351
|
Technologies to Address Plant microRNA Functions. CONCEPTS AND STRATEGIES IN PLANT SCIENCES 2020. [DOI: 10.1007/978-3-030-35772-6_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
352
|
Identification, characterization and expression analysis of passion fruit ( Passiflora edulis) microRNAs. 3 Biotech 2020; 10:25. [PMID: 31938684 PMCID: PMC6938847 DOI: 10.1007/s13205-019-2000-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 11/29/2019] [Indexed: 02/04/2023] Open
Abstract
microRNAs (miRNAs) are highly conserved, short (~ 21-nucleotide), endogenous, non-coding RNA molecules that play major roles in post-transcriptional silencing by guiding target mRNA cleavage or translational inhibition. In this study, applying high-stringent genome-wide computational-based approaches, a total of 28 putative miRNAs belonging to 17 miRNA families were identified from an antioxidant-rich medicinal plant passion fruit (Passiflora edulis). Inter-tissue (leaves and fruits) and inter-varietal (yellow and purple fruit varieties) quantitative study of six putative passion fruit miRNAs (ped-miR160, ped-miR164, ped-miR166, ped-miR393, ped-miR394, and ped-miR398) showed differential expression. Using psRNATarget tool, a total of 25 potential target proteins of the characterized passion fruit miRNAs were also identified. Most of the target proteins identified in this study, including SQUAMOSA promoter binding, Class III HD-Zip, NAC, Scarecrow, APETALA2, Auxin response factor, MYB, and superoxide dismutase, were found to be involved in development, metabolism, and defense/stress response signaling.
Collapse
|
353
|
Esposito S, Aversano R, Bradeen JM, Di Matteo A, Villano C, Carputo D. Deep-sequencing of Solanum commersonii small RNA libraries reveals riboregulators involved in cold stress response. PLANT BIOLOGY (STUTTGART, GERMANY) 2020; 22 Suppl 1:133-142. [PMID: 30597710 DOI: 10.1111/plb.12955] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 12/22/2018] [Indexed: 06/09/2023]
Abstract
Among wild species used in potato breeding, Solanum commersonii displays the highest tolerance to low temperatures under both acclimated (ACC) and non-acclimated (NACC) conditions. It is also the first wild potato relative with a known whole genome sequence. Recent studies have shown that abiotic stresses induce changes in the expression of many small non-coding RNA (sncRNA). We determined the small non-coding RNA (sncRNAome) of two clones of S. commersonii contrasting in their cold response phenotypes via smRNAseq. Differential analysis provided evidence that expression of several miRNAs changed in response to cold stress conditions. Conserved miR408a and miR408b changed their expression under NACC conditions, whereas miR156 and miR169 were differentially expressed only under ACC conditions. We also report changes in tasiRNA and secondary siRNA expression under both stress conditions. Our results reveal possible roles of sncRNA in the regulatory networks associated with tolerance to low temperatures and provide useful information for a more strategic use of genomic resources in potato breeding.
Collapse
Affiliation(s)
- S Esposito
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - R Aversano
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - J M Bradeen
- Department of Plant Pathology and The Stakman-Borlaug Center for Sustainable Plant Health, University of Minnesota, St. Paul, MN, USA
| | - A Di Matteo
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - C Villano
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - D Carputo
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| |
Collapse
|
354
|
Svoboda P. Key Mechanistic Principles and Considerations Concerning RNA Interference. FRONTIERS IN PLANT SCIENCE 2020; 11:1237. [PMID: 32903622 PMCID: PMC7438612 DOI: 10.3389/fpls.2020.01237] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 07/28/2020] [Indexed: 05/03/2023]
Abstract
Canonical RNAi, one of the so-called RNA-silencing mechanisms, is defined as sequence-specific RNA degradation induced by long double-stranded RNA (dsRNA). RNAi occurs in four basic steps: (i) processing of long dsRNA by RNase III Dicer into small interfering RNA (siRNA) duplexes, (ii) loading of one of the siRNA strands on an Argonaute protein possessing endonucleolytic activity, (iii) target recognition through siRNA basepairing, and (iv) cleavage of the target by the Argonaute's endonucleolytic activity. This basic pathway diversified and blended with other RNA silencing pathways employing small RNAs. In some organisms, RNAi is extended by an amplification loop employing an RNA-dependent RNA polymerase, which generates secondary siRNAs from targets of primary siRNAs. Given the high specificity of RNAi and its presence in invertebrates, it offers an opportunity for highly selective pest control. The aim of this text is to provide an introductory overview of key mechanistic aspects of RNA interference for understanding its potential and constraints for its use in pest control.
Collapse
|
355
|
Jiang Y, Peng J, Wang M, Su W, Gan X, Jing Y, Yang X, Lin S, Gao Y. The Role of EjSPL3, EjSPL4, EjSPL5, and EjSPL9 in Regulating Flowering in Loquat ( Eriobotrya japonica Lindl.). Int J Mol Sci 2019; 21:ijms21010248. [PMID: 31905863 PMCID: PMC6981807 DOI: 10.3390/ijms21010248] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 12/10/2019] [Accepted: 12/16/2019] [Indexed: 12/14/2022] Open
Abstract
The age pathway is important for regulating flower bud initiation in flowering plants. The major regulators in this pathway are miR156 and SPL transcription factors. To date, SPL genes have been identified in many species of plants. Loquat, as a woody fruit tree of Rosaceae, is unique in flowering time as it blooms in winter. However, the study of its SPL homologous genes on the regulation mechanism of flowering time is still limited. In this study, four SPL homologs—EjSPL3, EjSPL4, EjSPL5, and EjSPL9—are cloned from loquat, and phylogenetic analysis showed that they share a high sequence similarity with the homologues from other plants, including a highly conserved SQUAMOSA promoter binding protein (SBP)-box domain. EjSPL3, EjSPL4, EjSPL5 are localized in the cytoplasm and nucleus, and EjSPL9 is localized only in the nucleus. EjSPL4, EjSPL5, and EjSPL9 can significantly activate the promoters of EjSOC1-1, EjLFY-1, and EjAP1-1; overexpression of EjSPL3, EjSPL4, EjSPL5, and EjSPL9 in wild-type Arabidopsis thaliana can promote flowering obviously, and downstream flowering genes expression were upregulated. Our work indicated that the EjSPL3, EjSPL4, EjSPL5, and EjSPL9 transcription factors are speculated to likely participate in flower bud differentiation and other developmental processes in loquat. These findings are helpful to analyze the flowering regulation mechanism of loquat and provide reference for the study of the flowering mechanism of other woody fruit trees.
Collapse
Affiliation(s)
- Yuanyuan Jiang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Horticulture, South China Agricultural University, Wushan Road 483, Tianhe District, Guangzhou 510642, China; (Y.J.); (J.P.); (M.W.); (W.S.); (X.G.); (X.Y.)
| | - Jiangrong Peng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Horticulture, South China Agricultural University, Wushan Road 483, Tianhe District, Guangzhou 510642, China; (Y.J.); (J.P.); (M.W.); (W.S.); (X.G.); (X.Y.)
| | - Man Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Horticulture, South China Agricultural University, Wushan Road 483, Tianhe District, Guangzhou 510642, China; (Y.J.); (J.P.); (M.W.); (W.S.); (X.G.); (X.Y.)
| | - Wenbing Su
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Horticulture, South China Agricultural University, Wushan Road 483, Tianhe District, Guangzhou 510642, China; (Y.J.); (J.P.); (M.W.); (W.S.); (X.G.); (X.Y.)
| | - Xiaoqing Gan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Horticulture, South China Agricultural University, Wushan Road 483, Tianhe District, Guangzhou 510642, China; (Y.J.); (J.P.); (M.W.); (W.S.); (X.G.); (X.Y.)
| | - Yi Jing
- BGI Genomics, BGI-Shenzhen, Shenzhen 518083, China;
| | - Xianghui Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Horticulture, South China Agricultural University, Wushan Road 483, Tianhe District, Guangzhou 510642, China; (Y.J.); (J.P.); (M.W.); (W.S.); (X.G.); (X.Y.)
| | - Shunquan Lin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Horticulture, South China Agricultural University, Wushan Road 483, Tianhe District, Guangzhou 510642, China; (Y.J.); (J.P.); (M.W.); (W.S.); (X.G.); (X.Y.)
- Correspondence: (S.L.); (Y.G.); Tel.: +86-13380055716 (S.L.); +86-15692001878 (Y.G.)
| | - Yongshun Gao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Horticulture, South China Agricultural University, Wushan Road 483, Tianhe District, Guangzhou 510642, China; (Y.J.); (J.P.); (M.W.); (W.S.); (X.G.); (X.Y.)
- Beijing Academy of Forestry and Pomology Sciences, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100093, China
- Correspondence: (S.L.); (Y.G.); Tel.: +86-13380055716 (S.L.); +86-15692001878 (Y.G.)
| |
Collapse
|
356
|
MicroRNAs and their targeted genes associated with phase changes of stem explants during tissue culture of tea plant. Sci Rep 2019; 9:20239. [PMID: 31882926 PMCID: PMC6934718 DOI: 10.1038/s41598-019-56686-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 12/13/2019] [Indexed: 11/08/2022] Open
Abstract
Elucidation of the molecular mechanism related to the dedifferentiation and redifferentiation during tissue culture will be useful for optimizing regeneration system of tea plant. In this study, an integrated sRNAome and transcriptome analyses were carried out during phase changes of the stem explant culture. Among 198 miRNAs and 8001 predicted target genes, 178 differentially expressed miRNAs and 4264 potential targets were screened out from explants, primary calli, as well as regenerated roots and shoots. According to KEGG analysis of the potential targets, pathway of "aminoacyl-tRNA biosynthesis", "proteasome" and "glutathione metabolism" was of great significance during the dedifferentiation, and pathway of "porphyrin and chlorophyll metabolism", "mRNA surveillance pathway", "nucleotide excision repair" was indispensable for redifferentiation of the calli. Expression pattern of 12 miRNAs, including csn-micR390e, csn-miR156b-5p, csn-miR157d-5p, csn-miR156, csn-miR166a-3p, csn-miR166e, csn-miR167d, csn-miR393c-3p, csn-miR394, csn-miR396a-3p, csn-miR396 and csn-miR396e-3p, was validated by qRT-PCR among 57 differentially expressed phase-specific miRNAs. Validation also confirmed that regulatory module of csn-miR167d/ERF3, csn-miR156/SPB1, csn-miR166a-3p/ATHB15, csn-miR396/AIP15A, csn-miR157d-5p/GST and csn-miR393c-3p/ATG18b might play important roles in regulating the phase changes during tissue culture of stem explants.
Collapse
|
357
|
Sánchez-Sanuy F, Peris-Peris C, Tomiyama S, Okada K, Hsing YI, San Segundo B, Campo S. Osa-miR7695 enhances transcriptional priming in defense responses against the rice blast fungus. BMC PLANT BIOLOGY 2019; 19:563. [PMID: 31852430 PMCID: PMC6921540 DOI: 10.1186/s12870-019-2156-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 11/21/2019] [Indexed: 05/14/2023]
Abstract
BACKGROUND MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression at the post-transcriptional level in eukaryotes. In rice, MIR7695 expression is regulated by infection with the rice blast fungus Magnaporthe oryzae with subsequent down-regulation of an alternatively spliced transcript of natural resistance-associated macrophage protein 6 (OsNramp6). NRAMP6 functions as an iron transporter in rice. RESULTS Rice plants grown under high iron supply showed blast resistance, which supports that iron is a factor in controlling blast resistance. During pathogen infection, iron accumulated in the vicinity of M. oryzae appressoria, the sites of pathogen entry, and in cells surrounding infected regions of the rice leaf. Activation-tagged MIR7695 rice plants (MIR7695-Ac) exhibited enhanced iron accumulation and resistance to M. oryzae infection. RNA-seq analysis revealed that blast resistance in MIR7695-Ac plants was associated with strong induction of defense-related genes, including pathogenesis-related and diterpenoid biosynthetic genes. Levels of phytoalexins during pathogen infection were higher in MIR7695-Ac than wild-type plants. Early phytoalexin biosynthetic genes, OsCPS2 and OsCPS4, were also highly upregulated in wild-type rice plants grown under high iron supply. CONCLUSIONS Our data support a positive role of miR7695 in regulating rice immunity that further underpin links between defense and iron signaling in rice. These findings provides a basis to better understand regulatory mechanisms involved in rice immunity in which miR7695 participates which has a great potential for the development of strategies to improve blast resistance in rice.
Collapse
Affiliation(s)
- Ferran Sánchez-Sanuy
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus Universitat Autònoma de Barcelona (UAB), Bellaterra (Cerdanyola del Vallés), Barcelona, Spain
| | - Cristina Peris-Peris
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus Universitat Autònoma de Barcelona (UAB), Bellaterra (Cerdanyola del Vallés), Barcelona, Spain
| | - Shiho Tomiyama
- Biotechnology Research Center, The University of Tokyo, Tokyo, Japan
| | - Kazunori Okada
- Biotechnology Research Center, The University of Tokyo, Tokyo, Japan
| | - Yue-Ie Hsing
- Institute of Plant and Microrbial Biology, Academia Sinica, Taipei, Taiwan
| | - Blanca San Segundo
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus Universitat Autònoma de Barcelona (UAB), Bellaterra (Cerdanyola del Vallés), Barcelona, Spain
- Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
| | - Sonia Campo
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus Universitat Autònoma de Barcelona (UAB), Bellaterra (Cerdanyola del Vallés), Barcelona, Spain
| |
Collapse
|
358
|
Hu Z, Shen X, Xiang X, Cao J. Evolution of MIR159/319 genes in Brassica campestris and their function in pollen development. PLANT MOLECULAR BIOLOGY 2019; 101:537-550. [PMID: 31745746 DOI: 10.1007/s11103-019-00920-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Accepted: 10/03/2019] [Indexed: 05/14/2023]
Abstract
MIR159/319 have conserved evolution and diversified function after WGT in Brassica campestris, both of them can lead pollen vitality and germination abnormality, Bra-MIR319c also can function in flower development. MiR159 and miR319 are extensively studied highly conserved microRNAs which play roles in vegetative development, reproduction, and hormone regulation. In this study, the effects of whole-genome triplication (WGT) on the evolution of the MIR159/319 family and the functional diversification of the genes were comprehensively investigated in Brassica campestris. We identified 11 MIR159/319 genes in B. campestris, which produced five mature sequences. After analyzing the precursor sequences and phylogenetic tree, we found that Bra-MIR159/319 have evolutionary conservatism. Furthermore, Bra-MIR159/319 show functional diversification after WGT, as indicated by their expression patterns and the cis-element in their promoter. GUS signal showed that Bra-MIR159a and Bra-MIR319c can be expressed in anther but in different development stages. In B. campestris, overexpressed MIR159a and MIR319c contribute to late anther development and promote pollen abortion. Moreover, Bra-MIR319c can partially assume the function of MIR319a in flower development.
Collapse
Affiliation(s)
- Ziwei Hu
- Laboratory of Cell and Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, 310058, China
| | - Xiuping Shen
- Laboratory of Cell and Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, 310058, China
| | - Xun Xiang
- Laboratory of Cell and Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou, 310058, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou, 310058, China
| | - Jiashu Cao
- Laboratory of Cell and Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, 310058, China.
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou, 310058, China.
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou, 310058, China.
| |
Collapse
|
359
|
Prigigallo MI, Križnik M, De Paola D, Catalano D, Gruden K, Finetti-Sialer MM, Cillo F. Potato Virus Y Infection Alters Small RNA Metabolism and Immune Response in Tomato. Viruses 2019; 11:v11121100. [PMID: 31783643 PMCID: PMC6950276 DOI: 10.3390/v11121100] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 11/19/2019] [Accepted: 11/24/2019] [Indexed: 12/17/2022] Open
Abstract
Potato virus Y (PVY) isolate PVYC-to induces growth reduction and foliar symptoms in tomato, but new vegetation displays symptom recovery at a later stage. In order to investigate the role of micro(mi)RNA and secondary small(s)RNA-regulated mechanisms in tomato defenses against PVY, we performed sRNA sequencing from healthy and PVYC-to infected tomato plants at 21 and 30 days post-inoculation (dpi). A total of 792 miRNA sequences were obtained, among which were 123 canonical miRNA sequences, many isomiR variants, and 30 novel miRNAs. MiRNAs were mostly overexpressed in infected vs. healthy plants, whereas only a few miRNAs were underexpressed. Increased accumulation of isomiRs was correlated with viral infection. Among miRNA targets, enriched functional categories included resistance (R) gene families, transcription and hormone factors, and RNA silencing genes. Several 22-nt miRNAs were shown to target R genes and trigger the production of 21-nt phased sRNAs (phasiRNAs). Next, 500 phasiRNA-generating loci were identified, and were shown to be mostly active in PVY-infected tissues and at 21 dpi. These data demonstrate that sRNA-regulated host responses, encompassing miRNA alteration, diversification within miRNA families, and phasiRNA accumulation, regulate R and disease-responsive genes. The dynamic regulation of miRNAs and secondary sRNAs over time suggests a functional role of sRNA-mediated defenses in the recovery phenotype.
Collapse
Affiliation(s)
- Maria I. Prigigallo
- Consiglio Nazionale delle Ricerche, Istituto per la Protezione Sostenibile delle Piante, G. Via Amendola 122/D, 70126 Bari, Italy;
| | - Maja Križnik
- National Institute of Biology, Department of Biotechnology and Systems Biology, Večna pot 111, 1000 Ljubljana, Slovenia; (M.K.); (K.G.)
| | - Domenico De Paola
- Consiglio Nazionale delle Ricerche, Istituto di Bioscienze e BioRisorse, Via G. Amendola 165/A, 70126 Bari, Italy;
| | - Domenico Catalano
- Consiglio Nazionale delle Ricerche, Istituto di Tecnologie Biomediche, Via G. Amendola 122/D, 70126 Bari, Italy;
| | - Kristina Gruden
- National Institute of Biology, Department of Biotechnology and Systems Biology, Večna pot 111, 1000 Ljubljana, Slovenia; (M.K.); (K.G.)
| | - Mariella M. Finetti-Sialer
- Consiglio Nazionale delle Ricerche, Istituto di Bioscienze e BioRisorse, Via G. Amendola 165/A, 70126 Bari, Italy;
- Correspondence: (M.M.F.-S.); (F.C.); Tel.: +39-080-55583400 (ext. 213) (M.M.F.-S.); +39-080-5443109 (F.C.)
| | - Fabrizio Cillo
- Consiglio Nazionale delle Ricerche, Istituto per la Protezione Sostenibile delle Piante, G. Via Amendola 122/D, 70126 Bari, Italy;
- Correspondence: (M.M.F.-S.); (F.C.); Tel.: +39-080-55583400 (ext. 213) (M.M.F.-S.); +39-080-5443109 (F.C.)
| |
Collapse
|
360
|
Marmisolle FE, Arizmendi A, Ribone A, Rivarola M, García ML, Reyes CA. Up-regulation of microRNA targets correlates with symptom severity in Citrus sinensis plants infected with two different isolates of citrus psorosis virus. PLANTA 2019; 251:7. [PMID: 31776669 DOI: 10.1007/s00425-019-03294-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 10/11/2019] [Indexed: 06/10/2023]
Abstract
MAIN CONCLUSION: miRNA targets from Citrus sinensis are predicted and validated using degradome data. They show an up-regulation upon infection with CPsV, with a positive correlation between target expression and symptom severity. Sweet orange (Citrus sinensis) may suffer from disease symptoms induced by virus infections, thus resulting in drastic economic losses. Infection of sweet orange plants with two isolates of citrus psorosis virus (CPsV), expressing different symptomatologies, alters the accumulation of a set of endogenous microRNAs (miRNAs). Here, we predicted ten putative targets from four down-regulated miRNAs: three belonging to the CCAAT-binding transcription factor family (CBFAs); an Ethylene-responsive transcription factor (RAP2-7); an Integrase-type DNA-binding superfamily protein (AP2B); Transport inhibitor response 1 (TIR1); GRR1-like protein 1-related (GRR1); Argonaute 2-related (AGO2), Argonaute 7 (AGO7), and a long non-coding RNA (ncRNA). We validated six of them through analysis of leaf degradome data. Expressions of the validated targets increase in infected samples compared to healthy tissue, showing a more striking up-regulation those samples with higher symptom severity. This study contributes to the understanding of the miRNA-mediated regulation of important transcripts in Citrus sinensis through target validation and shed light in the manner a virus can alter host regulatory mechanisms leading to symptom expression.
Collapse
Affiliation(s)
- Facundo E Marmisolle
- Instituto de Biotecnología y Biología Molecular, CCT-La Plata, CONICET-UNLP, Calles 47 y 115, 1900 La Plata, Buenos Aires, Argentina
| | - Ailín Arizmendi
- Instituto de Biotecnología y Biología Molecular, CCT-La Plata, CONICET-UNLP, Calles 47 y 115, 1900 La Plata, Buenos Aires, Argentina
| | - Andrés Ribone
- IABiMo, Conicet-INTA, CICVyA-INTA, Hurlingham, Buenos Aires, Argentina
| | - Máximo Rivarola
- IABiMo, Conicet-INTA, CICVyA-INTA, Hurlingham, Buenos Aires, Argentina
| | - María L García
- Instituto de Biotecnología y Biología Molecular, CCT-La Plata, CONICET-UNLP, Calles 47 y 115, 1900 La Plata, Buenos Aires, Argentina
| | - Carina A Reyes
- Instituto de Biotecnología y Biología Molecular, CCT-La Plata, CONICET-UNLP, Calles 47 y 115, 1900 La Plata, Buenos Aires, Argentina.
| |
Collapse
|
361
|
Hu Z, Liu T, Cao J. Functional Similarity and Difference among Bra-MIR319 Family in Plant Development. Genes (Basel) 2019; 10:genes10120952. [PMID: 31766424 PMCID: PMC6947622 DOI: 10.3390/genes10120952] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 11/10/2019] [Accepted: 11/13/2019] [Indexed: 12/02/2022] Open
Abstract
miR319 was the first plant miRNA discovered via forward genetic mutation screening. In this study, we found that miR319 family members had similar sequences but different expression patterns in Brassica campestris and Arabidopsis thaliana. RT-PCR analysis revealed that Bra-MIR319a and Bra-MIR319c had similar expression patterns and were widely expressed in plant development, whereas Bra-MIR319b could only be detected in stems. The overexpression of each Bra-MIR319 family member in Arabidopsis could inhibit cell division and function in leaf and petal morphogenesis. Bra-miR319a formed a new regulatory relationship after whole genome triplication, and Bra-MIR319a overexpressing in Arabidopsis led to the degradation of pollen content and affected the formation of intine, thereby causing pollen abortion. Our results suggest that Bra-MIR319 family members have functional similarity and difference in plant development.
Collapse
Affiliation(s)
- Ziwei Hu
- Laboratory of Cell and Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China; (Z.H.); (T.L.)
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou 310058, China
| | - Tingting Liu
- Laboratory of Cell and Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China; (Z.H.); (T.L.)
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou 310058, China
| | - Jiashu Cao
- Laboratory of Cell and Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China; (Z.H.); (T.L.)
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou 310058, China
- Correspondence: ; Tel.: +86-571-8898-2597
| |
Collapse
|
362
|
Ražná K, Cagáň Ľ. The Role of MicroRNAs in Genome Response to Plant-Lepidoptera Interaction. PLANTS (BASEL, SWITZERLAND) 2019; 8:E529. [PMID: 31757090 PMCID: PMC6963388 DOI: 10.3390/plants8120529] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/15/2019] [Accepted: 11/16/2019] [Indexed: 02/06/2023]
Abstract
RNA interference is a known phenomenon of plant immune responses, involving the regulation of gene expression. The key components triggering the silencing of targeted sequences are double-stranded RNA molecules. The regulation of host-pathogen interactions is controlled by miRNA molecules, which regulate the expression of host resistance genes or the genes of the pathogen. The review focused on basic principles of RNA interference as a gene-silencing-based defense mechanism and the role of miRNA molecules in insect genomes. RNA interference as a tool for plant protection management is discussed. The review summarizes current miRNA-based biotechnology approaches for plant protection management.
Collapse
Affiliation(s)
- Katarína Ražná
- Department of Genetics and Plant Breeding, Slovak University of Agriculture, 94976 Nitra, Slovakia
| | - Ľudovít Cagáň
- Department of Plant Protection; Slovak University of Agriculture, 94976 Nitra, Slovakia;
| |
Collapse
|
363
|
Huang YH, Peng SF, Lin YP, Cheng YM. The maize B chromosome is capable of expressing microRNAs and altering the expression of microRNAs derived from A chromosomes. Chromosome Res 2019; 28:129-138. [PMID: 31712937 DOI: 10.1007/s10577-019-09620-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 10/22/2019] [Accepted: 10/24/2019] [Indexed: 11/30/2022]
Abstract
Supernumerary B chromosomes (Bs) are nonessential chromosomes that are considered genetically inert. However, the maize B carries control elements that direct its behavior, such as that of nondisjunction, during the second pollen mitosis, and affects normal A chromosomes during cell division. Recently, the maize B has been found to contain transcriptionally active sequences and to affect the transcription of genes on A chromosomes. To better understand the regulatory mechanisms underlying the maize B, we constructed two small RNA libraries from maize B73 inbred lines with and without Bs. The sequencing results revealed that 18 known microRNAs (miRNAs) were significantly differentially expressed in response to the presence of the B, and most target mRNAs were characterized as transcription factors. Moreover, three novel B-derived miRNAs were identified via stem-loop reverse transcriptase-polymerase chain reaction (RT-PCR)-based analysis, and all showed consistent B-specific expression in almost all analyzed inbred lines and in all tissue types, including leaves, roots, and pollen grains. By the use of B-10L translocations, the three B-derived miRNAs were mapped to specific B regions. The results from this study suggest that the maize B can express miRNAs and affect the expression of A-derived miRNAs, which could regulate the expression of A-located genes.
Collapse
Affiliation(s)
- Yen-Hua Huang
- Department of Agronomy, National Chung Hsing University, 250 Kuo Kuang Road, Taichung, 402, Taiwan
| | - Shu-Fen Peng
- Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Yao-Pin Lin
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Ya-Ming Cheng
- Department of Agronomy, National Chung Hsing University, 250 Kuo Kuang Road, Taichung, 402, Taiwan.
| |
Collapse
|
364
|
da Silva RG, Rosa-Santos TM, França SDC, Kottapalli P, Kottapalli KR, Zingaretti SM. Microtranscriptome analysis of sugarcane cultivars in response to aluminum stress. PLoS One 2019; 14:e0217806. [PMID: 31697688 PMCID: PMC6837492 DOI: 10.1371/journal.pone.0217806] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 10/22/2019] [Indexed: 12/15/2022] Open
Abstract
Although several metallic elements are required for plant growth, excessive amounts of aluminum ions (Al3+) can result in the inhibition of root growth, thus triggering water and nutrient deficiencies. Plants under stress undergo gene expression changes in specific genes or post-transcriptional gene regulators, such as miRNAs, that can lead to stress tolerance. In this study, we investigated the miRNAs involved in the response of sugarcane to aluminum stress. Four miRNA libraries were generated using sugarcane roots of one tolerant and one sensitive sugarcane cultivar grown under aluminum stress and used to identify the miRNAs involved in the sugarcane aluminum toxicity response. The contrast in field phenotypes of sugarcane cultivars in the field during aluminum stress was reflected in the micro-transcriptome expression profiles. We identified 394 differentially expressed miRNAs in both cultivars, 104 of which were tolerant cultivar-specific, 116 were sensitive cultivar-specific, and 87 of which were common among cultivars. In addition, 52% of differentially expressed miRNAs were upregulated in the tolerant cultivar while the majority of differentially expressed miRNAs in the sensitive cultivar were downregulated. Real-time quantitative polymerase chain reaction was used to validate the expression levels of differentially expressed miRNAs. We also attempted to identify target genes of miRNAs of interest. Our results show that selected differentially expressed miRNAs of aluminum-stressed sugarcane cultivars play roles in signaling, root development, and lateral root formation. These genes thus may be important for aluminum tolerance in sugarcane and could be used in breeding programs to develop tolerant cultivars.
Collapse
Affiliation(s)
- Renan Gonçalves da Silva
- São Paulo State University (UNESP), School of Agricultural and Veterinarian Sciences, Jaboticabal, São Paulo, Brazil
| | - Thiago Mateus Rosa-Santos
- São Paulo State University (UNESP), School of Agricultural and Veterinarian Sciences, Jaboticabal, São Paulo, Brazil
- Department of Biotechnology, University of Ribeirão Preto, Ribeirão Preto, SP, Brazil
| | | | - Pratibha Kottapalli
- Center for Biotechnology and Genomics, Texas Tech University, Lubbock, Texas, United States of America
| | - Kameswara Rao Kottapalli
- Center for Biotechnology and Genomics, Texas Tech University, Lubbock, Texas, United States of America
| | - Sonia Marli Zingaretti
- Department of Biotechnology, University of Ribeirão Preto, Ribeirão Preto, SP, Brazil
- * E-mail:
| |
Collapse
|
365
|
Ochoa J, Valli A, Martín-Trillo M, Simón-Mateo C, García JA, Rodamilans B. Sterol isomerase HYDRA1 interacts with RNA silencing suppressor P1b and restricts potyviral infection. PLANT, CELL & ENVIRONMENT 2019; 42:3015-3026. [PMID: 31286514 DOI: 10.1111/pce.13610] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 07/05/2019] [Indexed: 06/09/2023]
Abstract
Plants use RNA silencing as a strong defensive barrier against virus challenges, and viruses counteract this defence by using RNA silencing suppressors (RSSs). With the objective of identifying host factors helping either the plant or the virus in this interaction, we have performed a yeast two-hybrid screen using P1b, the RSS protein of the ipomovirus Cucumber vein yellowing virus (CVYV, family Potyviridae), as a bait. The C-8 sterol isomerase HYDRA1 (HYD1), an enzyme involved in isoprenoid biosynthesis and cell membrane biology, and required for RNA silencing, was isolated in this screen. The interaction between CVYV P1b and HYD1 was confirmed in planta by Bimolecular Fluorescence Complementation assays. We demonstrated that HYD1 negatively impacts the accumulation of CVYV P1b in an agroinfiltration assay. Moreover, expression of HYD1 inhibited the infection of the potyvirus Plum pox virus, especially when antiviral RNA silencing was boosted by high temperature or by coexpression of homologous sequences. Our results reinforce previous evidence highlighting the relevance of particular composition and structure of cellular membranes for RNA silencing and viral infection. We report a new interaction of an RSS protein from the Potyviridae family with a member of the isoprenoid biosynthetic pathway.
Collapse
Affiliation(s)
- Jon Ochoa
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología-CSIC, Campus Universidad Autónoma de Madrid, Madrid, Spain
| | - Adrián Valli
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología-CSIC, Campus Universidad Autónoma de Madrid, Madrid, Spain
| | - Mar Martín-Trillo
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología-CSIC, Campus Universidad Autónoma de Madrid, Madrid, Spain
| | - Carmen Simón-Mateo
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología-CSIC, Campus Universidad Autónoma de Madrid, Madrid, Spain
| | - Juan Antonio García
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología-CSIC, Campus Universidad Autónoma de Madrid, Madrid, Spain
| | - Bernardo Rodamilans
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología-CSIC, Campus Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
366
|
Liang C, Hao J, Li J, Baker B, Luo L. Artificial microRNA-mediated resistance to cucumber green mottle mosaic virus in Nicotiana benthamiana. PLANTA 2019; 250:1591-1601. [PMID: 31388829 DOI: 10.1007/s00425-019-03252-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 07/29/2019] [Indexed: 06/10/2023]
Abstract
MAIN CONCLUSION We describe a Nicotiana benthamiana system for rapid identification of artificial microRNA (amiRNA) to control cucumber green mottle mosaic virus (CGMMV) disease. Although artificial miRNA technology has been used to control other viral diseases, it has not been applied to reduce severe cucumber green mottle mosaic virus (CGMMV) disease and crop loss in the economically important cucurbits. We used our system to identify three amiRNAs targeting CGMMV RNA (amiR1-CP, amiR4-MP and amiR6-Rep) and show that their expression reduces CGMMV replication and disease in virus-infected plants. This work streamlines the process of generating amiRNA virus-resistant crops and can be broadly applied to identify active antiviral amiRNAs against a broad spectrum of viruses to control disease in diverse crops.
Collapse
Affiliation(s)
- Chaoqiong Liang
- College of Plant Protection/Beijing Key Laboratory of Seed Disease Testing and Control, China Agricultural University, Beijing, 100193, China
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Jianjun Hao
- School of Food and Agriculture, The University of Maine, Orono, ME, 04469, USA
| | - Jianqiang Li
- College of Plant Protection/Beijing Key Laboratory of Seed Disease Testing and Control, China Agricultural University, Beijing, 100193, China
| | - Barbara Baker
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, 94720, USA.
- United States Department of Agriculture, Plant Gene Expression Center, Agricultural Research Service, Albany, CA, 94710, USA.
| | - Laixin Luo
- College of Plant Protection/Beijing Key Laboratory of Seed Disease Testing and Control, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
367
|
Chen Y, Shen Y, Lin P, Tong D, Zhao Y, Allesina S, Shen X, Wu CI. Gene regulatory network stabilized by pervasive weak repressions: microRNA functions revealed by the May-Wigner theory. Natl Sci Rev 2019; 6:1176-1188. [PMID: 34691996 PMCID: PMC8291590 DOI: 10.1093/nsr/nwz076] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 06/07/2019] [Accepted: 06/10/2019] [Indexed: 01/01/2023] Open
Abstract
Food web and gene regulatory networks (GRNs) are large biological networks, both of which can be analyzed using the May-Wigner theory. According to the theory, networks as large as mammalian GRNs would require dedicated gene products for stabilization. We propose that microRNAs (miRNAs) are those products. More than 30% of genes are repressed by miRNAs, but most repressions are too weak to have a phenotypic consequence. The theory shows that (i) weak repressions cumulatively enhance the stability of GRNs, and (ii) broad and weak repressions confer greater stability than a few strong ones. Hence, the diffuse actions of miRNAs in mammalian cells appear to function mainly in stabilizing GRNs. The postulated link between mRNA repression and GRN stability can be seen in a different light in yeast, which do not have miRNAs. Yeast cells rely on non-specific RNA nucleases to strongly degrade mRNAs for GRN stability. The strategy is suited to GRNs of small and rapidly dividing yeast cells, but not the larger mammalian cells. In conclusion, the May-Wigner theory, supplanting the analysis of small motifs, provides a mathematical solution to GRN stability, thus linking miRNAs explicitly to 'developmental canalization'.
Collapse
Affiliation(s)
- Yuxin Chen
- School of Life Science, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yang Shen
- School of Life Science, Sun Yat-Sen University, Guangzhou 510275, China
- Target Discovery Research, Boehringer Ingelheim Pharma GmbH & Co KG, 88397 Biberach an der Riß, Germany
| | - Pei Lin
- School of Life Science, Sun Yat-Sen University, Guangzhou 510275, China
| | - Ding Tong
- School of Life Science, Sun Yat-Sen University, Guangzhou 510275, China
- Department of Biostatistics, School of Public Health, Yale University, New Haven, CT 06520, UK
| | - Yixin Zhao
- School of Life Science, Sun Yat-Sen University, Guangzhou 510275, China
| | - Stefano Allesina
- Department of Ecology and Evolution, University of Chicago, Chicago, IL 60637, UK
| | - Xu Shen
- School of Life Science, Sun Yat-Sen University, Guangzhou 510275, China
| | - Chung-I Wu
- School of Life Science, Sun Yat-Sen University, Guangzhou 510275, China
- Department of Ecology and Evolution, University of Chicago, Chicago, IL 60637, UK
| |
Collapse
|
368
|
Wang J, Liu S, Shi J, Li J, Wang S, Liu H, Zhao S, Duan K, Pan X, Yi Z. The Role of miRNA in the Diagnosis, Prognosis, and Treatment of Osteosarcoma. Cancer Biother Radiopharm 2019; 34:605-613. [PMID: 31674804 DOI: 10.1089/cbr.2019.2939] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Osteosarcoma (OS) is one of the most common malignant tumors derived from mesenchymal tissue and is highly invasive, mainly in children and adolescents. Treatment of OS is mostly based on standard treatment options, including aggressive surgical resection, systemic chemotherapy, and targeted radiation therapy, but the 5-year survival rate is still low. MicroRNA (miRNA) is a highly conserved type of endogenous nonprotein-encoding RNA, about 19-25 nucleotides in length, whose transcription process is independent of other genes. Generally, miRNAs play a role in regulating cell proliferation, differentiation, apoptosis, and development by binding to the 3' untranslated region of target mRNAs, whereby they can degrade or induce translational silencing. Although miRNAs play a regulatory role in various metabolic processes, they are not translated into proteins. Several studies have shown that miRNAs play an important role in the diagnosis, treatment, and prognosis of OS. Herein, the authors describe new advances in the diagnosis, prognosis, and treatment of miRNAs in OS.
Collapse
Affiliation(s)
- Jicheng Wang
- Department of Orthopedics, Shaanxi Provincial People's Hospital, Xi'an, China.,Department of Orthopedics, Xi'an Medical University, Xi'an, China
| | - Shizhang Liu
- Department of Orthopedics, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Jiyuan Shi
- Department of Orthopedics, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Jingyuan Li
- Department of Orthopedics, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Songbo Wang
- Department of Orthopedics, Shaanxi Provincial People's Hospital, Xi'an, China.,Department of Orthopedics, Xi'an Medical University, Xi'an, China
| | - Huitong Liu
- Department of Orthopedics, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Song Zhao
- Department of Orthopedics, Shaanxi Provincial People's Hospital, Xi'an, China.,Department of Orthopedics, Xi'an Medical University, Xi'an, China
| | - Keke Duan
- Department of Orthopedics, Shaanxi Provincial People's Hospital, Xi'an, China.,Department of Orthopedics, Xi'an Medical University, Xi'an, China
| | - Xuezhen Pan
- Department of Orthopedics, Shaanxi Provincial People's Hospital, Xi'an, China.,Department of Orthopedics, Xi'an Medical University, Xi'an, China
| | - Zhi Yi
- Department of Orthopedics, Shaanxi Provincial People's Hospital, Xi'an, China
| |
Collapse
|
369
|
Yang G, Li Y, Wu B, Zhang K, Gao L, Zheng C. MicroRNAs transcriptionally regulate promoter activity in Arabidopsis thaliana. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2019; 61:1128-1133. [PMID: 30623571 DOI: 10.1111/jipb.12775] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 01/03/2019] [Indexed: 06/09/2023]
Abstract
MicroRNAs (miRNAs) are vital regulators that repress gene expression in the cytoplasm in two main ways: mRNA degradation and translational inhibition. Several animal studies have shown that miRNAs also target promoters, thereby activating expression. Whether this miRNA action also occurs in plants is unknown. In this study, we demonstrated that several miRNAs regulate target promoters in Arabidopsis thaliana. For example, miR5658 was predominantly present in the nucleus and activated the expression of AT3G25290 directly by binding to its promoter. Our observations suggest that this mode of action may be a general feature of plant miRNAs, and thus provide insight into the vital roles of plant miRNAs in the nucleus.
Collapse
Affiliation(s)
- Guodong Yang
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, China
| | - Yuanyuan Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, China
| | - Binjiang Wu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, China
| | - Kaiyue Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, China
| | - Lei Gao
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Chengchao Zheng
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, China
| |
Collapse
|
370
|
Szczygieł-Sommer A, Gaj MD. The miR396-GRF Regulatory Module Controls the Embryogenic Response in Arabidopsis via an Auxin-Related Pathway. Int J Mol Sci 2019; 20:ijms20205221. [PMID: 31640280 PMCID: PMC6829408 DOI: 10.3390/ijms20205221] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 10/18/2019] [Indexed: 01/26/2023] Open
Abstract
In plants, microRNAs have been indicated to control various developmental processes, including somatic embryogenesis (SE), which is triggered in the in vitro cultured somatic cells of plants. Although a transcriptomic analysis has indicated that numerous MIRNAs are differentially expressed in the SE of different plants, the role of specific miRNAs in the embryogenic reprogramming of the somatic cell transcriptome is still poorly understood. In this study, we focused on performing a functional analysis of miR396 in SE given that the transcripts of MIR396 genes and the mature molecules of miR396 were found to be increased during an SE culture of Arabidopsis. In terms of miR396 in embryogenic induction, we observed the SE-associated expression pattern of MIR396b in explants of the β-glucuronidase (GUS) reporter line. In order to gain insight into the miR396-controlled mechanism that is involved in SE induction, the embryogenic response of mir396 mutants and the 35S:MIR396b overexpressor line to media with different 2,4-Dichlorophenoxyacetic acid (2,4-D) concentrations was evaluated. The results suggested that miR396 might contribute to SE induction by controlling the sensitivity of tissues to auxin treatment. Within the targets of miR396 that are associated with SE induction, we identified genes encoding the GROWTH-REGULATING FACTOR (GRF) transcription factors, including GRF1, GRF4, GRF7, GRF8, and GRF9. Moreover, the study suggested a regulatory relationship between miR396, GRF, and the PLETHORA (PLT1 and PLT2) genes during SE induction. A complex regulatory relationship within the miR396–GRF1/4/8/9–PLT1/2 module that involves the negative and positive control of GRFs and PLT (respectively) by miR396 might be assumed.
Collapse
Affiliation(s)
- Aleksandra Szczygieł-Sommer
- Department of Genetics, University of Silesia, Faculty of Biology and Environmental Protection, 40-032 Katowice, Poland.
| | - Małgorzata D Gaj
- Department of Genetics, University of Silesia, Faculty of Biology and Environmental Protection, 40-032 Katowice, Poland.
| |
Collapse
|
371
|
Nagaraju M, Reddy PS, Kumar SA, Kumar A, Rajasheker G, Rao DM, Kavi Kishor PB. Genome-wide identification and transcriptional profiling of small heat shock protein gene family under diverse abiotic stress conditions in Sorghum bicolor (L.). Int J Biol Macromol 2019; 142:822-834. [PMID: 31622710 DOI: 10.1016/j.ijbiomac.2019.10.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 08/16/2019] [Accepted: 10/02/2019] [Indexed: 11/24/2022]
Abstract
The small heat shock proteins (sHsps/Hsp20s) are the molecular chaperones that maintain proper folding, trafficking and disaggregation of proteins under diverse abiotic stress conditions. In the present investigation, a genome-wide scan revealed the presence of a total of 47 sHsps in Sorghum bicolor (SbsHsps), distributed across 10 subfamilies, the major subfamily being P (plastid) group with 17 genes. Chromosomes 1 and 3 appear as the hot spot regions for SbsHsps, and majority of them were found acidic, hydrophilic, unstable and intron less. Interestingly, promoter analysis indicated that they are associated with both biotic and abiotic stresses, as well as plant development. Sorghum sHsps exhibited 15 paralogous and 20 orthologous duplications. Expression analysis of 15 genes selected from different subfamilies showed high transcript levels in roots and leaves implying that they are likely to participate in the developmental processes. SbsHsp genes were highly induced by diverse abiotic stresses inferring their critical role in mediating the environmental stress responses. Gene expression data revealed that SbsHsp-02 is a candidate gene expressed in all the tissues under varied stress conditions tested. Our results contribute to the understanding of the complexity of SbsHsp genes and help to analyse them further for functional validation.
Collapse
Affiliation(s)
- M Nagaraju
- Department of Genetics, Osmania University, Hyderabad 500 007, India; Biochemistry Division, ICMR-National Institute of Nutrition, Hyderabad 500 007, India
| | - Palakolanu Sudhakar Reddy
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad 502 324, India
| | - S Anil Kumar
- Department of Biotechnology, Vignan's Foundation for Science, Technology and Research, Vadlamudi, Guntur, Andhra Pradesh 522 213, India
| | - Anuj Kumar
- Advance Center for Computational & Applied Biotechnology, Uttarakhand Council for Biotechnology (UCB), Dehradun 248 007, India
| | - G Rajasheker
- Department of Genetics, Osmania University, Hyderabad 500 007, India
| | - D Manohar Rao
- Department of Genetics, Osmania University, Hyderabad 500 007, India.
| | - P B Kavi Kishor
- Department of Genetics, Osmania University, Hyderabad 500 007, India.
| |
Collapse
|
372
|
Identification of miRNAs Involved in Bacillus velezensis FZB42-Activated Induced Systemic Resistance in Maize. Int J Mol Sci 2019; 20:ijms20205057. [PMID: 31614702 PMCID: PMC6829523 DOI: 10.3390/ijms20205057] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 10/08/2019] [Accepted: 10/09/2019] [Indexed: 12/18/2022] Open
Abstract
Bacillus velezensis FZB42 is able to activate induced systemic resistance (ISR) to enhance plant defense response against pathogen infections. Though the roles of microRNAs (miRNAs) in Bacillus-triggered ISR have been reported in Arabidopsis, the maize miRNAs responsible for the Bacillus-activated ISR process have not been discovered. To explore the maize miRNAs involved in ISR, maize miRNAs in response to FZB42 (ISR activating), FZB42△sfp△alss (deficient in triggering ISR), and a control for 12 h were sequenced. A total of 146 known miRNAs belonging to 30 miRNA families and 217 novel miRNAs were identified. Four miRNAs specifically repressed in FZB42-treatment were selected as candidate ISR-associated miRNAs. All of them contained at least one defense response-related cis-element, suggesting their potential roles in activating the ISR process. Interestingly, three of the four candidate ISR-associated miRNAs belong to the conserved miR169 family, which has previously been confirmed to play roles in abiotic stress response. Moreover, 52 mRNAs were predicted as potential targets of these candidate ISR-associated miRNAs through TargetFinder software and degradome sequencing. Gene Ontology (GO) and network analyses of target genes showed that these differentially expressed miRNA might participate in the ISR process by regulating nuclear factor Y transcription factor. This study is helpful in better understanding the regulatory roles of maize miRNAs in the Bacillus-activated ISR process.
Collapse
|
373
|
Wang H, Ma Y, Dong C, Li C, Wang J, Liu D. CL-PMI: A Precursor MicroRNA Identification Method Based on Convolutional and Long Short-Term Memory Networks. Front Genet 2019; 10:967. [PMID: 31681416 PMCID: PMC6798641 DOI: 10.3389/fgene.2019.00967] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 09/10/2019] [Indexed: 12/23/2022] Open
Abstract
MicroRNAs (miRNAs) are the major class of gene-regulating molecules that bind mRNAs. They function mainly as translational repressors in mammals. Therefore, how to identify miRNAs is one of the most important problems in medical treatment. Many known pre-miRNAs have a hairpin ring structure containing more structural features, and it is difficult to identify mature miRNAs because of their short length. Therefore, most research focuses on the identification of pre-miRNAs. Most computational models rely on manual feature extraction to identify pre-miRNAs and do not consider the sequential and spatial characteristics of pre-miRNAs, resulting in a loss of information. As the number of unidentified pre-miRNAs is far greater than that of known pre-miRNAs, there is a dataset imbalance problem, which leads to a degradation of the performance of pre-miRNA identification methods. In order to overcome the limitations of existing methods, we propose a pre-miRNA identification algorithm based on a cascaded CNN-LSTM framework, called CL-PMI. We used a convolutional neural network to automatically extract features and obtain pre-miRNA spatial information. We also employed long short-term memory (LSTM) to capture time characteristics of pre-miRNAs and improve attention mechanisms for long-term dependence modeling. Focal loss was used to improve the dataset imbalance. Compared with existing methods, CL-PMI achieved better performance on all datasets. The results demonstrate that this method can effectively identify pre-miRNAs by simultaneously considering their spatial and sequential information, as well as dealing with imbalance in the datasets.
Collapse
Affiliation(s)
- Huiqing Wang
- College of Information and Computer, Taiyuan University of Technology, Taiyuan, China
| | - Yue Ma
- College of Information and Computer, Taiyuan University of Technology, Taiyuan, China
| | - Chunlin Dong
- Dryland Agriculture Research Center, Shanxi Academy of Agricultural Sciences, Taiyuan, China
| | - Chun Li
- College of Information and Computer, Taiyuan University of Technology, Taiyuan, China
| | - Jingjing Wang
- College of Information and Computer, Taiyuan University of Technology, Taiyuan, China
| | - Dan Liu
- College of Information and Computer, Taiyuan University of Technology, Taiyuan, China
| |
Collapse
|
374
|
Cabot C, Martos S, Llugany M, Gallego B, Tolrà R, Poschenrieder C. A Role for Zinc in Plant Defense Against Pathogens and Herbivores. FRONTIERS IN PLANT SCIENCE 2019; 10:1171. [PMID: 31649687 PMCID: PMC6794951 DOI: 10.3389/fpls.2019.01171] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 08/27/2019] [Indexed: 05/17/2023]
Abstract
Pests and diseases pose a threat to food security, which is nowadays aggravated by climate change and globalization. In this context, agricultural policies demand innovative approaches to more effectively manage resources and overcome the ecological issues raised by intensive farming. Optimization of plant mineral nutrition is a sustainable approach to ameliorate crop health and yield. Zinc is a micronutrient essential for all living organisms with a key role in growth, development, and defense. Competition for Zn affects the outcome of the host-attacker interaction in both plant and animal systems. In this review, we provide a clear framework of the different strategies involving low and high Zn concentrations launched by plants to fight their enemies. After briefly introducing the most relevant macro- and micronutrients for plant defense, the functions of Zn in plant protection are summarized with special emphasis on superoxide dismutases (SODs) and zinc finger proteins. Following, we cover recent meaningful studies identifying Zn-related passive and active mechanisms for plant protection. Finally, Zn-based strategies evolved by pathogens and pests to counteract plant defenses are discussed.
Collapse
Affiliation(s)
- Catalina Cabot
- Departament of Biology, Universitat de les Illes Balears, Palma, Spain
| | - Soledad Martos
- Plant Physiology Laboratory, Bioscience Faculty, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Mercè Llugany
- Plant Physiology Laboratory, Bioscience Faculty, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Berta Gallego
- Plant Physiology Laboratory, Bioscience Faculty, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Roser Tolrà
- Plant Physiology Laboratory, Bioscience Faculty, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Charlotte Poschenrieder
- Plant Physiology Laboratory, Bioscience Faculty, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
375
|
Lan HH, Wang CM, Chen SS, Zheng JY. siRNAs Derived from Cymbidium Mosaic Virus and Odontoglossum Ringspot Virus Down-modulated the Expression Levels of Endogenous Genes in Phalaenopsis equestris. THE PLANT PATHOLOGY JOURNAL 2019; 35:508-520. [PMID: 31632225 PMCID: PMC6788414 DOI: 10.5423/ppj.oa.03.2019.0055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 06/10/2019] [Accepted: 07/09/2019] [Indexed: 06/10/2023]
Abstract
Interplay between Cymbidium mosaic virus (CymMV)/Odontoglossum ringspot virus (ORSV) and its host plant Phalaenopsis equestris remain largely unknown, which led to deficiency of effective measures to control disease of P. equestris caused by infecting viruses. In this study, for the first time, we characterized viral small interfering RNAs (vsiRNAs) profiles in P. equestris co-infected with CymMV and ORSV through small RNA sequencing technology. CymMV and ORSV small interfering RNAs (siRNAs) demonstrated several general and specific/new characteristics. vsiRNAs, with A/U bias at the first nucleotide, were predominantly 21-nt long and they were derived predominantly (90%) from viral positive-strand RNA. 21-nt siRNA duplexes with 0-nt overhangs were the most abundant 21-nt duplexes, followed by 2-nt overhangs and then 1-nt overhangs 21-nt duplexes in infected P. equestris. Continuous but heterogeneous distribution and secondary structures prediction implied that vsiRNAs originate predominantly by direct Dicer-like enzymes cleavage of imperfect duplexes in the most folded regions of the positive strand of both viruses RNA molecular. Furthermore, we totally predicted 54 target genes by vsiRNAs with psRNATarget server, including disease/stress response-related genes, RNA interference core components, cytoskeleton-related genes, photosynthesis or energy supply related genes. Gene Ontology classification showed that a majority of the predicted targets were related to cellular components and cellular processes and performed a certain function. All target genes were down-regulated with different degree by vsiRNAs as shown by real-time reverse transcription polymerase chain reaction. Taken together, CymMV and ORSV siRNAs played important roles in interplay with P. equestris by down modulating the expression levels of endogenous genes in host plant.
Collapse
Affiliation(s)
- Han-hong Lan
- Corresponding author: Phone) +86-596-2528735, FAX) +86-591-2528735, E-mail)
| | | | | | | |
Collapse
|
376
|
Zhang J, Zhou Z, Bai J, Tao X, Wang L, Zhang H, Zhu JK. Disruption of MIR396e and MIR396f improves rice yield under nitrogen-deficient conditions. Natl Sci Rev 2019; 7:102-112. [PMID: 34692021 PMCID: PMC8288854 DOI: 10.1093/nsr/nwz142] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 09/03/2019] [Accepted: 09/16/2019] [Indexed: 11/13/2022] Open
Abstract
Abstract
The microRNA miR396 directly represses GROWTH-REGULATING FACTORs (OsGRFs) and has been implicated in regulating rice yield and in nitrogen assimilation. Overexpressing the miR396 targets OsGRF4 and OsGRF6 improves rice yield via increased grain size and panicle branching, respectively. Here, we used CRISPR/Cas9 to assess the function of miR396 genes in rice. Knockout of MIR396ef (MIR396e and MIR396f), but not other isoforms, enhanced both grain size and panicle branching, resulting in increased grain yield. Importantly, under nitrogen-deficient conditions, mir396ef mutants showed an even higher relative increase in grain yield as well as elevated above-ground biomass. Furthermore, we identified OsGRF8 as a new target of miR396, in addition to the known targets OsGRF4 and OsGRF6. Disruption of the miR396-targeting site in OsGRF8 was sufficient to both enlarge grain size and elongate panicles. Our results suggest that rice-seed and panicle development are regulated by miR396ef-GRF4/6/8-GIF1/2/3 modules and that miR396ef are promising targets of genome editing for breeding environmentally friendly rice varieties that require less nitrogen fertilization.
Collapse
Affiliation(s)
- Jinshan Zhang
- Shanghai Center for Plant Stress Biology and Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China
- Bellagen Biotechnology Co. Ltd., Ji’nan 250000, China
| | - Zhenyu Zhou
- Shanghai Center for Plant Stress Biology and Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinjuan Bai
- Shanghai Center for Plant Stress Biology and Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China
| | - Xiaoping Tao
- Shanghai Center for Plant Stress Biology and Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China
| | - Ling Wang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212018, China
| | - Hui Zhang
- Shanghai Center for Plant Stress Biology and Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China
- Shanghai Engineering Research Center of Plant Germplasm Resources, College of Life Science, Shanghai Normal University, Shanghai 200234, China
| | - Jian-Kang Zhu
- Shanghai Center for Plant Stress Biology and Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
377
|
Wei Y, Li F, Zhang S, Zhang S, Zhang H, Sun R. Analysis of small RNA changes in different Brassica napus synthetic allopolyploids. PeerJ 2019; 7:e7621. [PMID: 31565564 PMCID: PMC6746219 DOI: 10.7717/peerj.7621] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 08/05/2019] [Indexed: 11/20/2022] Open
Abstract
Allopolyploidy is an evolutionary and mechanisticaly intriguing process involving the reconciliation of two or more sets of diverged genomes and regulatory interactions, resulting in new phenotypes. In this study, we explored the small RNA changes of eight F2 synthetic B. napus using small RNA sequencing. We found that a part of miRNAs and siRNAs were non-additively expressed in the synthesized B. napus allotetraploid. Differentially expressed miRNAs and siRNAs differed among eight F2 individuals, and the differential expression of miR159 and miR172 was consistent with that of flowering time trait. The GO enrichment analysis of differential expression miRNA target genes found that most of them were concentrated in ATP-related pathways, which might be a potential regulatory process contributing to heterosis. In addition, the number of siRNAs present in the offspring was significantly higher than that of the parent, and the number of high parents was significantly higher than the number of low parents. The results have shown that the differential expression of miRNA lays the foundation for explaining the trait separation phenomenon, and the significant increase of siRNA alleviates the shock of the newly synthesized allopolyploidy. It provides a new perspective between small RNA changes and trait separation in the early stages of allopolyploid polyploid formation.
Collapse
Affiliation(s)
- Yunxiao Wei
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fei Li
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shujiang Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shifan Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hui Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Rifei Sun
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
378
|
Identification of miRNAs and Their Target Genes Involved in Cucumber Fruit Expansion Using Small RNA and Degradome Sequencing. Biomolecules 2019; 9:biom9090483. [PMID: 31547414 PMCID: PMC6769560 DOI: 10.3390/biom9090483] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 09/09/2019] [Accepted: 09/11/2019] [Indexed: 11/17/2022] Open
Abstract
Fruit expansion is an essential and very complex biological process. Regulatory roles of microRNAs (miRNAs) and miRNA-mRNA modules in the cucumber fruit expansion are not yet to be investigated. In this work, 1253 known and 1269 novel miRNAs were identified from nine cucumber fruit small RNA (sRNA) libraries through high-throughput sequencing. A total of 105 highly differentially expressed miRNAs were recognized in the fruit on five days post anthesis with pollination (EXP_5d) sRNA library. Further, expression patterns of 11 differentially expressed miRNAs were validated by quantitative real-time PCR (qRT-PCR). The expression patterns were similar to sRNAs sequencing data. Transcripts of 1155 sequences were predicted as target genes of differentially expressed miRNAs by degradome sequencing. Gene Ontology (GO) enrichment showed that these target genes were involved in 24 biological processes, 15 cell components and nine molecular functions. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis demonstrated that these target genes were significantly enriched in 19 pathways and the enriched KEGG pathways were associated with environmental adaptation, signal transduction and translation. Based on the functional prediction of miRNAs and target genes, our findings suggest that miRNAs have a potential regulatory role in cucumber fruit expansion by targeting their target genes, which provide important data for understanding the miRNA-mediated regulatory networks controlling fruit expansion in cucumber. Specific miRNAs could be selected for further functional research and molecular breeding in cucumber.
Collapse
|
379
|
Rey-Burusco MF, Daleo GR, Feldman ML. Identification of potassium phosphite responsive miRNAs and their targets in potato. PLoS One 2019; 14:e0222346. [PMID: 31513656 PMCID: PMC6742386 DOI: 10.1371/journal.pone.0222346] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 08/27/2019] [Indexed: 12/21/2022] Open
Abstract
Micro RNAs (miRNAs) are small single strand non-coding RNAs that regulate gene expression at the post-transcriptional level, either by translational inhibition or mRNA degradation based on the extent of complementarity between the miRNA and its target mRNAs. Potato (Solanum tuberosum L.) is the most important horticultural crop in Argentina. Achieving an integrated control of diseases is crucial for this crop, where frequent agrochemical applications, particularly fungicides, are carried out. A promising strategy is based on promoting induced resistance through the application of environmentally friendly compounds such as phosphites, inorganic salts of phosphorous acid. The use of phosphites in disease control management has proven to be effective. Although the mechanisms underlying their effect remain unclear, we postulated that miRNAs could be involved. Therefore we performed next generation sequencing (NGS) in potato leaves treated and non treated with potassium phosphite (KPhi). We identified 25 miRNAs that were expressed differentially, 14 already annotated in miRBase and 11 mapped to the potato genome as potential new miRNAs. A prediction of miRNA targets showed genes related to pathogen resistance, transcription factors, and oxidative stress. We also analyzed in silico stress and phytohormone responsive cis-acting elements on differentially expressed pre miRNAs. Despite the fact that some of the differentially expressed miRNAs have been already identified, this is to our knowledge the first report identifying miRNAs responsive to a biocompatible stress resistance inducer such as potassium phosphite, in plants. Further characterization of these miRNAs and their target genes might help to elucidate the molecular mechanisms underlying KPhi-induced resistance.
Collapse
Affiliation(s)
- María Florencia Rey-Burusco
- Instituto de Investigaciones Biológicas-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Mar del Plata, Buenos Aires, Argentina
| | - Gustavo Raúl Daleo
- Instituto de Investigaciones Biológicas-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Mar del Plata, Buenos Aires, Argentina
| | - Mariana Laura Feldman
- Instituto de Investigaciones Biológicas-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Mar del Plata, Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|
380
|
Jeyaraj A, Wang X, Wang S, Liu S, Zhang R, Wu A, Wei C. Identification of Regulatory Networks of MicroRNAs and Their Targets in Response to Colletotrichum gloeosporioides in Tea Plant ( Camellia sinensis L.). FRONTIERS IN PLANT SCIENCE 2019; 10:1096. [PMID: 31572415 PMCID: PMC6751461 DOI: 10.3389/fpls.2019.01096] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 08/09/2019] [Indexed: 05/21/2023]
Abstract
Anthracnose disease is caused by Colletotrichum gloeosporioides, and is common in leaves of the tea plant (Camellia sinensis). MicroRNAs (miRNAs) have been known as key modulators of gene expression in response to environmental stresses, disease resistance, defense responses, and plant immunity. However, the role of miRNAs in responses to C. gloeosporioides remains unexplored in tea plant. Therefore, in the present study, six miRNA sequencing data sets and two degradome data sets were generated from C. gloeosporioides-inoculated and control tea leaves. A total of 485 conserved and 761 novel miRNAs were identified. Of those, 239 known and 369 novel miRNAs exhibited significantly differential expression under C. gloeosporioides stress. One thousand one hundred thirty-four and 596 mRNAs were identified as targets of 389 conserved and 299 novel miRNAs by degradome analysis, respectively. Based on degradome analysis, most of the predicted targets are negatively correlated with their corresponding conserved and novel miRNAs. The expression levels of 12 miRNAs and their targets were validated by quantitative real-time PCR. A negative correlation between expression profiles of five miRNAs (PC-5p-80764_22, csn-miR160c, csn-miR828a, csn-miR164a, and csn-miR169e) and their targets (WRKY, ARF, MYB75, NAC, and NFY transcription factor) was observed. The predicted targets of five interesting miRNAs were further validated through 5'RLM-RACE. Furthermore, Gene Ontology and metabolism pathway analysis revealed that most of the target genes were involved in the regulation of auxin pathway, ROS scavenging pathway, salicylic acid mediated pathway, receptor kinases, and transcription factors for plant growth and development as well as stress responses in tea plant against C. gloeosporioides stress. This study enriches the resources of stress-responsive miRNAs and their targets in C. sinensis and thus provides novel insights into the miRNA-mediated regulatory mechanisms, which could contribute to the enhanced susceptibility of C. gloeosporioides in tea plant.
Collapse
Affiliation(s)
- Anburaj Jeyaraj
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
- Department of Biotechnology, Karpagam Academy of Higher Education, Coimbatore, India
| | - Xuewen Wang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
- Department of Genetics, University of Georgia, Athens, United States
| | - Shuangshuang Wang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Shengrui Liu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Ran Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Ailin Wu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Chaoling Wei
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| |
Collapse
|
381
|
Schwember AR, Schulze J, Del Pozo A, Cabeza RA. Regulation of Symbiotic Nitrogen Fixation in Legume Root Nodules. PLANTS (BASEL, SWITZERLAND) 2019; 8:E333. [PMID: 31489914 PMCID: PMC6784058 DOI: 10.3390/plants8090333] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 08/30/2019] [Accepted: 09/04/2019] [Indexed: 12/11/2022]
Abstract
In most legume nodules, the di-nitrogen (N2)-fixing rhizobia are present as organelle-like structures inside their root host cells. Many processes operate and interact within the symbiotic relationship between plants and nodules, including nitrogen (N)/carbon (C) metabolisms, oxygen flow through nodules, oxidative stress, and phosphorous (P) levels. These processes, which influence the regulation of N2 fixation and are finely tuned on a whole-plant basis, are extensively reviewed in this paper. The carbonic anhydrase (CA)-phosphoenolpyruvate carboxylase (PEPC)-malate dehydrogenase (MDH) is a key pathway inside nodules involved in this regulation, and malate seems to play a crucial role in many aspects of symbiotic N2 fixation control. How legumes specifically sense N-status and how this stimulates all of the regulatory factors are key issues for understanding N2 fixation regulation on a whole-plant basis. This must be thoroughly studied in the future since there is no unifying theory that explains all of the aspects involved in regulating N2 fixation rates to date. Finally, high-throughput functional genomics and molecular tools (i.e., miRNAs) are currently very valuable for the identification of many regulatory elements that are good candidates for accurately dissecting the particular N2 fixation control mechanisms associated with physiological responses to abiotic stresses. In combination with existing information, utilizing these abundant genetic molecular tools will enable us to identify the specific mechanisms underlying the regulation of N2 fixation.
Collapse
Affiliation(s)
- Andrés R Schwember
- Departamento de Ciencias Vegetales, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Santiago 306-22, Chile.
| | - Joachim Schulze
- Department of Crop Science, Section for Plant Nutrition and Crop Physiology, Faculty of Agriculture, University of Goettingen, Carl-Sprengel-Weg 1, 37075 Goettingen, Germany.
| | - Alejandro Del Pozo
- Centro de Mejoramiento Genético y Fenómica Vegetal, Facultad de Ciencias Agrarias, Universidad de Talca, Talca 3460000, Chile.
- Departamento de Producción Agrícola, Facultad de Ciencias Agrarias, Universidad de Talca, Campus Talca, Talca 3460000, Chile.
| | - Ricardo A Cabeza
- Departamento de Producción Agrícola, Facultad de Ciencias Agrarias, Universidad de Talca, Campus Talca, Talca 3460000, Chile.
| |
Collapse
|
382
|
Roles of Small RNAs in Virus-Plant Interactions. Viruses 2019; 11:v11090827. [PMID: 31491987 PMCID: PMC6783996 DOI: 10.3390/v11090827] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 08/27/2019] [Accepted: 08/28/2019] [Indexed: 01/06/2023] Open
Abstract
Small RNAs (sRNAs), including microRNAs (miRNAs) and short interfering RNAs (siRNAs), are non-coding but powerful RNA molecules of 20–30 nucleotides in length. sRNAs play crucial regulatory roles in diverse plant biological processes. Recently, many studies on sRNAs have been reported. We summarize new findings of sRNAs in virus-plant interactions to accelerate the function analysis of sRNAs. The main content of this review article includes three parts: virus-responsive sRNAs, function analysis of sRNAs in virus pathogenicity or host resistance, and some sRNAs-mediated underlying mechanisms in virus-plant interactions. New findings of sRNAs deepen our understanding about sRNAs’ roles, which might contribute to the design of novel control measures against plant viruses.
Collapse
|
383
|
In-silico identification and analysis of miRNAs from germinating seeds in Paris polyphylla var. yunnanensis by deep sequencing. Biologia (Bratisl) 2019. [DOI: 10.2478/s11756-019-00348-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
384
|
Carbone F, Bruno L, Perrotta G, Bitonti MB, Muzzalupo I, Chiappetta A. Identification of miRNAs involved in fruit ripening by deep sequencing of Olea europaea L. transcriptome. PLoS One 2019; 14:e0221460. [PMID: 31437230 PMCID: PMC6705801 DOI: 10.1371/journal.pone.0221460] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 08/08/2019] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND The ripening process of olive fruits is associated with chemical and/or enzymatic specific transformations, making them particularly attractive to animals and humans. In olive drupes, including 'Cassanese' ones, ripening is usually accompanied by progressive chromatic change, resulting in a final red-brown colourization of both epidermis and mesocarp. This event has an exception in the 'Leucocarpa', in which we observed the destabilization in the equilibrium between the chlorophyll metabolism and that of the other pigments, particularly the anthocyanins, whose switch-off during maturation promotes the white colouration of the fruits. Recently, transcription profiling of 'Leucocarpa' and 'Cassanese' olives along ripening, performed through an Illumina RNA-seq approach, has provided useful insights on genes functions involved in fruit maturation such as those related to the biosynthesis of flavonoids and anthocyanins. METHODOLOGY To assess expression alterations of genes involved in flavonoids and anthocyanins biosynthetic pathways during ripening, possibly caused by small nuclear RNA (snRNA) in olive drupes, snRNA libraries from 'Leucocarpa' and 'Cassanese' were constructed with RNAs extracted at 100 and 130 Days After Flowering (DAF) and sequenced by an Illumina approach. 130 conserved microRNAs (miRNA) in the Viridiplantae belonging to 14 miRNA families were identified. Regarding the 130 conserved miRNAs, approximately the 48% were identified in all libraries, 5 and 18 miRNAs were shared between the "Cassanese" (C100, C130) and "Leucocarpa" (L100, L130) libraries, respectively. CONCLUSION For the remaining reads not-matching with known miRNAs in the Viridiplantae, we combined secondary structure and minimum free energy to discover novel olive miRNAs. Based on these analyses, 492 sequences were considered as putative novel miRNAs. The putative target genes of identified miRNA were computationally predicted by alignment with the olive drupe transcripts obtained from the same samples. A total of 218 transcripts were predicted as targets of 130 known and 492 putative novel miRNAs. Interestingly, some identified target genes are involved in negative regulation of anthocyanin metabolic process. Quantification of the expression pattern of three miRNA and their target transcripts by qRT-PCR assay confirmed the results of Illumina sequencing.
Collapse
Affiliation(s)
- Fabrizio Carbone
- Department of Biology, Ecology and Earth Science, University of Calabria, Arcavacata Rende (CS) IT
| | - Leonardo Bruno
- Research Centre for Olive, Citrus and Tree Fruit—Council for Agricultural Research and Economics, Rende (CS) IT
| | | | - Maria B. Bitonti
- Research Centre for Olive, Citrus and Tree Fruit—Council for Agricultural Research and Economics, Rende (CS) IT
| | - Innocenzo Muzzalupo
- Department of Biology, Ecology and Earth Science, University of Calabria, Arcavacata Rende (CS) IT
| | - Adriana Chiappetta
- Research Centre for Olive, Citrus and Tree Fruit—Council for Agricultural Research and Economics, Rende (CS) IT
| |
Collapse
|
385
|
Zuluaga DL, Sonnante G. The Use of Nitrogen and Its Regulation in Cereals: Structural Genes, Transcription Factors, and the Role of miRNAs. PLANTS 2019; 8:plants8080294. [PMID: 31434274 PMCID: PMC6724420 DOI: 10.3390/plants8080294] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 08/15/2019] [Accepted: 08/16/2019] [Indexed: 01/31/2023]
Abstract
Cereals and, especially, rice, maize, and wheat, are essential commodities, on which human nutrition is based. Expanding population and food demand have required higher production which has been achieved by increasing fertilization, and especially nitrogen supply to cereal crops. In fact, nitrogen is a crucial nutrient for the plant, but excessive use poses serious environmental and health issues. Therefore, increasing nitrogen use efficiency in cereals is of pivotal importance for sustainable agriculture. The main steps in the use of nitrogen are uptake and transport, reduction and assimilation, and translocation and remobilization. Many studies have been carried out on the genes involved in these phases, and on transcription factors regulating these genes. Lately, increasing attention has been paid to miRNAs responding to abiotic stress, including nutrient deficiency. Many miRNAs have been found to regulate transcription factors acting on the expression of specific genes for nitrogen uptake or remobilization. Recent studies on gene regulatory networks have also demonstrated that miRNAs can interact with several nodes in the network, functioning as key regulators in nitrogen metabolism.
Collapse
Affiliation(s)
- Diana L Zuluaga
- Institute of Biosciences and Bioresources, National Research Council, Via Amendola 165/A, 70126 Bari, Italy.
| | - Gabriella Sonnante
- Institute of Biosciences and Bioresources, National Research Council, Via Amendola 165/A, 70126 Bari, Italy.
| |
Collapse
|
386
|
Chen Q, Deng B, Gao J, Zhao Z, Chen Z, Song S, Wang L, Zhao L, Xu W, Zhang C, Wang S, Ma C. Comparative Analysis of miRNA Abundance Revealed the Function of Vvi-miR828 in Fruit Coloring in Root Restriction Cultivation Grapevine ( Vitis vinifera L.). Int J Mol Sci 2019; 20:ijms20164058. [PMID: 31434233 PMCID: PMC6720769 DOI: 10.3390/ijms20164058] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 08/14/2019] [Accepted: 08/15/2019] [Indexed: 11/22/2022] Open
Abstract
Root restriction cultivation leads to early maturation and quality improvement, especially in the anthocyanin content in grapevine. However, the molecular mechanisms that underlie these changes have not been thoroughly elucidated. In this study, four small RNA libraries were constructed, which included the green soft stage (GS) and ripe stage (RS) of ‘Muscat’ (Vitis vinifera L.) grape berries that were grown under root restriction (RR) and in traditional cultivation (no root restriction, CK). A total of 162 known miRNAs and 14 putative novel miRNAs were detected from the four small RNA libraries by high-throughput sequencing. An analysis of differentially expressed miRNAs (DEMs) revealed that 13 miRNAs exhibited significant differences in expression between RR and CK at the GS and RS stages, respectively. For different developmental stages of fruit, 23 and 34 miRNAs showed expression differences between the GS and RS stages in RR and CK, respectively. The expression patterns of the eight DEMs and their targets were verified by qRT-PCR, and the expression profiles of target genes were confirmed to be complementary to the corresponding miRNAs in RR and CK. The function of Vvi-miR828, which showed the down regulated expression in the RS stage under root restriction, was identified by gene transformation in Arabidopsis. The anthocyanin content significantly decreased in transgenic lines, which indicates the regulatory capacity of Vvi-miR828 in fruit coloration. The miRNA expression pattern comparison between RR and CK might provide a means of unraveling the miRNA-mediated molecular process regulating grape berry development under root restricted cultivation.
Collapse
Affiliation(s)
- Qiuju Chen
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Bohan Deng
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jie Gao
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhongyang Zhao
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zili Chen
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shiren Song
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lei Wang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Liping Zhao
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wenping Xu
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Caixi Zhang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shiping Wang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
- Institute of Agro-Food Science and Technology/Key Laboratory of Agro-Products Processing Technology of Shandong, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Chao Ma
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
387
|
Huang XY, Li M, Luo R, Zhao FJ, Salt DE. Epigenetic regulation of sulfur homeostasis in plants. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:4171-4182. [PMID: 31087073 DOI: 10.1093/jxb/erz218] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 04/30/2019] [Indexed: 05/21/2023]
Abstract
Plants have evolved sophisticated mechanisms for adaptation to fluctuating availability of nutrients in soil. Such mechanisms are of importance for plants to maintain homeostasis of nutrient elements for their development and growth. The molecular mechanisms controlling the homeostasis of nutrient elements at the genetic level have been gradually revealed, including the identification of regulatory factors and transporters responding to nutrient stresses. Recent studies have suggested that such responses are controlled not only by genetic regulation but also by epigenetic regulation. In this review, we present recent studies on the involvement of DNA methylation, histone modifications, and non-coding RNA-mediated gene silencing in the regulation of sulfur homeostasis and the response to sulfur deficiency. We also discuss the potential effect of sulfur-containing metabolites such as S-adenosylmethionine on the maintenance of DNA and histone methylation.
Collapse
Affiliation(s)
- Xin-Yuan Huang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Mengzhen Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Rongjian Luo
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Fang-Jie Zhao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - David E Salt
- Future Food Beacon of Excellence and the School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, UK
| |
Collapse
|
388
|
Marakli S. In silico determination of transposon-derived miRNAs and targets in Aegilops species. J Biomol Struct Dyn 2019; 38:3098-3109. [PMID: 31402758 DOI: 10.1080/07391102.2019.1654409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Transposable elements (TEs) are found almost in all living organism, shaping organisms' genomes. miRNAs are noncoding RNA types which are especially important in gene expression regulations. Many previously determined plant miRNAs are identical/homologous to transposons (TE-MIR). The aim of this study was computational characterization of novel TE-related miRNAs and their targets in Aegilops genome by using stringent criteria. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed by BLAST2GO. Seventeen novel TE-related miRNAs in Aegilops genome were identified for the first time. GO analyses indicated that 40 targets played different roles in biological processes, cellular components and molecular functions. Moreover, these genes were involved in 10 metabolic pathways such as purine metabolism, nitrogen metabolism, oxidative phosphorylation, etc. as a result of KEGG analyses. Identification of miRNAs and their targets are significant to understand miRNA-TEs relationships and even how TEs affect plant growth and development. Obtaining results of this study are expected to provide possible new insight into Aegilops and its related species, wheat, with respect to miRNAs evolution and domestication.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sevgi Marakli
- Department of Medical Services and Techniques, Amasya University, Sabuncuoglu Serefeddin Health Services Vocational School, Amasya, Turkey.,Amasya University, Central Research Laboratory, Amasya, Turkey
| |
Collapse
|
389
|
Li JJ, Chew GL, Biggin MD. Quantitative principles of cis-translational control by general mRNA sequence features in eukaryotes. Genome Biol 2019; 20:162. [PMID: 31399036 PMCID: PMC6689182 DOI: 10.1186/s13059-019-1761-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 07/11/2019] [Indexed: 12/17/2022] Open
Abstract
Background General translational cis-elements are present in the mRNAs of all genes and affect the recruitment, assembly, and progress of preinitiation complexes and the ribosome under many physiological states. These elements include mRNA folding, upstream open reading frames, specific nucleotides flanking the initiating AUG codon, protein coding sequence length, and codon usage. The quantitative contributions of these sequence features and how and why they coordinate to control translation rates are not well understood. Results Here, we show that these sequence features specify 42–81% of the variance in translation rates in Saccharomyces cerevisiae, Schizosaccharomyces pombe, Arabidopsis thaliana, Mus musculus, and Homo sapiens. We establish that control by RNA secondary structure is chiefly mediated by highly folded 25–60 nucleotide segments within mRNA 5′ regions, that changes in tri-nucleotide frequencies between highly and poorly translated 5′ regions are correlated between all species, and that control by distinct biochemical processes is extensively correlated as is regulation by a single process acting in different parts of the same mRNA. Conclusions Our work shows that general features control a much larger fraction of the variance in translation rates than previously realized. We provide a more detailed and accurate understanding of the aspects of RNA structure that directs translation in diverse eukaryotes. In addition, we note that the strongly correlated regulation between and within cis-control features will cause more even densities of translational complexes along each mRNA and therefore more efficient use of the translation machinery by the cell. Electronic supplementary material The online version of this article (10.1186/s13059-019-1761-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jingyi Jessica Li
- Department of Statistics, Department of Biomathematics, and Department of Human Genetics, University of California, Los Angeles, CA, 90095, USA.
| | - Guo-Liang Chew
- Computational Biology Program, Public Health Sciences and Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | - Mark Douglas Biggin
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94708, USA.
| |
Collapse
|
390
|
Chen X, Jiang L, Zheng J, Chen F, Wang T, Wang M, Tao Y, Wang H, Hong Z, Huang Y, Huang R. A missense mutation in Large Grain Size 1 increases grain size and enhances cold tolerance in rice. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:3851-3866. [PMID: 31020332 PMCID: PMC6685659 DOI: 10.1093/jxb/erz192] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 03/25/2019] [Indexed: 05/04/2023]
Abstract
Grain shape is controlled by quantitative trait loci (QTLs) in rice (Oryza sativa L.). A rice mutant (JF178) with long and large grains has been used in a breeding program for over a decade, but its genetic basis has been unclear. Here, a semi-dominant QTL, designated Large Grain Size 1 (LGS1), was cloned and the potential molecular mechanism of LGS1 function was studied. Near-isogenic lines (NILs) and a map-based approach were employed to clone the LGS1 locus. LGS1 encodes the OsGRF4 transcription factor and contains a 2 bp missense mutation in the coding region that coincides with the putative pairing site of miRNA396. The LGS1 transcript levels in the mutant line were found to be higher than the lgs1 transcript levels in the control plants, suggesting that the mutation might disrupt the pairing of the LGS1 mRNA with miR396. In addition to producing larger grains, LGS1 also enhanced cold tolerance at the seedling stage and increased the survival rate of seedlings after cold stress treatment. These findings indicate that the mutation in LGS1 appears to disturb the GRF4-miR396 stress response network and results in the development of enlarged grains and enhancement of cold tolerance in rice.
Collapse
Affiliation(s)
- Xiaolong Chen
- School of Life Sciences, Xiamen University, Xiamen, China
| | | | | | - Fangyu Chen
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Tiansheng Wang
- Quanzhou Institute of Agricultural Sciences, Quanzhou, China
| | - Meiling Wang
- School of Life Sciences, Xiamen University, Xiamen, China
| | - Yi Tao
- School of Life Sciences, Xiamen University, Xiamen, China
| | - Houcong Wang
- School of Life Sciences, Xiamen University, Xiamen, China
| | - Zonglie Hong
- School of Life Sciences, Xiamen University, Xiamen, China
- Department of Plant Sciences, University of Idaho, Moscow, ID, USA
- Correspondence: , , and
| | - Yumin Huang
- School of Life Sciences, Xiamen University, Xiamen, China
- Correspondence: , , and
| | - Rongyu Huang
- School of Life Sciences, Xiamen University, Xiamen, China
- Correspondence: , , and
| |
Collapse
|
391
|
Yang R, Li P, Mei H, Wang D, Sun J, Yang C, Hao L, Cao S, Chu C, Hu S, Song X, Cao X. Fine-Tuning of MiR528 Accumulation Modulates Flowering Time in Rice. MOLECULAR PLANT 2019; 12:1103-1113. [PMID: 31059825 DOI: 10.1016/j.molp.2019.04.009] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 03/28/2019] [Accepted: 04/25/2019] [Indexed: 05/18/2023]
Abstract
In plants, microRNA (miRNA) functions in the post-transcriptional repression of target mRNAs have been well explored. However, the mechanisms regulating the accumulation of miRNAs remain poorly understood. Here, we report that distinct mechanisms regulate accumulation of a monocot-specific miRNA, rice (Oryza sativa) miR528. At the transcriptional level, miR528 accumulated to higher levels in older plants than in young seedlings and exhibited aging-modulated gradual accumulation and diurnal rhythms in leaves; at the post-transcriptional level, aging also modulated miR528 levels by enhancing pri-miR528 alternative splicing. We found that miR528 promotes rice flowering under long-day conditions by targeting RED AND FAR-RED INSENSITIVE 2 (OsRFI2). Moreover, natural variations in the MIR528 promoter region caused differences in miR528 expression among rice varieties, which are correlated with their different binding affinities with the transcription factor OsSPL9 that activates the expression of miR528. Taken together, our findings reveal rice plants have evolved sophisticated modes fine-tuning miR528 levels and provide insight into the mechanisms that regulate MIRNA expression in plants.
Collapse
Affiliation(s)
- Rongxin Yang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Pingchuan Li
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Hailiang Mei
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Dong Wang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of Molecular Biology and Gene Engineering in Jiangxi Province, College of Life Science, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Jing Sun
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Chao Yang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Lili Hao
- Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Shouyun Cao
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Chengcai Chu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Songnian Hu
- Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xianwei Song
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Xiaofeng Cao
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Excellence in Molecular Plant Sciences, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
392
|
Jin Y, Liu L, Hao X, Harry DE, Zheng Y, Huang T, Huang J. Unravelling the MicroRNA-Mediated Gene Regulation in Developing Pongamia Seeds by High-Throughput Small RNA Profiling. Int J Mol Sci 2019; 20:ijms20143509. [PMID: 31319494 PMCID: PMC6678122 DOI: 10.3390/ijms20143509] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 07/12/2019] [Accepted: 07/15/2019] [Indexed: 01/07/2023] Open
Abstract
Pongamia (Millettia pinnata syn. Pongamia pinnata) is a multipurpose biofuel tree which can withstand a variety of abiotic stresses. Commercial applications of Pongamia trees may substantially benefit from improvements in their oil-seed productivity, which is governed by complex regulatory mechanisms underlying seed development. MicroRNAs (miRNAs) are important molecular regulators of plant development, while relatively little is known about their roles in seed development, especially for woody plants. In this study, we identified 236 conserved miRNAs within 49 families and 143 novel miRNAs via deep sequencing of Pongamia seeds sampled at three developmental phases. For these miRNAs, 1327 target genes were computationally predicted. Furthermore, 115 differentially expressed miRNAs (DEmiRs) between successive developmental phases were sorted out. The DEmiR-targeted genes were preferentially enriched in the functional categories associated with DNA damage repair and photosynthesis. The combined analyses of expression profiles for DEmiRs and functional annotations for their target genes revealed the involvements of both conserved and novel miRNA-target modules in Pongamia seed development. Quantitative Real-Time PCR validated the expression changes of 15 DEmiRs as well as the opposite expression changes of six targets. These results provide valuable miRNA candidates for further functional characterization and breeding practice in Pongamia and other oilseed plants.
Collapse
Affiliation(s)
- Ye Jin
- Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Lin Liu
- Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Xuehong Hao
- Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | | | - Yizhi Zheng
- Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Tengbo Huang
- Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Jianzi Huang
- Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
393
|
Samad AFA, Rahnamaie-Tajadod R, Sajad M, Jani J, Murad AMA, Noor NM, Ismail I. Regulation of terpenoid biosynthesis by miRNA in Persicaria minor induced by Fusarium oxysporum. BMC Genomics 2019; 20:586. [PMID: 31311515 PMCID: PMC6636069 DOI: 10.1186/s12864-019-5954-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 07/03/2019] [Indexed: 12/24/2022] Open
Abstract
Background Persicaria minor (kesum) is an herbaceous plant with a high level of secondary metabolite compounds, particularly terpenoids. These terpenoid compounds have well-established roles in the pharmaceutical and food industries. Although the terpenoids of P. minor have been studied thoroughly, the involvement of microRNA (miRNA) in terpenoid regulation remains poorly understood and needs to be explored. In this study, P. minor plants were inoculated with the pathogenic fungus Fusarium oxysporum for terpenoid induction. Result SPME GC-MS analysis showed the highest terpenoid accumulation on the 6th day post-inoculation (dpi) compared to the other treatment time points (0 dpi, 3 dpi, and 9 dpi). Among the increased terpenoid compounds, α-cedrene, valencene and β-bisabolene were prominent. P. minor inoculated for 6 days was selected for miRNA library construction using next generation sequencing. Differential gene expression analysis showed that 58 miRNAs belonging to 30 families had significantly altered regulation. Among these 58 differentially expressed genes (DEGs), 33 miRNAs were upregulated, whereas 25 miRNAs were downregulated. Two putative novel pre-miRNAs were identified and validated through reverse transcriptase PCR. Prediction of target transcripts potentially involved in the mevalonate pathway (MVA) was carried out by psRobot software, resulting in four miRNAs: pmi-miR530, pmi-miR6173, pmi-miR6300 and a novel miRNA, pmi-Nov_13. In addition, two miRNAs, miR396a and miR398f/g, were predicted to have their target transcripts in the non-mevalonate pathway (MEP). In addition, a novel miRNA, pmi-Nov_12, was identified to have a target gene involved in green leaf volatile (GLV) biosynthesis. RT-qPCR analysis showed that pmi-miR6173, pmi-miR6300 and pmi-nov_13 were downregulated, while miR396a and miR398f/g were upregulated. Pmi-miR530 showed upregulation at 9 dpi, and dynamic expression was observed for pmi-nov_12. Pmi-6300 and pmi-miR396a cleavage sites were detected through degradome sequence analysis. Furthermore, the relationship between miRNA metabolites and mRNA metabolites was validated using correlation analysis. Conclusion Our findings suggest that six studied miRNAs post-transcriptionally regulate terpenoid biosynthesis in P. minor. This regulatory behaviour of miRNAs has potential as a genetic tool to regulate terpenoid biosynthesis in P. minor. Electronic supplementary material The online version of this article (10.1186/s12864-019-5954-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Abdul Fatah A Samad
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM, 43600, Bangi, Selangor, Malaysia.,Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | | | - Muhammad Sajad
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, UKM, 43600, Bangi, Selangor, Malaysia.,Department of Plant Breeding and Genetics, University College of Agriculture & Environmental Sciences, The Islamia University of Bahawalpur, Punjab, Pakistan
| | - Jaeyres Jani
- Borneo Medical and Health Research Centre, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu, Malaysia
| | - Abdul Munir Abdul Murad
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM, 43600, Bangi, Selangor, Malaysia
| | - Normah Mohd Noor
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, UKM, 43600, Bangi, Selangor, Malaysia
| | - Ismanizan Ismail
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM, 43600, Bangi, Selangor, Malaysia. .,Institute of Systems Biology, Universiti Kebangsaan Malaysia, UKM, 43600, Bangi, Selangor, Malaysia.
| |
Collapse
|
394
|
Zhang X, Xie S, Han J, Zhou Y, Liu C, Zhou Z, Wang F, Cheng Z, Zhang J, Hu Y, Hao Z, Li M, Zhang D, Yong H, Huang Y, Weng J, Li X. Integrated transcriptome, small RNA, and degradome analysis reveals the complex network regulating starch biosynthesis in maize. BMC Genomics 2019; 20:574. [PMID: 31296166 PMCID: PMC6625009 DOI: 10.1186/s12864-019-5945-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 06/30/2019] [Indexed: 12/18/2022] Open
Abstract
Background Starch biosynthesis in endosperm is a key process influencing grain yield and quality in maize. Although a number of starch biosynthetic genes have been well characterized, the mechanisms by which the expression of these genes is regulated, especially in regard to microRNAs (miRNAs), remain largely unclear. Results Sequence data for small RNAs, degradome, and transcriptome of maize endosperm at 15 and 25 d after pollination (DAP) from inbred lines Mo17 and Ji419, which exhibit distinct starch content and starch granule structure, revealed the mediation of starch biosynthetic pathways by miRNAs. Transcriptome analysis of these two lines indicated that 33 of 40 starch biosynthetic genes were differentially expressed, of which 12 were up-regulated in Ji419 at 15 DAP, one was up-regulated in Ji419 at 25 DAP, 14 were up-regulated in Ji419 at both 15 and 25 DAP, one was down-regulated in Ji419 at 15 DAP, two were down-regulated in Ji419 at 25 DAP, and three were up-regulated in Ji419 at 15 DAP and down-regulated in Ji419 at 25 DAP, compared with Mo17. Through combined analyses of small RNA and degradome sequences, 22 differentially expressed miRNAs were identified, including 14 known and eight previously unknown miRNAs that could target 35 genes. Furthermore, a complex co-expression regulatory network was constructed, in which 19 miRNAs could modulate starch biosynthesis in endosperm by tuning the expression of 19 target genes. Moreover, the potential operation of four miRNA-mediated pathways involving transcription factors, miR169a-NF-YA1-GBSSI/SSIIIa and miR169o-GATA9-SSIIIa/SBEIIb, was validated via analyses of expression pattern, transient transformation assays, and transactivation assays. Conclusion Our results suggest that miRNAs play a critical role in starch biosynthesis in endosperm, and that miRNA-mediated networks could modulate starch biosynthesis in this tissue. These results have provided important insights into the molecular mechanism of starch biosynthesis in developing maize endosperm. Electronic supplementary material The online version of this article (10.1186/s12864-019-5945-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiaocong Zhang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Sidi Xie
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China.,College of Agronomy, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Jienan Han
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yu Zhou
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China.,College of Agronomy, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Chang Liu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China.,College of Agronomy, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Zhiqiang Zhou
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Feifei Wang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zixiang Cheng
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Junjie Zhang
- College of Life Science, Sichuan Agricultural University, Ya'an, Sichuan, China
| | - Yufeng Hu
- College of Agronomy, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Zhuanfang Hao
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Mingshun Li
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Degui Zhang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hongjun Yong
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yubi Huang
- College of Agronomy, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Jianfeng Weng
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China.
| | - Xinhai Li
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China.
| |
Collapse
|
395
|
Silva PO, Batista DS, Cavalcanti JHF, Koehler AD, Vieira LM, Fernandes AM, Barrera-Rojas CH, Ribeiro DM, Nogueira FTS, Otoni WC. Leaf heteroblasty in Passiflora edulis as revealed by metabolic profiling and expression analyses of the microRNAs miR156 and miR172. ANNALS OF BOTANY 2019; 123:1191-1203. [PMID: 30861065 PMCID: PMC6612941 DOI: 10.1093/aob/mcz025] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 02/07/2019] [Indexed: 05/16/2023]
Abstract
BACKGROUND AND AIMS Juvenile-to-adult phase transition is marked by changes in leaf morphology, mostly due to the temporal development of the shoot apical meristem, a phenomenon known as heteroblasty. Sugars and microRNA-controlled modules are components of the heteroblastic process in Arabidopsis thaliana leaves. However, our understanding about their roles during phase-changing in other species, such as Passiflora edulis, remains limited. Unlike Arabidopsis, P. edulis (a semi-woody perennial climbing vine) undergoes remarkable changes in leaf morphology throughout juvenile-to-adult transition. Nonetheless, the underlying molecular mechanisms are unknown. METHODS Here we evaluated the molecular mechanisms underlying the heteroblastic process by analysing the temporal expression of microRNAs and targets in leaves as well as the leaf metabolome during P. edulis development. KEY RESULTS Metabolic profiling revealed a unique composition of metabolites associated with leaf heteroblasty. Increasing levels of glucose and α-trehalose were observed during juvenile-to-adult phase transition. Accumulation of microRNA156 (miR156) correlated with juvenile leaf traits, whilst miR172 transcript accumulation was associated with leaf adult traits. Importantly, glucose may mediate adult leaf characteristics during de novo shoot organogenesis by modulating miR156-targeted PeSPL9 expression levels at early stages of shoot development. CONCLUSIONS Altogether, our results suggest that specific sugars may act as co-regulators, along with two microRNAs, leading to leaf morphological modifications throughout juvenile-to-adult phase transition in P. edulis.
Collapse
Affiliation(s)
- Priscila O Silva
- Departamento de Biologia Vegetal/Instituto de Biotecnologia Aplicada a Agropecuária (BIOAGRO), Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Diego S Batista
- Departamento de Biologia Vegetal/Instituto de Biotecnologia Aplicada a Agropecuária (BIOAGRO), Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
- Universidade Estadual do Maranhão, São Luís, MA, Brazil
| | - João Henrique F Cavalcanti
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
- Instituto de Educação, Agricultura e Ambiente, Universidade Federal do Amazonas, Humaitá, Amazonas, Brazil
| | - Andréa D Koehler
- Departamento de Biologia Vegetal/Instituto de Biotecnologia Aplicada a Agropecuária (BIOAGRO), Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Lorena M Vieira
- Departamento de Biologia Vegetal/Instituto de Biotecnologia Aplicada a Agropecuária (BIOAGRO), Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Amanda M Fernandes
- Departamento de Biologia Vegetal/Instituto de Biotecnologia Aplicada a Agropecuária (BIOAGRO), Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Carlos Hernan Barrera-Rojas
- Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, São Paulo, Brazil
- Instituto de Biociências, Universidade Estadual de São Paulo, Botucatu, São Paulo, Brazil
| | | | - Fabio T S Nogueira
- Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, São Paulo, Brazil
- For correspondence. E-mail:
| | - Wagner C Otoni
- Departamento de Biologia Vegetal/Instituto de Biotecnologia Aplicada a Agropecuária (BIOAGRO), Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| |
Collapse
|
396
|
Paschoal AR, Lozada-Chávez I, Domingues DS, Stadler PF. ceRNAs in plants: computational approaches and associated challenges for target mimic research. Brief Bioinform 2019; 19:1273-1289. [PMID: 28575144 DOI: 10.1093/bib/bbx058] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 04/27/2017] [Indexed: 11/13/2022] Open
Abstract
The competing endogenous RNA hypothesis has gained increasing attention as a potential global regulatory mechanism of microRNAs (miRNAs), and as a powerful tool to predict the function of many noncoding RNAs, including miRNAs themselves. Most studies have been focused on animals, although target mimic (TMs) discovery as well as important computational and experimental advances has been developed in plants over the past decade. Thus, our contribution summarizes recent progresses in computational approaches for research of miRNA:TM interactions. We divided this article in three main contributions. First, a general overview of research on TMs in plants is presented with practical descriptions of the available literature, tools, data, databases and computational reports. Second, we describe a common protocol for the computational and experimental analyses of TM. Third, we provide a bioinformatics approach for the prediction of TM motifs potentially cross-targeting both members within the same or from different miRNA families, based on the identification of consensus miRNA-binding sites from known TMs across sequenced genomes, transcriptomes and known miRNAs. This computational approach is promising because, in contrast to animals, miRNA families in plants are large with identical or similar members, several of which are also highly conserved. From the three consensus TM motifs found with our approach: MIM166, MIM171 and MIM159/319, the last one has found strong support on the recent experimental work by Reichel and Millar [Specificity of plant microRNA TMs: cross-targeting of mir159 and mir319. J Plant Physiol 2015;180:45-8]. Finally, we stress the discussion on the major computational and associated experimental challenges that have to be faced in future ceRNA studies.
Collapse
Affiliation(s)
| | - Irma Lozada-Chávez
- Interdisciplinary Center for Bioinformatics, University of Leipzig, Germany
| | - Douglas Silva Domingues
- Department of Botany, Institute of Biosciences, S~ao Paulo State University (UNESP) in Rio Claro, Brazil
| | | |
Collapse
|
397
|
Liu X, Zhang X, Sun B, Hao L, Liu C, Zhang D, Tang H, Li C, Li Y, Shi Y, Xie X, Song Y, Wang T, Li Y. Genome-wide identification and comparative analysis of drought-related microRNAs in two maize inbred lines with contrasting drought tolerance by deep sequencing. PLoS One 2019; 14:e0219176. [PMID: 31276526 PMCID: PMC6611575 DOI: 10.1371/journal.pone.0219176] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 06/18/2019] [Indexed: 11/19/2022] Open
Abstract
Drought has become one of the most serious abiotic stresses influencing crop production worldwide. Understanding the molecular regulatory networks underlying drought adaption and tolerance in crops is of great importance for future breeding. microRNAs (miRNAs), as important components of post-transcriptional regulation, play crucial roles in drought response and adaptation in plants. Here, we report a miRNome analysis of two maize inbred lines with contrasting levels of drought tolerance under soil drought in the field. Differential expression analysis showed 11 and 34 miRNAs were uniquely responded to drought in H082183 (drought tolerant) and Lv28 (drought sensitive), respectively, in leaves. In roots, 19 and 23 miRNAs uniquely responded to drought in H082183 and Lv28, respectively. Expression analysis of these drought-responsive miRNA-mRNA modules revealed miR164-MYB, miR164-NAC, miR159-MYB, miR156-SPL and miR160-ARF showed a negative regulatory relationship. Further analysis showed that the miR164-MYB and miR164-NAC modules in the tolerant line modulated the stress response in an ABA (abscisic acid)-dependent manner, while the miR156-SPL and miR160-ARF modules in the sensitive line participated in the inhibition of metabolism in drought-exposed leaves. Together, our results provide new insight into not only drought-tolerance-related miRNA regulation networks in maize but also key miRNAs for further characterization and improvement of maize drought tolerance.
Collapse
Affiliation(s)
- Xuyang Liu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaojing Zhang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Baocheng Sun
- Institute of Grain Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Luyang Hao
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Cheng Liu
- Institute of Grain Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Dengfeng Zhang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Huaijun Tang
- Institute of Grain Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Chunhui Li
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yongxiang Li
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yunsu Shi
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaoqing Xie
- Institute of Grain Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Yanchun Song
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Tianyu Wang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yu Li
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
398
|
Peng X, Wang Q, Zhao Y, Li X, Ma Q. Comparative genome analysis of the SPL gene family reveals novel evolutionary features in maize. Genet Mol Biol 2019; 42:380-394. [PMID: 31271590 PMCID: PMC6726161 DOI: 10.1590/1678-4685-gmb-2017-0144] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 10/04/2018] [Indexed: 11/21/2022] Open
Abstract
SPLs are plant-specific transcription factors that play important regulatory roles in plant growth and development. Systematic analysis of the SPL family has been performed in numerous plants, such as Arabidopsis, rice, and Populus. However, no comparative analysis has been performed across different species to examine evolutionary features. In this study, we present a comparative analysis of SPLs in different species. The results showed that 84 SPLs of the four species can be divided into six groups according to phylogeny. We found that most of the SPL-containing regions in maize showed extensive conservation with duplicated regions of rice and sorghum. A gene duplication analysis in maize indicated that ZmSPLs showed a significant excess of segmental duplication. The Ka/Ks analysis indicated that 9 out of 18 duplicated pairs in maize experienced positive selection, while SPL gene pairs of rice and sorghum mainly evolved under purifying selection, suggesting novel evolutionary features for ZmSPLs. The 31 ZmSPLs were further analyzed by describing their gene structure, phylogenetic relationships, chromosomal location, and expression, Among the ZmSPLs, 13 were predicated to be targeted by miR156s and involved in drought stress response. These results provide the foundation for future functional analyses of ZmSPLs.
Collapse
Affiliation(s)
- Xiaojian Peng
- National Engineering Laboratory of Crop Stress Resistance, Key Laboratory of Crop Biology of Anhui Province, School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Qianqian Wang
- Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Yang Zhao
- National Engineering Laboratory of Crop Stress Resistance, Key Laboratory of Crop Biology of Anhui Province, School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Xiaoyu Li
- National Engineering Laboratory of Crop Stress Resistance, Key Laboratory of Crop Biology of Anhui Province, School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Qing Ma
- National Engineering Laboratory of Crop Stress Resistance, Key Laboratory of Crop Biology of Anhui Province, School of Life Sciences, Anhui Agricultural University, Hefei, China
| |
Collapse
|
399
|
Wang J, Liu S, Li J, Zhao S, Yi Z. Roles for miRNAs in osteogenic differentiation of bone marrow mesenchymal stem cells. Stem Cell Res Ther 2019; 10:197. [PMID: 31253175 PMCID: PMC6599379 DOI: 10.1186/s13287-019-1309-7] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Bone marrow mesenchymal stem cells (BMSCs), which were first discovered in bone marrow, are capable of differentiating into osteoblasts, chondrocytes, fat cells, and even myoblasts, and are considered multipotent cells. As a result of their potential for multipotential differentiation, self-renewal, immune regulation, and other effects, BMSCs have become an important source of seed cells for gene therapy, tissue engineering, cell replacement therapy, and regenerative medicine. MicroRNA (miRNA) is a highly conserved type of endogenous non-protein-encoding RNA of about 19-25 nucleotides in length, whose transcription process is independent of other genes. Generally, miRNA plays roles in regulating cell proliferation, differentiation, apoptosis, and development by binding to the 3' untranslated region of target mRNAs, whereby they can degrade or induce translational silencing. Although miRNAs play a regulatory role in various metabolic processes, they are not translated into proteins. Several studies have shown that miRNAs play an important role in the osteogenic differentiation of BMSCs. Herein, we describe in-depth studies of roles for miRNAs during the osteogenic differentiation of BMSCs, as they provide new theoretical and experimental rationales for bone tissue engineering and clinical treatment.
Collapse
Affiliation(s)
- Jicheng Wang
- Shaanxi Provincial People's Hospital, 256 Youyi West Road, Beilin, Xi'an, 710068, China.,Xi'an Medical University, Xi'an, 710068, China
| | - Shizhang Liu
- Shaanxi Provincial People's Hospital, 256 Youyi West Road, Beilin, Xi'an, 710068, China
| | - Jingyuan Li
- Shaanxi Provincial People's Hospital, 256 Youyi West Road, Beilin, Xi'an, 710068, China
| | - Song Zhao
- Shaanxi Provincial People's Hospital, 256 Youyi West Road, Beilin, Xi'an, 710068, China.,Xi'an Medical University, Xi'an, 710068, China
| | - Zhi Yi
- Shaanxi Provincial People's Hospital, 256 Youyi West Road, Beilin, Xi'an, 710068, China.
| |
Collapse
|
400
|
Xia Z, Zhao Z, Gao X, Jiao Z, Wu Y, Zhou T, Fan Z. Characterization of Maize miRNAs in Response to Synergistic Infection of Maize Chlorotic Mottle Virus and Sugarcane Mosaic Virus. Int J Mol Sci 2019; 20:ijms20133146. [PMID: 31252649 PMCID: PMC6650953 DOI: 10.3390/ijms20133146] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 06/20/2019] [Accepted: 06/25/2019] [Indexed: 01/09/2023] Open
Abstract
The synergistic infection of maize chlorotic mottle virus (MCMV) and sugarcane mosaic virus (SCMV) causes maize lethal necrosis, with considerable losses to global maize production. microRNAs (miRNAs) are conserved non-coding small RNAs that play essential regulatory roles in plant development and environmental stress responses, including virus infection. However, the characterization of maize miRNAs in response to synergistic infection of MCMV and SCMV remains largely unknown. In this study, the profiles of small RNAs from MCMV and SCMV single- and co-infected (S + M) maize plants were obtained by high-throughput sequencing. A total of 173 known miRNAs, belonging to 26 miRNA families, and 49 novel miRNAs were profiled. The expression patterns of most miRNAs in S + M-infected maize plants were similar to that in SCMV-infected maize plants, probably due to the existence of RNA silencing suppressor HC-Pro. Northern blotting and quantitative real-time PCR were performed to validate the accumulation of miRNAs and their targets in different experimental treatments, respectively. The down-regulation of miR159, miR393, and miR394 might be involved in antiviral defense to synergistic infection. These results provide novel insights into the regulatory networks of miRNAs in maize plants in response to the synergistic infection of MCMV and SCMV.
Collapse
Affiliation(s)
- Zihao Xia
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China.
| | - Zhenxing Zhao
- State Key Laboratory of Agro-Biotechnology and Key Laboratory of Pest Monitoring and Green Management-MOA, China Agricultural University, Beijing 100193, China
| | - Xinran Gao
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Zhiyuan Jiao
- State Key Laboratory of Agro-Biotechnology and Key Laboratory of Pest Monitoring and Green Management-MOA, China Agricultural University, Beijing 100193, China
| | - Yuanhua Wu
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Tao Zhou
- State Key Laboratory of Agro-Biotechnology and Key Laboratory of Pest Monitoring and Green Management-MOA, China Agricultural University, Beijing 100193, China
| | - Zaifeng Fan
- State Key Laboratory of Agro-Biotechnology and Key Laboratory of Pest Monitoring and Green Management-MOA, China Agricultural University, Beijing 100193, China.
| |
Collapse
|