351
|
Lee D, Suh Y, Kang SY, Park T, Jeong JY, Kim S. IDH1 mutations in oligodendroglial tumors: comparative analysis of direct sequencing, pyrosequencing, immunohistochemistry, nested PCR and PNA-mediated clamping PCR. Brain Pathol 2013; 23:285-93. [PMID: 23072665 PMCID: PMC8029453 DOI: 10.1111/bpa.12000] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Accepted: 10/10/2012] [Indexed: 01/02/2023] Open
Abstract
Mutations in isocitrate dehydrogenase 1 (IDH1) are found in a high proportion of glial tumors and have a significant prognostic impact. Although direct sequencing has been considered to be the gold-standard method to detect this mutation, the sensitivity of this technique has been questioned especially because specimens from glial tumors may contain large numbers of non-tumor cells. We screened 141 cases of oligodendroglial tumors for IDH1 mutations using peptide nucleic acid (PNA)-mediated clamping polymerase chain reaction (PCR) and compared the results with the results of direct sequencing, pyrosequencing, and immunohistochemistry (IHC). Nested PCR was only performed in cases having mutant IDH1 only discovered by clamping PCR. Using dilution experiments mixing IDH1 wild-type and mutant DNA samples, clamping PCR detected mutations in samples with a 1% tumor DNA composition. Using PNA clamping PCR, we detected 138 of 141 (97.9%) cases with mutant IDH1 in our series, which is significantly higher (P = 0.016; PNA clamping vs. direct sequencing) than those of direct sequencing (74.5%), pyrosequencing (75.2%) and IHC (75.9%). From our results, almost all oligodendroglial tumors have IDH1 mutations, and this suggests that IDH1 mutation is an early and common event especially in the development of oligodendroglial tumors.
Collapse
Affiliation(s)
- Dakeun Lee
- Department of PathologyKyungpook National University HospitalKyungpook National University School of MedicineDaeguKorea
| | - Yeon‐Lim Suh
- Department of PathologySamsung Medical CenterSungkyunkwan University School of MedicineSeoulKorea
| | - So Young Kang
- Department of PathologySamsung Medical CenterSungkyunkwan University School of MedicineSeoulKorea
| | - Tae‐In Park
- Department of PathologyKyungpook National University HospitalKyungpook National University School of MedicineDaeguKorea
| | - Ji Yun Jeong
- Department of PathologyKyungpook National University HospitalKyungpook National University School of MedicineDaeguKorea
| | - Se‐Hoon Kim
- Department of PathologySeverance HospitalYonsei University College of MedicineSeoulKorea
| |
Collapse
|
352
|
Horbinski C. What do we know about IDH1/2 mutations so far, and how do we use it? Acta Neuropathol 2013; 125:621-36. [PMID: 23512379 DOI: 10.1007/s00401-013-1106-9] [Citation(s) in RCA: 129] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Accepted: 03/09/2013] [Indexed: 12/16/2022]
Abstract
Whole genome analyses have facilitated the discovery of clinically relevant genetic alterations in a variety of diseases, most notably cancer. A prominent example of this was the discovery of mutations in isocitrate dehydrogenases 1 and 2 (IDH1/2) in a sizeable proportion of gliomas and some other neoplasms. Herein the normal functions of these enzymes, how the mutations alter their catalytic properties, the effects of their D-2-hydroxyglutarate metabolite, technical considerations in diagnostic neuropathology, implications about prognosis and therapeutic considerations, and practical applications and controversies regarding IDH1/2 mutation testing are discussed.
Collapse
Affiliation(s)
- Craig Horbinski
- Department of Pathology, University of Kentucky, 307 Combs Cancer Research Facility, 800 Rose Street, Lexington, KY 40536, USA.
| |
Collapse
|
353
|
Abstract
PURPOSE OF REVIEW Since the discovery, in 1994, of recurrent codeletion of chromosome regions 1p36/19q13 in oligodendrogliomas, genetics has accomplished significant advances improving our knowledge in biology of this tumor type and our clinical management of oligodendroglioma patients. Indeed, 1p36/19q13 has been shown successively to predict increased chemosensitivity and better prognosis, to be associated with frontal location in brain and classic oligodendroglioma morphology, to be mutually exclusive with high-level gene amplification, to be actually whole chromosome arms 1p/19q codeletion, to mediate a t(1;19)(q10;p10) and to be associated with IDH mutations. More recently, pivotal studies, using high-throughput approaches, have provided significant novel insights in the molecular oncogenesis of oligodendrogliomas. RECENT FINDINGS Capicua homolog (Drosophila) (CIC) and Far Upstream element Binding Protein 1 (FUBP1) have been shown to be frequently mutated in 70 and 40% of 1p/19q codeleted oligodendrogliomas, respectively. The biological and clinical significance of these mutations remains unsettled. Additional recent studies have also demonstrated that 1p/19q codeleted oligodendrogliomas exhibit a proneural transcriptomic profile including overexpression of internexin alpha, a neuronal intermediate filament. Finally, 1p/19q codeleted and IDH-mutated tumors have been shown to be hypermethylated, suggesting a strong link between these both molecular alterations detected in the subgroup of oligodendrogliomas with better prognosis. SUMMARY Next-generation molecular biology technologies have recently identified recurrent CIC and FUBP1 point mutations in 1p/19q codeleted and IDH-mutated oligodendrogliomas. Their clinical and biological values are under investigation.
Collapse
|
354
|
Sahm F, Lass U, Herold-Mende C, von Deimling A, Hartmann C, Mueller W. Analysis of CIC-associated CpG island methylation in oligoastrocytoma. Neuropathol Appl Neurobiol 2013; 39:831-6. [PMID: 23521081 DOI: 10.1111/nan.12045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 03/15/2013] [Indexed: 11/29/2022]
Abstract
AIMS Combined deletion of the whole chromosomal arms 1p and 19q is a frequent event in oligodendroglial tumours. Recent identification of recurrent mutations in CIC on 19q and FUBP1 on 1p and their mutational patterns suggest a loss of function of the respective proteins. Surprisingly, oligoastrocytomas harbouring identical genetic characteristics regarding 1p/19q codeletion and frequent IDH1/2 mutations have been shown to carry CIC mutations in a significantly lower number of cases. The present study investigates whether epigenetic modification may result in silencing of CIC. METHODS As IDH1/2 mutation-mediated DNA hypermethylation is a prominent feature of these tumours, we analysed a set of CIC wild-type oligoastrocytomas and other diffuse gliomas with regard to 1p/19q status for presence of CIC-associated CpG island methylation by methylation-specific PCR. RESULTS Both methylation-specific PCR and subsequent bisulphite-sequencing of selected cases revealed an unmethylated status in all samples. CONCLUSION Despite the hypermethylator phenotype in IDH1/2 mutant tumours and recent detection of gene silencing particularly on retained alleles in oligodendroglial tumours, hypermethylation of CIC-associated CpG islands does not provide an alternative mechanism of functional CIC protein abrogation.
Collapse
Affiliation(s)
- F Sahm
- Department of Neuropathology, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany; Clinical Cooperation Unit Neuropathology G380, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
355
|
TERT promoter mutations occur frequently in gliomas and a subset of tumors derived from cells with low rates of self-renewal. Proc Natl Acad Sci U S A 2013; 110:6021-6. [PMID: 23530248 DOI: 10.1073/pnas.1303607110] [Citation(s) in RCA: 1113] [Impact Index Per Article: 92.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Malignant cells, like all actively growing cells, must maintain their telomeres, but genetic mechanisms responsible for telomere maintenance in tumors have only recently been discovered. In particular, mutations of the telomere binding proteins alpha thalassemia/mental retardation syndrome X-linked (ATRX) or death-domain associated protein (DAXX) have been shown to underlie a telomere maintenance mechanism not involving telomerase (alternative lengthening of telomeres), and point mutations in the promoter of the telomerase reverse transcriptase (TERT) gene increase telomerase expression and have been shown to occur in melanomas and a small number of other tumors. To further define the tumor types in which this latter mechanism plays a role, we surveyed 1,230 tumors of 60 different types. We found that tumors could be divided into types with low (<15%) and high (≥15%) frequencies of TERT promoter mutations. The nine TERT-high tumor types almost always originated in tissues with relatively low rates of self renewal, including melanomas, liposarcomas, hepatocellular carcinomas, urothelial carcinomas, squamous cell carcinomas of the tongue, medulloblastomas, and subtypes of gliomas (including 83% of primary glioblastoma, the most common brain tumor type). TERT and ATRX mutations were mutually exclusive, suggesting that these two genetic mechanisms confer equivalent selective growth advantages. In addition to their implications for understanding the relationship between telomeres and tumorigenesis, TERT mutations provide a biomarker that may be useful for the early detection of urinary tract and liver tumors and aid in the classification and prognostication of brain tumors.
Collapse
|
356
|
A novel, diffusely infiltrative xenograft model of human anaplastic oligodendroglioma with mutations in FUBP1, CIC, and IDH1. PLoS One 2013; 8:e59773. [PMID: 23527265 PMCID: PMC3602110 DOI: 10.1371/journal.pone.0059773] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Accepted: 02/18/2013] [Indexed: 12/28/2022] Open
Abstract
Oligodendroglioma poses a biological conundrum for malignant adult human gliomas: it is a tumor type that is universally incurable for patients, and yet, only a few of the human tumors have been established as cell populations in vitro or as intracranial xenografts in vivo. Their survival, thus, may emerge only within a specific environmental context. To determine the fate of human oligodendroglioma in an experimental model, we studied the development of an anaplastic tumor after intracranial implantation into enhanced green fluorescent protein (eGFP) positive NOD/SCID mice. Remarkably after nearly nine months, the tumor not only engrafted, but it also retained classic histological and genetic features of human oligodendroglioma, in particular cells with a clear cytoplasm, showing an infiltrative growth pattern, and harboring mutations of IDH1 (R132H) and of the tumor suppressor genes, FUBP1 and CIC. The xenografts were highly invasive, exhibiting a distinct migration and growth pattern around neurons, especially in the hippocampus, and following white matter tracts of the corpus callosum with tumor cells accumulating around established vasculature. Although tumors exhibited a high growth fraction in vivo, neither cells from the original patient tumor nor the xenograft exhibited significant growth in vitro over a six-month period. This glioma xenograft is the first to display a pure oligodendroglioma histology and expression of R132H. The unexpected property, that the cells fail to grow in vitro even after passage through the mouse, allows us to uniquely investigate the relationship of this oligodendroglioma with the in vivo microenvironment.
Collapse
|
357
|
Chen HL, Chew LJ, Packer RJ, Gallo V. Modulation of the Wnt/beta-catenin pathway in human oligodendroglioma cells by Sox17 regulates proliferation and differentiation. Cancer Lett 2013; 335:361-71. [PMID: 23474492 DOI: 10.1016/j.canlet.2013.02.058] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 02/19/2013] [Accepted: 02/24/2013] [Indexed: 02/07/2023]
Abstract
Oligodendrogliomas originate from oligodendrocyte progenitor cells (OPCs), whose development is regulated by the Sonic hedgehog and Wnt/beta-catenin pathways. We investigated the contribution of these pathways in the proliferation and differentiation of human oligodendroglioma cells (HOG). Inhibition of Hedgehog signaling with cyclopamine decreased cell survival and increased phosphorylated beta-catenin without altering myelin protein levels. Conversely, treatment of HOG with the Wnt antagonist secreted frizzled related protein (SFRP1), led to increased myelin protein levels and reduced cell proliferation, suggesting cell cycle arrest and differentiation. Unlike normal primary human OPCs, beta-catenin in HOG cells is not associated with endogenous Sox17 protein despite high levels of both proteins. Retroviral overexpression of recombinant Sox17 increased HOG cell cycle exit and apoptosis, and raised myelin protein levels and the percentage of O4(+) cells, indicating increased differentiation. Recombinant Sox17 also increased beta-catenin-TCF4-Sox17 complex formation and decreased total cellular levels of beta-catenin. These changes were associated with increased SFRP1, and reduced expression of Wnt-1 and Frizzled-1, -3 and -7 RNA, indicating that Sox17 induced a Hedgehog target, and regulated Wnt signaling at multiple levels. Our studies indicate that Wnt signaling regulates HOG cell cycle arrest and differentiation, and that recombinant Sox17 mediates modulation of the Wnt pathway through changes in beta-catenin, SFRP1 and Wnt/Frizzled expression. Our results thus identify Sox17 as a potential molecular target to include in HOG therapeutic strategies.
Collapse
Affiliation(s)
- Hui-Ling Chen
- Center for Neuroscience Research, Children's National Medical Center, Washington, DC 20010, USA
| | | | | | | |
Collapse
|
358
|
Jiménez G, Shvartsman SY, Paroush Z. The Capicua repressor--a general sensor of RTK signaling in development and disease. J Cell Sci 2013; 125:1383-91. [PMID: 22526417 DOI: 10.1242/jcs.092965] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Receptor tyrosine kinase (RTK) signaling pathways control multiple cellular decisions in metazoans, often by regulating the expression of downstream genes. In Drosophila melanogaster and other systems, E-twenty-six (ETS) transcription factors are considered to be the predominant nuclear effectors of RTK pathways. Here, we highlight recent progress in identifying the HMG-box protein Capicua (CIC) as a key sensor of RTK signaling in both Drosophila and mammals. Several studies have shown that CIC functions as a repressor of RTK-responsive genes, keeping them silent in the absence of signaling. Following the activation of RTK signaling, CIC repression is relieved, and this allows the expression of the targeted gene in response to local or ubiquitous activators. This regulatory switch is essential for several RTK responses in Drosophila, from the determination of cell fate to cell proliferation. Furthermore, increasing evidence supports the notion that this mechanism is conserved in mammals, where CIC has been implicated in cancer and neurodegeneration. In addition to summarizing our current knowledge on CIC, we also discuss the implications of these findings for our understanding of RTK signaling specificity in different biological processes.
Collapse
Affiliation(s)
- Gerardo Jiménez
- Institució Catalana de Recerca i Estudis Avançats and Institut de Biologia Molecular de Barcelona-CSIC, Parc Científic de Barcelona, Barcelona 08028, Spain.
| | | | | |
Collapse
|
359
|
Agrawal N, Jiao Y, Sausen M, Leary R, Bettegowda C, Roberts NJ, Bhan S, Ho AS, Khan Z, Bishop J, Westra WH, Wood LD, Hruban RH, Tufano RP, Robinson B, Dralle H, Toledo SPA, Toledo RA, Morris LGT, Ghossein RA, Fagin JA, Chan TA, Velculescu VE, Vogelstein B, Kinzler KW, Papadopoulos N, Nelkin BD, Ball DW. Exomic sequencing of medullary thyroid cancer reveals dominant and mutually exclusive oncogenic mutations in RET and RAS. J Clin Endocrinol Metab 2013; 98:E364-9. [PMID: 23264394 PMCID: PMC3565108 DOI: 10.1210/jc.2012-2703] [Citation(s) in RCA: 175] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT Medullary thyroid cancer (MTC) is a rare thyroid cancer that can occur sporadically or as part of a hereditary syndrome. OBJECTIVE To explore the genetic origin of MTC, we sequenced the protein coding exons of approximately 21,000 genes in 17 sporadic MTCs. PATIENTS AND DESIGN We sequenced the exomes of 17 sporadic MTCs and validated the frequency of all recurrently mutated genes and other genes of interest in an independent cohort of 40 MTCs comprised of both sporadic and hereditary MTC. RESULTS We discovered 305 high-confidence mutations in the 17 sporadic MTCs in the discovery phase, or approximately 17.9 somatic mutations per tumor. Mutations in RET, HRAS, and KRAS genes were identified as the principal driver mutations in MTC. All of the other additional somatic mutations, including mutations in spliceosome and DNA repair pathways, were not recurrent in additional tumors. Tumors without RET, HRAS, or KRAS mutations appeared to have significantly fewer mutations overall in protein coding exons. CONCLUSIONS Approximately 90% of MTCs had mutually exclusive mutations in RET, HRAS, and KRAS, suggesting that RET and RAS are the predominant driver pathways in MTC. Relatively few mutations overall and no commonly recurrent driver mutations other than RET, HRAS, and KRAS were seen in the MTC exome.
Collapse
Affiliation(s)
- Nishant Agrawal
- Ludwig Center for Cancer Genetics and Howard Hughes Medical Institutions, Baltimore, Maryland 21287, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
360
|
The spectrum of SWI/SNF mutations, ubiquitous in human cancers. PLoS One 2013; 8:e55119. [PMID: 23355908 PMCID: PMC3552954 DOI: 10.1371/journal.pone.0055119] [Citation(s) in RCA: 434] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Accepted: 12/19/2012] [Indexed: 02/06/2023] Open
Abstract
SWI/SNF is a multi-subunit chromatin remodeling complex that uses the energy of ATP hydrolysis to reposition nucleosomes, thereby modulating gene expression. Accumulating evidence suggests that SWI/SNF functions as a tumor suppressor in some cancers. However, the spectrum of SWI/SNF mutations across human cancers has not been systematically investigated. Here, we mined whole-exome sequencing data from 24 published studies representing 669 cases from 18 neoplastic diagnoses. SWI/SNF mutations were widespread across diverse human cancers, with an excess of deleterious mutations, and an overall frequency approaching TP53 mutation. Mutations occurred most commonly in the SMARCA4 enzymatic subunit, and in subunits thought to confer functional specificity (ARID1A, ARID1B, PBRM1, and ARID2). SWI/SNF mutations were not mutually-exclusive of other mutated cancer genes, including TP53 and EZH2 (both previously linked to SWI/SNF). Our findings implicate SWI/SNF as an important but under-recognized tumor suppressor in diverse human cancers, and provide a key resource to guide future investigations.
Collapse
|
361
|
Gilbert MR. Minding the Ps and Qs: Perseverance and Quality Studies Lead to Major Advances in Patients With Anaplastic Oligodendroglioma. J Clin Oncol 2013; 31:299-300. [DOI: 10.1200/jco.2012.44.4513] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Mark R. Gilbert
- The University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
362
|
Understanding high grade glioma: molecular mechanism, therapy and comprehensive management. Cancer Lett 2013; 331:139-46. [PMID: 23340179 DOI: 10.1016/j.canlet.2012.12.024] [Citation(s) in RCA: 196] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2012] [Accepted: 12/25/2012] [Indexed: 11/21/2022]
Abstract
High-grade gliomas (HGGs) account for the vast majority of all gliomas, including glioblastoma (World Health Organization (WHO) grade IV) and anaplasticgliomas (WHO grade III). Despite tremendous efforts in developing multimodal treatments, the overall prognosis remains poor; however, survival time varies considerably between patients. The nature of diffuse permeation into surrounding brain parenchyma poses dilemma for neurosurgeons between extensive surgical resection to eliminate as much as tumor cells as possible and adverse effects associated with brain function. Heterogeneity in both cytology and gene expression makes it difficult to coordinate an effective therapy which works for every patient. This article reviews recent advancements in the molecular mechanism, multimodal treatment and clinical management, and the updated view on the biomarkers in patients with HGG, both in primary and recurrent setting, with an emphasis on targeted therapies tailored to the patient.
Collapse
|
363
|
Bianco ADM, Miura FK, Clara C, Almeida JRW, Silva CCD, Teixeira MJ, Marie SKN. Low-grade astrocytoma: surgical outcomes in eloquent versus non-eloquent brain areas. ARQUIVOS DE NEURO-PSIQUIATRIA 2013; 71:31-4. [PMID: 23288019 DOI: 10.1590/s0004-282x2012005000017] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 08/30/2012] [Indexed: 02/04/2023]
Abstract
A retrospective study of 81 patients with low-grade astrocytoma (LGA) comparing the efficacy of aggressive versus less aggressive surgery in eloquent and non-eloquent brain areas was conducted. Extent of surgical resection was analyzed to assess overall survival (OS) and progression- free survival (PFS). Degree of tumor resection was classified as gross total resection (GTR), subtotal resection (STR) or biopsy. GTR, STR and biopsy in patients with tumors in non-eloquent areas were performed in 31, 48 and 21% subjects, whereas in patients with tumors in eloquent areas resections were 22.5, 35 and 42.5%. Overall survival was 4.7 and 1.9 years in patients with tumors in non-eloquent brain areas submitted to GTR/STR and biopsy (p=0.013), whereas overall survival among patients with tumors in eloquent area was 4.5 and 2.1 years (p=0.33). Improved outcome for adult patients with LGA is predicted by more aggressive surgery in both eloquent and non-eloquent brain areas.
Collapse
|
364
|
Wu S, Li N, Ma J, Shen H, Jiang D, Chang C, Zhang C, Li L, Zhang H, Jiang J, Xu Z, Ping L, Chen T, Zhang W, Zhang T, Xing X, Yi T, Li Y, Fan F, Li X, Zhong F, Wang Q, Zhang Y, Wen B, Yan G, Lin L, Yao J, Lin Z, Wu F, Xie L, Yu H, Liu M, Lu H, Mu H, Li D, Zhu W, Zhen B, Qian X, Qin J, Liu S, Yang P, Zhu Y, Xu P, He F. First proteomic exploration of protein-encoding genes on chromosome 1 in human liver, stomach, and colon. J Proteome Res 2013; 12:67-80. [PMID: 23256928 DOI: 10.1021/pr3008286] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The launch of the Chromosome-Centric Human Proteome Project provides an opportunity to gain insight into the human proteome. The Chinese Human Chromosome Proteome Consortium has initiated proteomic exploration of protein-encoding genes on human chromosomes 1, 8, and 20. Collaboration within the consortium has generated a comprehensive proteome data set using normal and carcinomatous tissues from human liver, stomach, and colon and 13 cell lines originating in these organs. We identified 12,101 proteins (59.8% coverage against Swiss-Prot human entries) with a protein false discovery rate of less than 1%. On chromosome 1, 1,252 proteins mapping to 1,227 genes, representing 60.9% of Swiss-Prot entries, were identified; however, 805 proteins remain unidentified, suggesting that analysis of more diverse samples using more advanced proteomic technologies is required. Genes encoding the unidentified proteins were concentrated in seven blocks, located at p36, q12-21, and q42-44, partly consistent with correlation of these blocks with cancers of the liver, stomach, and colon. Combined transcriptome, proteome, and cofunctionality analyses confirmed 23 coexpression clusters containing 165 genes. Biological information, including chromosome structure, GC content, and protein coexpression pattern was analyzed using multilayered, circular visualization and tabular visualization. Details of data analysis and updates are available in the Chinese Chromosome-Centric Human Proteome Database ( http://proteomeview.hupo.org.cn/chromosome/ ).
Collapse
Affiliation(s)
- Songfeng Wu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 102206, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
365
|
Grimm O, Sanchez Zini V, Kim Y, Casanova J, Shvartsman SY, Wieschaus E. Torso RTK controls Capicua degradation by changing its subcellular localization. Development 2012; 139:3962-8. [PMID: 23048183 DOI: 10.1242/dev.084327] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The transcriptional repressor Capicua (Cic) controls multiple aspects of Drosophila embryogenesis and has been implicated in vertebrate development and human diseases. Receptor tyrosine kinases (RTKs) can antagonize Cic-dependent gene repression, but the mechanisms responsible for this effect are not fully understood. Based on genetic and imaging studies in the early Drosophila embryo, we found that Torso RTK signaling can increase the rate of Cic degradation by changing its subcellular localization. We propose that Cic is degraded predominantly in the cytoplasm and show that Torso reduces the stability of Cic by controlling the rates of its nucleocytoplasmic transport. This model accounts for the experimentally observed spatiotemporal dynamics of Cic in the early embryo and might explain RTK-dependent control of Cic in other developmental contexts.
Collapse
Affiliation(s)
- Oliver Grimm
- Howard Hughes Medical Institute, Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | | | | | | | | | | |
Collapse
|
366
|
|
367
|
Goodenberger ML, Jenkins RB. Genetics of adult glioma. Cancer Genet 2012; 205:613-21. [PMID: 23238284 DOI: 10.1016/j.cancergen.2012.10.009] [Citation(s) in RCA: 594] [Impact Index Per Article: 45.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Revised: 10/22/2012] [Accepted: 10/26/2012] [Indexed: 12/13/2022]
Abstract
Gliomas make up approximately 30% of all brain and central nervous system tumors and 80% of all malignant brain tumors. Despite the frequency of gliomas, the etiology of these tumors remains largely unknown. Diffuse gliomas, including astrocytomas and oligodendrogliomas, belong to a single pathologic class but have very different histologies and molecular etiologies. Recent genomic studies have identified separate molecular subtypes within the glioma classification that appear to correlate with biological etiology, prognosis, and response to therapy. The discovery of these subtypes suggests that molecular genetic tests are and will be useful, beyond classical histology, for the clinical classification of gliomas. While a familial susceptibility to glioma has been identified, only a small percentage of gliomas are thought to be due to single-gene hereditary cancer syndromes. Through the use of linkage studies and genome-wide association studies, multiple germline variants have been identified that are beginning to define the genetic susceptibility to glioma.
Collapse
Affiliation(s)
- McKinsey L Goodenberger
- Division of Laboratory Genetics, Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | | |
Collapse
|
368
|
Abstract
Glioblastoma is the most frequent and malignant brain tumor. The vast majority of glioblastomas (~90%) develop rapidly de novo in elderly patients, without clinical or histologic evidence of a less malignant precursor lesion (primary glioblastomas). Secondary glioblastomas progress from low-grade diffuse astrocytoma or anaplastic astrocytoma. They manifest in younger patients, have a lesser degree of necrosis, are preferentially located in the frontal lobe, and carry a significantly better prognosis. Histologically, primary and secondary glioblastomas are largely indistinguishable, but they differ in their genetic and epigenetic profiles. Decisive genetic signposts of secondary glioblastoma are IDH1 mutations, which are absent in primary glioblastomas and which are associated with a hypermethylation phenotype. IDH1 mutations are the earliest detectable genetic alteration in precursor low-grade diffuse astrocytomas and in oligodendrogliomas, indicating that these tumors are derived from neural precursor cells that differ from those of primary glioblastomas. In this review, we summarize epidemiologic, clinical, histopathologic, genetic, and expression features of primary and secondary glioblastomas and the biologic consequences of IDH1 mutations. We conclude that this genetic alteration is a definitive diagnostic molecular marker of secondary glioblastomas and more reliable and objective than clinical criteria. Despite a similar histologic appearance, primary and secondary glioblastomas are distinct tumor entities that originate from different precursor cells and may require different therapeutic approaches.
Collapse
Affiliation(s)
- Hiroko Ohgaki
- Molecular Pathology Section, International Agency for Research on Cancer, Lyon, France.
| | | |
Collapse
|
369
|
Abstract
Neuroblastomas are tumors of peripheral sympathetic neurons and are the most common solid tumor in children. To determine the genetic basis for neuroblastoma we performed whole-genome sequencing (6 cases), exome sequencing (16 cases), genome-wide rearrangement analyses (32 cases), and targeted analyses of specific genomic loci (40 cases) using massively parallel sequencing. On average each tumor had 19 somatic alterations in coding genes (range, 3–70). Among genes not previously known to be involved in neuroblastoma, chromosomal deletions and sequence alterations of chromatin remodeling genes, ARID1A and ARID1B, were identified in 8 of 71 tumors (11%) and were associated with early treatment failure and decreased survival. Using tumor-specific structural alterations, we developed an approach to identify rearranged DNA fragments in sera, providing personalized biomarkers for minimal residual disease detection and monitoring. These results highlight dysregulation of chromatin remodeling in pediatric tumorigenesis and provide new approaches for the management of neuroblastoma patients.
Collapse
|
370
|
Yang LS, Xu XE, Liu XP, Jin H, Chen ZQ, Liu XH, Wang Y, Huang FP, Shi Q. iTRAQ-based quantitative proteomic analysis for identification of oligodendroglioma biomarkers related with loss of heterozygosity on chromosomal arm 1p. J Proteomics 2012; 77:480-91. [DOI: 10.1016/j.jprot.2012.09.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Revised: 08/11/2012] [Accepted: 09/24/2012] [Indexed: 11/25/2022]
|
371
|
Krivy K, Bradley-Gill MR, Moon NS. Capicua regulates proliferation and survival of RB-deficient cells in Drosophila. Biol Open 2012; 2:183-90. [PMID: 23429853 PMCID: PMC3575652 DOI: 10.1242/bio.20123277] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Accepted: 11/01/2012] [Indexed: 12/19/2022] Open
Abstract
Mutations in rbf1, the Drosophila homologue of the RB tumour suppressor gene, generate defects in cell cycle control, cell death, and differentiation during development. Previous studies have established that EGFR/Ras activity is an important determinant of proliferation and survival in rbf1 mutant cells. Here, we report that Capicua (Cic), an HMG box transcription factor whose activity is regulated by the EGFR/Ras pathway, regulates both proliferation and survival of RB-deficient cells in Drosophila. We demonstrate that cic mutations allow rbf1 mutant cells to bypass developmentally controlled cell cycle arrest and apoptotic pressure. The cooperative effect between Cic and RBF1 in promoting G1 arrest is mediated, at least in part, by limiting Cyclin E expression. Surprisingly, we also found evidence to suggest that cic mutant cells have decreased levels of reactive oxygen species (ROS), and that the survival of rbf1 mutant cells is affected by changes in ROS levels. Collectively, our results elucidate the importance of the crosstalk between EGFR/Ras and RBF1 in coordinating cell cycle progression and survival.
Collapse
Affiliation(s)
- Kate Krivy
- Department of Biology, Developmental Biology Research Initiative, McGill University , Montreal, QC H3A 1B1 , Canada
| | | | | |
Collapse
|
372
|
Rodriguez FJ, Perry A, Rosenblum MK, Krawitz S, Cohen KJ, Lin D, Mosier S, Lin MT, Eberhart CG, Burger PC. Disseminated oligodendroglial-like leptomeningeal tumor of childhood: a distinctive clinicopathologic entity. Acta Neuropathol 2012; 124:627-41. [PMID: 22941225 DOI: 10.1007/s00401-012-1037-x] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2012] [Revised: 08/19/2012] [Accepted: 08/19/2012] [Indexed: 10/27/2022]
Abstract
Rare, generally pediatric oligodendroglioma-like neoplasms with extensive leptomeningeal dissemination have been interpreted variably as glial, oligodendroglial or glioneuronal. The clinicopathologic features have not been fully characterized. We studied 36 patients, 12 females and 24 males with a median age of 5 years (range 5 months-46 years). MRI demonstrated leptomeningeal enhancement, frequently with cystic or nodular T2 hyperintense lesions within the spinal cord/brain along the subpial surface. A discrete intraparenchymal lesion, usually in the spinal cord, was found in 25 (of 31) (81 %). Tumors contained oligodendroglioma-like cells with low-mitotic activity (median 0 per 10 high power fields, range 0-4), and rare ganglion/ganglioid cells in 6 cases (17 %). Tumors were mostly low-grade, with anaplastic progression in 8 (22 %). Immunohistochemistry demonstrated strong reactivity for OLIG2 (7 of 9) (78 %), and moderate/strong S100 (11 of 12) (92 %), GFAP (12 of 31) (39 %) and synaptophysin (19 of 27) (70 %). NeuN, EMA, and mutant IDH1 (R132H) protein were negative. Median MIB1 labeling index was 1.5 % (range <1-30 %). FISH (n = 13) or SNP array (n = 2) demonstrated 1p loss/intact 19q in 8 (53 %), 1p19q co-deletion in 3 (20 %), and no 1p or 19q loss in 4 (27 %). Clinical follow-up (n = 24) generally showed periods of stability or slow progression, but a subset of tumors progressed to anaplasia and behaved more aggressively. Nine patients (38 %) died 3 months-21 years after diagnosis (median total follow-up 5 years). We report a series of a neoplasm with distinct clinicopathologic and molecular features. Although most progress slowly, a significant fraction develop aggressive features.
Collapse
|
373
|
Liu XY, Gerges N, Korshunov A, Sabha N, Khuong-Quang DA, Fontebasso AM, Fleming A, Hadjadj D, Schwartzentruber J, Majewski J, Dong Z, Siegel P, Albrecht S, Croul S, Jones DTW, Kool M, Tonjes M, Reifenberger G, Faury D, Zadeh G, Pfister S, Jabado N. Frequent ATRX mutations and loss of expression in adult diffuse astrocytic tumors carrying IDH1/IDH2 and TP53 mutations. Acta Neuropathol 2012; 124:615-25. [PMID: 22886134 DOI: 10.1007/s00401-012-1031-3] [Citation(s) in RCA: 312] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Revised: 07/31/2012] [Accepted: 08/02/2012] [Indexed: 12/12/2022]
Abstract
Gliomas are the most common primary brain tumors in children and adults. We recently identified frequent alterations in chromatin remodelling pathways including recurrent mutations in H3F3A and mutations in ATRX (α-thalassemia/mental-retardation-syndrome-X-linked) in pediatric and young adult glioblastoma (GBM, WHO grade IV astrocytoma). H3F3A mutations were specific to pediatric high-grade gliomas and identified in only 3.4 % of adult GBM. Using sequencing and/or immunohistochemical analyses, we investigated ATRX alterations (mutation/loss of expression) and their association with TP53 and IDH1 or IDH2 mutations in 140 adult WHO grade II, III and IV gliomas, 17 pediatric WHO grade II and III astrocytomas and 34 pilocytic astrocytomas. In adults, ATRX aberrations were detected in 33 % of grade II and 46 % of grade III gliomas, as well as in 80 % of secondary and 7 % of primary GBMs. They were absent in the 17 grade II and III astrocytomas in children, and the 34 pilocytic astrocytomas. ATRX alterations closely overlapped with mutations in IDH1/2 (p < 0.0001) and TP53 (p < 0.0001) in samples across all WHO grades. They were prevalent in astrocytomas and oligoastrocytomas, but were absent in oligodendrogliomas (p < 0.0001). No significant association of ATRX mutation/loss of expression and alternative lengthening of telomeres was identified in our cohort. In summary, our data show that ATRX alterations are frequent in adult diffuse gliomas and are specific to astrocytic tumors carrying IDH1/2 and TP53 mutations. Combined alteration of these genes may contribute to drive the neoplastic growth in a major subset of diffuse astrocytomas in adults.
Collapse
|
374
|
Yang H, Ye D, Guan KL, Xiong Y. IDH1 and IDH2 mutations in tumorigenesis: mechanistic insights and clinical perspectives. Clin Cancer Res 2012; 18:5562-71. [PMID: 23071358 PMCID: PMC3897211 DOI: 10.1158/1078-0432.ccr-12-1773] [Citation(s) in RCA: 338] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Genes encoding for isocitrate dehydrogenases 1 and 2, IDH1 and IDH2, are frequently mutated in multiple types of human cancer. Mutations targeting IDH1 and IDH2 result in simultaneous loss of their normal catalytic activity, the production of α-ketoglutarate (α-KG), and gain of a new function, the production of 2-hydroxyglutarate (2-HG). 2-HG is structurally similar to α-KG, and acts as an α-KG antagonist to competitively inhibit multiple α-KG-dependent dioxygenases, including both lysine histone demethylases and the ten-eleven translocation family of DNA hydroxylases. Abnormal histone and DNA methylation are emerging as a common feature of tumors with IDH1 and IDH2 mutations and may cause altered stem cell differentiation and eventual tumorigenesis. Therapeutically, unique features of IDH1 and IDH2 mutations make them good biomarkers and potential drug targets.
Collapse
Affiliation(s)
- Hui Yang
- Molecular and Cell Biology Lab, Institutes of Biomedical Sciences and School of Life Sciences, Fudan University, Shanghai, P R China
| | | | | | | |
Collapse
|
375
|
Cairncross G, Wang M, Shaw E, Jenkins R, Brachman D, Buckner J, Fink K, Souhami L, Laperriere N, Curran W, Mehta M. Phase III trial of chemoradiotherapy for anaplastic oligodendroglioma: long-term results of RTOG 9402. J Clin Oncol 2012; 31:337-43. [PMID: 23071247 DOI: 10.1200/jco.2012.43.2674] [Citation(s) in RCA: 792] [Impact Index Per Article: 60.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
PURPOSE Anaplastic oligodendrogliomas, pure (AO) and mixed (anaplastic oligoastrocytoma [AOA]), are chemosensitive, especially if codeleted for 1p/19q, but whether patients live longer after chemoradiotherapy is unknown. PATIENTS AND METHODS Eligible patients with AO/AOA were randomly assigned to procarbazine, lomustine, and vincristine (PCV) plus radiotherapy (RT) versus RT alone. The primary end point was overall survival (OS). RESULTS Two hundred ninety-one eligible patients were randomly assigned: 148 to PCV plus RT and 143 to RT. For the entire cohort, there was no difference in median survival by treatment (4.6 years for PCV plus RT v 4.7 years for RT; hazard ratio [HR] = 0.79; 95% CI, 0.60 to 1.04; P = .1). Patients with codeleted tumors lived longer than those with noncodeleted tumors (PCV plus RT: 14.7 v 2.6 years, HR = 0.36, 95% CI, 0.23 to 0.57, P < .001; RT: 7.3 v 2.7 years, HR = 0.40, 95% CI, 0.27 to 0.60, P < .001), and the median survival of those with codeleted tumors treated with PCV plus RT was twice that of patients receiving RT (14.7 v 7.3 years; HR = 0.59; 95% CI, 0.37 to 0.95; P = .03). For those with noncodeleted tumors, there was no difference in median survival by treatment arm (2.6 v 2.7 years; HR = 0.85; 95% CI, 0.58 to 1.23; P = .39). In Cox models that included codeletion status, the adjusted OS for all patients was prolonged by PCV plus RT (HR = 0.67; 95% CI, 0.50 to 0.91; P = .01). CONCLUSION For the subset of patients with 1p/19q codeleted AO/AOA, PCV plus RT may be an especially effective treatment, although this observation was derived from an unplanned analysis.
Collapse
Affiliation(s)
- Gregory Cairncross
- Department of Clinical Neurosciences, Foothills Medical Centre, 1403 29th St NW, Calgary, Alberta, Canada T2N 2T9.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
376
|
Idbaih A, Ducray F, Dehais C, Courdy C, Carpentier C, de Bernard S, Uro-Coste E, Mokhtari K, Jouvet A, Honnorat J, Chinot O, Ramirez C, Beauchesne P, Benouaich-Amiel A, Godard J, Eimer S, Parker F, Lechapt-Zalcman E, Colin P, Loussouarn D, Faillot T, Dam-Hieu P, Elouadhani-Hamdi S, Bauchet L, Langlois O, Le Guerinel C, Fontaine D, Vauleon E, Menei P, Fotso MJM, Desenclos C, Verrelle P, Ghiringhelli F, Noel G, Labrousse F, Carpentier A, Dhermain F, Delattre JY, Figarella-Branger D. SNP array analysis reveals novel genomic abnormalities including copy neutral loss of heterozygosity in anaplastic oligodendrogliomas. PLoS One 2012; 7:e45950. [PMID: 23071531 PMCID: PMC3468603 DOI: 10.1371/journal.pone.0045950] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Accepted: 08/23/2012] [Indexed: 12/16/2022] Open
Abstract
Anaplastic oligodendrogliomas (AOD) are rare glial tumors in adults with relative homogeneous clinical, radiological and histological features at the time of diagnosis but dramatically various clinical courses. Studies have identified several molecular abnormalities with clinical or biological relevance to AOD (e.g. t(1;19)(q10;p10), IDH1, IDH2, CIC and FUBP1 mutations). To better characterize the clinical and biological behavior of this tumor type, the creation of a national multicentric network, named “Prise en charge des OLigodendrogliomes Anaplasiques (POLA),” has been supported by the Institut National du Cancer (InCA). Newly diagnosed and centrally validated AOD patients and their related biological material (tumor and blood samples) were prospectively included in the POLA clinical database and tissue bank, respectively. At the molecular level, we have conducted a high-resolution single nucleotide polymorphism array analysis, which included 83 patients. Despite a careful central pathological review, AOD have been found to exhibit heterogeneous genomic features. A total of 82% of the tumors exhibited a 1p/19q-co-deletion, while 18% harbor a distinct chromosome pattern. Novel focal abnormalities, including homozygously deleted, amplified and disrupted regions, have been identified. Recurring copy neutral losses of heterozygosity (CNLOH) inducing the modulation of gene expression have also been discovered. CNLOH in the CDKN2A locus was associated with protein silencing in 1/3 of the cases. In addition, FUBP1 homozygous deletion was detected in one case suggesting a putative tumor suppressor role of FUBP1 in AOD. Our study showed that the genomic and pathological analyses of AOD are synergistic in detecting relevant clinical and biological subgroups of AOD.
Collapse
Affiliation(s)
- Ahmed Idbaih
- Université Pierre et Marie Curie-Paris 6, Centre de Recherche de l'Institut du Cerveau et de la Moelle Epinière (CRICM), UMRS 975, Paris, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
377
|
|
378
|
Genetics and pharmacogenomics of diffuse gliomas. Pharmacol Ther 2012; 137:78-88. [PMID: 22985521 DOI: 10.1016/j.pharmthera.2012.09.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 08/31/2012] [Indexed: 12/18/2022]
Abstract
Rapidly evolving techniques for analysis of the genome provide new opportunities for cancer therapy. For diffuse gliomas this has resulted in molecular markers with potential for personalized therapy. Some drugs that utilize pharmacogenomics are currently being tested in clinical trials. In melanoma, lung-, breast-, gastric- and colorectal carcinoma several molecular markers are already being clinically implemented for diagnosis and treatment. These insights can serve as a background for the promise and limitations that pharmacogenomics has for diffuse gliomas. Better molecular characterization of diffuse gliomas, including analysis of the molecular underpinnings of drug efficacy in clinical trials, is urgently needed. We foresee exciting developments in the upcoming years with clinical benefit for the patients.
Collapse
|
379
|
Clinical implications of molecular neuropathology and biomarkers for malignant glioma. Curr Neurol Neurosci Rep 2012; 12:302-7. [PMID: 22427102 DOI: 10.1007/s11910-012-0263-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Malignant gliomas are currently diagnosed based on morphological criteria and graded according to the World Health Organization classification of primary brain tumors. This algorithm of diagnosis and classification provides clinicians with an estimated prognosis of the natural course of the disease. It does not reflect the expected response to specific treatments beyond surgery (eg, radiotherapy or alkylating chemotherapy). Clinical experience has revealed that gliomas sharing similar histomorphological criteria might indeed have different clinical courses and exhibit highly heterogenous responses to treatments. This was very impressively demonstrated first for oligodendrogliomas. The presence or lack of combined deletions of the chromosomal segments 1p/19q was associated with different benefit from radiotherapy and chemotherapy. We review current molecular markers for malignant gliomas and discuss their current and future impact on clinical neuro-oncology.
Collapse
|
380
|
Blough MD, Al-Najjar M, Chesnelong C, Binding CE, Rogers AD, Luchman HA, Kelly JJ, Fliegel L, Morozova O, Yip S, Marra M, Weiss S, Chan JA, Cairncross JG. DNA hypermethylation and 1p Loss silence NHE-1 in oligodendroglioma. Ann Neurol 2012; 71:845-9. [PMID: 22718548 DOI: 10.1002/ana.23610] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Oligodendroglioma is characterized by mutations of IDH and CIC, 1p/19q loss, and slow growth. We found that NHE-1 on 1p is silenced in oligodendrogliomas secondary to IDH-associated hypermethylation and 1p allelic loss. Silencing lowers intracellular pH and attenuates acid load recovery in oligodendroglioma cells. Others have shown that rapid tumor growth cannot occur without NHE-1-mediated neutralization of the acidosis generated by the Warburg glycolytic shift. Our findings show for the first time that the pH regulator NHE-1 can be silenced in a human cancer and also suggest that pH deregulation may contribute to the distinctive biology of human oligodendroglioma.
Collapse
Affiliation(s)
- Michael D Blough
- Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
381
|
Zhang J, Chen QM. Far upstream element binding protein 1: a commander of transcription, translation and beyond. Oncogene 2012; 32:2907-16. [PMID: 22926519 DOI: 10.1038/onc.2012.350] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The far upstream binding protein 1 (FBP1) was first identified as a DNA-binding protein that regulates c-Myc gene transcription through binding to the far upstream element (FUSE) in the promoter region 1.5 kb upstream of the transcription start site. FBP1 collaborates with TFIIH and additional transcription factors for optimal transcription of the c-Myc gene. In recent years, mounting evidence suggests that FBP1 acts as an RNA-binding protein and regulates mRNA translation or stability of genes, such as GAP43, p27(Kip) and nucleophosmin. During retroviral infection, FBP1 binds to and mediates replication of RNA from Hepatitis C and Enterovirus 71. As a nuclear protein, FBP1 may translocate to the cytoplasm in apoptotic cells. The interaction of FBP1 with p38/JTV-1 results in FBP1 ubiquitination and degradation by the proteasomes. Transcriptional and post-transcriptional regulations by FBP1 contribute to cell proliferation, migration or cell death. FBP1 association with carcinogenesis has been reported in c-Myc dependent or independent manner. This review summarizes biochemical features of FBP1, its mechanism of action, FBP family members and the involvement of FBP1 in carcinogenesis.
Collapse
Affiliation(s)
- J Zhang
- Department of Pharmacology, University of Arizona, Tucson, AZ 85724, USA
| | | |
Collapse
|
382
|
Alentorn A, Labussière M, Sanson M, Delattre JY, Hoang-Xuan K, Idbaih A. [Genetics and brain gliomas]. Presse Med 2012; 42:806-13. [PMID: 22789312 DOI: 10.1016/j.lpm.2012.05.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2011] [Revised: 04/28/2012] [Accepted: 05/09/2012] [Indexed: 11/15/2022] Open
Abstract
Chromosome arms 1p and 19q codeletion, corresponding to an unbalanced reciprocal translocation t(1;19)(q10;p10), is seen in oligodendroglial tumours and is associated with better prognosis and better chemosensitivity. BRAF abnormalities are observed in pilocytic astrocytomas (tandem duplication-rearrangement) and in pleomorphic xanthoastrocytomas (BRAF V600E mutation). The vast majority of primary or de novo glioblastomas exhibit genetic abnormalities disrupting the intracellular signaling pathways of: transmembrane tyrosine kinase receptors to growth factors and their downstream signaling pathways (i.e. NF1-RAS-RAF-MAPK and PTEN-PI3K-AKT-TSC-mTOR); RB and; TP53. IDH1 and IDH2 mutations are frequent in diffuse grade II and grade III gliomas and in secondary glioblastomas. They are diagnostic and favorable independent prognostic biomarkers. In contrast, they are rare in primary or de novo glioblastomas and not reported in pilocytic astrocytomas. Germlin mutations in MSH2/MLH1/PMS2/MSH6, CDKN2A, TSC1/TSC2, PTEN, TP53 and NF1/NF2 predispose to glial tumors in the setting of hereditary cancer predisposition syndromes. Single nucleotide polymorphisms in TERT,CCDC26, CDKN2A/CDKN2B, RTEL, EGFR and PHLDB1 confer an inherited susceptibility to glial tumors.
Collapse
Affiliation(s)
- Agusti Alentorn
- AP-HP, groupe hospitalier Pitié-Salpêtrière, service de neurologie 2, Mazarin, 75651 Paris cedex 13, France
| | | | | | | | | | | |
Collapse
|
383
|
Jiao Y, Killela PJ, Reitman ZJ, Rasheed BA, Heaphy CM, de Wilde RF, Rodriguez FJ, Rosemberg S, Oba-Shinjo SM, Marie SKN, Bettegowda C, Agrawal N, Lipp E, Pirozzi CJ, Lopez GY, He Y, Friedman HS, Friedman AH, Riggins GJ, Holdhoff M, Burger P, McLendon RE, Bigner DD, Vogelstein B, Meeker AK, Kinzler KW, Papadopoulos N, Diaz LA, Yan H. Frequent ATRX, CIC, FUBP1 and IDH1 mutations refine the classification of malignant gliomas. Oncotarget 2012; 3:709-22. [PMID: 22869205 PMCID: PMC3443254 DOI: 10.18632/oncotarget.588] [Citation(s) in RCA: 454] [Impact Index Per Article: 34.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 08/02/2012] [Indexed: 11/25/2022] Open
Abstract
Mutations in the critical chromatin modifier ATRX and mutations in CIC and FUBP1, which are potent regulators of cell growth, have been discovered in specific subtypes of gliomas, the most common type of primary malignant brain tumors. However, the frequency of these mutations in many subtypes of gliomas, and their association with clinical features of the patients, is poorly understood. Here we analyzed these loci in 363 brain tumors. ATRX is frequently mutated in grade II-III astrocytomas (71%), oligoastrocytomas (68%), and secondary glioblastomas (57%), and ATRX mutations are associated with IDH1 mutations and with an alternative lengthening of telomeres phenotype. CIC and FUBP1 mutations occurred frequently in oligodendrogliomas (46% and 24%, respectively) but rarely in astrocytomas or oligoastrocytomas ( more than 10%). This analysis allowed us to define two highly recurrent genetic signatures in gliomas: IDH1/ATRX (I-A) and IDH1/CIC/FUBP1 (I-CF). Patients with I-CF gliomas had a significantly longer median overall survival (96 months) than patients with I-A gliomas (51 months) and patients with gliomas that did not harbor either signature (13 months). The genetic signatures distinguished clinically distinct groups of oligoastrocytoma patients, which usually present a diagnostic challenge, and were associated with differences in clinical outcome even among individual tumor types. In addition to providing new clues about the genetic alterations underlying gliomas, the results have immediate clinical implications, providing a tripartite genetic signature that can serve as a useful adjunct to conventional glioma classification that may aid in prognosis, treatment selection, and therapeutic trial design.
Collapse
Affiliation(s)
- Yuchen Jiao
- Ludwig Center for Cancer Genetics and Howard Hughes Medical Institutions, The Johns Hopkins Kimmel Cancer Center, the Department of Oncology, the Department of Pathology, the Department of Neurosurgery, the Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
| | - Patrick J. Killela
- The Preston Robert Tisch Brain Tumor Center at Duke, The Pediatric Brain Tumor Foundation Institute, the Department of Pathology, the Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
| | - Zachary J. Reitman
- The Preston Robert Tisch Brain Tumor Center at Duke, The Pediatric Brain Tumor Foundation Institute, the Department of Pathology, the Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
| | - B. Ahmed Rasheed
- The Preston Robert Tisch Brain Tumor Center at Duke, The Pediatric Brain Tumor Foundation Institute, the Department of Pathology, the Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
| | - Christopher M. Heaphy
- Ludwig Center for Cancer Genetics and Howard Hughes Medical Institutions, The Johns Hopkins Kimmel Cancer Center, the Department of Oncology, the Department of Pathology, the Department of Neurosurgery, the Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
| | - Roeland F. de Wilde
- Ludwig Center for Cancer Genetics and Howard Hughes Medical Institutions, The Johns Hopkins Kimmel Cancer Center, the Department of Oncology, the Department of Pathology, the Department of Neurosurgery, the Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
| | - Fausto J. Rodriguez
- Ludwig Center for Cancer Genetics and Howard Hughes Medical Institutions, The Johns Hopkins Kimmel Cancer Center, the Department of Oncology, the Department of Pathology, the Department of Neurosurgery, the Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
| | - Sergio Rosemberg
- The Department of Pathology, the Department of Neurology, School of Medicine, University of Sao Paulo, Sao Paulo, Sao Paulo, Brazil
| | - Sueli Mieko Oba-Shinjo
- The Department of Pathology, the Department of Neurology, School of Medicine, University of Sao Paulo, Sao Paulo, Sao Paulo, Brazil
| | - Suely Kazue Nagahashi Marie
- The Department of Pathology, the Department of Neurology, School of Medicine, University of Sao Paulo, Sao Paulo, Sao Paulo, Brazil
| | - Chetan Bettegowda
- Ludwig Center for Cancer Genetics and Howard Hughes Medical Institutions, The Johns Hopkins Kimmel Cancer Center, the Department of Oncology, the Department of Pathology, the Department of Neurosurgery, the Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
| | - Nishant Agrawal
- Ludwig Center for Cancer Genetics and Howard Hughes Medical Institutions, The Johns Hopkins Kimmel Cancer Center, the Department of Oncology, the Department of Pathology, the Department of Neurosurgery, the Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
| | - Eric Lipp
- The Preston Robert Tisch Brain Tumor Center at Duke, The Pediatric Brain Tumor Foundation Institute, the Department of Pathology, the Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
| | - Christopher J. Pirozzi
- The Preston Robert Tisch Brain Tumor Center at Duke, The Pediatric Brain Tumor Foundation Institute, the Department of Pathology, the Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
| | - Giselle Y. Lopez
- The Preston Robert Tisch Brain Tumor Center at Duke, The Pediatric Brain Tumor Foundation Institute, the Department of Pathology, the Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
| | - Yiping He
- The Preston Robert Tisch Brain Tumor Center at Duke, The Pediatric Brain Tumor Foundation Institute, the Department of Pathology, the Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
| | - Henry S. Friedman
- The Preston Robert Tisch Brain Tumor Center at Duke, The Pediatric Brain Tumor Foundation Institute, the Department of Pathology, the Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
| | - Allan H. Friedman
- The Preston Robert Tisch Brain Tumor Center at Duke, The Pediatric Brain Tumor Foundation Institute, the Department of Pathology, the Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
| | - Gregory J. Riggins
- Ludwig Center for Cancer Genetics and Howard Hughes Medical Institutions, The Johns Hopkins Kimmel Cancer Center, the Department of Oncology, the Department of Pathology, the Department of Neurosurgery, the Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
| | - Matthias Holdhoff
- Ludwig Center for Cancer Genetics and Howard Hughes Medical Institutions, The Johns Hopkins Kimmel Cancer Center, the Department of Oncology, the Department of Pathology, the Department of Neurosurgery, the Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
- The Swim Across America Laboratory at Johns Hopkins, The Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
| | - Peter Burger
- Ludwig Center for Cancer Genetics and Howard Hughes Medical Institutions, The Johns Hopkins Kimmel Cancer Center, the Department of Oncology, the Department of Pathology, the Department of Neurosurgery, the Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
| | - Roger E. McLendon
- The Preston Robert Tisch Brain Tumor Center at Duke, The Pediatric Brain Tumor Foundation Institute, the Department of Pathology, the Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
| | - Darell D. Bigner
- The Preston Robert Tisch Brain Tumor Center at Duke, The Pediatric Brain Tumor Foundation Institute, the Department of Pathology, the Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
| | - Bert Vogelstein
- Ludwig Center for Cancer Genetics and Howard Hughes Medical Institutions, The Johns Hopkins Kimmel Cancer Center, the Department of Oncology, the Department of Pathology, the Department of Neurosurgery, the Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
| | - Alan K. Meeker
- Ludwig Center for Cancer Genetics and Howard Hughes Medical Institutions, The Johns Hopkins Kimmel Cancer Center, the Department of Oncology, the Department of Pathology, the Department of Neurosurgery, the Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
| | - Kenneth W. Kinzler
- Ludwig Center for Cancer Genetics and Howard Hughes Medical Institutions, The Johns Hopkins Kimmel Cancer Center, the Department of Oncology, the Department of Pathology, the Department of Neurosurgery, the Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
| | - Nickolas Papadopoulos
- Ludwig Center for Cancer Genetics and Howard Hughes Medical Institutions, The Johns Hopkins Kimmel Cancer Center, the Department of Oncology, the Department of Pathology, the Department of Neurosurgery, the Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
| | - Luis A. Diaz
- Ludwig Center for Cancer Genetics and Howard Hughes Medical Institutions, The Johns Hopkins Kimmel Cancer Center, the Department of Oncology, the Department of Pathology, the Department of Neurosurgery, the Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
- The Swim Across America Laboratory at Johns Hopkins, The Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
| | - Hai Yan
- The Preston Robert Tisch Brain Tumor Center at Duke, The Pediatric Brain Tumor Foundation Institute, the Department of Pathology, the Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
384
|
Badiali M, Gleize V, Paris S, Moi L, Elhouadani S, Arcella A, Morace R, Antonelli M, Buttarelli FR, Figarella-Branger D, Kim YH, Ohgaki H, Mokhtari K, Sanson M, Giangaspero F. KIAA1549-BRAF fusions and IDH mutations can coexist in diffuse gliomas of adults. Brain Pathol 2012; 22:841-7. [PMID: 22591444 DOI: 10.1111/j.1750-3639.2012.00603.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
KIAA1549-BRAF fusion gene and isocitrate dehydrogenase (IDH) mutations are considered two mutually exclusive genetic events in pilocytic astrocytomas and diffuse gliomas, respectively. We investigated the presence of the KIAA1549-BRAF fusion gene in conjunction with IDH mutations and 1p/19q loss in 185 adult diffuse gliomas. Moreover BRAF(v600E) mutation was also screened. The KIAA1549-BRAF fusion gene was evaluated by reverse-transcription polymerase chain reaction (RT-PCR) and sequencing. We found IDH mutations in 125 out 175 cases (71.4%). There were KIAA1549-BRAF fusion gene in 17 out of 180 (9.4%) cases and BRAF(v600E) in 2 out of 133 (1.5%) cases. In 11 of these 17 cases, both IDH mutations and the KIAA1549-BRAF fusion were present, as independent molecular events. Moreover, 6 of 17 cases showed co-presence of 1p/19q loss, IDH mutations and KIAA1549-BRAF fusion. Among the 17 cases with KIAA1549-BRAF fusion gene 15 (88.2%) were oligodendroglial neoplasms. Similarly, the two cases with BRAF(v600E) mutation were both oligodendroglioma and one had IDH mutations and 1p/19q co-deletion. Our results suggest that in a small fraction of diffuse gliomas, KIAA1549-BRAF fusion gene and BRAF(v600E) mutation may be responsible for deregulation of the Ras-RAF-ERK signaling pathway. Such alterations are more frequent in oligodendroglial neoplasm and may be co-present with IDH mutations and 1p/19q loss.
Collapse
Affiliation(s)
- Manuela Badiali
- Bone Marrow Transplant Unit, Microcitemico Hospital, Cagliari, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
385
|
Dunn GP, Rinne ML, Wykosky J, Genovese G, Quayle SN, Dunn IF, Agarwalla PK, Chheda MG, Campos B, Wang A, Brennan C, Ligon KL, Furnari F, Cavenee WK, Depinho RA, Chin L, Hahn WC. Emerging insights into the molecular and cellular basis of glioblastoma. Genes Dev 2012. [PMID: 22508724 DOI: 10.1101/gad.187922.112.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Glioblastoma is both the most common and lethal primary malignant brain tumor. Extensive multiplatform genomic characterization has provided a higher-resolution picture of the molecular alterations underlying this disease. These studies provide the emerging view that "glioblastoma" represents several histologically similar yet molecularly heterogeneous diseases, which influences taxonomic classification systems, prognosis, and therapeutic decisions.
Collapse
Affiliation(s)
- Gavin P Dunn
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
386
|
Dunn GP, Rinne ML, Wykosky J, Genovese G, Quayle SN, Dunn IF, Agarwalla PK, Chheda MG, Campos B, Wang A, Brennan C, Ligon KL, Furnari F, Cavenee WK, Depinho RA, Chin L, Hahn WC. Emerging insights into the molecular and cellular basis of glioblastoma. Genes Dev 2012; 26:756-84. [PMID: 22508724 DOI: 10.1101/gad.187922.112] [Citation(s) in RCA: 428] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Glioblastoma is both the most common and lethal primary malignant brain tumor. Extensive multiplatform genomic characterization has provided a higher-resolution picture of the molecular alterations underlying this disease. These studies provide the emerging view that "glioblastoma" represents several histologically similar yet molecularly heterogeneous diseases, which influences taxonomic classification systems, prognosis, and therapeutic decisions.
Collapse
Affiliation(s)
- Gavin P Dunn
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
387
|
CIC and FUBP1 mutations in oligodendrogliomas, oligoastrocytomas and astrocytomas. Acta Neuropathol 2012; 123:853-60. [PMID: 22588899 DOI: 10.1007/s00401-012-0993-5] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Revised: 05/02/2012] [Accepted: 05/02/2012] [Indexed: 10/28/2022]
Abstract
CIC and FUBP1 mutations have recently been detected in oligodendrogliomas but not in oligoastrocytomas. However, allelic losses in the regions on chromosomal arms 19q and 1p harboring CIC and FUBP1 are a common feature of both, oligodendrogliomas and oligoastrocytomas. To resolve this discrepancy, we analyzed CIC and FUBP1 mutations in a set of primary brain tumors including 18 oligodendrogliomas and 42 oligoastrocytomas. In addition, we analyzed 10 astrocytomas and 16 glioblastomas with allelic losses on 19q as well as a set of 12 medulloblastomas for CIC mutations. CIC mutations were found in 15/18 oligodendrogliomas, 14/42 oligoastrocytomas and 3/10 preselected astrocytomas. With the exception of a single case, all CIC mutations occurred in tumors with combined 1p/19q losses. In contrast to oligodendrogliomas where CIC mutations were always detected along with 1p/19q co-deletion, CIC mutations were only found in 52 % of the 1p/19q co-deleted oligoastrocytomas. FUBP1 mutations were detected in 7/61 tumors, all presenting with CIC mutations. FUBP1 mutations appear to cluster in the DNA binding domain spanning exons 5-14. CIC and FUBP1 mutations exclusively occurred in presence of either IDH1 or IDH2 mutations. Our data confirm CIC and FUBP1 mutations in oligodendrogliomas and demonstrate the presence of these mutations in oligoastrocytomas.
Collapse
|
388
|
Masui K, Cloughesy TF, Mischel PS. Review: molecular pathology in adult high-grade gliomas: from molecular diagnostics to target therapies. Neuropathol Appl Neurobiol 2012; 38:271-91. [PMID: 22098029 PMCID: PMC4104813 DOI: 10.1111/j.1365-2990.2011.01238.x] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The classification of malignant gliomas is moving from a morphology-based guide to a system built on molecular criteria. The development of a genomic landscape for gliomas and a better understanding of its functional consequences have led to the development of internally consistent molecular classifiers. However, development of a biologically insightful classification to guide therapy is still a work in progress. Response to targeted treatments is based not only on the presence of drugable targets, but rather on the molecular circuitry of the cells. Further, tumours are heterogeneous and change and adapt in response to drugs. Therefore, the challenge of developing molecular classifiers that provide meaningful ways to stratify patients for therapy remains a major challenge for the field. In this review, we examine the potential role of MGMT methylation, IDH1/2 mutations, 1p/19q deletions, aberrant epidermal growth factor receptor and PI3K pathways, abnormal p53/Rb pathways, cancer stem-cell markers and microRNAs as prognostic and predictive molecular markers in the setting of adult high-grade gliomas and we outline the clinically relevant subtypes of glioblastoma with genomic, transcriptomic and proteomic integrated analyses. Furthermore, we describe how these advances, especially in epidermal growth factor receptor/PI3K/mTOR signalling pathway, affect our approaches towards targeted therapy, raising new challenges and identifying new leads.
Collapse
Affiliation(s)
- K Masui
- Department of Pathology and Laboratory Medicine, David Geffen University of California at Los Angeles School of Medicine, Los Angeles, California, USA.
| | | | | |
Collapse
|
389
|
Abstract
Important advances have been made in the understanding and management of adult gliomas and primary CNS lymphomas--the two most common primary brain tumours. Progress in imaging has led to a better analysis of the nature and grade of these tumours. Findings from large phase 3 studies have yielded some standard treatments for gliomas, and have confirmed the prognostic value of specific molecular alterations. High-throughput methods that enable genome-wide analysis of tumours have improved the knowledge of tumour biology, which should lead to a better classification of gliomas and pave the way for so-called targeted therapy trials. Primary CNS lymphomas are a group of rare non-Hodgkin lymphomas. High-dose methotrexate-based regimens increase survival, but the standards of care and the place of whole-brain radiotherapy remain unclear, and are likely to depend on the age of the patient. The focus now is on the development of new polychemotherapy regimens to reduce or defer whole-brain radiotherapy and its delayed complications.
Collapse
Affiliation(s)
- Damien Ricard
- Service de Santé des Armées, Hôpital d'Instruction des Armées du Val-de-Grâce, Service de Neurologie, Paris, France.
| | | | | | | | | | | |
Collapse
|
390
|
|
391
|
Høye AM, Couchman JR, Wewer UM, Fukami K, Yoneda A. The newcomer in the integrin family: integrin α9 in biology and cancer. Adv Biol Regul 2012; 52:326-339. [PMID: 22781746 DOI: 10.1016/j.jbior.2012.03.004] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Accepted: 03/23/2012] [Indexed: 06/01/2023]
Abstract
Integrins are heterodimeric transmembrane receptors regulating cell-cell and cell-extracellular matrix interactions. Of the 24 integrin heterodimers identified in humans, α9β1 integrin is one of the least studied. α9, together with α4, comprise a more recent evolutionary sub-family of integrins that is only found in vertebrates. Since α9 was thought to have similar functions as α4, due to many shared ligands, it was a rather overlooked integrin until recently, when its importance for survival after birth was highlighted upon investigation of the α9 knockout mouse. α9β1 is expressed on a wide variety of cell types, interacts with many ligands for example fibronectin, tenascin-C and ADAM12, and has been shown to have important functions in processes such as cell adhesion and migration, lung development, lymphatic and venous valve development, and in wound healing. This has sparked an interest to investigate α9β1-mediated signaling and its regulation. This review gives an overview of the recent progress in α9β1-mediated biological and pathological processes, and discusses its potential as a target for cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Anette M Høye
- Department of Biomedical Sciences, The Faculty of Health and Medical Sciences, and Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen Biocenter, Ole Maaløes Vej 5, Copenhagen N 2200, Denmark
| | | | | | | | | |
Collapse
|
392
|
Bettegowda C, Papadopoulos N, Agrawal N. Mapping genes for oligodendroglioma. Per Med 2012; 9:311-313. [PMID: 29758792 DOI: 10.2217/pme.12.15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Chetan Bettegowda
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Nicholas Papadopoulos
- Department of Otolaryngology & Head and Neck Surgery, Johns Hopkins Univeristy School of Medicine, Baltimore, MD, USA
| | - Nishant Agrawal
- Ludwig Center for Cancer Genetics & Therapeutics, Johns Hopkins University Kimmel Cancer Center, Baltimore, MD, USA
| |
Collapse
|
393
|
Mutual repression by bantam miRNA and Capicua links the EGFR/MAPK and Hippo pathways in growth control. Curr Biol 2012; 22:651-7. [PMID: 22445297 DOI: 10.1016/j.cub.2012.02.050] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Revised: 02/07/2012] [Accepted: 02/17/2012] [Indexed: 01/01/2023]
Abstract
BACKGROUND The epidermal growth factor receptor (EGFR) and Hippo signaling pathways control cell proliferation and apoptosis to promote tissue growth during development. Misregulation of these pathways is implicated in cancer. Our understanding of the mechanisms that integrate the activity of these pathways remains fragmentary. This study identifies bantam microRNA as a common target of these pathways and suggests a mechanistic link between them. RESULTS The EGFR pathway acts through bantam to control tissue growth. bantam expression is regulated by the EGFR pathway, acting via repression of the transcriptional repressor Capicua. Thus EGFR signaling induces bantam expression by alleviating the effects of a repressor. bantam in turn acts in a negative feedback loop to limit Capicua expression. CONCLUSIONS bantam appears to be a transcriptional target of both the EGFR and Hippo growth control pathways. Feedback regulation by bantam on Capicua provides a means to link signal propagation by the EGFR pathway to activity of the Hippo pathway and may play an important role in integration of these two pathways in growth control.
Collapse
|
394
|
Wick W, van den Bent M, Vecht C, Brandes A, Lacombe D, Gorlia T, Allgeier A, Baumert BG, Soffietti R, Sanson M, Karim AB, Mirimanoff RO, Taphoorn M, Kros M, Hegi M, Stupp R. EORTC topics in neurooncology: The long path from a focus on neurological complications of cancer towards molecularly defined trials and therapies in neurooncology. EJC Suppl 2012. [DOI: 10.1016/s1359-6349(12)70006-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
|
395
|
Abstract
Melanoma, the most aggressive form of skin cancer, has increased in incidence more rapidly than any other cancer. The completion of the human genome project and advancements in genomics technologies has allowed us to investigate genetic alterations of melanoma at a scale and depth that is unprecedented. Here, we survey the history of the different approaches taken to understand the genomics of melanoma - from early candidate genes, to gene families, to genome-wide studies. The new era of whole-exome and whole-genome sequencing has paved the way for an in-depth understanding of melanoma biology, identification of new therapeutic targets, and development of novel personalized therapies for melanoma.
Collapse
Affiliation(s)
- Vijay Walia
- The Cancer Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Euphemia W. Mu
- Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jimmy C. Lin
- Division of Laboratory and Genomic Medicine, Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Yardena Samuels
- The Cancer Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
396
|
Ellezam B, Theeler BJ, Luthra R, Adesina AM, Aldape KD, Gilbert MR. Recurrent PIK3CA mutations in rosette-forming glioneuronal tumor. Acta Neuropathol 2012; 123:285-7. [PMID: 21997360 DOI: 10.1007/s00401-011-0886-z] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Revised: 10/03/2011] [Accepted: 10/04/2011] [Indexed: 10/14/2022]
|
397
|
Malzkorn B, Wolter M, Riemenschneider MJ, Reifenberger G. Unraveling the glioma epigenome: from molecular mechanisms to novel biomarkers and therapeutic targets. Brain Pathol 2012; 21:619-32. [PMID: 21939466 DOI: 10.1111/j.1750-3639.2011.00536.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Epigenetic regulation of gene expression by DNA methylation and histone modification is frequently altered in human cancers including gliomas, the most common primary brain tumors. In diffuse astrocytic and oligodendroglial gliomas, epigenetic changes often present as aberrant hypermethylation of 5'-cytosine-guanine (CpG)-rich regulatory sequences in a large variety of genes, a phenomenon referred to as glioma CpG island methylator phenotype (G-CIMP). G-CIMP is particularly common but not restricted to gliomas with isocitrate dehydrogenase 1 (IDH1) or 2 (IDH2) mutation. Recent studies provided a mechanistic link between these genetic mutations and the associated widespread epigenetic modifications. Specifically, 2-hydroxyglutarate, the oncometabolite produced by mutant IDH1 and IDH2 proteins, has been shown to function as a competitive inhibitor of various α-ketoglutarate (α-KG)-dependent dioxygenases, including histone demethylases and members of the ten-eleven-translocation (TET) family of 5-methylcytosine (5mC) hydroxylases. In this review article, we briefly address (i) the basic principles of epigenetic control of gene expression; (ii) the most important methods to analyze focal and global epigenetic alterations in cells and tissues; and (iii) the involvement of epigenetic alterations in the molecular pathogenesis of gliomas. Moreover, we discuss the promising roles of epigenetic alterations as molecular diagnostic markers and novel therapeutic targets, and highlight future perspectives toward unraveling the "glioma epigenome."
Collapse
Affiliation(s)
- Bastian Malzkorn
- Department of Neuropathology, Heinrich-Heine-University, Düsseldorf, Germany
| | | | | | | |
Collapse
|
398
|
Recent advances in the molecular understanding of glioblastoma. J Neurooncol 2012; 108:11-27. [PMID: 22270850 PMCID: PMC3337398 DOI: 10.1007/s11060-011-0793-0] [Citation(s) in RCA: 317] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2011] [Accepted: 12/27/2011] [Indexed: 01/04/2023]
Abstract
Glioblastoma is the most common and most aggressive primary brain tumor. Despite maximum treatment, patients only have a median survival time of 15 months, because of the tumor’s resistance to current therapeutic approaches. Thus far, methylation of the O6-methylguanine-DNA methyltransferase (MGMT) promoter has been the only confirmed molecular predictive factor in glioblastoma. Novel “genome-wide” techniques have identified additional important molecular alterations as mutations in isocitrate dehydrogenase 1 (IDH1) and its prognostic importance. This review summarizes findings and techniques of genetic, epigenetic, transcriptional, and proteomic studies of glioblastoma. It provides the clinician with an up-to-date overview of current identified molecular alterations that should ultimately lead to new therapeutic targets and more individualized treatment approaches in glioblastoma.
Collapse
|
399
|
Wu J, Jiao Y, Dal Molin M, Maitra A, de Wilde RF, Wood LD, Eshleman JR, Goggins MG, Wolfgang CL, Canto MI, Schulick RD, Edil BH, Choti MA, Adsay V, Klimstra DS, Offerhaus GJA, Klein AP, Kopelovich L, Carter H, Karchin R, Allen PJ, Schmidt CM, Naito Y, Diaz LA, Kinzler KW, Papadopoulos N, Hruban RH, Vogelstein B. Whole-exome sequencing of neoplastic cysts of the pancreas reveals recurrent mutations in components of ubiquitin-dependent pathways. Proc Natl Acad Sci U S A 2011; 108:21188-93. [PMID: 22158988 PMCID: PMC3248495 DOI: 10.1073/pnas.1118046108] [Citation(s) in RCA: 468] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
More than 2% of adults harbor a pancreatic cyst, a subset of which progresses to invasive lesions with lethal consequences. To assess the genomic landscapes of neoplastic cysts of the pancreas, we determined the exomic sequences of DNA from the neoplastic epithelium of eight surgically resected cysts of each of the major neoplastic cyst types: serous cystadenomas (SCAs), intraductal papillary mucinous neoplasms (IPMNs), mucinous cystic neoplasms (MCNs), and solid pseudopapillary neoplasms (SPNs). SPNs are low-grade malignancies, and IPMNs and MCNs, but not SCAs, have the capacity to progress to cancer. We found that SCAs, IPMNs, MCNs, and SPNs contained 10 ± 4.6, 27 ± 12, 16 ± 7.6, and 2.9 ± 2.1 somatic mutations per tumor, respectively. Among the mutations identified, E3 ubiquitin ligase components were of particular note. Four of the eight SCAs contained mutations of the von Hippel-Lindau gene (VHL), a key component of the VHL ubiquitin ligase complex that has previously been associated with renal cell carcinomas, SCAs, and other neoplasms. Six of the eight IPMNs and three of the eight MCNs harbored mutations of RNF43, a gene coding for a protein with intrinsic E3 ubiquitin ligase activity that has not previously been found to be genetically altered in any human cancer. The preponderance of inactivating mutations in RNF43 unequivocally establish it as a suppressor of both IPMNs and MCNs. SPNs contained remarkably few genetic alterations but always contained mutations of CTNNB1, previously demonstrated to inhibit degradation of the encoded protein (β-catenin) by E3 ubiquitin ligases. These results highlight the essential role of ubiquitin ligases in these neoplasms and have important implications for the diagnosis and treatment of patients with cystic tumors.
Collapse
Affiliation(s)
- Jian Wu
- Ludwig Center for Cancer Genetics and Howard Hughes Medical Institutions, Johns Hopkins Kimmel Cancer Center, Baltimore, MD 21231
| | - Yuchen Jiao
- Ludwig Center for Cancer Genetics and Howard Hughes Medical Institutions, Johns Hopkins Kimmel Cancer Center, Baltimore, MD 21231
| | | | | | | | | | | | | | - Christopher L. Wolfgang
- Surgery, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, MD 21231
| | | | - Richard D. Schulick
- Surgery, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, MD 21231
| | - Barish H. Edil
- Surgery, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, MD 21231
| | - Michael A. Choti
- Surgery, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, MD 21231
| | - Volkan Adsay
- Department of Pathology, Emory University, Atlanta, GA 30322
| | | | - G. Johan A. Offerhaus
- Department of Pathology, University Medical Center of Utrecht, 3508 GA Utrecht The Netherlands
| | | | - Levy Kopelovich
- Division of Cancer Prevention, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Hannah Carter
- Department of Biomedical Engineering, Institute for Computational Medicine, The Johns Hopkins University, Baltimore, MD
| | - Rachel Karchin
- Department of Biomedical Engineering, Institute for Computational Medicine, The Johns Hopkins University, Baltimore, MD
| | - Peter J. Allen
- Surgery, Memorial Sloan–Kettering Cancer Center, New York, NY 10065
| | - C. Max Schmidt
- Departments of Surgery, Biochemistry, and Molecular Biology, Indiana University, Indianapolis, IN 46202; and
| | - Yoshiki Naito
- Department of Pathology, Kurume University School of Medicine, Kurume 830-0011, Japan
| | - Luis A. Diaz
- Ludwig Center for Cancer Genetics and Howard Hughes Medical Institutions, Johns Hopkins Kimmel Cancer Center, Baltimore, MD 21231
| | - Kenneth W. Kinzler
- Ludwig Center for Cancer Genetics and Howard Hughes Medical Institutions, Johns Hopkins Kimmel Cancer Center, Baltimore, MD 21231
| | - Nickolas Papadopoulos
- Ludwig Center for Cancer Genetics and Howard Hughes Medical Institutions, Johns Hopkins Kimmel Cancer Center, Baltimore, MD 21231
| | | | - Bert Vogelstein
- Ludwig Center for Cancer Genetics and Howard Hughes Medical Institutions, Johns Hopkins Kimmel Cancer Center, Baltimore, MD 21231
| |
Collapse
|
400
|
ATXN1 protein family and CIC regulate extracellular matrix remodeling and lung alveolarization. Dev Cell 2011; 21:746-57. [PMID: 22014525 DOI: 10.1016/j.devcel.2011.08.017] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Revised: 05/31/2011] [Accepted: 08/19/2011] [Indexed: 12/29/2022]
Abstract
Although expansion of CAG repeats in ATAXIN1 (ATXN1) causes Spinocerebellar ataxia type 1, the functions of ATXN1 and ATAXIN1-Like (ATXN1L) remain poorly understood. To investigate the function of these proteins, we generated and characterized Atxn1L(-/-) and Atxn1(-/-); Atxn1L(-/-) mice. Atxn1L(-/-) mice have hydrocephalus, omphalocele, and lung alveolarization defects. These phenotypes are more penetrant and severe in Atxn1(-/-); Atxn1L(-/-) mice, suggesting that ATXN1 and ATXN1L are functionally redundant. Upon pursuing the molecular mechanism, we discovered that several Matrix metalloproteinase (Mmp) genes are overexpressed and that the transcriptional repressor Capicua (CIC) is destabilized in Atxn1L(-/-) lungs. Consistent with this, Cic deficiency causes lung alveolarization defect. Loss of either ATXN1L or CIC derepresses Etv4, an activator for Mmp genes, thereby mediating MMP9 overexpression. These findings demonstrate a critical role of ATXN1/ATXN1L-CIC complexes in extracellular matrix (ECM) remodeling during development and their potential roles in pathogenesis of disorders affecting ECM remodeling.
Collapse
|