the mig1 mutant developed penetration pegs and primary infectious hyphae, but further differentiation of the secondary infectious hyphae inside live plant cells was blocked. However, the mig1 mutant formed infectious hypha-like structures in heat-killed plant cells or cellophane membranes. In transformants expressing the MIG1-GFP fusion, green fluorescent protein (GFP) signals were not detectable in vegetative hyphae and conidiophores. Mig1-GFP was localized to nuclei in conidia, appressoria, and infectious hyphae. Deletion of the MADS box had no effect on the expression and localization of the MIG1-GFP fusion but eliminated its ability to complement the mig1 mutant. These results suggest that MIG1 may be required for overcoming plant defense responses and the differentiation of secondary infectious hyphae in live plant cells. The MADS-box domain is essential for the function of MIG1 but dispensable for its nuclear localization, which may be associated with the activation of MIG1 by MPS1 during conidiation and plant infection.
Collapse
|
357
|
Nesher I, Barhoom S, Sharon A. Cell cycle and cell death are not necessary for appressorium formation and plant infection in the fungal plant pathogen Colletotrichum gloeosporioides. BMC Biol 2008; 6:9. [PMID: 18275611 PMCID: PMC2276476 DOI: 10.1186/1741-7007-6-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2007] [Accepted: 02/14/2008] [Indexed: 12/01/2022] Open
Abstract
Background In order to initiate plant infection, fungal spores must germinate and penetrate into the host plant. Many fungal species differentiate specialized infection structures called appressoria on the host surface, which are essential for successful pathogenic development. In the model plant pathogen Magnaporthe grisea completion of mitosis and autophagy cell death of the spore are necessary for appressoria-mediated plant infection; blocking of mitosis prevents appressoria formation, and prevention of autophagy cell death results in non-functional appressoria. Results We found that in the closely related plant pathogen Colletotrichum gloeosporioides, blocking of the cell cycle did not prevent spore germination and appressoria formation. The cell cycle always lagged behind the morphogenetic changes that follow spore germination, including germ tube and appressorium formation, differentiation of the penetrating hypha, and in planta formation of primary hyphae. Nuclear division was arrested following appressorium formation and was resumed in mature appressoria after plant penetration. Unlike in M. grisea, blocking of mitosis had only a marginal effect on appressoria formation; development in hydroxyurea-treated spores continued only for a limited number of cell divisions, but normal numbers of fully developed mature appressoria were formed under conditions that support appressoria formation. Similar results were also observed in other Colletotrichum species. Spores, germ tubes, and appressoria retained intact nuclei and remained viable for several days post plant infection. Conclusion We showed that in C. gloeosporioides the differentiation of infection structures including appressoria precedes mitosis and can occur without nuclear division. This phenomenon was also found to be common in other Colletotrichum species. Spore cell death did not occur during plant infection and the fungus primary infection structures remained viable throughout the infection cycle. Our results show that the control of basic cellular processes such as those coupling cell cycle and morphogenesis during fungal infection can be substantially different between fungal species with similar lifestyles and pathogenic strategies.
Collapse
Affiliation(s)
- Iris Nesher
- Department of Plant Sciences, Tel Aviv University, Tel Aviv 69978, Israel.
| | | | | |
Collapse
|
358
|
Abstract
Autophagy is a bulk degradative process responsible for the turnover of membranes, organelles, and proteins in eukaryotic cells. Genetic and molecular regulation of autophagy has been independently elucidated in budding yeast and mammalian cells. In filamentous fungi, autophagy is required for several important physiological functions, such as asexual and sexual differentiation, pathogenic development, starvation stress and programmed cell death during heteroincompatibility. Here, we detail biochemical and microscopy methods useful for measuring the rate of induction of autophagy in filamentous fungi, and we summarize the methods that have been routinely used for monitoring macroautophagy in both yeast and filamentous fungi. The role of autophagy in carbohydrate catabolism and cell survival is discussed along with the specific functions of macroautophagy in fungal development and pathogenesis.
Collapse
|
359
|
Abstract
Many breakthroughs in our understanding of the function and molecular basis of autophagy have been achieved in mammalian and yeast systems. However, we still know very little about the contribution of autophagy to the biology of filamentous fungi. A comparative analysis of autophagy between genera will expand our knowledge of the autophagy machinery and has the potential to identify novel functions that are relevant to multiple biological systems. This chapter will discuss methods that have been employed for studying autophagy in the opportunistic mold pathogen Aspergillus fumigatus. Understanding how autophagy influences the growth of this important human pathogen could lead to the development of novel antifungal drugs that restrict the growth of the fungus by manipulating the autophagy pathway.
Collapse
Affiliation(s)
- Daryl L Richie
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, USA
| | | |
Collapse
|
360
|
Parker D, Beckmann M, Enot DP, Overy DP, Rios ZC, Gilbert M, Talbot N, Draper J. Rice blast infection of Brachypodium distachyon as a model system to study dynamic host/pathogen interactions. Nat Protoc 2008; 3:435-45. [PMID: 18323815 DOI: 10.1038/nprot.2007.499] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Interactions between plants and compatible fungal pathogens are spatially and temporally dynamic, posing a major challenge for sampling and data analysis. A protocol is described for the infection of the model grass species Brachypodium distachyon with Magnaporthe grisea (rice blast), together with modifications to extend the use to rice and barley. We outline a method for the preparation of long-term stocks of virulent fungal pathogens and for the generation of fungal inoculants for challenge of host plants. Host plant growth, pathogen inoculation and plant sampling protocols are presented together with methods for assessing the efficiency of both infection and sampling procedures. Included in the anticipated results is a description of the use of metabolite fingerprinting and multivariate data analysis to assess disease synchrony and validate system reproducibility between experiments. The design concepts will have value in any studies using biological systems that contain dynamic variance associated with large compositional changes in sample matrix over time.
Collapse
Affiliation(s)
- David Parker
- Institute of Biological Sciences, University of Wales Aberystwyth, Penglais Campus, Aberystwyth SY23 3DA, UK
| | | | | | | | | | | | | | | |
Collapse
|
361
|
Unexpected link between metal ion deficiency and autophagy in Aspergillus fumigatus. EUKARYOTIC CELL 2007; 6:2437-47. [PMID: 17921348 DOI: 10.1128/ec.00224-07] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Autophagy is the major cellular pathway for bulk degradation of cytosolic material and is required to maintain viability under starvation conditions. To determine the contribution of autophagy to starvation stress responses in the filamentous fungus Aspergillus fumigatus, we disrupted the A. fumigatus atg1 gene, encoding a serine/threonine kinase required for autophagy. The DeltaAfatg1 mutant showed abnormal conidiophore development and reduced conidiation, but the defect could be bypassed by increasing the nitrogen content of the medium. When transferred to starvation medium, wild-type hyphae were able to undergo a limited amount of growth, resulting in radial expansion of the colony. In contrast, the DeltaAfatg1 mutant was unable to grow under these conditions. However, supplementation of the medium with metal ions rescued the ability of the DeltaAfatg1 mutant to grow in the absence of a carbon or nitrogen source. Depleting the medium of cations by using EDTA was sufficient to induce autophagy in wild-type A. fumigatus, even in the presence of abundant carbon and nitrogen, and the DeltaAfatg1 mutant was severely growth impaired under these conditions. These findings establish a role for autophagy in the recycling of internal nitrogen sources to support conidiophore development and suggest that autophagy also contributes to the recycling of essential metal ions to sustain hyphal growth when exogenous nutrients are scarce.
Collapse
|
362
|
Caracuel-Rios Z, Talbot NJ. Cellular differentiation and host invasion by the rice blast fungus Magnaporthe grisea. Curr Opin Microbiol 2007; 10:339-45. [PMID: 17707684 DOI: 10.1016/j.mib.2007.05.019] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2007] [Accepted: 05/28/2007] [Indexed: 11/30/2022]
Abstract
This review describes current advances in understanding the biology of plant infection by the rice blast fungus Magnaporthe grisea. Development of the specialized infection structure, the appressorium, in M. grisea has recently been shown to be controlled by cell cycle progression and initiation of autophagic, programmed cell death in the fungal spore. Re-cycling of the contents of the fungal spore and peroxisomal fatty acid beta-oxidation are therefore important processes for appressorium function. Following entry to the host plant, new evidence suggests that M. grisea grows biotrophically within rice cells, bounded by the plant plasmalemma, and the fungus moves from cell-to-cell by means of plasmodesmata. Biotrophic proliferation of the fungus is likely to require secretion of effector proteins and suppression of host defences. Consistent with this, a component of the polarized exocytosis machinery of M. grisea is necessary for pathogenicity and also for induction of host defences in an incompatible interaction. Large-scale insertional mutagenesis is now allowing the rapid analysis of gene function in M. grisea, heralding a new approach to the study of this important fungal pathogen.
Collapse
Affiliation(s)
- Zaira Caracuel-Rios
- School of Biosciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, United Kingdom
| | | |
Collapse
|
363
|
Wilson RA, Jenkinson JM, Gibson RP, Littlechild JA, Wang ZY, Talbot NJ. Tps1 regulates the pentose phosphate pathway, nitrogen metabolism and fungal virulence. EMBO J 2007; 26:3673-85. [PMID: 17641690 PMCID: PMC1949003 DOI: 10.1038/sj.emboj.7601795] [Citation(s) in RCA: 138] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2007] [Accepted: 06/18/2007] [Indexed: 11/08/2022] Open
Abstract
Trehalose fulfils a wide variety of functions in cells, acting as a stress protectant, storage carbohydrate and compatible solute. Recent evidence, however, indicates that trehalose metabolism may exert important regulatory roles in the development of multicellular eukaryotes. Here, we show that in the plant pathogenic fungus Magnaporthe grisea trehalose-6-phosphate (T6P) synthase (Tps1) is responsible for regulating the pentose phosphate pathway, intracellular levels of NADPH and fungal virulence. Tps1 integrates glucose-6-phosphate (G6P) metabolism with nitrogen source utilisation, and thereby regulates the activity of nitrate reductase. Activity of Tps1 requires an associated regulator protein Tps3, which is also necessary for pathogenicity. Tps1 controls expression of the nitrogen metabolite repressor gene, NMR1, and is required for expression of virulence-associated genes. Functional analysis of Tps1 indicates that its regulatory functions are associated with binding of G6P, but independent of Tps1 catalytic activity. Taken together, these results demonstrate that Tps1 is a central regulator for integration of carbon and nitrogen metabolism, and plays a pivotal role in the establishment of plant disease.
Collapse
Affiliation(s)
| | | | | | | | - Zheng-Yi Wang
- School of Biosciences, University of Exeter, Exeter, UK
| | | |
Collapse
|
364
|
Egan MJ, Wang ZY, Jones MA, Smirnoff N, Talbot NJ. Generation of reactive oxygen species by fungal NADPH oxidases is required for rice blast disease. Proc Natl Acad Sci U S A 2007; 104:11772-7. [PMID: 17600089 PMCID: PMC1913907 DOI: 10.1073/pnas.0700574104] [Citation(s) in RCA: 294] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2007] [Indexed: 11/18/2022] Open
Abstract
One of the first responses of plants to microbial attack is the production of extracellular superoxide surrounding infection sites. Here, we report that Magnaporthe grisea, the causal agent of rice blast disease, undergoes an oxidative burst of its own during plant infection, which is associated with its development of specialized infection structures called appressoria. Scavenging of these oxygen radicals significantly delayed the development of appressoria and altered their morphology. We targeted two superoxide-generating NADPH oxidase-encoding genes, Nox1 and Nox2, and demonstrated genetically, that each is independently required for pathogenicity of M. grisea. Deltanox1 and Deltanox2 mutants are incapable of causing plant disease because of an inability to bring about appressorium-mediated cuticle penetration. The initiation of rice blast disease therefore requires production of superoxide by the invading pathogen.
Collapse
Affiliation(s)
- Martin J. Egan
- School of Biosciences, Washington Singer Laboratories, University of Exeter, Perry Road, Exeter EX4 4QG, United Kingdom
| | - Zheng-Yi Wang
- School of Biosciences, Washington Singer Laboratories, University of Exeter, Perry Road, Exeter EX4 4QG, United Kingdom
| | - Mark A. Jones
- School of Biosciences, Washington Singer Laboratories, University of Exeter, Perry Road, Exeter EX4 4QG, United Kingdom
| | - Nicholas Smirnoff
- School of Biosciences, Washington Singer Laboratories, University of Exeter, Perry Road, Exeter EX4 4QG, United Kingdom
| | - Nicholas J. Talbot
- School of Biosciences, Washington Singer Laboratories, University of Exeter, Perry Road, Exeter EX4 4QG, United Kingdom
| |
Collapse
|
365
|
Liu XH, Lu JP, Zhang L, Dong B, Min H, Lin FC. Involvement of a Magnaporthe grisea serine/threonine kinase gene, MgATG1, in appressorium turgor and pathogenesis. EUKARYOTIC CELL 2007; 6:997-1005. [PMID: 17416896 PMCID: PMC1951528 DOI: 10.1128/ec.00011-07] [Citation(s) in RCA: 212] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2007] [Accepted: 03/29/2007] [Indexed: 01/08/2023]
Abstract
We isolated an MgATG1 gene encoding a serine/threonine protein kinase from the rice blast fungus Magnaporthe grisea. In the DeltaMgatg1 mutant, in which the MgATG1 gene had been deleted, autophagy was blocked; the mutant also showed fewer lipid droplets in its conidia, lower turgor pressure of the appressorium, and such defects in morphogenesis as delayed initiation and slower germination of conidia. As a result of lower turgor pressure of the appressorium, the DeltaMgatg1 mutant lost its ability to penetrate and infect the two host plants, namely, rice and barley. However, normal values of the parameters and infective abilities were restored on reintroducing an intact copy of the MgATG1 gene into the mutant. Autophagy is thus necessary for turnover of organic matter during the formation of conidia and appressoria and for normal development and pathogenicity in M. grisea.
Collapse
Affiliation(s)
- Xiao-Hong Liu
- Biotechnology Institute, Zhejiang University, Kaixuan Road 268, Hangzhou 310029, China
| | | | | | | | | | | |
Collapse
|
366
|
Wang ZY, Soanes DM, Kershaw MJ, Talbot NJ. Functional analysis of lipid metabolism in Magnaporthe grisea reveals a requirement for peroxisomal fatty acid beta-oxidation during appressorium-mediated plant infection. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2007; 20:475-91. [PMID: 17506326 DOI: 10.1094/mpmi-20-5-0475] [Citation(s) in RCA: 162] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The rice blast fungus Magnaporthe grisea infects plants by means of specialized infection structures known as appressoria. Turgor generated in the appressorium provides the invasive force that allows the fungus to breach the leaf cuticle with a narrow-penetration hypha gaining entry to the underlying epidermal cell. Appressorium maturation in M. grisea involves mass transfer of lipid bodies to the developing appressorium, coupled to autophagic cell death in the conidium and rapid lipolysis at the onset of appressorial turgor generation. Here, we report identification of the principal components of lipid metabolism in M. grisea based on genome sequence analysis. We show that deletion of any of the eight putative intracellular triacylglycerol lipase-encoding genes from the fungus is insufficient to prevent plant infection, highlighting the complexity and redundancy associated with appressorial lipolysis. In contrast, we demonstrate that a peroxisomally located multifunctional, fatty acid beta-oxidation enzyme is critical to appressorium physiology, and blocking peroxisomal biogenesis prevents plant infection. Taken together, our results indicate that, although triacylglycerol breakdown in the appressorium involves the concerted action of several lipases, fatty acid metabolism and consequent generation of acetyl CoA are necessary for M. grisea to complete its prepenetration phase of development and enter the host plant.
Collapse
Affiliation(s)
- Zheng-Yi Wang
- School of Biosciences, University of Exeter, Washington Singer Laboratories, Perry Road, Exeter, EX4 4QG, UK
| | | | | | | |
Collapse
|
367
|
Scott RC, Juhász G, Neufeld TP. Direct induction of autophagy by Atg1 inhibits cell growth and induces apoptotic cell death. Curr Biol 2007; 17:1-11. [PMID: 17208179 PMCID: PMC1865528 DOI: 10.1016/j.cub.2006.10.053] [Citation(s) in RCA: 488] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2006] [Revised: 10/20/2006] [Accepted: 10/26/2006] [Indexed: 02/09/2023]
Abstract
BACKGROUND To survive starvation and other forms of stress, eukaryotic cells undergo a lysosomal process of cytoplasmic degradation known as autophagy. Autophagy has been implicated in a number of cellular and developmental processes, including cell-growth control and programmed cell death. However, direct evidence of a causal role for autophagy in these processes is lacking, resulting in part from the pleiotropic effects of signaling molecules such as TOR that regulate autophagy. Here, we circumvent this difficulty by directly manipulating autophagy rates in Drosophila through the autophagy-specific protein kinase Atg1. RESULTS We find that overexpression of Atg1 is sufficient to induce high levels of autophagy, the first such demonstration among wild-type Atg proteins. In contrast to findings in yeast, induction of autophagy by Atg1 is dependent on its kinase activity. We find that cells with high levels of Atg1-induced autophagy are rapidly eliminated, demonstrating that autophagy is capable of inducing cell death. However, this cell death is caspase dependent and displays DNA fragmentation, suggesting that autophagy represents an alternative induction of apoptosis, rather than a distinct form of cell death. In addition, we demonstrate that Atg1-induced autophagy strongly inhibits cell growth and that Atg1 mutant cells have a relative growth advantage under conditions of reduced TOR signaling. Finally, we show that Atg1 expression results in negative feedback on the activity of TOR itself. CONCLUSIONS Our results reveal a central role for Atg1 in mounting a coordinated autophagic response and demonstrate that autophagy has the capacity to induce cell death. Furthermore, this work identifies autophagy as a critical mechanism by which inhibition of TOR signaling leads to reduced cell growth.
Collapse
Affiliation(s)
- Ryan C Scott
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | |
Collapse
|
368
|
Li L, Schmelz M, Kellner EM, Galgiani JN, Orbach MJ. Nuclear labeling of Coccidioides posadasii with green fluorescent protein. Ann N Y Acad Sci 2007; 1111:198-207. [PMID: 17344520 DOI: 10.1196/annals.1406.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Coccidioidomycosis is a mild to life-threatening disease in otherwise healthy humans and other mammals caused by the fungus Coccidioides spp. Understanding the development of the unique dimorphic life cycle of Coccidioides spp. and its role in pathogenesis has been an area of research focus. However, nuclear behavior during the saprobic and parasitic life cycle has not been studied intensively. In this study, green fluorescent protein (GFP) was fused to histone H1 and introduced into Coccidioides posadasii (C. posadasii) strain Silveira to monitor the nuclear behavior of the fungus during the saprobic and parasitic stages of the life cycle. We constructed an Agrobacterium tumefaciens-mediated transformation (ATMT) vector that had in its T-DNA region a hygromycin-resistance gene as well as the fused histone H1-GFP gene under the control of the histone H3 promoter of C. posadasii. More than 30 hygromycin-resistant transformants were obtained and 23 were purified to homozygosity through multiple passages of the original transformants on hygromycin-containing media. One strain (VFC1420) transformed with a single copy of the fusion histone H1-GFP gene was selected for cytological studies. Strong nuclear-localized GFP signals were observed in arthroconidia, hyphae, as well as in spherules and endospores developed in vitro. Thus GFP can be used to study the expression pattern of potential virulence genes identified in serial analysis of gene expression (SAGE) or expressed sequence tags (EST) libraries, and could be a useful tool to monitor disease development in the murine model.
Collapse
Affiliation(s)
- Lei Li
- Department of Plant Sciences, Forbes Bldg., Room 303, 1140 E. South Campus Dr., P. O. Box 210036, Tucson, AZ 85721, USA
| | | | | | | | | |
Collapse
|
369
|
Zhao X, Xu JR. A highly conserved MAPK-docking site in Mst7 is essential for Pmk1 activation in Magnaporthe grisea. Mol Microbiol 2007; 63:881-94. [PMID: 17214742 DOI: 10.1111/j.1365-2958.2006.05548.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
In Magnaporthe grisea, the MST11-MST7-PMK1 MAP kinase (MAPK) cascade is essential for appressorium formation and plant infection. Although expressing a dominant active MST7 allele results in Pmk1 activation in the absence of Mst11 and improper regulation of appressorium formation, the direct interaction between Mst7 and Pmk1 is not observed in yeast two-hybrid assays. Thus, it is not clear how Mst7 transmits the upstream signals to Pmk1. Like its homologues from other ascomycetes, Mst7 contains a putative MAPK-docking site (12-20) at its N-terminus. Deletion of this MAPK-docking site had no obvious effect on the expression of MST7 but blocked appressorium formation and plant infection. The kinase activity of Mst7 was not affected by the docking site deletion but Mst7(Delta12-20) failed to activate Pmk1. Mutations in the putative docking region of Pmk1 also abolished appressorium formation. In both co-immunoprecipitation and bimolecular fluorescence complementation (BiFC) assays, the direct interaction between Mst7 and Pmk1 was detected only during appressorium formation. Deletion of the MAPK-docking site of Mst7 eliminated the Mst7-Pmk1 interaction in M. grisea. These data indicate that the MAPK-docking site of Mst7 is essential for its association and activation of downstream Pmk1, and the Mst7-Pmk1 interaction is enhanced or stabilized during appressorium formation.
Collapse
Affiliation(s)
- Xinhua Zhao
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA
| | | |
Collapse
|
370
|
Liang J, Shao SH, Xu ZX, Hennessy B, Ding Z, Larrea M, Kondo S, Dumont DJ, Gutterman JU, Walker CL, Slingerland JM, Mills GB. The energy sensing LKB1-AMPK pathway regulates p27(kip1) phosphorylation mediating the decision to enter autophagy or apoptosis. Nat Cell Biol 2007; 9:218-24. [PMID: 17237771 DOI: 10.1038/ncb1537] [Citation(s) in RCA: 706] [Impact Index Per Article: 39.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2006] [Accepted: 12/06/2006] [Indexed: 01/20/2023]
Abstract
Nutrients and bioenergetics are prerequisites for proliferation and survival of mammalian cells. We present evidence that the cyclin-dependent kinase inhibitor p27(Kip1), is phosphorylated at Thr 198 downstream of the Peutz-Jeghers syndrome protein-AMP-activated protein kinase (LKB1-AMPK) energy-sensing pathway, thereby increasing p27 stability and directly linking sensing of nutrient concentration and bioenergetics to cell-cycle progression. Ectopic expression of wild-type and phosphomimetic Thr 198 to Asp 198 (T198D), but not unstable Thr 198 to Ala 198 (p27(T198A)) is sufficient to induce autophagy. Under stress conditions that activate the LKB1-AMPK pathway with subsequent induction of autophagy, p27 knockdown results in apoptosis. Thus LKB1-AMPK pathway-dependent phosphorylation of p27 at Thr 198 stabilizes p27 and permits cells to survive growth factor withdrawal and metabolic stress through autophagy. This may contribute to tumour-cell survival under conditions of growth factor deprivation, disrupted nutrient and energy metabolism, or during stress of chemotherapy.
Collapse
Affiliation(s)
- Jiyong Liang
- Department of Molecular Therapeutics, University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
371
|
Affiliation(s)
| | - Kurt W Mendgen
- Phytopathology, Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| |
Collapse
|
372
|
Xu JR, Zhao X, Dean RA. From genes to genomes: a new paradigm for studying fungal pathogenesis in Magnaporthe oryzae. ADVANCES IN GENETICS 2007; 57:175-218. [PMID: 17352905 DOI: 10.1016/s0065-2660(06)57005-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Magnaporthe oryzae is the most destructive fungal pathogen of rice worldwide and because of its amenability to classical and molecular genetic manipulation, availability of a genome sequence, and other resources it has emerged as a leading model system to study host-pathogen interactions. This chapter reviews recent progress toward elucidation of the molecular basis of infection-related morphogenesis, host penetration, invasive growth, and host-pathogen interactions. Related information on genome analysis and genomic studies of plant infection processes is summarized under specific topics where appropriate. Particular emphasis is placed on the role of MAP kinase and cAMP signal transduction pathways and unique features in the genome such as repetitive sequences and expanded gene families. Emerging developments in functional genome analysis through large-scale insertional mutagenesis and gene expression profiling are detailed. The chapter concludes with new prospects in the area of systems biology, such as protein expression profiling, and highlighting remaining crucial information needed to fully appreciate host-pathogen interactions.
Collapse
Affiliation(s)
- Jin-Rong Xu
- Department of Botany and Plant Pathology, Purdue University West Lafayette, Indiana 47907, USA
| | | | | |
Collapse
|
373
|
Ebbole DJ. Magnaporthe as a model for understanding host-pathogen interactions. ANNUAL REVIEW OF PHYTOPATHOLOGY 2007; 45:437-56. [PMID: 17489691 DOI: 10.1146/annurev.phyto.45.062806.094346] [Citation(s) in RCA: 285] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The rice blast pathosystem has been the subject of intense interest in part because of the importance of the disease to world agriculture, but also because both Magnaporthe oryzae and its host are amenable to advanced experimental approaches. The goal of this review is to provide an overview of the system and to point out recent significant studies that update our understanding of the biology of M. oryzae. The genome sequence of M. oryzae has provided insight into how genome structure and pathogen population genetic variability has been shaped by transposable elements. The sequence allows systematic approaches to long-standing areas of investigation, including pathogen development and the molecular basis of compatible and incompatible interactions with its host. Rice blast provides an integrated system to illustrate most of the important concepts governing fungal/plant interactions and serves as an excellent starting point for gaining a broad perspective of issues in plant pathology.
Collapse
Affiliation(s)
- Daniel J Ebbole
- Program for the Biology of Filamentous Fungi, Department of Plant Pathology and Microbiology, Texas A&M University, College Station, Texas 77843-2132, USA.
| |
Collapse
|
374
|
Develey-Rivière MP, Galiana E. Resistance to pathogens and host developmental stage: a multifaceted relationship within the plant kingdom. THE NEW PHYTOLOGIST 2007; 175:405-416. [PMID: 17635216 DOI: 10.1111/j.1469-8137.2007.02130.x] [Citation(s) in RCA: 128] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The induction of resistance to disease during plant development is widespread in the plant kingdom. Resistance appears at different stages of host development, varies with plant age or tissue maturity, may be specific or broad-spectrum and is driven by diverse mechanisms, depending on plantpathogen interactions. Studies of these forms of resistance may help us to evaluate more exhaustively the plethora of levels of regulation during development, the variability of the defense potential of developing hosts and may have practical applications, making it possible to reduce pesticide applications. Here, we review the various types of developmental resistance in plants and current knowledge of the molecular and cellular processes involved in their expression. We discuss the implications of these studies, which provide new knowledge from the molecular to the agrosystem level.
Collapse
Affiliation(s)
- Marie-Pierre Develey-Rivière
- UMR1064 Interactions Plantes-Microorganismes et Santé Végétale, INRA-Université Nice Sophia-Antipolis-CNRS, F 06903 Sophia Antipolis Cedex, France
| | - Eric Galiana
- UMR1064 Interactions Plantes-Microorganismes et Santé Végétale, INRA-Université Nice Sophia-Antipolis-CNRS, F 06903 Sophia Antipolis Cedex, France
| |
Collapse
|
375
|
Barhoom S, Sharon A. Bcl-2 proteins link programmed cell death with growth and morphogenetic adaptations in the fungal plant pathogen Colletotrichum gloeosporioides. Fungal Genet Biol 2007; 44:32-43. [PMID: 16950636 DOI: 10.1016/j.fgb.2006.06.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2006] [Revised: 06/05/2006] [Accepted: 06/13/2006] [Indexed: 10/24/2022]
Abstract
Proteins belonging to the Bcl-2 family regulate apoptosis in mammals by controlling mitochondria efflux of cytochrome c and other apoptosis-related proteins. Homologues of human Bcl-2 proteins are found in different metazoan organisms where they play a similar role, while they seem to be absent in plants and fungi. Nonetheless, Bcl-2 protein members can induce or prevent yeast cell death, suggesting that enough functional conservation exists between apoptotic machineries of mammals and fungi. Here we show that induction or prevention of apoptosis by Bcl-2 proteins in the fungal plant pathogen Colletotrichum gloeosporioides is tightly linked with growth and morphogenetic adaptation that occur throughout the entire fungal life cycle. Isolates expressing the pro-apoptotic Bax protein underwent cell death with apoptotic characteristics, and showed alterations in conidial germination that are associated with pathogenic and non-pathogenic life styles. Isolates expressing the anti-apoptotic Bcl-2 protein had prolonged longevity, were protected from Bax-induced cell death, and exhibited enhanced stress resistance. These isolates also had enhanced mycelium and conidia production, and were hyper virulent to host plants. Our findings show that apoptotic-associated machinery regulates morphogenetic switches, which are critical for proper responses and adaptation fungi to different environments.
Collapse
Affiliation(s)
- Sima Barhoom
- Department of Plant Sciences, Tel Aviv University, Tel Aviv, Israel
| | | |
Collapse
|
376
|
Pinan-Lucarré B, Paoletti M, Clavé C. Cell death by incompatibility in the fungus Podospora. Semin Cancer Biol 2006; 17:101-11. [PMID: 17204431 DOI: 10.1016/j.semcancer.2006.11.009] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2006] [Accepted: 11/25/2006] [Indexed: 02/09/2023]
Abstract
Filamentous fungi are naturally able of somatic fusions. When cells of unlike genotype at specific het loci fuse, non-self recognition operates in the fusion cell and a cell death reaction termed cell death by incompatibility is triggered. In Podospora anserina cell death by incompatibility is characterized by a dramatic vacuolar enlargement, induction of autophagy and cell lysis. Autophagy contributes neither to vacuolar morphological changes nor to cell death but rather protects cells against death. Autophagy could be involved in selective elimination of pro-death signals. Vacuole collapse and cytoplasm acidification might be the cause of cell death by incompatibility.
Collapse
Affiliation(s)
- Bérangère Pinan-Lucarré
- Laboratoire de Génétique Moléculaire des Champignons, Institut de Biochimie et de Génétique Cellulaires, UMR 5095 CNRS et Université de Bordeaux 2, Bordeaux, France
| | | | | |
Collapse
|
377
|
Sun CB, Suresh A, Deng YZ, Naqvi NI. A multidrug resistance transporter in Magnaporthe is required for host penetration and for survival during oxidative stress. THE PLANT CELL 2006; 18:3686-705. [PMID: 17189344 PMCID: PMC1785395 DOI: 10.1105/tpc.105.037861] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
In prokaryotes and eukaryotes, multidrug resistance (MDR) transporters use energy-dependent efflux action to regulate the intracellular levels of antibiotic or xenobiotic compounds. Using mutational analysis of ABC3, we define an important role for such MDR-based efflux during the host penetration step of Magnaporthe grisea pathogenesis. Mutants lacking ABC3 were completely nonpathogenic but were surprisingly capable of penetrating thin cellophane membranes to some extent. The inability of abc3Delta to penetrate the host surface was most likely a consequence of excessive buildup of peroxide and accumulation of an inhibitory metabolite(s) within the mutant appressoria. Treatment with antioxidants partially suppressed the host penetration defects in the abc3Delta mutant. abc3Delta was highly sensitive to oxidative stress and was unable to survive the host environment and invasive growth conditions. ABC3 transcript levels were redox-regulated, and on host surfaces, the activation of ABC3 occurred during initial stages of blast disease establishment. An Abc3-green fluorescent protein fusion localized to the plasma membrane in early appressoria (and in penetration hyphae) but became predominantly vacuolar during appressorial maturity. We propose that ABC3 function helps Magnaporthe to cope with cytotoxicity and oxidative stress within the appressoria during early stages of infection-related morphogenesis and likely imparts defense against certain antagonistic and xenobiotic conditions encountered during pathogenic development.
Collapse
Affiliation(s)
- Chuan Bao Sun
- Fungal Patho-Biology Group, Temasek Life Sciences Laboratory and Department of Biological Sciences, National University of Singapore, Singapore 117604
| | | | | | | |
Collapse
|
378
|
Park G, Xue C, Zhao X, Kim Y, Orbach M, Xu JR. Multiple upstream signals converge on the adaptor protein Mst50 in Magnaporthe grisea. THE PLANT CELL 2006; 18:2822-35. [PMID: 17056708 PMCID: PMC1626611 DOI: 10.1105/tpc.105.038422] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Rice blast fungus (Magnaporthe grisea) forms a highly specialized infection structure for plant penetration, the appressorium, the formation and growth of which are regulated by the Mst11-Mst7-Pmk1 mitogen-activated protein kinase cascade. We characterized the MST50 gene that directly interacts with both MST11 and MST7. Similar to the mst11 mutant, the mst50 mutant was defective in appressorium formation, sensitive to osmotic stresses, and nonpathogenic. Expressing a dominant active MST7 allele in mst50 complemented its defects in appressorium but not lesion formation. The sterile alpha-motif (SAM) domain of Mst50 was essential for its interaction with Mst11 and for appressorium formation. Although the SAM and Ras-association domain (RAD) of Mst50 were dispensable for its interaction with Mst7, deletion of RAD reduced appressorium formation and virulence on rice (Oryza sativa) seedlings. The interaction between Mst50 and Mst7 or Mst11 was detected by coimmunoprecipitation assays in developing appressoria. Mst50 also interacts with Ras1, Ras2, Cdc42, and Mgb1 in yeast two-hybrid assays. Expressing a dominant active RAS2 allele in the wild-type strain but not in mst50 stimulated abnormal appressorium formation. These results indicate that MST50 functions as an adaptor protein interacting with multiple upstream components and plays critical roles in activating the Pmk1 cascade for appressorium formation and plant infection in M. grisea.
Collapse
Affiliation(s)
- Gyungsoon Park
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana 47907, USA
| | | | | | | | | | | |
Collapse
|
379
|
Flor-Parra I, Vranes M, Kämper J, Pérez-Martín J. Biz1, a zinc finger protein required for plant invasion by Ustilago maydis, regulates the levels of a mitotic cyclin. THE PLANT CELL 2006; 18:2369-87. [PMID: 16905655 PMCID: PMC1560913 DOI: 10.1105/tpc.106.042754] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2006] [Revised: 06/16/2006] [Accepted: 07/17/2006] [Indexed: 05/11/2023]
Abstract
Plant invasion by pathogenic fungi involves regulated growth and highly organized fungal morphological changes. For instance, when the smut fungus Ustilago maydis infects maize (Zea mays), its dikaryotic infective filament is cell cycle arrested, and appressoria are differentiated prior to plant penetration. Once the filament enters the plant, the cell cycle block is released and fungal cells begin proliferation, suggesting a tight interaction between plant invasion and the cell cycle and morphogenesis control systems. We describe a novel factor, Biz1 (b-dependent zinc finger protein), which has two Cys(2)His(2) zinc finger domains and nuclear localization, suggesting a transcriptional regulatory function. The deletion of biz1 shows no detectable phenotypic alterations during axenic growth. However, mutant cells show a severe reduction in appressoria formation and plant penetration, and those hyphae that invade the plant arrest their pathogenic development directly after plant penetration. biz1 is induced via the b-mating-type locus, the key control instance for pathogenic development. The gene is expressed at high levels throughout pathogenic development, which induces a G2 cell cycle arrest that is a direct consequence of the downregulation of the mitotic cyclin Clb1. Our data support a model in which Biz1 is involved in cell cycle arrest preceding plant penetration as well as in the induction of appressoria.
Collapse
Affiliation(s)
- Ignacio Flor-Parra
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Campus de Cantoblanco, Universidad Autonoma de Madrid, 28049 Madrid, Spain
| | | | | | | |
Collapse
|