351
|
Bitto A, De Caridi G, Polito F, Calò M, Irrera N, Altavilla D, Spinelli F, Squadrito F. Evidence for markers of hypoxia and apoptosis in explanted human carotid atherosclerotic plaques. J Vasc Surg 2010; 52:1015-21. [PMID: 20719466 DOI: 10.1016/j.jvs.2010.05.116] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Revised: 05/11/2010] [Accepted: 05/30/2010] [Indexed: 11/28/2022]
Abstract
OBJECTIVE Apoptosis and inflammation are important features of atherosclerotic plaques. We investigated whether a common signal molecule can trigger these two apparently separate pathways. Hypoxia inducible factor (HIF-1α) is known to participate in atherosclerosis and to stimulate apoptosis signal-regulating kinase 1 (ASK-1), one of the mitogen-activated protein kinases, which is activated by various extracellular stimuli and involved in a variety of cellular function. METHODS We tested carotid artery specimens from 50 subjects who underwent angioplasty and five age-matched controls for either Western blot or histologic analysis. The hypoxic status was investigated by means of HIF-1α expression in carotid specimens. RESULTS HIF-1α was significantly upregulated in carotid specimens with respect to controls (P < .05), ASK-1 was detected in plaques of any composition from lipidic to calcific, and this expression increased with the stage of the plaque and with the expression of inflammatory (p-ERK, RANK-L, OPG) and apoptotic molecules (caspase 9, p-p-38, and p-JNK). CONCLUSION Our data suggest that hypoxia is the key regulating factor that triggers inflammation as well as apoptosis in the human atherosclerotic plaque.
Collapse
Affiliation(s)
- Alessandra Bitto
- Department of Clinical and Experimental Medicine and Vascular Surgery, Section of Pharmacology, School of Medicine, Messina, Italy
| | | | | | | | | | | | | | | |
Collapse
|
352
|
Elliott MR, Ravichandran KS. Clearance of apoptotic cells: implications in health and disease. ACTA ACUST UNITED AC 2010; 189:1059-70. [PMID: 20584912 PMCID: PMC2894449 DOI: 10.1083/jcb.201004096] [Citation(s) in RCA: 390] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Recent advances in defining the molecular signaling pathways that regulate the phagocytosis of apoptotic cells have improved our understanding of this complex and evolutionarily conserved process. Studies in mice and humans suggest that the prompt removal of dying cells is crucial for immune tolerance and tissue homeostasis. Failed or defective clearance has emerged as an important contributing factor to a range of disease processes. This review addresses how specific molecular alterations of engulfment pathways are linked to pathogenic states. A better understanding of the apoptotic cell clearance process in healthy and diseased states could offer new therapeutic strategies.
Collapse
Affiliation(s)
- Michael R Elliott
- Center for Cell Clearance and the Department of Microbiology, University of Virginia, Charlottesville, VA 22908, USA
| | | |
Collapse
|
353
|
Goossens P, Gijbels MJJ, Zernecke A, Eijgelaar W, Vergouwe MN, van der Made I, Vanderlocht J, Beckers L, Buurman WA, Daemen MJAP, Kalinke U, Weber C, Lutgens E, de Winther MPJ. Myeloid type I interferon signaling promotes atherosclerosis by stimulating macrophage recruitment to lesions. Cell Metab 2010; 12:142-53. [PMID: 20674859 DOI: 10.1016/j.cmet.2010.06.008] [Citation(s) in RCA: 170] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2009] [Revised: 01/05/2010] [Accepted: 06/02/2010] [Indexed: 12/23/2022]
Abstract
Inflammatory cytokines are well-recognized mediators of atherosclerosis. Depending on the pathological context, type I interferons (IFNs; IFNalpha and IFNbeta) exert either pro- or anti-inflammatory immune functions, but their exact role in atherogenesis has not been clarified. Here, we demonstrate that IFNbeta enhances macrophage-endothelial cell adhesion and promotes leukocyte attraction to atherosclerosis-prone sites in mice in a chemokine-dependent manner. Moreover, IFNbeta treatment accelerates lesion formation in two different mouse models of atherosclerosis and increases macrophage accumulation in the plaques. Concomitantly, absence of endogenous type I IFN signaling in myeloid cells inhibits lesion development, protects against lesional accumulation of macrophages, and prevents necrotic core formation. Finally, we show that type I IFN signaling is upregulated in ruptured human atherosclerotic plaques. Hereby, we identify type I IFNs as proatherosclerotic cytokines that may serve as additional targets for prevention or treatment.
Collapse
Affiliation(s)
- Pieter Goossens
- Department of Molecular Genetics, Cardiovascular Research Institute Maastricht, Maastricht University, 6200 MD Maastricht, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
354
|
Tsukano H, Gotoh T, Endo M, Miyata K, Tazume H, Kadomatsu T, Yano M, Iwawaki T, Kohno K, Araki K, Mizuta H, Oike Y. The endoplasmic reticulum stress-C/EBP homologous protein pathway-mediated apoptosis in macrophages contributes to the instability of atherosclerotic plaques. Arterioscler Thromb Vasc Biol 2010; 30:1925-32. [PMID: 20651282 DOI: 10.1161/atvbaha.110.206094] [Citation(s) in RCA: 161] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
OBJECTIVE To elucidate whether and how the endoplasmic reticulum (ER) stress-C/EBP homologous protein (CHOP) pathway in macrophages is involved in the rupture of atherosclerotic plaques. METHODS AND RESULTS Increases in macrophage-derived foam cell death in coronary atherosclerotic plaques cause the plaque to become vulnerable, thus resulting in acute coronary syndrome. The ER stress-CHOP/growth arrest and DNA damage-inducible gene-153 (GADD153) pathway is induced in the macrophage-derived cells in atherosclerotic lesions and is involved in plaque formation. However, the role of CHOP in the final stage of atherosclerosis has not been fully elucidated. Many CHOP-expressing macrophages showed apoptosis in advanced ruptured atherosclerotic lesions in wild-type mice, whereas few apoptotic cells were observed in Chop(-/-) mice. The rupture of atherosclerotic plaques was significantly reduced in high cholesterol-fed Chop(-/-)/Apoe(-/-) mice compared with Chop(+/+)/Apoe(-/-) mice. Furthermore, using mice that underwent bone marrow transplantation, we showed that expression of CHOP in macrophages significantly contributes to the formation of ruptures. By using primary cultured macrophages, we further showed that unesterified free cholesterol derived from incorporated denatured low-density lipoprotein was accumulated in the ER and induced ER stress-mediated apoptosis in a CHOP-Bcl2-associated X protein (Bax) pathway-dependent manner. CONCLUSIONS The ER stress-CHOP-Bax-mediated apoptosis in macrophages contributes to the instability of atherosclerotic plaques.
Collapse
Affiliation(s)
- Hiroto Tsukano
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
355
|
Linton MF, Fazio S. 6-Mercaptopurine, monocytes, and atherosclerosis. Arterioscler Thromb Vasc Biol 2010; 30:1494-6. [PMID: 20631345 DOI: 10.1161/atvbaha.110.208264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
356
|
Rodrigues AC. Efflux and uptake transporters as determinants of statin response. Expert Opin Drug Metab Toxicol 2010; 6:621-32. [PMID: 20367534 DOI: 10.1517/17425251003713519] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
IMPORTANCE OF THE FIELD The important role of drug transporters in drug absorption and disposition has been well documented. Statins are subjected to active transport of membrane proteins of the superfamilies ATP-binding cassette and solute carrier, and there is limited understanding of the mechanisms by which differences in transporter expression and activity contributes to variability of pharmacokinetics (PKs)/pharmacodynamics (PDs) of statins. AREAS COVERED IN THIS REVIEW This review aims to discuss the roles of drug transporters in the PKs and PDs of statins, and in drug interactions with statins. WHAT THE READER WILL GAIN A comprehensive summary of the literature on this subject including in vitro and in vivo observations. TAKE HOME MESSAGE In vivo and in vitro studies have shown that efflux and uptake transporters modulate the PKs/PDs of statins. Until now organic anion transporting polypeptides (OATP)1B1 variants have been considered major factors in limiting the uptake of statins and increasing statin exposure, and, consequently, increasing risk of myopathy. Further studies in pharmacogenetics and in vitro models to assess statin disposition and toxicity are required to understand the contribution of others transporters, such as multidrug resistance-associated protein (MRP)1, MRP2, breast cancer resistance protein, OATP2B1, OAT1B3 and OATP1A2, in interindividual variability to statins efficacy and safety.
Collapse
Affiliation(s)
- Alice C Rodrigues
- University of Sao Paulo, Department of Clinical and Toxicological Analysis, Faculty of Pharmaceutical Sciences, Av. Prof. Lineu Prestes, 580, bl17s, Sao Paulo 05508-000, SP, Brazil.
| |
Collapse
|
357
|
Abstract
Abstract: Macrophages, a key component of the innate defense against pathogens, participate in the initiation and resolution of inflammation, and in the maintenance of tissues. These diverse and at times antithetical functions of macrophages are executed via distinct activation states, ranging from classical to alternative to deactivation. Because the dysregulation of macrophage activation is pathogenically linked to various metabolic, inflammatory and immune disorders, regulatory proteins controlling macrophage activation have emerged as important new therapeutic targets. Here, the mechanisms by which peroxisome proliferator-activated receptors (PPARs) transcriptionally regulate macrophage activation in health and disease states, including obesity, insulin resistance and cardiovascular disease, are reviewed.
Collapse
Affiliation(s)
- Ajay Chawla
- Division of Endocrinology, Metabolism and Gerontology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305-5103, USA.
| |
Collapse
|
358
|
Walters MJ, Wrenn SP. Size-selective uptake of colloidal low density lipoprotein aggregates by cultured white blood cells. J Colloid Interface Sci 2010; 350:494-501. [PMID: 20667542 DOI: 10.1016/j.jcis.2010.06.059] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2010] [Revised: 06/25/2010] [Accepted: 06/29/2010] [Indexed: 11/18/2022]
Abstract
This paper illustrates how principles of colloid science are useful in studying atherosclerosis. Accumulation of foam cells in the arterial intima is a key step in atherogenesis. The extent of foam cell formation is enhanced by low density lipoprotein (LDL) aggregates, and we have previously shown that the size of sphingomyelinase (Smase)-hydrolysis-induced aggregates depends directly on the concentration of ceramide generated in the LDL phospholipid monolayer, mediated by the hydrophobic effect. Here, we focus on the effect of LDL aggregate particle sizes on their subsequent uptake by macrophages. Our data show the first direct measurement of uptake as a function of aggregate size and the first direct comparison of uptake after Smase-catalyzed and vortex-mixing-mediated aggregation. Vortex-mixed aggregates with radii 20-77 nm showed maximal uptake approximately 118 microg sterol/mg protein at a 53 nm intermediate size, consistent with a mathematical model describing competition between aggregate surface area and volume. Smase-treated aggregates with radii 25-211 nm also showed maximal uptake at an intermediate size, approximately 58 microg sterol/mg protein for 132 nm particles, and fit a modified model that incorporated ceramide concentration expressed as aggregate size. This study shows that particle size is significant and composition may also be a factor in LDL uptake.
Collapse
Affiliation(s)
- Michael J Walters
- Drexel University, Department of Chemical and Biological Engineering, 3141 Chestnut Street, Philadelphia, PA 19104, USA
| | | |
Collapse
|
359
|
Chandak PG, Radović B, Aflaki E, Kolb D, Buchebner M, Fröhlich E, Magnes C, Sinner F, Haemmerle G, Zechner R, Tabas I, Levak-Frank S, Kratky D. Efficient phagocytosis requires triacylglycerol hydrolysis by adipose triglyceride lipase. J Biol Chem 2010; 285:20192-201. [PMID: 20424161 PMCID: PMC2888432 DOI: 10.1074/jbc.m110.107854] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2010] [Revised: 04/20/2010] [Indexed: 11/06/2022] Open
Abstract
Macrophage phagocytosis is an essential biological process in host defense and requires large amounts of energy. To date, glucose is believed to represent the prime substrate for ATP production in macrophages. To investigate the relative contribution of free fatty acids (FFAs) in this process, we determined the phagocytosis rates in normal mouse macrophages and macrophages of adipose triglyceride lipase (ATGL)-deficient mice. ATGL was shown to be the rate-limiting enzyme for the hydrolysis of lipid droplet-associated triacylglycerol (TG) in many tissues. Here, we demonstrate that Atgl(-/-) macrophages fail to efficiently hydrolyze cellular TG stores leading to decreased cellular FFA concentrations and concomitant accumulation of lipid droplets, even in the absence of exogenous lipid loading. The reduced availability of FFAs results in decreased cellular ATP concentrations and impaired phagocytosis suggesting that fatty acids must first go through a cycle of esterification and re-hydrolysis before they are available as energy substrate. Exogenously added glucose cannot fully compensate for the phagocytotic defect in Atgl(-/-) macrophages. Hence, phagocytosis was also decreased in vivo when Atgl(-/-) mice were challenged with bacterial particles. These findings imply that phagocytosis in macrophages depends on the availability of FFAs and that ATGL is required for their hydrolytic release from cellular TG stores. This novel mechanism links ATGL-mediated lipolysis to macrophage function in host defense and opens the way to explore possible roles of ATGL in immune response, inflammation, and atherosclerosis.
Collapse
Affiliation(s)
- Prakash G. Chandak
- From the Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University of Graz, Harrachgasse 21, 8010 Graz, Austria
| | - Branislav Radović
- From the Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University of Graz, Harrachgasse 21, 8010 Graz, Austria
| | - Elma Aflaki
- From the Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University of Graz, Harrachgasse 21, 8010 Graz, Austria
| | - Dagmar Kolb
- From the Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University of Graz, Harrachgasse 21, 8010 Graz, Austria
- the Institute of Molecular Biosciences, University of Graz, Heinrichstrasse 31/Humboldstrasse 50, 8010 Graz, Austria
| | - Marlene Buchebner
- From the Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University of Graz, Harrachgasse 21, 8010 Graz, Austria
| | - Eleonore Fröhlich
- the Center for Medical Research, Medical University of Graz, Stiftingtalstrasse 24, 8010 Graz, Austria
| | - Christoph Magnes
- Joanneum Research, Institute of Medical Technologies and Health Management, Stiftingtalstrasse 24, 8010 Graz, Austria, and
| | - Frank Sinner
- Joanneum Research, Institute of Medical Technologies and Health Management, Stiftingtalstrasse 24, 8010 Graz, Austria, and
| | - Guenter Haemmerle
- the Institute of Molecular Biosciences, University of Graz, Heinrichstrasse 31/Humboldstrasse 50, 8010 Graz, Austria
| | - Rudolf Zechner
- the Institute of Molecular Biosciences, University of Graz, Heinrichstrasse 31/Humboldstrasse 50, 8010 Graz, Austria
| | - Ira Tabas
- the Departments of Medicine, Pathology and Cell Biology, and Physiology and Cellular Biophysics, Columbia University, New York, New York 10032
| | - Sanja Levak-Frank
- From the Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University of Graz, Harrachgasse 21, 8010 Graz, Austria
| | - Dagmar Kratky
- From the Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University of Graz, Harrachgasse 21, 8010 Graz, Austria
| |
Collapse
|
360
|
Yeang C, Qin S, Chen K, Wang DQH, Jiang XC. Diet-induced lipid accumulation in phospholipid transfer protein-deficient mice: its atherogenicity and potential mechanism. J Lipid Res 2010; 51:2993-3002. [PMID: 20543142 DOI: 10.1194/jlr.m007088] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
A high saturated fat diet induces free cholesterol and phospholipid accumulation in the plasma of phospholipid transfer protein (Pltp)-deficient mice. In this study, we examined the atherogenic consequence of this phenomenon and investigated the possible mechanism(s). Pltp KO/Apoe KO mice that were fed a coconut oil-enriched high-fat diet (COD) for 7 weeks had higher plasma free cholesterol (149%), phospholipids (15%), and sphingomyelin (54%) than Apoe KO controls. In contrast to chow-fed animals, COD-fed Pltp KO/Apoe KO mice had the same atherosclerotic lesion size as that of Apoe KO mice. Similar to Pltp KO mice, plasma from COD-fed Pltp KO/Apoe KO mice contained VLDL/LDL-sized lamellar particles. Bile measurement indicated that COD-fed Pltp KO mice have 33% less hepatic cholesterol output than controls. In conclusion, COD-fed, Pltp-deficient mice are no longer protected from atherosclerosis and have impaired biliary lipid secretion, which is associated with free cholesterol and phospholipid accumulation.
Collapse
Affiliation(s)
- Calvin Yeang
- Department of Cell Biology, State University of New York (SUNY) Downstate Medical Center, Brooklyn, NY, USA
| | | | | | | | | |
Collapse
|
361
|
Willeit P, Willeit J, Brandstätter A, Ehrlenbach S, Mayr A, Gasperi A, Weger S, Oberhollenzer F, Reindl M, Kronenberg F, Kiechl S. Cellular aging reflected by leukocyte telomere length predicts advanced atherosclerosis and cardiovascular disease risk. Arterioscler Thromb Vasc Biol 2010; 30:1649-56. [PMID: 20508208 DOI: 10.1161/atvbaha.110.205492] [Citation(s) in RCA: 227] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE To determine the association between leukocyte telomere length (TL) and atherosclerosis and its clinical sequelae stroke and myocardial infarction. METHODS AND RESULTS Within the scope of the prospective population-based Bruneck Study, leukocyte TL was measured by quantitative polymerase chain reaction in 800 women and men aged 45 to 84 years (in 1995). The manifestation of cardiovascular disease (CVD) (1995-2005) and the progression of atherosclerosis (1995-2000) were carefully assessed. The TL was shorter in men than in women (age-adjusted mean [95% CI], 1.41 [1.33 to 1.49] versus 1.55 [1.47 to 1.62]; P=0.02) and inversely correlated to age (r=-0.22, P<0.001) and family history of CVD (P=0.03). Participants with CVD events during follow-up (n=88) had significantly shorter telomeres (age- and sex-adjusted mean [95% CI], 1.25 [1.08 to 1.42] versus 1.51 [1.45 to 1.57]; P<0.001). In multivariable Cox models, baseline TL emerged as a significant and independent risk predictor for the composite CVD end point and its individual components (myocardial infarction and stroke); however, this was not the case for de novo stable angina and intermittent claudication. Subjects in the top and bottom TL tertile group differed in their CVD risk by a factor of 2.72 (95% CI, 1.41 to 5.28), which is the risk ratio attributable to a 13.9-year difference in chronological age. Remarkably, in our atherosclerosis progression model, TL was strongly associated with advanced, but not early, atherogenesis. All findings were consistent in women and men. CONCLUSIONS Our findings indicate a differential role of telomere shortening in the various stages of atherosclerosis, with preferential involvement in advanced vessel pathology and acute vascular syndromes.
Collapse
Affiliation(s)
- Peter Willeit
- Department of Neurology, Innsbruck Medical University, Innsbruck, Austria
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
362
|
Yvan-Charvet L, Pagler TA, Seimon TA, Thorp E, Welch CL, Witztum JL, Tabas I, Tall AR. ABCA1 and ABCG1 protect against oxidative stress-induced macrophage apoptosis during efferocytosis. Circ Res 2010; 106:1861-9. [PMID: 20431058 DOI: 10.1161/circresaha.110.217281] [Citation(s) in RCA: 163] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE Antiatherogenic effects of plasma high-density lipoprotein (HDL) include the ability to inhibit apoptosis of macrophage foam cells. The ATP-binding cassette transporters ABCA1 and ABCG1 have a major role in promoting cholesterol efflux from macrophages to apolipoprotein A-1 and HDL and are upregulated during the phagocytosis of apoptotic cells (efferocytosis). OBJECTIVE The goal of this study was to determine the roles of ABCA1 and ABCG1 in preserving the viability of macrophages during efferocytosis. METHODS AND RESULTS We show that despite similar clearance of apoptotic cells, peritoneal macrophages from Abca1(-/-)Abcg1(-/-), Abcg1(-/-), and, to a lesser extent, Abca1(-/-) mice are much more prone to apoptosis during efferocytosis compared to wild-type cells. Similar findings were observed following incubations with oxidized phospholipids, and the ability of HDL to protect against oxidized phospholipid-induced apoptosis was markedly reduced in Abca1(-/-)Abcg1(-/-) and Abcg1(-/-) cells. These effects were independent of any role of ABCA1 and ABCG1 in mediating oxidized phospholipid efflux but were reversed by cyclodextrin-mediated cholesterol efflux. The apoptotic response observed in Abca1(-/-)Abcg1(-/-) macrophages after oxidized phospholipid exposure or engulfment of apoptotic cells was dependent on an excessive oxidative burst secondary to enhanced assembly of NADPH oxidase (NOX)2 complexes, leading to sustained Jnk activation which turned on the apoptotic cell death program. Increased NOX2 assembly required Toll-like receptors 2/4 and MyD88 signaling, which are known to be enhanced in transporter deficient cells in a lipid raft-dependent fashion. CONCLUSIONS We identified a new beneficial role of ABCA1, ABCG1 and HDL in dampening the oxidative burst and preserving viability of macrophages following exposure to oxidized phospholipids and/or apoptotic cells.
Collapse
Affiliation(s)
- Laurent Yvan-Charvet
- Division of Molecular Medicine, Department of Medicine, 630 W 168th St, Columbia University, New York, NY 10032, USA.
| | | | | | | | | | | | | | | |
Collapse
|
363
|
Tarling EJ, Bojanic DD, Tangirala RK, Wang X, Lovgren-Sandblom A, Lusis AJ, Bjorkhem I, Edwards PA. Impaired development of atherosclerosis in Abcg1-/- Apoe-/- mice: identification of specific oxysterols that both accumulate in Abcg1-/- Apoe-/- tissues and induce apoptosis. Arterioscler Thromb Vasc Biol 2010; 30:1174-80. [PMID: 20299684 DOI: 10.1161/atvbaha.110.205617] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
OBJECTIVE To generate Abcg1(-/-) Apoe(-/-) mice to understand the mechanism and cell types involved in changes in atherosclerosis after loss of ABCG1. METHODS AND RESULTS ABCG1 is highly expressed in macrophages and endothelial cells, 2 cell types that play important roles in the development of atherosclerosis. Abcg1(-/-) Apoe(-/-) and Apoe(-/-) mice and recipient Apoe(-/-) mice that had undergone transplantation with bone marrow from Apoe(-/-) or Abcg1(-/-) Apoe(-/-) mice were fed a Western diet for 12 or 16 weeks before quantification of atherosclerotic lesions. These studies demonstrated that loss of ABCG1 from all tissues, or from only hematopoietic cells, was associated with significantly smaller lesions that contained increased numbers of TUNEL- and cleaved caspase 3-positive apoptotic Abcg1(-/-) macrophages. We also identified specific oxysterols that accumulate in the brains and macrophages of the Abcg1(-/-) Apoe(-/-) mice. These oxysterols promoted apoptosis and altered the expression of proapoptotic genes when added to macrophages in vitro. CONCLUSIONS Loss of ABCG1 from all tissues or from only hematopoietic cells results in smaller atherosclerotic lesions populated with increased apoptotic macrophages, by processes independent of ApoE. Specific oxysterols identified in tissues of Abcg1(-/-) Apoe(-/-) mice may be critical because they induce macrophage apoptosis and the expression of proapoptotic genes.
Collapse
Affiliation(s)
- Elizabeth J Tarling
- Department of Biological Chemistry, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA 90095-1737, USA
| | | | | | | | | | | | | | | |
Collapse
|
364
|
Yancey PG, Blakemore J, Ding L, Fan D, Overton CD, Zhang Y, Linton MF, Fazio S. Macrophage LRP-1 controls plaque cellularity by regulating efferocytosis and Akt activation. Arterioscler Thromb Vasc Biol 2010; 30:787-95. [PMID: 20150557 DOI: 10.1161/atvbaha.109.202051] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE The balance between apoptosis susceptibility and efferocytosis of macrophages is central to plaque remodeling and inflammation. LRP-1 and its ligand, apolipoprotein E, have been implicated in efferocytosis and apoptosis in some cell types. We investigated the involvement of the macrophage LRP-1/apolipoprotein E axis in controlling plaque apoptosis and efferocytosis. Method and Results- LRP-1(-/-) macrophages displayed nearly 2-fold more TUNEL positivity compared to wild-type cells in the presence of DMEM alone or with either lipopolysaccharide or oxidized low-density lipoprotein. The survival kinase, phosphorylated Akt, was barely detectable in LRP-1(-/-) cells, causing decreased phosphorylated Bad and increased cleaved caspase-3. Regardless of the apoptotic stimulation and degree of cell death, LRP-1(-/-) macrophages displayed enhanced inflammation with increased IL-1 beta, IL-6, and tumor necrosis factor-alpha expression. Efferocytosis of apoptotic macrophages was reduced by 60% in LRP-1(-/-) vs wild-type macrophages despite increased apolipoprotein E expression by both LRP-1(-/-) phagocytes and wild-type apoptotic cells. Compared to wild-type macrophage lesions, LRP-1(-/-) lesions had 5.7-fold more necrotic core with more dead cells not associated with macrophages. CONCLUSIONS Macrophage LRP-1 deficiency increases cell death and inflammation by impairing phosphorylated Akt activation and efferocytosis. Increased apolipoprotein E expression in LRP-1(-/-) macrophages suggests that the LRP-1/apolipoprotein E axis regulates the balance between apoptosis and efferocytosis, thereby preventing necrotic core formation.
Collapse
Affiliation(s)
- Patricia G Yancey
- Division of Cardiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| | | | | | | | | | | | | | | |
Collapse
|
365
|
Tabas I, Tall A, Accili D. The impact of macrophage insulin resistance on advanced atherosclerotic plaque progression. Circ Res 2010; 106:58-67. [PMID: 20056946 DOI: 10.1161/circresaha.109.208488] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Atherothrombotic vascular disease is the major cause of death and disability in obese and diabetic subjects with insulin resistance. Although increased systemic risk factors in the setting of insulin resistance contribute to this problem, it is likely exacerbated by direct effects of insulin resistance on the arterial wall cells that participate in atherosclerosis. A critical process in the progression of subclinical atherosclerotic lesions to clinically relevant lesions is necrotic breakdown of plaques. Plaque necrosis, which is particularly prominent in the lesions of diabetics, is caused by the combination of macrophage apoptosis and defective phagocytic clearance, or efferocytosis, of the apoptotic macrophages. One cause of macrophage apoptosis in advanced plaques is activation of a proapoptotic branch of the unfolded protein response, which is an endoplasmic reticulum stress pathway. Macrophages have a functional insulin receptor signaling pathway, and downregulation of this pathway in the setting insulin resistance enhances unfolded protein response-induced apoptosis. Moreover, other aspects of the obesity/insulin-resistance syndrome may adversely affect efferocytosis. These processes may therefore provide an important mechanistic link among insulin resistance, plaque necrosis, and atherothrombotic vascular disease and suggest novel therapeutic approaches to this expanding health problem.
Collapse
Affiliation(s)
- Ira Tabas
- Department of Medicine, Columbia University, 630 West 168th St, New York, NY 10032, USA.
| | | | | |
Collapse
|
366
|
Abstract
Chronic inflammation drives atherosclerosis, the leading cause of cardiovascular disease. Over the past two decades, data have emerged showing that immune cells are involved in the pathogenesis of atherosclerotic plaques. The accumulation and continued recruitment of leukocytes are associated with the development of 'vulnerable' plaques. These plaques are prone to rupture, leading to thrombosis, myocardial infarction or stroke, all of which are frequent causes of death. Plaque macrophages account for the majority of leukocytes in plaques, and are believed to differentiate from monocytes recruited from circulating blood. However, monocytes represent a heterogenous circulating population of cells. Experiments are needed to address whether monocyte recruitment to plaques and effector functions, such as the formation of foam cells, the production of nitric oxide and reactive oxygen species, and proteolysis are critical for the development and rupture of plaques, and thus for the pathophysiology of atherosclerosis, as well as elucidate the precise mechanisms involved.
Collapse
|
367
|
Phospholipase A2-modified low density lipoprotein induces mitochondrial uncoupling and lowers reactive oxygen species in phagocytes. Atherosclerosis 2010; 208:142-7. [DOI: 10.1016/j.atherosclerosis.2009.07.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2009] [Revised: 05/25/2009] [Accepted: 07/05/2009] [Indexed: 11/16/2022]
|
368
|
Tabas I. Macrophage death and defective inflammation resolution in atherosclerosis. Nat Rev Immunol 2009; 10:36-46. [PMID: 19960040 DOI: 10.1038/nri2675] [Citation(s) in RCA: 844] [Impact Index Per Article: 52.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A key event in atherosclerosis is a maladaptive inflammatory response to subendothelial lipoproteins. A crucial aspect of this response is a failure to resolve inflammation, which normally involves the suppression of inflammatory cell influx, effective clearance of apoptotic cells and promotion of inflammatory cell egress. Defects in these processes promote the progression of atherosclerotic lesions into dangerous plaques, which can trigger atherothrombotic vascular disease, the leading cause of death in industrialized societies. In this Review I provide an overview of these concepts, with a focus on macrophage death and defective apoptotic cell clearance, and discuss new therapeutic strategies designed to boost inflammation resolution in atherosclerosis.
Collapse
Affiliation(s)
- Ira Tabas
- Department of Medicine, Physiology and Cellular Biophysics, Columbia University, New York, New York 10032, USA.
| |
Collapse
|
369
|
Macrophage p53 controls macrophage death in atherosclerotic lesions of apolipoprotein E deficient mice. Atherosclerosis 2009; 207:399-404. [DOI: 10.1016/j.atherosclerosis.2009.06.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2008] [Revised: 06/06/2009] [Accepted: 06/11/2009] [Indexed: 11/20/2022]
|
370
|
Erbay E, Babaev VR, Mayers JR, Makowski L, Charles KN, Snitow ME, Fazio S, Wiest MM, Watkins SM, Linton MF, Hotamisligil GS. Reducing endoplasmic reticulum stress through a macrophage lipid chaperone alleviates atherosclerosis. Nat Med 2009; 15:1383-91. [PMID: 19966778 PMCID: PMC2790330 DOI: 10.1038/nm.2067] [Citation(s) in RCA: 390] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2009] [Accepted: 10/31/2009] [Indexed: 01/22/2023]
Abstract
Macrophages exhibit endoplasmic reticulum (ER) stress when exposed to
lipotoxic signals associated with atherosclerosis, although the
pathophysiological significance and the underlying mechanisms remain unknown.
Here, we demonstrate that mitigation of ER stress with a chemical chaperone
results in marked protection against lipotoxic death in macrophages and prevents
macrophage fatty acid binding protein-4 (aP2) expression. Utilizing genetic and
chemical models, we show that aP2 is the predominant regulator of lipid-induced
macrophage ER stress. Lipid chaperone effects are mediated by the production of
phospholipids rich in monounsaturated fatty acids and bioactive lipids that
render macrophages resistant to lipid-induced ER stress. Furthermore,
aP2’s impact on macrophage lipid metabolism and ER stress response
is mediated by upregulation of key lipogenic enzymes by the liver X receptor.
Our results demonstrate the central role for lipid chaperones in regulating ER
homeostasis in macrophages in atherosclerosis and that ER responses can be
modified, genetically or chemically, to protect the organism against the
deleterious effects of hyperlipidemia.
Collapse
Affiliation(s)
- Ebru Erbay
- Department of Genetics & Complex Diseases, Harvard School of Public Health, Boston, Massachusetts, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
371
|
Garenc C, Julien P, Levy E. Oxysterols in biological systems: The gastrointestinal tract, liver, vascular wall and central nervous system. Free Radic Res 2009; 44:47-73. [DOI: 10.3109/10715760903321804] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
372
|
Hsueh WA, Wyne KL. Does Renin-Angiotensin-Aldosterone System Inhibition Impact Obesity as a Co-Risk Factor? J Clin Hypertens (Greenwich) 2009. [DOI: 10.1111/j.1751-7176.2009.00215.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
373
|
Tabas I, Seimon T, Timmins J, Li G, Lim W. Macrophage apoptosis in advanced atherosclerosis. Ann N Y Acad Sci 2009; 1173 Suppl 1:E40-5. [PMID: 19751413 DOI: 10.1111/j.1749-6632.2009.04957.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Plaque necrosis in advanced atheromata, which triggers acute atherothrombotic vascular events, is caused by the apoptosis of lesional macrophages coupled with defective phagocytic clearance of the dead cells. The central enabling event in macrophage apoptosis relevant to advanced atherosclerosis is the unfolded protein response (UPR), an endoplasmic reticulum (ER) stress pathway. The UPR effector CHOP (GADD153) amplifies release of ER Ca(2+) stores, which activates a central integrator of apoptosis signaling, calcium/calmodulin-dependent protein kinase II (CaMKII). CaMKII, in turn, leads to activation of pro-apoptotic STAT1, induction of the death receptor Fas, and stimulation of the mitochondria-cytochrome c pathway of apoptosis. While these pathways are necessary for apoptosis, apoptosis occurs only when the cells are also exposed to one or more additional "hits." These hits amplify pro-apoptotic pathways and/or suppress compensatory cell-survival pathways. A second hit relevant to atherosclerosis is activation of pattern recognition receptors (PRRs), such as scavenger and toll-like receptors. In vivo relevance is suggested by the fact that advanced human lesions express markers of UPR activation that correlate closely with the degree of plaque vulnerability and macrophage apoptosis. Moreover, studies with genetically altered mice have shown that ER stress and PRR activation are causative for advanced lesional macrophage apoptosis and plaque necrosis. In summary, a key cellular event in the conversion of benign to vulnerable atherosclerotic plaques is ER stress-induced macrophage apoptosis. Further understanding of the mechanisms and consequences of this event may lead to novel therapies directed at preventing the clinical progression of atheromata.
Collapse
Affiliation(s)
- Ira Tabas
- Department of Medicine, Columbia University Medical Center, New York, New York, USA.
| | | | | | | | | |
Collapse
|
374
|
Li S, Sun Y, Liang CP, Thorp EB, Han S, Jehle AW, Saraswathi V, Pridgen B, Kanter JE, Li R, Welch CL, Hasty AH, Bornfeldt KE, Breslow JL, Tabas I, Tall AR. Defective phagocytosis of apoptotic cells by macrophages in atherosclerotic lesions of ob/ob mice and reversal by a fish oil diet. Circ Res 2009; 105:1072-82. [PMID: 19834009 DOI: 10.1161/circresaha.109.199570] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
RATIONALE The complications of atherosclerosis are a major cause of death and disability in type 2 diabetes. Defective clearance of apoptotic cells by macrophages (efferocytosis) is thought to lead to increased necrotic core formation and inflammation in atherosclerotic lesions. OBJECTIVE To determine whether there is defective efferocytosis in a mouse model of obesity and atherosclerosis. METHODS AND RESULTS We quantified efferocytosis in peritoneal macrophages and in atherosclerotic lesions of obese ob/ob or ob/ob;Ldlr(-/-) mice and littermate controls. Peritoneal macrophages from ob/ob and ob/ob;Ldlr(-/-) mice showed impaired efferocytosis, reflecting defective phosphatidylinositol 3-kinase activation during uptake of apoptotic cells. Membrane lipid composition of ob/ob and ob/ob;Ldlr(-/-) macrophages showed an increased content of saturated fatty acids (FAs) and decreased omega-3 FAs (eicosapentaenoic acid and docosahexaenoic acid) compared to controls. A similar defect in efferocytosis was induced by treating control macrophages with saturated free FA/BSA complexes, whereas the defect in ob/ob macrophages was reversed by treatment with eicosapentaenoic acid/BSA or by feeding ob/ob mice a fish oil diet rich in omega-3 FAs. There was also defective macrophage efferocytosis in atherosclerotic lesions of ob/ob;Ldlr(-/-) mice and this was reversed by a fish oil-rich diet. CONCLUSIONS The findings suggest that in obesity and type 2 diabetes elevated levels of saturated FAs and/or decreased levels of omega-3 FAs contribute to decreased macrophage efferocytosis. Beneficial effects of fish oil diets in atherosclerotic cardiovascular disease may involve improvements in macrophage function related to reversal of defective efferocytosis and could be particularly important in type 2 diabetes and obesity.
Collapse
Affiliation(s)
- Suzhao Li
- Division of Molecular Medicine, Department of Medicine, Columbia University, New York, NY 10032, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
375
|
Abstract
PURPOSE OF REVIEW There is substantial data from over 50 000 patients that increased lipoprotein-associated phospholipase A2 (Lp-PLA2) mass or activity is associated with an increased risk of cardiac death, myocardial infarction, acute coronary syndromes and ischemic stroke. However, only recently have data emerged demonstrating a role of Lp-PLA2 in development of advanced coronary artery disease. Indeed, Lp-PLA2 may be an important link between lipid homeostasis and the vascular inflammatory response. RECENT FINDINGS Lp-PLA2, also known as platelet-activating factor acetylhydrolase, rapidly cleaves oxidized phosphatidylcholine molecules produced during the oxidation of LDL and atherogenic lipoprotein Lp(a), generating the soluble proinflammatory and proapoptotic lipid mediators, lyso-phosphatidylcholine and oxidized nonesterified fatty acids. These proinflammatory lipids play an important role in the development of atherosclerotic necrotic cores, the substrate for acute unstable coronary disease by recruiting and activating leukocytes/macrophages, inducing apoptosis and impairing the subsequent removal of dead cells. Selective inhibition of Lp-PLA2 reduces development of necrotic cores and may result in stabilization of atherosclerotic plaques. SUMMARY Recent data have shown that immune pathways play a major role in the development and progression of high-risk atherosclerosis, which leads to ischemic sudden death, myocardial infarction, acute coronary syndromes and ischemic strokes. Persistent and sustained macrophage apoptosis appears to play a major role in the resulting local inflammatory response in part by effects elicited by Lp-PLA2. Selective inhibition of Lp-PLA2 has been postulated to reduce necrotic core progression and the clinical sequelae of advanced, unstable atherosclerosis.
Collapse
Affiliation(s)
- Robert L Wilensky
- Cardiovascular Division, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
| | | |
Collapse
|
376
|
Yvan-Charvet L, Wang N, Tall AR. Role of HDL, ABCA1, and ABCG1 transporters in cholesterol efflux and immune responses. Arterioscler Thromb Vasc Biol 2009; 30:139-43. [PMID: 19797709 DOI: 10.1161/atvbaha.108.179283] [Citation(s) in RCA: 511] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Atherosclerosis has been characterized as a chronic inflammatory response to cholesterol deposition in arteries, but the mechanisms linking cholesterol accumulation in macrophage foam cells to inflammation are poorly understood. Macrophage cholesterol efflux occurs at all stages of atherosclerosis and protects cells from free cholesterol and oxysterol-induced toxicity. The ATP-binding cassette transporters ABCA1 and ABCG1 are responsible for the major part of macrophage cholesterol efflux to serum or HDL in macrophage foam cells, but other less efficient pathways such as passive efflux are also involved. Recent studies have shown that the sterol efflux activities of ABCA1 and ABCG1 modulate macrophage expression of inflammatory cytokines and chemokines as well as lymphocyte proliferative responses. In macrophages, transporter deficiency causes increased signaling via various Toll-like receptors including TLR4. These studies have shown that the traditional roles of HDL and ABC transporters in cholesterol efflux and reverse cholesterol transport are mechanistically linked to antiinflammatory and immunosuppressive functions of HDL. The underlying mechanisms may involve modulation of sterol levels and lipid organization in cell membranes.
Collapse
Affiliation(s)
- Laurent Yvan-Charvet
- Division of Molecular Medicine, Department of Medicine, Columbia University, 630 W 168th St, New York, NY 10032, USA.
| | | | | |
Collapse
|
377
|
Martinet W, Croons V, Herman AG, De Meyer GRY. Apoptosis does not mediate macrophage depletion in rabbit atherosclerotic plaques after dietary lipid lowering. Ann N Y Acad Sci 2009; 1171:365-71. [PMID: 19723077 DOI: 10.1111/j.1749-6632.2009.04685.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Unstable atherosclerotic plaques are characterized by a thin fibrous cap that contains few smooth muscle cells (SMCs) and numerous foam cells of macrophage origin. Previously we and others demonstrated that macrophages disappear from atherosclerotic plaques after dietary lipid lowering. However, it remains unclear whether loss of macrophages after lipid lowering occurs via increased apoptosis, decreased macrophage replication and/or recruitment, or via a combination of both. Rabbits were fed a diet supplemented with cholesterol (0.3%) for 24 weeks followed by a normal diet for 4, 12, or 24 weeks. After 24 weeks of cholesterol supplement, plaques showed apoptosis in both macrophages and SMCs, as determined by terminal deoxynucleotidyl transferase dUTP nick-end labeling. Cell replication (Ki-67 immunolabeling) was predominantly present in macrophages. After 24 weeks of cholesterol withdrawal, the thickness and areas of the plaques were unchanged. Nevertheless, plaques showed a considerable loss of macrophages. This event was associated with a reduced immunoreactivity for vascular cell adhesion molecule-1 (VCAM-1) in the endothelial cells starting 4 weeks after cholesterol withdrawal. Apoptosis did not increase after lipid lowering but showed a steady decline. Apart from decreased VCAM-1 expression, a strong decrease in Ki-67 immunolabeling was observed after 12 weeks of cholesterol withdrawal. Our findings suggest that loss of macrophages in atherosclerotic plaques after dietary lipid lowering is not related to induction of macrophage apoptosis but mainly a consequence of impaired monocyte recruitment followed by decreased macrophage replication. This information is essential for understanding the effects of aggressive lipid lowering on plaque stability.
Collapse
Affiliation(s)
- Wim Martinet
- Division of Pharmacology, University of Antwerp, Antwerp, Wilrijk, Belgium
| | | | | | | |
Collapse
|
378
|
Timmins JM, Ozcan L, Seimon TA, Li G, Malagelada C, Backs J, Backs T, Bassel-Duby R, Olson EN, Anderson ME, Tabas I. Calcium/calmodulin-dependent protein kinase II links ER stress with Fas and mitochondrial apoptosis pathways. J Clin Invest 2009; 119:2925-41. [PMID: 19741297 DOI: 10.1172/jci38857] [Citation(s) in RCA: 354] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2009] [Accepted: 07/01/2009] [Indexed: 12/28/2022] Open
Abstract
ER stress-induced apoptosis is implicated in various pathological conditions, but the mechanisms linking ER stress-mediated signaling to downstream apoptotic pathways remain unclear. Using human and mouse cell culture and in vivo mouse models of ER stress-induced apoptosis, we have shown that cytosolic calcium resulting from ER stress induces expression of the Fas death receptor through a pathway involving calcium/calmodulin-dependent protein kinase IIgamma (CaMKIIgamma) and JNK. Remarkably, CaMKIIgamma was also responsible for processes involved in mitochondrial-dependent apoptosis, including release of mitochondrial cytochrome c and loss of mitochondrial membrane potential. CaMKII-dependent apoptosis was also observed in a number of cultured human and mouse cells relevant to ER stress-induced pathology, including cultured macrophages, endothelial cells, and neuronal cells subjected to proapoptotic ER stress. Moreover, WT mice subjected to systemic ER stress showed evidence of macrophage mitochondrial dysfunction and apoptosis, renal epithelial cell apoptosis, and renal dysfunction, and these effects were markedly reduced in CaMKIIgamma-deficient mice. These data support an integrated model in which CaMKII serves as a unifying link between ER stress and the Fas and mitochondrial apoptotic pathways. Our study also revealed what we believe to be a novel proapoptotic function for CaMKII, namely, promotion of mitochondrial calcium uptake. These findings raise the possibility that CaMKII inhibitors could be useful in preventing apoptosis in pathological settings involving ER stress-induced apoptosis.
Collapse
Affiliation(s)
- Jenelle M Timmins
- Department of Medicine, Columbia University, 630 West 168th Street, New York, NY 10032, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
379
|
Lordan S, O'Brien NM, Mackrill JJ. The role of calcium in apoptosis induced by 7β-hydroxycholesterol and cholesterol-5β,6β-epoxide. J Biochem Mol Toxicol 2009; 23:324-32. [DOI: 10.1002/jbt.20295] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
380
|
Tabas I. Macrophage apoptosis in atherosclerosis: consequences on plaque progression and the role of endoplasmic reticulum stress. Antioxid Redox Signal 2009; 11:2333-9. [PMID: 19243235 PMCID: PMC2787884 DOI: 10.1089/ars.2009.2469] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Atherothrombotic vascular diseases, such as myocardial infarction and stroke, are the leading causes of death in the industrialized world. The immediate cause of these diseases is acute occlusive thrombosis in medium-sized arteries feeding critical organs. Thrombosis is triggered by the rupture or erosion of a minority of atherosclerotic plaques that have advanced to a particular stage of "vulnerability." Vulnerable plaques are characterized by certain key features, such as inflammation, thinning of a protective collagenous cap, and a lipid-rich necrotic core consisting of macrophage debris. A number of cellular events contribute to vulnerable plaque formation, including secretion of pro-inflammatory, procoagulant, and proteolytic molecules by macrophages as well as the death of macrophages, intimal smooth muscles cells, and possibly endothelial cells. The necrotic core in particular is a key factor in plaque vulnerability, because macrophage debris promotes inflammation, plaque instability, and thrombosis. Plaque necrosis arises from a combination of lesional macrophage apoptosis and defective clearance of these dead cells, a process called efferocytosis. This review focuses on how macrophage apoptosis, in the setting of defective efferocytosis, contributes to necrotic core formation and how a process known to be prominent in advanced lesions--activation of ER stress signal-transduction pathways--contributes to macrophage apoptosis in these plaques.
Collapse
Affiliation(s)
- Ira Tabas
- Department of Medicine, Columbia University, New York, New York 10032, USA.
| |
Collapse
|
381
|
Sekiya M, Osuga JI, Nagashima S, Ohshiro T, Igarashi M, Okazaki H, Takahashi M, Tazoe F, Wada T, Ohta K, Takanashi M, Kumagai M, Nishi M, Takase S, Yahagi N, Yagyu H, Ohashi K, Nagai R, Kadowaki T, Furukawa Y, Ishibashi S. Ablation of neutral cholesterol ester hydrolase 1 accelerates atherosclerosis. Cell Metab 2009; 10:219-28. [PMID: 19723498 DOI: 10.1016/j.cmet.2009.08.004] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2009] [Revised: 07/18/2009] [Accepted: 08/14/2009] [Indexed: 01/06/2023]
Abstract
Cholesterol ester (CE)-laden macrophage foam cells are the hallmark of atherosclerosis, and the hydrolysis of intracellular CE is one of the key steps in foam cell formation. Although hormone-sensitive lipase (LIPE) and cholesterol ester hydrolase (CEH), which is identical to carboxylsterase 1 (CES1, hCE1), were proposed to mediate the neutral CE hydrolase (nCEH) activity in macrophages, recent evidences have suggested the involvement of other enzymes. We have recently reported the identification of a candidate, neutral cholesterol ester hydrolase 1(Nceh1). Here we demonstrate that genetic ablation of Nceh1 promotes foam cell formation and the development of atherosclerosis in mice. We further demonstrate that Nceh1 and Lipe mediate a comparable degree of nCEH activity in macrophages and together account for most of the activity. Mice lacking both Nceh1 and Lipe aggravated atherosclerosis in an additive manner. Thus, Nceh1 is a promising target for the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Motohiro Sekiya
- Department of Metabolic Diseases, Faculty of Medicine, University of Tokyo, Tokyo 113-8655, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
382
|
Riendeau V, Garenc C. Effect of 27-hydroxycholesterol on survival and death of human macrophages and vascular smooth muscle cells. Free Radic Res 2009; 43:1019-28. [PMID: 19672739 DOI: 10.1080/10715760903040610] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The objective was to compare the effect of a LXR synthetic ligand (T0901317) on cell viability and lysosomal membrane destabilization in human U937 macrophage and aortic smooth muscle cell (HASMC) incubated in the presence of cholesterol or 27-OH and to verify whether the Akt signalling pathway is involved. In U937 macrophages, cholesterol triggered cell survival while 27-OH triggered either survival (low concentration) or a lysosomal independent apoptosis (high concentration). Despite a strong effect of T0901317 on macrophage survival, its effect on cell viability is hampered in cells incubated in the presence of cholesterol or 27-OH. In these cells, cholesterol triggers the phosphorylation of Akt on the Thr308 residue. In HASMC, cholesterol induced apoptosis but no additionnal effect of T0901317 prevented apoptosis. All together, cell survival triggered by LXRs is impaired in the presence of cholesterol or high concentrations of 27-OH in human U937 macrophages and is not effective in HASMC.
Collapse
Affiliation(s)
- Valérie Riendeau
- Centre de recherche sur les maladies lipidiques, Centre hospitalier universitaire de Quebec/Centre de recherche du centre hospitalier de l'Universite Laval, Universite Laval, Quebec, QC, Canada
| | | |
Collapse
|
383
|
Thorp E, Tabas I. Differential effects of pioglitazone on advanced atherosclerotic lesions. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 175:1348. [PMID: 19661438 DOI: 10.2353/ajpath.2009.090483] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
384
|
Anti-inflammatory action of apoptotic cells in patients with acute coronary syndromes. Atherosclerosis 2009; 205:391-5. [DOI: 10.1016/j.atherosclerosis.2008.12.042] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2008] [Revised: 12/27/2008] [Accepted: 12/28/2008] [Indexed: 01/04/2023]
|
385
|
Rébé C, Raveneau M, Chevriaux A, Lakomy D, Sberna AL, Costa A, Bessède G, Athias A, Steinmetz E, Lobaccaro JMA, Alves G, Menicacci A, Vachenc S, Solary E, Gambert P, Masson D. Induction of transglutaminase 2 by a liver X receptor/retinoic acid receptor alpha pathway increases the clearance of apoptotic cells by human macrophages. Circ Res 2009; 105:393-401. [PMID: 19628791 DOI: 10.1161/circresaha.109.201855] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
RATIONALE Liver X receptors (LXRs) are oxysterol-activated nuclear receptors that are involved in the control of cholesterol homeostasis and inflammatory response. Human monocytes and macrophages express high levels of these receptors and are appropriate cells to study the response to LXR agonists. OBJECTIVE The purpose of this study was to identify new LXR targets in human primary monocytes and macrophages and the consequences of their activation. METHODS AND RESULTS We show that LXR agonists significantly increase the mRNA and protein levels of the retinoic acid receptor (RAR)alpha in primary monocytes and macrophages. LXR agonists promote RARalpha gene transcription through binding to a specific LXR response element on RARalpha gene promoter. Preincubation of monocytes or macrophages with LXR agonists before RARalpha agonist treatment enhances synergistically the expression of several RARalpha target genes. One of these genes encodes transglutaminase (TGM)2, a key factor required for macrophage phagocytosis. Accordingly, the combination of LXR and RARalpha agonists at concentrations found in human atherosclerotic plaques markedly enhances the capabilities of macrophages to engulf apoptotic cells in a TGM2-dependent manner. CONCLUSIONS These results indicate an important role for LXRs in the control of phagocytosis through an RARalpha-TGM2-dependent mechanism. A combination of LXR/RARalpha agonists that may operate in atherosclerosis could also constitute a promising strategy to improve the clearance of apoptotic cells by macrophages in other pathological situations.
Collapse
Affiliation(s)
- Cédric Rébé
- Institut Fédératif de Recherche Santé-STIC, Faculté de Médecine, Université de Bourgogne, Dijon, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
386
|
Liu J, Huan C, Chakraborty M, Zhang H, Lu D, Kuo MS, Cao G, Jiang XC. Macrophage sphingomyelin synthase 2 deficiency decreases atherosclerosis in mice. Circ Res 2009; 105:295-303. [PMID: 19590047 DOI: 10.1161/circresaha.109.194613] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE Sphingomyelin synthase (SMS)2 contributes to de novo sphingomyelin (SM) biosynthesis and plasma membrane SM levels. SMS2 deficiency in macrophages diminishes nuclear factor kappaB and mitogen-activated protein kinase activation induced by inflammatory stimuli. OBJECTIVE The effects of SMS2 deficiency on the development of atherosclerosis are investigated. METHODS AND RESULTS We measured cholesterol efflux from macrophages of wild-type (WT) and SMS2 knockout (KO) mice. We transplanted SMS2 KO mouse bone marrow into low-density lipoprotein (LDL) receptor (LDLr) knockout mice (SMS2(-/-)-->LDLr(-/-)), creating a mouse model of SMS2 deficiency in the macrophages. We found that SMS2 deficiency caused significant induction of cholesterol efflux in vitro and in vivo. Moreover, we found that SMS2 KO mice had less interleukin-6 and tumor necrosis factor alpha in the circulation before and after endotoxin stimulation, compared with controls. More importantly, after 3 months on a western-type diet, SMS2(-/-)-->LDLr(-/-) mice showed decreased atherosclerotic lesions in the aortic arch, root (57%, P<0.001), and the entire aorta (42%, P<0.01), compared with WT-->LDLr(-/-) mice. Analysis of plaque morphology revealed that SMS2(-/-)-->LDLr(-/-) mice had significantly less necrotic core area (71%, P<0.001), less macrophage content (37%, P<0.01), and more collagen content (35%, P<0.05) in atherosclerotic lesions. We also found that SMS2(-/-)-->LDLr(-/-) mice had significantly lower free cholesterol and cholesteryl ester levels in the brachiocephalic artery than WT-->LDLr(-/-) mice (33 and 52%, P<0.01 and P<0.001, respectively). CONCLUSIONS SMS2 deficiency in the macrophages reduces atherosclerosis in mice. Macrophage SMS2 is thus a potential therapeutic target for treatment of this disease.
Collapse
Affiliation(s)
- Jing Liu
- Department of Cell Biology, State University of New York Downstate Medical Center, Brooklyn, NY 11203, USA
| | | | | | | | | | | | | | | |
Collapse
|
387
|
Shang YY, Zhong M, Zhang LP, Guo ZX, Wang ZH, Zhang Y, Deng JT, Zhang W. Tribble 3, a novel oxidized low-density lipoprotein-inducible gene, is induced via the activating transcription factor 4-C/EBP homologous protein pathway. Clin Exp Pharmacol Physiol 2009; 37:51-5. [PMID: 19566842 DOI: 10.1111/j.1440-1681.2009.05229.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
1. C/EBP homologueueueous protein (CHOP), an endoplasmic reticulum (ER) stress-inducible protein, has a critical role in regulation of the cell cycle and apoptosis by forming heterodimers with other C/EBP proteins. However, how CHOP function is regulated remains to be determined. The human homologue of Drosophila tribbles (TRIB3) is associated with CHOP and is upregulated by oxidized low-density lipoprotein (ox-LDL). The aim of the present study was to investigate the role of CHOP in ox-LDL-induced TRIB3 expression in macrophages. 2. Human monocyte-derived macrophages were treated with various concentrations of ox-LDL (0, 2.5, 5, 10, 25 and 50 microg/mL) or 2 microg/mL tunicamycin for 0, 4, 8, 16, 24 and 48 h or were transfected with CHOP or TRIB3 expression plasmid and TRIB3 targeting short interference RNA (siRNA). The expression of CHOP and activating transcription factor 4 (ATF4) mRNA in treated cells was detected by quantitative real-time polymerase chain reaction (PCR). 3. The expression of CHOP and ATF4 mRNA increased with increasing concentrations of ox-LDL and duration of time. The ox-LDL-induced expression of TRIB3 mRNA was upregulated later than the expression of CHOP and ATF4 mRNA. Overexpression of CHOP increased the mRNA expression of TRIB3, which was further increased in CHOP-overexpressing macrophages treated with ox-LDL. Overexpression of TRIB3 suppressed the expression of CHOP, whereas TRIB3 silencing increased CHOP expression following ox-LDL stimulation by a negative feedback mechanism. 4. In conclusion, the expression of ATF4 and CHOP is upregulated by ox-LDL in a dose- and time-dependent manner in naturally differentiated human macrophages. Oxidized LDL induces TRIB3 expression via an ATF4/CHOP-dependent ER stress pathway.
Collapse
Affiliation(s)
- Yuan-Yuan Shang
- Department of Cardiology, Key Laboratory of Cardiovascular Remodelling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Qilu Hospital of Shandong University, Ji'nan, China
| | | | | | | | | | | | | | | |
Collapse
|
388
|
Grosheva I, Haka AS, Qin C, Pierini LM, Maxfield FR. Aggregated LDL in contact with macrophages induces local increases in free cholesterol levels that regulate local actin polymerization. Arterioscler Thromb Vasc Biol 2009; 29:1615-21. [PMID: 19556523 DOI: 10.1161/atvbaha.109.191882] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
OBJECTIVE Interaction of macrophages with aggregated matrix-anchored lipoprotein deposits is an important initial step in atherogenesis. Aggregated lipoproteins require different cellular uptake processes than those used for endocytosis of monomeric lipoproteins. In this study, we tested the hypothesis that engagement of aggregated LDL (agLDL) by macrophages could lead to local increases in free cholesterol levels and that these increases in free cholesterol regulate signals that control cellular actin. METHODS AND RESULTS AgLDL resides for prolonged periods in surface-connected compartments. Although agLDL is still extracellular, we demonstrate that an increase in free cholesterol occurs at sites of contact between agLDL and cells because of hydrolysis of agLDL-derived cholesteryl ester. This increase in free cholesterol causes enhanced actin polymerization around the agLDL. Inhibition of cholesteryl ester hydrolysis results in decreased actin polymerization. CONCLUSIONS We describe a novel process that occurs during agLDL-macrophage interactions in which local release of free cholesterol causes local actin polymerization, promoting a pathological positive feedback loop for increased catabolism of agLDL and eventual foam cell formation.
Collapse
Affiliation(s)
- Inna Grosheva
- Department of Biochemistry, Weill Cornell Medical College, New York, NY 10065, USA
| | | | | | | | | |
Collapse
|
389
|
Finn AV, Kramer MCA, Vorpahl M, Kolodgie FD, Virmani R. Pharmacotherapy of coronary atherosclerosis. Expert Opin Pharmacother 2009; 10:1587-603. [DOI: 10.1517/14656560902988494] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
390
|
Sluimer JC, Daemen MJ. Novel concepts in atherogenesis: angiogenesis and hypoxia in atherosclerosis. J Pathol 2009; 218:7-29. [PMID: 19309025 DOI: 10.1002/path.2518] [Citation(s) in RCA: 264] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The clinical complications of atherosclerosis are caused by thrombus formation, which in turn results from rupture of an unstable atherosclerotic plaque. The formation of microvessels (angiogenesis) in an atherosclerotic plaque contributes to the development of plaques, increasing the risk of rupture. Microvessel content increases with human plaque progression and is likely stimulated by plaque hypoxia, reactive oxygen species and hypoxia-inducible factor (HIF) signalling. The presence of plaque hypoxia is primarily determined by plaque inflammation (increasing oxygen demand), while the contribution of plaque thickness (reducing oxygen supply) seems to be minor. Inflammation and hypoxia are almost interchangeable and both stimuli may initiate HIF-driven angiogenesis in atherosclerosis. Despite the scarcity of microvessels in animal models, atherogenesis is not limited in these models. This suggests that abundant plaque angiogenesis is not a requirement for atherogenesis and may be a physiological response to the pathophysiological state of the arterial wall. However, the destruction of the integrity of microvessel endothelium likely leads to intraplaque haemorrhage and plaques at increased risk for rupture. Although a causal relation between the compromised microvessel structure and atherogenesis or between angiogenic stimuli and plaque angiogenesis remains tentative, both plaque angiogenesis and plaque hypoxia represent novel targets for non-invasive imaging of plaques at risk for rupture, potentially permitting early diagnosis and/or risk prediction of patients with atherosclerosis in the near future.
Collapse
Affiliation(s)
- Judith C Sluimer
- Maastricht University Medical Centre, Department of Pathology, Cardiovascular Research Institute Maastricht, Maastricht, The Netherlands
| | | |
Collapse
|
391
|
Namgaladze D, Jennewein C, Preiss S, von Knethen A, Brüne B. Attenuated suppression of the oxidative burst by cells dying in the presence of oxidized low density lipoprotein. J Lipid Res 2009; 50:2173-81. [PMID: 19491397 DOI: 10.1194/jlr.m800615-jlr200] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Macrophages ingesting apoptotic cells attenuate inflammatory responses, such as reactive oxygen species (ROS) generation. In atherosclerosis, ongoing inflammation and accumulation of apoptotic/necrotic material are observed, suggesting defects of phagocytes in recognizing or responding to dying cells. Modified lipoproteins such as oxidized LDL (oxLDL) are known to promote inflammation and to interfere with apoptotic cell clearance. Here, we studied the impact of cells exposed to oxLDL on their ability to interfere with the oxidative burst in phagocytes. In contrast to apoptotic cells, cells dying in response to or in the presence of oxLDL failed to suppress ROS generation despite efficiently being taken up by phagocytes. In addition, apoptotic cells, but not oxLDL-treated cells, inhibited phosphorylation of extracellular signal-regulated kinase, which is important for NADPH oxidase activation. oxLDL treatment did not interfere with activation of the antiinflammatory transcriptional regulator peroxisome proliferator-activated receptor gamma by apoptotic cells. Moreover, cells exposed to oxLDL failed to suppress lipopolysaccharide- induced proinflammatory cytokine expression, whereas apoptotic cells attenuated these phagocyte responses. Thus, the presence of oxLDL during cell death impaired the ability of apoptotic cells to act antiinflammatory with regard to oxidative burst inhibition and cytokine expression in phagocytes.
Collapse
Affiliation(s)
- Dmitry Namgaladze
- Goethe-University, Faculty of Medicine, Institute of Biochemistry I/ZAFES, 60590 Frankfurt, Germany
| | | | | | | | | |
Collapse
|
392
|
Abstract
Atherosclerosis is an inflammatory disease of the wall of large- and medium-sized arteries that is precipitated by elevated levels of low-density lipoprotein (LDL) cholesterol in the blood. Although dendritic cells (DCs) and lymphocytes are found in the adventitia of normal arteries, their number is greatly expanded and their distribution changed in human and mouse atherosclerotic arteries. Macrophages, DCs, foam cells, lymphocytes, and other inflammatory cells are found in the intimal atherosclerotic lesions. Beneath these lesions, adventitial leukocytes organize in clusters that resemble tertiary lymphoid tissues. Experimental interventions can reduce the number of available blood monocytes, from which macrophages and most DCs and foam cells are derived, and reduce atherosclerotic lesion burden without altering blood lipids. Under proatherogenic conditions, nitric oxide production from endothelial cells is reduced and the burden of reactive oxygen species (ROS) and advanced glycation end products (AGE) is increased. Incapacitating ROS-generating NADPH oxidase or the receptor for AGE (RAGE) has beneficial effects. Targeting inflammatory adhesion molecules also reduces atherosclerosis. Conversely, removing or blocking IL-10 or TGF-beta accelerates atherosclerosis. Regulatory T cells and B1 cells secreting natural antibodies are atheroprotective. This review summarizes our current understanding of inflammatory and immune mechanisms in atherosclerosis.
Collapse
Affiliation(s)
- Elena Galkina
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, Virginia 23507-1696, USA.
| | | |
Collapse
|
393
|
Thorp E, Tabas I. Mechanisms and consequences of efferocytosis in advanced atherosclerosis. J Leukoc Biol 2009; 86:1089-95. [PMID: 19414539 DOI: 10.1189/jlb.0209115] [Citation(s) in RCA: 159] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Throughout atherosclerotic lesion development, intimal macrophages undergo apoptosis, a form of death that usually prevents cellular necrosis. In advanced atherosclerotic lesions, however, these apoptotic macrophages become secondarily necrotic and coalesce over time into a key feature of vulnerable plaques, the necrotic core. This event is critically important, as necrotic core formation in these advanced atheromata is thought to promote plaque disruption and ultimately, acute atherothrombotic vascular disease. Increasing evidence suggests that the mechanism behind postapoptotic macrophage necrosis in advanced atherosclerosis is defective phagocytic clearance or "efferocytosis" of the apoptotic cells. Thus, understanding the cellular and molecular mechanisms of efferocytosis in atherosclerosis and why efferocytosis becomes defective in advanced lesions is an important goal. Molecular-genetic causation studies in mouse models of advanced atherosclerosis have provided evidence that several molecules known to be involved in efferocytosis, including TG2, MFG-E8, complement C1q, Mertk, lysoPC, and Fas, play important roles in the clearance of apoptotic cells in advanced plaques. These and future insights into the molecular mechanisms of defective efferocytosis in advanced atheromata may open the way for novel therapeutic strategies for atherothrombotic vascular disease, the leading cause of death in the industrialized world.
Collapse
Affiliation(s)
- Edward Thorp
- Department of Medicine, Columbia University, New York, NY 10032, USA
| | | |
Collapse
|
394
|
Thorp E, Li G, Seimon TA, Kuriakose G, Ron D, Tabas I. Reduced apoptosis and plaque necrosis in advanced atherosclerotic lesions of Apoe-/- and Ldlr-/- mice lacking CHOP. Cell Metab 2009; 9:474-81. [PMID: 19416717 PMCID: PMC2695925 DOI: 10.1016/j.cmet.2009.03.003] [Citation(s) in RCA: 289] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2009] [Revised: 02/21/2009] [Accepted: 03/05/2009] [Indexed: 11/27/2022]
Abstract
Endoplasmic reticulum (ER) stress is a hallmark of advanced atherosclerosis, but its causative role in plaque progression is unknown. In vitro studies have implicated the ER stress effector CHOP in macrophage apoptosis, a process involved in plaque necrosis in advanced atheromata. To test the effect of CHOP deficiency in vivo, aortic root lesions of fat-fed Chop+/+;Apoe-/- and Chop-/-;Apoe-/- mice were analyzed for size and morphology. Despite similar plasma lipoproteins, lesion area was 35% smaller in Chop-/-;Apoe-/- mice. Most importantly, plaque necrosis was reduced by approximately 50% and lesional apoptosis by 35% in the CHOP-deficient mice. Similar results were found in fat-fed Chop-/-;Ldlr-/- versus Chop+/+;Ldlr-/- mice. Thus, CHOP promotes plaque growth, apoptosis, and plaque necrosis in fat-fed Apoe-/- and Ldlr-/- mice. These data provide direct evidence for a causal link between the ER stress effector CHOP and plaque necrosis and suggest that interventions weakening this arm of the UPR may lessen plaque progression.
Collapse
Affiliation(s)
- Edward Thorp
- Department of Medicine, Columbia University, New York, NY 10032, USA
| | | | | | | | | | | |
Collapse
|
395
|
Redistribution of intracellular calcium and its effect on apoptosis in macrophages: Induction by oxidized LDL. Biomed Pharmacother 2009; 63:267-74. [DOI: 10.1016/j.biopha.2008.04.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2008] [Accepted: 04/30/2008] [Indexed: 10/21/2022] Open
|
396
|
Wang H, Zhang W, Zhu C, Bucher C, Blazar BR, Zhang C, Chen JF, Linden J, Wu C, Huo Y. Inactivation of the adenosine A2A receptor protects apolipoprotein E-deficient mice from atherosclerosis. Arterioscler Thromb Vasc Biol 2009; 29:1046-52. [PMID: 19407243 DOI: 10.1161/atvbaha.109.188839] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Atherosclerosis is a chronic inflammatory disease of the arterial vessel wall. The A(2A) receptor (A(2A)R) plays a central role in many antiinflammatory effects of adenosine. However, the role of A(2A)R in atherosclerosis is not clear. METHODS AND RESULTS The knockout of A(2A)R in apolipoprotein E-deficient (Apoe(-/-)/A(2A)R(-/-)) mice led to an increase in body weight and levels of blood cholesterol and proinflammatory cytokines, as well as the inflammation status of atherosclerotic lesions. Unexpectedly, Apoe(-/-)/A(2A)R(-/-) mice developed smaller lesions, as did chimeric Apoe(-/-) mice lacking A(2A)R in bone marrow-derived cells (BMDCs). The lesions of those mice exhibited a low density of foam cells and the homing ability of A(2A)R-deficient monocytes did not change. Increased foam cell apoptosis was detected in atherosclerotic lesions of Apoe(-/-)/A(2A)R(-/-) mice. In the absence of A(2A)R, macrophages incubated with oxidized LDL or in vivo-formed foam cells also exhibited increased apoptosis. A(2A)R deficiency in foam cells resulted in an increase in p38 mitogen-activated protein kinase (MAPK) activity. Inhibition of p38 phosphorylation abrogated the increased apoptosis of A(2A)R-deficient foam cells. CONCLUSIONS Inactivation of A(2A)R, especially in BMDCs, inhibits the formation of atherosclerotic leisons, suggesting that A(2A)R inactivation may be useful for the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Huan Wang
- Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
397
|
Chen T, Huang Z, Wang L, Wang Y, Wu F, Meng S, Wang C. MicroRNA-125a-5p partly regulates the inflammatory response, lipid uptake, and ORP9 expression in oxLDL-stimulated monocyte/macrophages. Cardiovasc Res 2009; 83:131-9. [PMID: 19377067 DOI: 10.1093/cvr/cvp121] [Citation(s) in RCA: 243] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
AIMS The inflammatory responses of monocytes/macrophages and the stimulation of lipid uptake into these cells by oxidized low density lipoprotein (oxLDL) are critical to the initiation and development of atherosclerosis. Increasing evidence has demonstrated that many microRNAs play important roles in the cell proliferation, apoptosis, and differentiation that accompany inflammatory responses. However, whether microRNAs are associated with monocyte/macrophage inflammatory responses or oxLDL stimulation is not yet known. The aim of the present study is to investigate microRNAs in monocytes/macrophages and their potential role in oxLDL-stimulation of lipid uptake and other atherosclerotic responses. METHODS AND RESULTS Microarrays were used to analyse the global expression of microRNAs in oxLDL-stimulated human primary peripheral blood monocytes. Expression profiles of the microRNAs were verified using TaqMan real-time PCR. Five microRNAs (microRNA-125a-5p, microRNA-9, microRNA-146a, microRNA-146b-5p, and microRNA-155) were aberrantly expressed after oxLDL treatment of human primary monocytes. Bioinformatics analysis suggested that microRNA-125a-5p is related to a protein similar to ORP9 (oxysterol binding protein-like 9) and this was confirmed by a luciferase reporter assay. MicroRNA-125a-5p was found to mediate lipid uptake and to decrease the secretion of some inflammatory cytokines (interleukin-2, interleukin-6, tumour necrosis factor-alpha, transforming growth factor-beta) in oxLDL-stimulated monocyte-derived macrophages. CONCLUSION MicroRNA-125a-5p may partly provide post-transcriptional regulation of the proinflammatory response, lipid uptake, and expression of ORP9 in oxLDL-stimulated monocyte/macrophages.
Collapse
Affiliation(s)
- Ting Chen
- Department of Cardiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, Peoples Republic of China.
| | | | | | | | | | | | | |
Collapse
|
398
|
Chou MY, Fogelstrand L, Hartvigsen K, Hansen LF, Woelkers D, Shaw PX, Choi J, Perkmann T, Bäckhed F, Miller YI, Hörkkö S, Corr M, Witztum JL, Binder CJ. Oxidation-specific epitopes are dominant targets of innate natural antibodies in mice and humans. J Clin Invest 2009; 119:1335-49. [PMID: 19363291 DOI: 10.1172/jci36800] [Citation(s) in RCA: 380] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2008] [Accepted: 02/25/2009] [Indexed: 12/31/2022] Open
Abstract
Atherosclerosis is a chronic inflammatory disease characterized by the accumulation of oxidized lipoproteins and apoptotic cells. Adaptive immune responses to various oxidation-specific epitopes play an important role in atherogenesis. However, accumulating evidence suggests that these epitopes are also recognized by innate receptors, such as scavenger receptors on macrophages, and plasma proteins, such as C-reactive protein (CRP). Here, we provide multiple lines of evidence that oxidation-specific epitopes constitute a dominant, previously unrecognized target of natural Abs (NAbs) in both mice and humans. Using reconstituted mice expressing solely IgM NAbs, we have shown that approximately 30% of all NAbs bound to model oxidation-specific epitopes, as well as to atherosclerotic lesions and apoptotic cells. Because oxidative processes are ubiquitous, we hypothesized that these epitopes exert selective pressure to expand NAbs, which in turn play an important role in mediating homeostatic functions consequent to inflammation and cell death, as demonstrated by their ability to facilitate apoptotic cell clearance. These findings provide novel insights into the functions of NAbs in mediating host homeostasis and into their roles in health and diseases, such as chronic inflammatory diseases and atherosclerosis.
Collapse
Affiliation(s)
- Meng-Yun Chou
- Department of Medicine, UCSD, La Jolla, California 92093, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
399
|
Schaeffer DF, Riazy M, Parhar KS, Chen JH, Duronio V, Sawamura T, Steinbrecher UP. LOX-1 augments oxLDL uptake by lysoPC-stimulated murine macrophages but is not required for oxLDL clearance from plasma. J Lipid Res 2009; 50:1676-84. [PMID: 19359704 DOI: 10.1194/jlr.m900167-jlr200] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Oxidized LDL (oxLDL) promotes lipid accumulation as well as growth and survival signaling in macrophages. OxLDL uptake is mainly due to scavenger receptors SR-AI/II and CD36. However, other scavenger receptors such as lectin-like oxLDL receptor-1 (LOX-1) may also play a role. We used mice with targeted inactivation of the LOX-1 gene to define the role of this receptor in the uptake of oxLDL and in activation of survival pathways. There was no difference in uptake or degradation of 125I-oxLDL in unstimulated macrophages from wild-type and LOX-1 knockout mice and no difference in the rate of clearance of oxLDL from plasma in vivo. However, when expression of LOX-1 was induced with lysophosphatidylcholine, oxLDL uptake and degradation increased 2-fold in wild-type macrophages but did not change in LOX-1 knockout macrophages. Macrophages lacking LOX-1 showed the same stimulation of PKB phosphorylation and enhancement of survival by oxLDL as wild-type cells. These data show that LOX-1 does not alter the uptake of oxLDL in unstimulated macrophages and is not essential for the pro-survival effect of oxLDL in these cells. However, LOX-1 expression is highly inducible by lysophosphatidylcholine and pro-inflammatory cytokines, and if that occurred in macrophages within atheromas, LOX-1 could substantially increase oxLDL uptake by lesion macrophages.
Collapse
Affiliation(s)
- David F Schaeffer
- Department of Medicine, University of British Columbia, Vancouver, Canada
| | | | | | | | | | | | | |
Collapse
|
400
|
Iacobini C, Menini S, Ricci C, Scipioni A, Sansoni V, Cordone S, Taurino M, Serino M, Marano G, Federici M, Pricci F, Pugliese G. Accelerated lipid-induced atherogenesis in galectin-3-deficient mice: role of lipoxidation via receptor-mediated mechanisms. Arterioscler Thromb Vasc Biol 2009; 29:831-6. [PMID: 19359660 DOI: 10.1161/atvbaha.109.186791] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
OBJECTIVE Modified lipoproteins, particularly oxidized LDLs, are believed to evoke an inflammatory response which participates in all stages of atherosclerosis. Disposal of these particles is mediated through receptors which may trigger proinflammatory signaling pathways leading to vascular injury. This study was aimed at assessing the role in atherogenesis of one of these receptors, galectin-3. METHODS AND RESULTS Galectin-3-deficient and wild-type mice were fed an atherogenic diet or standard chow for 8 months. Lesion area and length were higher in galectin-3-deficient versus wild-type mice. At the level of the aortic sinus, wild-type animals showed only fatty streaks, whereas galectin-3-deficient mice developed complex lesions, associated with extensive inflammatory changes. This was indicated by the presence of T lymphocytes with activated Th1-phenotype and by more marked monocyte-macrophage infiltration, inflammatory mediator expression, vascular cell apoptosis, and proinflammatory transcription factor activation. Increased accumulation of oxidixed LDLs and lipoxidation products and upregulation of other receptors for these compounds, including the proinflammatory RAGE, were detected in galectin-3-deficient versus wild-type mice. CONCLUSIONS These data suggest a unique protective role for galectin-3 in the uptake and effective removal of modified lipoproteins, with concurrent downregulation of proinflammatory pathways responsible for atherosclerosis initiation and progression.
Collapse
Affiliation(s)
- Carla Iacobini
- Department of Clinical Sciences, La Sapienza University, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|