351
|
von zur Muhlen C, Peter K, Ali ZA, Schneider JE, McAteer MA, Neubauer S, Channon KM, Bode C, Choudhury RP. Visualization of activated platelets by targeted magnetic resonance imaging utilizing conformation-specific antibodies against glycoprotein IIb/IIIa. J Vasc Res 2008; 46:6-14. [PMID: 18515970 PMCID: PMC2914450 DOI: 10.1159/000135660] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2007] [Accepted: 01/19/2008] [Indexed: 12/18/2022] Open
Abstract
Ruptured atherosclerotic plaques, lined with activated platelets, constitute an attractive target for magnetic resonance imaging (MRI). This study evaluated whether microparticles of iron oxide (MPIO) targeting ligand-induced binding sites (LIBS) on the activated conformation of glycoprotein IIb/IIIa could be used to image platelets. MPIO (size: 1 μm) were conjugated to anti-LIBS or control single-chain antibody. Following guidewire injury to mouse femoral artery, platelet adhesion was present after 24 h. Mice were perfused with anti-LIBS-MPIO (or control MPIO) via the left ventricle and 11.7-tesla MRI was performed on femoral arteries ex vivo. A 3D gradient echo sequence attained an isotropic resolution of 25 μm. MPIO binding, quantified by MRI, was 4-fold higher with anti-LIBS-MPIO in comparison to control MPIO (p < 0.01). In histological sections, low signal zones on MRI and MPIO correlated strongly (R2 = 0.72; p < 0.001), indicating accurate MR quantification. In conclusion, anti-LIBS-MPIO bind to activated platelets in mouse arteries, providing a basis for the use of function-specific single-chain antibody-MPIO conjugates for molecular MRI, and represent the first molecular imaging of a conformational change in a surface receptor. This presents an opportunity to specifically image activated platelets involved in acute atherothrombosis with MRI.
Collapse
|
352
|
|
353
|
Morawski AM, Lanza GA, Wickline SA. Diffusion-weighted whole-body imaging with background body signal suppression (DWIBS): features and potential applications in oncology. Eur Radiol 2008; 16:89-92. [PMID: 15722020 DOI: 10.1016/j.copbio.2004.11.001] [Citation(s) in RCA: 146] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Diffusion-weighted magnetic resonance imaging (DWI) provides functional information and can be used for the detection and characterization of pathologic processes, including malignant tumors. The recently introduced concept of "diffusion-weighted whole-body imaging with background body signal suppression" (DWIBS) now allows acquisition of volumetric diffusion-weighted images of the entire body. This new concept has unique features different from conventional DWI and may play an important role in whole-body oncological imaging. This review describes and illustrates the basics of DWI, the features of DWIBS, and its potential applications in oncology.
Collapse
Affiliation(s)
- Anne M Morawski
- Washington University School of Medicine, Campus Box 8086, 660 South Euclid Avenue, St Louis, MO 63110, USA
| | | | | |
Collapse
|
354
|
Frías JC, Lipinski MJ, Albelda MT, Ibáñez B, Soriano C, García-España E, Jiménez-Borreguero LJ, Badimon JJ. Nanoparticles as Contrast Agents for MRI of Atherosclerotic Lesions. Clin Med Cardiol 2008. [DOI: 10.4137/cmc.s642] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Juan Carlos Frías
- Instituto de Ciencia Molecular, University of Valencia, Valencia, Spain
| | - Michael Joseph Lipinski
- Department of Internal Medicine, University of Virginia Health System, Charlottesville, VA, U.S.A
| | | | - Borja Ibáñez
- The Zena and Michael A. Wiener Cardiovascular Institute, Mount Sinai School of Medicine, New York, NY, U.S.A
| | - Conxa Soriano
- Instituto de Ciencia Molecular, University of Valencia, Valencia, Spain
| | | | | | - Juan José Badimon
- The Zena and Michael A. Wiener Cardiovascular Institute, Mount Sinai School of Medicine, New York, NY, U.S.A
| |
Collapse
|
355
|
Park K, Hong HY, Moon HJ, Lee BH, Kim IS, Kwon IC, Rhee K. A new atherosclerotic lesion probe based on hydrophobically modified chitosan nanoparticles functionalized by the atherosclerotic plaque targeted peptides. J Control Release 2008; 128:217-23. [PMID: 18457896 DOI: 10.1016/j.jconrel.2008.03.019] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2007] [Revised: 03/06/2008] [Accepted: 03/15/2008] [Indexed: 02/04/2023]
Abstract
We developed a new imaging probe for atherosclerotic lesion imaging by chemically conjugating an atherosclerotic plaque-homing peptide (termed the AP peptide) to hydrophobically modified glycol chitosan (HGC) nanoparticles. The AP peptide was previously discovered by using an in vivo phage display screening method. HGC nanoparticles were labeled with the near-infrared (NIR) fluorophore Cy5.5, yielding nanoparticles 314 nm in diameter. The binding characteristics of nanoparticles to cytokine (TNF-alpha)-activated bovine aortic endothelial cells (BAECs) were studied in vitro under static conditions and in a dynamic flow environment. AP-tagged HGC-Cy5.5 nanoparticles (100 microg/ml, 2 h incubation) bound more avidly to TNF-alpha-activated BAECs than to unactivated BAECs. Nanoparticles were mostly located in the membranes of BAECs, although some were taken up by the cells and were visible in the cytoplasm, suggesting that the AP peptides in HGC nanoparticles retained target selectivity for activated BAECs. Binding selectivity of AP-tagged HGC-Cy5.5 nanoparticles was also studied in vivo. NIR fluorescence imaging demonstrated that AP-tagged HGC-Cy5.5 nanoparticles bound better to atherosclerotic lesions in a low-density lipoprotein receptor-deficient (Ldlr(-/-)) atherosclerotic mouse than to such lesions in a normal mouse. These results suggest that the newly designed AP-tagged HGC-Cy5.5 nanoparticles may be useful for atherosclerotic lesion imaging, and may also be employed to elucidate pathophysiological changes, at the molecular level, on atherosclerotic endothelium.
Collapse
Affiliation(s)
- Kyeongsoon Park
- Biomedical Research Center, Korea Institute of Science and Technology, 39-1 Hawolgok-dong, Seongbuk-gu, Seoul 136-791, Korea
| | | | | | | | | | | | | |
Collapse
|
356
|
von zur Mühlen C, von Elverfeldt D, Choudhury RP, Ender J, Ahrens I, Schwarz M, Hennig J, Bode C, Peter K. Functionalized Magnetic Resonance Contrast Agent Selectively Binds to Glycoprotein IIb/IIIa on Activated Human Platelets under Flow Conditions and Is Detectable at Clinically Relevant Field Strengths. Mol Imaging 2008. [DOI: 10.2310/7290.2008.0008] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Affiliation(s)
- Constantin von zur Mühlen
- From the Departments of Cardiology and Angiology and Diagnostic Radiology and Medical Physics, University of Freiburg, Freiburg, Germany; Department of Cardiovascular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK; and Centre for Thrombosis & Myocardial Infarction, Baker Heart Research Institute, Melbourne, Australia
| | - Dominik von Elverfeldt
- From the Departments of Cardiology and Angiology and Diagnostic Radiology and Medical Physics, University of Freiburg, Freiburg, Germany; Department of Cardiovascular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK; and Centre for Thrombosis & Myocardial Infarction, Baker Heart Research Institute, Melbourne, Australia
| | - Robin Paul Choudhury
- From the Departments of Cardiology and Angiology and Diagnostic Radiology and Medical Physics, University of Freiburg, Freiburg, Germany; Department of Cardiovascular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK; and Centre for Thrombosis & Myocardial Infarction, Baker Heart Research Institute, Melbourne, Australia
| | - Janine Ender
- From the Departments of Cardiology and Angiology and Diagnostic Radiology and Medical Physics, University of Freiburg, Freiburg, Germany; Department of Cardiovascular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK; and Centre for Thrombosis & Myocardial Infarction, Baker Heart Research Institute, Melbourne, Australia
| | - Ingo Ahrens
- From the Departments of Cardiology and Angiology and Diagnostic Radiology and Medical Physics, University of Freiburg, Freiburg, Germany; Department of Cardiovascular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK; and Centre for Thrombosis & Myocardial Infarction, Baker Heart Research Institute, Melbourne, Australia
| | - Meike Schwarz
- From the Departments of Cardiology and Angiology and Diagnostic Radiology and Medical Physics, University of Freiburg, Freiburg, Germany; Department of Cardiovascular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK; and Centre for Thrombosis & Myocardial Infarction, Baker Heart Research Institute, Melbourne, Australia
| | - Jürgen Hennig
- From the Departments of Cardiology and Angiology and Diagnostic Radiology and Medical Physics, University of Freiburg, Freiburg, Germany; Department of Cardiovascular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK; and Centre for Thrombosis & Myocardial Infarction, Baker Heart Research Institute, Melbourne, Australia
| | - Christoph Bode
- From the Departments of Cardiology and Angiology and Diagnostic Radiology and Medical Physics, University of Freiburg, Freiburg, Germany; Department of Cardiovascular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK; and Centre for Thrombosis & Myocardial Infarction, Baker Heart Research Institute, Melbourne, Australia
| | - Karlheinz Peter
- From the Departments of Cardiology and Angiology and Diagnostic Radiology and Medical Physics, University of Freiburg, Freiburg, Germany; Department of Cardiovascular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK; and Centre for Thrombosis & Myocardial Infarction, Baker Heart Research Institute, Melbourne, Australia
| |
Collapse
|
357
|
Graf K, Dietrich T, Tachezy M, Scholle FD, Licha K, Stawowy P, Grafe M, Hauff P, Fleck E. Monitoring Therapeutical Intervention with Ezetimibe Using Targeted Near-Infrared Fluorescence Imaging in Experimental Atherosclerosis. Mol Imaging 2008. [DOI: 10.2310/7290.2008.0009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Kristof Graf
- From the Department of Medicine-Cardiology, Deutsches Herzzentrum Berlin, Berlin, Germany; and Global Drug Discovery, Bayer Schering Pharma AG, Berlin, Germany
| | - Thore Dietrich
- From the Department of Medicine-Cardiology, Deutsches Herzzentrum Berlin, Berlin, Germany; and Global Drug Discovery, Bayer Schering Pharma AG, Berlin, Germany
| | - Michael Tachezy
- From the Department of Medicine-Cardiology, Deutsches Herzzentrum Berlin, Berlin, Germany; and Global Drug Discovery, Bayer Schering Pharma AG, Berlin, Germany
| | - Frank-Detlef Scholle
- From the Department of Medicine-Cardiology, Deutsches Herzzentrum Berlin, Berlin, Germany; and Global Drug Discovery, Bayer Schering Pharma AG, Berlin, Germany
| | - Kai Licha
- From the Department of Medicine-Cardiology, Deutsches Herzzentrum Berlin, Berlin, Germany; and Global Drug Discovery, Bayer Schering Pharma AG, Berlin, Germany
| | - Philipp Stawowy
- From the Department of Medicine-Cardiology, Deutsches Herzzentrum Berlin, Berlin, Germany; and Global Drug Discovery, Bayer Schering Pharma AG, Berlin, Germany
| | - Michael Grafe
- From the Department of Medicine-Cardiology, Deutsches Herzzentrum Berlin, Berlin, Germany; and Global Drug Discovery, Bayer Schering Pharma AG, Berlin, Germany
| | - Peter Hauff
- From the Department of Medicine-Cardiology, Deutsches Herzzentrum Berlin, Berlin, Germany; and Global Drug Discovery, Bayer Schering Pharma AG, Berlin, Germany
| | - Eckart Fleck
- From the Department of Medicine-Cardiology, Deutsches Herzzentrum Berlin, Berlin, Germany; and Global Drug Discovery, Bayer Schering Pharma AG, Berlin, Germany
| |
Collapse
|
358
|
Atherosclerosis and thrombosis: identification of targets for magnetic resonance imaging. Top Magn Reson Imaging 2008; 18:319-27. [PMID: 18025986 DOI: 10.1097/rmr.0b013e3181598dd8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Imaging techniques are needed that will allow earlier and more refined diagnosis, guide targeted treatment in individual patients and monitor response to that treatment. Magnetic resonance imaging is well-suited to these tasks as it can provide anatomical, structural, and functional data on the arterial wall. Its capabilities are further enhanced by the use of a range of increasingly sophisticated contrast agents that target specific molecules, cells, and biological processes. This article will consider the pathogenesis of atherosclerosis and systematically identify biologically relevant targets for imaging at different stages of disease process.
Collapse
|
359
|
Magnetic resonance molecular imaging contrast agents and their application in atherosclerosis. Top Magn Reson Imaging 2008; 18:409-17. [PMID: 18025995 DOI: 10.1097/rmr.0b013e31815a0e7f] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Heart disease is the most prevalent cause of mortality in the Western world and is most frequently caused by rupture of lesions in the arteries, which are formed by atherosclerosis. Atherosclerosis is a progressive disease, and therefore, there is a strong motivation to be able to image the stages of this disease in vivo. The pathogenesis of this disease is now well established, and a number of markers such as macrophages, vascular adhesion molecules, fibrin, and the alphanubeta3-integrin have been identified that are of particular interest for imaging. Furthermore, the differentiation between the stable and unstable plaque with imaging is a central goal of the field. Contrast can be generated in magnetic resonance imaging through the application of several types of agents such as T1, T2, chemical exchange saturation transfer or 19F-based imaging agents. Subsequent to the discussion of the above topics, we will describe some examples of molecular imaging agents that successfully detect specific markers in atherosclerotic plaques that are of interest in several stages of this disease.
Collapse
|
360
|
Mulder WJM, Strijkers GJ, Briley-Saboe KC, Frias JC, Aguinaldo JGS, Vucic E, Amirbekian V, Tang C, Chin PTK, Nicolay K, Fayad ZA. Molecular imaging of macrophages in atherosclerotic plaques using bimodal PEG-micelles. Magn Reson Med 2008; 58:1164-70. [PMID: 18046703 DOI: 10.1002/mrm.21315] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Pegylated, fluorescent, and paramagnetic micelles were developed. The micelles were conjugated with macrophage scavenger receptor (MSR)-specific antibodies. The abdominal aortas of atherosclerotic apoE-KO mice were imaged with T(1)-weighted high-resolution MRI before and 24 h after intravenous administration of the contrast agent (CA). Pronounced signal enhancement (SE) (up to 200%) was observed for apolipoprotein E knockout (apoE-KO) mice that were injected with MSR-targeted micelles, while the aortic vessel wall of mice injected with nontargeted micelles showed little SE. To allow fluorescence microscopy and optical imaging of the excised aorta, the micelles were made fluorescent by incorporating either a quantum dot (QD) in the micelle corona or rhodamine lipids in the micelle. Ultraviolet (UV) illumination of the aorta allowed the identification of regions with high macrophage content, while MSR-targeted rhodamine micelles could be detected with fluorescence microscopy and were found to be associated with macrophages. In conclusion, this study demonstrates that macrophages in apoE-KO mice can be effectively and specifically detected by molecular MRI and optical methods upon administration of a pegylated micellar CA.
Collapse
Affiliation(s)
- Willem J M Mulder
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
361
|
Lancelot E, Amirbekian V, Brigger I, Raynaud JS, Ballet S, David C, Rousseaux O, Le Greneur S, Port M, Lijnen HR, Bruneval P, Michel JB, Ouimet T, Roques B, Amirbekian S, Hyafil F, Vucic E, Aguinaldo JGS, Corot C, Fayad ZA. Evaluation of matrix metalloproteinases in atherosclerosis using a novel noninvasive imaging approach. Arterioscler Thromb Vasc Biol 2008; 28:425-32. [PMID: 18258820 DOI: 10.1161/atvbaha.107.149666] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Despite great advances in our knowledge, atherosclerosis continues to kill more people than any other disease in the Western world. This is because our means of identifying truly vulnerable patients is limited. Prediction of atherosclerotic plaque rupture may be addressed by MRI of activated matrix metalloproteinases (MMPs), a family of enzymes that have been implicated in the vulnerability of plaques prone to rupture. This study evaluated the ability of the novel gadolinium-based MRI contrast agent P947 to target MMPs in atherosclerotic plaques. METHODS AND RESULTS The affinity of P947 toward activated MMPs was demonstrated in vitro. The affinity and specificity of P947 toward matrix metalloproteinase (MMP)-rich plaques was evaluated both in vivo using ApoE-/- mice and ex vivo in hyperlipidemic rabbits. Gadolinium content quantification and MRI showed a preferential accumulation of P947 in atherosclerotic lesions compared with the nontargeted reference compound, Gd-DOTA. The ex vivo assay on rabbit plaques revealed a higher uptake of P947. Moreover, using human carotid artery endarterectomy specimens, P947 facilitated discrimination between histologically defined MMP-rich and MMP-poor plaques. An in vivo MRI investigation in mice revealed that P947 greatly improved the ability to visualize and delineate atherosclerotic plaques. CONCLUSIONS P947 may be a useful tool for the detection and characterization of the MMP-rich atherosclerotic plaques.
Collapse
Affiliation(s)
- Eric Lancelot
- Department of Radiology, the Zena and Michael A. Wiener Cardiovascular Institute, Mount Sinai School of Medicine, Box 1234, One Gustave L. Levy Place, New York, NY 10029, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
362
|
Sosnovik DE. Molecular imaging in cardiovascular magnetic resonance imaging: current perspective and future potential. Top Magn Reson Imaging 2008; 19:59-68. [PMID: 18690161 PMCID: PMC2597277 DOI: 10.1097/rmr.0b013e318176c57b] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The development of novel imaging agents and techniques is allowing some biological events to be imaged in vivo with magnetic resonance imaging (MRI) at the cellular and subcellular level. In this paper, the use of novel gadolinium chelates and superparamagnetic iron oxide nanoparticles for molecular MRI of the cardiovascular system is extensively reviewed. The physical properties of these imaging agents and the pulse sequences best suited to their visualization are extensively discussed. The application of molecular MRI in diseases of the vasculature and myocardium is then reviewed. The clinical experience to date, as well as the promise and potential impact of molecular MRI, is extensively discussed.
Collapse
Affiliation(s)
- David E Sosnovik
- Department of Cardiology, Center for Molecular Imaging Research, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA.
| |
Collapse
|
363
|
Nanotemplate-Engineered Nanoparticles Containing Gadolinium for Magnetic Resonance Imaging of Tumors. Invest Radiol 2008; 43:129-40. [DOI: 10.1097/rli.0b013e31815878dd] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
364
|
Burtea C, Laurent S, Murariu O, Rattat D, Toubeau G, Verbruggen A, Vansthertem D, Vander Elst L, Muller RN. Molecular imaging of alpha v beta3 integrin expression in atherosclerotic plaques with a mimetic of RGD peptide grafted to Gd-DTPA. Cardiovasc Res 2008; 78:148-57. [PMID: 18174291 DOI: 10.1093/cvr/cvm115] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
AIMS The integrin alpha v beta3 is highly expressed in atherosclerotic plaques by medial and intimal smooth muscle cells and by endothelial cells of angiogenic microvessels. In this study, we have assessed non-invasive molecular magnetic resonance imaging (MRI) of plaque-associated alpha v beta3 integrin expression on transgenic ApoE-/- mice with a low molecular weight peptidomimetic of Arg-Gly-Asp (mimRGD) grafted to gadolinium diethylenetriaminepentaacetate (Gd-DTPA-g-mimRGD). The analogous compound Eu-DTPA-g-mimRGD was employed for an in vivo competition experiment and to confirm the molecular targeting. The specific interaction of mimRGD conjugated to Gd-DTPA or to 99mTc-DTPA with alpha v beta3 integrin was furthermore confirmed on Jurkat T lymphocytes. METHODS AND RESULTS The mimRGD was synthesized and conjugated to DTPA. DTPA-g-mimRGD was complexed with GdCl3.6H2O, EuCl3.6H2O, or with [99mTc(CO)3(H2O)3]+. MRI evaluation was performed on a 4.7 T Bruker imaging system. Blood pharmacokinetics of Gd-DTPA-g-mimRGD were assessed in Wistar rats and in c57bl/6j mice. The presence of angiogenic blood vessels and the expression of alpha v beta3 integrin were confirmed in aorta specimens by immunohistochemistry. Gd-DTPA-g-mimRGD produced a strong enhancement of the external structures of the aortic wall and of the more profound layers (possibly tunica media and intima). The aortic lumen seemed to be restrained and distorted. Pre-injection of Eu-DTPA-g-mimRGD diminished the Gd-DTPA-g-mimRGD binding to atherosclerotic plaque and confirmed the specific molecular targeting. A slower blood clearance was observed for Gd-DTPA-g-mimRGD, as indicated by a prolonged elimination half-life and a diminished total clearance. CONCLUSION The new compound is potentially useful for the diagnosis of vulnerable atherosclerotic plaques and of other pathologies characterized by alpha v beta3 integrin expression, such as cancer and inflammation. The delayed blood clearance, the significant enhancement of the signal-to-noise ratio, and the low immunogenicity of the mimetic molecule highlight its potential for an industrial and clinical implementation.
Collapse
Affiliation(s)
- Carmen Burtea
- Department of General, Organic and Biomedical Chemistry, NMR and Molecular Imaging Laboratory, University of Mons-Hainaut, 24, Avenue du Champ de Mars, B-7000 Mons, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
365
|
Hoehn M, Himmelreich U, Kruttwig K, Wiedermann D. Molecular and cellular MR imaging: Potentials and challenges for neurological applications. J Magn Reson Imaging 2008; 27:941-54. [DOI: 10.1002/jmri.21280] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
|
366
|
Iverson N, Plourde N, Chnari E, Nackman GB, Moghe PV. Convergence of Nanotechnology and Cardiovascular Medicine. BioDrugs 2008; 22:1-10. [DOI: 10.2165/00063030-200822010-00001] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
367
|
Magadala P, van Vlerken LE, Shahiwala A, Amiji MM. Multifunctional Polymeric Nanosystems for Tumor-Targeted Delivery. MULTIFUNCTIONAL PHARMACEUTICAL NANOCARRIERS 2008. [DOI: 10.1007/978-0-387-76554-9_2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
368
|
Driehuys B, Nouls J, Badea A, Bucholz E, Ghaghada K, Petiet A, Hedlund LW. Small animal imaging with magnetic resonance microscopy. ILAR J 2008; 49:35-53. [PMID: 18172332 PMCID: PMC2770253 DOI: 10.1093/ilar.49.1.35] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Small animal magnetic resonance microscopy (MRM) has evolved significantly from testing the boundaries of imaging physics to its expanding use today as a tool in noninvasive biomedical investigations. MRM now increasingly provides functional information about living animals, with images of the beating heart, breathing lung, and functioning brain. Unlike clinical MRI, where the focus is on diagnosis, MRM is used to reveal fundamental biology or to noninvasively measure subtle changes in the structure or function of organs during disease progression or in response to experimental therapies. High-resolution anatomical imaging reveals increasingly exquisite detail in healthy animals and subtle architectural aberrations that occur in genetically altered models. Resolution of 100 mum in all dimensions is now routinely attained in living animals, and (10 mum)(3) is feasible in fixed specimens. Such images almost rival conventional histology while allowing the object to be viewed interactively in any plane. In this review we describe the state of the art in MRM for scientists who may be unfamiliar with this modality but who want to apply its capabilities to their research. We include a brief review of MR concepts and methods of animal handling and support, before covering a range of MRM applications-including the heart, lung, and brain-and the emerging field of MR histology. The ability of MRM to provide a detailed functional and anatomical picture in rats and mice, and to track this picture over time, makes it a promising platform with broad applications in biomedical research.
Collapse
Affiliation(s)
- Bastiaan Driehuys
- Department of Radiology, Center for In Vivo Microscopy, Duke University Medical Center, Durham, NC 27710, USA.
| | | | | | | | | | | | | |
Collapse
|
369
|
|
370
|
Abstract
Due to their favorable properties and pharmacokinetics, peptides are often regarded as "agents of choice" for imaging and radiotherapy. Chemical strategies have been developed that allow their site specific labeling with various radionuclides for PET and SPECT, without compromising their biological integrity. Together with the overexpression of a wide range of peptide receptors and binding sites on tumor cells or matrix components, this class of compounds offers multiple imaging applications. Furthermore, radiolabeled peptides have great potential as carrier molecules for site-specific delivery of other signalling units, such as fluorescent moieties, cyctotoxic compounds or metals for magnetic resonance imaging. In addition, great efforts have been made to exploit the favorable characteristics of peptides for the development of larger constructs, such as multimeric ligands, polymer-peptide conjugates and "peptide-coated" liposomes and nanoparticles. Some peptides have already entered clinical routine application; some are currently being evaluated in clinical studies. However, a variety of peptides is still "waiting" to enter the imaging arena. This chapter presents a brief overview of the highly active field of peptide radiopharmaceuticals and the future potential of multimeric and polymeric peptide constructs.
Collapse
Affiliation(s)
- I Dijkraaf
- Department of Nuclear Medicine, Technische Universität München, Ismaninger Strasse 22, 81675 München, Germany
| | | |
Collapse
|
371
|
Integrins in Angiogenesis. Angiogenesis 2008. [DOI: 10.1007/978-0-387-71518-6_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
372
|
Goertz DE, Frijlink ME, Tempel D, Bhagwandas V, Gisolf A, Krams R, de Jong N, van der Steen AFW. Subharmonic contrast intravascular ultrasound for vasa vasorum imaging. ULTRASOUND IN MEDICINE & BIOLOGY 2007; 33:1859-72. [PMID: 17683850 DOI: 10.1016/j.ultrasmedbio.2007.05.023] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2007] [Revised: 05/23/2007] [Accepted: 05/24/2007] [Indexed: 05/16/2023]
Abstract
The feasibility of subharmonic contrast intravascular ultrasound (IVUS) imaging was investigated using a prototype nonlinear IVUS system and the commercial contrast agent Definity . The system employed a mechanically scanned commercial catheter with a custom transducer element fabricated to have sensitivity at both 15 and 30 MHz. Experiments were conducted at a fundamental frequency of 30 MHz (F30; 25% bandwidth), with on-axis pressures ranging from 0.12 to 0.79 MPa, as measured with a needle hydrophone. In vitro characterization experiments demonstrated the detection of 15 MHz subharmonic signals (SH15) when pressure levels reached 360 kPa. The formation of SH15 images was shown, with tissue signals suppressed to near the noise floor and contrast to tissue ratios were improved by up to 30 dB relative to F30. In vivo experiments were performed using the atherosclerotic rabbit aorta model. Following the bolus injection of contrast agent upstream of the imaging catheter, agent was detected within the aorta, vena cava and within the perivascular space. These results provide a first in vivo demonstration of subharmonic contrast IVUS and suggest its potential as a new technique for imaging vasa vasorum.
Collapse
Affiliation(s)
- David E Goertz
- Biomedical Engineering Department, Erasmus Medical Centre, Rotterdam, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
373
|
Cai W, Chen X. Nanoplatforms for targeted molecular imaging in living subjects. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2007; 3:1840-54. [PMID: 17943716 DOI: 10.1002/smll.200700351] [Citation(s) in RCA: 355] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Molecular or personalized medicine is the future of patient management and molecular imaging plays a key role towards this goal. Recently, nanoplatform-based molecular imaging has emerged as an interdisciplinary field, which involves chemistry, engineering, biology, and medicine. Possessing unprecedented potential for early detection, accurate diagnosis, and personalized treatment of diseases, nanoplatforms have been employed in every single biomedical imaging modality, namely, optical imaging, computed tomography, ultrasound, magnetic resonance imaging, single-photon-emission computed tomography, and positron emission tomography. Multifunctionality is the key advantage of nanoplatforms over traditional approaches. Targeting ligands, imaging labels, therapeutic drugs, and many other agents can all be integrated into the nanoplatform to allow for targeted molecular imaging and molecular therapy by encompassing many biological and biophysical barriers. In this Review, we will summarize the current state-of-the-art of nanoplatforms for targeted molecular imaging in living subjects.
Collapse
Affiliation(s)
- Weibo Cai
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology and Bio-X Program, Stanford University, Stanford, CA 94305, USA
| | | |
Collapse
|
374
|
McAteer MA, Schneider JE, Ali ZA, Warrick N, Bursill CA, von zur Muhlen C, Greaves DR, Neubauer S, Channon KM, Choudhury RP. Magnetic resonance imaging of endothelial adhesion molecules in mouse atherosclerosis using dual-targeted microparticles of iron oxide. Arterioscler Thromb Vasc Biol 2007; 28:77-83. [PMID: 17962629 DOI: 10.1161/atvbaha.107.145466] [Citation(s) in RCA: 192] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
OBJECTIVE Microparticles of iron oxide (MPIO) distort magnetic field creating marked contrast effects far exceeding their physical size. We hypothesized that antibody-conjugated MPIO would enable magnetic resonance imaging (MRI) of endothelial cell adhesion molecules in mouse atherosclerosis. METHODS AND RESULTS MPIO (4.5 microm) were conjugated to monoclonal antibodies against vascular cell adhesion molecule-1 (VCAM-MPIO) or P-selectin (P-selectin-MPIO). In vitro, VCAM-MPIO bound, in dose-dependent manner, to tumor necrosis factor (TNF)-alpha stimulated sEND-1 endothelial cells, as quantified by light microscopy (R2=0.94, P=0.03) and by MRI (R2=0.98, P=0.01). VCAM-MPIO binding was blocked by preincubation with soluble VCAM-1. To mimic leukocyte binding, MPIO targeting both VCAM-1 and P-selectin were administered in apolipoprotein E-/- mice. By light microscopy, dual-targeted MPIO binding to endothelium overlying aortic root atherosclerosis was 5- to 7-fold more than P-selectin-MPIO (P<0.05) or VCAM-MPIO (P<0.01) alone. Dual-targeted MPIO, injected intravenously in vivo bound aortic root endothelium and were quantifiable by MRI ex vivo (3.5-fold increase versus control; P<0.01). MPIO were well-tolerated in vivo, with sequestration in the spleen after 24 hours. CONCLUSIONS Dual-ligand MPIO bound to endothelium over atherosclerosis in vivo, under flow conditions. MPIO may provide a functional MRI probe for detecting endothelial-specific markers in a range of vascular pathologies.
Collapse
Affiliation(s)
- Martina A McAteer
- Department of Cardiovascular Medicine, University of Oxford, Oxford, OX3 9DU, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
375
|
Chaubet F, Bertholon I, Serfaty JM, Bazeli R, Alsaid H, Jandrot-Perrus M, Zahir C, Even P, Bachelet L, Touat Z, Lancelot E, Corot C, Canet-Soulas E, Letourneur D. A new macromolecular paramagnetic MR contrast agent binds to activated human platelets. CONTRAST MEDIA & MOLECULAR IMAGING 2007; 2:178-88. [PMID: 17828728 DOI: 10.1002/cmmi.144] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A new functionalized macromolecular magnetic resonance (MR) contrast agent has been developed from a carboxymethyldextran-Gd(DOTA) devoid of biospecificity. The functionalized contrast agent was synthesized in order to mimic PSGL-1, the main ligand of P-selectin, a glycoprotein mainly expressed on the surface of activated platelets. The starting compound, CM1, was first carboxymethylated by monochloroacetic acid leading to a series of 10 derivatives varying in their carboxymethyl content. CM8 derivative, with a degree of substitution in carboxymethyl of 0.84, was chosen for subsequent fluorolabeling and sulfation to give CM8FS. CM8FS has an average number molecular weight of 27 000 +/- 500 g/mol, a hydrodynamic radius of 5.7 +/- 0.2 nm and a high relaxivity (r(1) = 11.2/mM (Gd)/s at 60 MHz). Flow cytometry experiments on whole human blood or on isolated platelets evidenced in vitro a preferential binding of CM8FS on TRAP-activated human platelets. Interestingly, CM8FS did not bind to other blood cells or to resting platelets. Pellets of TRAP-activated human platelets have also been imaged in tubes with a 1.5 T MR imager. A MR signal was observed for activated platelets incubated with CM8FS. Altogether, these in vitro results evidenced the recognition of activated human platelets by a fluorescent paramagnetic contrast agent grafted with carboxyl and sulfate groups. This biomimetic approach associated with the versatile macromolecular platform appears promising for the development of new contrast agents for molecular imaging of activated platelets in cardiovascular diseases such as atherosclerosis and aneurysms.
Collapse
Affiliation(s)
- Frédéric Chaubet
- Inserm, U698, Cardiovascular Bio-engineering, CHU X. Bichat, University Paris 7, Paris, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
376
|
Abstract
Nanotechnology encompasses the creation and use of materials, devices, and systems at the level of atoms, molecules, and supramolecular structures. Nanotechnology for cancer consists of three main areas: (1) nanodetectors for sensing proteins and cancer cells, (2) nanoparticle or nanovector formulations for high-contrast imaging, and (3) nanotechnology-based drug delivery and therapeutic formulations. Although there are tremendous challenges facing nanotechnologists, nanotechnology, if properly integrated with established cancer research, can make laboratory-to-clinic transfer of technology successful, which can result in breakthrough potential for patient care.
Collapse
Affiliation(s)
- Balaji Panchapakesan
- Delaware MEMS and Nanotechnology Laboratory, Department of Electrical and Computer Engineering, University of Delaware, Newark, DE 19716, USA.
| | | |
Collapse
|
377
|
Buxton DB. Nanotechnology in the diagnosis and management of heart, lung and blood diseases. Expert Rev Mol Diagn 2007; 7:149-60. [PMID: 17331063 DOI: 10.1586/14737159.7.2.149] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Heart, lung and blood diseases exert an enormous toll, accounting for almost half of the deaths in the USA each year. In addition to the morbidity and mortality resulting from these diseases, there is also a high economic burden, estimated at 560 billion US dollars for 2006. Nanotechnology offers a broad range of opportunities to improve diagnosis and therapy for cardiovascular, pulmonary and hematopoietic diseases, thereby decreasing these burdens. This review will focus on four areas of particular promise for the application of nanotechnology: imaging, diagnostics and biosensors, drug delivery and therapy, and tissue engineering and repair. The goal is to summarize the current state of science and technology in these areas and to look at future directions that the field is likely to move in to enhance the diagnosis and treatment of heart, lung and blood diseases.
Collapse
Affiliation(s)
- Denis B Buxton
- National Heart, Lung, & Blood Institute, Advanced Technologies & Surgery Branch, Division of Cardiovascular Diseases, Bethesda, MD 20892, USA.
| |
Collapse
|
378
|
Wolters SL, Corsten MF, Reutelingsperger CPM, Narula J, Hofstra L. Cardiovascular molecular imaging of apoptosis. Eur J Nucl Med Mol Imaging 2007; 34 Suppl 1:S86-98. [PMID: 17551724 PMCID: PMC1914225 DOI: 10.1007/s00259-007-0443-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Introduction Molecular imaging strives to visualise processes at the molecular and cellular level in vivo. Understanding these processes supports diagnosis and evaluation of therapeutic efficacy on an individual basis and thereby makes personalised medicine possible. Apoptosis and molecular imaging Apoptosis is a well-organised mode of cell suicide that plays a role in cardiovascular diseases (CVD). Apoptosis is associated with loss of cardiomyocytes following myocardial infarction, atherosclerotic plaque instability, congestive heart failure and allograft rejection of the transplanted heart. Thus, apoptosis constitutes an attractive target for molecular imaging of CVD. Our current knowledge about the molecular players and mechanisms underlying apoptosis offers a rich palette of potential molecular targets for molecular imaging. However, only a few have been successfully developed so far. Aims This review highlights aspects of the molecular machinery and biochemistry of apoptosis relevant to the development of molecular imaging probes. It surveys the role of apoptosis in four major areas of CVD and portrays the importance and future perspectives of apoptosis imaging. The annexin A5 imaging protocol is emphasised since it is the most advanced protocol to measure apoptosis in both preclinical and clinical studies.
Collapse
Affiliation(s)
- S. L. Wolters
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - M. F. Corsten
- Department of Cardiology, Cardiovascular Research Institute Maastricht, Maastricht University, P.O. Box 616, Maastricht, 6200 MD The Netherlands
| | - C. P. M. Reutelingsperger
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - J. Narula
- Department of Cardiology, University of California Irvine, Irvine, USA
| | - L. Hofstra
- Department of Cardiology, Cardiovascular Research Institute Maastricht, Maastricht University, P.O. Box 616, Maastricht, 6200 MD The Netherlands
| |
Collapse
|
379
|
Mulder WJM, Griffioen AW, Strijkers GJ, Cormode DP, Nicolay K, Fayad ZA. Magnetic and fluorescent nanoparticles for multimodality imaging. Nanomedicine (Lond) 2007; 2:307-24. [PMID: 17716176 DOI: 10.2217/17435889.2.3.307] [Citation(s) in RCA: 151] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The development of nanoparticulate contrast agents is providing an increasing contribution to the field of diagnostic and molecular imaging. Such agents provide several advantages over traditional compounds. First, they may contain a high payload of the contrast-generating material, which greatly improves their detectability. Second, multiple properties may be easily integrated within one nanoparticle to allow its detection with several imaging techniques or to include therapeutic qualities. Finally, the surface of such nanoparticles may be modified to improve circulation half-lives or to attach targeting groups. Magnetic resonance imaging and optical techniques are highly complementary imaging methods. Combining these techniques would therefore have significant advantages and may be realized through the use of nanoparticulate contrast agents. This review gives a survey of the different types of fluorescent and magnetic nanoparticles that have been employed for both magnetic resonance and optical imaging studies.
Collapse
Affiliation(s)
- Willem J M Mulder
- Mount Sinai School of Medicine, Imaging Science Laboratories, Department of Radiology, New York, NY 10029, USA.
| | | | | | | | | | | |
Collapse
|
380
|
Gupta AK, Naregalkar RR, Vaidya VD, Gupta M. Recent advances on surface engineering of magnetic iron oxide nanoparticles and their biomedical applications. Nanomedicine (Lond) 2007; 2:23-39. [PMID: 17716188 DOI: 10.2217/17435889.2.1.23] [Citation(s) in RCA: 394] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Magnetic nanoparticles with appropriate surface coatings are increasingly being used clinically for various biomedical applications, such as magnetic resonance imaging, hyperthermia, drug delivery, tissue repair, cell and tissue targeting and transfection. This is because of the nontoxicity and biocompatibility demand that mainly iron oxide-based materials are predominantly used, despite some attempts to develop 'more magnetic nanomaterials' based on cobalt, nickel, gadolinium and other compounds. For all these applications, the material used for surface coating of the magnetic particles must not only be nontoxic and biocompatible but also allow a targetable delivery with particle localization in a specific area. Magnetic nanoparticles can bind to drugs and an external magnetic field can be applied to trap them in the target site. By attaching the targeting molecules, such as proteins or antibodies, at particles surfaces, the latter may be directed to any cell, tissue or tumor in the body. In this review, different polymers/molecules that can be used for nanoparticle coating to stabilize the suspensions of magnetic nanoparticles under in vitro and in vivo situations are discussed. Some selected proteins/targeting ligands that could be used for derivatizing magnetic nanoparticles are also explored. We have reviewed the various biomedical applications with some of the most recent uses of magnetic nanoparticles for early detection of cancer, diabetes and atherosclerosis.
Collapse
Affiliation(s)
- Ajay Kumar Gupta
- Laboratory for Nanoparticle Research, Formulation & Development Department, Torrent Research Centre, TPL, Village Bhat, Dist. Gandhinagar-382 428, Gujarat, India.
| | | | | | | |
Collapse
|
381
|
Affiliation(s)
- Farouc A Jaffer
- Center for Molecular Imaging Research, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA.
| | | | | |
Collapse
|
382
|
Saam T, Hatsukami TS, Takaya N, Chu B, Underhill H, Kerwin WS, Cai J, Ferguson MS, Yuan C. The vulnerable, or high-risk, atherosclerotic plaque: noninvasive MR imaging for characterization and assessment. Radiology 2007; 244:64-77. [PMID: 17581895 DOI: 10.1148/radiol.2441051769] [Citation(s) in RCA: 255] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
"Vulnerable" plaques are atherosclerotic plaques that have a high likelihood to cause thrombotic complications, such as myocardial infarction or stroke. Plaques that tend to progress rapidly are also considered to be vulnerable. Besides luminal stenosis, plaque composition and morphology are key determinants of the likelihood that a plaque will cause cardiovascular events. Noninvasive magnetic resonance (MR) imaging has great potential to enable characterization of atherosclerotic plaque composition and morphology and thus to help assess plaque vulnerability. A classification for clinical, as well as pathologic, evaluation of vulnerable plaques was recently put forward in which five major and five minor criteria to define vulnerable plaques were proposed. The purpose of this review is to summarize the status of MR imaging with regard to depiction of the criteria that define vulnerable plaques by using existing MR techniques. The use of MR imaging in animal models and in human disease in various vascular beds, particularly the carotid arteries, is presented.
Collapse
Affiliation(s)
- Tobias Saam
- Department of Radiology, University of Washington, Seattle, Washington, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
383
|
Zysk AM, Nguyen FT, Oldenburg AL, Marks DL, Boppart SA. Optical coherence tomography: a review of clinical development from bench to bedside. JOURNAL OF BIOMEDICAL OPTICS 2007; 12:051403. [PMID: 17994864 DOI: 10.1117/1.2793736] [Citation(s) in RCA: 289] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Since its introduction, optical coherence tomography (OCT) technology has advanced from the laboratory bench to the clinic and back again. Arising from the fields of low coherence interferometry and optical time- and frequency-domain reflectometry, OCT was initially demonstrated for retinal imaging and followed a unique path to commercialization for clinical use. Concurrently, significant technological advances were brought about from within the research community, including improved laser sources, beam delivery instruments, and detection schemes. While many of these technologies improved retinal imaging, they also allowed for the application of OCT to many new clinical areas. As a result, OCT has been clinically demonstrated in a diverse set of medical and surgical specialties, including gastroenterology, dermatology, cardiology, and oncology, among others. The lessons learned in the clinic are currently spurring a new set of advances in the laboratory that will again expand the clinical use of OCT by adding molecular sensitivity, improving image quality, and increasing acquisition speeds. This continuous cycle of laboratory development and clinical application has allowed the OCT technology to grow at a rapid rate and represents a unique model for the translation of biomedical optics to the patient bedside. This work presents a brief history of OCT development, reviews current clinical applications, discusses some clinical translation challenges, and reviews laboratory developments poised for future clinical application.
Collapse
Affiliation(s)
- Adam M Zysk
- University of Illinois at Urbana-Champaign, Beckman Institute for Advanced Science and Technology, Department of Electrical and Computer Engineering, Biophotonics Imaging Laboratory, 405 North Mathews Avenue, Urbana, Illinois 61801, USA
| | | | | | | | | |
Collapse
|
384
|
Canet-Soulas E, Letourneur D. Biomarkers of atherosclerosis and the potential of MRI for the diagnosis of vulnerable plaque. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2007; 20:129-42. [PMID: 17605060 DOI: 10.1007/s10334-007-0078-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2006] [Accepted: 06/04/2007] [Indexed: 12/20/2022]
Abstract
Atherosclerosis is a chronic inflammatory vascular disease. As it is an inflammation process, many cellular and molecular events are involved at each step of the progression of atherosclerosis from an early fatty streak lesion to a highly dangerous rupture-prone plaque. Magnetic resonance imaging (MRI) is a well-established diagnostic tool for many kinds of chronic inflammation in various systems and organs, and recent improvements in spatial resolution and contrast strategies make it a promising technique for the characterization of inflammatory vessel walls. The first part of this review will briefly introduce the main cellular and molecular processes involved in atherosclerotic lesions; the second part will focus on the use of high-resolution MRI and present-generation contrast agents for plaque characterization; and the third part will present some recent and ongoing cellular and molecular MRI studies of atherosclerosis.
Collapse
Affiliation(s)
- E Canet-Soulas
- Université Lyon 1, ESCPE, Laboratoire CREATIS-LRMN, CNRS UMR 5220, INSERM U630, Domaine Scientifique de la Doua, 43 Bd 11 novembre 1918, 69622 Villeurbanne Cedex, France.
| | | |
Collapse
|
385
|
Norek M, Neves IC, Peters JA. 1H Relaxivity of Water in Aqueous Suspensions of Gd3+-Loaded NaY Nanozeolites and AlTUD-1 Mesoporous Material: the Influence of Si/Al Ratio and Pore Size. Inorg Chem 2007; 46:6190-6. [PMID: 17589991 DOI: 10.1021/ic700699n] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The results of a (1)H nuclear magnetic relaxation dispersion (NMRD) and EPR study on aqueous suspensions of Gd(3+)-loaded NaY nanozeolites and AlTUD-1 mesoporous material are described. Upon increase of the Si/Al ratio from 1.7 to 4.0 in the Gd(3+)-loaded zeolites, the relaxation rate per mM Gd(3+) (r1) at 40 MHz and 25 degrees C increases from 14 to 27 s(-)1 mM(-1). The NMRD and EPR data were fitted with a previously developed two-step model that considers the system as a concentrated aqueous solution of Gd(3+) in the interior of the zeolite that is in exchange with the bulk water outside the zeolite. The results show that the observed increase in relaxivity can mainly be attributed to the residence lifetime of the water protons in the interior of the material, which decreased from 0.3 to 0.2 micros, upon the increase of the Si/Al ratio. This can be explained by the decreased interaction of water with the zeolite walls as a result of the increased hydrophobicity. The importance of the exchange rate of water between the inside and the outside of the material was further demonstrated by the relatively high relaxivity (33 s(-1) mM(-1) at 40 MHz, 25 degrees C) observed for a suspension of the Gd(3+)-loaded mesoporous material AlTUD-1. Unfortunately, Gd(3+) leaches rather easily from that material, but not from the Gd(3+)-loaded NaY zeolites, which may have potential as contrast agents for magnetic resonance imaging.
Collapse
Affiliation(s)
- Małgorzata Norek
- Biocatalysis and Organic Chemistry, Department of Biotechnology, Delft University of Technology, Julianalaan 136, 2628 BL Delft, The Netherlands
| | | | | |
Collapse
|
386
|
Lai JJ, Hoffman JM, Ebara M, Hoffman AS, Estournès C, Wattiaux A, Stayton PS. Dual magnetic-/temperature-responsive nanoparticles for microfluidic separations and assays. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2007; 23:7385-91. [PMID: 17503854 DOI: 10.1021/la062527g] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
A stimuli-responsive magnetic nanoparticle system for diagnostic target capture and concentration has been developed for microfluidic lab card settings. Telechelic poly(N-isopropylacrylamide) (PNIPAAm) polymer chains were synthesized with dodecyl tails at one end and a reactive carboxylate at the opposite end by the reversible addition fragmentation transfer technique. These PNIPAAm chains self-associate into nanoscale micelles that were used as dimensional confinements to synthesize the magnetic nanoparticles. The resulting superparamagnetic nanoparticles exhibit a gamma-Fe2O3 core ( approximately 5 nm) with a layer of carboxylate-terminated PNIPAAm chains as a corona on the surface. The carboxylate group was used to functionalize the magnetic nanoparticles with biotin and subsequently with streptavidin. The functionalized magnetic nanoparticles can be reversibly aggregated in solution as the temperature is cycled through the PNIPAAm lower critical solution temperature (LCST). While the magnetophoretic mobility of the individual nanoparticles below the LCST is negligible, the aggregates formed above the LCST are large enough to respond to an applied magnetic field. The magnetic nanoparticles can associate with biotinylated targets as individual particles, and then subsequent application of a combined temperature increase and magnetic field can be used to magnetically separate the aggregated particles onto the poly(ethylene glycol)-modified polydimethylsiloxane channel walls of a microfluidic device. When the magnetic field is turned off and the temperature is reversed, the captured aggregates redisperse into the channel flow stream for further downstream processing. The dual magnetic- and temperature-responsive nanoparticles can thus be used as soluble reagents to capture diagnostic targets at a controlled time point and channel position. They can then be isolated and released after the nanoparticles have captured target molecules, overcoming the problem of low magnetophoretic mobility of the individual particle while retaining the advantages of a high surface to volume ratio and faster diffusive properties during target capture.
Collapse
Affiliation(s)
- James J Lai
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | | | | | | | | | | | | |
Collapse
|
387
|
Srivastava K, Kundumani-Sridharan V, Zhang B, Bajpai AK, Rao GN. 15(S)-hydroxyeicosatetraenoic acid-induced angiogenesis requires STAT3-dependent expression of VEGF. Cancer Res 2007; 67:4328-36. [PMID: 17483346 DOI: 10.1158/0008-5472.can-06-3594] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
15(S)-Hydroxyeicosatetraenoic acid [15(S)-HETE] activated signal transducer and activator of transcription 3 (STAT3) as measured by its tyrosine phosphorylation, translocation from the cytoplasm to the nucleus, DNA binding, and reporter gene activity in human dermal microvascular endothelial cells (HDMVEC). Inhibition of STAT3 activation via adenovirus-mediated expression of its dominant-negative mutant suppressed 15(S)-HETE-induced HDMVEC migration and tube formation in vitro and aortic ring and Matrigel plug angiogenesis in vivo. 15(S)-HETE induced the expression of vascular endothelial growth factor (VEGF) in a time- and STAT3-dependent manner in HDMVEC. In addition, neutralizing anti-VEGF antibodies blocked 15(S)-HETE-induced HDMVEC migration and tube formation in vitro and aortic ring and Matrigel plug angiogenesis in vivo. Together, these results show for the first time that 15(S)-HETE-induced angiogenesis requires STAT3-dependent expression of VEGF. In view of these findings, it is suggested that eicosanoids, particularly 15(S)-HETE, via its capacity to stimulate angiogenesis, may influence the progression of cancer and vascular disease.
Collapse
Affiliation(s)
- Kalyan Srivastava
- Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA
| | | | | | | | | |
Collapse
|
388
|
Wickline SA, Neubauer AM, Winter PM, Caruthers SD, Lanza GM. Molecular imaging and therapy of atherosclerosis with targeted nanoparticles. J Magn Reson Imaging 2007; 25:667-80. [PMID: 17347992 DOI: 10.1002/jmri.20866] [Citation(s) in RCA: 162] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Advances in bionanotechnology are poised to impact the field of cardiovascular diagnosis and therapy for decades to come. This review seeks to illustrate selected examples of newly developed diagnostic and therapeutic nanosystems that have been evaluated in experimental atherosclerosis, thrombosis, and vascular biology. We review a variety of nanotechnologies that are capable of detecting early cardiovascular pathology, as well as associated imaging approaches and conjunctive strategies for site-targeted treatment with nanoparticle delivery systems.
Collapse
Affiliation(s)
- Samuel A Wickline
- Department of Medicine, Washington University, St. Louis, Missouri 63110, USA.
| | | | | | | | | |
Collapse
|
389
|
Vela D, Buja LM, Madjid M, Burke A, Naghavi M, Willerson JT, Casscells SW, Litovsky S. The role of periadventitial fat in atherosclerosis. Arch Pathol Lab Med 2007; 131:481-7. [PMID: 17516753 DOI: 10.5858/2007-131-481-tropfi] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2006] [Indexed: 11/06/2022]
Abstract
CONTEXT It has become increasingly evident that adipose tissue is a multifunctional organ that produces and secretes multiple paracrine and endocrine factors. Research into obesity, insulin resistance, and diabetes has identified a proinflammatory state associated with obesity. Substantial differences between subcutaneous and omental fat have been noted, including the fact that omental fat produces relatively more inflammatory cytokines. Periadventitial fat, as a specific adipose tissue subset, has been overlooked in the field of atherosclerosis despite its potential diagnostic and therapeutic implications. OBJECTIVE To review (1) evidence for the role of adventitial and periadventitial fat in vessel remodeling after injury, (2) the relationship between adventitial inflammation and atherosclerosis, (3) the association between periadventitial fat and plaque inflammation, and (4) the diagnostic and therapeutic implications of these roles and relationships for the progression of atherosclerosis. DATA SOURCES We present new data showing greater uptake of iron, administered in the form of superparamagnetic iron oxide, in the periadventitial fat of atherosclerotic mice than in control mice. In addition, macrophage density in the periadventitial fat of lipid-rich plaques is increased compared with fibrocalcific plaques. CONCLUSIONS There is a striking paucity of data on the relationship between the periadventitial fat of coronary arteries and atherosclerosis. Greater insight into this relationship might be instrumental in making strides into the pathophysiology, diagnosis, and treatment of coronary artery disease.
Collapse
Affiliation(s)
- Deborah Vela
- Texas Heart Institute at St Luke's Episcopal Hospital, Houston, USA
| | | | | | | | | | | | | | | |
Collapse
|
390
|
Abstract
The rapid progress of nanoscience and the application of nanotechnology are changing the foundations of diagnosis, treatment, and prevention of cardiovascular diseases. As the core of nanotechnology, nano- and microparticles offer "three-in-one" functions as imaging agents, target probes, and therapeutic carriers. While nano- and microparticle-based imaging of cardiovascular interventions is still in its developing phase, it has already presented the exciting potential to monitor primary interventional procedures for precise therapeutic delivery, enhance the effectiveness of delivered therapeutics, and monitor therapeutic efficiency after interventions performed to treat cardiovascular diseases. This article provides an overview of the current status of the application of nano- and microparticles in the imaging of cardiovascular interventions.
Collapse
Affiliation(s)
- Xiaoming Yang
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
391
|
Doyle B, Caplice N. Plaque neovascularization and antiangiogenic therapy for atherosclerosis. J Am Coll Cardiol 2007; 49:2073-80. [PMID: 17531655 DOI: 10.1016/j.jacc.2007.01.089] [Citation(s) in RCA: 174] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2006] [Revised: 12/12/2006] [Accepted: 01/18/2007] [Indexed: 10/23/2022]
Abstract
The concept that neovascularization of the vessel wall may play a fundamental role in the pathophysiology of atherosclerosis was proposed more than a century ago. In recent years, supportive experimental evidence for this hypothesis (such as the finding that neointimal microvessels may increase delivery of cellular and soluble lesion components to the vessel wall) has been underscored by clinical studies associating plaque angiogenesis with more rapidly progressive high-grade disease. Attention has also focused on a possible role for microvessel-derived intraplaque hemorrhage in the development of acute lesion instability. The interest of clinicians in this phenomenon has been spurred by the potential to target vessel wall neovascularization with angiogenesis inhibitors, a therapeutic approach that has been associated with impressive reductions in plaque progression in animal models of vascular disease. The rationale for pursuing an "antiangiogenic" strategy in the treatment of patients with vascular disease, and a framework for further preclinical evaluation of such therapy, is presented here.
Collapse
Affiliation(s)
- Brendan Doyle
- Division of Cardiovascular Diseases, Molecular Medicine Program, Mayo Clinic, Rochester, Minnesota, USA
| | | |
Collapse
|
392
|
Affiliation(s)
- David E Sosnovik
- Center for Molecular Imaging Research, Massachusetts General Hospital, 149 13th St, Charlestown, MA 02129, USA.
| | | | | |
Collapse
|
393
|
Dietrich T, Perlitz C, Licha K, Stawowy P, Atrott K, Tachezy M, Meyborg H, Stocker C, Gräfe M, Fleck E, Schirner M, Graf K. ED-B fibronectin (ED-B) can be targeted using a novel single chain antibody conjugate and is associated with macrophage accumulation in atherosclerotic lesions. Basic Res Cardiol 2007; 102:298-307. [PMID: 17468934 DOI: 10.1007/s00395-007-0652-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2006] [Revised: 03/21/2007] [Accepted: 03/26/2007] [Indexed: 10/23/2022]
Abstract
It has been shown that ED-B fibronectin (ED-B) is a potential target for plaque imaging. The aim of this study was to test a novel modified single chain anti-ED-B antibody (scFv) conjugated for near infrared fluorescence imaging (NIRF) with tetrasulfonated carbocyanine-maleimide (TSC-scFv) and to examine the association of ED-B with the presence of macrophages in a murine model of atherosclerosis. Expression of ED-B was observed in plaque areas in apolipoprotein E-deficient (apoE(-/-)) mice which increased with age and plaque load. Robust imaging was possible after explantation of the aorta and demonstrated a strong NIRF signal intensity in focal aortic and brachiocephalic plaque lesions, whereas no signals were found in undiseased areas. Plaque lesion ED-B was expressed by smooth muscle cell and was closely associated to macrophage infiltrates. Although not expressed by the same cell type, there was a significant correlation (p<0.01) between ED-B and macrophage immunoreactivity. In vitro human coronary and mouse smooth muscle cells significantly increased ED-B expression after angiotensin II and TNF-alpha treatment. This study demonstrates that plaque NIRF imaging is feasible with a novel single chain antibody and that ED-B expression is closely associated with inflammation in experimental atherosclerosis.
Collapse
MESH Headings
- Animals
- Antibodies
- Aorta, Thoracic/metabolism
- Aorta, Thoracic/pathology
- Apolipoproteins E/deficiency
- Apolipoproteins E/genetics
- Apolipoproteins E/metabolism
- Atherosclerosis/chemically induced
- Atherosclerosis/genetics
- Atherosclerosis/metabolism
- Atherosclerosis/pathology
- Carbocyanines
- Cells, Cultured
- Cholesterol, Dietary/administration & dosage
- Coronary Artery Disease/metabolism
- Coronary Artery Disease/pathology
- Disease Models, Animal
- Feasibility Studies
- Fibronectins/immunology
- Fibronectins/metabolism
- Fluorescent Antibody Technique, Direct
- Fluorescent Dyes
- Humans
- Immunoglobulin Variable Region
- Macrophages/pathology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Muscle, Smooth, Vascular/metabolism
Collapse
Affiliation(s)
- Thore Dietrich
- Dept. of Medicine - Cardiology, Deutsches Herzzentrum Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
394
|
Winter PM, Cai K, Caruthers SD, Wickline SA, Lanza GM. Emerging nanomedicine opportunities with perfluorocarbon nanoparticles. Expert Rev Med Devices 2007; 4:137-45. [PMID: 17359221 DOI: 10.1586/17434440.4.2.137] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Perfluorocarbon (PFC) nanoparticles can serve as a platform technology for molecular imaging and targeted drug-delivery applications. These nanoparticles are approximately 250 nm in diameter and are encapsulated in a phospholipid shell, which provides an ideal surface for the incorporation of targeting ligands, imaging agents and drugs. For molecular imaging, PFC nanoparticles can carry very large payloads of gadolinium to detect pathological biomarkers with magnetic resonance imaging. A variety of different epitopes, including alpha(v)beta(3)-integrin, tissue factor and fibrin, have been imaged using nanoparticles formulated with appropriate antibodies or peptidomimentics as targeting ligands. Lipophilic drugs can also be incorporated into the outer lipid shell of nanoparticles for targeted delivery. Upon binding to the target cell, the drug is exchanged from the particle surfactant monolayer to the cell membrane through a novel process called 'contact facilitated drug delivery'. By combining targeted molecular imaging and localized drug delivery, PFC nanoparticles provide diagnosis and therapy with a single agent.
Collapse
Affiliation(s)
- Patrick M Winter
- Medicine and Biomedical Engineering, C-TRAIN Group, St. Louis, MO 63108, USA.
| | | | | | | | | |
Collapse
|
395
|
Sadeghi MM, Bender JR. Activated alphavbeta3 integrin targeting in injury-induced vascular remodeling. Trends Cardiovasc Med 2007; 17:5-10. [PMID: 17210471 DOI: 10.1016/j.tcm.2006.07.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2006] [Revised: 07/12/2006] [Accepted: 07/14/2006] [Indexed: 10/23/2022]
Abstract
There is currently no imaging modality to track the remodeling process, a common feature of a broad spectrum of vasculopathies, in vivo. alphavbeta3 Integrin is up-regulated in proliferating vascular cells. RP748, a novel peptidomimetic tracer, binds specifically to the activated alphavbeta3 conformer and exhibits favorable binding characteristics for in vivo imaging. In a model of injury-induced vascular remodeling in apoE null mice, RP748 localization to the injured carotid arteries parallels vascular cell proliferation, providing an opportunity to image the remodeling process in vivo.
Collapse
Affiliation(s)
- Mehran M Sadeghi
- Raymond and Beverly Sackler Cardiovascular Molecular Imaging Laboratory, Section of Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT, USA.
| | | |
Collapse
|
396
|
Ibáñez B, Pinero A, Orejas M, Badimón JJ. Nuevas técnicas de imagen para la cuantificación de la carga aterosclerótica global. Rev Esp Cardiol 2007. [DOI: 10.1157/13100282] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
397
|
Kiessling F, Jugold M, Woenne EC, Brix G. Non-invasive assessment of vessel morphology and function in tumors by magnetic resonance imaging. Eur Radiol 2007; 17:2136-48. [PMID: 17308924 DOI: 10.1007/s00330-006-0566-x] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2006] [Revised: 11/13/2006] [Accepted: 12/19/2006] [Indexed: 02/07/2023]
Abstract
The switch to an angiogenic phenotype is an important precondition for tumor growth, invasion and spread. Since newly formed vessels are characterized by structural, functional and molecular abnormalities, they offer promising targets for tumor diagnosis and therapy. Previous studies indicate that MRI is valuable to assess vessel morphology and function. It can be used to distinguish between benign and malignant lesions and to improve delineation of proliferating areas within heterogeneous tumors. In addition, tracer kinetic analysis of contrast-enhanced image series allows the estimation of well-defined physiological parameters such as blood volume, blood flow and vessel permeability. Frequently, changes of these parameters during cytostatic, anti-angiogenic and radiation therapy precede tumor volume reduction. Moreover, target-specific MRI techniques can be used to elucidate the expression of angiogenic markers at the molecular level. This review summarizes strategies for non-invasive characterization of tumor vascularization by functional and molecular MRI, hereby introducing representative preclinical and clinical applications.
Collapse
Affiliation(s)
- Fabian Kiessling
- Junior Group Molecular Imaging, German Cancer Research Center, INF 280, 96121,Heidelberg, Germany.
| | | | | | | |
Collapse
|
398
|
Dobrucki LW, Sinusas AJ. Imaging angiogenesis. Curr Opin Biotechnol 2007; 18:90-6. [PMID: 17240135 DOI: 10.1016/j.copbio.2007.01.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2007] [Revised: 01/05/2007] [Accepted: 01/12/2007] [Indexed: 10/23/2022]
Abstract
Angiogenesis represents the formation of new capillaries by cellular outgrowth from existing microvessels and plays a critical role in the response to ischemia associated with peripheral arterial disease and myocardial infarction. Imaging of angiogenesis would be valuable in risk stratification of patients with arterial occlusive disease. The progress in noninvasive imaging strategies to assess angiogenesis has been made possible with the availability of many technological advances, which include dedicated hybrid SPECT-CT and PET-CT systems and agents targeted at molecular markers of the angiogenic process, involving both receptor-probe interactions and reporter gene technology. These novel targeted approaches for imaging angiogenesis will complement standard imaging of physiological parameters and will play a crucial role for evaluation of therapeutic interventions to promote angiogenesis.
Collapse
Affiliation(s)
- Lawrence W Dobrucki
- Animal Research Laboratories, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, PO Box 208017, 3FMP, New Haven, CT 06520-8017, USA
| | | |
Collapse
|
399
|
Su CH, Sheu HS, Lin CY, Huang CC, Lo YW, Pu YC, Weng JC, Shieh DB, Chen JH, Yeh CS. Nanoshell Magnetic Resonance Imaging Contrast Agents. J Am Chem Soc 2007; 129:2139-46. [PMID: 17263533 DOI: 10.1021/ja0672066] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Nanocontrast agents have great potential in magnetic resonance (MR) molecular imaging applications for clinical diagnosis. We synthesized Au(3)Cu(1) (gold and copper) nanoshells that showed a promising MR contrast effect. For in vitro MR images, the large proton r1 relaxivities brightened T(1)-weighted images. As for the proton-dephasing effect in T(2), Au(3)Cu(1) lightened MR images at the low concentration of 0.125 mg mL(-1) (3.84 x 10(-7) mM), and then the signal continuously decreased as the concentration increased. For in vivo MR imaging, Au(3)Cu(1) nanocontrast agents enhanced the contrast of blood vessels and suggested their potential use in MR angiography as blood-pool agents. We propose that (1) the cooperativity originating from the form of the nanoparticles and (2) the large surface area coordinated to water from their porous hollow morphology are important for efficient relaxivity. In a cytotoxicity and animal survival assay, Au(3)Cu(1) nanocontrast agents showed a dose-dependent toxic effect: the viability rate of experimental mice reached 83% at a dose of 20 mg kg(-1) and as much as 100% at 2 mg kg(-1).
Collapse
Affiliation(s)
- Chia-Hao Su
- Department of Chemistry and Center for Micro/Nano Science and Technology and Institute of Oral Medicine and Molecular Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
400
|
Zhao L, Hall JA, Levenkova N, Lee E, Middleton MK, Zukas AM, Rader DJ, Rux JJ, Puré E. CD44 regulates vascular gene expression in a proatherogenic environment. Arterioscler Thromb Vasc Biol 2007; 27:886-92. [PMID: 17272751 DOI: 10.1161/01.atv.0000259362.10882.c5] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE To identify early changes in vascular gene expression mediated by CD44 that promote atherosclerotic disease in apolipoprotein E (apoE)-deficient (apoE-/-) mice. METHODS AND RESULTS We demonstrate that CD44 is upregulated and functionally activated in aortic arch in the atherogenic environment of apoE-/- mice relative to wild-type (C57BL/6) controls. Moreover, CD44 activation even in apoE-/- mice is selective to lesion-prone regions because neither the thoracic aorta from apoE-/- mice nor the aortic arch of C57BL/6 mice exhibited upregulation of CD44 compared with thoracic aorta of CD57BL/6 mice. Consistent with these observations, gene expression profiling using cDNA microarrays and quantitative polymerase chain reaction revealed that approximately 155 of 19,200 genes analyzed were differentially regulated in the aortic arch, but not in the thoracic aorta, in apoE-/- CD44-/- mice compared with apoE-/- CD44+/+ mice. However, these genes were not regulated by CD44 in the context of a C57BL/6 background, illustrating the selective impact of CD44 on gene expression in a proatherogenic environment. The patterns of differential gene expression implicate CD44 in focal adhesion formation, extracellular matrix deposition, and angiogenesis, processes critical to atherosclerosis. CONCLUSIONS CD44 is an early mediator of atherogenesis by virtue of its ability to regulate vascular gene expression in response to a proatherogenic environment.
Collapse
Affiliation(s)
- Liang Zhao
- The Wistar Institute, 3601 Spruce St, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | | | |
Collapse
|