351
|
Cerutti H, Ma X, Msanne J, Repas T. RNA-mediated silencing in Algae: biological roles and tools for analysis of gene function. EUKARYOTIC CELL 2011; 10:1164-72. [PMID: 21803865 PMCID: PMC3187060 DOI: 10.1128/ec.05106-11] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Algae are a large group of aquatic, typically photosynthetic, eukaryotes that include species from very diverse phylogenetic lineages, from those similar to land plants to those related to protist parasites. The recent sequencing of several algal genomes has provided insights into the great complexity of these organisms. Genomic information has also emphasized our lack of knowledge of the functions of many predicted genes, as well as the gene regulatory mechanisms in algae. Core components of the machinery for RNA-mediated silencing show widespread distribution among algal lineages, but they also seem to have been lost entirely from several species with relatively small nuclear genomes. Complex sets of endogenous small RNAs, including candidate microRNAs and small interfering RNAs, have now been identified by high-throughput sequencing in green, red, and brown algae. However, the natural roles of RNA-mediated silencing in algal biology remain poorly understood. Limited evidence suggests that small RNAs may function, in different algae, in defense mechanisms against transposon mobilization, in responses to nutrient deprivation and, possibly, in the regulation of recently evolved developmental processes. From a practical perspective, RNA interference (RNAi) is becoming a promising tool for assessing gene function by sequence-specific knockdown. Transient gene silencing, triggered with exogenously synthesized nucleic acids, and/or stable gene repression, involving genome-integrated transgenes, have been achieved in green algae, diatoms, yellow-green algae, and euglenoids. The development of RNAi technology in conjunction with system level "omics" approaches may provide the tools needed to advance our understanding of algal physiological and metabolic processes.
Collapse
Affiliation(s)
- Heriberto Cerutti
- School of Biological Sciences and Center for Plant Science Innovation, University of Nebraska-Lincoln, E211 Beadle Center, P.O. Box 880666, Lincoln, NE 68588-0666, USA.
| | | | | | | |
Collapse
|
352
|
Abstract
In most eukaryotes, histone and DNA modifications are responsible for the silencing of genes integrated in heterochromatic sequences, as well as the silencing of pericentromeric repeats and transposable elements themselves. But the mechanisms that guide these modifications to heterochromatin during the cell cycle have been elusive. RNA interference takes advantage of heterochromatic transcription to process small RNAs and recruit enzymes required for both histone and DNA modifications, and is one such mechanism that has been identified. The processes are best understood in fission yeast and plants, but recent work in mammalian cells, especially in the germline, suggests these mechanisms may be highly conserved.
Collapse
Affiliation(s)
- Tom Volpe
- Department of Molecular and Cellular Biology, Northwestern University, Chicago, Illinois 60611, USA
| | | |
Collapse
|
353
|
Lelandais G, Goudot C, Devaux F. The evolution of gene expression regulatory networks in yeasts. C R Biol 2011; 334:655-61. [PMID: 21819947 DOI: 10.1016/j.crvi.2011.05.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Accepted: 03/02/2011] [Indexed: 12/20/2022]
Abstract
Gene regulation is a major source of phenotypic diversity between and within species. This aspect of evolution has long been addressed from the sole point of view of the genome sequence. The incredible development of transcriptomics approaches now allows one to actually study the topology and the properties of regulatory networks on an evolutionary perspective. This new discipline is called comparative functional genomics or comparative transcriptomics. This article reviews some of the main advances made in this field, using yeast species, and especially the species sequenced in the frame of the Genolevures program, as a model.
Collapse
Affiliation(s)
- Gaëlle Lelandais
- Inserm UMR-S 665, Dynamique des Structures et Interactions des Macromolécules Biologiques, Université Paris Diderot, Sorbonne Paris Cité, INTS, 6 rue Alexandre-Cabanel, 75015 Paris, France.
| | | | | |
Collapse
|
354
|
Abstract
The tenth annual Keystone Symposium on the Mechanism and Biology of Silencing convened in Monterey, California, in March 2011. Those seeking some West Coast sunshine were, unfortunately, met with incessant precipitation throughout the meeting. Nevertheless, attendees were brightened by enlightening and vigorous scientific discussions. Here, we summarize the results presented at the meeting, which inspire and push this expanding field into new territories.
Collapse
Affiliation(s)
- Olivia S. Rissland
- Whitehead Institute, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Eric C. Lai
- Department of Developmental Biology, Sloan-Kettering Institute, 1275 York Ave, Box 252, New York, NY 10065, USA
| |
Collapse
|
355
|
Reinventing heterochromatin in budding yeasts: Sir2 and the origin recognition complex take center stage. EUKARYOTIC CELL 2011; 10:1183-92. [PMID: 21764908 DOI: 10.1128/ec.05123-11] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The transcriptional silencing of the cryptic mating-type loci in Saccharomyces cerevisiae is one of the best-studied models of repressive heterochromatin. However, this type of heterochromatin, which is mediated by the Sir proteins, has a distinct molecular composition compared to the more ubiquitous type of heterochromatin found in Schizosaccharomyces pombe, other fungi, animals, and plants and characterized by the presence of HP1 (heterochromatin protein 1). This review discusses how the loss of important heterochromatin proteins, including HP1, in the budding yeast lineage presented an evolutionary opportunity for the development and diversification of alternative varieties of heterochromatin, in which the conserved deacetylase Sir2 and the replication protein Orc1 play key roles. In addition, we highlight how this diversification has been facilitated by gene duplications and has contributed to adaptations in lifestyle.
Collapse
|
356
|
RNA interference in protozoan parasites: achievements and challenges. EUKARYOTIC CELL 2011; 10:1156-63. [PMID: 21764910 DOI: 10.1128/ec.05114-11] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Protozoan parasites that profoundly affect mankind represent an exceptionally diverse group of organisms, including Plasmodium, Toxoplasma, Entamoeba, Giardia, trypanosomes, and Leishmania. Despite the overwhelming impact of these parasites, there remain many aspects to be discovered about mechanisms of pathogenesis and how these organisms survive in the host. Combined with the ever-increasing availability of sequenced genomes, RNA interference (RNAi), discovered a mere 13 years ago, has enormously facilitated the analysis of gene function, especially in organisms that are not amenable to classical genetic approaches. Here we review the current status of RNAi in studies of parasitic protozoa, with special emphasis on its use as a postgenomic tool.
Collapse
|
357
|
Tisseur M, Kwapisz M, Morillon A. Pervasive transcription - Lessons from yeast. Biochimie 2011; 93:1889-96. [PMID: 21771634 DOI: 10.1016/j.biochi.2011.07.001] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Accepted: 07/04/2011] [Indexed: 10/18/2022]
Abstract
Pervasive transcription is now accepted to be a general feature of eukaryotic genomes, generating short and long non-coding RNAs (ncRNAs). Growing number of examples have shown that regulatory ncRNAs can control gene expression and chromatin domain formation. In this review, we discuss recent reports that show that Saccharomyces cerevisiae's genome also supports pervasive transcription, which is strongly controlled by RNA decay pathways and nucleosome positioning. We therefore propose that S. cerevisiae is an excellent model for studying large ncRNAs, which has already provided important examples of antisense-mediated transcriptional silencing.
Collapse
Affiliation(s)
- Mathieu Tisseur
- ncRNA, Epigenetic and Genome Fluidity, Institut Curie, Centre de Recherche, CNRS UMR3244, Université Pierre et Marie Curie, 26 rue d'Ulm, 75248 Paris Cedex 05, France
| | | | | |
Collapse
|
358
|
Bleykasten-Grosshans C, Neuvéglise C. Transposable elements in yeasts. C R Biol 2011; 334:679-86. [PMID: 21819950 DOI: 10.1016/j.crvi.2011.05.017] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Accepted: 03/31/2011] [Indexed: 11/19/2022]
Abstract
With the development of new sequencing technologies in the past decade, yeast genomes have been extensively sequenced and their structures investigated. Transposable elements (TEs) are ubiquitous in eukaryotes and constitute a limited part of yeast genomes. However, due to their ability to move in genomes and generate dispersed repeated sequences, they contribute to modeling yeast genomes and thereby induce plasticity. This review assesses the TE contents of yeast genomes investigated so far. Their diversity and abundance at the inter- and intraspecific levels are presented, and their effects on gene expression and genome stability is considered. Recent results concerning TE-host interactions are also analyzed.
Collapse
Affiliation(s)
- Claudine Bleykasten-Grosshans
- CNRS UMR 7156, Laboratoire Génétique Moléculaire Génomique Microbiologie, Université de Strasbourg, 28 rue Goethe, 67083 Strasbourg cedex, France.
| | | |
Collapse
|
359
|
Knop M. Yeast cell morphology and sexual reproduction--a short overview and some considerations. C R Biol 2011; 334:599-606. [PMID: 21819940 DOI: 10.1016/j.crvi.2011.05.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Accepted: 03/21/2011] [Indexed: 12/18/2022]
Abstract
Over the decades, basic research in life sciences has profited greatly from the study of the small unicellular fungal species Saccharomyces cerevisiae. This yeast turned out to be key for the identification and understanding of molecular mechanisms that underlay the basic functions of all eukaryotic cells. These include, but are not limited to, the regulatory mechanisms behind cellular reproduction (cell cycle control), cellular morphogenesis (cell polarity, cytoskeleton and membrane trafficking) and the management of cellular information (chromosome biology, transcription and translation). Rapid access to genomic information of many yeast species, combined with bioinformatics analyses, provide information on the evolutionary history of yeasts and the molecular ancestry of their constituents. The availability of a comprehensive list of experimental procedures for these organisms presents now a unique opportunity to learn about variations of molecular processes on an evolutionary scale. Yeast cell morphology is another interesting factor, since cellular shapes influence the interactions with the environment on all levels. In this overview article I provide a short summary of the relevant aspects of yeast cell morphology, in particular in relation to one of the most influencing processes, cellular reproduction by mating and meiosis.
Collapse
Affiliation(s)
- Michael Knop
- European Molecular Biology Laboratory, Meyerhofstr 1, 69117 Heidelberg, Germany.
| |
Collapse
|
360
|
Zhang H, Pompey JM, Singh U. RNA interference in Entamoeba histolytica: implications for parasite biology and gene silencing. Future Microbiol 2011; 6:103-17. [PMID: 21162639 DOI: 10.2217/fmb.10.154] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Entamoeba histolytica is a major health threat to people in developing countries, where it causes invasive diarrhea and liver abscesses. The study of this important human pathogen has been hindered by a lack of tools for genetic manipulation. Recently, a number of genetic approaches based on variations of the RNAi method have been successfully developed and cloning of endogenous small-interfering RNAs from E. histolytica revealed an abundant population of small RNAs with an unusual 5´-polyphosphate structure. However, little is known about the implications of these findings to amebic biology or the mechanisms of gene silencing in this organism. In this article we review the literature relevant to RNAi in E. histolytica, discuss its implications for advances in gene silencing in this organism and outline potential future directions towards understanding the repertoire of RNAi and its impact on the biology of this deep-branching eukaryotic parasite.
Collapse
Affiliation(s)
- Hanbang Zhang
- Stanford University School of Medicine, S-143 Grant Building, 300 Pasteur Drive, Stanford, CA 94305, USA
| | | | | |
Collapse
|
361
|
Nunes CC, Gowda M, Sailsbery J, Xue M, Chen F, Brown DE, Oh Y, Mitchell TK, Dean RA. Diverse and tissue-enriched small RNAs in the plant pathogenic fungus, Magnaporthe oryzae. BMC Genomics 2011; 12:288. [PMID: 21635781 PMCID: PMC3132168 DOI: 10.1186/1471-2164-12-288] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Accepted: 06/02/2011] [Indexed: 01/16/2023] Open
Abstract
Background Emerging knowledge of the impact of small RNAs as important cellular regulators has prompted an explosion of small transcriptome sequencing projects. Although significant progress has been made towards small RNA discovery and biogenesis in higher eukaryotes and other model organisms, knowledge in simple eukaryotes such as filamentous fungi remains limited. Results Here, we used 454 pyrosequencing to present a detailed analysis of the small RNA transcriptome (~ 15 - 40 nucleotides in length) from mycelia and appressoria tissues of the rice blast fungal pathogen, Magnaporthe oryzae. Small RNAs mapped to numerous nuclear and mitochondrial genomic features including repetitive elements, tRNA loci, rRNAs, protein coding genes, snRNAs and intergenic regions. For most elements, small RNAs mapped primarily to the sense strand with the exception of repetitive elements to which small RNAs mapped in the sense and antisense orientation in near equal proportions. Inspection of the small RNAs revealed a preference for U and suppression of C at position 1, particularly for antisense mapping small RNAs. In the mycelia library, small RNAs of the size 18 - 23 nt were enriched for intergenic regions and repetitive elements. Small RNAs mapping to LTR retrotransposons were classified as LTR retrotransposon-siRNAs (LTR-siRNAs). Conversely, the appressoria library had a greater proportion of 28 - 35 nt small RNAs mapping to tRNA loci, and were classified as tRNA-derived RNA fragments (tRFs). LTR-siRNAs and tRFs were independently validated by 3' RACE PCR and northern blots, respectively. Conclusions Our findings suggest M. oryzae small RNAs differentially accumulate in vegetative and specialized-infection tissues and may play an active role in genome integrity and regulating growth and development.
Collapse
Affiliation(s)
- Cristiano C Nunes
- Fungal Genomics Laboratory, Center for Integrated Fungal Research, Department of Plant Pathology, North Carolina State University, Raleigh, NC 27606, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
362
|
The Awesome Power of Yeast Evolutionary Genetics: New Genome Sequences and Strain Resources for the Saccharomyces sensu stricto Genus. G3-GENES GENOMES GENETICS 2011; 1:11-25. [PMID: 22384314 PMCID: PMC3276118 DOI: 10.1534/g3.111.000273] [Citation(s) in RCA: 238] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Accepted: 05/01/2011] [Indexed: 01/05/2023]
Abstract
High-quality, well-annotated genome sequences and standardized laboratory strains fuel experimental and evolutionary research. We present improved genome sequences of three species of Saccharomyces sensu stricto yeasts: S. bayanus var. uvarum (CBS 7001), S. kudriavzevii (IFO 1802T and ZP 591), and S. mikatae (IFO 1815T), and describe their comparison to the genomes of S. cerevisiae and S. paradoxus. The new sequences, derived by assembling millions of short DNA sequence reads together with previously published Sanger shotgun reads, have vastly greater long-range continuity and far fewer gaps than the previously available genome sequences. New gene predictions defined a set of 5261 protein-coding orthologs across the five most commonly studied Saccharomyces yeasts, enabling a re-examination of the tempo and mode of yeast gene evolution and improved inferences of species-specific gains and losses. To facilitate experimental investigations, we generated genetically marked, stable haploid strains for all three of these Saccharomyces species. These nearly complete genome sequences and the collection of genetically marked strains provide a valuable toolset for comparative studies of gene function, metabolism, and evolution, and render Saccharomyces sensu stricto the most experimentally tractable model genus. These resources are freely available and accessible through www.SaccharomycesSensuStricto.org.
Collapse
|
363
|
Axtell MJ, Westholm JO, Lai EC. Vive la différence: biogenesis and evolution of microRNAs in plants and animals. Genome Biol 2011. [PMID: 21554756 DOI: 10.1186/gb-2011-12-4-221?] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
MicroRNAs are pervasive in both plants and animals, but many aspects of their biogenesis, function and evolution differ. We reveal how these differences contribute to characteristic features of microRNA evolution in the two kingdoms.
Collapse
Affiliation(s)
- Michael J Axtell
- Department of Biology, The Pennsylvania State University, 208 Mueller Laboratory, University Park, PA 16802, USA.
| | | | | |
Collapse
|
364
|
Axtell MJ, Westholm JO, Lai EC. Vive la différence: biogenesis and evolution of microRNAs in plants and animals. Genome Biol 2011; 12:221. [PMID: 21554756 PMCID: PMC3218855 DOI: 10.1186/gb-2011-12-4-221] [Citation(s) in RCA: 303] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
MicroRNAs are pervasive in both plants and animals, but many aspects of their biogenesis, function and evolution differ. We reveal how these differences contribute to characteristic features of microRNA evolution in the two kingdoms.
Collapse
Affiliation(s)
- Michael J Axtell
- Department of Biology, The Pennsylvania State University, 208 Mueller Laboratory, University Park, PA 16802, USA.
| | | | | |
Collapse
|
365
|
The emerging world of small silencing RNAs in protozoan parasites. Trends Parasitol 2011; 27:321-7. [PMID: 21497553 DOI: 10.1016/j.pt.2011.03.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Revised: 03/15/2011] [Accepted: 03/16/2011] [Indexed: 12/14/2022]
Abstract
A new RNA world has emerged in the past 10 years with the discovery of a plethora of 20- to 30-nucleotide long small RNAs that are involved in various gene silencing mechanisms. These small RNAs have considerably changed our view of the regulation of gene expression in eukaryotic organisms, with a major shift towards epigenetic and post-transcriptional mechanisms. In this article, we focus on the striking diversity of small silencing RNAs that have been identified in several protozoan parasites and their potential biological role.
Collapse
|
366
|
Samaranayake DP, Hanes SD. Milestones in Candida albicans gene manipulation. Fungal Genet Biol 2011; 48:858-65. [PMID: 21511047 DOI: 10.1016/j.fgb.2011.04.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2011] [Revised: 03/02/2011] [Accepted: 04/05/2011] [Indexed: 11/17/2022]
Abstract
In the United States, candidemia is one of the most common hospital-acquired infections and is estimated to cause 10,000 deaths per year. The species Candida albicans is responsible for the majority of these cases. As C. albicans is capable of developing resistance against the currently available drugs, understanding the molecular basis of drug resistance, finding new cellular targets, and further understanding the overall mechanism of C. albicans pathogenesis are important goals. To study this pathogen it is advantageous to manipulate its genome. Numerous strategies of C. albicans gene manipulation have been introduced. This review evaluates a majority of these strategies and should be a helpful guide for researchers to identify gene targeting strategies to suit their requirements.
Collapse
Affiliation(s)
- Dhanushki P Samaranayake
- Department of Biomedical Sciences, School of Public Health, State University of New York, Albany, NY 12208, USA.
| | | |
Collapse
|
367
|
Batista TM, Marques JT. RNAi pathways in parasitic protists and worms. J Proteomics 2011; 74:1504-14. [PMID: 21385631 DOI: 10.1016/j.jprot.2011.02.032] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Revised: 02/24/2011] [Accepted: 02/26/2011] [Indexed: 12/15/2022]
Abstract
Tropical diseases caused by parasitic worms and protists are of major public health concern affecting millions of people worldwide. New therapeutic and diagnostic tools would be of great help in dealing with the public health and economic impact of these diseases. RNA interference (RNAi) pathways utilize small non-coding RNAs to regulate gene expression in a sequence-specific manner. In recent years, a wealth of data about the mechanisms and biological functions of RNAi pathways in distinct groups of eukaryotes has been described. Often, RNAi pathways have unique features that are restricted to groups of eukaryotes. The focus of this review will be on RNAi pathways in specific groups of parasitic eukaryotes that include Trypanosoma cruzi, Plasmodium and Schistosoma mansoni. These parasites are the causative agents of Chagas disease, Malaria, and Schistosomiasis, respectively, all of which are tropical diseases that would greatly benefit from the development of new diagnostic and therapeutic tools. In this context, we will describe specific features of RNAi pathways in each of these parasitic eukaryotic groups and discuss how they could be exploited for the treatment of tropical diseases.
Collapse
Affiliation(s)
- Thiago Mafra Batista
- Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | |
Collapse
|
368
|
Wery M, Kwapisz M, Morillon A. Noncoding RNAs in gene regulation. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2011; 3:728-38. [PMID: 21381218 DOI: 10.1002/wsbm.148] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
RNAs have been traditionally viewed as intermediates between DNA and proteins. However, there is a growing body of literature indicating that noncoding RNAs (ncRNAs) are key players for gene regulation, genome stability, and chromatin modification. In addition to the well-known small interfering RNAs and microRNAs acting in transcriptional and posttranscriptional gene silencing, recent advances in the field of transcriptome exploration have revealed novel sets of new small and large ncRNAs. Many of them appear to be conserved across mammals, and abnormal expression of several ncRNAs has been linked to a wide variety of human diseases, such as cancer. Here, we review the different classes of ncRNAs identified to date, in yeast and mammals, and we discuss the mechanisms by which they affect gene regulation.
Collapse
Affiliation(s)
- Maxime Wery
- Institut Curie, Centre de Recherche, Paris, France
| | | | | |
Collapse
|
369
|
Abstract
The fungal kingdom is vast, spanning ~1.5 to as many as 5 million species diverse as unicellular yeasts, filamentous fungi, mushrooms, lichens, and both plant and animal pathogens. The fungi are closely aligned with animals in one of the six to eight supergroups of eukaryotes, the opisthokonts. The animal and fungal kingdoms last shared a common ancestor ~1 billion years ago, more recently than other groups of eukaryotes. As a consequence of their close evolutionary history and shared cellular machinery with metazoans, fungi are exceptional models for mammalian biology, but prove more difficult to treat in infected animals. The last common ancestor to the fungal/metazoan lineages is thought to have been unicellular, aquatic, and motile with a posterior flagellum, and certain extant species closely resemble this hypothesized ancestor. Species within the fungal kingdom were traditionally assigned to four phyla, including the basal fungi (Chytridiomycota, Zygomycota) and the more recently derived monophyletic lineage, the dikarya (Ascomycota, Basidiomycota). The fungal tree of life project has revealed that the basal lineages are polyphyletic, and thus there are as many as eight to ten fungal phyla. Fungi that infect vertebrates are found in all of the major lineages, and virulence arose multiple times independently. A sobering recent development involves the species Batrachochytrium dendrobatidis from the basal fungal phylum, the Chytridiomycota, which has emerged to cause global amphibian declines and extinctions. Genomics is revolutionizing our view of the fungal kingdom, and genome sequences for zygomycete pathogens (Rhizopus, Mucor), skin-associated fungi (dermatophytes, Malassezia), and the Candida pathogenic species clade promise to provide insights into the origins of virulence. Here we survey the diversity of fungal pathogens and illustrate key principles revealed by genomics involving sexual reproduction and sex determination, loss of conserved pathways in derived fungal lineages that are retained in basal fungi, and shared and divergent virulence strategies of successful human pathogens, including dimorphic and trimorphic transitions in form. The overarching conclusion is that fungal pathogens of animals have arisen repeatedly and independently throughout the fungal tree of life, and while they share general properties, there are also unique features to the virulence strategies of each successful microbial pathogen.
Collapse
Affiliation(s)
- Joseph Heitman
- Department of Molecular Genetics and Microbiology Duke University Medical Center
| |
Collapse
|
370
|
Krivoruchko A, Siewers V, Nielsen J. Opportunities for yeast metabolic engineering: Lessons from synthetic biology. Biotechnol J 2011; 6:262-76. [DOI: 10.1002/biot.201000308] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2010] [Revised: 01/06/2011] [Accepted: 01/13/2011] [Indexed: 11/08/2022]
|
371
|
Regulated antisense transcription controls expression of cell-type-specific genes in yeast. Mol Cell Biol 2011; 31:1701-9. [PMID: 21300780 DOI: 10.1128/mcb.01071-10] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transcriptome profiling studies have recently uncovered a large number of noncoding RNA transcripts (ncRNAs) in eukaryotic organisms, and there is growing interest in their role in the cell. For example, in haploid Saccharomyces cerevisiae cells, the expression of an overlapping antisense ncRNA, referred to here as RME2 (Regulator of Meiosis 2), prevents IME4 expression. In diploid cells, the a1-α2 complex represses the transcription of RME2, allowing IME4 to be induced during meiosis. In this study we show that antisense transcription across the IME4 promoter region does not block transcription factors from binding and is not required for repression. Mutational analyses found that sequences within the IME4 open reading frame (ORF) are required for the repression mediated by RME2 transcription. These results support a model where transcription of RME2 blocks the elongation of the full-length IME4 transcript but not its initiation. We have found that another antisense transcript, called RME3, represses ZIP2 in a cell-type-specific manner. These results suggest that regulated antisense transcription may be a widespread mechanism for the control of gene expression and may account for the roles of some of the previously uncharacterized ncRNAs in yeast.
Collapse
|
372
|
Blanks, a nuclear siRNA/dsRNA-binding complex component, is required for Drosophila spermiogenesis. Proc Natl Acad Sci U S A 2011; 108:3204-9. [PMID: 21300896 DOI: 10.1073/pnas.1009781108] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Small RNAs and a diverse array of protein partners control gene expression in eukaryotes through a variety of mechanisms. By combining siRNA affinity chromatography and mass spectrometry, we have identified the double-stranded RNA-binding domain protein Blanks to be an siRNA- and dsRNA-binding protein from Drosophila S2 cells. We find that Blanks is a nuclear factor that contributes to the efficiency of RNAi. Biochemical fractionation of a Blanks-containing complex shows that the Blanks complex is unlike previously described RNA-induced silencing complexes and associates with the DEAD-box helicase RM62, a protein previously implicated in RNA silencing. In flies, Blanks is highly expressed in testes tissues and is necessary for postmeiotic spermiogenesis, but loss of Blanks is not accompanied by detectable transposon derepression. Instead, genes related to innate immunity pathways are up-regulated in blanks mutant testes. These results reveal Blanks to be a unique component of a nuclear siRNA/dsRNA-binding complex that contributes to essential RNA silencing-related pathways in the male germ line.
Collapse
|
373
|
Abstract
Viroids are the smallest known pathogenic agents. They are noncoding, single-stranded, closed-circular, "naked" RNAs, which replicate through RNA-RNA transcription. Viroids of the Avsunviroidae family possess a hammerhead ribozyme in their sequence, allowing self-cleavage during their replication. To date, viroids have only been detected in plant cells. Here, we investigate the replication of Avocado sunblotch viroid (ASBVd) of the Avsunviroidae family in a nonconventional host, the yeast Saccharomyces cerevisiae. We demonstrate that ASBVd RNA strands of both polarities are able to self-cleave and to replicate in a unicellular eukaryote cell. We show that the viroid monomeric RNA is destabilized by the nuclear 3' and the cytoplasmic 5' RNA degradation pathways. For the first time, our results provide evidence that viroids can replicate in other organisms than plants and that yeast contains all of the essential cellular elements for the replication of ASBVd.
Collapse
|
374
|
Suk K, Choi J, Suzuki Y, Ozturk SB, Mellor JC, Wong KH, MacKay JL, Gregory RI, Roth FP. Reconstitution of human RNA interference in budding yeast. Nucleic Acids Res 2011; 39:e43. [PMID: 21252293 PMCID: PMC3074155 DOI: 10.1093/nar/gkq1321] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Although RNA-mediated interference (RNAi) is a widely conserved process among eukaryotes, including many fungi, it is absent from the budding yeast Saccharomyces cerevisiae. Three human proteins, Ago2, Dicer and TRBP, are sufficient for reconstituting the RISC complex in vitro. To examine whether the introduction of human RNAi genes can reconstitute RNAi in S. cerevisiae, genes encoding these three human proteins were introduced into S. cerevisiae. We observed both siRNA and siRNA- and RISC-dependent silencing of the target gene GFP. Thus, human Ago2, Dicer and TRBP can functionally reconstitute human RNAi in S. cerevisiae, in vivo, enabling the study and use of the human RNAi pathway in a facile genetic model organism.
Collapse
Affiliation(s)
- Kyoungho Suk
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
375
|
Abstract
In this chapter, we present an up-to-date view of the optimal characteristics of the yeast Saccharomyces cerevisiae as a model eukaryote for systems biology studies, with main molecular mechanisms, biological networks, and sub-cellular organization essentially conserved in all eukaryotes, derived from a complex common ancestor. The existence of advanced tools for molecular studies together with high-throughput experimental and computational methods, most of them being implemented and validated in yeast, with new ones being developed, is opening the way to the characterization of the core modular architecture and complex networks essential to all eukaryotes. Selected examples of the latest discoveries in eukaryote complexity and systems biology studies using yeast as a reference model and their applications in biotechnology and medicine are presented.
Collapse
Affiliation(s)
- Juan I Castrillo
- Department of Biochemistry, Cambridge Systems Biology Centre, University of Cambridge, Cambridge CB21GA, UK.
| | | |
Collapse
|
376
|
Staab JF, White TC, Marr KA. Hairpin dsRNA does not trigger RNA interference in Candida albicans cells. Yeast 2011; 28:1-8. [PMID: 20737430 PMCID: PMC4677786 DOI: 10.1002/yea.1814] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2010] [Accepted: 07/11/2010] [Indexed: 11/06/2022] Open
Abstract
RNA interference/silencing mechanisms triggered by double-stranded RNA (dsRNA) have been described in many eukaryotes, including fungi. These mechanisms have in common small RNA molecules (siRNAs or microRNAs) originating from dsRNAs that, together with the effector protein Argonaute, mediate silencing. The genome of the fungal pathogen Candida albicans harbours a well-conserved Argonaute and a non-canonical Dicer, essential members of silencing pathways. Prototypical siRNAs are detected as members of the C. albicans transcriptome, which is potential evidence of RNA interference/silencing pathways in this organism. Surprisingly, expression of a dsRNA a hairpin ADE2 dsRNA molecule to interfere with the endogenous ADE2 mRNA did not result in down-regulation of the message or produce adenine auxotrophic strains. Cell free assays showed that the hairpin dsRNA was a substrate for the putative C. albicans Dicer, discounting the possibility that the nature of the dsRNA trigger affects silencing functionality. Our results suggested that unknown cellular events govern the functionality of siRNAs originating from transgenes in RNA interference/silencing pathways in C. albicans.
Collapse
Affiliation(s)
- Janet F Staab
- Department of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | | | | |
Collapse
|
377
|
|
378
|
Wang X, Hsueh YP, Li W, Floyd A, Skalsky R, Heitman J. Sex-induced silencing defends the genome of Cryptococcus neoformans via RNAi. Genes Dev 2010; 24:2566-82. [PMID: 21078820 DOI: 10.1101/gad.1970910] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Cosuppression is a silencing phenomenon triggered by the introduction of homologous DNA sequences into the genomes of organisms as diverse as plants, fungi, flies, and nematodes. Here we report sex-induced silencing (SIS), which is triggered by tandem integration of a transgene array in the human fungal pathogen Cryptococcus neoformans. A SXI2a-URA5 transgene array was found to be post-transcriptionally silenced during sexual reproduction. More than half of the progeny that inherited the SXI2a-URA5 transgene became uracil-auxotrophic due to silencing of the URA5 gene. In vegetative mitotic growth, silencing of this transgene array occurred at an ∼250-fold lower frequency, indicating that silencing is induced during the sexual cycle. Central components of the RNAi pathway-including genes encoding Argonaute, Dicer, and an RNA-dependent RNA polymerase-are all required for both meiotic and mitotic transgene silencing. URA5-derived ∼22-nucleotide (nt) small RNAs accumulated in the silenced isolates, suggesting that SIS is mediated by RNAi via sequence-specific small RNAs. Through deep sequencing of the small RNA population in C. neoformans, we also identified abundant small RNAs mapping to repetitive transposable elements, and these small RNAs were absent in rdp1 mutant strains. Furthermore, a group of retrotransposons was highly expressed during mating of rdp1 mutant strains, and an increased transposition/mutation rate was detected in their progeny, indicating that the RNAi pathway squelches transposon activity during the sexual cycle. Interestingly, Ago1, Dcr1, Dcr2, and Rdp1 are translationally induced in mating cells, and Ago1, Dcr1, and Dcr2 localize to processing bodies (P bodies), whereas Rdp1 appears to be nuclear, providing mechanistic insights into the elevated silencing efficiency during sexual reproduction. We hypothesize that the SIS RNAi pathway operates to defend the genome during sexual development.
Collapse
Affiliation(s)
- Xuying Wang
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | | | |
Collapse
|
379
|
Janbon G, Maeng S, Yang DH, Ko YJ, Jung KW, Moyrand F, Floyd A, Heitman J, Bahn YS. Characterizing the role of RNA silencing components in Cryptococcus neoformans. Fungal Genet Biol 2010; 47:1070-80. [PMID: 21067947 DOI: 10.1016/j.fgb.2010.10.005] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2010] [Revised: 10/03/2010] [Accepted: 10/08/2010] [Indexed: 10/18/2022]
Abstract
The RNA interference (RNAi) mediated by homology-dependent degradation of the target mRNA with small RNA molecules plays a key role in controlling transcription and translation processes in a number of eukaryotic organisms. The RNAi machinery is also evolutionarily conserved in a wide variety of fungal species, including pathogenic fungi. To elucidate the physiological functions of the RNAi pathway in Cryptococcus neoformans that causes fungal meningitis, here we performed genetic analyses for genes encoding Argonaute (AGO1 and AGO2), RNA-dependent RNA polymerase (RDP1), and Dicers (DCR1 and DCR2) in both serotype A and D C. neoformans. The present study shows that Ago1, Rdp1, and Dcr2 are the major components of the RNAi process occurring in C. neoformans. However, the RNAi machinery is not involved in regulation of production of two virulence factors (capsule and melanin), sexual differentiation, and diverse stress response. Comparative transcriptome analysis of the serotype A and D RNAi mutants revealed that only modest changes occur in the genome-wide transcriptome profiles when the RNAi process was perturbed. Notably, the serotype D rdp1Δ mutants showed an increase in transcript abundance of active retrotransposons and transposons, such as T2 and T3, the latter of which is a novel serotype D-specific transposon of C. neoformans. In a wild type background both T2 and T3 were found to be weakly active mobile elements, although we found no evidence of Cnl1 retrotransposon mobility. In contrast, all three transposable elements exhibited enhanced mobility in the rdp1Δ mutant strain. In conclusion, the RNAi pathway plays an important role in controlling transposon activity and genome integrity of C. neoformans.
Collapse
Affiliation(s)
- Guilhem Janbon
- Unité des Aspergillus, Institut Pasteur, Paris Cedex 15, France
| | | | | | | | | | | | | | | | | |
Collapse
|
380
|
Di Rienzi SC, Lindstrom KC, Lancaster R, Rolczynski L, Raghuraman MK, Brewer BJ. Genetic, genomic, and molecular tools for studying the protoploid yeast, L. waltii. Yeast 2010; 28:137-51. [PMID: 21246627 DOI: 10.1002/yea.1826] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Accepted: 09/17/2010] [Indexed: 11/11/2022] Open
Abstract
Sequencing of the yeast Kluyveromyces waltii (recently renamed Lachancea waltii) provided evidence of a whole genome duplication event in the lineage leading to the well-studied Saccharomyces cerevisiae. While comparative genomic analyses of these yeasts have proven to be extremely instructive in modeling the loss or maintenance of gene duplicates, experimental tests of the ramifications following such genome alterations remain difficult. To transform L. waltii from an organism of the computational comparative genomic literature into an organism of the functional comparative genomic literature, we have developed genetic, molecular and genomic tools for working with L. waltii. In particular, we have characterized basic properties of L. waltii (growth, ploidy, molecular karyotype, mating type and the sexual cycle), developed transformation, cell cycle arrest and synchronization protocols, and have created centromeric and non-centromeric vectors as well as a genome browser for L. waltii. We hope that these tools will be used by the community to follow up on the ideas generated by sequence data and lead to a greater understanding of eukaryotic biology and genome evolution.
Collapse
Affiliation(s)
- Sara C Di Rienzi
- Department of Genome Sciences, University of Washington, Box 355065, Seattle, WA 98195, USA
| | | | | | | | | | | |
Collapse
|
381
|
Lye LF, Owens K, Shi H, Murta SMF, Vieira AC, Turco SJ, Tschudi C, Ullu E, Beverley SM. Retention and loss of RNA interference pathways in trypanosomatid protozoans. PLoS Pathog 2010; 6:e1001161. [PMID: 21060810 PMCID: PMC2965760 DOI: 10.1371/journal.ppat.1001161] [Citation(s) in RCA: 171] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Accepted: 09/23/2010] [Indexed: 01/02/2023] Open
Abstract
RNA interference (RNAi) pathways are widespread in metaozoans but the genes required show variable occurrence or activity in eukaryotic microbes, including many pathogens. While some Leishmania lack RNAi activity and Argonaute or Dicer genes, we show that Leishmania braziliensis and other species within the Leishmania subgenus Viannia elaborate active RNAi machinery. Strong attenuation of expression from a variety of reporter and endogenous genes was seen. As expected, RNAi knockdowns of the sole Argonaute gene implicated this protein in RNAi. The potential for functional genetics was established by testing RNAi knockdown lines lacking the paraflagellar rod, a key component of the parasite flagellum. This sets the stage for the systematic manipulation of gene expression through RNAi in these predominantly diploid asexual organisms, and may also allow selective RNAi-based chemotherapy. Functional evolutionary surveys of RNAi genes established that RNAi activity was lost after the separation of the Leishmania subgenus Viannia from the remaining Leishmania species, a divergence associated with profound changes in the parasite infectious cycle and virulence. The genus Leishmania therefore offers an accessible system for testing hypothesis about forces that may select for the loss of RNAi during evolution, such as invasion by viruses, changes in genome plasticity mediated by transposable elements and gene amplification (including those mediating drug resistance), and/or alterations in parasite virulence. RNAi interference pathways play fundamental roles in eukaryotes and provide important methods for the analysis of gene function. Occasionally RNAi has been lost, precluding its use as a tool, as well as raising the question of what forces could lead to loss of such a key pathway. Genomic and functional studies previously showed that within trypanosomatids protozoans RNAi was absent in both Leishmania major and Trypanosoma cruzi. The genome of L. braziliensis, a member of the early diverging Leishmania subgenus Viannia, retained key genes required for RNAi such as an Argonaute. We demonstrated that in fact L. braziliensis shows strong RNAi activity with reporter and endogenous genes affecting flagellar function. These data suggest that RNAi may be productively applied for functional genomic studies in L. braziliensis. We mapped the evolutionary point at which RNAi was lost in lineage leading to Leishmania and Crithidia, and establish that RNAi must have been lost at least twice in the trypanosomatids, once on the lineage leading to T. cruzi and independently following the divergence of the Viannia subgenus from other Leishmania species. Lastly, we discuss hypotheses concerning the forces leading to the loss of RNAi in Leishmania evolution, including viral invasion, increased genome plasticity, and altered virulence.
Collapse
Affiliation(s)
- Lon-Fye Lye
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Katherine Owens
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Huafang Shi
- Department of Internal Medicine, Yale University Medical School, New Haven, Connecticut, United States of America
| | - Silvane M. F. Murta
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Ana Carolina Vieira
- Department of Biochemistry, University of Kentucky Medical Center, Lexington, Kentucky, United States of America
| | - Salvatore J. Turco
- Department of Biochemistry, University of Kentucky Medical Center, Lexington, Kentucky, United States of America
| | - Christian Tschudi
- Department of Internal Medicine, Yale University Medical School, New Haven, Connecticut, United States of America
- Department of Epidemiology & Public Health, Yale University Medical School, New Haven, Connecticut, United States of America
| | - Elisabetta Ullu
- Department of Internal Medicine, Yale University Medical School, New Haven, Connecticut, United States of America
- Department of Cell Biology, Yale University Medical School, New Haven, Connecticut, United States of America
| | - Stephen M. Beverley
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
382
|
Transcriptional silencing functions of the yeast protein Orc1/Sir3 subfunctionalized after gene duplication. Proc Natl Acad Sci U S A 2010; 107:19384-9. [PMID: 20974972 DOI: 10.1073/pnas.1006436107] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The origin recognition complex (ORC) defines origins of replication and also interacts with heterochromatin proteins in a variety of species, but how ORC functions in heterochromatin assembly remains unclear. The largest subunit of ORC, Orc1, is particularly interesting because it contains a nucleosome-binding BAH domain and because it gave rise to Sir3, a key silencing protein in Saccharomyces cerevisiae, through gene duplication. We examined whether Orc1 possessed a Sir3-like silencing function before duplication and found that Orc1 from the yeast Kluyveromyces lactis, which diverged from S. cerevisiae before the duplication, acts in conjunction with the deacetylase Sir2 and the histone-binding protein Sir4 to generate heterochromatin at telomeres and a mating-type locus. Moreover, the ability of KlOrc1 to spread across a silenced locus depends on its nucleosome-binding BAH domain and the deacetylase Sir2. Interestingly, KlOrc1 appears to act independently of the entire ORC, as other subunits of the complex, Orc4 and Orc5, are not strongly associated with silenced domains. These findings demonstrate that Orc1 functioned in silencing before duplication and suggest that Orc1 and Sir2, both of which are broadly conserved among eukaryotes, may have an ancient history of cooperating to generate chromatin structures, with Sir2 deacetylating histones and Orc1 binding to these deacetylated nucleosomes through its BAH domain.
Collapse
|
383
|
Lelandais G, Devaux F. Comparative Functional Genomics of Stress Responses in Yeasts. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2010; 14:501-15. [DOI: 10.1089/omi.2010.0029] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Gaëlle Lelandais
- Dynamique des Structures et Interactions des Macromolécules Biologiques (DSIMB), INSERM UMR-S 665, Université Paris Diderot, Paris France
| | - Frédéric Devaux
- Laboratoire de génomique des microorganismes, CNRS FRE3214, Université Pierre et Marie Curie, Institut des Cordeliers, Paris, France
| |
Collapse
|
384
|
Affiliation(s)
- Christine Ender
- Center for Integrated Protein Science Munich (CIPS), Laboratory of RNA Biology, Max-Planck-Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | | |
Collapse
|
385
|
Strand-specific RNA sequencing reveals extensive regulated long antisense transcripts that are conserved across yeast species. Genome Biol 2010; 11:R87. [PMID: 20796282 PMCID: PMC2945789 DOI: 10.1186/gb-2010-11-8-r87] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2010] [Revised: 07/26/2010] [Accepted: 08/26/2010] [Indexed: 02/04/2023] Open
Abstract
Background Recent studies in budding yeast have shown that antisense transcription occurs at many loci. However, the functional role of antisense transcripts has been demonstrated only in a few cases and it has been suggested that most antisense transcripts may result from promiscuous bi-directional transcription in a dense genome. Results Here, we use strand-specific RNA sequencing to study anti-sense transcription in Saccharomyces cerevisiae. We detect 1,103 putative antisense transcripts expressed in mid-log phase growth, ranging from 39 short transcripts covering only the 3' UTR of sense genes to 145 long transcripts covering the entire sense open reading frame. Many of these antisense transcripts overlap sense genes that are repressed in mid-log phase and are important in stationary phase, stress response, or meiosis. We validate the differential regulation of 67 antisense transcripts and their sense targets in relevant conditions, including nutrient limitation and environmental stresses. Moreover, we show that several antisense transcripts and, in some cases, their differential expression have been conserved across five species of yeast spanning 150 million years of evolution. Divergence in the regulation of antisense transcripts to two respiratory genes coincides with the evolution of respiro-fermentation. Conclusions Our work provides support for a global and conserved role for antisense transcription in yeast gene regulation.
Collapse
|
386
|
Tuch BB, Mitrovich QM, Homann OR, Hernday AD, Monighetti CK, De La Vega FM, Johnson AD. The transcriptomes of two heritable cell types illuminate the circuit governing their differentiation. PLoS Genet 2010; 6:e1001070. [PMID: 20808890 PMCID: PMC2924316 DOI: 10.1371/journal.pgen.1001070] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2010] [Accepted: 07/15/2010] [Indexed: 12/13/2022] Open
Abstract
The differentiation of cells into distinct cell types, each of which is heritable for many generations, underlies many biological phenomena. White and opaque cells of the fungal pathogen Candida albicans are two such heritable cell types, each thought to be adapted to unique niches within their human host. To systematically investigate their differences, we performed strand-specific, massively-parallel sequencing of RNA from C. albicans white and opaque cells. With these data we first annotated the C. albicans transcriptome, finding hundreds of novel differentially-expressed transcripts. Using the new annotation, we compared differences in transcript abundance between the two cell types with the genomic regions bound by a master regulator of the white-opaque switch (Wor1). We found that the revised transcriptional landscape considerably alters our understanding of the circuit governing differentiation. In particular, we can now resolve the poor concordance between binding of a master regulator and the differential expression of adjacent genes, a discrepancy observed in several other studies of cell differentiation. More than one third of the Wor1-bound differentially-expressed transcripts were previously unannotated, which explains the formerly puzzling presence of Wor1 at these positions along the genome. Many of these newly identified Wor1-regulated genes are non-coding and transcribed antisense to coding transcripts. We also find that 5' and 3' UTRs of mRNAs in the circuit are unusually long and that 5' UTRs often differ in length between cell-types, suggesting UTRs encode important regulatory information and that use of alternative promoters is widespread. Further analysis revealed that the revised Wor1 circuit bears several striking similarities to the Oct4 circuit that specifies the pluripotency of mammalian embryonic stem cells. Additional characteristics shared with the Oct4 circuit suggest a set of general hallmarks characteristic of heritable differentiation states in eukaryotes.
Collapse
Affiliation(s)
- Brian B. Tuch
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, California, United States of America
- Genetic Systems Division, Research and Development, Life Technologies, Foster City, California, United States of America
| | - Quinn M. Mitrovich
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, California, United States of America
| | - Oliver R. Homann
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, California, United States of America
| | - Aaron D. Hernday
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, California, United States of America
| | - Cinna K. Monighetti
- Genetic Systems Division, Research and Development, Life Technologies, Foster City, California, United States of America
| | - Francisco M. De La Vega
- Genetic Systems Division, Research and Development, Life Technologies, Foster City, California, United States of America
| | - Alexander D. Johnson
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, California, United States of America
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
387
|
Jiang H, Guan W, Gu Z. Tinkering evolution of post-transcriptional RNA regulons: puf3p in fungi as an example. PLoS Genet 2010; 6:e1001030. [PMID: 20661438 PMCID: PMC2908677 DOI: 10.1371/journal.pgen.1001030] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2009] [Accepted: 06/16/2010] [Indexed: 11/19/2022] Open
Abstract
Genome-wide studies of post-transcriptional mRNA regulation in model organisms indicate a "post-transcriptional RNA regulon" model, in which a set of functionally related genes is regulated by mRNA-binding RNAs or proteins. One well-studied post-transcriptional regulon by Puf3p functions in mitochondrial biogenesis in budding yeast. The evolution of the Puf3p regulon remains unclear because previous studies have shown functional divergence of Puf3p regulon targets among yeast, fruit fly, and humans. By analyzing evolutionary patterns of Puf3p and its targeted genes in forty-two sequenced fungi, we demonstrated that, although the Puf3p regulon is conserved among all of the studied fungi, the dedicated regulation of mitochondrial biogenesis by Puf3p emerged only in the Saccharomycotina clade. Moreover, the evolution of the Puf3p regulon was coupled with evolution of codon usage bias in down-regulating expression of genes that function in mitochondria in yeast species after genome duplication. Our results provide a scenario for how evolution like a tinker exploits pre-existing materials of a conserved post-transcriptional regulon to regulate gene expression for novel functional roles.
Collapse
Affiliation(s)
- Huifeng Jiang
- Division of Nutritional Sciences, Cornell University, Ithaca, New York, United States of America
| | - Wenjun Guan
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Zhenglong Gu
- Division of Nutritional Sciences, Cornell University, Ithaca, New York, United States of America
- * E-mail:
| |
Collapse
|
388
|
Taft RJ, Simons C, Nahkuri S, Oey H, Korbie DJ, Mercer TR, Holst J, Ritchie W, Wong JJL, Rasko JEJ, Rokhsar DS, Degnan BM, Mattick JS. Nuclear-localized tiny RNAs are associated with transcription initiation and splice sites in metazoans. Nat Struct Mol Biol 2010; 17:1030-4. [PMID: 20622877 DOI: 10.1038/nsmb.1841] [Citation(s) in RCA: 134] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2010] [Accepted: 04/27/2010] [Indexed: 12/21/2022]
Abstract
We have recently shown that transcription initiation RNAs (tiRNAs) are derived from sequences immediately downstream of transcription start sites. Here, using cytoplasmic and nuclear small RNA high-throughput sequencing datasets, we report the identification of a second class of nuclear-specific approximately 17- to 18-nucleotide small RNAs whose 3' ends map precisely to the splice donor site of internal exons in animals. These splice-site RNAs (spliRNAs) are associated with highly expressed genes and show evidence of developmental stage- and region-specific expression. We also show that tiRNAs are localized to the nucleus, are enriched at chromatin marks associated with transcription initiation and possess a 3'-nucleotide bias. Additionally, we find that microRNA-offset RNAs (moRNAs), the miR-15/16 cluster previously linked to oncosuppression and most small nucleolar RNA (snoRNA)-derived small RNAs (sdRNAs) are enriched in the nucleus, whereas most miRNAs and two H/ACA sdRNAs are cytoplasmically enriched. We propose that nuclear-localized tiny RNAs are involved in the epigenetic regulation of gene expression.
Collapse
Affiliation(s)
- Ryan J Taft
- Institute for Molecular Bioscience, School of Integrative Biology, University of Queensland, St. Lucia, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
389
|
|
390
|
Mathelier A, Carbone A. MIReNA: finding microRNAs with high accuracy and no learning at genome scale and from deep sequencing data. ACTA ACUST UNITED AC 2010; 26:2226-34. [PMID: 20591903 DOI: 10.1093/bioinformatics/btq329] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
MOTIVATION MicroRNAs (miRNAs) are a class of endogenes derived from a precursor (pre-miRNA) and involved in post-transcriptional regulation. Experimental identification of novel miRNAs is difficult because they are often transcribed under specific conditions and cell types. Several computational methods were developed to detect new miRNAs starting from known ones or from deep sequencing data, and to validate their pre-miRNAs. RESULTS We present a genome-wide search algorithm, called MIReNA, that looks for miRNA sequences by exploring a multidimensional space defined by only five (physical and combinatorial) parameters characterizing acceptable pre-miRNAs. MIReNA validates pre-miRNAs with high sensitivity and specificity, and detects new miRNAs by homology from known miRNAs or from deep sequencing data. A performance comparison between MIReNA and four available predictive systems has been done. MIReNA approach is strikingly simple but it turns out to be powerful at least as much as more sophisticated algorithmic methods. MIReNA obtains better results than three known algorithms that validate pre-miRNAs. It demonstrates that machine-learning is not a necessary algorithmic approach for pre-miRNAs computational validation. In particular, machine learning algorithms can only confirm pre-miRNAs that look alike known ones, this being a limitation while exploring species with no known pre-miRNAs. The possibility to adapt the search to specific species, possibly characterized by specific properties of their miRNAs and pre-miRNAs, is a major feature of MIReNA. A parameter adjustment calibrates specificity and sensitivity in MIReNA, a key feature for predictive systems, which is not present in machine learning approaches. Comparison of MIReNA with miRDeep using deep sequencing data to predict miRNAs highlights a highly specific predictive power of MIReNA. AVAILABILITY At the address http://www.ihes.fr/carbone/data8/.
Collapse
Affiliation(s)
- Anthony Mathelier
- UPMC Université Paris 06, FRE3214, Génomique Analytique, Paris, France
| | | |
Collapse
|
391
|
Posttranscriptional regulation of microRNA biogenesis in animals. Mol Cell 2010; 38:323-32. [PMID: 20471939 DOI: 10.1016/j.molcel.2010.03.013] [Citation(s) in RCA: 447] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2009] [Revised: 02/24/2010] [Accepted: 03/02/2010] [Indexed: 12/11/2022]
Abstract
MicroRNAs (miRNAs) control gene expression in animals, plants, and unicellular eukaryotes by promoting degradation or repressing translation of target mRNAs. miRNA expression is often tissue specific and developmentally regulated, and regulation occurs both transcriptionally and posttranscriptionally. This regulation is crucial, as alteration of miRNA expression has been linked to human diseases, including several cancers. Here, we discuss recent studies that shed light on how multiple steps in the miRNA biogenesis pathway are regulated to modulate miRNA function in animals.
Collapse
|
392
|
Gerbasi VR, Golden DE, Hurtado SB, Sontheimer EJ. Proteomics identification of Drosophila small interfering RNA-associated factors. Mol Cell Proteomics 2010; 9:1866-72. [PMID: 20472918 DOI: 10.1074/mcp.m900614-mcp200] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The Drosophila melanogaster RNA-induced silencing complex (RISC) forms a large ribonucleoprotein particle on small interfering RNAs (siRNAs) and catalyzes target mRNA cleavage during RNA interference (RNAi). Dicer-2, R2D2, Loquacious, and Argonaute-2 are examples of RISC-associated factors that are involved in RNAi. Holo-RISC is an approximately 80 S small interfering ribonucleoprotein, which suggests that there are many additional proteins that participate in the RNAi pathway. In this study, we used siRNA affinity capture combined with mass spectrometry to identify novel components of the Drosophila RNAi machinery. Our study identified both established RISC components and novel siRNA-associated factors, many of which contain domains that are consistent with potential roles in RNAi. Functional analysis of these novel siRNA-associated proteins suggests that these factors may play an important role in RNAi.
Collapse
Affiliation(s)
- Vincent R Gerbasi
- Department of Biochemistry, Molecular Biology, and Cell Biology, Northwestern University, Evanston, Illinois 60208-3500, USA
| | | | | | | |
Collapse
|
393
|
Nicolas FE, Moxon S, de Haro JP, Calo S, Grigoriev IV, Torres-Martínez S, Moulton V, Ruiz-Vázquez RM, Dalmay T. Endogenous short RNAs generated by Dicer 2 and RNA-dependent RNA polymerase 1 regulate mRNAs in the basal fungus Mucor circinelloides. Nucleic Acids Res 2010; 38:5535-41. [PMID: 20427422 PMCID: PMC2938224 DOI: 10.1093/nar/gkq301] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Endogenous short RNAs (esRNAs) play diverse roles in eukaryotes and usually are produced from double-stranded RNA (dsRNA) by Dicer. esRNAs are grouped into different classes based on biogenesis and function but not all classes are present in all three eukaryotic kingdoms. The esRNA register of fungi is poorly described compared to other eukaryotes and it is not clear what esRNA classes are present in this kingdom and whether they regulate the expression of protein coding genes. However, evidence that some dicer mutant fungi display altered phenotypes suggests that esRNAs play an important role in fungi. Here, we show that the basal fungus Mucor circinelloides produces new classes of esRNAs that map to exons and regulate the expression of many protein coding genes. The largest class of these exonic-siRNAs (ex-siRNAs) are generated by RNA-dependent RNA Polymerase 1 (RdRP1) and dicer-like 2 (DCL2) and target the mRNAs of protein coding genes from which they were produced. Our results expand the range of esRNAs in eukaryotes and reveal a new role for esRNAs in fungi.
Collapse
|
394
|
Lee HC, Li L, Gu W, Xue Z, Crosthwaite SK, Pertsemlidis A, Lewis ZA, Freitag M, Selker EU, Mello CC, Liu Y. Diverse pathways generate microRNA-like RNAs and Dicer-independent small interfering RNAs in fungi. Mol Cell 2010; 38:803-14. [PMID: 20417140 DOI: 10.1016/j.molcel.2010.04.005] [Citation(s) in RCA: 272] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2009] [Revised: 03/10/2010] [Accepted: 04/02/2010] [Indexed: 12/30/2022]
Abstract
A variety of small RNAs, including the Dicer-dependent miRNAs and the Dicer-independent Piwi-interacting RNAs, associate with Argonaute family proteins to regulate gene expression in diverse cellular processes. These two species of small RNA have not been found in fungi. Here, by analyzing small RNAs associated with the Neurospora Argonaute protein QDE-2, we show that diverse pathways generate miRNA-like small RNAs (milRNAs) and Dicer-independent small interfering RNAs (disiRNAs) in this filamentous fungus. Surprisingly, milRNAs are produced by at least four different mechanisms that use a distinct combination of factors, including Dicers, QDE-2, the exonuclease QIP, and an RNase III domain-containing protein, MRPL3. In contrast, disiRNAs originate from loci producing overlapping sense and antisense transcripts, and do not require the known RNAi components for their production. Taken together, these results uncover several pathways for small RNA production in filamentous fungi, shedding light on the diversity and evolutionary origins of eukaryotic small RNAs.
Collapse
Affiliation(s)
- Heng-Chi Lee
- Department of Physiology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
395
|
Johnson LJ, Tricker PJ. Epigenomic plasticity within populations: its evolutionary significance and potential. Heredity (Edinb) 2010; 105:113-21. [PMID: 20332811 DOI: 10.1038/hdy.2010.25] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Epigenetics has progressed rapidly from an obscure quirk of heredity into a data-heavy 'omic' science. Our understanding of the molecular mechanisms of epigenomic regulation, and the extent of its importance in nature, are far from complete, but in spite of such drawbacks, population-level studies are extremely valuable: epigenomic regulation is involved in several processes central to evolutionary biology including phenotypic plasticity, evolvability and the mediation of intragenomic conflicts. The first studies of epigenomic variation within populations suggest high levels of phenotypically relevant variation, with the patterns of epigenetic regulation varying between individuals and genome regions as well as with environment. Epigenetic mechanisms appear to function primarily as genome defences, but result in the maintenance of plasticity together with a degree of buffering of developmental programmes; periodic breakdown of epigenetic buffering could potentially cause variation in rates of phenotypic evolution.
Collapse
Affiliation(s)
- L J Johnson
- School of Biological Sciences, University of Reading, Reading, UK.
| | | |
Collapse
|
396
|
Miyoshi K, Miyoshi T, Hartig JV, Siomi H, Siomi MC. Molecular mechanisms that funnel RNA precursors into endogenous small-interfering RNA and microRNA biogenesis pathways in Drosophila. RNA (NEW YORK, N.Y.) 2010; 16:506-15. [PMID: 20086050 PMCID: PMC2822916 DOI: 10.1261/rna.1952110] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2009] [Accepted: 11/25/2009] [Indexed: 05/20/2023]
Abstract
In Drosophila, three types of endogenous small RNAs-microRNAs (miRNAs), PIWI-interacting RNAs (piRNAs), and endogenous small-interfering RNAs (endo-siRNAs or esiRNAs)-function as triggers in RNA silencing. Although piRNAs are produced independently of Dicer, miRNA and esiRNA biogenesis pathways require Dicer1 and Dicer2, respectively. Recent studies have shown that among the four isoforms of Loquacious (Loqs), Loqs-PB and Loqs-PD are involved in miRNA and esiRNA processing pathways, respectively. However, how these Loqs isoforms function in their respective small RNA biogenesis pathways remains elusive. Here, we show that Loqs-PD associates specifically with Dicer2 through its C-terminal domain. The Dicer2-Loqs-PD complex contains R2D2, another known Dicer2 partner, and excises both exogenous siRNAs and esiRNAs from their corresponding precursors in vitro. However, Loqs-PD, but not R2D2, enhanced Dicer2 activity. The Dicer2-Loqs-PD complex processes esiRNA precursor hairpins with long stems, which results in the production of AGO2-associated small RNAs. Interestingly, however, small RNAs derived from terminal hairpins of esiRNA precursors are loaded onto AGO1; thus, they are classified as a new subset of miRNAs. These results suggest that the precursor RNA structure determines the biogenesis mechanism of esiRNAs and miRNAs, thereby implicating hairpin structures with long stems as intermediates in the evolution of Drosophila miRNA.
Collapse
Affiliation(s)
- Keita Miyoshi
- Keio University School of Medicine, Tokyo 160-8582, Japan
| | | | | | | | | |
Collapse
|
397
|
Current awareness on yeast. Yeast 2010. [DOI: 10.1002/yea.1715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
398
|
Abstract
Synthetic biology is focused on the rational construction of biological systems based on engineering principles. During the field's first decade of development, significant progress has been made in designing biological parts and assembling them into genetic circuits to achieve basic functionalities. These circuits have been used to construct proof-of-principle systems with promising results in industrial and medical applications. However, advances in synthetic biology have been limited by a lack of interoperable parts, techniques for dynamically probing biological systems and frameworks for the reliable construction and operation of complex, higher-order networks. As these challenges are addressed, synthetic biologists will be able to construct useful next-generation synthetic gene networks with real-world applications in medicine, biotechnology, bioremediation and bioenergy.
Collapse
|
399
|
Cavalier-Smith T. Origin of the cell nucleus, mitosis and sex: roles of intracellular coevolution. Biol Direct 2010; 5:7. [PMID: 20132544 PMCID: PMC2837639 DOI: 10.1186/1745-6150-5-7] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Accepted: 02/04/2010] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The transition from prokaryotes to eukaryotes was the most radical change in cell organisation since life began, with the largest ever burst of gene duplication and novelty. According to the coevolutionary theory of eukaryote origins, the fundamental innovations were the concerted origins of the endomembrane system and cytoskeleton, subsequently recruited to form the cell nucleus and coevolving mitotic apparatus, with numerous genetic eukaryotic novelties inevitable consequences of this compartmentation and novel DNA segregation mechanism. Physical and mutational mechanisms of origin of the nucleus are seldom considered beyond the long-standing assumption that it involved wrapping pre-existing endomembranes around chromatin. Discussions on the origin of sex typically overlook its association with protozoan entry into dormant walled cysts and the likely simultaneous coevolutionary, not sequential, origin of mitosis and meiosis. RESULTS I elucidate nuclear and mitotic coevolution, explaining the origins of dicer and small centromeric RNAs for positionally controlling centromeric heterochromatin, and how 27 major features of the cell nucleus evolved in four logical stages, making both mechanisms and selective advantages explicit: two initial stages (origin of 30 nm chromatin fibres, enabling DNA compaction; and firmer attachment of endomembranes to heterochromatin) protected DNA and nascent RNA from shearing by novel molecular motors mediating vesicle transport, division, and cytoplasmic motility. Then octagonal nuclear pore complexes (NPCs) arguably evolved from COPII coated vesicle proteins trapped in clumps by Ran GTPase-mediated cisternal fusion that generated the fenestrated nuclear envelope, preventing lethal complete cisternal fusion, and allowing passive protein and RNA exchange. Finally, plugging NPC lumens by an FG-nucleoporin meshwork and adopting karyopherins for nucleocytoplasmic exchange conferred compartmentation advantages. These successive changes took place in naked growing cells, probably as indirect consequences of the origin of phagotrophy. The first eukaryote had 1-2 cilia and also walled resting cysts; I outline how encystation may have promoted the origin of meiotic sex. I also explain why many alternative ideas are inadequate. CONCLUSION Nuclear pore complexes are evolutionary chimaeras of endomembrane- and mitosis-related chromatin-associated proteins. The keys to understanding eukaryogenesis are a proper phylogenetic context and understanding organelle coevolution: how innovations in one cell component caused repercussions on others.
Collapse
|
400
|
Thompson DA, Regev A. Fungal regulatory evolution: cis and trans in the balance. FEBS Lett 2010; 583:3959-65. [PMID: 19914250 PMCID: PMC2823291 DOI: 10.1016/j.febslet.2009.11.032] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2009] [Revised: 11/09/2009] [Accepted: 11/10/2009] [Indexed: 11/25/2022]
Abstract
Regulatory divergence is likely a major driving force in evolution. Comparative genomics is being increasingly used to infer the evolution of gene regulation. Ascomycota fungi are uniquely suited among eukaryotes for regulatory evolution studies, due to broad phylogenetic scope, many sequenced genomes, and tractability of genomic analysis. Here we review recent advances in the identification of the contribution of cis- and trans-factors to expression divergence. Whereas current strategies have led to the discovery of surprising signatures and mechanisms, we still understand very little about the adaptive role of regulatory evolution. Empirical studies including experimental evolution, comparative functional genomics and hybrid and engineered strains are showing early promise toward deciphering the contribution of regulatory divergence to adaptation.
Collapse
Affiliation(s)
- Dawn Anne Thompson
- Broad Institute of MIT and Harvard, 7 Cambridge Center, Cambridge, MA 01242, USA
| | | |
Collapse
|