351
|
Moreno Y, Nabhan JF, Solomon J, Mackenzie CD, Geary TG. Ivermectin disrupts the function of the excretory-secretory apparatus in microfilariae of Brugia malayi. Proc Natl Acad Sci U S A 2010; 107:20120-5. [PMID: 21041637 PMCID: PMC2993382 DOI: 10.1073/pnas.1011983107] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Ivermectin (IVM) is a broad-spectrum anthelmintic used in filariasis control programs. By binding to nematode glutamate-gated chloride channels (GluCls), IVM disrupts neurotransmission processes regulated by GluCl activity. IVM treatment of filarial infections is characterized by an initial dramatic drop in the levels of circulating microfilariae, followed by long-term suppression of their production, but the drug has little direct effect on microfilariae in culture at pharmacologically relevant concentrations. We localized Brugia malayi GluCl expression solely in a muscle structure that surrounds the microfilarial excretory-secretory (ES) vesicle, which suggests that protein release from the ES vesicle is regulated by GluCl activity. Consistent with this hypothesis, exposure to IVM in vitro decreased the amount of protein released from microfilariae. To better understand the scope of IVM effects on protein release by the parasite, three different expression patterns were identified from immunolocalization assays on a representative group of five microfilarial ES products. Patterns of expression suggest that the ES apparatus is the main source of regulated ES product release from microfilariae, as it is the only compartment that appears to be under neuromuscular control. Our results show that IVM treatment of microfilariae results in a marked reduction of protein release from the ES apparatus. Under in vivo conditions, the rapid microfilarial clearance induced by IVM treatment is proposed to result from suppression of the ability of the parasite to secrete proteins that enable evasion of the host immune system.
Collapse
Affiliation(s)
- Yovany Moreno
- Institute of Parasitology, McGill University-Macdonald Campus, Sainte Anne de Bellevue, Quebec, Canada H9X 3V9
| | | | | | | | | |
Collapse
|
352
|
Castagnone-Sereno P, Danchin EGJ, Deleury E, Guillemaud T, Malausa T, Abad P. Genome-wide survey and analysis of microsatellites in nematodes, with a focus on the plant-parasitic species Meloidogyne incognita. BMC Genomics 2010; 11:598. [PMID: 20973953 PMCID: PMC3091743 DOI: 10.1186/1471-2164-11-598] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Accepted: 10/25/2010] [Indexed: 11/13/2022] Open
Abstract
Background Microsatellites are the most popular source of molecular markers for studying population genetic variation in eukaryotes. However, few data are currently available about their genomic distribution and abundance across the phylum Nematoda. The recent completion of the genomes of several nematode species, including Meloidogyne incognita, a major agricultural pest worldwide, now opens the way for a comparative survey and analysis of microsatellites in these organisms. Results Using MsatFinder, the total numbers of 1-6 bp perfect microsatellites detected in the complete genomes of five nematode species (Brugia malayi, Caenorhabditis elegans, M. hapla, M. incognita, Pristionchus pacificus) ranged from 2,842 to 61,547, and covered from 0.09 to 1.20% of the nematode genomes. Under our search criteria, the most common repeat motifs for each length class varied according to the different nematode species considered, with no obvious relation to the AT-richness of their genomes. Overall, (AT)n, (AG)n and (CT)n were the three most frequent dinucleotide microsatellite motifs found in the five genomes considered. Except for two motifs in P. pacificus, all the most frequent trinucleotide motifs were AT-rich, with (AAT)n and (ATT)n being the only common to the five nematode species. A particular attention was paid to the microsatellite content of the plant-parasitic species M. incognita. In this species, a repertoire of 4,880 microsatellite loci was identified, from which 2,183 appeared suitable to design markers for population genetic studies. Interestingly, 1,094 microsatellites were identified in 801 predicted protein-coding regions, 99% of them being trinucleotides. When compared against the InterPro domain database, 497 of these CDS were successfully annotated, and further assigned to Gene Ontology terms. Conclusions Contrasted patterns of microsatellite abundance and diversity were characterized in five nematode genomes, even in the case of two closely related Meloidogyne species. 2,245 di- to hexanucleotide loci were identified in the genome of M. incognita, providing adequate material for the future development of a wide range of microsatellite markers in this major plant parasite.
Collapse
|
353
|
Kumar S, Blaxter ML. Comparing de novo assemblers for 454 transcriptome data. BMC Genomics 2010; 11:571. [PMID: 20950480 PMCID: PMC3091720 DOI: 10.1186/1471-2164-11-571] [Citation(s) in RCA: 214] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2010] [Accepted: 10/16/2010] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Roche 454 pyrosequencing has become a method of choice for generating transcriptome data from non-model organisms. Once the tens to hundreds of thousands of short (250-450 base) reads have been produced, it is important to correctly assemble these to estimate the sequence of all the transcripts. Most transcriptome assembly projects use only one program for assembling 454 pyrosequencing reads, but there is no evidence that the programs used to date are optimal. We have carried out a systematic comparison of five assemblers (CAP3, MIRA, Newbler, SeqMan and CLC) to establish best practices for transcriptome assemblies, using a new dataset from the parasitic nematode Litomosoides sigmodontis. RESULTS Although no single assembler performed best on all our criteria, Newbler 2.5 gave longer contigs, better alignments to some reference sequences, and was fast and easy to use. SeqMan assemblies performed best on the criterion of recapitulating known transcripts, and had more novel sequence than the other assemblers, but generated an excess of small, redundant contigs. The remaining assemblers all performed almost as well, with the exception of Newbler 2.3 (the version currently used by most assembly projects), which generated assemblies that had significantly lower total length. As different assemblers use different underlying algorithms to generate contigs, we also explored merging of assemblies and found that the merged datasets not only aligned better to reference sequences than individual assemblies, but were also more consistent in the number and size of contigs. CONCLUSIONS Transcriptome assemblies are smaller than genome assemblies and thus should be more computationally tractable, but are often harder because individual contigs can have highly variable read coverage. Comparing single assemblers, Newbler 2.5 performed best on our trial data set, but other assemblers were closely comparable. Combining differently optimal assemblies from different programs however gave a more credible final product, and this strategy is recommended.
Collapse
Affiliation(s)
- Sujai Kumar
- Institute of Evolutionary Biology, University of Edinburgh, West Mains Road, Edinburgh EH9 3JT, UK
| | - Mark L Blaxter
- Institute of Evolutionary Biology, University of Edinburgh, West Mains Road, Edinburgh EH9 3JT, UK
| |
Collapse
|
354
|
Bergquist R, Lustigman S. Control of important helminthic infections vaccine development as part of the solution. ADVANCES IN PARASITOLOGY 2010; 73:297-326. [PMID: 20627146 DOI: 10.1016/s0065-308x(10)73010-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Among the tools available for the control of helminth infections, chemotherapy has come to totally dominate the field. In the veterinary field, development of drug resistance has appeared but this is not (yet) a problem in the control of human diseases. Although there is no vaccine commercially available for any human parasitic infection yet, recent progress in vaccine development is making this a future possibility for several diseases. The goal of chemotherapy is to alleviate infection and morbidity in the definitive host, or reduce transmission, while the effect of available vaccine candidates would mainly be to influence transmission through targeting the intermediate or reservoir host, when the infection is zoonotic. Apart from this general scheme, there are also vaccine candidates targeting the parasites in the definitive host, in particular the early developmental stages, which should reduce the risk of drug failure. Since the biological targets in most cases are different, vaccination would be synergistic with drug therapy. This review covers diseases caused by helminthes in both humans and animals and includes examples of diseases caused by cestodes, nematodes and trematodes. The focus is on infections for which vaccine development has been undertaken for a long time, resulting in products that could realistically become integrated into control strategies in the near future.
Collapse
|
355
|
Castagnone-Sereno P, Deleury E, Danchin EGJ, Perfus-Barbeoch L, Abad P. Data-mining of the Meloidogyne incognita degradome and comparative analysis of proteases in nematodes. Genomics 2010; 97:29-36. [PMID: 20951198 DOI: 10.1016/j.ygeno.2010.10.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Accepted: 10/07/2010] [Indexed: 11/28/2022]
Abstract
Proteases perform essential physiological functions in all living organisms. In parasitic helminths, they are of particular importance for tissue penetration, digestion of host tissues for nutrition, and evasion of host immune responses. The recent availability of the genome sequence of the nematode Meloidogyne incognita has allowed the analysis of the protease repertoire of this major crop pathogen. The M. incognita degradome consists of at least 334 proteases that are distributed into 43 families of the five known catalytic classes. Expression profiling identified protease genes with a differential transcript level between eggs and infective juveniles. Comparing the M. incognita degradome with those of five other nematodes showed discrepancies in the distribution of some protease families, including large expansion in some families, that could reflect specific aspects of the parasitic lifestyle of this organism. This comparative study should provide a framework for deciphering the diversity of protease-mediated functions in nematodes.
Collapse
|
356
|
Our wormy world genomics, proteomics and transcriptomics in East and southeast Asia. ADVANCES IN PARASITOLOGY 2010; 73:327-71. [PMID: 20627147 DOI: 10.1016/s0065-308x(10)73011-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Helminths are the cause of some of the major infectious diseases of humanity in what is still a "wormy" world. There is, in East and Southeast Asia, a high prevalence of several helminthiases which occur primarily in rural, impoverished areas of low-income and developing countries throughout the tropics and subtropics. Subsequent to various parasite genome projects that commenced in the early 1990s, under the aegis of the World Health Organization (WHO), the draft genomes of three major helminth species (Schistosoma japonicum, S. mansoni and Brugia malayi) have been sequenced, and many other helminth parasites have now been targeted for intensive genomics investigation. The continuing release of genome sequences has catalyzed the emergence of transcriptomics, proteomics and related "-omics" analyses of helminth parasites, which provide unprecedented approaches to understanding their biology that will result in new clues for the development of novel control interventions. In this review, we present a summary of current approaches employed in helminth "-omics" studies and review recent advances in helminth genomics and post-genomics in the Southeast Asian setting.
Collapse
|
357
|
Neary JM, Trees AJ, Ekale DD, Tanya VN, Hetzel U, Makepeace BL. Onchocerca armillata contains the endosymbiotic bacterium Wolbachia and elicits a limited inflammatory response. Vet Parasitol 2010; 174:267-76. [PMID: 20850932 PMCID: PMC3038270 DOI: 10.1016/j.vetpar.2010.08.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2010] [Revised: 08/16/2010] [Accepted: 08/23/2010] [Indexed: 11/27/2022]
Abstract
Human onchocerciasis, also known as River Blindness, is a debilitating disease caused by the filarial nematode Onchocerca volvulus. Many, but not all, filarial nematodes carry within their tissues endosymbiotic, Rickettsia-like bacteria of the genus Wolbachia. Onchocerca spp. infections in cattle offer the most relevant, analogous host–parasite model system. West African cattle are commonly co-infected with four Onchocerca spp.; two of these are Wolbachia-positive (Onchocerca gutturosa and Onchocerca ochengi), and the remainder are of unknown Wolbachia status (Onchocerca dukei and Onchocerca armillata). Previous studies have suggested that worm survival is dependent on this bacterium. O. armillata, an abundant parasite of African cattle that has received little attention, is a primitive species that may lack Wolbachia. The objectives of this study were to determine if O. armillata carries Wolbachia and to provide preliminary descriptions of the host inflammatory cell environment around the adult worms. The findings may support or refute the hypothesis that a prime contribution of Wolbachia is to permit long-term survival and reproduction of certain Onchocerca spp. (including O. volvulus in humans). O. armillata adult worms were found in the aorta of 90.7% of cattle (n = 54) slaughtered at an abattoir in Ngaoundéré, Adamawa Region, Cameroon. The presence of Wolbachia in O. armillata was confirmed by a specific anti-Wolbachia surface protein antibody detected using a peroxidase conjugate (immunohistochemistry) and PCR for detection of Wolbachia-specific sequences within DNA extracts from frozen worms. Tissue sections stained with haematoxylin and eosin showed the host cell response to be dominated by macrophages and fibroblasts. This is unusual compared with nodule-dwelling Wolbachia-positive Onchocerca spp., where the host response is typically characterised by granulocytes, and suggests that the mechanisms for worm survival employed by this species (which is probably motile) may differ.
Collapse
Affiliation(s)
- Joseph M Neary
- Liverpool School of Tropical Medicine and Faculty of Veterinary Science, University of Liverpool, Liverpool, UK
| | | | | | | | | | | |
Collapse
|
358
|
Rufener L, Keiser J, Kaminsky R, Mäser P, Nilsson D. Phylogenomics of ligand-gated ion channels predicts monepantel effect. PLoS Pathog 2010; 6:e1001091. [PMID: 20838602 PMCID: PMC2936538 DOI: 10.1371/journal.ppat.1001091] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2009] [Accepted: 08/06/2010] [Indexed: 01/24/2023] Open
Abstract
The recently launched veterinary anthelmintic drench for sheep (Novartis Animal Health Inc., Switzerland) containing the nematocide monepantel represents a new class of anthelmintics: the amino-acetonitrile derivatives (AADs), much needed in view of widespread resistance to the classical drugs. Recently, it was shown that the ACR-23 protein in Caenorhabditis elegans and a homologous protein, MPTL-1 in Haemonchus contortus, are potential targets for AAD action. Both proteins belong to the DEG-3 subfamily of acetylcholine receptors, which are thought to be nematode-specific, and different from those targeted by the imidazothiazoles (e.g. levamisole). Here we provide further evidence that Cel-ACR-23 and Hco-MPTL-1-like subunits are involved in the monepantel-sensitive phenotype. We performed comparative genomics of ligand-gated ion channel genes from several nematodes and subsequently assessed their sensitivity to anthelmintics. The nematode species in the Caenorhabditis genus, equipped with ACR-23/MPTL-1-like receptor subunits, are sensitive to monepantel (EC50<1.25 µM), whereas the related nematodes Pristionchus pacificus and Strongyloides ratti, which lack an ACR-23/MPTL-1 homolog, are insensitive (EC50>43 µM). Genome sequence information has long been used to identify putative targets for therapeutic intervention. We show how comparative genomics can be applied to predict drug sensitivity when molecular targets of a compound are known or suspected. Increased use of anthelmintics has contributed to the emergence of drug-resistant nematodes, causing serious problems for more than one billion sheep worldwide. The last class of compounds indicated for livestock was introduced 28 years ago. Recently, however, Novartis AH developed a new anthelmintic active against drug-resistant nematodes of sheep, the amino-acetonitrile derivative (AAD) monepantel. We have previously indirectly shown that the AADs have a novel mode of action involving acetylcholine receptor subunits: the ACR-23 protein in Caenorhabditis elegans and a homologous protein, MPTL-1 in Haemonchus contortus. To better understand the mode of action of the AADs, we performed comparative genomics of all ligand-gated ion channel genes from a range of organisms, including members from all nematode clades. We confirmed that MPTL-1 belongs to a unique, nematode-specific sub-family of receptor subunits. We also found that some nematode species lack ACR-23/MPTL-1 and predicted them to be monepantel insensitive. We challenged this hypothesis in a panel of drug tests: several species of Caenorhabditis nematodes equipped with ACR-23/MPTL-1-like receptor subunits were found susceptible to monepantel, whereas Pristionchus pacificus, closely related to these worms but lacking an ACR-23/MPTL-1 homolog, was tolerant. The parasitic nematode Strongyloides ratti, which has only a remote homolog of DES-2 and ACR-23/MPTL-1, was also tolerant to monepantel. This confirms our prediction and highlights how comparative genomic data can be used to predict a drug effect.
Collapse
Affiliation(s)
- Lucien Rufener
- Novartis Centre de Recherche Santé Animale, St. Aubin, Switzerland
- Institute of Cell Biology, University of Bern, Bern, Switzerland
| | - Jennifer Keiser
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Ronald Kaminsky
- Novartis Centre de Recherche Santé Animale, St. Aubin, Switzerland
| | - Pascal Mäser
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Daniel Nilsson
- Institute of Cell Biology, University of Bern, Bern, Switzerland
- * E-mail:
| |
Collapse
|
359
|
Devaney E, Winter AD, Britton C. microRNAs: a role in drug resistance in parasitic nematodes? Trends Parasitol 2010; 26:428-33. [PMID: 20541972 PMCID: PMC2930248 DOI: 10.1016/j.pt.2010.05.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2010] [Revised: 05/17/2010] [Accepted: 05/18/2010] [Indexed: 12/19/2022]
Abstract
Drug resistance in parasitic nematodes is an increasing problem worldwide, with resistance reported to all three commonly used classes of anthelmintics. Most studies to date have sought to correlate the resistant phenotype with genotypic changes in putative target molecules. Although this approach has identified mutations in several relevant genes, resistance might result from a complex interaction of different factors. Here we propose an alternative mechanism underlying the development of drug resistance based on functional differences in microRNA activity in resistant parasites. microRNAs play an important role in resistance to chemotherapeutic agents in many tumour cells and here we discuss whether they might also be involved in anthelmintic resistance in parasitic nematodes.
Collapse
Affiliation(s)
- Eileen Devaney
- Parasitology Group, Division of Veterinary Infection and Immunity, Institute for Comparative Medicine, School of Veterinary Medicine, University of Glasgow, Bearsden Road, Glasgow G61 1QH, UK.
| | | | | |
Collapse
|
360
|
Campbell BE, Hofmann A, McCluskey A, Gasser RB. Serine/threonine phosphatases in socioeconomically important parasitic nematodes--prospects as novel drug targets? Biotechnol Adv 2010; 29:28-39. [PMID: 20732402 DOI: 10.1016/j.biotechadv.2010.08.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Accepted: 08/16/2010] [Indexed: 01/21/2023]
Abstract
Little is known about the fundamental biology of parasitic nematodes (=roundworms) that cause serious diseases, affecting literally billions of animals and humans worldwide. Unlocking the biology of these neglected pathogens using modern technologies will yield crucial and profound knowledge of their molecular biology, and could lead to new treatment and control strategies. Supported by studies in the free-living nematode, Caenorhabditis elegans, some recent investigations have provided improved insights into selected protein phosphatases (PPs) of economically important parasitic nematodes (Strongylida). In the present article, we review this progress and assess the potential of serine/threonine phosphatase (STP) genes and/or their products as targets for new nematocidal drugs. Current information indicates that some small molecules, known to specifically inhibit PPs, might be developed as nematocides. For instance, some cantharidin analogues are known to display exquisite PP-inhibitor activity, which indicates that some of them could be designed and tailored to specifically inhibit selected STPs of nematodes. This information provides prospects for the discovery of an entirely novel class of nematocides, which is of paramount importance, given the serious problems linked to anthelmintic resistance in parasitic nematode populations of livestock, and has the potential to lead to significant biotechnological outcomes.
Collapse
Affiliation(s)
- Bronwyn E Campbell
- Department of Veterinary Science, The University of Melbourne, Werribee, Victoria 3030, Australia
| | | | | | | |
Collapse
|
361
|
Pedamallu CS, Posfai J. Open source tool for prediction of genome wide protein-protein interaction network based on ortholog information. SOURCE CODE FOR BIOLOGY AND MEDICINE 2010; 5:8. [PMID: 20684769 PMCID: PMC2924336 DOI: 10.1186/1751-0473-5-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2010] [Accepted: 08/04/2010] [Indexed: 11/18/2022]
Abstract
Background Protein-protein interactions are crucially important for cellular processes. Knowledge of these interactions improves the understanding of cell cycle, metabolism, signaling, transport, and secretion. Information about interactions can hint at molecular causes of diseases, and can provide clues for new therapeutic approaches. Several (usually expensive and time consuming) experimental methods can probe protein - protein interactions. Data sets, derived from such experiments make the development of prediction methods feasible, and make the creation of protein-protein interaction network predicting tools possible. Methods Here we report the development of a simple open source program module (OpenPPI_predictor) that can generate a putative protein-protein interaction network for target genomes. This tool uses the orthologous interactome network data from a related, experimentally studied organism. Results Results from our predictions can be visualized using the Cytoscape visualization software, and can be piped to downstream processing algorithms. We have employed our program to predict protein-protein interaction network for the human parasite roundworm Brugia malayi, using interactome data from the free living nematode Caenorhabditis elegans. Availability The OpenPPI_predictor source code is available from http://tools.neb.com/~posfai/.
Collapse
|
362
|
Genome-wide analysis reveals novel genes essential for heme homeostasis in Caenorhabditis elegans. PLoS Genet 2010; 6:e1001044. [PMID: 20686661 PMCID: PMC2912396 DOI: 10.1371/journal.pgen.1001044] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2010] [Accepted: 06/30/2010] [Indexed: 11/23/2022] Open
Abstract
Heme is a cofactor in proteins that function in almost all sub-cellular compartments and in many diverse biological processes. Heme is produced by a conserved biosynthetic pathway that is highly regulated to prevent the accumulation of heme—a cytotoxic, hydrophobic tetrapyrrole. Caenorhabditis elegans and related parasitic nematodes do not synthesize heme, but instead require environmental heme to grow and develop. Heme homeostasis in these auxotrophs is, therefore, regulated in accordance with available dietary heme. We have capitalized on this auxotrophy in C. elegans to study gene expression changes associated with precisely controlled dietary heme concentrations. RNA was isolated from cultures containing 4, 20, or 500 µM heme; derived cDNA probes were hybridized to Affymetrix C. elegans expression arrays. We identified 288 heme-responsive genes (hrgs) that were differentially expressed under these conditions. Of these genes, 42% had putative homologs in humans, while genomes of medically relevant heme auxotrophs revealed homologs for 12% in both Trypanosoma and Leishmania and 24% in parasitic nematodes. Depletion of each of the 288 hrgs by RNA–mediated interference (RNAi) in a transgenic heme-sensor worm strain identified six genes that regulated heme homeostasis. In addition, seven membrane-spanning transporters involved in heme uptake were identified by RNAi knockdown studies using a toxic heme analog. Comparison of genes that were positive in both of the RNAi screens resulted in the identification of three genes in common that were vital for organismal heme homeostasis in C. elegans. Collectively, our results provide a catalog of genes that are essential for metazoan heme homeostasis and demonstrate the power of C. elegans as a genetic animal model to dissect the regulatory circuits which mediate heme trafficking in both vertebrate hosts and their parasites, which depend on environmental heme for survival. Heme is an iron-containing cofactor for proteins involved in many critical cellular processes. However, free heme is toxic to cells, suggesting that heme synthesis, acquisition, and transport is highly regulated. Efforts to understand heme trafficking in multicellular organisms have failed primarily due to the inability to separate the processes of endogenous heme synthesis from heme uptake and transport. Caenorhabditis elegans is unique among model organisms because it cannot synthesize heme but instead eats environmental heme to grow and develop normally. Thus, worms are an ideal genetic animal model to study heme homeostasis. This work identifies a novel list of 288 heme-responsive genes (hrgs) in C. elegans and a number of related genes in humans and medically relevant parasites. Knocking down the function of each of these hrgs reveals roles for several in heme uptake, transport, and detection within the organism. Our study provides insights into metazoan regulation of organismal heme homeostasis. The identification of parasite-specific hrg homologs may permit the selective design and screening of drugs that specifically target heme uptake pathways in parasites without affecting the host. Thus, this work has therapeutic implications for the treatment of human iron deficiency, one of the top ten mortality factors world-wide.
Collapse
|
363
|
Nematode parasite genes: what's in a name? Trends Parasitol 2010; 26:334-40. [DOI: 10.1016/j.pt.2010.04.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2009] [Revised: 04/08/2010] [Accepted: 04/09/2010] [Indexed: 11/23/2022]
|
364
|
Taldone T, Gillan V, Sun W, Rodina A, Patel P, Maitland K, O'Neill K, Chiosis G, Devaney E. Assay strategies for the discovery and validation of therapeutics targeting Brugia pahangi Hsp90. PLoS Negl Trop Dis 2010; 4:e714. [PMID: 20559560 PMCID: PMC2886105 DOI: 10.1371/journal.pntd.0000714] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Accepted: 04/26/2010] [Indexed: 01/18/2023] Open
Abstract
The chemotherapy of lymphatic filariasis relies upon drugs such as diethylcarbamazine and ivermectin that largely target the microfilarial stages of the parasite, necessitating continued treatment over the long reproductive life span of the adult worm. The identification of compounds that target adult worms has been a long-term goal of WHO. Here we describe a fluorescence polarization assay for the identification of compounds that target Hsp90 in adult filarial worms. The assay was originally developed to identify inhibitors of Hsp90 in tumor cells, and relies upon the ability of small molecules to inhibit the binding of fluorescently labelled geldanamycin to Hsp90. We demonstrate that the assay works well with soluble extracts of Brugia, while extracts of the free-living nematode C. elegans fail to bind the probe, in agreement with data from other experiments. The assay was validated using known inhibitors of Hsp90 that compete with geldanamycin for binding to Hsp90, including members of the synthetic purine-scaffold series of compounds. The efficacy of some of these compounds against adult worms was confirmed in vitro. Moreover, the assay is sufficiently sensitive to differentiate between binding of purine-scaffold compounds to human and Brugia Hsp90. The assay is suitable for high-throughput screening and provides the first example of a format with the potential to identify novel inhibitors of Hsp90 in filarial worms and in other parasitic species where Hsp90 may be a target.
Collapse
Affiliation(s)
- Tony Taldone
- Department of Molecular Pharmacology and Chemistry, Sloan Kettering Institute, New York, New York, United States of America
| | - Victoria Gillan
- Parasitology Group, Division of Veterinary Infection and Immunity, Institute of Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Weilin Sun
- Department of Molecular Pharmacology and Chemistry, Sloan Kettering Institute, New York, New York, United States of America
| | - Anna Rodina
- Department of Molecular Pharmacology and Chemistry, Sloan Kettering Institute, New York, New York, United States of America
| | - Pallav Patel
- Department of Pharmaceutical Sciences, College of Pharmacy and Allied Health Professions, St. John's University, Jamaica, New York, New York, United States of America
| | - Kirsty Maitland
- Parasitology Group, Division of Veterinary Infection and Immunity, Institute of Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Kerry O'Neill
- Parasitology Group, Division of Veterinary Infection and Immunity, Institute of Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Gabriela Chiosis
- Department of Molecular Pharmacology and Chemistry, Sloan Kettering Institute, New York, New York, United States of America
| | - Eileen Devaney
- Parasitology Group, Division of Veterinary Infection and Immunity, Institute of Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
365
|
Solano-Parada J, Gonzalez-Gonzalez G, Torró LMDP, dos Santos MFB, Espino AM, Burgos M, Osuna A. Effectiveness of intranasal vaccination against Angiostrongylus costaricensis using a serine/threonine phosphatase 2 A synthetic peptide and recombinant antigens. Vaccine 2010; 28:5185-96. [PMID: 20558243 DOI: 10.1016/j.vaccine.2010.05.072] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Revised: 05/20/2010] [Accepted: 05/28/2010] [Indexed: 01/26/2023]
Abstract
Intranasal immunization was assayed in C57BL/6 mice against Angiostrongylus costaricensis using a synthetic and a recombinant peptide belonging to the catalytic region of the serine/threonine phosphatase 2 A (PP2A) of the parasite. Immunization was carried out with the synthetic peptide (SP) polymerized either with itself or with the beta fraction of the cholera toxin (CTB) and then enclosed in nanocapsules of phosphatidyl choline, cholesterol and Quil A (ISCOM). Another group of mice was immunized with recombinant peptide. Immunization consisted of two intranasal inoculations at two-week intervals, and the challenge with L3 larvae was made one month after the last vaccination. The effectiveness of immunization was evaluated 30 days after infection by analysis of the number of parasites in the arteries of the immunized mice, as well as by measuring spleen sizes in the experimental groups. The response induced was determined by identifying the isotypes of IgG as well as the IgE and IgA specific antigen response. The interleukins produced by the splenocyte culture of the different groups were assessed after exposing them to the peptide used in the immunization. From our results, 60%, 80%, and 100% protection against the A. costaricensis challenge was achieved in mice immunized with polymerized synthetic peptide in ISCOM, synthetic peptide polymerized with the CTB in ISCOM and inclusion bodies respectively. Splenomegaly was found to be less evident in the immunized mice than in the controls. A significant increase in IFN gamma and IL-17 levels was observed in the group with 100% protection. The results showed that vaccination through the nasal mucosa may constitute a useful method of immunization and result in a protective immune response against A. costaricensis.
Collapse
Affiliation(s)
- J Solano-Parada
- Institute of Biotechnology, Biochemistry and Molecular Parasitology Group, University of Granada, Edif Mecenas, Campus Fuentenueva, 18071 Granada, Spain
| | | | | | | | | | | | | |
Collapse
|
366
|
Slatko BE, Taylor MJ, Foster JM. The Wolbachia endosymbiont as an anti-filarial nematode target. Symbiosis 2010; 51:55-65. [PMID: 20730111 PMCID: PMC2918796 DOI: 10.1007/s13199-010-0067-1] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2009] [Accepted: 05/13/2010] [Indexed: 01/05/2023]
Abstract
Human disease caused by parasitic filarial nematodes is a major cause of global morbidity. The parasites are transmitted by arthropod intermediate hosts and are responsible for lymphatic filariasis (elephantiasis) or onchocerciasis (river blindness). Within these filarial parasites are intracellular alpha-proteobacteria, Wolbachia, that were first observed almost 30 years ago. The obligate endosymbiont has been recognized as a target for anti-filarial nematode chemotherapy as evidenced by the loss of worm fertility and viability upon antibiotic treatment in an extensive series of human trials. While current treatments with doxycycline and rifampicin are not practical for widespread use due to the length of required treatments and contraindications, anti-Wolbachia targeting nevertheless appears a promising alternative for filariasis control in situations where current programmatic strategies fail or are unable to be delivered and it provides a superior efficacy for individual therapy. The mechanisms that underlie the symbiotic relationship between Wolbachia and its nematode hosts remain elusive. Comparative genomics, bioinfomatic and experimental analyses have identified a number of potential interactions, which may be drug targets. One candidate is de novo heme biosynthesis, due to its absence in the genome sequence of the host nematode, Brugia malayi, but presence in Wolbachia and its potential roles in worm biology. We describe this and several additional candidate targets, as well as our approaches for understanding the nature of the host-symbiont relationship.
Collapse
Affiliation(s)
- Barton E. Slatko
- Molecular Parasitology Division, New England Biolabs, 240 County Road, Ipswich, MA 01938 USA
| | - Mark J. Taylor
- Filariasis Research Laboratory, Molecular and Biochemical Parasitology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA UK
| | - Jeremy M. Foster
- Molecular Parasitology Division, New England Biolabs, 240 County Road, Ipswich, MA 01938 USA
| |
Collapse
|
367
|
Bezares-Calderón LA, Becerra A, Salinas LS, Maldonado E, Navarro RE. Bioinformatic analysis of P granule-related proteins: insights into germ granule evolution in nematodes. Dev Genes Evol 2010; 220:41-52. [PMID: 20532558 DOI: 10.1007/s00427-010-0327-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Accepted: 05/13/2010] [Indexed: 11/29/2022]
Abstract
Germ cells in many animals possess a specialized cytoplasm in the form of granules that contain RNA and protein complexes essential for the function and preservation of the germline. The mechanism for the formation of these granules is still poorly understood; however, the lack of conservation in their components across different species suggests evolutionary convergence in the assembly process. Germ granules are assumed to be present in all nematodes with a preformed germline. However, few studies have clearly identified these structures in species other than Caenorhabditis elegans and even less have carried functional analysis to provide a broader panorama of the granules composition in the phylum. We adopted a bioinformatics approach to investigate the extension of conservation in nematodes of some known C. elegans germ granule components, as a proxy to understand germ granules evolution in this phylum. Unexpectedly, we found that, in nematodes, the DEAD box RNA helicase Vasa, a conserved protein among different phyla, shows a complex history of clade-specific duplications and sequence divergence. Our analyses suggest that, in nematodes, Vasa's function might be shared among proteins like LAF-1, VBH-1, and GLH-1/-2/-3 and GLH-4. Key components of P granules assembly in C. elegans, like the PGL protein family, are only preserved in Caenorhabditis species. Our analysis suggests that germ granules assembly may not be conserved in nematodes. Studies on these species could bring insight into the basic components required for this pathway.
Collapse
Affiliation(s)
- Luis A Bezares-Calderón
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México 04510
| | | | | | | | | |
Collapse
|
368
|
González-Miguel J, Rosario L, Rota-Nodari E, Morchón R, Simón F. Identification of immunoreactive proteins of Dirofilaria immitis and D. repens recognized by sera from patients with pulmonary and subcutaneous dirofilariosis. Parasitol Int 2010; 59:248-56. [DOI: 10.1016/j.parint.2010.02.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2010] [Revised: 02/16/2010] [Accepted: 02/23/2010] [Indexed: 11/15/2022]
|
369
|
Wang Z, Abubucker S, Martin J, Wilson RK, Hawdon J, Mitreva M. Characterizing Ancylostoma caninum transcriptome and exploring nematode parasitic adaptation. BMC Genomics 2010; 11:307. [PMID: 20470405 PMCID: PMC2882930 DOI: 10.1186/1471-2164-11-307] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2009] [Accepted: 05/14/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Hookworm infection is one of the most important neglected diseases in developing countries, with approximately 1 billion people infected worldwide. To better understand hookworm biology and nematode parasitism, the present study generated a near complete transcriptome of the canine hookworm Ancylostoma caninum to a very high coverage using high throughput technology, and compared it to those of the free-living nematode Caenorhabditis elegans and the parasite Brugia malayi. RESULTS The generated transcripts from four developmental stages, infective L3, serum stimulated L3, adult male and adult female, covered 93% of the A. caninum transcriptome. The broad diversity among nematode transcriptomes was confirmed, and an impact of parasitic adaptation on transcriptome diversity was inferred. Intra-population analysis showed that A. caninum has higher coding sequence diversity than humans. Examining the developmental expression profiles of A. caninum revealed major transitions in gene expression from larval stages to adult. Adult males expressed the highest number of selectively expressed genes, but adult female expressed the highest number of selective parasitism-related genes. Genes related to parasitism adaptation and A. caninum specific genes exhibited more expression selectivity while those conserved in nematodes tend to be consistently expressed. Parasitism related genes were expressed more selectively in adult male and female worms. The comprehensive analysis of digital expression profiles along with transcriptome comparisons enabled identification of a set of parasitism genes encoding secretory proteins in animal parasitic nematode. CONCLUSIONS This study validated the usage of deep sequencing for gene expression profiling. Parasitic adaptation of the canine hookworm is related to its diversity and developmental dynamics. This comprehensive comparative genomic and expression study substantially improves our understanding of the basic biology and parasitism of hookworms and, is expected, in the long run, to accelerate research toward development of vaccines and novel anthelmintics.
Collapse
Affiliation(s)
- Zhengyuan Wang
- The Genome Center, Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | | | |
Collapse
|
370
|
Yatawara L, Wickramasinghe S, Rajapakse RPVJ, Agatsuma T. The complete mitochondrial genome of Setaria digitata (Nematoda: Filarioidea): Mitochondrial gene content, arrangement and composition compared with other nematodes. Mol Biochem Parasitol 2010; 173:32-8. [PMID: 20470833 DOI: 10.1016/j.molbiopara.2010.05.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Revised: 05/04/2010] [Accepted: 05/05/2010] [Indexed: 11/19/2022]
Abstract
In the present study, we determined the complete mitochondrial (mt) genome sequence (13,839bp) of parasitic nematode Setaria digitata and its structure and organization compared with Onchocerca volvulus, Dirofilaria immitis and Brugia malayi. The mt genome of S. digitata is slightly larger than the mt genomes of other filarial nematodes. S. digitata mt genome contains 36 genes (12 protein-coding genes, 22 transfer RNAs and 2 ribosomal RNAs) that are typically found in metazoans. This genome contains a high A+T (75.1%) content and low G+C content (24.9%). The mt gene order for S. digitata is the same as those for O. volvulus, D. immitis and B. malayi but it is distinctly different from other nematodes compared. The start codons inferred in the mt genome of S. digitata are TTT, ATT, TTG, ATG, GTT and ATA. Interestingly, the initiation codon TTT is unique to S. digitata mt genome and four protein-coding genes use this codon as a translation initiation codon. Five protein-coding genes use TAG as a stop codon whereas three genes use TAA and four genes use T as a termination codon. Out of 64 possible codons, only 57 are used for mitochondrial protein-coding genes of S. digitata. T-rich codons such as TTT (18.9%), GTT (7.9%), TTG (7.8%), TAT (7%), ATT (5.7%), TCT (4.8%) and TTA (4.1%) are used more frequently. This pattern of codon usage reflects the strong bias for T in the mt genome of S. digitata. In conclusion, the present investigation provides new molecular data for future studies of the comparative mitochondrial genomics and systematic of parasitic nematodes of socio-economic importance.
Collapse
Affiliation(s)
- Lalani Yatawara
- Department of Environmental Health Sciences, Kochi Medical School, Oko, Nankoku City, Japan
| | | | | | | |
Collapse
|
371
|
Lymphatic filarial species differentiation using evolutionarily modified tandem repeats: Generation of new genetic markers. INFECTION GENETICS AND EVOLUTION 2010; 10:591-4. [DOI: 10.1016/j.meegid.2010.01.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2009] [Revised: 01/22/2010] [Accepted: 01/26/2010] [Indexed: 11/22/2022]
|
372
|
Kariuki MM, Hearne LB, Beerntsen BT. Differential transcript expression between the microfilariae of the filarial nematodes, Brugia malayi and B. pahangi. BMC Genomics 2010; 11:225. [PMID: 20370932 PMCID: PMC2874553 DOI: 10.1186/1471-2164-11-225] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2009] [Accepted: 04/07/2010] [Indexed: 11/10/2022] Open
Abstract
Background Brugia malayi and B. pahangi are two closely related nematodes that cause filariasis in humans and animals. However, B. pahangi microfilariae are able to develop in and be transmitted by the mosquito, Armigeres subalbatus, whereas most B. malayi are rapidly melanized and destroyed within the mosquito hemocoel. A cross-species microarray analysis employing the B. malayi V2 array was carried out to determine the transcriptional differences between B. malayi and B. pahangi microfilariae with similar age distribution. Results Following microarray data analysis, a list of preferentially expressed genes in both microfilariae species was generated with a false discovery rate estimate of 5% and a signal intensity ratio of 2 or higher in either species. A total of 308 probes were preferentially expressed in both species with 149 probes, representing 123 genes, in B. pahangi microfilariae and 159 probes, representing 107 genes, in B. malayi microfilariae. In B. pahangi, there were 76 (62%) up-regulated transcripts that coded for known proteins that mapped into the KEGG pathway compared to 61 (57%) transcripts in B. malayi microfilariae. The remaining 47 (38%) transcripts in B. pahangi and 46 (43%) transcripts in B. malayi microfilariae were comprised almost entirely of hypothetical genes of unknown function. Twenty-seven of the transcripts in B. pahangi microfilariae coded for proteins that associate with the secretory pathway compared to thirty-nine in B. malayi microfilariae. The data obtained from real-time PCR analysis of ten genes selected from the microarray list of preferentially expressed genes showed good concordance with the microarray data, indicating that the microarray data were reproducible. Conclusion In this study, we identified gene transcripts that were preferentially expressed in the microfilariae of B. pahangi and B. malayi, some of which coded for known immunomodulatory proteins. These comparative transcriptome data will be of interest to researchers keen on understanding the inherent differences, at the molecular level, between B. malayi and B. pahangi microfilariae especially because these microfilariae are capable of surviving in the same vertebrate host but elicit different immune response outcomes in the mosquito, Ar. subalbatus.
Collapse
Affiliation(s)
- Michael M Kariuki
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA
| | | | | |
Collapse
|
373
|
Doyle MA, Gasser RB, Woodcroft BJ, Hall RS, Ralph SA. Drug target prediction and prioritization: using orthology to predict essentiality in parasite genomes. BMC Genomics 2010; 11:222. [PMID: 20361874 PMCID: PMC2867826 DOI: 10.1186/1471-2164-11-222] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2009] [Accepted: 04/03/2010] [Indexed: 11/10/2022] Open
Abstract
Background New drug targets are urgently needed for parasites of socio-economic importance. Genes that are essential for parasite survival are highly desirable targets, but information on these genes is lacking, as gene knockouts or knockdowns are difficult to perform in many species of parasites. We examined the applicability of large-scale essentiality information from four model eukaryotes, Caenorhabditis elegans, Drosophila melanogaster, Mus musculus and Saccharomyces cerevisiae, to discover essential genes in each of their genomes. Parasite genes that lack orthologues in their host are desirable as selective targets, so we also examined prediction of essential genes within this subset. Results Cross-species analyses showed that the evolutionary conservation of genes and the presence of essential orthologues are each strong predictors of essentiality in eukaryotes. Absence of paralogues was also found to be a general predictor of increased relative essentiality. By combining several orthology and essentiality criteria one can select gene sets with up to a five-fold enrichment in essential genes compared with a random selection. We show how quantitative application of such criteria can be used to predict a ranked list of potential drug targets from Ancylostoma caninum and Haemonchus contortus - two blood-feeding strongylid nematodes, for which there are presently limited sequence data but no functional genomic tools. Conclusions The present study demonstrates the utility of using orthology information from multiple, diverse eukaryotes to predict essential genes. The data also emphasize the challenge of identifying essential genes among those in a parasite that are absent from its host.
Collapse
Affiliation(s)
- Maria A Doyle
- Department of Biochemistry & Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria, 3010, Australia
| | | | | | | | | |
Collapse
|
374
|
Strübing U, Lucius R, Hoerauf A, Pfarr KM. Mitochondrial genes for heme-dependent respiratory chain complexes are up-regulated after depletion of Wolbachia from filarial nematodes. Int J Parasitol 2010; 40:1193-202. [PMID: 20362581 DOI: 10.1016/j.ijpara.2010.03.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Revised: 03/24/2010] [Accepted: 03/25/2010] [Indexed: 11/28/2022]
Abstract
The filarial nematodes Brugia malayi, Wuchereria bancrofti and Onchocerca volvulus cause elephantiasis or dermatitis and blindness resulting in severe morbidity. Annually, 1.3 billion people are at risk of infection. Targeting the essential Wolbachia endobacteria of filarial nematodes with doxycycline has proven to be an effective therapy resulting in a block in embryogenesis, worm development and macrofilaricidal effects. However, doxycycline is contraindicated for a large portion of the at risk population. To identify new targets for anti-wolbachial therapy, understanding the molecular basis of the Wolbachia-filaria symbiosis is required. Using the B. malayi microarray we identified differentially expressed genes in the rodent filaria Litomosoides sigmodontis after depletion of Wolbachia which might have a role in symbiosis. The microarray data were filtered for regulated genes with a false discovery rate <5% and a > or = 2-fold-change. Most of the genes were differentially expressed at day 36 of tetracycline treatment, when 99.8% of Wolbachia were depleted. Several classes of genes were affected, including genes for translation, transcription, folding/sorting of proteins, motility, structure and metabolic and signalling pathways. Quantitative PCR validated 60% of the genes found to be regulated in the microarray. A nuclear encoded heme-binding protein of the globin family was up-regulated upon loss of Wolbachia. Interestingly, mitochondrial encoded subunits of respiratory chain complexes containing heme and riboflavin were also up-regulated. No change in the expression of these genes was seen in tetracycline treated Wolbachia-free Acanthocheilonema viteae. As Wolbachia synthesise heme and filaria do not, we hypothesise that without the endosymbionts no functional heme-containing enzymes can be formed, leading to loss of energy metabolism which then results in up-regulation of the mitochondrial encoded subunits in an attempt to correct the deviation from homeostasis. Our results support targeting the Wolbachia heme synthesis pathway for the discovery of new anti-filarial drugs.
Collapse
Affiliation(s)
- Uta Strübing
- Institute for Medical Microbiology, Immunology and Parasitology, University Clinic Bonn, Sigmund-Freud-Str. 25, D-53105 Bonn, Germany
| | | | | | | |
Collapse
|
375
|
Growth factors and chemotactic factors from parasitic helminths: molecular evidence for roles in host-parasite interactions versus parasite development. Int J Parasitol 2010; 40:761-73. [PMID: 20359480 DOI: 10.1016/j.ijpara.2010.02.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2010] [Revised: 02/25/2010] [Accepted: 02/25/2010] [Indexed: 01/04/2023]
Abstract
For decades molecular helminthologists have been interested in identifying proteins expressed by the parasite that have roles in modulating the host immune response. In some cases, the aim was targeting parasite-derived orthologues of mammalian cytokines and growth factors known to have functions in immune modulation. In others, novel proteins without homology to mammalian cytokines were isolated by investigating effects of purified worm extracts on various immunological processes. Often, the role parasite-derived growth factors play in worm development was ignored. Here, we review growth factors and chemotactic factors expressed by parasitic helminths and discuss their recognised and potential roles in immunomodulation and/or parasite development.
Collapse
|
376
|
Proteogenomics of Pristionchus pacificus reveals distinct proteome structure of nematode models. Genome Res 2010; 20:837-46. [PMID: 20237107 DOI: 10.1101/gr.103119.109] [Citation(s) in RCA: 134] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Pristionchus pacificus is a nematode model organism whose genome has recently been sequenced. To refine the genome annotation we performed transcriptome and proteome analysis and gathered comprehensive experimental information on gene expression. Transcriptome analysis on a 454 Life Sciences (Roche) FLX platform generated >700,000 expressed sequence tags (ESTs) from two normalized EST libraries, whereas proteome analysis on an LTQ-Orbitrap mass spectrometer detected >27,000 nonredundant peptide sequences from more than 4000 proteins at sub-parts-per-million (ppm) mass accuracy and a false discovery rate of <1%. Retraining of the SNAP gene prediction algorithm using the gene expression data led to a decrease in the number of previously predicted protein-coding genes from 29,000 to 24,000 and refinement of numerous gene models. The P. pacificus proteome contains a high proportion of small proteins with no known homologs in other species ("pioneer" proteins). Some of these proteins appear to be products of highly homologous genes, pointing to their common origin. We show that >50% of all pioneer genes are transcribed under standard culture conditions and that pioneer proteins significantly contribute to a unimodal distribution of predicted protein sizes in P. pacificus, which has an unusually low median size of 240 amino acids (26.8 kDa). In contrast, the predicted proteome of Caenorhabditis elegans follows a distinct bimodal protein size distribution, with significant functional differences between small and large protein populations. Combined, these results provide the first catalog of the expressed genome of P. pacificus, refinement of its genome annotation, and the first comparison of related nematode models at the proteome level.
Collapse
|
377
|
Abstract
SUMMARYABC systems are one of the largest described protein superfamilies. These systems have a domain organization that may contain 1 or more transmembrane domains (ABC_TM1F) and 1 or 2 ATP-binding domains (ABC_2). The functions (e.g., import, export and DNA repair) of these proteins distinguish the 3 classes of ABC systems. Mining and PCR-based cloning were used to identify 33 putative ABC systems from theBrugia malayigenome. There were 31 class 2 genes, commonly called ABC transporters, and 2 class 3 genes. The ABC transporters were divided into subfamilies. Three belonged to subfamily A, 16 to subfamily B, 5 to subfamily C, 1 to subfamily E and 3 to subfamilies F and G, respectively. None were placed in subfamilies D and H. Similar to other ABC systems, the ABC_2 domain ofB. malayigenes was conserved and contained the Walker A and B motifs, the signature sequence/linker region and the switch region with the conserved histidine. The ABC_TM1F domain was less conserved. The relative abundance of ABC systems was quantified using real-time reverse transcription PCR and was significantly higher in female adults ofB. malayithan in males and microfilaria, particularly those in subfamilies B and C, which are associated with drug resistance.
Collapse
|
378
|
Graham LD, Kotze AC, Fernley RT, Hill RJ. An ortholog of the ecdysone receptor protein (EcR) from the parasitic nematode Haemonchus contortus. Mol Biochem Parasitol 2010; 171:104-7. [PMID: 20226216 DOI: 10.1016/j.molbiopara.2010.03.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2009] [Revised: 03/02/2010] [Accepted: 03/02/2010] [Indexed: 11/30/2022]
Abstract
High concentrations (> or =4.2mM) of 20E inhibit the development of Haemonchus contortus eggs to the L3 larval stage. We report the cloning of cDNA encoding an EcR ortholog (HcEcR) from H. contortus mRNA expressed during L3. Phylogenetically, this and the putative EcR from Brugia malayi form a separate branch between arthropod EcRs and liver X receptors. Two isoforms of HcEcR differ in the inclusion/omission of a 3-residue segment in the A/B domain. Single nucleotide polymorphisms at 49 positions can be grouped into two major patterns in the A/BC segment and two in the DE/F segment. Some 35% of the highly conserved ecdysteroid-contacting residues in insect EcRs are also conserved in the HcEcR ligand binding domain, but it contains unusual residue choices at other ligand-contacting positions. Recombinant co-expression of HcEcR DE/F segments with a phthirapteran USP DE/F segment in insect cells resulted in stable proteins which did not heterodimerize or bind [(3)H]ponasterone A.
Collapse
Affiliation(s)
- Lloyd D Graham
- CSIRO Food & Nutritional Sciences, P.O. Box 52, North Ryde, NSW 1670, Australia.
| | | | | | | |
Collapse
|
379
|
Molecular evidence for a functional ecdysone signaling system in Brugia malayi. PLoS Negl Trop Dis 2010; 4:e625. [PMID: 20231890 PMCID: PMC2834746 DOI: 10.1371/journal.pntd.0000625] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2009] [Accepted: 01/22/2010] [Indexed: 11/20/2022] Open
Abstract
Background Filarial nematodes, including Brugia malayi, the causative agent of lymphatic filariasis, undergo molting in both arthropod and mammalian hosts to complete their life cycles. An understanding of how these parasites cross developmental checkpoints may reveal potential targets for intervention. Pharmacological evidence suggests that ecdysteroids play a role in parasitic nematode molting and fertility although their specific function remains unknown. In insects, ecdysone triggers molting through the activation of the ecdysone receptor: a heterodimer of EcR (ecdysone receptor) and USP (Ultraspiracle). Methods and Findings We report the cloning and characterization of a B. malayi EcR homologue (Bma-EcR). Bma-EcR dimerizes with insect and nematode USP/RXRs and binds to DNA encoding a canonical ecdysone response element (EcRE). In support of the existence of an active ecdysone receptor in Brugia we also cloned a Brugia rxr (retinoid X receptor) homolog (Bma-RXR) and demonstrate that Bma-EcR and Bma-RXR interact to form an active heterodimer using a mammalian two-hybrid activation assay. The Bma-EcR ligand-binding domain (LBD) exhibits ligand-dependent transactivation via a GAL4 fusion protein combined with a chimeric RXR in mammalian cells treated with Ponasterone-A or a synthetic ecdysone agonist. Furthermore, we demonstrate specific up-regulation of reporter gene activity in transgenic B. malayi embryos transfected with a luciferase construct controlled by an EcRE engineered in a B. malayi promoter, in the presence of 20-hydroxy-ecdysone. Conclusions Our study identifies and characterizes the two components (Bma-EcR and Bma-RXR) necessary for constituting a functional ecdysteroid receptor in B. malayi. Importantly, the ligand binding domain of BmaEcR is shown to be capable of responding to ecdysteroid ligands, and conversely, ecdysteroids can activate transcription of genes downstream of an EcRE in live B. malayi embryos. These results together confirm that an ecdysone signaling system operates in B. malayi and strongly suggest that Bma-EcR plays a central role in it. Furthermore, our study proposes that existing compounds targeting the insect ecdysone signaling pathway should be considered as potential pharmacological agents against filarial parasites. Filarial parasites such as Brugia malayi and Onchocerca volvulus are the causative agents of the tropical diseases lymphatic filariasis and onchocerciasis, which infect 150 million people, mainly in Africa and Southeast Asia. Filarial nematodes have a complex life cycle that involves transmission and development within both mammalian and insect hosts. The successful completion of the life cycle includes four molts, two of which are triggered upon transmission from one host to the other, human and mosquito, respectively. Elucidation of the molecular mechanisms involved in the molting processes in filarial nematodes may yield a new set of targets for drug intervention. In insects and other arthropods molting transitions are regulated by the steroid hormone ecdysone that interacts with a specialized hormone receptor composed of two different proteins belonging to the family of nuclear receptors. We have cloned from B. malayi two members of the nuclear receptor family that show many sequence and biochemical properties consistent with the ecdysone receptor of insects. This finding represents the first report of a functional ecdysone receptor homolog in nematodes. We have also established a transgenic hormone induction assay in B. malayi that can be used to discover ecdysone responsive genes and potentially lead to screening assays for active compounds for pharmaceutical development.
Collapse
|
380
|
Immunohistological studies on neoplasms of female and male Onchocerca volvulus: filarial origin and absence of Wolbachia from tumor cells. Parasitology 2010; 137:841-54. [PMID: 20199697 PMCID: PMC2925449 DOI: 10.1017/s0031182009992010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Up to 5% of untreated female Onchocerca volvulus filariae develop potentially fatal pleomorphic neoplasms, whose incidence is increased following ivermectin treatment. We studied the occurrence of 8 filarial proteins and of Wolbachia endobacteria in the tumor cells. Onchocercomas from patients, untreated and treated with antibiotics and anthelminthics, were examined by immunohistology. Neoplasms were diagnosed in 112 of 3587 female and in 2 of 1570 male O. volvulus. The following proteins and other compounds of O. volvulus were expressed in the cells of the neoplasms: glutathione S-transferase 1, lysosomal aspartic protease, cAMP-dependent protein kinase, alpha-enolase, aspartate aminotransferase, ankyrin E1, tropomyosin, heat shock protein 60, transforming growth factor-beta, and prostaglandin E2. These findings prove the filarial origin of the neoplasms and confirm the pleomorphism of the tumor cells. Signs indicating malignancy of the neoplasms are described. Wolbachia were observed in the hypodermis, oocytes, and embryos of tumor-harbouring filariae using antibodies against Wolbachia surface protein, Wolbachia HtrA-type serine protease, and Wolbachia aspartate aminotransferase. In contrast, Wolbachia were not found in the cells of the neoplasms. Further, neoplasm-containing worms were not observed after more than 10 months after the start of sufficient treatment with doxycycline or doxycycline plus ivermectin.
Collapse
|
381
|
Abstract
Filariasis is caused by thread-like nematode worms, classified according to their presence in the vertebrate host. The cutaneous group includes Onchocerca volvulus, Loa loa and Mansonella streptocerca; the lymphatic group includes Wuchereria bancrofti, Brugia malayi and Brugia timori and the body cavity group includes Mansonella perstans and Mansonella ozzardi. Lymphatic filariasis, a mosquito-borne disease, is one of the most prevalent diseases in tropical and subtropical countries and is accompanied by a number of pathological conditions. In recent years, there has been rapid progress in filariasis research, which has provided new insights into the pathogenesis of filarial disease, diagnosis, chemotherapy, the host–parasite relationship and the genomics of the parasite. Together, these insights are assisting the identification of novel drug targets and the discovery of antifilarial agents and candidate vaccine molecules. This review discusses the antifilarial activity of various chemical entities, the merits and demerits of antifilarial drugs currently in use, their mechanisms of action, in addition to antifilarial drug targets and their validation.
Collapse
|
382
|
Park JO, Pan J, Möhrlen F, Schupp MO, Johnsen R, Baillie DL, Zapf R, Moerman DG, Hutter H. Characterization of the astacin family of metalloproteases in C. elegans. BMC DEVELOPMENTAL BIOLOGY 2010; 10:14. [PMID: 20109220 PMCID: PMC2824743 DOI: 10.1186/1471-213x-10-14] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2009] [Accepted: 01/28/2010] [Indexed: 11/10/2022]
Abstract
BACKGROUND Astacins are a large family of zinc metalloproteases found in bacteria and animals. They have diverse roles ranging from digestion of food to processing of extracellular matrix components. The C. elegans genome contains an unusually large number of astacins, of which the majority have not been functionally characterized yet. RESULTS We analyzed the expression pattern of previously uncharacterized members of the astacin family to try and obtain clues to potential functions. Prominent sites of expression for many members of this family are the hypodermis, the alimentary system and several specialized cells including sensory sheath and sockets cells, which are located at openings in the body wall. We isolated mutants affecting representative members of the various subfamilies. Mutants in nas-5, nas-21 and nas-39 (the BMP-1/Tolloid homologue) are viable and have no apparent phenotypic defects. Mutants in nas-6 and nas-6; nas-7 double mutants are slow growing and have defects in the grinder of the pharynx, a cuticular structure important for food processing. CONCLUSIONS Expression data and phenotypic characterization of selected family members suggest a diversity of functions for members of the astacin family in nematodes. In part this might be due to extracellular structures unique to nematodes.
Collapse
Affiliation(s)
- Ja-On Park
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
383
|
Ogino K, Tsuneki K, Furuya H. Unique genome of dicyemid mesozoan: Highly shortened spliceosomal introns in conservative exon/intron structure. Gene 2010; 449:70-6. [DOI: 10.1016/j.gene.2009.09.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2008] [Revised: 08/31/2009] [Accepted: 09/01/2009] [Indexed: 01/08/2023]
|
384
|
Liu C, Oliveira A, Chauhan C, Ghedin E, Unnasch TR. Functional analysis of putative operons in Brugia malayi. Int J Parasitol 2010; 40:63-71. [PMID: 19631652 PMCID: PMC2813416 DOI: 10.1016/j.ijpara.2009.07.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2009] [Revised: 07/06/2009] [Accepted: 07/07/2009] [Indexed: 11/21/2022]
Abstract
Operons are a common mode of gene organization in Caenorhabditis elegans. Similar gene arrangements suggest that functional operons may exist in Brugia malayi. To definitively test this hypothesis, a bicistronic reporter vector consisting of an upstream firefly luciferase gene and a downstream renilla luciferase gene was constructed. The genome was then surveyed to identify 15 gene pairs that were likely to represent operons. Two of four domains upstream of the 5' gene from these clusters exhibited promoter activity. When constructs replicating the promoter and intergenic arrangement found in the native putative operon were transfected into embryos, both firefly and renilla activities were detected, while constructs with the promoter alone or intergenic region alone produced no activity from the downstream reporter. These data confirm that functional operons exist in B. malayi. Mutation of three U-rich element homologues present in one of the operons resulted in a decrease in downstream renilla reporter activity, suggesting that these were important in mRNA maturation. Hemi-nested reverse transcriptase-PCR assays demonstrated that while the mRNA encoding the native downstream open reading frame of one operon contained an SL1 spliced leader at its 5' end, the renilla gene mRNA produced from the corresponding transgenic construct did not.
Collapse
Affiliation(s)
- Canhui Liu
- Global Health Infectious Disease Research Program, Department of Global Health, University of South Florida, Tampa, FL USA
| | - Ana Oliveira
- Geographic Medicine, University of Alabama at Birmingham, Birmingham, AL USA
| | - Chitra Chauhan
- Global Health Infectious Disease Research Program, Department of Global Health, University of South Florida, Tampa, FL USA
| | - Elodie Ghedin
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania USA
| | - Thomas R. Unnasch
- Global Health Infectious Disease Research Program, Department of Global Health, University of South Florida, Tampa, FL USA
| |
Collapse
|
385
|
Stepek G, McCormack G, Page AP. The kunitz domain protein BLI-5 plays a functionally conserved role in cuticle formation in a diverse range of nematodes. Mol Biochem Parasitol 2010; 169:1-11. [DOI: 10.1016/j.molbiopara.2009.08.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2009] [Revised: 08/19/2009] [Accepted: 08/20/2009] [Indexed: 11/16/2022]
|
386
|
Wolbachia: more than just a bug in insects genitals. Curr Opin Microbiol 2009; 13:67-72. [PMID: 20036185 DOI: 10.1016/j.mib.2009.11.005] [Citation(s) in RCA: 157] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Revised: 11/24/2009] [Accepted: 11/24/2009] [Indexed: 11/20/2022]
Abstract
Research on the intracellular bacterial symbiont Wolbachia has grown on many levels, providing interesting insights on various aspects of the microbe's biology. Although data from fully sequenced genomes of different Wolbachia strains and from experimental studies of host-microbe interactions continue to arise, most of the molecular mechanisms employed by Wolbachia to manipulate the host cytoplasmic machinery and to ensure vertical transmission are yet to be discovered. Apart from the well-established role of Wolbachia in triggering reproductive alterations, a new fascinating aspect is emerging, related to the ecological benefits that the symbiont provides to the host. The mutualistic relationship of Wolbachia strains with disease vectors remains among the top research priorities with new insights having an impact on putative anti-filarial strategies.
Collapse
|
387
|
Korený L, Lukes J, Oborník M. Evolution of the haem synthetic pathway in kinetoplastid flagellates: an essential pathway that is not essential after all? Int J Parasitol 2009; 40:149-56. [PMID: 19968994 DOI: 10.1016/j.ijpara.2009.11.007] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Revised: 11/27/2009] [Accepted: 11/28/2009] [Indexed: 01/10/2023]
Abstract
For a vast majority of living organisms, haem is an essential compound that is synthesised through a conserved biosynthetic pathway. However, certain organisms are haem auxotrophs and need to obtain this molecule from exogenous sources. Kinetoplastid flagellates represent an interesting group of species, as some of them lost the complete pathway while others possess only the last three biosynthetic steps. We decided to supplement a current view on the phylogeny of these important pathogens with the expected state of haem synthesis in representative species. We propose a scenario in which the ancestor of all trypanosomatids was completely deficient of the synthesis of haem. In trypanosomatids other than members of the genus Trypanosoma, the pathway was partially rescued by genes encoding enzymes for the last three steps, supposedly obtained by horizontal transfer from a gamma-proteobacterium. This event preceded the diversification of the non-Trypanosoma trypanosomatids. Later, some flagellates acquired a beta-proteobacterial endosymbiont which supplied them with haem precursors. On the other hand, the medically important trypanosomes have remained fully deficient of haem synthesis and obtain this compound from the host.
Collapse
Affiliation(s)
- Ludek Korený
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences and Faculty of Science, University of South Bohemia, Ceské Budejovice, Czech Republic
| | | | | |
Collapse
|
388
|
Abstract
The secretome encompasses the complete set of gene products secreted by a cell. Recent studies on secretome analysis reveal that secretory proteins play an important role in pathogen infection and host-pathogen interactions. Excretory/secretory proteins of pathogens change the host cell environment by suppressing the immune system, to aid the proliferation of infection. Identifying secretory proteins involved in pathogen infection will lead to the discovery of potential drug targets and biomarkers for diagnostic applications.
Collapse
Affiliation(s)
- Shoba Ranganathan
- Department of Chemistry and Biomolecular Sciences and ARC Centre of Excellence in Bioinformatics, Macquarie University, Sydney NSW 2109, Australia
| | | |
Collapse
|
389
|
Greiss S, Gartner A. Sirtuin/Sir2 phylogeny, evolutionary considerations and structural conservation. Mol Cells 2009; 28:407-15. [PMID: 19936627 PMCID: PMC3710699 DOI: 10.1007/s10059-009-0169-x] [Citation(s) in RCA: 160] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Accepted: 11/01/2009] [Indexed: 12/29/2022] Open
Abstract
The sirtuins are a protein family named after the first identified member, S. cerevisiae Sir2p. Sirtuins are protein deacetylases whose activity is dependent on NAD(+) as a cosubstrate. They are structurally defined by two central domains that together form a highly conserved catalytic center, which catalyzes the transfer of an acetyl moiety from acetyllysine to NAD(+), yielding nicotinamide, the unique metabolite O-acetyl-ADP-ribose and deacetylated lysine. One or more sirtuins are present in virtually all species from bacteria to mammals. Here we describe a phylogenetic analysis of sirtuins. Based on their phylogenetic relationship, sirtuins can be grouped into over a dozen classes and subclasses. Humans, like most vertebrates, have seven sirtuins: SIRT1-SIRT7. These function in diverse cellular pathways, regulating transcriptional repression, aging, metabolism, DNA damage responses and apoptosis. We show that these seven sirtuins arose early during animal evolution. Conserved residues cluster around the catalytic center of known sirtuin family members.
Collapse
Affiliation(s)
- Sebastian Greiss
- Wellcome Trust Centre for Gene Regulation and Expression, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Anton Gartner
- Wellcome Trust Centre for Gene Regulation and Expression, University of Dundee, Dundee DD1 5EH, United Kingdom
| |
Collapse
|
390
|
Holman AG, Davis PJ, Foster JM, Carlow CKS, Kumar S. Computational prediction of essential genes in an unculturable endosymbiotic bacterium, Wolbachia of Brugia malayi. BMC Microbiol 2009; 9:243. [PMID: 19943957 PMCID: PMC2794283 DOI: 10.1186/1471-2180-9-243] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2009] [Accepted: 11/28/2009] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Wolbachia (wBm) is an obligate endosymbiotic bacterium of Brugia malayi, a parasitic filarial nematode of humans and one of the causative agents of lymphatic filariasis. There is a pressing need for new drugs against filarial parasites, such as B. malayi. As wBm is required for B. malayi development and fertility, targeting wBm is a promising approach. However, the lifecycle of neither B. malayi nor wBm can be maintained in vitro. To facilitate selection of potential drug targets we computationally ranked the wBm genome based on confidence that a particular gene is essential for the survival of the bacterium. RESULTS wBm protein sequences were aligned using BLAST to the Database of Essential Genes (DEG) version 5.2, a collection of 5,260 experimentally identified essential genes in 15 bacterial strains. A confidence score, the Multiple Hit Score (MHS), was developed to predict each wBm gene's essentiality based on the top alignments to essential genes in each bacterial strain. This method was validated using a jackknife methodology to test the ability to recover known essential genes in a control genome. A second estimation of essentiality, the Gene Conservation Score (GCS), was calculated on the basis of phyletic conservation of genes across Wolbachia's parent order Rickettsiales. Clusters of orthologous genes were predicted within the 27 currently available complete genomes. Druggability of wBm proteins was predicted by alignment to a database of protein targets of known compounds. CONCLUSION Ranking wBm genes by either MHS or GCS predicts and prioritizes potentially essential genes. Comparison of the MHS to GCS produces quadrants representing four types of predictions: those with high confidence of essentiality by both methods (245 genes), those highly conserved across Rickettsiales (299 genes), those similar to distant essential genes (8 genes), and those with low confidence of essentiality (253 genes). These data facilitate selection of wBm genes for entry into drug design pipelines.
Collapse
|
391
|
Harris TW, Antoshechkin I, Bieri T, Blasiar D, Chan J, Chen WJ, De La Cruz N, Davis P, Duesbury M, Fang R, Fernandes J, Han M, Kishore R, Lee R, Müller HM, Nakamura C, Ozersky P, Petcherski A, Rangarajan A, Rogers A, Schindelman G, Schwarz EM, Tuli MA, Van Auken K, Wang D, Wang X, Williams G, Yook K, Durbin R, Stein LD, Spieth J, Sternberg PW. WormBase: a comprehensive resource for nematode research. Nucleic Acids Res 2009; 38:D463-7. [PMID: 19910365 PMCID: PMC2808986 DOI: 10.1093/nar/gkp952] [Citation(s) in RCA: 292] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
WormBase (http://www.wormbase.org) is a central data repository for nematode biology. Initially created as a service to the Caenorhabditis elegans research field, WormBase has evolved into a powerful research tool in its own right. In the past 2 years, we expanded WormBase to include the complete genomic sequence, gene predictions and orthology assignments from a range of related nematodes. This comparative data enrich the C. elegans data with improved gene predictions and a better understanding of gene function. In turn, they bring the wealth of experimental knowledge of C. elegans to other systems of medical and agricultural importance. Here, we describe new species and data types now available at WormBase. In addition, we detail enhancements to our curatorial pipeline and website infrastructure to accommodate new genomes and an extensive user base.
Collapse
Affiliation(s)
- Todd W Harris
- Ontario Institute For Cancer Research, Toronto, ON, Canada.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
392
|
Griffiths KG, Mayhew GF, Zink RL, Erickson SM, Fuchs JF, McDermott CM, Christensen BM, Michalski ML. Use of microarray hybridization to identify Brugia genes involved in mosquito infectivity. Parasitol Res 2009; 106:227-35. [PMID: 19894065 DOI: 10.1007/s00436-009-1655-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2009] [Accepted: 10/06/2009] [Indexed: 01/24/2023]
Abstract
Brugia malayi and Brugia pahangi microfilariae (mf) require a maturation period of at least 5 days in the mammalian host to successfully infect laboratory mosquitoes. This maturation process coincides with changes in the surface composition of mf that likely are associated with changes in gene expression. To test this hypothesis, we verified the differential infectivity of immature (< or =3 day) and mature (>30 day) Brugia mf for black-eyed Liverpool strain of Aedes aegypti and then assessed transcriptome changes associated with microfilarial maturation by competitively hybridizing microfilarial cDNAs to the B. malayi oligonucleotide microarray. We identified transcripts differentially abundant in immature (94 in B. pahangi and 29 in B. malayi) and mature (64 in B. pahangi and 14 in B. malayi) mf. In each case, >40% of Brugia transcripts shared no similarity to known genes or were similar to genes with unknown function; the remaining transcripts were categorized by putative function based on sequence similarity to known genes/proteins. Microfilarial maturation was not associated with demonstrable changes in the abundance of transmembrane or secreted proteins; however, immature mf expressed more transcripts associated with immune modulation, neurotransmission, transcription, and cellular cytoskeleton elements, while mature mf displayed increased transcripts potentially encoding hypodermal/muscle and surface molecules, e.g., cuticular collagens and sheath components. The results of the homologous B. malayi microarray hybridization were validated by quantitative reverse transcriptase polymerase chain reaction. These findings preliminarily lend support to the underlying hypothesis that changes in microfilarial gene expression drive maturation-associated changes that influence the parasite to develop in compatible vectors.
Collapse
Affiliation(s)
- Kathryn G Griffiths
- Department of Biology and Microbiology, University of Wisconsin-Oshkosh, 800 Algoma Blvd, Oshkosh, WI, 54901, USA
| | | | | | | | | | | | | | | |
Collapse
|
393
|
Liu W, Zhao R, McFarland C, Kieft J, Niedzwiecka A, Jankowska-Anyszka M, Stepinski J, Darzynkiewicz E, Jones DNM, Davis RE. Structural insights into parasite eIF4E binding specificity for m7G and m2,2,7G mRNA caps. J Biol Chem 2009; 284:31336-49. [PMID: 19710013 PMCID: PMC2781531 DOI: 10.1074/jbc.m109.049858] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2009] [Revised: 08/19/2009] [Indexed: 01/02/2023] Open
Abstract
The eukaryotic translation initiation factor eIF4E recognizes the mRNA cap, a key step in translation initiation. Here we have characterized eIF4E from the human parasite Schistosoma mansoni. Schistosome mRNAs have either the typical monomethylguanosine (m(7)G) or a trimethylguanosine (m(2,2,7)G) cap derived from spliced leader trans-splicing. Quantitative fluorescence titration analyses demonstrated that schistosome eIF4E has similar binding specificity for both caps. We present the first crystal structure of an eIF4E with similar binding specificity for m(7)G and m(2,2,7)G caps. The eIF4E.m(7)GpppG structure demonstrates that the schistosome protein binds monomethyl cap in a manner similar to that of single specificity eIF4Es and exhibits a structure similar to other known eIF4Es. The structure suggests an alternate orientation of a conserved, key Glu-90 in the cap-binding pocket that may contribute to dual binding specificity and a position for mRNA bound to eIF4E consistent with biochemical data. Comparison of NMR chemical shift perturbations in schistosome eIF4E on binding m(7)GpppG and m(2,2,7)GpppG identified key differences between the two complexes. Isothermal titration calorimetry demonstrated significant thermodynamics differences for the binding process with the two caps (m(7)G versus m(2,2,7)G). Overall the NMR and isothermal titration calorimetry data suggest the importance of intrinsic conformational flexibility in the schistosome eIF4E that enables binding to m(2,2,7)G cap.
Collapse
Affiliation(s)
- Weizhi Liu
- From the Departments of Biochemistry and Molecular Genetics and
| | - Rui Zhao
- From the Departments of Biochemistry and Molecular Genetics and
| | - Craig McFarland
- From the Departments of Biochemistry and Molecular Genetics and
| | - Jeffrey Kieft
- From the Departments of Biochemistry and Molecular Genetics and
| | - Anna Niedzwiecka
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 02-089 Warsaw, Poland
- Biological Physics Group, Institute of Physics, Polish Academy of Sciences, 32/46 Lotnikow Avenue, 02-668 Warsaw, Poland
| | | | - Janusz Stepinski
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 02-089 Warsaw, Poland
| | - Edward Darzynkiewicz
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 02-089 Warsaw, Poland
| | - David N. M. Jones
- **Pharmacology, University of Colorado School of Medicine, Aurora, Colorado 80045
| | | |
Collapse
|
394
|
Fitzpatrick JM, Peak E, Perally S, Chalmers IW, Barrett J, Yoshino TP, Ivens AC, Hoffmann KF. Anti-schistosomal intervention targets identified by lifecycle transcriptomic analyses. PLoS Negl Trop Dis 2009; 3:e543. [PMID: 19885392 PMCID: PMC2764848 DOI: 10.1371/journal.pntd.0000543] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2009] [Accepted: 10/07/2009] [Indexed: 11/19/2022] Open
Abstract
Background Novel methods to identify anthelmintic drug and vaccine targets are urgently needed, especially for those parasite species currently being controlled by singular, often limited strategies. A clearer understanding of the transcriptional components underpinning helminth development will enable identification of exploitable molecules essential for successful parasite/host interactions. Towards this end, we present a combinatorial, bioinformatics-led approach, employing both statistical and network analyses of transcriptomic data, for identifying new immunoprophylactic and therapeutic lead targets to combat schistosomiasis. Methodology/Principal Findings Utilisation of a Schistosoma mansoni oligonucleotide DNA microarray consisting of 37,632 elements enabled gene expression profiling from 15 distinct parasite lifecycle stages, spanning three unique ecological niches. Statistical approaches of data analysis revealed differential expression of 973 gene products that minimally describe the three major characteristics of schistosome development: asexual processes within intermediate snail hosts, sexual maturation within definitive vertebrate hosts and sexual dimorphism amongst adult male and female worms. Furthermore, we identified a group of 338 constitutively expressed schistosome gene products (including 41 transcripts sharing no sequence similarity outside the Platyhelminthes), which are likely to be essential for schistosome lifecycle progression. While highly informative, statistics-led bioinformatics mining of the transcriptional dataset has limitations, including the inability to identify higher order relationships between differentially expressed transcripts and lifecycle stages. Network analysis, coupled to Gene Ontology enrichment investigations, facilitated a re-examination of the dataset and identified 387 clusters (containing 12,132 gene products) displaying novel examples of developmentally regulated classes (including 294 schistosomula and/or adult transcripts with no known sequence similarity outside the Platyhelminthes), which were undetectable by the statistical comparisons. Conclusions/Significance Collectively, statistical and network-based exploratory analyses of transcriptomic datasets have led to a thorough characterisation of schistosome development. Information obtained from these experiments highlighted key transcriptional programs associated with lifecycle progression and identified numerous anti-schistosomal candidate molecules including G-protein coupled receptors, tetraspanins, Dyp-type peroxidases, fucosyltransferases, leishmanolysins and the netrin/netrin receptor complex. Despite the implementation of focused and well-funded chemotherapeutic control initiatives over the last decade, schistosomiasis remains a significant cause of morbidity and mortality within countries of the developing world. There is, therefore, an urgent need for the rapid translation of genomic information into viable vaccines or new drug classes capable of eradicating the parasitic schistosome worms responsible for this neglected tropical disease. In our effort to identify potential targets for novel chemotherapeutic and immunoprophylactic interventions, we detail a combined bioinformatics approach, comprising exploratory statistical and network analyses, to thoroughly describe the transcriptional progression of Schistosoma mansoni across three environmental niches. Our results indicate that, although schistosomes are masters at host deception and survival, there are numerous exploitable candidate molecules displaying either differential or constitutive expression throughout the parasite's lifecycle. Importantly, some of these transcripts represent gene families not commonly found outside—or expanded within—the phylum Platyhelminthes, and thus represent priority targets. Many of the candidates identified herein will be subjected to ongoing and future hypothesis-led functional investigations. The completion of such specific examinations ultimately will contribute to the successful development of novel control strategies useful in the alleviation of schistosome-induced immunopathologies, morbidities and mortalities.
Collapse
Affiliation(s)
| | - Emily Peak
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, United Kingdom
| | - Samirah Perally
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, United Kingdom
| | - Iain W. Chalmers
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, United Kingdom
| | - John Barrett
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, United Kingdom
| | - Timothy P. Yoshino
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, Wisconsin, United States of America
| | | | - Karl F. Hoffmann
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, United Kingdom
- * E-mail:
| |
Collapse
|
395
|
Poole CB, Davis PJ, Jin J, McReynolds LA. Cloning and bioinformatic identification of small RNAs in the filarial nematode, Brugia malayi. Mol Biochem Parasitol 2009; 169:87-94. [PMID: 19874857 DOI: 10.1016/j.molbiopara.2009.10.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2009] [Revised: 10/15/2009] [Accepted: 10/16/2009] [Indexed: 11/16/2022]
Abstract
Characterization of small RNAs from the filarial nematode Brugia malayi is the initial step in understanding their role in gene silencing. Both RNA cloning and bioinformatics were used to identify 32 microRNAs (miRNAs) belonging to 24 families. One family, miR-36 only occurs in helminths including B. malayi. Several of the miRNAs are arranged in clusters and are coordinately expressed as determined by northern blot analysis. In addition, small RNAs were identified from Pao/Bleo retrotransposons and their associated repeat sequences indicating that B. malayi uses an RNAi mechanism to maintain genome integrity. Analysis of these data provides a first glimpse into how small RNA-mediated silencing pathways regulate the parasitic life cycle of B. malayi.
Collapse
|
396
|
Abstract
More than two billion people (one-third of humanity) are infected with parasitic roundworms or flatworms, collectively known as helminth parasites. These infections cause diseases that are responsible for enormous levels of morbidity and mortality, delays in the physical development of children, loss of productivity among the workforce, and maintenance of poverty. Genomes of the major helminth species that affect humans, and many others of agricultural and veterinary significance, are now the subject of intensive genome sequencing and annotation. Draft genome sequences of the filarial worm Brugia malayi and two of the human schistosomes, Schistosoma japonicum and S. mansoni, are now available, among others. These genome data will provide the basis for a comprehensive understanding of the molecular mechanisms involved in helminth nutrition and metabolism, host-dependent development and maturation, immune evasion, and evolution. They are likely also to predict new potential vaccine candidates and drug targets. In this review, we present an overview of these efforts and emphasize the potential impact and importance of these new findings.
Collapse
Affiliation(s)
- Paul J Brindley
- Department of Microbiology, Immunology, and Tropical Medicine, George Washington University Medical Center, Washington, D. C., USA.
| | | | | | | |
Collapse
|
397
|
Wolbachia interferes with ferritin expression and iron metabolism in insects. PLoS Pathog 2009; 5:e1000630. [PMID: 19851452 PMCID: PMC2759286 DOI: 10.1371/journal.ppat.1000630] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2009] [Accepted: 09/24/2009] [Indexed: 11/19/2022] Open
Abstract
Wolbachia is an intracellular bacterium generally described as being a facultative reproductive parasite. However, Wolbachia is necessary for oogenesis completion in the wasp Asobara tabida. This dependence has evolved recently as a result of interference with apoptosis during oogenesis. Through comparative transcriptomics between symbiotic and aposymbiotic individuals, we observed a differential expression of ferritin, which forms a complex involved in iron storage. Iron is an essential element that is in limited supply in the cell. However, it is also a highly toxic precursor of Reactive Oxygen Species (ROS). Ferritin has also been shown to play a key role in host-pathogen interactions. Measuring ferritin by quantitative RT-PCR, we confirmed that ferritin was upregulated in aposymbiotic compared to symbiotic individuals. Manipulating the iron content in the diet, we showed that iron overload markedly affected wasp development and induced apoptotic processes during oogenesis in A. tabida, suggesting that the regulation of iron homeostasis may also be related to the obligate dependence of the wasp. Finally, we demonstrated that iron metabolism is influenced by the presence of Wolbachia not only in the obligate mutualism with A. tabida, but also in facultative parasitism involving Drosophila simulans and in Aedes aegypti cells. In these latter cases, the expression of Wolbachia bacterioferritin was also increased in the presence of iron, showing that Wolbachia responds to the concentration of iron. Our results indicate that Wolbachia may generally interfere with iron metabolism. The high affinity of Wolbachia for iron might be due to physiological requirement of the bacterium, but it could also be what allows the symbiont to persist in the organism by reducing the labile iron concentration, thus protecting the cell from oxidative stress and apoptosis. These findings also reinforce the idea that pathogenic, parasitic and mutualistic intracellular bacteria all use the same molecular mechanisms to survive and replicate within host cells. By impacting the general physiology of the host, the presence of a symbiont may select for host compensatory mechanisms, which extends the possible consequences of persistent endosymbiont on the evolution of their hosts.
Collapse
|
398
|
Him NAIIN, Gillan V, Emes RD, Maitland K, Devaney E. Hsp-90 and the biology of nematodes. BMC Evol Biol 2009; 9:254. [PMID: 19849843 PMCID: PMC2771018 DOI: 10.1186/1471-2148-9-254] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2009] [Accepted: 10/22/2009] [Indexed: 11/25/2022] Open
Abstract
Background Hsp-90 from the free-living nematode Caenorhabditis elegans is unique in that it fails to bind to the specific Hsp-90 inhibitor, geldanamycin (GA). Here we surveyed 24 different free-living or parasitic nematodes with the aim of determining whether C. elegans Hsp-90 was the exception or the norm amongst the nematodes. We combined these data with codon evolution models in an attempt to identify whether hsp-90 from GA-binding and non-binding species has evolved under different evolutionary constraints. Results We show that GA-binding is associated with life history: free-living nematodes and those parasitic species with free-living larval stages failed to bind GA. In contrast, obligate parasites and those worms in which the free-living stage in the environment is enclosed within a resistant egg, possess a GA-binding Hsp-90. We analysed Hsp-90 sequences from fifteen nematode species to determine whether nematode hsp-90s have undergone adaptive evolution that influences GA-binding. Our data provide evidence of rapid diversifying selection in the evolution of the hsp-90 gene along three separate lineages, and identified a number of residues showing significant evidence of adaptive evolution. However, we were unable to prove that the selection observed is correlated with the ability to bind geldanamycin or not. Conclusion Hsp-90 is a multi-functional protein and the rapid evolution of the hsp-90 gene presumably correlates with other key cellular functions. Factors other than primary amino acid sequence may influence the ability of Hsp-90 to bind to geldanamycin.
Collapse
Affiliation(s)
- Nik A I I N Him
- Parasitology Group, Institute of Comparative Medicine, School of Veterinary Medicine, University of Glasgow, Bearsden Road, Glasgow G61 1QH, UK.
| | | | | | | | | |
Collapse
|
399
|
Ghedin E, Hailemariam T, DePasse JV, Zhang X, Oksov Y, Unnasch TR, Lustigman S. Brugia malayi gene expression in response to the targeting of the Wolbachia endosymbiont by tetracycline treatment. PLoS Negl Trop Dis 2009; 3:e525. [PMID: 19806204 PMCID: PMC2754610 DOI: 10.1371/journal.pntd.0000525] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2009] [Accepted: 09/02/2009] [Indexed: 11/28/2022] Open
Abstract
Background Brugia malayi, like most human filarial parasite species, harbors an endosymbiotic bacterium of the genus Wolbachia. Elimination of the endosymbiont leads to sterilization of the adult female. Previous biochemical and genetic studies have established that communication with its endobacterium is essential for survival of the worm. Methodology/Principal findings We used electron microscopy to examine the effects of antibiotic treatment on Wolbachia cell structure. We have also used microarray and quantitative RT-PCR analyses to examine the regulation of the B. malayi transcripts altered in response to the anti-Wolbachia treatment. Microscopy of worms taken from animals treated with tetracycline for 14 and 21 days (14 d and 21 d) demonstrated substantial morphologic effects on the Wolbachia endobacterium by 14 d and complete degeneration of the endobacterial structures by 21 d. We observed upregulation of transcripts primarily encoding proteins involved in amino acid synthesis and protein translation, and downregulation of transcripts involved in cuticle biosynthesis after both 7 d and 14 d of treatment. In worms exposed to tetracycline in culture, substantial effects on endobacteria morphology were evident by day 3, and extensive death of the endobacteria was observed by day 5. In a detailed examination of the expression kinetics of selected signaling genes carried out on such cultured worms, a bimodal pattern of regulation was observed. The selected genes were upregulated during the early phase of antibiotic treatment and quickly downregulated in the following days. These same genes were upregulated once more at 6 days post-treatment. Conclusions/Significance Upregulation of protein translation and amino acid synthesis may indicate a generalized stress response induced in B. malayi due to a shortage of essential nutrients/factors that are otherwise supplied by Wolbachia. Downregulation of transcripts involved in cuticle biosynthesis perhaps reflects a disruption in the normal embryogenic program. This is confirmed by the expression pattern of transcripts that may be representative of the worms' response to Wolbachia in different tissues; the early peak potentially reflects the effect of bacteria death on the embryogenic program while the second peak may be a manifestation of the adult worm response to the affected bacteria within the hypodermis. Filarial parasites afflict hundreds of millions of individuals worldwide, and cause significant public health problems in many of the poorest countries in the world. Most of the human filarial parasite species, including Brugia malayi, harbor endosymbiotic bacteria of the genus Wolbachia. Elimination of the endosymbiont leads to sterilization of the adult female worm. The need exists for the development of new chemotherapeutic approaches that can practically exploit the vulnerability of the filaria to the loss of the Wolbachia. In this study we performed ultrastructural and microarray analyses of female worms collected from infected jirds treated with tetracycline. Results suggest that the endosymbiotic bacteria were specifically affected by the antibiotic. Furthermore, in response to the targeting of the endosymbiont, the parasites modulated expression of their genes. When exposed to tetracycline, the parasites over-expressed genes involved in protein synthesis. Expression of genes involved in cuticle biosynthesis and energy metabolism was, on the other hand, limited.
Collapse
Affiliation(s)
- Elodie Ghedin
- University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.
| | | | | | | | | | | | | |
Collapse
|
400
|
Maizels RM. Exploring the immunology of parasitism--from surface antigens to the hygiene hypothesis. Parasitology 2009; 136:1549-64. [PMID: 19460185 DOI: 10.1017/s0031182009006106] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Helminth immunology is a field which has changed beyond recognition in the past 30 years, transformed not only by new technologies from cDNA cloning to flow cytometry, but also conceptually as our definition of host immune pathways has matured. The molecular revolution defined key nematode surface and secreted antigens, and identified candidate immunomodulators that are likely to underpin parasites' success in eluding immune attack. The immunological advances in defining cytokine networks, lymphocyte subsets and innate cell recognition have also made a huge impact on our understanding of helminth infections. Most recently, the ideas of regulatory immune cells, in particular the regulatory T cell, have again overturned older thinking, but also may explain immune hyporesponsiveness observed in chronic helminth diseases, as well as the link to reduced allergic reactions observed in human and animal infections. The review concludes with a forward look to where we may make future advances towards the final eradication of helminth diseases.
Collapse
Affiliation(s)
- R M Maizels
- Centre for Immunity, Infection and Evolution, and Institute of Immunology and Infection Research, University of Edinburgh, West Mains Road, Edinburgh, UK.
| |
Collapse
|