351
|
Kachuk C, Doucette AA. The benefits (and misfortunes) of SDS in top-down proteomics. J Proteomics 2018; 175:75-86. [DOI: 10.1016/j.jprot.2017.03.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 01/19/2017] [Accepted: 03/03/2017] [Indexed: 12/18/2022]
|
352
|
Unterlander N, Doucette AA. Accelerated SDS depletion from proteins by transmembrane electrophoresis: Impacts of Joule heating. Electrophoresis 2018; 39:1349-1356. [DOI: 10.1002/elps.201700410] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 01/23/2018] [Accepted: 01/31/2018] [Indexed: 12/31/2022]
Affiliation(s)
- Nicole Unterlander
- Department of Chemistry; Dalhousie University; Halifax Nova Scotia Canada
| | | |
Collapse
|
353
|
Greer SM, Brodbelt JS. Top-Down Characterization of Heavily Modified Histones Using 193 nm Ultraviolet Photodissociation Mass Spectrometry. J Proteome Res 2018; 17:1138-1145. [DOI: 10.1021/acs.jproteome.7b00801] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Sylvester M. Greer
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Jennifer S. Brodbelt
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
354
|
|
355
|
Affiliation(s)
- Nicholas
M. Riley
- Department
of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Genome
Center of Wisconsin, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Joshua J. Coon
- Department
of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Genome
Center of Wisconsin, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Department
of Biomolecular Chemistry, University of
Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Morgridge
Institute for Research, Madison, Wisconsin 53715, United States
| |
Collapse
|
356
|
Affiliation(s)
- Bifan Chen
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Kyle A. Brown
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Ziqing Lin
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Human Proteomics Program, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Ying Ge
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Human Proteomics Program, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
357
|
Lyon YA, Riggs D, Fornelli L, Compton PD, Julian RR. The Ups and Downs of Repeated Cleavage and Internal Fragment Production in Top-Down Proteomics. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2018; 29:150-157. [PMID: 29038993 PMCID: PMC5786485 DOI: 10.1007/s13361-017-1823-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 09/08/2017] [Accepted: 09/23/2017] [Indexed: 05/10/2023]
Abstract
Analysis of whole proteins by mass spectrometry, or top-down proteomics, has several advantages over methods relying on proteolysis. For example, proteoforms can be unambiguously identified and examined. However, from a gas-phase ion-chemistry perspective, proteins are enormous molecules that present novel challenges relative to peptide analysis. Herein, the statistics of cleaving the peptide backbone multiple times are examined to evaluate the inherent propensity for generating internal versus terminal ions. The raw statistics reveal an inherent bias favoring production of terminal ions, which holds true regardless of protein size. Importantly, even if the full suite of internal ions is generated by statistical dissociation, terminal ions are predicted to account for at least 50% of the total ion current, regardless of protein size, if there are three backbone dissociations or fewer. Top-down analysis should therefore be a viable approach for examining proteins of significant size. Comparison of the purely statistical analysis with actual top-down data derived from ultraviolet photodissociation (UVPD) and higher-energy collisional dissociation (HCD) reveals that terminal ions account for much of the total ion current in both experiments. Terminal ion production is more favored in UVPD relative to HCD, which is likely due to differences in the mechanisms controlling fragmentation. Importantly, internal ions are not found to dominate from either the theoretical or experimental point of view. Graphical abstract ᅟ.
Collapse
Affiliation(s)
- Yana A Lyon
- Department of Chemistry, University of California, Riverside, 501 Big Springs Road, Riverside, CA, 92521, USA
| | - Dylan Riggs
- Department of Chemistry, University of California, Riverside, 501 Big Springs Road, Riverside, CA, 92521, USA
| | - Luca Fornelli
- Departments of Chemistry and Molecular Biosciences, and the Proteomics Center of Excellence, Northwestern University, 2145 N. Sheridan Road, Evanston, IL, 60208, USA
| | - Philip D Compton
- Departments of Chemistry and Molecular Biosciences, and the Proteomics Center of Excellence, Northwestern University, 2145 N. Sheridan Road, Evanston, IL, 60208, USA
| | - Ryan R Julian
- Department of Chemistry, University of California, Riverside, 501 Big Springs Road, Riverside, CA, 92521, USA.
| |
Collapse
|
358
|
Riley NM, Westphall MS, Coon JJ. Sequencing Larger Intact Proteins (30-70 kDa) with Activated Ion Electron Transfer Dissociation. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2018; 29:140-149. [PMID: 29027149 PMCID: PMC5786479 DOI: 10.1007/s13361-017-1808-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 08/31/2017] [Accepted: 09/02/2017] [Indexed: 05/12/2023]
Abstract
The analysis of intact proteins via mass spectrometry can offer several benefits to proteome characterization, although the majority of top-down experiments focus on proteoforms in a relatively low mass range (<30 kDa). Recent studies have focused on improving the analysis of larger intact proteins (up to ~75 kDa), but they have also highlighted several challenges to be addressed. One major hurdle is the efficient dissociation of larger protein ions, which often to do not yield extensive fragmentation via conventional tandem MS methods. Here we describe the first application of activated ion electron transfer dissociation (AI-ETD) to proteins in the 30-70 kDa range. AI-ETD leverages infrared photo-activation concurrent to ETD reactions to improve sequence-informative product ion generation. This method generates more product ions and greater sequence coverage than conventional ETD, higher-energy collisional dissociation (HCD), and ETD combined with supplemental HCD activation (EThcD). Importantly, AI-ETD provides the most thorough protein characterization for every precursor ion charge state investigated in this study, making it suitable as a universal fragmentation method in top-down experiments. Additionally, we highlight several acquisition strategies that can benefit characterization of larger proteins with AI-ETD, including combination of spectra from multiple ETD reaction times for a given precursor ion, multiple spectral acquisitions of the same precursor ion, and combination of spectra from two different dissociation methods (e.g., AI-ETD and HCD). In all, AI-ETD shows great promise as a method for dissociating larger intact protein ions as top-down proteomics continues to advance into larger mass ranges. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Nicholas M Riley
- Genome Center of Wisconsin, Madison, WI, USA
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | | | - Joshua J Coon
- Genome Center of Wisconsin, Madison, WI, USA.
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA.
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA.
- Morgridge Institute for Research, Madison, WI, USA.
| |
Collapse
|
359
|
Calderón-Celis F, Sanz-Medel A, Encinar JR. Universal absolute quantification of biomolecules using element mass spectrometry and generic standards. Chem Commun (Camb) 2018; 54:904-907. [DOI: 10.1039/c7cc09059e] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Standardless highly sensitive ICP-MS approach for the absolute and simultaneous quantification of important target biomolecules in life sciences.
Collapse
Affiliation(s)
- Francisco Calderón-Celis
- Department of Physical and Analytical Chemistry
- University of Oviedo
- Julián Clavería 8
- 33006 Oviedo
- Spain
| | - Alfredo Sanz-Medel
- Department of Physical and Analytical Chemistry
- University of Oviedo
- Julián Clavería 8
- 33006 Oviedo
- Spain
| | - Jorge Ruiz Encinar
- Department of Physical and Analytical Chemistry
- University of Oviedo
- Julián Clavería 8
- 33006 Oviedo
- Spain
| |
Collapse
|
360
|
Gnanesh Kumar BS, Surolia A. Identification of Banana Lectin Isoforms and Differential Acetylation Through Mass Spectrometry Approaches. Protein J 2017; 37:38-46. [DOI: 10.1007/s10930-017-9748-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
361
|
Chang HY, Chen CT, Ko CL, Chen YJ, Chen YJ, Hsu WL, Juo CG, Sung TY. iTop-Q: an Intelligent Tool for Top-down Proteomics Quantitation Using DYAMOND Algorithm. Anal Chem 2017; 89:13128-13136. [DOI: 10.1021/acs.analchem.7b02343] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Hui-Yin Chang
- Institute
of Information Science, Academia Sinica, Taipei 115, Taiwan
| | - Ching-Tai Chen
- Institute
of Information Science, Academia Sinica, Taipei 115, Taiwan
| | - Chu-Ling Ko
- Department
of Computer Science, National Chiao Tung University, Hsinchu 300, Taiwan
| | - Yi-Ju Chen
- Institute
of Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - Yu-Ju Chen
- Institute
of Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - Wen-Lian Hsu
- Institute
of Information Science, Academia Sinica, Taipei 115, Taiwan
| | - Chiun-Gung Juo
- Molecular
Medicine Research Center, Chang Gung University, Taoyuan 333, Taiwan
- PharmaEssentia Corp., Taipei 115, Taiwan
| | - Ting-Yi Sung
- Institute
of Information Science, Academia Sinica, Taipei 115, Taiwan
| |
Collapse
|
362
|
Variety and Dynamics of Proteoforms in the Human Proteome: Aspects of Markers for Hepatocellular Carcinoma. Proteomes 2017; 5:proteomes5040033. [PMID: 29168748 PMCID: PMC5748568 DOI: 10.3390/proteomes5040033] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 10/31/2017] [Accepted: 11/06/2017] [Indexed: 12/13/2022] Open
Abstract
We have previously developed an approach, where two-dimensional gel electrophoresis (2DE) was used, followed by sectional analysis of the whole gel using high-resolution nano-liquid chromatography-mass spectrometry (ESI LC-MS/MS). In this study, we applied this approach on the panoramic analysis of proteins and their proteoforms from normal (liver) and cancer (HepG2) cells. This allowed us to detect, in a single proteome, about 20,000 proteoforms coded by more than 4000 genes. A set of 3D-graphs showing distribution of these proteoforms in 2DE maps (profiles) was generated. A comparative analysis of these profiles between normal and cancer cells showed high variability and dynamics of many proteins. Among these proteins, there are some well-known features like alpha-fetoprotein (FETA) or glypican-3 (GPC3) and potential hepatocellular carcinoma (HCC) markers. More detailed information about their proteoforms could be used for generation of panels of more specific biomarkers.
Collapse
|
363
|
Rosa-Fernandes L, Rocha VB, Carregari VC, Urbani A, Palmisano G. A Perspective on Extracellular Vesicles Proteomics. Front Chem 2017; 5:102. [PMID: 29209607 PMCID: PMC5702361 DOI: 10.3389/fchem.2017.00102] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 11/03/2017] [Indexed: 12/15/2022] Open
Abstract
Increasing attention has been given to secreted extracellular vesicles (EVs) in the past decades, especially in the portrayal of their molecular cargo and role as messengers in both homeostasis and pathophysiological conditions. This review presents the state-of-the-art proteomic technologies to identify and quantify EVs proteins along with their PTMs, interacting partners and structural details. The rapid growth of mass spectrometry-based analytical strategies for protein sequencing, PTMs and structural characterization has improved the level of molecular details that can be achieved from limited amount of EVs isolated from different biological sources. Here we will provide a perspective view on the achievements and challenges on EVs proteome characterization using mass spectrometry. A detailed bioinformatics approach will help us to picture the molecular fingerprint of EVs and understand better their pathophysiological function.
Collapse
Affiliation(s)
- Livia Rosa-Fernandes
- GlycoProteomics Laboratory, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Victória Bombarda Rocha
- GlycoProteomics Laboratory, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Andrea Urbani
- Proteomic and Metabonomic Laboratory, Fondazione Santa Lucia, Rome, Italy.,Institute of Biochemistry and Biochemical Clinic, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Giuseppe Palmisano
- GlycoProteomics Laboratory, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.,Proteomic and Metabonomic Laboratory, Fondazione Santa Lucia, Rome, Italy
| |
Collapse
|
364
|
Yi L, Piehowski PD, Shi T, Smith RD, Qian WJ. Advances in microscale separations towards nanoproteomics applications. J Chromatogr A 2017; 1523:40-48. [PMID: 28765000 PMCID: PMC6042839 DOI: 10.1016/j.chroma.2017.07.055] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Revised: 07/14/2017] [Accepted: 07/17/2017] [Indexed: 01/22/2023]
Abstract
Microscale separation (e.g., liquid chromatography or capillary electrophoresis) coupled with mass spectrometry (MS) has become the primary tool for advanced proteomics, an indispensable technology for gaining understanding of complex biological processes. In recent decades significant advances have been achieved in MS-based proteomics. However, the current proteomics platforms still face an analytical challenge in overall sensitivity towards nanoproteomics applications for starting materials of less than 1μg total proteins (e.g., cellular heterogeneity in tissue pathologies). Herein, we review recent advances in microscale separation techniques and integrated sample processing strategies that improve the overall sensitivity and proteome coverage of the proteomics workflow, and their contributions towards nanoproteomics applications.
Collapse
Affiliation(s)
- Lian Yi
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352, United States
| | - Paul D Piehowski
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352, United States
| | - Tujin Shi
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352, United States
| | - Richard D Smith
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352, United States
| | - Wei-Jun Qian
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352, United States.
| |
Collapse
|
365
|
Hosp F, Mann M. A Primer on Concepts and Applications of Proteomics in Neuroscience. Neuron 2017; 96:558-571. [PMID: 29096073 DOI: 10.1016/j.neuron.2017.09.025] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 08/29/2017] [Accepted: 09/14/2017] [Indexed: 02/06/2023]
|
366
|
Sanders JD, Greer SM, Brodbelt JS. Integrating Carbamylation and Ultraviolet Photodissociation Mass Spectrometry for Middle-Down Proteomics. Anal Chem 2017; 89:11772-11778. [DOI: 10.1021/acs.analchem.7b03396] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- James D. Sanders
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Sylvester M. Greer
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Jennifer S. Brodbelt
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
367
|
Melani RD, Nogueira FCS, Domont GB. It is time for top-down venomics. J Venom Anim Toxins Incl Trop Dis 2017; 23:44. [PMID: 29075288 PMCID: PMC5648493 DOI: 10.1186/s40409-017-0135-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 09/21/2017] [Indexed: 12/19/2022] Open
Abstract
The protein composition of animal venoms is usually determined by peptide-centric proteomics approaches (bottom-up proteomics). However, this technique cannot, in most cases, distinguish among toxin proteoforms, herein called toxiforms, because of the protein inference problem. Top-down proteomics (TDP) analyzes intact proteins without digestion and provides high quality data to identify and characterize toxiforms. Denaturing top-down proteomics is the most disseminated subarea of TDP, which performs qualitative and quantitative analyzes of proteoforms up to ~30 kDa in high-throughput and automated fashion. On the other hand, native top-down proteomics provides access to information on large proteins (> 50 kDA) and protein interactions preserving non-covalent bonds and physiological complex stoichiometry. The use of native and denaturing top-down venomics introduced novel and useful techniques to toxinology, allowing an unprecedented characterization of venom proteins and protein complexes at the toxiform level. The collected data contribute to a deep understanding of venom natural history, open new possibilities to study the toxin evolution, and help in the development of better biotherapeutics.
Collapse
Affiliation(s)
- Rafael D. Melani
- Proteomics Unit, Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Av. Athos da Silveira Ramos, 149, CT A-542, Cidade Universitária, Rio de Janeiro, RJ CEP 21941-909 Brazil
| | - Fabio C. S. Nogueira
- Proteomics Unit, Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Av. Athos da Silveira Ramos, 149, CT A-542, Cidade Universitária, Rio de Janeiro, RJ CEP 21941-909 Brazil
| | - Gilberto B. Domont
- Proteomics Unit, Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Av. Athos da Silveira Ramos, 149, CT A-542, Cidade Universitária, Rio de Janeiro, RJ CEP 21941-909 Brazil
| |
Collapse
|
368
|
Greening DW, Kapp EA, Simpson RJ. The Peptidome Comes of Age: Mass Spectrometry-Based Characterization of the Circulating Cancer Peptidome. Enzymes 2017; 42:27-64. [PMID: 29054270 DOI: 10.1016/bs.enz.2017.08.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Peptides play a seminal role in most physiological processes acting as neurotransmitters, hormones, antibiotics, and immune regulation. In the context of tumor biology, it is hypothesized that endogenous peptides, hormones, cytokines, growth factors, and aberrant degradation of select protein networks (e.g., enzymatic activities, protein shedding, and extracellular matrix remodeling) are fundamental in mediating cancer progression. Analysis of peptides in biological fluids by mass spectrometry holds promise of providing sensitive and specific diagnostic and prognostic information for cancer and other diseases. The identification of circulating peptides in the context of disease constitutes a hitherto source of new clinical biomarkers. The field of peptidomics can be defined as the identification and comprehensive analysis of physiological and pathological peptides. Like proteomics, peptidomics has been advanced by the development of new separation strategies, analytical detection methods such as mass spectrometry, and bioinformatic technologies. Unlike proteomics, peptidomics is targeted toward identifying endogenous protein and peptide fragments, defining proteolytic enzyme substrate specificity, as well as protease cleavage recognition (degradome). Peptidomics employs "top-down proteomics" strategies where mass spectrometry is applied at the proteoform level to analyze intact proteins and large endogenous peptide fragments. With recent advances in prefractionation workflows for separating peptides, mass spectrometry instrumentation, and informatics, peptidomics is an important field that promises to impact on translational medicine. This review covers the current advances in peptidomics, including top-down and imaging mass spectrometry, comprehensive quantitative peptidome analyses (developments in reproducibility and coverage), peptide prefractionation and enrichment workflows, peptidomic data analyses, and informatic tools. The application of peptidomics in cancer biomarker discovery will be discussed.
Collapse
Affiliation(s)
- David W Greening
- La Trobe Institute for Molecular Science (LIMS), La Trobe University, Melbourne, Victoria, Australia.
| | - Eugene A Kapp
- Systems Biology & Personalised Medicine Division, Walter & Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Florey Institute of Neuroscience, Parkville, Victoria, Australia; University of Melbourne, Parkville, Victoria, Australia
| | - Richard J Simpson
- La Trobe Institute for Molecular Science (LIMS), La Trobe University, Melbourne, Victoria, Australia.
| |
Collapse
|
369
|
von Tesmar A, Hoffmann M, Pippel J, Fayad AA, Dausend-Werner S, Bauer A, Blankenfeldt W, Müller R. Total Biosynthesis of the Pyrrolo[4,2]benzodiazepine Scaffold Tomaymycin on an In Vitro Reconstituted NRPS System. Cell Chem Biol 2017; 24:1216-1227.e8. [PMID: 28890318 DOI: 10.1016/j.chembiol.2017.08.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 05/19/2017] [Accepted: 08/01/2017] [Indexed: 11/25/2022]
Abstract
In vitro reconstitution and biochemical analysis of natural product biosynthetic pathways remains a challenging endeavor, especially if megaenzymes of the nonribosomal peptide synthetase (NRPS) type are involved. In theory, all biosynthetic steps may be deciphered using mass spectrometry (MS)-based analyses of both the carrier protein-coupled intermediates and the free intermediates. We here report the "total biosynthesis" of the pyrrolo[4,2]benzodiazepine scaffold tomaymycin using an in vitro reconstituted NRPS system. Proteoforms were analyzed by liquid chromatography (LC)-MS to decipher every step of the biosynthesis on its respective megasynthetase with up to 170 kDa in size. To the best of our knowledge, this is the first report of a comprehensive analysis of virtually all chemical steps involved in the biosynthesis of nonribosomally synthesized natural products. The study includes experiments to determine substrate specificities of the corresponding A-domains in competition assays by analyzing the adenylation step as well as the transfer to the respective carrier protein domain.
Collapse
Affiliation(s)
- Alexander von Tesmar
- Department of Microbial Natural Products (MINS), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI) and Institute for Pharmaceutical Biotechnology, Saarland University, 66123 Saarbrücken, Germany; German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany
| | - Michael Hoffmann
- Department of Microbial Natural Products (MINS), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI) and Institute for Pharmaceutical Biotechnology, Saarland University, 66123 Saarbrücken, Germany; German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany
| | - Jan Pippel
- Structure and Function of Proteins, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124 Braunschweig, Germany
| | - Antoine Abou Fayad
- Department of Microbial Natural Products (MINS), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI) and Institute for Pharmaceutical Biotechnology, Saarland University, 66123 Saarbrücken, Germany; German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany
| | - Stefan Dausend-Werner
- Department of Microbial Natural Products (MINS), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI) and Institute for Pharmaceutical Biotechnology, Saarland University, 66123 Saarbrücken, Germany
| | - Armin Bauer
- Sanofi-Aventis Deutschland GmbH, R&D Therapeutic Area Infectious Diseases, Industriepark Höchst G878, 65926 Frankfurt am Main, Germany
| | - Wulf Blankenfeldt
- Structure and Function of Proteins, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124 Braunschweig, Germany; Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Spielmannstrasse 7, 38106 Braunschweig, Germany
| | - Rolf Müller
- Department of Microbial Natural Products (MINS), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI) and Institute for Pharmaceutical Biotechnology, Saarland University, 66123 Saarbrücken, Germany; German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany.
| |
Collapse
|
370
|
Anderson LC, Håkansson M, Walse B, Nilsson CL. Intact Protein Analysis at 21 Tesla and X-Ray Crystallography Define Structural Differences in Single Amino Acid Variants of Human Mitochondrial Branched-Chain Amino Acid Aminotransferase 2 (BCAT2). JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2017; 28:1796-1804. [PMID: 28681360 PMCID: PMC5556139 DOI: 10.1007/s13361-017-1705-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 04/21/2017] [Accepted: 04/29/2017] [Indexed: 05/16/2023]
Abstract
Structural technologies are an essential component in the design of precision therapeutics. Precision medicine entails the development of therapeutics directed toward a designated target protein, with the goal to deliver the right drug to the right patient at the right time. In the field of oncology, protein structural variants are often associated with oncogenic potential. In a previous proteogenomic screen of patient-derived glioblastoma (GBM) tumor materials, we identified a sequence variant of human mitochondrial branched-chain amino acid aminotransferase 2 as a putative factor of resistance of GBM to standard-of-care-treatments. The enzyme generates glutamate, which is neurotoxic. To elucidate structural coordinates that may confer altered substrate binding or activity of the variant BCAT2 T186R, a ~45 kDa protein, we applied combined ETD and CID top-down mass spectrometry in a LC-FT-ICR MS at 21 T, and X-Ray crystallography in the study of both the variant and non-variant intact proteins. The combined ETD/CID fragmentation pattern allowed for not only extensive sequence coverage but also confident localization of the amino acid variant to its position in the sequence. The crystallographic experiments confirmed the hypothesis generated by in silico structural homology modeling, that the Lys59 side-chain of BCAT2 may repulse the Arg186 in the variant protein (PDB code: 5MPR), leading to destabilization of the protein dimer and altered enzyme kinetics. Taken together, the MS and novel 3D structural data give us reason to further pursue BCAT2 T186R as a precision drug target in GBM. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Lissa C Anderson
- Ion Cyclotron Resonance Program, National High Magnetic Field Laboratory, 1800 E. Paul Dirac Dr., Tallahassee, FL, 32310, USA
| | - Maria Håkansson
- SARomics Biostructures AB, Medicon Village, SE-223 81, Lund, Sweden
| | - Björn Walse
- SARomics Biostructures AB, Medicon Village, SE-223 81, Lund, Sweden
| | - Carol L Nilsson
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch, 301 University Blvd., Galveston, TX, 77555-1074, USA.
- Institute of Clinical Sciences-Lund, Lund University, SE-221 85, Lund, Sweden.
| |
Collapse
|
371
|
Toby TK, Abecassis M, Kim K, Thomas PM, Fellers RT, LeDuc RD, Kelleher NL, Demetris J, Levitsky J. Proteoforms in Peripheral Blood Mononuclear Cells as Novel Rejection Biomarkers in Liver Transplant Recipients. Am J Transplant 2017; 17:2458-2467. [PMID: 28510335 PMCID: PMC5612406 DOI: 10.1111/ajt.14359] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 04/20/2017] [Accepted: 05/06/2017] [Indexed: 01/25/2023]
Abstract
Biomarker profiles of acute rejection in liver transplant recipients could enhance the diagnosis and management of recipients. Our aim was to identify diagnostic proteoform signatures of acute rejection in circulating immune cells, using an emergent "top-down" proteomics methodology. We prepared differentially processed and cryopreserved cell lysates from 26 nonviral liver transplant recipients by molecular weight-based fractionation and analyzed them by mass spectrometry of whole proteins in three steps: (i) Nanocapillary liquid chromatography coupled with high-resolution tandem mass spectrometry; (ii) database searching to identify and characterize intact proteoforms; (iii) data processing through a hierarchical linear model matching the study design to quantify proteoform fold changes in patients with rejection versus normal liver function versus acute dysfunction without rejection. Differentially expressed proteoforms were seen in patients with rejection versus normal and nonspecific controls, most evidently in the cell preparations stored in traditional serum-rich media. Mapping analysis of these proteins back to genes through gene ontology and pathway analysis tools revealed multiple signaling pathways, including inflammation mediated by cytokines and chemokines. Larger studies are needed to validate these novel rejection signatures and test their predictive value for use in clinical management.
Collapse
Affiliation(s)
- T. K. Toby
- Department of Molecular Biosciences and Chemistry, Northwestern University, Chicago, IL
| | - M. Abecassis
- Comprehensive Transplant Center, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - K. Kim
- Department of Molecular Biosciences and Chemistry, Northwestern University, Chicago, IL
| | - P. M. Thomas
- Department of Molecular Biosciences and Chemistry, Northwestern University, Chicago, IL,National Resource for Translational & Developmental Proteomics, Northwestern University, Chicago, IL
| | - R. T. Fellers
- National Resource for Translational & Developmental Proteomics, Northwestern University, Chicago, IL
| | - R. D. LeDuc
- National Resource for Translational & Developmental Proteomics, Northwestern University, Chicago, IL
| | - N. L. Kelleher
- Department of Molecular Biosciences and Chemistry, Northwestern University, Chicago, IL,National Resource for Translational & Developmental Proteomics, Northwestern University, Chicago, IL
| | - J. Demetris
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA
| | - J. Levitsky
- Comprehensive Transplant Center, Northwestern University Feinberg School of Medicine, Chicago, IL,Division of Gastroenterology and Hepatology, Northwestern University Feinberg School of Medicine, Chicago, IL,Corresponding author: Josh Levitsky,
| |
Collapse
|
372
|
Brody DL, Jiang H, Wildburger N, Esparza TJ. Non-canonical soluble amyloid-beta aggregates and plaque buffering: controversies and future directions for target discovery in Alzheimer's disease. Alzheimers Res Ther 2017; 9:62. [PMID: 28818091 PMCID: PMC5561579 DOI: 10.1186/s13195-017-0293-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The specific amyloid-beta (Aβ) species or other amyloid-precursor protein cleavage products that are most directly related to human neurodegeneration and clinical dementia of the Alzheimer's type have not yet been directly identified. Without a clear understanding of the most relevant species, it is difficult to determine whether therapeutic candidates successfully engaged the correct target(s). Here, we review some of the controversies regarding soluble Aβ aggregates (also termed oligomers, dimers, trimers, Aβ*56, amylospheroids, etc.) and propose experiments designed to move forward towards new therapeutic approaches. Specifically, we review the increasing evidence for the relevance of non-canonical forms of Aβ, the much more potent toxicity attributable to native species than to synthetic Aβ, and the evidence implicating the ratio of soluble Aβ aggregates to plaques in differentiating demented patients from non-demented high Aβ plaque pathology controls. To move forward, we propose four related directions. 1) Narrowing the focus to species derived from human Alzheimer's disease (AD) brain tissue, as opposed to synthetic Aβ, cell culture-derived species, or species primarily present in animal models. 2) Careful study of differences between patients with dementia of the Alzheimer's type vs. non-demented controls with high Aβ plaque pathology. This will involve testing the hypothesis that, under some circumstances, plaques may buffer soluble toxic species, but later release them into the surrounding milieu. 3) Investigations of other protein constituents of soluble Aβ aggregates in addition to Aβ itself. Our initial data based on chemical cleavage experiments indicate that other proteins do appear to be part of the human brain soluble Aβ aggregates. 4) Multimodal experimental assessments of toxicity, including longer term effects on synapse loss, related deleterious cellular responses, and degeneration in human-derived neuron-like cells. Overall, the goal is to identify specific Aβ species, other amyloid precursor protein cleavage products, or other key proteins in aggregates present in human AD brains, less abundant in non-demented high pathology control brains, and robustly toxic in a wide variety of relevant assays. These species themselves, the enzymatic or cellular processes involved in their production, and their routes of clearance would be highly relevant therapeutic targets for dementia of the Alzheimer's type.
Collapse
Affiliation(s)
- David L. Brody
- Department of Neurology, Washington University School of Medicine, 660 South Euclid Avenue, Box 8111, St Louis, Missouri 63110 USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, 660 South Euclid Avenue, Box 8111, St Louis, Missouri 63110 USA
| | - Hao Jiang
- Department of Neurology, Washington University School of Medicine, 660 South Euclid Avenue, Box 8111, St Louis, Missouri 63110 USA
| | - Norelle Wildburger
- Department of Neurology, Washington University School of Medicine, 660 South Euclid Avenue, Box 8111, St Louis, Missouri 63110 USA
| | - Thomas J. Esparza
- Department of Neurology, Washington University School of Medicine, 660 South Euclid Avenue, Box 8111, St Louis, Missouri 63110 USA
| |
Collapse
|
373
|
Capitanio D, Moriggi M, Gelfi C. Mapping the human skeletal muscle proteome: progress and potential. Expert Rev Proteomics 2017; 14:825-839. [PMID: 28780899 DOI: 10.1080/14789450.2017.1364996] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
INTRODUCTION Human skeletal muscle represents 40% of our body mass and deciphering its proteome composition to further understand mechanisms regulating muscle function under physiological and pathological conditions has proved a challenge. The inter-individual variability, the presence of structurally and functionally different muscle types and the high protein dynamic range require carefully selected methodologies for the assessment of the muscle proteome. Furthermore, physiological studies are understandingly hampered by ethical issues related to biopsies on healthy subjects, making it difficult to recruit matched controls essential for comparative studies. Areas covered: This review critically analyses studies performed on muscle to date and identifies what still remains unknown or poorly investigated in physiological and pathological states, such as training, aging, metabolic disorders and muscular dystrophies. Expert commentary: Efforts should be made on biological fluid analyses targeting low abundant/low molecular weight fragments generated from muscle cell disruption to improve diagnosis and clinical monitoring. From a methodological point of view, particular attention should be paid to improve the characterization of intact proteins and unknown post translational modifications to better understand the molecular mechanisms of muscle disorders.
Collapse
Affiliation(s)
- Daniele Capitanio
- a Department of Biomedical Sciences for Health , University of Milan , Segrate , Milan , Italy
| | - Manuela Moriggi
- a Department of Biomedical Sciences for Health , University of Milan , Segrate , Milan , Italy
| | - Cecilia Gelfi
- a Department of Biomedical Sciences for Health , University of Milan , Segrate , Milan , Italy
| |
Collapse
|
374
|
Yan R, Zhang J, Zellmer L, Chen L, Wu D, Liu S, Xu N, Liao JD. Probably less than one-tenth of the genes produce only the wild type protein without at least one additional protein isoform in some human cancer cell lines. Oncotarget 2017; 8:82714-82727. [PMID: 29137297 PMCID: PMC5669923 DOI: 10.18632/oncotarget.20015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 06/30/2017] [Indexed: 11/25/2022] Open
Abstract
To estimate how many genes produce multiple protein isoforms, we electrophoresed proteins from MCF7 and MDA-MB231 (MB231) human breast cancer cells in SDS-PAGE and excised narrow stripes of the gel at the 48kD, 55kD and 72kD. Proteins in these stripes were identified using liquid chromatography and tandem mass spectrometry. A total of 765, 750 and 679 proteins from MB231 cells, as well as 470, 390 and 490 proteins from MCF7 cells, were identified from the 48kD, 55kD and 72kD stripes, respectively. We arbitrarily allowed a 10% technical variation from the proteins' theoretical molecular mass (TMM) and considered those proteins with their TMMs within the 43-53 kD, 49-61 kD and 65-79 kD ranges as the wild type (WT) expected from the corresponding stripe, whereas those with a TMM above or below this range as a smaller- or larger-group, respectively. Only 263 (34.4%), 269 (35.9%) and 151 (22.2%) proteins from MB231 cells and 117 (24.9%), 135 (34.6%) and 130 (26.5%) proteins from MCF7 cells from the 48kD, 55kD and 72kD stripes, respectively, belonged to the WT, while the remaining majority belonged to the smaller- or larger-groups. Only about 3-16%, on average about 10% regardless of the stripe and cell line, of the proteins appeared in only one stripe and within the WT range, while the remaining preponderance appeared also in additional stripe(s) or had a larger or smaller TMM. We conclude that few (fewer than 10%) of the human genes produce only the WT protein without additional isoform(s).
Collapse
Affiliation(s)
- Rui Yan
- Nephrology Department, Guizhou Medical University Hospital, Guiyang, P.R. China
| | - Ju Zhang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, P.R. China
| | - Lucas Zellmer
- Hormel Institute, University of Minnesota, Austin, Minnesota, USA
| | - Lichan Chen
- Hormel Institute, University of Minnesota, Austin, Minnesota, USA
| | - Di Wu
- Beijing Protein Innovation Co., Ltd, Beijing, P.R. China
| | - Siqi Liu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, P.R. China
| | - Ningzhi Xu
- Laboratory of Cell and Molecular Biology & State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P.R. China
| | - Joshua D Liao
- Department of Pathology, Guizhou Medical University Hospital, Guiyang, P.R. China
| |
Collapse
|
375
|
Greer SM, Holden DD, Fellers R, Kelleher NL, Brodbelt JS. Modulation of Protein Fragmentation Through Carbamylation of Primary Amines. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2017; 28:1587-1599. [PMID: 28374316 PMCID: PMC5624212 DOI: 10.1007/s13361-017-1648-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 02/28/2017] [Accepted: 03/02/2017] [Indexed: 05/23/2023]
Abstract
We evaluate the impact of carbamylation of the primary amines of the side-chains of Lys and the N-termini on the fragmentation of intact protein ions and the chromatographic properties of a mixture of E. coli ribosomal proteins. The fragmentation patterns of the six unmodified and carbamylated proteins obtained by higher energy collision dissociation (HCD) and ultraviolet photodissociation (UVPD) were compared. Carbamylation significantly reduced the total number of protons retained by the protein owing to the conversion of basic primary amines to non-basic carbamates. Carbamylation caused a significant negative impact on fragmentation of the protein by HCD (i.e., reduced sequence coverage and fewer diagnostic fragment ions) consistent with the mobile proton model, which correlates peptide fragmentation with charge distribution and the opportunity for charge-directed pathways. In addition, fragmentation was enhanced near the N- and C-termini upon HCD of carbamylated proteins. For LCMS/MS analysis of E. coli ribosomal proteins, the retention times increased by 16 min on average upon carbamylation, an outcome attributed to the increased hydrophobicity of the proteins after carbamylation. As noted for both the six model proteins and the ribosomal proteins, carbamylation had relatively little impact on the distribution or types of fragment ions product by UVPD, supporting the proposition that the mechanism of UVPD for intact proteins does not reflect the mobile proton model. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Sylvester M Greer
- Department of Chemistry, University of Texas at Austin, Austin, TX, 78712, USA
| | - Dustin D Holden
- Department of Chemistry, University of Texas at Austin, Austin, TX, 78712, USA
| | - Ryan Fellers
- National Resource for Translational and Developmental Proteomics, Northwestern University, Evanston, IL, 60208, USA
| | - Neil L Kelleher
- National Resource for Translational and Developmental Proteomics, Northwestern University, Evanston, IL, 60208, USA
- Departments of Chemistry, Molecular Biosciences, and the Feinberg School of Medicine, Northwestern University, Evanston, IL, 60208, USA
| | - Jennifer S Brodbelt
- Department of Chemistry, University of Texas at Austin, Austin, TX, 78712, USA.
| |
Collapse
|
376
|
Malaney P, Uversky VN, Davé V. PTEN proteoforms in biology and disease. Cell Mol Life Sci 2017; 74:2783-2794. [PMID: 28289760 PMCID: PMC11107534 DOI: 10.1007/s00018-017-2500-6] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 02/23/2017] [Accepted: 03/02/2017] [Indexed: 01/30/2023]
Abstract
Proteoforms are specific molecular forms of protein products arising from a single gene that possess different structures and different functions. Therefore, a single gene can produce a large repertoire of proteoforms by means of allelic variations (mutations, indels, SNPs), alternative splicing and other pre-translational mechanisms, post-translational modifications (PTMs), conformational dynamics, and functioning. Resulting proteoforms that have different sizes, alternative splicing patterns, sets of post-translational modifications, protein-protein interactions, and protein-ligand interactions, might dramatically increase the functionality of the encoded protein. Herein, we have interrogated the tumor suppressor PTEN for its proteoforms and find that this protein exists in multiple forms with distinct functions and sub-cellular localizations. Furthermore, the levels of each PTEN proteoform in a given cell may affect its biological function. Indeed, the paradigm of the continuum model of tumor suppression by PTEN can be better explained by the presence of a continuum of PTEN proteoforms, diversity, and levels of which are associated with pathological outcomes than simply by the different roles of mutations in the PTEN gene. Consequently, understanding the mechanisms underlying the dysregulation of PTEN proteoforms by several genomic and non-genomic mechanisms in cancer and other diseases is imperative. We have identified different PTEN proteoforms, which control various aspects of cellular function and grouped them into three categories of intrinsic, function-induced, and inducible proteoforms. A special emphasis is given to the inducible PTEN proteoforms that are produced due to alternative translational initiation. The novel finding that PTEN forms dimers with biological implications supports the notion that PTEN proteoform-proteoform interactions may play hitherto unknown roles in cellular homeostasis and in pathogenic settings, including cancer. These PTEN proteoforms with unique properties and functionalities offer potential novel therapeutic opportunities in the treatment of various cancers and other diseases.
Collapse
Affiliation(s)
- Prerna Malaney
- Department of Pathology and Cell Biology, Morsani College of Medicine, MDC 64, University of South Florida, 12901 Bruce B Downs Blvd, Tampa, FL, 33612, USA
| | - Vladimir N Uversky
- Department of Molecular Medicine, Morsani College of Medicine, Tampa, FL, 33612, USA
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, Tikhoretsky Ave., Saint Petersburg, Russia, 194064
| | - Vrushank Davé
- Department of Pathology and Cell Biology, Morsani College of Medicine, MDC 64, University of South Florida, 12901 Bruce B Downs Blvd, Tampa, FL, 33612, USA.
- Department of Oncological Sciences, Morsani College of Medicine, University of South Florida, Bruce B. Downs Blvd, Tampa, FL, 33612, USA.
| |
Collapse
|
377
|
Pont L, Benavente F, Barbosa J, Sanz-Nebot V. On-line immunoaffinity solid-phase extraction capillary electrophoresis mass spectrometry using Fab´antibody fragments for the analysis of serum transthyretin. Talanta 2017; 170:224-232. [DOI: 10.1016/j.talanta.2017.03.104] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 03/29/2017] [Accepted: 03/31/2017] [Indexed: 02/08/2023]
|
378
|
A simple toolset to identify endogenous post-translational modifications for a target protein: a snapshot of the EGFR signaling pathway. Biosci Rep 2017; 37:BSR20170919. [PMID: 28724604 PMCID: PMC6192658 DOI: 10.1042/bsr20170919] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 06/22/2017] [Accepted: 07/18/2017] [Indexed: 12/17/2022] Open
Abstract
Identification of a novel post-translational modification (PTM) for a target protein, defining its physiologic role, and studying its potential crosstalk with other PTMs is a challenging process. A set of highly sensitive tools termed Signal-Seeker kits was developed, which enables rapid and simple detection of post-translational modifications on any target protein. The methodology for these tools utilizes affinity purification of modified proteins from a cell or tissue lysate and immunoblot analysis. These tools utilize a single lysis system that is effective at identifying endogenous, dynamic PTM changes, as well as the potential crosstalk between PTMs. As a proof-of-concept experiment, the acetylation, tyrosine phosphorylation, SUMOylation 2/3, and ubiquitination profiles of the EGFR - Ras - c-Fos axis were examined in response to EGF stimulation. All 10 previously identified PTMs of this signaling axis were confirmed using these tools, and it also identified acetylation as a novel modification of c-Fos. This axis in the EGF/EGFR signaling pathway was chosen because it is a well-established signaling pathway with proteins localized in the membrane, cytoplasmic, and nuclear compartments that ranged in abundance from 4.18x108 (EGFR) to 1.35x104 (c-Fos) molecules per A431 cell. These tools enabled the identification of low abundance PTMs, such as c-Fos Ac, at 17 molecules per cell. These studies highlight how pervasive PTMs are, and how stimulants like EGF induce multiple PTM changes on downstream signaling axis. Identification of endogenous changes and potential crosstalk between multiple PTMs for a target protein or signaling axis will provide regulatory mechanistic insight to investigators.
Collapse
|
379
|
Tholey A, Becker A. Top-down proteomics for the analysis of proteolytic events - Methods, applications and perspectives. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:2191-2199. [PMID: 28711385 DOI: 10.1016/j.bbamcr.2017.07.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 07/07/2017] [Accepted: 07/09/2017] [Indexed: 02/06/2023]
Abstract
Mass spectrometry based proteomics is an indispensable tool for almost all research areas relevant for the understanding of proteolytic processing, ranging from the identification of substrates, products and cleavage sites up to the analysis of structural features influencing protease activity. The majority of methods for these studies are based on bottom-up proteomics performing analysis at peptide level. As this approach is characterized by a number of pitfalls, e.g. loss of molecular information, there is an ongoing effort to establish top-down proteomics, performing separation and MS analysis both at intact protein level. We briefly introduce major approaches of bottom-up proteomics used in the field of protease research and highlight the shortcomings of these methods. We then discuss the present state-of-the-art of top-down proteomics. Together with the discussion of known challenges we show the potential of this approach and present a number of successful applications of top-down proteomics in protease research. This article is part of a Special Issue entitled: Proteolysis as a Regulatory Event in Pathophysiology edited by Stefan Rose-John.
Collapse
Affiliation(s)
- Andreas Tholey
- Systematic Proteome Research & Bioanalytics, Institute for Experimental Medicine, Christian-Albrechts-Universität zu Kiel, Kiel, Germany.
| | - Alexander Becker
- Systematic Proteome Research & Bioanalytics, Institute for Experimental Medicine, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| |
Collapse
|
380
|
Yang Y, Franc V, Heck AJ. Glycoproteomics: A Balance between High-Throughput and In-Depth Analysis. Trends Biotechnol 2017; 35:598-609. [DOI: 10.1016/j.tibtech.2017.04.010] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 04/15/2017] [Accepted: 04/20/2017] [Indexed: 11/25/2022]
|
381
|
Quick MM, Mehaffey MR, Johns RW, Parker WR, Brodbelt JS. SITS Derivatization of Peptides to Enhance 266 nm Ultraviolet Photodissociation (UVPD). JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2017; 28:1462-1472. [PMID: 28315237 DOI: 10.1007/s13361-017-1650-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/01/2017] [Accepted: 03/03/2017] [Indexed: 06/06/2023]
Abstract
N-terminal derivatization of peptides with the chromogenic reagent 4-acetamido-4-isothiocyanatostilbene-2,2-disulfonic acid (SITS) is demonstrated to enhance the efficiency of 266 nm ultraviolet photodissociation (UVPD). Attachment of the chromophore results in a mass shift of 454 Da and provides significant gains in the number and abundances of diagnostic fragment ions upon UVPD. Activation of SITS-tagged peptides with 266 nm UVPD leads to many fragment ions akin to the a/b/y ions commonly produced by CID, along with other sequence ions (c, x, and z) typically accessed through higher energy pathways. Extreme bias towards C-terminal fragment ions is observed upon activation of SITS-tagged peptides using multiple 266 nm laser pulses. Due to the high reaction efficiency of the isothiocyanate coupling to the N-terminus of peptides, we demonstrate the ability to adapt this strategy to a high-throughput LC-MS/MS workflow with 266 nm UVPD. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- M Montana Quick
- Department of Chemistry, University of Texas, Austin, TX, 78712, USA
| | - M Rachel Mehaffey
- Department of Chemistry, University of Texas, Austin, TX, 78712, USA
| | - Robert W Johns
- Department of Chemistry, University of California, Berkeley, CA, 94720, USA
- McKetta Department of Chemical Engineering, University of Texas, Austin, TX, 78712, USA
| | - W Ryan Parker
- Department of Chemistry, University of Texas, Austin, TX, 78712, USA
| | | |
Collapse
|
382
|
Riley NM, Hebert AS, Dürnberger G, Stanek F, Mechtler K, Westphall MS, Coon JJ. Phosphoproteomics with Activated Ion Electron Transfer Dissociation. Anal Chem 2017; 89:6367-6376. [PMID: 28383256 PMCID: PMC5555596 DOI: 10.1021/acs.analchem.7b00212] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The ability to localize phosphosites to specific amino acid residues is crucial to translating phosphoproteomic data into biological meaningful contexts. In a companion manuscript ( Anal. Chem. 2017 , DOI: 10.1021/acs.analchem.7b00213 ), we described a new implementation of activated ion electron transfer dissociation (AI-ETD) on a quadrupole-Orbitrap-linear ion trap hybrid MS system (Orbitrap Fusion Lumos), which greatly improved peptide fragmentation and identification over ETD and other supplemental activation methods. Here we present the performance of AI-ETD for identifying and localizing sites of phosphorylation in both phosphopeptides and intact phosphoproteins. Using 90 min analyses we show that AI-ETD can identify 24,503 localized phosphopeptide spectral matches enriched from mouse brain lysates, which more than triples identifications from standard ETD experiments and outperforms ETcaD and EThcD as well. AI-ETD achieves these gains through improved quality of fragmentation and MS/MS success rates for all precursor charge states, especially for doubly protonated species. We also evaluate the degree to which phosphate neutral loss occurs from phosphopeptide product ions due to the infrared photoactivation of AI-ETD and show that modifying phosphoRS (a phosphosite localization algorithm) to include phosphate neutral losses can significantly improve localization in AI-ETD spectra. Finally, we demonstrate the utility of AI-ETD in localizing phosphosites in α-casein, an ∼23.5 kDa phosphoprotein that showed eight of nine known phosphorylation sites occupied upon intact mass analysis. AI-ETD provided the greatest sequence coverage for all five charge states investigated and was the only fragmentation method to localize all eight phosphosites for each precursor. Overall, this work highlights the analytical value AI-ETD can bring to both bottom-up and top-down phosphoproteomics.
Collapse
Affiliation(s)
- Nicholas M. Riley
- Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Alexander S. Hebert
- Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Gerhard Dürnberger
- Institute of Molecular Pathology (IMP), Campus-Vienna-Biocenter 1, A-1030 Vienna, Austria
- GMI, Gregor Mendel Institute of Molecular Plant Biology, Dr. Bohr Gasse 3, A-1030 Vienna, Austria
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Dr. Bohr Gasse 3, A-1030 Vienna, Austria
| | - Florian Stanek
- Institute of Molecular Pathology (IMP), Campus-Vienna-Biocenter 1, A-1030 Vienna, Austria
| | - Karl Mechtler
- Institute of Molecular Pathology (IMP), Campus-Vienna-Biocenter 1, A-1030 Vienna, Austria
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Dr. Bohr Gasse 3, A-1030 Vienna, Austria
| | - Michael S. Westphall
- Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Joshua J. Coon
- Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Morgridge Institute for Research, Madison, Wisconsin, USA
| |
Collapse
|
383
|
Riley NM, Westphall MS, Coon JJ. Activated Ion-Electron Transfer Dissociation Enables Comprehensive Top-Down Protein Fragmentation. J Proteome Res 2017; 16:2653-2659. [PMID: 28608681 DOI: 10.1021/acs.jproteome.7b00249] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Here we report the first demonstration of near-complete sequence coverage of intact proteins using activated ion-electron transfer dissociation (AI-ETD), a method that leverages concurrent infrared photoactivation to enhance electron-driven dissociation. AI-ETD produces mainly c/z-type product ions and provides comprehensive (77-97%) protein sequence coverage, outperforming HCD, ETD, and EThcD for all proteins investigated. AI-ETD also maintains this performance across precursor ion charge states, mitigating charge-state dependence that limits traditional approaches.
Collapse
Affiliation(s)
| | | | - Joshua J Coon
- Morgridge Institute for Research , Madison, Wisconsin 53715, United States
| |
Collapse
|
384
|
Haverland NA, Skinner OS, Fellers RT, Tariq AA, Early BP, LeDuc RD, Fornelli L, Compton PD, Kelleher NL. Defining Gas-Phase Fragmentation Propensities of Intact Proteins During Native Top-Down Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2017; 28:1203-1215. [PMID: 28374312 PMCID: PMC5452613 DOI: 10.1007/s13361-017-1635-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 02/17/2017] [Accepted: 02/20/2017] [Indexed: 05/03/2023]
Abstract
Fragmentation of intact proteins in the gas phase is influenced by amino acid composition, the mass and charge of precursor ions, higher order structure, and the dissociation technique used. The likelihood of fragmentation occurring between a pair of residues is referred to as the fragmentation propensity and is calculated by dividing the total number of assigned fragmentation events by the total number of possible fragmentation events for each residue pair. Here, we describe general fragmentation propensities when performing top-down mass spectrometry (TDMS) using denaturing or native electrospray ionization. A total of 5311 matched fragmentation sites were collected for 131 proteoforms that were analyzed over 165 experiments using native top-down mass spectrometry (nTDMS). These data were used to determine the fragmentation propensities for 399 residue pairs. In comparison to denatured top-down mass spectrometry (dTDMS), the fragmentation pathways occurring either N-terminal to proline or C-terminal to aspartic acid were even more enhanced in nTDMS compared with other residues. More generally, 257/399 (64%) of the fragmentation propensities were significantly altered (P ≤ 0.05) when using nTDMS compared with dTDMS, and of these, 123 were altered by 2-fold or greater. The most notable enhancements of fragmentation propensities for TDMS in native versus denatured mode occurred (1) C-terminal to aspartic acid, (2) between phenylalanine and tryptophan (F|W), and (3) between tryptophan and alanine (W|A). The fragmentation propensities presented here will be of high value in the development of tailored scoring systems used in nTDMS of both intact proteins and protein complexes. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Nicole A Haverland
- Department of Chemistry and Molecular Biosciences and the Proteomics Center of Excellence, Northwestern University, 2170 Campus Drive, Evanston, IL, 60208, USA
| | - Owen S Skinner
- Department of Chemistry and Molecular Biosciences and the Proteomics Center of Excellence, Northwestern University, 2170 Campus Drive, Evanston, IL, 60208, USA
| | - Ryan T Fellers
- Department of Chemistry and Molecular Biosciences and the Proteomics Center of Excellence, Northwestern University, 2170 Campus Drive, Evanston, IL, 60208, USA
| | - Areeba A Tariq
- Department of Chemistry and Molecular Biosciences and the Proteomics Center of Excellence, Northwestern University, 2170 Campus Drive, Evanston, IL, 60208, USA
| | - Bryan P Early
- Department of Chemistry and Molecular Biosciences and the Proteomics Center of Excellence, Northwestern University, 2170 Campus Drive, Evanston, IL, 60208, USA
| | - Richard D LeDuc
- Department of Chemistry and Molecular Biosciences and the Proteomics Center of Excellence, Northwestern University, 2170 Campus Drive, Evanston, IL, 60208, USA
| | - Luca Fornelli
- Department of Chemistry and Molecular Biosciences and the Proteomics Center of Excellence, Northwestern University, 2170 Campus Drive, Evanston, IL, 60208, USA
| | - Philip D Compton
- Department of Chemistry and Molecular Biosciences and the Proteomics Center of Excellence, Northwestern University, 2170 Campus Drive, Evanston, IL, 60208, USA
| | - Neil L Kelleher
- Department of Chemistry and Molecular Biosciences and the Proteomics Center of Excellence, Northwestern University, 2170 Campus Drive, Evanston, IL, 60208, USA.
| |
Collapse
|
385
|
Lombard-Banek C, Portero EP, Onjiko RM, Nemes P. New-generation mass spectrometry expands the toolbox of cell and developmental biology. Genesis 2017; 55. [PMID: 28095647 DOI: 10.1002/dvg.23012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Revised: 12/01/2016] [Accepted: 12/03/2016] [Indexed: 12/12/2022]
Abstract
Systems cell biology understanding of development requires characterization of all the molecules produced in the biological system. Decades of research and new-generation sequencing provided functional information on key genes and transcripts. However, there is less information available on how differential gene expression translates into the domains of functionally important proteins, peptides, and metabolites, and how changes in these molecules impact development. Mass spectrometry (MS) is the current technology of choice for the detection and quantification of large numbers of proteins and metabolites, because it requires no use of antibodies, functional probes, or a priori knowledge of molecules produced in the system. This review focuses on recent technologies that have improved MS sensitivity for proteins and metabolites and enabled new functionalities to assess their temporal and spatial changes during vertebrate embryonic development. This review highlights case studies, in which new-generation MS tools have enabled the study of hundreds-to-thousands of proteins and metabolites in tissues, cell populations, and single cells in model systems of vertebrate development, particularly the frog (Xenopus), zebrafish, and mouse. New-generation MS expands the toolbox of cell and developmental studies, raising exciting potentials to advance basic and translational research in the life sciences.
Collapse
Affiliation(s)
| | - Erika P Portero
- Department of Chemistry, The George Washington University, Washington, DC, 20052
| | - Rosemary M Onjiko
- Department of Chemistry, The George Washington University, Washington, DC, 20052
| | - Peter Nemes
- Department of Chemistry, The George Washington University, Washington, DC, 20052
| |
Collapse
|
386
|
Calvete JJ, Petras D, Calderón-Celis F, Lomonte B, Encinar JR, Sanz-Medel A. Protein-species quantitative venomics: looking through a crystal ball. J Venom Anim Toxins Incl Trop Dis 2017; 23:27. [PMID: 28465678 PMCID: PMC5408492 DOI: 10.1186/s40409-017-0116-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 04/19/2017] [Indexed: 12/16/2022] Open
Abstract
In this paper we discuss recent significant developments in the field of venom research, specifically the emergence of top-down proteomic applications that allow achieving compositional resolution at the level of the protein species present in the venom, and the absolute quantification of the venom proteins (the term “protein species” is used here to refer to all the different molecular forms in which a protein can be found. Please consult the special issue of Jornal of Proteomics “Towards deciphering proteomes via the proteoform, protein speciation, moonlighting and protein code concepts” published in 2016, vol. 134, pages 1-202). Challenges remain to be solved in order to achieve a compact and automated platform with which to routinely carry out comprehensive quantitative analysis of all toxins present in a venom. This short essay reflects the authors’ view of the immediate future in this direction for the proteomic analysis of venoms, particularly of snakes.
Collapse
Affiliation(s)
- Juan J Calvete
- Structural and Functional Venomics Laboratory, Instituto de Biomedicina de Valencia, C.S.I.C, Jaime Roig 11, 46010 Valencia, Spain
| | - Daniel Petras
- Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California-San Diego, La Jolla, CA USA
| | | | - Bruno Lomonte
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Jorge Ruiz Encinar
- Department of Physical and Analytical Chemistry, University of Oviedo, Oviedo, Spain
| | - Alfredo Sanz-Medel
- Department of Physical and Analytical Chemistry, University of Oviedo, Oviedo, Spain
| |
Collapse
|
387
|
Baucum AJ. Proteomic Analysis of Postsynaptic Protein Complexes Underlying Neuronal Plasticity. ACS Chem Neurosci 2017; 8:689-701. [PMID: 28211672 DOI: 10.1021/acschemneuro.7b00008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Normal neuronal communication and synaptic plasticity at glutamatergic synapses requires dynamic regulation of postsynaptic molecules. Protein expression and protein post-translational modifications regulate protein interactions that underlie this organization. In this Review, we highlight data obtained over the last 20 years that have used qualitative and quantitative proteomics-based approaches to identify postsynaptic protein complexes. Herein, we describe how these proteomics studies have helped lay the foundation for understanding synaptic physiology and perturbations in synaptic signaling observed in different pathologies. We also describe emerging technologies that can be useful in these analyses. We focus on protein complexes associated with the highly abundant and functionally critical proteins: calcium/calmodulin-dependent protein kinase II, the N-methyl-d-aspartate, and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid glutamate receptors, and postsynaptic density protein of 95 kDa.
Collapse
Affiliation(s)
- Anthony J. Baucum
- Department of Biology, Stark Neurosciences
Research Institute, Indiana University-Purdue University Indianapolis, 723 W. Michigan St., Indianapolis, Indiana 46202, United States
| |
Collapse
|
388
|
Cleland TP, DeHart CJ, Fellers RT, VanNispen AJ, Greer JB, LeDuc RD, Parker WR, Thomas PM, Kelleher NL, Brodbelt JS. High-Throughput Analysis of Intact Human Proteins Using UVPD and HCD on an Orbitrap Mass Spectrometer. J Proteome Res 2017; 16:2072-2079. [PMID: 28412815 DOI: 10.1021/acs.jproteome.7b00043] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The analysis of intact proteins (top-down strategy) by mass spectrometry has great potential to elucidate proteoform variation, including patterns of post-translational modifications (PTMs), which may not be discernible by analysis of peptides alone (bottom-up approach). To maximize sequence coverage and localization of PTMs, various fragmentation modes have been developed to produce fragment ions from deep within intact proteins. Ultraviolet photodissociation (UVPD) has recently been shown to produce high sequence coverage and PTM retention on a variety of proteins, with increasing evidence of efficacy on a chromatographic time scale. However, utilization of UVPD for high-throughput top-down analysis to date has been limited by bioinformatics. Here we detected 153 proteins and 489 proteoforms using UVPD and 271 proteins and 982 proteoforms using higher energy collisional dissociation (HCD) in a comparative analysis of HeLa whole-cell lysate by qualitative top-down proteomics. Of the total detected proteoforms, 286 overlapped between the UVPD and HCD data sets, with 68% of proteoforms having C scores greater than 40 for UVPD and 63% for HCD. The average sequence coverage (28 ± 20% for UVPD versus 17 ± 8% for HCD, p < 0.0001) was found to be higher for UVPD than HCD and with a trend toward improvement in q value for the UVPD data set. This study demonstrates the complementarity of UVPD and HCD for more extensive protein profiling and proteoform characterization.
Collapse
Affiliation(s)
- Timothy P Cleland
- Department of Chemistry, University of Texas at Austin , Austin, Texas 78712, United States
| | - Caroline J DeHart
- National Resource for Translational and Developmental Proteomics, Northwestern University , Evanston, Illinois 60208, United States
| | - Ryan T Fellers
- National Resource for Translational and Developmental Proteomics, Northwestern University , Evanston, Illinois 60208, United States
| | - Alexandra J VanNispen
- National Resource for Translational and Developmental Proteomics, Northwestern University , Evanston, Illinois 60208, United States
| | - Joseph B Greer
- National Resource for Translational and Developmental Proteomics, Northwestern University , Evanston, Illinois 60208, United States
| | - Richard D LeDuc
- National Resource for Translational and Developmental Proteomics, Northwestern University , Evanston, Illinois 60208, United States
| | - W Ryan Parker
- Department of Chemistry, University of Texas at Austin , Austin, Texas 78712, United States
| | - Paul M Thomas
- National Resource for Translational and Developmental Proteomics, Northwestern University , Evanston, Illinois 60208, United States.,Departments of Chemistry, Molecular Biosciences, and the Feinberg School of Medicine, Northwestern University , Evanston, Illinois 60208, United States
| | - Neil L Kelleher
- National Resource for Translational and Developmental Proteomics, Northwestern University , Evanston, Illinois 60208, United States.,Departments of Chemistry, Molecular Biosciences, and the Feinberg School of Medicine, Northwestern University , Evanston, Illinois 60208, United States
| | - Jennifer S Brodbelt
- Department of Chemistry, University of Texas at Austin , Austin, Texas 78712, United States
| |
Collapse
|
389
|
Jin P, Wang K, Huang C, Nice EC. Mining the fecal proteome: from biomarkers to personalised medicine. Expert Rev Proteomics 2017; 14:445-459. [PMID: 28361558 DOI: 10.1080/14789450.2017.1314786] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Fecal proteomics has gained increased prominence in recent years. It can provide insights into the diagnosis and surveillance of many bowel diseases by both identifying potential biomarkers in stool samples and helping identify disease-related pathways. Fecal proteomics has already shown its potential for the discovery and validation of biomarkers for colorectal cancer screening, and the analysis of fecal microbiota by MALDI-MS for the diagnosis of a range of bowel diseases is gaining clinical acceptance. Areas covered: Based on a comprehensive analysis of the current literature, we introduce the range of sensitive and specific proteomics methods which comprise the current 'Proteomics Toolbox', explain how the integration of fecal proteomics with data processing/bioinformatics has been used for the identification of potential biomarkers for both CRC and other gut-related pathologies and analysis of the fecal microbiome, outline some of the current fecal assays in current clinical practice and introduce the concept of personalised medicine which these technologies will help inform. Expert commentary: Integration of fecal proteomics with other proteomics and genomics strategies as well as bioinformatics is paving the way towards personalised medicine, which will bring with it improved global healthcare.
Collapse
Affiliation(s)
- Ping Jin
- a Key Laboratory of Tropical Diseases and Translational Medicine of Ministry of Education & Department of Neurology , the Affiliated Hospital of Hainan Medical College , Haikou , China.,b State Key Laboratory of Biotherapy and Cancer Center , West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy , Chengdu , P.R. China
| | - Kui Wang
- b State Key Laboratory of Biotherapy and Cancer Center , West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy , Chengdu , P.R. China
| | - Canhua Huang
- a Key Laboratory of Tropical Diseases and Translational Medicine of Ministry of Education & Department of Neurology , the Affiliated Hospital of Hainan Medical College , Haikou , China.,b State Key Laboratory of Biotherapy and Cancer Center , West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy , Chengdu , P.R. China
| | - Edouard C Nice
- b State Key Laboratory of Biotherapy and Cancer Center , West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy , Chengdu , P.R. China.,c Department of Biochemistry and Molecular Biology , Monash University , Clayton , Australia
| |
Collapse
|
390
|
Jean Beltran PM, Federspiel JD, Sheng X, Cristea IM. Proteomics and integrative omic approaches for understanding host-pathogen interactions and infectious diseases. Mol Syst Biol 2017; 13:922. [PMID: 28348067 PMCID: PMC5371729 DOI: 10.15252/msb.20167062] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Organisms are constantly exposed to microbial pathogens in their environments. When a pathogen meets its host, a series of intricate intracellular interactions shape the outcome of the infection. The understanding of these host–pathogen interactions is crucial for the development of treatments and preventive measures against infectious diseases. Over the past decade, proteomic approaches have become prime contributors to the discovery and understanding of host–pathogen interactions that represent anti‐ and pro‐pathogenic cellular responses. Here, we review these proteomic methods and their application to studying viral and bacterial intracellular pathogens. We examine approaches for defining spatial and temporal host–pathogen protein interactions upon infection of a host cell. Further expanding the understanding of proteome organization during an infection, we discuss methods that characterize the regulation of host and pathogen proteomes through alterations in protein abundance, localization, and post‐translational modifications. Finally, we highlight bioinformatic tools available for analyzing such proteomic datasets, as well as novel strategies for integrating proteomics with other omic tools, such as genomics, transcriptomics, and metabolomics, to obtain a systems‐level understanding of infectious diseases.
Collapse
Affiliation(s)
- Pierre M Jean Beltran
- Department of Molecular Biology, Lewis Thomas Laboratory, Princeton University, Princeton, NJ, USA
| | - Joel D Federspiel
- Department of Molecular Biology, Lewis Thomas Laboratory, Princeton University, Princeton, NJ, USA
| | - Xinlei Sheng
- Department of Molecular Biology, Lewis Thomas Laboratory, Princeton University, Princeton, NJ, USA
| | - Ileana M Cristea
- Department of Molecular Biology, Lewis Thomas Laboratory, Princeton University, Princeton, NJ, USA
| |
Collapse
|
391
|
Murray HC, Dun MD, Verrills NM. Harnessing the power of proteomics for identification of oncogenic, druggable signalling pathways in cancer. Expert Opin Drug Discov 2017; 12:431-447. [PMID: 28286965 DOI: 10.1080/17460441.2017.1304377] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Genomic and transcriptomic profiling of tumours has revolutionised our understanding of cancer. However, the majority of tumours possess multiple mutations, and determining which oncogene, or even which pathway, to target is difficult. Proteomics is emerging as a powerful approach to identify the functionally important pathways driving these cancers, and how they can be targeted therapeutically. Areas covered: The authors provide a technical overview of mass spectrometry based approaches for proteomic profiling, and review the current and emerging strategies available for the identification of dysregulated networks, pathways, and drug targets in cancer cells, with a key focus on the ability to profile cancer kinomes. The potential applications of mass spectrometry in the clinic are also highlighted. Expert opinion: The addition of proteomic information to genomic platforms - 'proteogenomics' - is providing unparalleled insight in cancer cell biology. Application of improved mass spectrometry technology and methodology, in particular the ability to analyse post-translational modifications (the PTMome), is providing a more complete picture of the dysregulated networks in cancer, and uncovering novel therapeutic targets. While the application of proteomics to discovery research will continue to rise, improved workflow standardisation and reproducibility is required before mass spectrometry can enter routine clinical use.
Collapse
Affiliation(s)
- Heather C Murray
- a School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, Priority Research Centre for Cancer Research, Innovation and Translation , University of Newcastle , Callaghan , NSW , Australia.,b Cancer Research Program , Hunter Medical Research Institute , Newcastle , NSW , Australia
| | - Matthew D Dun
- a School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, Priority Research Centre for Cancer Research, Innovation and Translation , University of Newcastle , Callaghan , NSW , Australia.,b Cancer Research Program , Hunter Medical Research Institute , Newcastle , NSW , Australia
| | - Nicole M Verrills
- a School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, Priority Research Centre for Cancer Research, Innovation and Translation , University of Newcastle , Callaghan , NSW , Australia.,b Cancer Research Program , Hunter Medical Research Institute , Newcastle , NSW , Australia
| |
Collapse
|
392
|
Fornelli L, Ayoub D, Aizikov K, Liu X, Damoc E, Pevzner PA, Makarov A, Beck A, Tsybin YO. Top-down analysis of immunoglobulin G isotypes 1 and 2 with electron transfer dissociation on a high-field Orbitrap mass spectrometer. J Proteomics 2017; 159:67-76. [PMID: 28242452 DOI: 10.1016/j.jprot.2017.02.013] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 01/22/2017] [Accepted: 02/13/2017] [Indexed: 12/27/2022]
Abstract
The increasing importance of immunoglobulins G (IgGs) as biotherapeutics calls for improved structural characterization methods designed for these large (~150kDa) macromolecules. Analysis workflows have to be rapid, robust, and require minimal sample preparation. In a previous work we showed the potential of Orbitrap Fourier transform mass spectrometry (FTMS) combined with electron transfer dissociation (ETD) for the top-down investigation of an intact IgG1, resulting in ~30% sequence coverage. Here, we describe a top-down analysis of two IgGs1 (adalimumab and trastuzumab) and one IgG2 (panitumumab) performed with ETD on a mass spectrometer equipped with a high-field Orbitrap mass analyzer. For the IgGs1, sequence coverage comparable to the previous results was achieved in a two-fold reduced number of summed transients, which corresponds, taken together with the significantly increased spectra acquisition rate, to ~six-fold improvement in analysis time. Furthermore, we studied the influence of ion-ion interaction times on ETD product ions for IgGs1, and the differences in fragmentation behavior between IgGs1 and IgG2, which present structural differences. Overall, these results reinforce the hypothesis that gas phase dissociation using both energy threshold-based and radical-driven ion activations is directed to specific regions of the polypeptide chains mostly by the location of disulfide bonds. SIGNIFICANCE OF THE STUDY Compared with our previous report, the results presented herein demonstrate the power of technological advances of the next generation Orbitrap™ platform, including the use of a high-field compact (i.e., D20) Orbitrap mass analyzer, and a dedicated manipulation strategy for large protein ions (via their trapping in the HCD collision cell along with reduction of the pressure in the cell). Notably, these important developments became recently commercially available in the top-end Orbitrap platforms under the name of "Protein Mode". Furthermore, we continued exploring the advantages offered by the summation (averaging) of transients (time-domain data) for improving the signal-to-noise ratio of top-down mass spectra. Finally, for the first time we report the application of the hybrid ion activation technique that combines electron transfer dissociation and higher energy collisional dissociation, known as EThcD, on intact monoclonal antibodies. Under these specific instrumental parameters, EThcD produces a partially complementary fragmentation pattern compared to ETD, increasing the overall sequence coverage especially at the protein termini.
Collapse
Affiliation(s)
- Luca Fornelli
- Biomolecular Mass Spectrometry Laboratory, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Daniel Ayoub
- Biomolecular Mass Spectrometry Laboratory, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | | | - Xiaowen Liu
- Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, 46202 Indianapolis, IN, USA; Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, 46202 Indianapolis, IN, USA
| | - Eugen Damoc
- Thermo Fisher Scientific GmbH, 28199 Bremen, Germany
| | - Pavel A Pevzner
- Department of Computer Science and Engineering, University of California in San Diego, 92093 San Diego, CA, USA
| | | | - Alain Beck
- Centre d'Immunologie Pierre Fabre, 74160 St Julien-en-Genevois, France
| | - Yury O Tsybin
- Biomolecular Mass Spectrometry Laboratory, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland; Spectroswiss Sàrl, EPFL Innovation Park, 1015 Lausanne, Switzerland.
| |
Collapse
|
393
|
Gil G, Mao P, Avula B, Ali Z, Chittiboyina AG, Khan IA, Walker LA, Wang D. Proteoform-Specific Protein Binding of Small Molecules in Complex Matrices. ACS Chem Biol 2017; 12:389-397. [PMID: 28001351 PMCID: PMC5315634 DOI: 10.1021/acschembio.6b01018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Characterizing the specific binding between protein targets and small molecules is critically important for drug discovery. Conventional assays require isolation and purification of small molecules from complex matrices through multistep chromatographic fractionation, which may alter their original bioactivity. Most proteins undergo posttranslational modification, and only certain proteoforms have the right conformation with accessible domains and available residues for small molecule binding. We developed a top-down mass spectrometry (MS) centric workflow for rapid evaluation of the bioactivity of crude botanical extracts after a one-step reaction. Our assay distinguished covalent from noncovalent binding and mapped the residue for covalent binding between bioactive constituents and specific proteoforms of the target protein. We augmented our approach with a nanoflow liquid chromatography-selected reaction monitoring (SRM)-MS assay for simultaneous identification and label-free multiplex quantitation of small molecules in the crude botanical extracts. Our assay was validated for various proteoforms of human serum albumin, which plays a key role in pharmacokinetics of small molecules in vivo. We demonstrated the utility of our proteoform-specific assay for evaluating thymoquinone in crude botanical extracts, studying its pharmacokinetics in human blood, and interpreting its toxicity to human breast cancer cells in tissue culture.
Collapse
Affiliation(s)
- Geuncheol Gil
- Newomics Inc., Emeryville, California 94608, United States
| | - Pan Mao
- Newomics Inc., Emeryville, California 94608, United States
| | - Bharathi Avula
- National Center for Natural Products Research, The University of Mississippi, University, Mississippi 38677, United States
| | - Zulfiqar Ali
- National Center for Natural Products Research, The University of Mississippi, University, Mississippi 38677, United States
| | - Amar G. Chittiboyina
- National Center for Natural Products Research, The University of Mississippi, University, Mississippi 38677, United States
| | - Ikhlas A. Khan
- National Center for Natural Products Research, The University of Mississippi, University, Mississippi 38677, United States
- Division of Pharmacognosy, Department of BioMolecular Sciences, School of Pharmacy, The University of Mississippi, University, Mississippi 38677, United States
| | - Larry A. Walker
- National Center for Natural Products Research, The University of Mississippi, University, Mississippi 38677, United States
- Division of Pharmacology, Department of BioMolecular Sciences, School of Pharmacy, The University of Mississippi, University, Mississippi 38677, United States
| | - Daojing Wang
- Newomics Inc., Emeryville, California 94608, United States
| |
Collapse
|
394
|
Fornelli L, Toby TK, Schachner LF, Doubleday PF, Srzentić K, DeHart CJ, Kelleher NL. Top-down proteomics: Where we are, where we are going? J Proteomics 2017; 175:3-4. [PMID: 28188863 DOI: 10.1016/j.jprot.2017.02.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 01/19/2017] [Accepted: 02/06/2017] [Indexed: 12/25/2022]
Affiliation(s)
- Luca Fornelli
- Departments of Chemistry and Molecular Biosciences, Northwestern University, 2170 Campus Drive, Evanston, IL 60208, United States
| | - Timothy K Toby
- Departments of Chemistry and Molecular Biosciences, Northwestern University, 2170 Campus Drive, Evanston, IL 60208, United States
| | - Luis F Schachner
- Departments of Chemistry and Molecular Biosciences, Northwestern University, 2170 Campus Drive, Evanston, IL 60208, United States
| | - Peter F Doubleday
- Departments of Chemistry and Molecular Biosciences, Northwestern University, 2170 Campus Drive, Evanston, IL 60208, United States
| | - Kristina Srzentić
- Departments of Chemistry and Molecular Biosciences, Northwestern University, 2170 Campus Drive, Evanston, IL 60208, United States
| | - Caroline J DeHart
- Departments of Chemistry and Molecular Biosciences, Northwestern University, 2170 Campus Drive, Evanston, IL 60208, United States
| | - Neil L Kelleher
- Departments of Chemistry and Molecular Biosciences, Northwestern University, 2170 Campus Drive, Evanston, IL 60208, United States.
| |
Collapse
|
395
|
Korte R, Happe J, Brümmer I, Brockmeyer J. Structural Characterization of the Allergenic 2S Albumin Cor a 14: Comparing Proteoform Patterns across Hazelnut Cultivars. J Proteome Res 2017; 16:988-998. [PMID: 28112517 DOI: 10.1021/acs.jproteome.6b00924] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The hazelnut allergen Cor a 14 belongs to the 2S albumins, a family of heterodimeric seed storage proteins exhibiting a high degree of structural diversity. Given its relevance as an allergen and the potential to elicit severe reactions, elucidation of the sequence heterogeneity of naturally occurring Cor a 14 is essential for the development of reliable diagnostics and risk evaluation. We therefore performed a comprehensive survey on the proteoforms of Cor a 14 and determined their quantitative distribution in three different hazelnut cultivars by a combinatory HPLC-HRMS approach including bottom-up and intact mass analysis. Compared with the Cor a 14 prototype sequence, we identified three sequence polymorphisms, two of the small and one of the large subunit, and elucidated their specific pairing on the protein level. Furthermore, we located a pronounced microheterogeneity on the protein termini and, for the first time, provide data on varying proteoform patterns between different cultivars of an allergenic seed. Together, these data present the basis for a more detailed investigation on the allergenicity of Cor a 14 in different cultivars and constitute, to be best of our knowledge, the largest set of proteoforms so far reported for a 2S albumin.
Collapse
Affiliation(s)
- Robin Korte
- Institute of Food Chemistry, Westfälische Wilhelms-Universität Münster , Corrensstraße 45, 48149 Münster, Germany
| | - Jana Happe
- Institute of Food Chemistry, Westfälische Wilhelms-Universität Münster , Corrensstraße 45, 48149 Münster, Germany
| | - Ina Brümmer
- Analytical Food Chemistry, University of Stuttgart , Allmandring 5b, 70569 Stuttgart, Germany
| | - Jens Brockmeyer
- Institute of Food Chemistry, Westfälische Wilhelms-Universität Münster , Corrensstraße 45, 48149 Münster, Germany.,Analytical Food Chemistry, University of Stuttgart , Allmandring 5b, 70569 Stuttgart, Germany
| |
Collapse
|
396
|
Gilany K, Minai-Tehrani A, Amini M, Agharezaee N, Arjmand B. The Challenge of Human Spermatozoa Proteome: A Systematic Review. J Reprod Infertil 2017; 18:267-279. [PMID: 29062791 PMCID: PMC5641436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Currently, there are 20,197 human protein-coding genes in the most expertly curated database (UniProtKB/Swiss-Pro). Big efforts have been made by the international consortium, the Chromosome-Centric Human Proteome Project (C-HPP) and independent researchers, to map human proteome. In brief, anno 2017 the human proteome was outlined. The male factor contributes to 50% of infertility in couples. However, there are limited human spermatozoa proteomic studies. Firstly, the development of the mapping of the human spermatozoa was analyzed. The human spermatozoa have been used as a model for missing proteins. It has been shown that human spermatozoa are excellent sources for finding missing proteins. Y chromosome proteome mapping is led by Iran. However, it seems that it is extremely challenging to map the human spermatozoa Y chromosome proteins based on current mass spectrometry-based proteomics technology. Post-translation modifications (PTMs) of human spermatozoa proteome are the most unexplored area and currently the exact role of PTMs in male infertility is unknown. Additionally, the clinical human spermatozoa proteomic analysis, anno 2017 was done in this study.
Collapse
Affiliation(s)
- Kambiz Gilany
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran, Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran,Corresponding Author: Kambiz Gilany, Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran, P.O. Box: 19615-1177 E-mail:
| | - Arash Minai-Tehrani
- Nanobiotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Mehdi Amini
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Niloofar Agharezaee
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran, Department of Genetics, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Babak Arjmand
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran, Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
397
|
Leney AC, Heck AJR. Native Mass Spectrometry: What is in the Name? JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2017; 28:5-13. [PMID: 27909974 PMCID: PMC5174146 DOI: 10.1007/s13361-016-1545-3] [Citation(s) in RCA: 440] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 10/25/2016] [Accepted: 10/28/2016] [Indexed: 05/11/2023]
Abstract
Electrospray ionization mass spectrometry (ESI-MS) is nowadays one of the cornerstones of biomolecular mass spectrometry and proteomics. Advances in sample preparation and mass analyzers have enabled researchers to extract much more information from biological samples than just the molecular weight. In particular, relevant for structural biology, noncovalent protein-protein and protein-ligand complexes can now also be analyzed by MS. For these types of analyses, assemblies need to be retained in their native quaternary state in the gas phase. This initial small niche of biomolecular mass spectrometry, nowadays often referred to as "native MS," has come to maturation over the last two decades, with dozens of laboratories using it to study mostly protein assemblies, but also DNA and RNA-protein assemblies, with the goal to define structure-function relationships. In this perspective, we describe the origins of and (re)define the term native MS, portraying in detail what we meant by "native MS," when the term was coined and also describing what it does (according to us) not entail. Additionally, we describe a few examples highlighting what native MS is, showing its successes to date while illustrating the wide scope this technology has in solving complex biological questions. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Aneika C Leney
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584CH, Utrecht, The Netherlands
- Netherlands Proteomics Center, Padualaan 8, 3584CH, Utrecht, The Netherlands
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584CH, Utrecht, The Netherlands.
- Netherlands Proteomics Center, Padualaan 8, 3584CH, Utrecht, The Netherlands.
| |
Collapse
|
398
|
Ramadan N, Ghazale H, El-Sayyad M, El-Haress M, Kobeissy FH. Neuroproteomics Studies: Challenges and Updates. Methods Mol Biol 2017; 1598:3-19. [PMID: 28508355 DOI: 10.1007/978-1-4939-6952-4_1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The Human Genome Project in 2003 has resulted in the complete sequence of ~99% of the human genome paving the road for the Human Proteome Project (HPP) assessing the full characterization of the translated protein map of the 20,300 protein-coding genes. Consequently, the emerging of the proteomics field has successfully been adopted as the method of choice for the proteome characterization. Proteomics is a term that is used to encompass multidisciplinary approaches combining different technologies that aim to study the entire spectrum of protein changes at a specific physiological condition. Proteomics research has shown excellent outcomes in different fields, among which is neuroscience; however, the complexity of the nervous systems necessitated the genesis of a new subdiscipline of proteomics termed as "neuroproteomics." Neuroproteomics studies involve assessing the quantitative and qualitative aspects of nervous system components encompassing global dynamic events underlying various brain-related disorders ranging from neuropsychiatric disorders, degenerative disorders, mental illness, and most importantly brain-specific neurotrauma-related injuries. In this introductory chapter, we will provide a brief historical perspective on the field of neuroproteomics. In doing so, we will highlight on the recent applications of neuroproteomics in the areas of neurotrauma, an area that has benefitted from neuroproteomics in terms of biomarker research, spatiotemporal injury mechanism, and its use to translate its findings from experimental settings to human translational applications. Importantly, this chapter will include some recommendation to the general studies in the area of neuroproteomics and the need to move from this field from being a descriptive, hypothesis-free approach to being an independent mature scientific discipline.
Collapse
Affiliation(s)
- Naify Ramadan
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Hussein Ghazale
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | | | - Mohamad El-Haress
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Faculty of Medicine, Beirut Arab University, Beirut, Lebanon
| | - Firas H Kobeissy
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.
- Department of Psychiatry, Center for Neuroproteomics and Biomarkers Research, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
399
|
Fornelli L, Durbin KR, Fellers RT, Early BP, Greer JB, LeDuc RD, Compton PD, Kelleher NL. Advancing Top-down Analysis of the Human Proteome Using a Benchtop Quadrupole-Orbitrap Mass Spectrometer. J Proteome Res 2016; 16:609-618. [PMID: 28152595 DOI: 10.1021/acs.jproteome.6b00698] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Over the past decade, developments in high resolution mass spectrometry have enabled the high throughput analysis of intact proteins from complex proteomes, leading to the identification of thousands of proteoforms. Several previous reports on top-down proteomics (TDP) relied on hybrid ion trap-Fourier transform mass spectrometers combined with data-dependent acquisition strategies. To further reduce TDP to practice, we use a quadrupole-Orbitrap instrument coupled with software for proteoform-dependent data acquisition to identify and characterize nearly 2000 proteoforms at a 1% false discovery rate from human fibroblasts. By combining a 3 m/z isolation window with short transients to improve specificity and signal-to-noise for proteoforms >30 kDa, we demonstrate improving proteome coverage by capturing 439 proteoforms in the 30-60 kDa range. Three different data acquisition strategies were compared and resulted in the identification of many proteoforms not observed in replicate data-dependent experiments. Notably, the data set is reported with updated metrics and tools including a new viewer and assignment of permanent proteoform record identifiers for inclusion of highly characterized proteoforms (i.e., those with C-scores >40) in a repository curated by the Consortium for Top-Down Proteomics.
Collapse
Affiliation(s)
- Luca Fornelli
- Departments of Chemistry and Molecular Biosciences, Northwestern University , 2170 Campus Drive, Evanston, Illinois 60208, United States
| | - Kenneth R Durbin
- Departments of Chemistry and Molecular Biosciences, Northwestern University , 2170 Campus Drive, Evanston, Illinois 60208, United States
| | - Ryan T Fellers
- Departments of Chemistry and Molecular Biosciences, Northwestern University , 2170 Campus Drive, Evanston, Illinois 60208, United States
| | - Bryan P Early
- Departments of Chemistry and Molecular Biosciences, Northwestern University , 2170 Campus Drive, Evanston, Illinois 60208, United States
| | - Joseph B Greer
- Departments of Chemistry and Molecular Biosciences, Northwestern University , 2170 Campus Drive, Evanston, Illinois 60208, United States
| | - Richard D LeDuc
- Departments of Chemistry and Molecular Biosciences, Northwestern University , 2170 Campus Drive, Evanston, Illinois 60208, United States
| | - Philip D Compton
- Departments of Chemistry and Molecular Biosciences, Northwestern University , 2170 Campus Drive, Evanston, Illinois 60208, United States
| | - Neil L Kelleher
- Departments of Chemistry and Molecular Biosciences, Northwestern University , 2170 Campus Drive, Evanston, Illinois 60208, United States
| |
Collapse
|
400
|
Affiliation(s)
- Dobrin Nedelkov
- Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| |
Collapse
|