351
|
Davidson L, Netea MG, Kullberg BJ. Patient Susceptibility to Candidiasis-A Potential for Adjunctive Immunotherapy. J Fungi (Basel) 2018; 4:E9. [PMID: 29371502 PMCID: PMC5872312 DOI: 10.3390/jof4010009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 12/15/2017] [Accepted: 12/30/2017] [Indexed: 12/11/2022] Open
Abstract
Candida spp. are colonizing fungi of human skin and mucosae of the gastrointestinal and genitourinary tract, present in 30-50% of healthy individuals in a population at any given moment. The host defense mechanisms prevent this commensal fungus from invading and causing disease. Loss of skin or mucosal barrier function, microbiome imbalances, or defects of immune defense mechanisms can lead to an increased susceptibility to severe mucocutaneous or invasive candidiasis. A comprehensive understanding of the immune defense against Candida is essential for developing adjunctive immunotherapy. The important role of underlying genetic susceptibility to Candida infections has become apparent over the years. In most patients, the cause of increased susceptibility to fungal infections is complex, based on a combination of immune regulation gene polymorphisms together with other non-genetic predisposing factors. Identification of patients with an underlying genetic predisposition could help determine which patients could benefit from prophylactic antifungal treatment or adjunctive immunotherapy. This review will provide an overview of patient susceptibility to mucocutaneous and invasive candidiasis and the potential for adjunctive immunotherapy.
Collapse
Affiliation(s)
- Linda Davidson
- Department of Internal Medicine and Radboud Center for Infectious diseases (RCI), Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands.
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious diseases (RCI), Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands.
| | - Bart Jan Kullberg
- Department of Internal Medicine and Radboud Center for Infectious diseases (RCI), Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands.
| |
Collapse
|
352
|
Sareila O, Hagert C, Kelkka T, Linja M, Xu B, Kihlberg J, Holmdahl R. Reactive Oxygen Species Regulate Both Priming and Established Arthritis, but with Different Mechanisms. Antioxid Redox Signal 2017; 27:1473-1490. [PMID: 28467721 DOI: 10.1089/ars.2016.6981] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
AIMS Neutrophil cytosolic factor 1 (NCF1) is a key regulatory component of the phagocytic NOX2 complex, which produces reactive oxygen species (ROS). Polymorphism of the Ncf1 gene is associated with increased arthritis severity. In this study, we generated targeted Ncf1 knock-in mice with inducible Ncf1 expression and determined the critical time window during which the NOX2-derived ROS protect the mice from arthritis. RESULTS Targeted Ncf1 knock-in mice lacked NOX2-derived ROS, and in vivo allelic conversion of Ncf1 by the CreERT2 recombinase led to full protein expression and ROS production within 10 days. Mice in which Ncf1 had been activated before immunization with type II collagen (CII) developed only mild clinical symptoms of collagen-induced arthritis (CIA), whereas the ROS-deficient littermates had severe arthritis. The functional Ncf1 restricted the expansion of IL-17A-producing T cells specific for the immunodominant CII peptide. When the Ncf1 gene was activated after the priming phase, Ncf1-dependent protection from autoimmune arthritis was still observed, together with a reduced number of splenic monocytes but it was not associated with alterations in peptide-specific T cell response. The Ncf1-deficient mice expressed pronounced interferon signature, which could be normalized by conditional expression of Ncf1 and was also present in the Ncf1-mutated mouse during arthritis. Innovation and Conclusion: Ncf1 deficiency has been known to predispose to autoimmunity in both humans and rodents. Our in vivo results point to a regulatory role of NOX2-derived ROS not only during priming but also during the effector phase of CIA, most likely via different mechanisms. Antioxid. Redox Signal. 27, 1473-1490.
Collapse
Affiliation(s)
- Outi Sareila
- 1 Medicity Research Laboratory, University of Turku , Turku, Finland
| | - Cecilia Hagert
- 1 Medicity Research Laboratory, University of Turku , Turku, Finland .,2 The National Doctoral Programme, Informational and Structural Biology, Turku, Finland
| | - Tiina Kelkka
- 1 Medicity Research Laboratory, University of Turku , Turku, Finland .,3 Turku Doctoral Programme of Biomedical Sciences, Turku, Finland
| | - Marjo Linja
- 1 Medicity Research Laboratory, University of Turku , Turku, Finland
| | - Bingze Xu
- 4 Division of Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institutet , Stockholm, Sweden
| | - Jan Kihlberg
- 5 Department of Chemistry, BMC, Uppsala University , Uppsala, Sweden
| | - Rikard Holmdahl
- 1 Medicity Research Laboratory, University of Turku , Turku, Finland .,4 Division of Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institutet , Stockholm, Sweden
| |
Collapse
|
353
|
Lionakis MS, Levitz SM. Host Control of Fungal Infections: Lessons from Basic Studies and Human Cohorts. Annu Rev Immunol 2017; 36:157-191. [PMID: 29237128 DOI: 10.1146/annurev-immunol-042617-053318] [Citation(s) in RCA: 146] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In the last few decades, the AIDS pandemic and the significant advances in the medical management of individuals with neoplastic and inflammatory conditions have resulted in a dramatic increase in the population of immunosuppressed patients with opportunistic, life-threatening fungal infections. The parallel development of clinically relevant mouse models of fungal disease and the discovery and characterization of several inborn errors of immune-related genes that underlie inherited human susceptibility to opportunistic mycoses have significantly expanded our understanding of the innate and adaptive immune mechanisms that protect against ubiquitous fungal exposures. This review synthesizes immunological knowledge derived from basic mouse studies and from human cohorts and provides an overview of mammalian antifungal host defenses that show promise for informing therapeutic and vaccination strategies for vulnerable patients.
Collapse
Affiliation(s)
- Michail S Lionakis
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892;
| | - Stuart M Levitz
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01655;
| |
Collapse
|
354
|
Pedraza-Sánchez S, Lezana-Fernández JL, Gonzalez Y, Martínez-Robles L, Ventura-Ayala ML, Sadowinski-Pine S, Nava-Frías M, Moreno-Espinosa S, Casanova JL, Puel A, Boisson-Dupuis S, Torres M. Disseminated Tuberculosis and Chronic Mucocutaneous Candidiasis in a Patient with a Gain-of-Function Mutation in Signal Transduction and Activator of Transcription 1. Front Immunol 2017; 8:1651. [PMID: 29270166 PMCID: PMC5723642 DOI: 10.3389/fimmu.2017.01651] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Accepted: 11/10/2017] [Indexed: 12/14/2022] Open
Abstract
In humans, recessive loss-of-function mutations in STAT1 are associated with mycobacterial and viral infections, whereas gain-of-function (GOF) mutations in STAT1 are associated with a type of primary immunodeficiency related mainly, but not exclusively, to chronic mucocutaneous candidiasis (CMC). We studied and established a molecular diagnosis in a pediatric patient with mycobacterial infections, associated with CMC. The patient, daughter of a non-consanguineous mestizo Mexican family, had axillary adenitis secondary to BCG vaccination and was cured with resection of the abscess at 1-year old. At the age of 4 years, she had a supraclavicular abscess with acid-fast-staining bacilli identified in the soft tissue and bone, with clinical signs of disseminated infection and a positive Gene-X-pert test, which responded to anti-mycobacterial drugs. Laboratory tests of the IL-12/interferon gamma (IFN-γ) circuit showed a higher production of IL-12p70 in the whole blood from the patient compared to healthy controls, when stimulated with BCG and BCG + IFN-γ. The whole blood of the patient produced 35% less IFN-γ compared to controls assessed by ELISA and flow cytometry, but IL-17 producing T cells from patient were almost absent in PBMC stimulated with PMA plus ionomycin. Signal transduction and activator of transcription 1 (STAT1) was hyperphosphorylated at tyrosine 701 in response to IFN-γ and -α, as demonstrated by flow cytometry and Western blotting in fresh blood mononuclear cells and in Epstein-Barr virus lymphoblastoid cell lines (EBV-LCLs); phosphorylation of STAT1 in EBV-LCLs from the patient was resistant to inhibition by staurosporine but sensitive to ruxolitinib, a Jak phosphorylation inhibitor. Genomic DNA sequencing showed a de novo mutation in STAT1 in cells from the patient, absent in her parents and brother; a known T385M missense mutation in the DNA-binding domain of the transcription factor was identified, and it is a GOF mutation. Therefore, GOF mutations in STAT1 can induce susceptibility not only to fungal but also to mycobacterial infections by mechanisms to be determined.
Collapse
Affiliation(s)
- Sigifredo Pedraza-Sánchez
- Unidad de Bioquímica, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México City, México
| | | | - Yolanda Gonzalez
- Departamento de Investigación en Microbiología, Instituto Nacional de Enfermedades Respiratorias, México City, México
| | - Luis Martínez-Robles
- Unidad de Bioquímica, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México City, México
| | - María Laura Ventura-Ayala
- Unidad de Bioquímica, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México City, México
| | | | | | | | - Jean-Laurent Casanova
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, United States.,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Paris, France.,Imagine Institute, Paris Descartes University, Paris, France
| | - Anne Puel
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, United States.,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Paris, France.,Imagine Institute, Paris Descartes University, Paris, France
| | - Stephanie Boisson-Dupuis
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, United States.,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Paris, France.,Imagine Institute, Paris Descartes University, Paris, France
| | - Martha Torres
- Departamento de Investigación en Microbiología, Instituto Nacional de Enfermedades Respiratorias, México City, México
| |
Collapse
|
355
|
Signal transducer and activator of transcription gain-of-function primary immunodeficiency/immunodysregulation disorders. Curr Opin Pediatr 2017; 29:711-717. [PMID: 28914637 DOI: 10.1097/mop.0000000000000551] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE OF REVIEW To describe primary immunodeficiencies caused by gain-of-function (GOF) mutations of signal transducer and activator of transcription (STAT) genes, a group of genetically determined disorders characterized by susceptibility to infections and, in many cases, autoimmune manifestations. RECENT FINDINGS GOF mutations affecting STAT1 result in increased STAT tyrosine phosphorylation and secondarily increased response to STAT1-signaling cytokines, such as interferons. In contrast, STAT3 hyperactivity is not usually related to hyperphosphorylation but rather to increased STAT3-mediated transcriptional activity. In both cases, heterozygous STAT1 and STAT3 GOF mutations trigger a distinct set of genes in target cells that lead to abnormal functioning of antimicrobial response and/or autoimmunity and result in autosomal dominant diseases. SUMMARY Clinical manifestations of patients with STAT1 GOF are characterized by mucocutaneous candidiasis and recurrent lower tract respiratory infections. In addition, many patients have thyroiditis, type 1 diabetes mellitus, autoimmune cytopenias, cancer or aneurysms. Patients with germline STAT3 GOF mutations have an increased frequency of early-onset multiorgan autoimmunity (i.e. autoimmune enteropathy, type 1 diabetes mellitus, autoimmune interstitial lung disease and autoimmune cytopenias), lymphoproliferation, short stature and, less frequently, severe recurrent infections. Treatment options range from antimicrobial therapy, intravenous or subcutaneous immunoglobulin and immunosuppressive drugs. Some patients with STAT1 GOF disorder have undergone hematopoietic stem cell transplantation, although these have been difficult because of the underlying proinflammatory milieu from the mutation.
Collapse
|
356
|
Liu S, Jiang M, Wang W, Liu W, Song X, Ma Z, Zhang S, Liu L, Liu Y, Cao X. Nuclear RNF2 inhibits interferon function by promoting K33-linked STAT1 disassociation from DNA. Nat Immunol 2017; 19:41-52. [DOI: 10.1038/s41590-017-0003-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 10/12/2017] [Indexed: 12/12/2022]
|
357
|
Gain-of-Function Mutations in STAT1: A Recently Defined Cause for Chronic Mucocutaneous Candidiasis Disease Mimicking Combined Immunodeficiencies. Case Reports Immunol 2017; 2017:2846928. [PMID: 29259832 PMCID: PMC5702932 DOI: 10.1155/2017/2846928] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 10/03/2017] [Accepted: 10/10/2017] [Indexed: 12/12/2022] Open
Abstract
Chronic Mucocutaneous Candidiasis (CMC) is the chronic, recurrent, noninvasive Candida infections of the skin, mucous membranes, and nails. A 26-month-old girl was admitted with the complaints of recurrent oral Candidiasis, diarrhea, and respiratory infections. Candida albicans grew in oral mucosa swab. CMV and EBV DNA titers were elevated. She had hypergammaglobulinemia; IgE level, percentages of lymphocyte subgroups, and in vitro T-cell proliferation responses were normal. She had parenchymal nodules within the lungs and a calcific nodule in the liver. Chronic-recurrent infections with different pathogens leading to significant morbidity suggested combined immunodeficiency, CMC, or Mendelian susceptibility to mycobacterial diseases. Genetic analysis revealed a predefined heterozygous gain-of-function mutation (GOF) (c.1154 C>T, p.Thr385Met) in the gene coding STAT1 molecule. Hematopoietic stem cell transplantation (HSCT) was planned because of severe recurring infections. Patients with STAT1 GOF mutations may exhibit diverse phenotypes including infectious and noninfectious findings. HSCT should be considered as an early treatment option before permanent organ damage leading to morbidity and mortality develops. This case is presented to prompt clinicians to consider STAT1 GOF mutations in the differential diagnosis of patients with chronic Candidiasis and recurrent infections with multiple organisms, since these mutations are responsible for nearly half of CMC cases reported.
Collapse
|
358
|
Hall RA, Noverr MC. Fungal interactions with the human host: exploring the spectrum of symbiosis. Curr Opin Microbiol 2017; 40:58-64. [PMID: 29132066 DOI: 10.1016/j.mib.2017.10.020] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 10/24/2017] [Indexed: 12/14/2022]
Abstract
Fungi are ubiquitous transient or persistent human colonisers, and form the mycobiome with shifts in niche specific mycobiomes (dysbiosis) being associated with various diseases. These complex interactions of fungal species with the human host can be viewed as a spectrum of symbiotic relationships (i.e. commensal, parasitic, mutualistic, amensalistic). The host relevant outcome of the relationship is the damage to benefit ratio, elegantly described in the damage response framework. This review focuses on Candida albicans, which is the most well studied human fungal symbiont clinically and experimentally, its transition from commensalism to parasitism within the human host, and the factors that influence this relationship.
Collapse
Affiliation(s)
- Rebecca A Hall
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, UK.
| | - Mairi C Noverr
- Department of Prosthodontics, Louisiana State University School of Dentistry, New Orleans, LA, USA
| |
Collapse
|
359
|
Veverka KK, Feldman SR. Chronic mucocutaneous candidiasis: what can we conclude about IL-17 antagonism? J DERMATOL TREAT 2017; 29:475-480. [PMID: 29076381 DOI: 10.1080/09546634.2017.1398396] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
PURPOSE IL-17 antagonists are effective for psoriasis in clinical trials, but long-term safety is not fully characterized. Since chronic mucocutaneous candidiasis (CMC) is caused by defects in the IL-17 pathway, CMC risk data have been touted as providing reassurance about the safety of IL-17 antagonism. METHODS We performed a literature review to identify patients with CMC and compared the prevalence of cancer in these patients to the reported 5-year prevalence. RESULTS There was a higher prevalence of oropharyngeal (2.5% vs. 0.028%; p < .0001) and esophageal cancer (1.9% vs. 0.013%; p < .0001) in patients with CMC. There were no reports of cancer in 31 patients with CMC caused by an isolated IL-17 deficiency (IL-17F, IL-17RA, IL17RC); however, a study would need over 1000 patients to detect even a 10-fold increase in the most common malignancy of CMC patients. CONCLUSIONS There is evidence that some forms of CMC are associated with an increase in cancer. While CMC is heterogeneous, our findings suggest that we cannot use CMC data to reassure patients on the long-term safety of IL-17 antagonists beyond the safety results from clinical trials, and perhaps caution should be taken with the development of candidiasis in patients taking these medications.
Collapse
Affiliation(s)
- Kevin K Veverka
- a Department of Dermatology Wake Forest School of Medicine , Winston-Salem , NC , USA
| | - Steven R Feldman
- a Department of Dermatology Wake Forest School of Medicine , Winston-Salem , NC , USA
| |
Collapse
|
360
|
Vargas-Hernández A, Mace EM, Zimmerman O, Zerbe CS, Freeman AF, Rosenzweig S, Leiding JW, Torgerson T, Altman MC, Schussler E, Cunningham-Rundles C, Chinn IK, Carisey AF, Hanson IC, Rider NL, Holland SM, Orange JS, Forbes LR. Ruxolitinib partially reverses functional natural killer cell deficiency in patients with signal transducer and activator of transcription 1 (STAT1) gain-of-function mutations. J Allergy Clin Immunol 2017; 141:2142-2155.e5. [PMID: 29111217 DOI: 10.1016/j.jaci.2017.08.040] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 08/09/2017] [Accepted: 08/19/2017] [Indexed: 12/31/2022]
Abstract
BACKGROUND Natural killer (NK) cells are critical innate effector cells whose development is dependent on the Janus kinase-signal transducer and activator of transcription (STAT) pathway. NK cell deficiency can result in severe or refractory viral infections. Patients with STAT1 gain-of-function (GOF) mutations have increased viral susceptibility. OBJECTIVE We sought to investigate NK cell function in patients with STAT1 GOF mutations. METHODS NK cell phenotype and function were determined in 16 patients with STAT1 GOF mutations. NK cell lines expressing patients' mutations were generated with clustered regularly interspaced short palindromic repeats (CRISPR-Cas9)-mediated gene editing. NK cells from patients with STAT1 GOF mutations were treated in vitro with ruxolitinib. RESULTS Peripheral blood NK cells from patients with STAT1 GOF mutations had impaired terminal maturation. Specifically, patients with STAT1 GOF mutations have immature CD56dim NK cells with decreased expression of CD16, perforin, CD57, and impaired cytolytic function. STAT1 phosphorylation was increased, but STAT5 was aberrantly phosphorylated in response to IL-2 stimulation. Upstream inhibition of STAT1 signaling with the small-molecule Janus kinase 1/2 inhibitor ruxolitinib in vitro and in vivo restored perforin expression in CD56dim NK cells and partially restored NK cell cytotoxic function. CONCLUSIONS Properly regulated STAT1 signaling is critical for NK cell maturation and function. Modulation of increased STAT1 phosphorylation with ruxolitinib is an important option for therapeutic intervention in patients with STAT1 GOF mutations.
Collapse
Affiliation(s)
- Alexander Vargas-Hernández
- Department of Pediatrics, Baylor College of Medicine, Houston, Tex; Texas Children's Hospital, Center for Human Immunobiology, Department of Allergy, Immunology and Rheumatology, Houston, Tex
| | - Emily M Mace
- Department of Pediatrics, Baylor College of Medicine, Houston, Tex; Texas Children's Hospital, Center for Human Immunobiology, Department of Allergy, Immunology and Rheumatology, Houston, Tex
| | - Ofer Zimmerman
- National Institute of Allergy and Infectious Diseases, Bethesda, Md
| | - Christa S Zerbe
- National Institute of Allergy and Infectious Diseases, Bethesda, Md; Clinical Center, National Institutes of Health, Bethesda, Md
| | - Alexandra F Freeman
- National Institute of Allergy and Infectious Diseases, Bethesda, Md; Clinical Center, National Institutes of Health, Bethesda, Md
| | - Sergio Rosenzweig
- National Institute of Allergy and Infectious Diseases, Bethesda, Md; Clinical Center, National Institutes of Health, Bethesda, Md
| | - Jennifer W Leiding
- Division of Allergy and Immunology, Department of Pediatrics, University of South Florida at Johns Hopkins-All Children's Hospital, St Petersburg, Fla
| | - Troy Torgerson
- Center for Allergy and Inflammation, University of Washington, Seattle, Wash
| | - Matthew C Altman
- Center for Allergy and Inflammation, University of Washington, Seattle, Wash
| | - Edith Schussler
- Division of Allergy and Immunology, Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY; Department of Medicine and Pediatrics, Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Charlotte Cunningham-Rundles
- Division of Allergy and Immunology, Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY; Department of Medicine and Pediatrics, Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Ivan K Chinn
- Department of Pediatrics, Baylor College of Medicine, Houston, Tex; Texas Children's Hospital, Center for Human Immunobiology, Department of Allergy, Immunology and Rheumatology, Houston, Tex
| | - Alexandre F Carisey
- Department of Pediatrics, Baylor College of Medicine, Houston, Tex; Texas Children's Hospital, Center for Human Immunobiology, Department of Allergy, Immunology and Rheumatology, Houston, Tex
| | - Imelda C Hanson
- Department of Pediatrics, Baylor College of Medicine, Houston, Tex
| | - Nicholas L Rider
- Department of Pediatrics, Baylor College of Medicine, Houston, Tex; Texas Children's Hospital, Center for Human Immunobiology, Department of Allergy, Immunology and Rheumatology, Houston, Tex
| | - Steven M Holland
- National Institute of Allergy and Infectious Diseases, Bethesda, Md; Clinical Center, National Institutes of Health, Bethesda, Md
| | - Jordan S Orange
- Department of Pediatrics, Baylor College of Medicine, Houston, Tex; Texas Children's Hospital, Center for Human Immunobiology, Department of Allergy, Immunology and Rheumatology, Houston, Tex
| | - Lisa R Forbes
- Department of Pediatrics, Baylor College of Medicine, Houston, Tex; Texas Children's Hospital, Center for Human Immunobiology, Department of Allergy, Immunology and Rheumatology, Houston, Tex.
| |
Collapse
|
361
|
Walter JE, Farmer JR, Foldvari Z, Torgerson TR, Cooper MA. Mechanism-Based Strategies for the Management of Autoimmunity and Immune Dysregulation in Primary Immunodeficiencies. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2017; 4:1089-1100. [PMID: 27836058 DOI: 10.1016/j.jaip.2016.08.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 08/01/2016] [Accepted: 08/19/2016] [Indexed: 01/27/2023]
Abstract
A broad spectrum of autoimmunity is now well described in patients with primary immunodeficiencies (PIDs). Management of autoimmune disease in the background of PID is particularly challenging given the seemingly discordant goals of immune support and immune suppression. Our growing ability to define the molecular underpinnings of immune dysregulation has facilitated novel targeted therapeutics. This review focuses on mechanism-based treatment strategies for the most common autoimmune and inflammatory complications of PID including autoimmune cytopenias, rheumatologic disease, and gastrointestinal disease. We aim to provide guidance regarding the rational use of these agents in the complex PID patient population.
Collapse
Affiliation(s)
- Jolan E Walter
- Department of Pediatrics & Medicine, University of South Florida at Johns Hopkins All Children's Hospital, St Petersburg, Fla; Division of Pediatric Allergy & Immunology, Massachusetts General Hospital for Children, Boston, Mass; Division of Immunology, Boston Children's Hospital, Boston, Mass.
| | - Jocelyn R Farmer
- Department of Allergy & Immunology, Massachusetts General Hospital, Boston, Mass
| | - Zsofia Foldvari
- Department of Cancer Immunology, Oslo University Hospital Radiumhospitalet, Oslo, Norway; K. G. Jebsen Centers for Cancer Immunotherapy and for Inflammation Research, Institute for Clinical Medicine, University of Oslo, Oslo, Norway
| | - Troy R Torgerson
- Department of Pediatrics, University of Washington School of Medicine, Seattle, Wash
| | - Megan A Cooper
- Department of Pediatrics, Division of Rheumatology, Washington University School of Medicine, St Louis, Mo
| |
Collapse
|
362
|
Tangye SG, Pelham SJ, Deenick EK, Ma CS. Cytokine-Mediated Regulation of Human Lymphocyte Development and Function: Insights from Primary Immunodeficiencies. THE JOURNAL OF IMMUNOLOGY 2017; 199:1949-1958. [PMID: 28874415 DOI: 10.4049/jimmunol.1700842] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 06/22/2017] [Indexed: 12/17/2022]
Abstract
Cytokine-mediated intracellular signaling pathways are fundamental for the development, activation, and differentiation of lymphocytes. These distinct processes underlie protection against infectious diseases after natural infection with pathogens or immunization, thereby providing the host with long-lived immunological memory. In contrast, aberrant cytokine signaling can also result in conditions of immune dysregulation, such as early-onset autoimmunity. Thus, balanced signals provided by distinct cytokines, and delivered to specific cell subsets, are critical for immune homeostasis. The essential roles of cytokines in human immunity have been elegantly and repeatedly revealed by the discovery of individuals with mutations in cytokine ligands, receptors, and downstream transcription factors that cause primary immunodeficiency or autoimmune conditions. In this article, we review how the discovery and characterization of such individuals has identified nonredundant, and often highly specialized, functions of specific cytokines and immune cell subsets in human lymphocyte biology, host defense against infections, and immune regulation.
Collapse
Affiliation(s)
- Stuart G Tangye
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, New South Wales 2010, Australia; and .,St. Vincent's Clinical School, University of New South Wales, Sydney, New South Wales 2010, Australia
| | - Simon J Pelham
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, New South Wales 2010, Australia; and.,St. Vincent's Clinical School, University of New South Wales, Sydney, New South Wales 2010, Australia
| | - Elissa K Deenick
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, New South Wales 2010, Australia; and.,St. Vincent's Clinical School, University of New South Wales, Sydney, New South Wales 2010, Australia
| | - Cindy S Ma
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, New South Wales 2010, Australia; and.,St. Vincent's Clinical School, University of New South Wales, Sydney, New South Wales 2010, Australia
| |
Collapse
|
363
|
Chinen J, Badran YR, Geha RS, Chou JS, Fried AJ. Advances in basic and clinical immunology in 2016. J Allergy Clin Immunol 2017; 140:959-973. [DOI: 10.1016/j.jaci.2017.07.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 07/12/2017] [Accepted: 07/22/2017] [Indexed: 10/19/2022]
|
364
|
Norman M, David C, Wainstein B, Ziegler JB, Cohn R, Mitchell R, O'Brien T, Russell S, Trahair T, Trickett A, Frith K, Gray P. Haematopoietic stem cell transplantation for primary immunodeficiency syndromes: A 5-year single-centre experience. J Paediatr Child Health 2017; 53:988-994. [PMID: 28752571 DOI: 10.1111/jpc.13643] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/10/2017] [Accepted: 03/18/2017] [Indexed: 12/01/2022]
Abstract
AIM Haematopoietic stem cell transplantation (HSCT) is a central therapy in the treatment of primary immunodeficiency diseases (PIDs). Over the past 5 years, outcomes have been greatly improved due to earlier diagnosis, improved donor availability, advancements in graft manipulation and the use of less toxic preparative regimens. We present a 5-year audit of HSCT for PID at a single Australian tertiary hospital. METHODS Retrospective case note review identified diagnosis, pre-transplant medical morbidity, transplant protocol, engraftment, adverse events, post-transplant immune reconstitution and general health. RESULTS A total of 22 patients with PID underwent 24 HSCTs at our institution between 2012 and 2016. The most common indications were severe combined immunodeficiency, chronic granulomatous disease and familial haemophagocytic lymphohistiocytosis, with a genetic diagnosis in all but two patients. Reduced intensity or reduced toxicity conditioning was used in 91% of cases, and 75% of the donors were unrelated. Transplant-related mortality at day +100 was 9.5%, and cumulative overall survival was 86%. There were three mortalities, all secondary to viral infection, one of which occurred in the context of graft failure. Two patients remained on immune support, with the remainder achieving adequate immune reconstitution. CONCLUSIONS The outcomes for HSCT for PIDs performed at Sydney Children's Hospital were in line with the world's best practice. HSCT should be considered a potential therapeutic option for all Australian PID patients with a valid disease indication.
Collapse
Affiliation(s)
- Melissa Norman
- Department of Immunology, Sydney Children's Hospital, Sydney, New South Wales, Australia.,School of Women's and Children's Health, University of New South Wales, Sydney, New South Wales, Australia
| | - Clementine David
- Department of Immunology, Sydney Children's Hospital, Sydney, New South Wales, Australia.,School of Women's and Children's Health, University of New South Wales, Sydney, New South Wales, Australia
| | - Brynn Wainstein
- Department of Immunology, Sydney Children's Hospital, Sydney, New South Wales, Australia.,School of Women's and Children's Health, University of New South Wales, Sydney, New South Wales, Australia
| | - John B Ziegler
- Department of Immunology, Sydney Children's Hospital, Sydney, New South Wales, Australia.,School of Women's and Children's Health, University of New South Wales, Sydney, New South Wales, Australia
| | - Richard Cohn
- School of Women's and Children's Health, University of New South Wales, Sydney, New South Wales, Australia.,Blood and Marrow Transplantation Program, Kids Cancer Centre, Sydney Children's Hospital, Sydney, New South Wales, Australia
| | - Richard Mitchell
- School of Women's and Children's Health, University of New South Wales, Sydney, New South Wales, Australia.,Blood and Marrow Transplantation Program, Kids Cancer Centre, Sydney Children's Hospital, Sydney, New South Wales, Australia
| | - Tracey O'Brien
- School of Women's and Children's Health, University of New South Wales, Sydney, New South Wales, Australia.,Blood and Marrow Transplantation Program, Kids Cancer Centre, Sydney Children's Hospital, Sydney, New South Wales, Australia
| | - Susan Russell
- School of Women's and Children's Health, University of New South Wales, Sydney, New South Wales, Australia.,Blood and Marrow Transplantation Program, Kids Cancer Centre, Sydney Children's Hospital, Sydney, New South Wales, Australia
| | - Toby Trahair
- School of Women's and Children's Health, University of New South Wales, Sydney, New South Wales, Australia.,Blood and Marrow Transplantation Program, Kids Cancer Centre, Sydney Children's Hospital, Sydney, New South Wales, Australia
| | - Annette Trickett
- School of Women's and Children's Health, University of New South Wales, Sydney, New South Wales, Australia.,BMT Laboratory, South Eastern Area Laboratory Service, Sydney, New South Wales, Australia
| | - Katie Frith
- Department of Immunology, Sydney Children's Hospital, Sydney, New South Wales, Australia
| | - Paul Gray
- Department of Immunology, Sydney Children's Hospital, Sydney, New South Wales, Australia.,School of Women's and Children's Health, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
365
|
The Role of IL-17 in Protection against Mucosal Candida Infections. J Fungi (Basel) 2017; 3:jof3040052. [PMID: 29371568 PMCID: PMC5753154 DOI: 10.3390/jof3040052] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 09/07/2017] [Accepted: 09/14/2017] [Indexed: 12/15/2022] Open
Abstract
Interleukin-17 (IL-17) is a proinflammatory cytokine produced by adaptive CD4+ T helper cells and innate lymphocytes, such as γδ-T cells and TCRβ+ "natural" Th17 cells. IL-17 activates signaling through the IL-17 receptor, which induces other proinflammatory cytokines, antimicrobial peptides and neutrophil chemokines that are important for antifungal activity. The importance of IL-17 in protective antifungal immunity is evident in mice and humans, where various genetic defects related to the IL-17-signaling pathway render them highly susceptible to forms of candidiasis such oropharyngeal candidiasis (OPC) or more broadly chronic mucocutaneous candidiasis (CMC), both caused mainly by the opportunistic fungal pathogen Candida albicans. OPC is common in infants and the elderly, HIV/AIDS and patients receiving chemotherapy and/or radiotherapy for head and neck cancers. This review focuses on the role of IL-17 in protection against candidiasis, and includes a brief discussion of non-Candida albicans fungal infections, as well as how therapeutic interventions blocking IL-17-related components can affect antifungal immunity.
Collapse
|
366
|
Zimmerman O, Rösler B, Zerbe CS, Rosen LB, Hsu AP, Uzel G, Freeman AF, Sampaio EP, Rosenzweig SD, Kuehn HS, Kim T, Brooks KM, Kumar P, Wang X, Netea MG, van de Veerdonk FL, Holland SM. Risks of Ruxolitinib in STAT1 Gain-of-Function-Associated Severe Fungal Disease. Open Forum Infect Dis 2017; 4:ofx202. [PMID: 29226168 DOI: 10.1093/ofid/ofx202] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 09/21/2017] [Indexed: 11/13/2022] Open
Abstract
Heterozygous STAT1 gain-of-function (GOF) mutations are associated with chronic mucocutaneous candidiasis and a broad spectrum of infectious, inflammatory, and vascular manifestations. We describe therapeutic failures with the Janus Kinase (JAK) inhibitor ruxolitinib in 2 STAT1 GOF patients with severe invasive or cutaneous fungal infections.
Collapse
Affiliation(s)
- Ofer Zimmerman
- Immunopathogenesis Section, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Immunology, National Institutes of Health, Bethesda, Maryland
| | - Berenice Rösler
- Department of Internal Medicine and Radboud Center for Infectious diseases (RCI), Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Christa S Zerbe
- Immunopathogenesis Section, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Immunology, National Institutes of Health, Bethesda, Maryland
| | - Lindsey B Rosen
- Immunopathogenesis Section, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Immunology, National Institutes of Health, Bethesda, Maryland
| | - Amy P Hsu
- Immunopathogenesis Section, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Immunology, National Institutes of Health, Bethesda, Maryland
| | - Gulbu Uzel
- Immunopathogenesis Section, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Immunology, National Institutes of Health, Bethesda, Maryland
| | - Alexandra F Freeman
- Immunopathogenesis Section, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Immunology, National Institutes of Health, Bethesda, Maryland
| | - Elizabeth P Sampaio
- Immunopathogenesis Section, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Immunology, National Institutes of Health, Bethesda, Maryland
| | - Sergio D Rosenzweig
- Immunology Service, Department of Laboratory Medicine, National Institutes Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - Hye Sun Kuehn
- Immunology Service, Department of Laboratory Medicine, National Institutes Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - Tiffany Kim
- Department of Pharmacy, Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - Kristina M Brooks
- Department of Pharmacy, Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - Parag Kumar
- Department of Pharmacy, Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - Xiaowen Wang
- Department of Internal Medicine and Radboud Center for Infectious diseases (RCI), Radboud University Medical Centre, Nijmegen, the Netherlands.,Department of Dermatology, Peking University First Hospital, Beijing, China
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious diseases (RCI), Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Frank L van de Veerdonk
- Department of Internal Medicine and Radboud Center for Infectious diseases (RCI), Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Steven M Holland
- Immunopathogenesis Section, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Immunology, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
367
|
Rae W, Ward D, Mattocks CJ, Gao Y, Pengelly RJ, Patel SV, Ennis S, Faust SN, Williams AP. Autoimmunity/inflammation in a monogenic primary immunodeficiency cohort. Clin Transl Immunology 2017; 6:e155. [PMID: 28983403 PMCID: PMC5628267 DOI: 10.1038/cti.2017.38] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 06/09/2017] [Accepted: 07/21/2017] [Indexed: 12/13/2022] Open
Abstract
Primary immunodeficiencies (PIDs) are rare inborn errors of immunity that have a heterogeneous phenotype that can include severe susceptibility to life-threatening infections from multiple pathogens, unique sensitivity to a single pathogen, autoimmune/inflammatory (AI/I) disease, allergies and/or malignancy. We present a diverse cohort of monogenic PID patients with and without AI/I diseases who underwent clinical, genetic and immunological phenotyping. Novel pathogenic variants were identified in IKBKG, CTLA4, NFKB1, GATA2, CD40LG and TAZ as well as previously reported pathogenic variants in STAT3, PIK3CD, STAT1, NFKB2 and STXBP2. AI/I manifestations were frequently encountered in PIDs, including at presentation. Autoimmunity/inflammation was multisystem in those effected, and regulatory T cell (Treg) percentages were significantly decreased compared with those without AI/I manifestations. Prednisolone was used as the first-line immunosuppressive agent in all cases, however steroid monotherapy failed long-term control of autoimmunity/inflammation in the majority of cases and additional immunosuppression was required. Patients with multisystem autoimmunity/inflammation should be investigated for an underlying PID, and in those with PID early assessment of Tregs may help to assess the risk of autoimmunity/inflammation.
Collapse
Affiliation(s)
- William Rae
- Department of Immunology, University Hospital Southampton NHS Foundation Trust, Southampton, UK.,Southampton NIHR Wellcome Trust Clinical Research Facility, University of Southampton, University Hospital Southampton, Southampton, UK
| | - Daniel Ward
- Wessex Regional Genetics Laboratory, Salisbury District Hospital, Salisbury, UK.,Wessex Investigational Sciences Hub Laboratory, University of Southampton, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Christopher J Mattocks
- Wessex Regional Genetics Laboratory, Salisbury District Hospital, Salisbury, UK.,Wessex Investigational Sciences Hub Laboratory, University of Southampton, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Yifang Gao
- Wessex Investigational Sciences Hub Laboratory, University of Southampton, University Hospital Southampton NHS Foundation Trust, Southampton, UK.,NIHR Cancer Research UK Experimental Cancer Medicine Centre, Southampton, UK
| | - Reuben J Pengelly
- Human Genetics and Genomic Medicine, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Sanjay V Patel
- Department of Paediatric Immunology and Infectious Diseases, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Sarah Ennis
- Human Genetics and Genomic Medicine, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Saul N Faust
- Southampton NIHR Wellcome Trust Clinical Research Facility, University of Southampton, University Hospital Southampton, Southampton, UK.,Department of Paediatric Immunology and Infectious Diseases, University Hospital Southampton NHS Foundation Trust, Southampton, UK.,Faculty of Medicine, University of Southampton, Southampton, UK.,Institute for Life Sciences, University of Southampton, Southampton, UK
| | - Anthony P Williams
- Department of Immunology, University Hospital Southampton NHS Foundation Trust, Southampton, UK.,Wessex Investigational Sciences Hub Laboratory, University of Southampton, University Hospital Southampton NHS Foundation Trust, Southampton, UK.,NIHR Cancer Research UK Experimental Cancer Medicine Centre, Southampton, UK
| |
Collapse
|
368
|
Abstract
PURPOSE OF REVIEW Healthy children may develop candidal infections as the result of exposure to antibiotics or corticosteroids, but chronic candidiasis in children after the newborn period is unusual. Chronic mucocutaneous candidiasis (CMC) refers to a group of conditions characterized by recurrent or persistent infections with Candida species, particularly Candida albicans. CMC is a phenotype observed in a spectrum of immunologic disorders, some with endocrinologic and autoimmune features. RECENT FINDINGS CMC can arise secondary to inherited or acquired T cell deficiencies, but in children is largely due to inborn errors impairing the dectin pathway and IL-17 immunity. We review the current understanding of the pathogenesis of chronic mucocutaneous candidiasis and discuss the immunologic pathways by which the immune system handles Candida. We highlight the historical and recent knowledge of CMC in children, emphasizing recent insights into basic science aspects of the dectin pathway, IL-17 signaling, consequences of AIRE gene defects, and clinical aspects of inheritance, and features that distinguish the different syndromes. The clinical phenotype of CMC has many underlying genetic causes. Genetic testing is required for definitive diagnosis.
Collapse
Affiliation(s)
- Laura Green
- From the Department of Pediatrics, Allergy-Immunology and Pediatric Rheumatology Division, Medical College of Georgia at Augusta University, 1120 15th Street, Augusta, GA, 30912, USA
| | - William K Dolen
- From the Department of Pediatrics, Allergy-Immunology and Pediatric Rheumatology Division, Medical College of Georgia at Augusta University, 1120 15th Street, Augusta, GA, 30912, USA.
| |
Collapse
|
369
|
Sullivan KE, Bassiri H, Bousfiha AA, Costa-Carvalho BT, Freeman AF, Hagin D, Lau YL, Lionakis MS, Moreira I, Pinto JA, de Moraes-Pinto MI, Rawat A, Reda SM, Reyes SOL, Seppänen M, Tang MLK. Emerging Infections and Pertinent Infections Related to Travel for Patients with Primary Immunodeficiencies. J Clin Immunol 2017; 37:650-692. [PMID: 28786026 PMCID: PMC5693703 DOI: 10.1007/s10875-017-0426-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 07/21/2017] [Indexed: 12/18/2022]
Abstract
In today's global economy and affordable vacation travel, it is increasingly important that visitors to another country and their physician be familiar with emerging infections, infections unique to a specific geographic region, and risks related to the process of travel. This is never more important than for patients with primary immunodeficiency disorders (PIDD). A recent review addressing common causes of fever in travelers provides important information for the general population Thwaites and Day (N Engl J Med 376:548-560, 2017). This review covers critical infectious and management concerns specifically related to travel for patients with PIDD. This review will discuss the context of the changing landscape of infections, highlight specific infections of concern, and profile distinct infection phenotypes in patients who are immune compromised. The organization of this review will address the environment driving emerging infections and several concerns unique to patients with PIDD. The first section addresses general considerations, the second section profiles specific infections organized according to mechanism of transmission, and the third section focuses on unique phenotypes and unique susceptibilities in patients with PIDDs. This review does not address most parasitic diseases. Reference tables provide easily accessible information on a broader range of infections than is described in the text.
Collapse
Affiliation(s)
- Kathleen E Sullivan
- Division of Allergy and Immunology, The Children's Hospital of Philadelphia, 3615 Civic Center Blvd., Philadelphia, PA, 19104, USA.
| | - Hamid Bassiri
- Division of Infectious Diseases and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, 3501 Civic Center Boulevard, Philadelphia, PA, 19104, USA
| | - Ahmed A Bousfiha
- Clinical Immunology Unit, Infectious Department, Hopital d'Enfant Abderrahim Harouchi, CHU Ibn Rochd, Laboratoire d'Immunologie Clinique, d'Inflammation et d'Allergie LICIA, Faculté de Médecine et de Pharmacie, Université Hassan II, Casablanca, Morocco
| | - Beatriz T Costa-Carvalho
- Department of Pediatrics, Federal University of São Paulo, Rua dos Otonis, 725, São Paulo, SP, 04025-002, Brazil
| | - Alexandra F Freeman
- NIAID, NIH, Building 10 Room 12C103, 9000 Rockville, Pike, Bethesda, MD, 20892, USA
| | - David Hagin
- Division of Allergy and Immunology, Tel Aviv Sourasky Medical Center, Sackler Faculty of Medicine, University of Tel Aviv, 6 Weizmann St, 64239, Tel Aviv, Israel
| | - Yu L Lau
- Department of Paediatrics & Adolescent Medicine, The University of Hong Kong, Rm 106, 1/F New Clinical Building, Pok Fu Lam, Hong Kong.,Queen Mary Hospital, 102 Pokfulam Road, Pok Fu Lam, Hong Kong
| | - Michail S Lionakis
- Fungal Pathogenesis Unit, Laboratory of Clinical Infectious Diseases, National Institute of Allergy & Infectious Diseases (NIAID), National Institutes of Health (NIH), 9000 Rockville Pike, Building 10, Room 11C102, Bethesda, MD, 20892, USA
| | - Ileana Moreira
- Immunology Unit, Hospital de Niños Ricardo Gutiérrez, Gallo 1330, 1425, Buenos Aires, Argentina
| | - Jorge A Pinto
- Division of Immunology, Department of Pediatrics, Federal University of Minas Gerais, Av. Alfredo Balena 190, room # 161, Belo Horizonte, MG, 30130-100, Brazil
| | - M Isabel de Moraes-Pinto
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Federal University of São Paulo, Rua Pedro de Toledo, 781/9°andar, São Paulo, SP, 04039-032, Brazil
| | - Amit Rawat
- Pediatric Allergy and Immunology, Department of Pediatrics, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Shereen M Reda
- Pediatric Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Saul Oswaldo Lugo Reyes
- Immunodeficiencies Research Unit, National Institute of Pediatrics, Av Iman 1, Torre de Investigacion, Piso 9, Coyoacan, 04530, Mexico City, Mexico
| | - Mikko Seppänen
- Harvinaissairauksien yksikkö (HAKE), Rare Disease Center, Helsinki University Hospital (HUH), Helsinki, Finland
| | - Mimi L K Tang
- Murdoch Children's Research Institute, The Royal Children's Hospital, University of Melbourne, Melbourne, Australia
| |
Collapse
|
370
|
Tegtmeyer D, Seidl M, Gerner P, Baumann U, Klemann C. Inflammatory bowel disease caused by primary immunodeficiencies-Clinical presentations, review of literature, and proposal of a rational diagnostic algorithm. Pediatr Allergy Immunol 2017; 28:412-429. [PMID: 28513998 DOI: 10.1111/pai.12734] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/12/2017] [Indexed: 02/07/2023]
Abstract
Inflammatory bowel diseases (IBD) including Crohn's disease (CD) and ulcerative colitis have a multifactorial pathogenesis with complex interactions between polygenetic predispositions and environmental factors. However, IBD can also be caused by monogenic diseases, such as primary immunodeficiencies (PID). Recently, an increasing number of these altogether rare diseases have been described to present often primarily, or solely, as IBD. Early recognition of these conditions enables adaption of therapies and thus directly benefits the course of IBDs. Here, we discuss the different clinical presentations in IBD and characteristic features of patient's history, clinical findings, and diagnostic results indicative for a causative PID. Possible predictors are early onset of disease, necessity of parenteral nutrition, failure to respond to standard immunosuppressive therapy, parental consanguinity, increased susceptibility for infections, certain histopathologic findings, and blood tests that are atypical for classic IBD. We illustrate this with exemplary case studies of IBD due to NEMO deficiency, chronic granulomatous disease, common variable immunodeficiency, CTLA-4 and LRBA deficiency. Taking these factors into account, we propose a diagnostic pathway to enable early diagnosis of IBD due to PID.
Collapse
Affiliation(s)
- Daniel Tegtmeyer
- Department of Pediatrics and Adolescent Medicine, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany.,University Children's Hospital, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Maximilian Seidl
- Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Institute for Surgical Pathology, Medical Center - University of Freiburg, Freiburg, Germany
| | - Patrick Gerner
- Department of Pediatrics and Adolescent Medicine, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| | - Ulrich Baumann
- Department of Pediatric Pneumology, Allergy and Neonatology, Hannover Medical School, Hannover, Germany
| | - Christian Klemann
- Department of Pediatrics and Adolescent Medicine, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany.,Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Department of Pediatric Pneumology, Allergy and Neonatology, Hannover Medical School, Hannover, Germany.,Center of Pediatric Surgery, Hannover Medical School, Hannover, Germany
| |
Collapse
|
371
|
Koo S, Kejariwal D, Al-Shehri T, Dhar A, Lilic D. Oesophageal candidiasis and squamous cell cancer in patients with gain-of-function STAT1 gene mutation. United European Gastroenterol J 2017; 5:625-631. [PMID: 28815025 PMCID: PMC5548354 DOI: 10.1177/2050640616684404] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 11/11/2016] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Oesophageal candidiasis is a common, usually self-limiting opportunistic infection, but long-term infection with Candida is known to predispose to oral and oesophageal squamous cell cancer (SCC). Permissive factors that lead to immune deficiencies can underlie persistent or recurring candidiasis, called chronic mucocutaneous candidiasis (CMC). Secondary immune deficiencies are most often due to human immunodeficiency virus (HIV) infection, antibiotic use and immunosuppressive treatment (steroids, chemotherapy). Inborn errors of the immune system (primary immune deficiencies) can present with isolated CMC known as CMC disease (CMCD), which is most often found in patients with autoimmune polyendocrinopathy syndrome type 1 (APS1)/APECED or in patients with an underlying gain-of-function STAT1 mutation (GOF-STAT1). OBJECTIVE To describe a new form of inherited/familial CMC with a high risk for developing squamous cell carcinoma of the oesophagus, due to a gain-of-function mutation in the STAT1 gene. METHODS AND RESULTS This report describes a family of patients with CMC with confirmed GOF-STAT1 mutation. These patients usually present with CMCD in childhood, have severe oral and oesophageal candidiasis accompanied by severe difficulty swallowing, chest pain, heartburn, and are at risk of developing oral and/or oesophageal SCC. This case series describes six patients in three generations of the same family, two of whom developed and died of SCC. We recommend regular endoscopic surveillance to detect early oesophageal neoplasia in patients with CMCD as well as urgent endoscopy in symptomatic patients. CONCLUSION CMC is not a well-recognised condition in gastroenterology practice and clinicians need to be aware of the genetics of the condition as well as the risk for oesophageal cancer so that they can counsel their patients and arrange surveillance appropriately.
Collapse
Affiliation(s)
- Sara Koo
- Departments of Gastroenterology and Clinical Immunology, County Durham and Darlington NHS Foundation Trust, County Durham, UK
| | - Deepak Kejariwal
- Departments of Gastroenterology and Clinical Immunology, County Durham and Darlington NHS Foundation Trust, County Durham, UK
| | - Tariq Al-Shehri
- Institute of Cellular Medicine, Newcastle University, Newcastle-upon-Tyne, UK
| | - Anjan Dhar
- Departments of Gastroenterology and Clinical Immunology, County Durham and Darlington NHS Foundation Trust, County Durham, UK
- Faculty of Medicine, Durham University, Stockton-on-Tees, UK
| | - Desa Lilic
- Departments of Gastroenterology and Clinical Immunology, County Durham and Darlington NHS Foundation Trust, County Durham, UK
- Institute of Cellular Medicine, Newcastle University, Newcastle-upon-Tyne, UK
| |
Collapse
|
372
|
Armstrong-James D, Brown GD, Netea MG, Zelante T, Gresnigt MS, van de Veerdonk FL, Levitz SM. Immunotherapeutic approaches to treatment of fungal diseases. THE LANCET. INFECTIOUS DISEASES 2017; 17:e393-e402. [PMID: 28774700 DOI: 10.1016/s1473-3099(17)30442-5] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Revised: 11/20/2016] [Accepted: 02/09/2017] [Indexed: 12/15/2022]
Abstract
Fungal infections cause morbidity worldwide and are associated with an unacceptably high mortality despite the availability of antifungal drugs. The incidence of mycoses is rising because of the HIV pandemic and because immunomodulatory drugs are increasingly used to treat autoimmune diseases and cancer. New classes of antifungal drugs have only been partly successful in improving the prognosis for patients with fungal infection. Adjunctive host-directed therapy is therefore believed to be the only option to further improve patient outcomes. Recent advances in the understanding of complex interactions between fungi and host have led to the design and exploration of novel therapeutic strategies in cytokine therapy, vaccines, and cellular immunotherapy, each of which might become viable adjuncts to existing antifungal regimens. In this report, we discuss immunotherapeutic approaches-the rationale behind their design, the challenges in their use, and the progress that is so urgently needed to overcome the devastating effect of fungal diseases.
Collapse
Affiliation(s)
- Darius Armstrong-James
- Fungal Pathogens Laboratory, National Heart and Lung Institute, Imperial College London, UK.
| | - Gordon D Brown
- Aberdeen Fungal Group, MRC Centre for Medical Mycology, University of Aberdeen, Aberdeen, UK
| | - Mihai G Netea
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, Netherlands; Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Teresa Zelante
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Mark S Gresnigt
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, Netherlands; Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Frank L van de Veerdonk
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, Netherlands; Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Stuart M Levitz
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| |
Collapse
|
373
|
Notarangelo LD, Fleisher TA. Targeted strategies directed at the molecular defect: Toward precision medicine for select primary immunodeficiency disorders. J Allergy Clin Immunol 2017; 139:715-723. [PMID: 28270363 DOI: 10.1016/j.jaci.2017.01.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 01/17/2017] [Accepted: 01/18/2017] [Indexed: 12/18/2022]
Abstract
Primary immunodeficiency disorders (PIDs) represent a range of genetically determined diseases that typically have increased susceptibility to infections and in many cases also have evidence of immune dysregulation that often presents as autoimmunity. Most recently, the concept of gain-of-function mutations associated with PIDs has become well recognized and adds a new dimension to the understanding of this group of disorders, moving beyond the more commonly seen loss-of-function mutations. The rapidly expanding genetic defects that have been identified in patients with previously uncharacterized PIDs has opened up the potential for targeted therapy directed at the specific disease-causing abnormality. This has been driven by linking PID-specific genetic defects to the associated unique abnormalities in cellular signaling pathways amenable to directed therapies. These include agents that either block overactive or enhance underresponsive cellular pathways. Selected primary immunodeficiencies were chosen, the genetic defects of which have been recently characterized and are amenable to targeted therapy, as a reflection of the power of precision medicine.
Collapse
Affiliation(s)
- Luigi D Notarangelo
- Laboratory of Clinical Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Thomas A Fleisher
- Immunology Service, Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, Md.
| |
Collapse
|
374
|
Stier MT, Goleniewska K, Cephus JY, Newcomb DC, Sherrill TP, Boyd KL, Bloodworth MH, Moore ML, Chen K, Kolls JK, Peebles RS. STAT1 Represses Cytokine-Producing Group 2 and Group 3 Innate Lymphoid Cells during Viral Infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2017; 199:510-519. [PMID: 28576981 PMCID: PMC5505788 DOI: 10.4049/jimmunol.1601984] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 05/08/2017] [Indexed: 11/19/2022]
Abstract
The appropriate orchestration of different arms of the immune response is critical during viral infection to promote efficient viral clearance while limiting immunopathology. However, the signals and mechanisms that guide this coordination are not fully understood. IFNs are produced at high levels during viral infection and have convergent signaling through STAT1. We hypothesized that STAT1 signaling during viral infection regulates the balance of innate lymphoid cells (ILC), a diverse class of lymphocytes that are poised to respond to environmental insults including viral infections with the potential for both antiviral or immunopathologic functions. During infection with respiratory syncytial virus (RSV), STAT1-deficient mice had reduced numbers of antiviral IFN-γ+ ILC1 and increased numbers of immunopathologic IL-5+ and IL-13+ ILC2 and IL-17A+ ILC3 compared with RSV-infected wild-type mice. Using bone marrow chimeric mice, we found that both ILC-intrinsic and ILC-extrinsic factors were responsible for this ILC dysregulation during viral infection in STAT1-deficient mice. Regarding ILC-extrinsic mechanisms, we found that STAT1-deficient mice had significantly increased expression of IL-33 and IL-23, cytokines that promote ILC2 and ILC3, respectively, compared with wild-type mice during RSV infection. Moreover, disruption of IL-33 or IL-23 signaling attenuated cytokine-producing ILC2 and ILC3 responses in STAT1-deficient mice during RSV infection. Collectively, these data demonstrate that STAT1 is a key orchestrator of cytokine-producing ILC responses during viral infection via ILC-extrinsic regulation of IL-33 and IL-23.
Collapse
Affiliation(s)
- Matthew T Stier
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Kasia Goleniewska
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Jacqueline Y Cephus
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Dawn C Newcomb
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Taylor P Sherrill
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Kelli L Boyd
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Melissa H Bloodworth
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Martin L Moore
- Division of Infectious Disease, Department of Pediatrics, Emory University School of Medicine, Children's Healthcare of Atlanta, Atlanta, GA 30322; and
| | - Kong Chen
- Richard King Mellon Foundation Institute for Pediatric Research, Children's Hospital of Pittsburgh of University of Pittsburgh Medical Center, Pittsburgh, PA 15224
| | - Jay K Kolls
- Richard King Mellon Foundation Institute for Pediatric Research, Children's Hospital of Pittsburgh of University of Pittsburgh Medical Center, Pittsburgh, PA 15224
| | - R Stokes Peebles
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232;
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
| |
Collapse
|
375
|
Zhang Y, Ma CA, Lawrence MG, Break TJ, O'Connell MP, Lyons JJ, López DB, Barber JS, Zhao Y, Barber DL, Freeman AF, Holland SM, Lionakis MS, Milner JD. PD-L1 up-regulation restrains Th17 cell differentiation in STAT3 loss- and STAT1 gain-of-function patients. J Exp Med 2017; 214:2523-2533. [PMID: 28710273 PMCID: PMC5584116 DOI: 10.1084/jem.20161427] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 03/10/2017] [Accepted: 06/19/2017] [Indexed: 01/05/2023] Open
Abstract
Zhang et al. show that hyperphosphorylated STAT1 in patients with STAT1 gain-of-function and STAT3 loss-of-function is caused by impaired SOCS3 expression and leads to upregulation of PD-L1 and defects in Th17 cell differentiation that underlie susceptibility to chronic mucocutaneous candidiasis in these patients. Patients with hypomorphic mutations in STAT3 and patients with hypermorphic mutations in STAT1 share several clinical and cellular phenotypes suggesting overlapping pathophysiologic mechanisms. We, therefore, examined cytokine signaling and CD4+ T cell differentiation in these cohorts to characterize common pathways. As expected, differentiation of Th17 cells was impaired in both cohorts. We found that STAT1 was hyperphosphorylated in response to cytokine stimulation in both cohorts and that STAT1-dependent PD-L1 up-regulation—known to inhibit Th17 differentiation in mouse models—was markedly enhanced as well. Overexpression of SOCS3 strongly inhibited phosphorylation of STAT1 and PD-L1 up-regulation, suggesting that diminished SOCS3 expression may lead to the observed effects. Defects in Th17 differentiation could be partially overcome in vitro via PD-L1 inhibition and in a mouse model of STAT3 loss-of-function by crossing them with PD-1 knockout mice. PD-L1 may be a potential therapeutic target in several genetic diseases of immune deficiency affecting cytokine signaling.
Collapse
Affiliation(s)
- Yuan Zhang
- Genetics and Pathogenesis of Allergy Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD
| | - Chi A Ma
- Genetics and Pathogenesis of Allergy Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD
| | | | - Timothy J Break
- Fungal Pathogenesis Unit, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD
| | - Michael P O'Connell
- Genetics and Pathogenesis of Allergy Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD
| | - Jonathan J Lyons
- Genetics and Pathogenesis of Allergy Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD
| | | | | | - Yongge Zhao
- Laboratory of Genome Integrity, Center for Cancer Research, National Cancer Institute, Bethesda, MD
| | - Daniel L Barber
- T-Lymphocyte Biology Unit, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD
| | - Alexandra F Freeman
- Immunopathogenesis Section, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD
| | - Steven M Holland
- Immunopathogenesis Section, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD
| | - Michail S Lionakis
- Fungal Pathogenesis Unit, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD
| | - Joshua D Milner
- Genetics and Pathogenesis of Allergy Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD
| |
Collapse
|
376
|
Zimmerman O, Rosen LB, Swamydas M, Ferre EMN, Natarajan M, van de Veerdonk F, Holland SM, Lionakis MS. Autoimmune Regulator Deficiency Results in a Decrease in STAT1 Levels in Human Monocytes. Front Immunol 2017; 8:820. [PMID: 28769929 PMCID: PMC5509791 DOI: 10.3389/fimmu.2017.00820] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 06/29/2017] [Indexed: 11/21/2022] Open
Abstract
Autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED) is a rare primary immunodeficiency disorder typically caused by biallelic autoimmune regulator (AIRE) mutations that manifests with chronic mucocutaneous candidiasis (CMC) and autoimmunity. Patients with STAT1 gain-of-function (GOF) mutations also develop CMC and autoimmunity; they exhibit increased STAT1 protein levels at baseline and STAT1 phosphorylation (pSTAT1) upon interferon (IFN)-γ stimulation relative to healthy controls. AIRE interacts functionally with a protein that directly regulates STAT1, namely protein inhibitor of activated STAT1, which inhibits STAT1 activation. Given the common clinical features between patients with AIRE and STAT1 GOF mutations, we sought to determine whether APECED patients also exhibit increased levels of STAT1 protein and phosphorylation in CD14+ monocytes. We obtained peripheral blood mononuclear cells from 8 APECED patients and 13 healthy controls and assessed the levels of STAT1 protein and STAT1 tyrosine phosphorylation at rest and following IFN-γ stimulation, as well as the levels of STAT1 mRNA. The mean STAT1 protein levels in CD14+ monocytes exhibited a ~20% significant decrease in APECED patients both at rest and after IFN-γ stimulation relative to that of healthy donors. Similarly, the mean peak value of IFN-γ-induced pSTAT1 level was ~20% significantly lower in APECED patients compared to that in healthy controls. The decrease in STAT1 and peak pSTAT1 in APECED patients was not accompanied by decreased STAT1 mRNA or anti-IFN-γ autoantibodies; instead, it correlated with the presence of autoantibodies to type I IFN and decreased AIRE−/− monocyte surface expression of IFN-γ receptor 2. Our data show that, in contrast to patients with STAT1 GOF mutations, APECED patients show a moderate but consistent and significant decrease in total STAT1 protein levels, associated with lower peak levels of pSTAT1 molecules after IFN-γ stimulation.
Collapse
Affiliation(s)
- Ofer Zimmerman
- Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Immunology, National Institutes of Health, Bethesda, MD, United States
| | - Lindsey B Rosen
- Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Immunology, National Institutes of Health, Bethesda, MD, United States
| | - Muthulekha Swamydas
- Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Immunology, National Institutes of Health, Bethesda, MD, United States
| | - Elise M N Ferre
- Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Immunology, National Institutes of Health, Bethesda, MD, United States
| | - Mukil Natarajan
- Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Immunology, National Institutes of Health, Bethesda, MD, United States
| | - Frank van de Veerdonk
- Department of Internal Medicine, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences (RILMS), Nijmegen, Netherlands
| | - Steven M Holland
- Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Immunology, National Institutes of Health, Bethesda, MD, United States
| | - Michail S Lionakis
- Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Immunology, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
377
|
Second J, Korganow AS, Jannier S, Puel A, Lipsker D. Rosacea and demodicidosis associated with gain-of-function mutation in STAT1. J Eur Acad Dermatol Venereol 2017. [PMID: 28622416 DOI: 10.1111/jdv.14413] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- J Second
- Dermatology Department, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - A-S Korganow
- Department of Clinical Immunology and Internal Medicine, National Reference Center for Autoimmune Diseases, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - S Jannier
- Paediatric Onco-Haematology Unit, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - A Puel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
| | - D Lipsker
- Dermatology Department, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| |
Collapse
|
378
|
Lee PP, Lau YL. Cellular and Molecular Defects Underlying Invasive Fungal Infections-Revelations from Endemic Mycoses. Front Immunol 2017; 8:735. [PMID: 28702025 PMCID: PMC5487386 DOI: 10.3389/fimmu.2017.00735] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 06/09/2017] [Indexed: 01/29/2023] Open
Abstract
The global burden of fungal diseases has been increasing, as a result of the expanding number of susceptible individuals including people living with human immunodeficiency virus (HIV), hematopoietic stem cell or organ transplant recipients, patients with malignancies or immunological conditions receiving immunosuppressive treatment, premature neonates, and the elderly. Opportunistic fungal pathogens such as Aspergillus, Candida, Cryptococcus, Rhizopus, and Pneumocystis jiroveci are distributed worldwide and constitute the majority of invasive fungal infections (IFIs). Dimorphic fungi such as Histoplasma capsulatum, Coccidioides spp., Paracoccidioides spp., Blastomyces dermatiditis, Sporothrix schenckii, Talaromyces (Penicillium) marneffei, and Emmonsia spp. are geographically restricted to their respective habitats and cause endemic mycoses. Disseminated histoplasmosis, coccidioidomycosis, and T. marneffei infection are recognized as acquired immunodeficiency syndrome (AIDS)-defining conditions, while the rest also cause high rate of morbidities and mortalities in patients with HIV infection and other immunocompromised conditions. In the past decade, a growing number of monogenic immunodeficiency disorders causing increased susceptibility to fungal infections have been discovered. In particular, defects of the IL-12/IFN-γ pathway and T-helper 17-mediated response are associated with increased susceptibility to endemic mycoses. In this review, we put together the various forms of endemic mycoses on the map and take a journey around the world to examine how cellular and molecular defects of the immune system predispose to invasive endemic fungal infections, including primary immunodeficiencies, individuals with autoantibodies against interferon-γ, and those receiving biologic response modifiers. Though rare, these conditions provide importance insights to host defense mechanisms against endemic fungi, which can only be appreciated in unique climatic and geographical regions.
Collapse
Affiliation(s)
- Pamela P Lee
- LKS Faculty of Medicine, Department of Paediatrics and Adolescent Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong, China
| | - Yu-Lung Lau
- LKS Faculty of Medicine, Department of Paediatrics and Adolescent Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong, China.,Shenzhen Primary Immunodeficiencies Diagnostic and Therapeutic Laboratory, The University of Hong Kong-Shenzhen Hospital (HKU-SZH), Shenzhen, China
| |
Collapse
|
379
|
Welsch K, Holstein J, Laurence A, Ghoreschi K. Targeting JAK/STAT signalling in inflammatory skin diseases with small molecule inhibitors. Eur J Immunol 2017; 47:1096-1107. [DOI: 10.1002/eji.201646680] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 05/08/2017] [Accepted: 05/24/2017] [Indexed: 12/14/2022]
Affiliation(s)
- Katharina Welsch
- Department of Dermatology; University Medical Center, Eberhard Karls University Tübingen; Germany
| | - Julia Holstein
- Department of Dermatology; University Medical Center, Eberhard Karls University Tübingen; Germany
| | - Arian Laurence
- Department of Haemato-Oncology, Northern Centre for Cancer Care; Newcastle University; UK
| | - Kamran Ghoreschi
- Department of Dermatology; University Medical Center, Eberhard Karls University Tübingen; Germany
| |
Collapse
|
380
|
Ruffner MA, Sullivan KE, Henrickson SE. Recurrent and Sustained Viral Infections in Primary Immunodeficiencies. Front Immunol 2017; 8:665. [PMID: 28674531 PMCID: PMC5474473 DOI: 10.3389/fimmu.2017.00665] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 05/22/2017] [Indexed: 01/25/2023] Open
Abstract
Viral infections are commonplace and often innocuous. Nevertheless, within the population of patients with primary immunodeficiencies (PIDDs), viral infections can be the feature that drives a diagnostic evaluation or can be the most significant morbidity for the patient. This review is focused on the viral complications of PIDDs. It will focus on respiratory viruses, the most common type of viral infection in the general population. Children and adults with an increased frequency or severity of respiratory viral infections are often referred for an immunologic evaluation. The classic teaching is to investigate humoral function in people with recurrent sinopulmonary infections, but this is often interpreted to mean recurrent bacterial infections. Recurrent or very severe viral infections may also be a harbinger of a primary immunodeficiency as well. This review will also cover persistent cutaneous viral infections, systemic infections, central nervous system infections, and gastrointestinal infections. In each case, the specific viral infections may drive a diagnostic evaluation that is specific for that type of virus. This review also discusses the management of these infections, which can become problematic in patients with PIDDs.
Collapse
Affiliation(s)
- Melanie A Ruffner
- The Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | | | - Sarah E Henrickson
- The Children's Hospital of Philadelphia, Philadelphia, PA, United States
| |
Collapse
|
381
|
Leiding JW, Okada S, Hagin D, Abinun M, Shcherbina A, Balashov DN, Kim VHD, Ovadia A, Guthery SL, Pulsipher M, Lilic D, Devlin LA, Christie S, Depner M, Fuchs S, van Royen-Kerkhof A, Lindemans C, Petrovic A, Sullivan KE, Bunin N, Kilic SS, Arpaci F, Calle-Martin ODL, Martinez-Martinez L, Aldave JC, Kobayashi M, Ohkawa T, Imai K, Iguchi A, Roifman CM, Gennery AR, Slatter M, Ochs HD, Morio T, Torgerson TR. Hematopoietic stem cell transplantation in patients with gain-of-function signal transducer and activator of transcription 1 mutations. J Allergy Clin Immunol 2017; 141:704-717.e5. [PMID: 28601685 DOI: 10.1016/j.jaci.2017.03.049] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 02/18/2017] [Accepted: 03/16/2017] [Indexed: 01/18/2023]
Abstract
BACKGROUND Gain-of-function (GOF) mutations in signal transducer and activator of transcription 1 (STAT1) cause susceptibility to a range of infections, autoimmunity, immune dysregulation, and combined immunodeficiency. Disease manifestations can be mild or severe and life-threatening. Hematopoietic stem cell transplantation (HSCT) has been used in some patients with more severe symptoms to treat and cure the disorder. However, the outcome of HSCT for this disorder is not well established. OBJECTIVE We sought to aggregate the worldwide experience of HSCT in patients with GOF-STAT1 mutations and to assess outcomes, including donor engraftment, overall survival, graft-versus-host disease, and transplant-related complications. METHODS Data were collected from an international cohort of 15 patients with GOF-STAT1 mutations who had undergone HSCT using a variety of conditioning regimens and donor sources. Retrospective data collection allowed the outcome of transplantation to be assessed. In vitro functional testing was performed to confirm that each of the identified STAT1 variants was in fact a GOF mutation. RESULTS Primary donor engraftment in this cohort of 15 patients with GOF-STAT1 mutations was 74%, and overall survival was only 40%. Secondary graft failure was common (50%), and posttransplantation event-free survival was poor (10% by 100 days). A subset of patients had hemophagocytic lymphohistiocytosis before transplant, contributing to their poor outcomes. CONCLUSION Our data indicate that HSCT for patients with GOF-STAT1 mutations is curative but has significant risk of secondary graft failure and death.
Collapse
Affiliation(s)
- Jennifer W Leiding
- Division of Allergy and Immunology, Department of Pediatrics, University of South Florida at Johns Hopkins - All Children's Hospital, St Petersburg, Fla
| | - Satoshi Okada
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical & Health Sciences, Hiroshima, Japan
| | - David Hagin
- Department of Pediatrics, University of Washington and Seattle Children's Research Institute, Seattle, Wash
| | - Mario Abinun
- Great North Children's Hospital, RVI, Newcastle upon Tyne, United Kingdom; Primary Immunodeficiency Group, ICM, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Anna Shcherbina
- Federal Research and Clinical Center for Pediatric Hematology, Oncology, and Immunology, Moscow, Russia
| | - Dmitry N Balashov
- Federal Research and Clinical Center for Pediatric Hematology, Oncology, and Immunology, Moscow, Russia
| | - Vy H D Kim
- Canadian Center for Primary Immunodeficiency, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Adi Ovadia
- Canadian Center for Primary Immunodeficiency, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Stephen L Guthery
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, University of Utah, Salt Lake City, Utah
| | - Michael Pulsipher
- Division of Hematology, Oncology, and Blood and Marrow Transplantation, Children's Hospital Los Angeles, University of Southern California Keck School of Medicine, Los Angeles, Calif
| | - Desa Lilic
- Primary Immunodeficiency Group, ICM, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Lisa A Devlin
- Regional Immunology Service, Royal Hospitals, Belfast, United Kingdom
| | - Sharon Christie
- Department of Pediatrics, Royal Hospitals, Belfast, United Kingdom
| | - Mark Depner
- Center for Chronic Immunodeficiency, University Medical Center Freiburg and University of Freiburg, Freiburg, Germany
| | - Sebastian Fuchs
- Center for Chronic Immunodeficiency, University Medical Center Freiburg and University of Freiburg, Freiburg, Germany
| | - Annet van Royen-Kerkhof
- Pediatric Blood and Marrow Transplantation Program, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Caroline Lindemans
- Pediatric Blood and Marrow Transplantation Program, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Aleksandra Petrovic
- Department of Pediatrics, University of Washington and Seattle Children's Research Institute, Seattle, Wash; Blood and Bone Marrow Transplant Program, Johns Hopkins Medicine-All Children's Hospital, St Petersburg, Fla
| | - Kathleen E Sullivan
- Division of Allergy and Immunology, University of Pennsylvania Perelman School of Medicine and the Children's Hospital of Philadelphia, Philadelphia, Pa
| | - Nancy Bunin
- Division of Oncology, Department of Pediatrics, University of Pennsylvania Perelman School of Medicine and the Children's Hospital of Philadelphia, Philadelphia, Pa
| | - Sara Sebnem Kilic
- Division of Pediatric Immunology, Department of Pediatrics, Uludag University Medical Faculty, Gorukle-Bursa, Turkey
| | - Fikret Arpaci
- GATA Faculty, Bone Marrow Transplant Center, Ankara, Turkey
| | | | | | | | - Masao Kobayashi
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical & Health Sciences, Hiroshima, Japan
| | - Teppei Ohkawa
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University, Graduate School of Medical and Dental Sciences, Tokyo, Japan
| | - Kohsuke Imai
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University, Graduate School of Medical and Dental Sciences, Tokyo, Japan
| | - Akihiro Iguchi
- Department of Pediatrics, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Chaim M Roifman
- Canadian Center for Primary Immunodeficiency, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Andrew R Gennery
- Great North Children's Hospital, RVI, Newcastle upon Tyne, United Kingdom; Primary Immunodeficiency Group, ICM, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Mary Slatter
- Great North Children's Hospital, RVI, Newcastle upon Tyne, United Kingdom; Primary Immunodeficiency Group, ICM, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Hans D Ochs
- Department of Pediatrics, University of Washington and Seattle Children's Research Institute, Seattle, Wash
| | - Tomohiro Morio
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University, Graduate School of Medical and Dental Sciences, Tokyo, Japan.
| | - Troy R Torgerson
- Department of Pediatrics, University of Washington and Seattle Children's Research Institute, Seattle, Wash.
| | | |
Collapse
|
382
|
Abstract
Pathogenic fungi cause a wide range of syndromes in immune-competent and immune-compromised individuals, with life-threatening disease primarily seen in humans with HIV/AIDS and in patients receiving immunosuppressive therapies for cancer, autoimmunity, and end-organ failure. The discovery that specific primary immune deficiencies manifest with fungal infections and the development of animal models of mucosal and invasive mycoses have facilitated insight into fungus-specific recognition, signaling, effector pathways, and adaptive immune responses. Progress in deciphering the molecular and cellular basis of immunity against fungi is guiding preclinical studies into vaccine and immune reconstitution strategies for vulnerable patient groups. Furthermore, recent work has begun to address the role of endogenous fungal communities in human health and disease. In this review, we summarize a contemporary understanding of protective immunity against fungi.
Collapse
Affiliation(s)
- Michail S Lionakis
- Fungal Pathogenesis Unit, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Iliyan D Iliev
- Jill Roberts Institute for Research in IBD, Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Tobias M Hohl
- Infectious Disease Service, Department of Medicine, and Immunology Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| |
Collapse
|
383
|
Eslami N, Tavakol M, Mesdaghi M, Gharegozlou M, Casanova JL, Puel A, Okada S, Arshi S, Bemanian MH, Fallahpour M, Molatefi R, Seif F, Zoghi S, Rezaei N, Nabavi M. A gain-of-function mutation of STAT1: A novel genetic factor contributing to chronic mucocutaneous candidiasis. Acta Microbiol Immunol Hung 2017; 64:191-201. [PMID: 28597685 DOI: 10.1556/030.64.2017.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Heterozygous gain-of-function (GOF) mutations in the signal transducer and activator of transcription 1 (STAT1) have increasingly been identified as a genetic cause of autosomal-dominant (AD) chronic mucocutaneous candidiasis (CMC). In this article, we describe a 33-year-old man who experienced chronic refractory candidiasis, recurrent otitis media, and pneumonia resulting in bronchiectasis, severe oral and esophageal candidiases with strictures associated with hypothyroidism and immune hemolytic anemia. His son also suffered from persistent candidiasis, chronic diarrhea, poor weight gain, and pneumonia that resulted in his demise because of sepsis. The immunological workup showed that an inverse CD4/CD8 ratio and serum immunoglobulins were all within normal ranges. The laboratory data revealed failure in response to Candida lymphocyte transformation test. In addition, by Sanger sequencing method, we found a heterozygous mutation, Thr385Met (T385M), located in the DNA-binding domain of STAT1, which was previously shown to be GOF. These findings illustrate the broad and variable clinical phenotype of heterozygous STAT1 GOF mutations. However, more clinical information and phenotype-genotype studies are required to define the clinical phenotype caused by AD STAT1 GOF.
Collapse
Affiliation(s)
- Narges Eslami
- 1 Department of Allergy and Clinical Immunology, Rasool-e-Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
- 2 Department of Allergy and Clinical Immunology, Mofid Children Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Marzieh Tavakol
- 3 Department of Allergy and Clinical Immunology, Shahid Bahonar Hospital, Alborz University of Medical Sciences, Karaj, Iran
| | - Mehrnaz Mesdaghi
- 2 Department of Allergy and Clinical Immunology, Mofid Children Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Gharegozlou
- 4 Department of Allergy and Immunology, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Jean-Laurent Casanova
- 5 St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- 6 Laboratory of Human Genetics of Infectious Diseases, Necker Branch, French National Institute of Health and Medical Research (INSERM), Paris, France
- 7 Imagine Institute, Paris Descartes University, Paris, France
- 8 Pediatric Hematology-Immunology Unit, AP-HP, Necker Hospital for Sick Children, Paris, France
- 9 Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Anne Puel
- 5 St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- 6 Laboratory of Human Genetics of Infectious Diseases, Necker Branch, French National Institute of Health and Medical Research (INSERM), Paris, France
- 7 Imagine Institute, Paris Descartes University, Paris, France
| | - Satoshi Okada
- 5 St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- 9 Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Saba Arshi
- 1 Department of Allergy and Clinical Immunology, Rasool-e-Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hassan Bemanian
- 1 Department of Allergy and Clinical Immunology, Rasool-e-Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Morteza Fallahpour
- 1 Department of Allergy and Clinical Immunology, Rasool-e-Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Rasool Molatefi
- 1 Department of Allergy and Clinical Immunology, Rasool-e-Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
- 10 Department of Allergy and Clinical Immunology, Bu Ali Children’s Hospital, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Farhad Seif
- 11 Department Immunology, School Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Samaneh Zoghi
- 12 Research Center for Immunodeficiencies, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- 13 Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- 14 Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Vienna, Austria
| | - Nima Rezaei
- 12 Research Center for Immunodeficiencies, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- 13 Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- 15 Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Boston, MA, USA
| | - Mohammad Nabavi
- 1 Department of Allergy and Clinical Immunology, Rasool-e-Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
384
|
Robinson RT, Huppler AR. The Goldilocks model of immune symbiosis with Mycobacteria and Candida colonizers. Cytokine 2017; 97:49-65. [PMID: 28570933 DOI: 10.1016/j.cyto.2017.05.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 05/15/2017] [Accepted: 05/17/2017] [Indexed: 12/12/2022]
Abstract
Mycobacteria and Candida species include significant human pathogens that can cause localized or disseminated infections. Although these organisms may appear to have little in common, several shared pathways of immune recognition and response are important for both control and infection-related pathology. In this article, we compare and contrast the innate and adaptive components of the immune system that pertain to these infections in humans and animal models. We also explore a relatively new concept in the mycobacterial field: biological commensalism. Similar to the well-established model of Candida infection, Mycobacteria species colonize their human hosts in equilibrium with the immune response. Perturbations in the immune response permit the progression to pathologic disease at the expense of the host. Understanding the immune factors required to maintain commensalism may aid with the development of diagnostic and treatment strategies for both categories of pathogens.
Collapse
Affiliation(s)
- Richard T Robinson
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA.
| | - Anna R Huppler
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA; Department of Pediatrics, Division of Infectious Disease, Medical College of Wisconsin, Children's Hospital and Health System, Children's Research Institute, Milwaukee, WI, USA.
| |
Collapse
|
385
|
Autosomal dominant gain of function STAT1 mutation and severe bronchiectasis. Respir Med 2017; 126:39-45. [PMID: 28427548 DOI: 10.1016/j.rmed.2017.03.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 03/16/2017] [Accepted: 03/21/2017] [Indexed: 12/19/2022]
Abstract
BACKGROUND In a substantial number of patients with non-cystic fibrosis (CF) bronchiectasis an etiology cannot be found. Various complex immunodeficiency syndromes account for a significant portion of these patients but the mechanism elucidating the predisposition for suppurative lung disease often remains unknown. OBJECTIVE To investigate the cause and mechanism predisposing a patient to severe bronchiectasis. METHODS A patient presenting with severe non-CF bronchiectasis was investigated. Whole exome analysis (WES) was performed and complemented by extensive immunophenotyping. RESULTS The genetic analysis revealed an autosomal dominant gain-of-function mutation (AD- GOF) in the signal transducer and activator of transcription 1 (STAT1) in the patient. STAT1 phosphorylation studies showed increased phosphorylation of STAT1 after stimulation with interferon γ (IFN-γ). Immunophenotyping showed normal counts of CD4 and CD8 T cells, B and NK cells, but a reduction of all memory B cells especially class switched memory B cells. Minor changes in the CD8 T cell subpopulations were seen. CONCLUSIONS Early use of WES in the investigation of non-CF bronchiectasis was highly advantageous. The degree of impairment in class-switched memory B cells may predispose patients with AD- GOF mutations in STAT1 to suppurative sinopulmonary disease.
Collapse
|
386
|
Meesilpavikkai K, Dik WA, Schrijver B, Nagtzaam NMA, van Rijswijk A, Driessen GJ, van der Spek PJ, van Hagen PM, Dalm VASH. A Novel Heterozygous Mutation in the STAT1 SH2 Domain Causes Chronic Mucocutaneous Candidiasis, Atypically Diverse Infections, Autoimmunity, and Impaired Cytokine Regulation. Front Immunol 2017; 8:274. [PMID: 28348565 PMCID: PMC5346540 DOI: 10.3389/fimmu.2017.00274] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 02/24/2017] [Indexed: 11/30/2022] Open
Abstract
Chronic mucocutaneous candidiasis (CMC) is a primary immunodeficiency characterized by persistent or recurrent skin and mucosal surface infections with Candida species. Different gene mutations leading to CMC have been identified. These include various heterozygous gain-of-function (GOF) mutations in signal transducer and activator of transcription 1 (STAT1) that are not only associated with infections but also with autoimmune manifestations. Recently, two STAT1 GOF mutations involving the Src homology 2 (SH2) domain have been reported, while so far, over 50 mutations have been described mainly in the coiled coil and the DNA-binding domains. Here, we present two members of a Dutch family with a novel STAT1 mutation located in the SH2 domain. T lymphocytes of these patients revealed STAT1 hyperphosphorylation and higher expression of STAT1 target genes. The clinical picture of CMC in our patients could be explained by diminished production of interleukin (IL)-17 and IL-22, cytokines important in the protection against fungal infections.
Collapse
Affiliation(s)
- Kornvalee Meesilpavikkai
- Department of Immunology, Erasmus University Medical Center, Rotterdam, Netherlands; Department of Internal Medicine, Division of Clinical Immunology, Erasmus University Medical Center, Rotterdam, Netherlands; Faculty of Medicine, Department of Microbiology, Chulalongkorn University, Bangkok, Thailand
| | - Willem A Dik
- Department of Immunology, Erasmus University Medical Center, Rotterdam, Netherlands; Laboratory Medical Immunology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Benjamin Schrijver
- Department of Immunology, Erasmus University Medical Center, Rotterdam, Netherlands; Laboratory Medical Immunology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Nicole M A Nagtzaam
- Department of Immunology, Erasmus University Medical Center, Rotterdam, Netherlands; Laboratory Medical Immunology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Angelique van Rijswijk
- Department of Immunology, Erasmus University Medical Center, Rotterdam, Netherlands; Laboratory Medical Immunology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Gertjan J Driessen
- Department of Immunology, Erasmus University Medical Center, Rotterdam, Netherlands; Department of Pediatrics, Division of Infectious Disease and Immunology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Peter J van der Spek
- Department of Bioinformatics, Erasmus University Medical Center , Rotterdam , Netherlands
| | - P Martin van Hagen
- Department of Immunology, Erasmus University Medical Center, Rotterdam, Netherlands; Department of Internal Medicine, Division of Clinical Immunology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Virgil A S H Dalm
- Department of Immunology, Erasmus University Medical Center, Rotterdam, Netherlands; Department of Internal Medicine, Division of Clinical Immunology, Erasmus University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
387
|
Fujiki R, Hijikata A, Shirai T, Okada S, Kobayashi M, Ohara O. Molecular mechanism and structural basis of gain-of-function of STAT1 caused by pathogenic R274Q mutation. J Biol Chem 2017; 292:6240-6254. [PMID: 28258222 DOI: 10.1074/jbc.m116.753848] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 02/13/2017] [Indexed: 11/06/2022] Open
Abstract
Gain-of-function (GOF) mutations in the STAT1 gene are critical for the onset of chronic mucocutaneous candidiasis (CMC) disease. However, the molecular basis for the gain of STAT1 function remains largely unclear. Here, we investigated the structural features of STAT1 GOF residues to better understand the impact of these pathogenic mutations. We constructed STAT1 alanine mutants of the α3 helix residues of the coiled-coil domain, which are frequently found in CMC pathogenic mutations, and measured their transcriptional activities. Most of the identified GOF residues were located inside the coiled-coil domain stem structure or at the protein surface of the anti-parallel dimer interface. Unlike those, Arg-274 was adjacent to the DNA-binding domain. In addition, Arg-274 was found to functionally interact with Gln-441 in the DNA-binding domain. Because Gln-441 is located at the anti-parallel dimer contact site, Gln-441 reorientation by Arg-274 mutation probably impedes formation of the dimer. Further, the statistical analysis of RNA-seq data with STAT1-deficient epithelial cells and primary T cells from a CMC patient revealed that the R274Q mutation affected gene expression levels of 66 and 76 non-overlapping RefSeq genes, respectively. Because their transcription levels were only slightly modulated by wild-type STAT1, we concluded that the R274Q mutation increased transcriptional activity but did not change dramatically the repertoire of STAT1 targets. Hence, we provide a novel mechanism of STAT1 GOF triggered by a CMC pathogenic mutation.
Collapse
Affiliation(s)
- Ryoji Fujiki
- From the Department of Technology Development, Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu-Shi, Chiba-Ken, 292-0818,
| | - Atsushi Hijikata
- the Nagahama Institute of Bio-Science and Technology, 1266 Tamura, Nagahama-Shi, Shiga-Ken 526-0829, and
| | - Tsuyoshi Shirai
- the Nagahama Institute of Bio-Science and Technology, 1266 Tamura, Nagahama-Shi, Shiga-Ken 526-0829, and
| | - Satoshi Okada
- the Graduate School of Biomedical and Health Science, Hiroshima University, 1-2-3, Kasumi, Minami-Ku, Hiroshima-Shi, Hiroshima-Ken 734-8551, Japan
| | - Masao Kobayashi
- the Graduate School of Biomedical and Health Science, Hiroshima University, 1-2-3, Kasumi, Minami-Ku, Hiroshima-Shi, Hiroshima-Ken 734-8551, Japan
| | - Osamu Ohara
- From the Department of Technology Development, Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu-Shi, Chiba-Ken, 292-0818
| |
Collapse
|
388
|
Invasive Fungal Infection in Primary Immunodeficiencies Other Than Chronic Granulomatous Disease. CURRENT FUNGAL INFECTION REPORTS 2017. [DOI: 10.1007/s12281-017-0273-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
389
|
Majoros A, Platanitis E, Kernbauer-Hölzl E, Rosebrock F, Müller M, Decker T. Canonical and Non-Canonical Aspects of JAK-STAT Signaling: Lessons from Interferons for Cytokine Responses. Front Immunol 2017; 8:29. [PMID: 28184222 PMCID: PMC5266721 DOI: 10.3389/fimmu.2017.00029] [Citation(s) in RCA: 232] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 01/09/2017] [Indexed: 01/07/2023] Open
Abstract
Janus kinase (JAK)-signal transducer and activator of transcription (STAT) signal transduction mediates cytokine responses. Canonical signaling is based on STAT tyrosine phosphorylation by activated JAKs. Downstream of interferon (IFN) receptors, activated JAKs cause the formation of the transcription factors IFN-stimulated gene factor 3 (ISGF3), a heterotrimer of STAT1, STAT2 and interferon regulatory factor 9 (IRF9) subunits, and gamma interferon-activated factor (GAF), a STAT1 homodimer. In recent years, several deviations from this paradigm were reported. These include kinase-independent JAK functions as well as extra- and intranuclear activities of U-STATs without phosphotyrosines. Additionally, transcriptional control by STAT complexes resembling neither GAF nor ISGF3 contributes to transcriptome changes in IFN-treated cells. Our review summarizes the contribution of non-canonical JAK-STAT signaling to the innate antimicrobial immunity imparted by IFN. Moreover, we touch upon functions of IFN pathway proteins beyond the IFN response. These include metabolic functions of IRF9 as well as the regulation of natural killer cell activity by kinase-dead TYK2 and different phosphorylation isoforms of STAT1.
Collapse
Affiliation(s)
- Andrea Majoros
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| | - Ekaterini Platanitis
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| | - Elisabeth Kernbauer-Hölzl
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| | - Felix Rosebrock
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| | - Mathias Müller
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Thomas Decker
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| |
Collapse
|
390
|
Tabellini G, Vairo D, Scomodon O, Tamassia N, Ferraro RM, Patrizi O, Gasperini S, Soresina A, Giardino G, Pignata C, Lougaris V, Plebani A, Dotta L, Cassatella MA, Parolini S, Badolato R. Impaired natural killer cell functions in patients with signal transducer and activator of transcription 1 (STAT1) gain-of-function mutations. J Allergy Clin Immunol 2017; 140:553-564.e4. [PMID: 28069426 DOI: 10.1016/j.jaci.2016.10.051] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 09/19/2016] [Accepted: 10/19/2016] [Indexed: 10/20/2022]
Abstract
BACKGROUND Gain-of-function (GOF) mutations affecting the coiled-coil domain or the DNA-binding domain of signal transducer and activator of transcription 1 (STAT1) cause chronic mucocutaneous candidiasis disease. This condition is characterized by fungal and bacterial infections caused by impaired generation of TH17 cells; meanwhile, some patients with chronic mucocutaneous candidiasis disease might also have viral or intracellular pathogen infections. OBJECTIVE We sought to investigate the effect of STAT1 GOF mutations on the functioning of natural killer (NK) cells. METHODS Because STAT1 is involved in the signaling response to several cytokines, we studied NK cell functional activities and STAT1 signaling in 8 patients with STAT1 GOF mutations. RESULTS Functional analysis of NK cells shows a significant impairment of cytolytic and degranulation activities in patients with STAT1 GOF mutations. Moreover, NK cells from these patients display lower production of IFN-γ in response to IL-15 and reduced proliferation after stimulation with IL-2 or IL-15, suggesting that STAT5 signaling is affected. In addition, signaling studies demonstrate that the increased phosphorylation of STAT1 in response to IFN-α is associated with detectable activation of STAT1 and increased STAT1 binding to the interferon-induced protein with tetratricopeptide repeats 1 (IFIT1) promoter in response to IL-15, whereas STAT5 phosphorylation and DNA binding to IL-2 receptor α (IL2RA) are reduced or not affected in response to the same cytokine. CONCLUSION These observations suggest that persistent activation of STAT1 might affect NK cell proliferation and functional activities.
Collapse
Affiliation(s)
- Giovanna Tabellini
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Donatella Vairo
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy; Institute of Molecular Medicine "Angelo Nocivelli," University of Brescia, Brescia, Italy
| | - Omar Scomodon
- Institute of Molecular Medicine "Angelo Nocivelli," University of Brescia, Brescia, Italy; Department of Experimental and Clinical Sciences, University of Brescia, Brescia, Italy
| | - Nicola Tamassia
- Department of Medicine, Section of General Pathology, School of Medicine, University of Verona, Verona, Italy
| | - Rosalba Monica Ferraro
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy; Institute of Molecular Medicine "Angelo Nocivelli," University of Brescia, Brescia, Italy
| | - Ornella Patrizi
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Sara Gasperini
- Department of Medicine, Section of General Pathology, School of Medicine, University of Verona, Verona, Italy
| | | | - Giuliana Giardino
- Department of Translational Medical Sciences, Federico II University of Naples, Naples, Italy
| | - Claudio Pignata
- Department of Translational Medical Sciences, Federico II University of Naples, Naples, Italy
| | - Vassilios Lougaris
- Institute of Molecular Medicine "Angelo Nocivelli," University of Brescia, Brescia, Italy; Department of Experimental and Clinical Sciences, University of Brescia, Brescia, Italy
| | - Alessandro Plebani
- Institute of Molecular Medicine "Angelo Nocivelli," University of Brescia, Brescia, Italy; Department of Experimental and Clinical Sciences, University of Brescia, Brescia, Italy
| | - Laura Dotta
- Institute of Molecular Medicine "Angelo Nocivelli," University of Brescia, Brescia, Italy; Department of Experimental and Clinical Sciences, University of Brescia, Brescia, Italy
| | - Marco A Cassatella
- Department of Medicine, Section of General Pathology, School of Medicine, University of Verona, Verona, Italy
| | - Silvia Parolini
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Raffaele Badolato
- Institute of Molecular Medicine "Angelo Nocivelli," University of Brescia, Brescia, Italy; Department of Experimental and Clinical Sciences, University of Brescia, Brescia, Italy.
| |
Collapse
|
391
|
Aldave Becerra JC, Cachay Rojas E. A 3-Year-Old Girl with Recurrent Infections and Autoimmunity due to a STAT1 Gain-of-Function Mutation: The Expanding Clinical Presentation of Primary Immunodeficiencies. Front Pediatr 2017; 5:55. [PMID: 28367431 PMCID: PMC5355422 DOI: 10.3389/fped.2017.00055] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 03/03/2017] [Indexed: 11/19/2022] Open
Abstract
We report a 3-year-old Peruvian girl, born to non-consanguineous parents. At the age of 8 months, she had a severe pneumonia complicated with empyema that required thoracic drainage and mechanical ventilation. Although no microorganisms were isolated, the patient recovered with broad-spectrum antibiotics. Since that date, she has presented multiple episodes of pneumonia and recurrent episodes of bronchospasm. At 1 year 5 months of age, the patient began with recurrent episodes of oropharyngeal, vaginal, and skin candidiasis, which improved transiently after using oral azole drugs. At 2.5 years of age, she was admitted with lupus-like syndrome, including serositis, hemolytic anemia, thrombocytopenia, and positive antinuclear (1:80) and dsDNA (1:10) autoantibodies. Available immunologic testing was not contributory. Imaging studies revealed bilateral ethmoidal sinusitis and mild hepatomegaly. Bone marrow analysis did not showed evidence of leukemia or myelodysplasia, while renal biopsy concluded mild mesangial proliferation. Genetic studies revealed a pathogenic heterozygous signal transducer and activator of transcription 1 gain-of-function mutation (WT/P293L). The clinical status and lung function of the patient has worsened progressively. She has not achieved an optimal response to therapy, including high-dose intravenous immunoglobulin, GM-CSF, prophylactic antibiotics and antifungal drugs, so we plan to perform hematopoietic stem cell transplantation.
Collapse
Affiliation(s)
| | - Enrique Cachay Rojas
- Allergy and Immunology Division, Hospital Nacional Edgardo Rebagliati Martins , Lima , Peru
| |
Collapse
|
392
|
Kagawa R, Fujiki R, Tsumura M, Sakata S, Nishimura S, Itan Y, Kong XF, Kato Z, Ohnishi H, Hirata O, Saito S, Ikeda M, El Baghdadi J, Bousfiha A, Fujiwara K, Oleastro M, Yancoski J, Perez L, Danielian S, Ailal F, Takada H, Hara T, Puel A, Boisson-Dupuis S, Bustamante J, Casanova JL, Ohara O, Okada S, Kobayashi M. Alanine-scanning mutagenesis of human signal transducer and activator of transcription 1 to estimate loss- or gain-of-function variants. J Allergy Clin Immunol 2016; 140:232-241. [PMID: 28011069 DOI: 10.1016/j.jaci.2016.09.035] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 08/29/2016] [Accepted: 09/23/2016] [Indexed: 11/17/2022]
Abstract
BACKGROUND Germline heterozygous mutations in human signal transducer and activator of transcription 1 (STAT1) can cause loss of function (LOF), as in patients with Mendelian susceptibility to mycobacterial diseases, or gain of function (GOF), as in patients with chronic mucocutaneous candidiasis. LOF and GOF mutations are equally rare and can affect the same domains of STAT1, especially the coiled-coil domain (CCD) and DNA-binding domain (DBD). Moreover, 6% of patients with chronic mucocutaneous candidiasis with a GOF STAT1 mutation have mycobacterial disease, obscuring the functional significance of the identified STAT1 mutations. Current computational approaches, such as combined annotation-dependent depletion, do not distinguish LOF and GOF variants. OBJECTIVE We estimated variations in the CCD/DBD of STAT1. METHODS We mutagenized 342 individual wild-type amino acids in the CCD/DBD (45.6% of full-length STAT1) to alanine and tested the mutants for STAT1 transcriptional activity. RESULTS Of these 342 mutants, 201 were neutral, 30 were LOF, and 111 were GOF mutations in a luciferase assay. This assay system correctly estimated all previously reported LOF mutations (100%) and slightly fewer GOF mutations (78.1%) in the CCD/DBD of STAT1. We found that GOF alanine mutants occurred at the interface of the antiparallel STAT1 dimer, suggesting that they destabilize this dimer. This assay also precisely predicted the effect of 2 hypomorphic and dominant negative mutations, E157K and G250E, in the CCD of STAT1 that we found in 2 unrelated patients with Mendelian susceptibility to mycobacterial diseases. CONCLUSION The systematic alanine-scanning assay is a useful tool to estimate the GOF or LOF status and the effect of heterozygous missense mutations in STAT1 identified in patients with severe infectious diseases, including mycobacterial and fungal diseases.
Collapse
Affiliation(s)
- Reiko Kagawa
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical & Health Sciences, Hiroshima, Japan
| | - Ryoji Fujiki
- Department of Technology Development, Kazusa DNA Research Institute, Chiba, Japan
| | - Miyuki Tsumura
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical & Health Sciences, Hiroshima, Japan
| | - Sonoko Sakata
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical & Health Sciences, Hiroshima, Japan
| | - Shiho Nishimura
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical & Health Sciences, Hiroshima, Japan
| | - Yuval Itan
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY
| | - Xiao-Fei Kong
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY
| | - Zenichiro Kato
- Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu, Japan; Structural Medicine, United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu, Japan
| | - Hidenori Ohnishi
- Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu, Japan
| | - Osamu Hirata
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical & Health Sciences, Hiroshima, Japan
| | - Satoshi Saito
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical & Health Sciences, Hiroshima, Japan
| | - Maiko Ikeda
- Department of Pediatrics, Okazaki City Hospital, Aichi, Japan
| | | | - Aziz Bousfiha
- Laboratory of Clinical Immunology, Inflammation and Allergy, Faculty of Medicine and Pharmacy, Hassan II University of Casablanca, Casablanca, Morocco; Clinical Immunology Unit, Department of Pediatric Infectious Diseases, Averroes University Hospital, Casablanca, Morocco
| | - Kaori Fujiwara
- Department of Pediatrics, National Hospital Organization Fukuyama Medical Center, Hiroshima, Japan
| | - Matias Oleastro
- Department of Immunology, "Juan Pedro Garrahan" National Hospital of Pediatrics, Buenos Aires, Argentina
| | - Judith Yancoski
- Department of Immunology, "Juan Pedro Garrahan" National Hospital of Pediatrics, Buenos Aires, Argentina
| | - Laura Perez
- Department of Immunology, "Juan Pedro Garrahan" National Hospital of Pediatrics, Buenos Aires, Argentina
| | - Silvia Danielian
- Department of Immunology, "Juan Pedro Garrahan" National Hospital of Pediatrics, Buenos Aires, Argentina
| | - Fatima Ailal
- Laboratory of Clinical Immunology, Inflammation and Allergy, Faculty of Medicine and Pharmacy, Hassan II University of Casablanca, Casablanca, Morocco; Clinical Immunology Unit, Department of Pediatric Infectious Diseases, Averroes University Hospital, Casablanca, Morocco
| | - Hidetoshi Takada
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Toshiro Hara
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Anne Puel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France; Paris Descartes University, Sorbonne Paris Cité, Imagine Institute, Paris, France
| | - Stéphanie Boisson-Dupuis
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France; Paris Descartes University, Sorbonne Paris Cité, Imagine Institute, Paris, France
| | - Jacinta Bustamante
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France; Paris Descartes University, Sorbonne Paris Cité, Imagine Institute, Paris, France; Center for the Study of Primary Immunodeficiencies, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France; Paris Descartes University, Sorbonne Paris Cité, Imagine Institute, Paris, France; Pediatric Hematology-Immunology Unit, Assistance Publique-Hôpitaux de Paris, Necker Hospital for Sick Children, Paris, France; Howard Hughes Medical Institute, New York, NY
| | - Osamu Ohara
- Department of Technology Development, Kazusa DNA Research Institute, Chiba, Japan; Laboratory for Integrative Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Satoshi Okada
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical & Health Sciences, Hiroshima, Japan; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY.
| | - Masao Kobayashi
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical & Health Sciences, Hiroshima, Japan
| |
Collapse
|
393
|
Somatic STAT5b gain-of-function mutations in early onset nonclonal eosinophilia, urticaria, dermatitis, and diarrhea. Blood 2016; 129:650-653. [PMID: 27956386 DOI: 10.1182/blood-2016-09-737817] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
394
|
Genetic, immunological, and clinical features of patients with bacterial and fungal infections due to inherited IL-17RA deficiency. Proc Natl Acad Sci U S A 2016; 113:E8277-E8285. [PMID: 27930337 DOI: 10.1073/pnas.1618300114] [Citation(s) in RCA: 126] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Chronic mucocutaneous candidiasis (CMC) is defined as recurrent or persistent infection of the skin, nails, and/or mucosae with commensal Candida species. The first genetic etiology of isolated CMC-autosomal recessive (AR) IL-17 receptor A (IL-17RA) deficiency-was reported in 2011, in a single patient. We report here 21 patients with complete AR IL-17RA deficiency, including this first patient. Each patient is homozygous for 1 of 12 different IL-17RA alleles, 8 of which create a premature stop codon upstream from the transmembrane domain and have been predicted and/or shown to prevent expression of the receptor on the surface of circulating leukocytes and dermal fibroblasts. Three other mutant alleles create a premature stop codon downstream from the transmembrane domain, one of which encodes a surface-expressed receptor. Finally, the only known missense allele (p.D387N) also encodes a surface-expressed receptor. All of the alleles tested abolish cellular responses to IL-17A and -17F homodimers and heterodimers in fibroblasts and to IL-17E/IL-25 in leukocytes. The patients are currently aged from 2 to 35 y and originate from 12 unrelated kindreds. All had their first CMC episode by 6 mo of age. Fourteen patients presented various forms of staphylococcal skin disease. Eight were also prone to various bacterial infections of the respiratory tract. Human IL-17RA is, thus, essential for mucocutaneous immunity to Candida and Staphylococcus, but otherwise largely redundant. A diagnosis of AR IL-17RA deficiency should be considered in children or adults with CMC, cutaneous staphylococcal disease, or both, even if IL-17RA is detected on the cell surface.
Collapse
|
395
|
Okada S, Puel A, Casanova JL, Kobayashi M. Chronic mucocutaneous candidiasis disease associated with inborn errors of IL-17 immunity. Clin Transl Immunology 2016; 5:e114. [PMID: 28090315 PMCID: PMC5192062 DOI: 10.1038/cti.2016.71] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 10/31/2016] [Accepted: 11/02/2016] [Indexed: 12/13/2022] Open
Abstract
Chronic mucocutaneous candidiasis (CMC) is characterized by recurrent or persistent infections affecting the nails, skin and oral and genital mucosae caused by Candida spp., mainly Candida albicans. CMC is an infectious phenotype in patients with inherited or acquired T-cell deficiency. Patients with autosomal-dominant (AD) hyper IgE syndrome (HIES), AD signal transducer and activator of transcription 1 (STAT1) gain-of-function, autosomal-recessive (AR) deficiencies in interleukin (IL)-12 receptor β1 (IL-12Rβ1), IL-12p40, caspase recruitment domain-containing protein 9 (CARD9) or retinoic acid-related orphan receptor γT (RORγT) or AR autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED) develop CMC as a major infectious phenotype that is categorized as Syndromic CMC. In contrast, CMC disease (CMCD) is typically defined as CMC in patients in the absence of any other prominent clinical signs. This definition is not strict; thus, CMCD is currently used to refer to patients presenting with CMC as the main clinical phenotype. The etiology of CMCD is not related to genes that cause severe combined immunodeficiency or combined immunodeficiency, nor to genes responsible for Syndromic CMC. Four genetic etiologies, AR IL-17 receptor A, IL-17 receptor C and ACT1 deficiencies, and AD IL-17F deficiency, are reported to underlie CMCD. Each of these gene defects directly has an impact on IL-17 signaling, suggesting their nonredundant role in host mucosal immunity to Candida. Here, we review current knowledge focusing on IL-17 signaling and the genetic etiologies responsible for, and associated with, CMC.
Collapse
Affiliation(s)
- Satoshi Okada
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences , Hiroshima, Japan
| | - Anne Puel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Necker Medical School, Paris, France; Paris Descartes University, Sorbonne Paris Cité, Institut Imagine, Paris, France; St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Necker Medical School, Paris, France; Paris Descartes University, Sorbonne Paris Cité, Institut Imagine, Paris, France; St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA; Pediatric Hematology-Immunology Unit, Necker Hospital for Sick Children, Paris, France; Howard Hughes Medical Institute, New York, NY, USA
| | - Masao Kobayashi
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences , Hiroshima, Japan
| |
Collapse
|
396
|
Ueki M, Yamada M, Ito K, Tozawa Y, Morino S, Horikoshi Y, Takada H, Abdrabou SSMA, Takezaki S, Kobayashi I, Ariga T. A heterozygous dominant-negative mutation in the coiled-coil domain of STAT1 is the cause of autosomal-dominant Mendelian susceptibility to mycobacterial diseases. Clin Immunol 2016; 174:24-31. [PMID: 27856304 DOI: 10.1016/j.clim.2016.11.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Revised: 08/02/2016] [Accepted: 11/11/2016] [Indexed: 11/29/2022]
Abstract
Heterozygous dominant-negative mutations of STAT1 are responsible for autosomal-dominant Mendelian susceptibility to mycobacterial diseases (AD-MSMD). So far, only 7 mutations have been previously described and are localized to 3 domains: the DNA-binding domain, the SH2 domain, and the tail segment. In this study, we demonstrated the first coiled-coil domain (CCD) mutation of c.749G>C, p.G250A (G250A) in STAT1 as a genetic cause of AD-MSMD in a patient with mycobacterial multiple osteomyelitis. This de novo heterozygous mutation was shown to have a dominant-negative effect on the gamma-activated sequence (GAS) transcriptional activity following IFN-γ stimulation, which could be attributable to the abolished phosphorylation of STAT1 from the wild-type (WT) allele. The three-dimensional structure of STAT1 revealed the G250 residue was located distant from a cluster of residues affected by gain-of-function mutations responsible for chronic mucocutaneous candidiasis.
Collapse
Affiliation(s)
- Masahiro Ueki
- Department of Pediatrics, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Masafumi Yamada
- Department of Pediatrics, Hokkaido University Graduate School of Medicine, Sapporo, Japan.
| | - Kenta Ito
- Division of Infectious Diseases, Department of Pediatrics, Tokyo Metropolitan Children's Medical Center, Fuchu, Japan
| | - Yusuke Tozawa
- Department of Pediatrics, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Saeko Morino
- Division of Infectious Diseases, Department of Pediatrics, Tokyo Metropolitan Children's Medical Center, Fuchu, Japan
| | - Yuho Horikoshi
- Division of Infectious Diseases, Department of Pediatrics, Tokyo Metropolitan Children's Medical Center, Fuchu, Japan
| | - Hidetoshi Takada
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | | - Shunichiro Takezaki
- Department of Pediatrics, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Ichiro Kobayashi
- Department of Pediatrics, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Tadashi Ariga
- Department of Pediatrics, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| |
Collapse
|
397
|
Abstract
The cause of Crohn’s disease (CD) has posed a conundrum for at least a century. A large body of work coupled with recent technological advances in genome research have at last started to provide some of the answers. Initially this review seeks to explain and to differentiate between bowel inflammation in the primary immunodeficiencies that generally lead to very early onset diffuse bowel inflammation in humans and in animal models, and the real syndrome of CD. In the latter, a trigger, almost certainly enteric infection by one of a multitude of organisms, allows the faeces access to the tissues, at which stage the response of individuals predisposed to CD is abnormal. Direct investigation of patients’ inflammatory response together with genome-wide association studies (GWAS) and DNA sequencing indicate that in CD the failure of acute inflammation and the clearance of bacteria from the tissues, and from within cells, is defective. The retained faecal products result in the characteristic chronic granulomatous inflammation and adaptive immune response. In this review I will examine the contemporary evidence that has led to this understanding, and look for explanations for the recent dramatic increase in the incidence of this disease.
Collapse
|
398
|
Abstract
The cause of Crohn's disease (CD) has posed a conundrum for at least a century. A large body of work coupled with recent technological advances in genome research have at last started to provide some of the answers. Initially this review seeks to explain and to differentiate between bowel inflammation in the primary immunodeficiencies that generally lead to very early onset diffuse bowel inflammation in humans and in animal models, and the real syndrome of CD. In the latter, a trigger, almost certainly enteric infection by one of a multitude of organisms, allows the faeces access to the tissues, at which stage the response of individuals predisposed to CD is abnormal. Direct investigation of patients' inflammatory response together with genome-wide association studies (GWAS) and DNA sequencing indicate that in CD the failure of acute inflammation and the clearance of bacteria from the tissues, and from within cells, is defective. The retained faecal products result in the characteristic chronic granulomatous inflammation and adaptive immune response. In this review I will examine the contemporary evidence that has led to this understanding, and look for explanations for the recent dramatic increase in the incidence of this disease.
Collapse
|
399
|
Becker KL, Rösler B, Wang X, Lachmandas E, Kamsteeg M, Jacobs CW, Joosten LA, Netea MG, van de Veerdonk FL. Th2 and Th9 responses in patients with chronic mucocutaneous candidiasis and hyper-IgE syndrome. Clin Exp Allergy 2016; 46:1564-1574. [DOI: 10.1111/cea.12787] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 05/20/2016] [Accepted: 07/16/2016] [Indexed: 01/06/2023]
Affiliation(s)
- K. L. Becker
- Department of Internal Medicine; Radboud University Medical Center; Radboud Center for Infectious Diseases (RCI); Nijmegen The Netherlands
| | - B. Rösler
- Department of Internal Medicine; Radboud University Medical Center; Radboud Center for Infectious Diseases (RCI); Nijmegen The Netherlands
| | - X. Wang
- Department of Internal Medicine; Radboud University Medical Center; Radboud Center for Infectious Diseases (RCI); Nijmegen The Netherlands
- Department of Dermatology; Peking University First Hospital; Beijing China
| | - E. Lachmandas
- Department of Internal Medicine; Radboud University Medical Center; Radboud Center for Infectious Diseases (RCI); Nijmegen The Netherlands
| | - M. Kamsteeg
- Department of Dermatology; Radboud University Medical Center; Nijmegen The Netherlands
| | - C. W. Jacobs
- Department of Internal Medicine; Radboud University Medical Center; Radboud Center for Infectious Diseases (RCI); Nijmegen The Netherlands
| | - L. A. Joosten
- Department of Internal Medicine; Radboud University Medical Center; Radboud Center for Infectious Diseases (RCI); Nijmegen The Netherlands
| | - M. G. Netea
- Department of Internal Medicine; Radboud University Medical Center; Radboud Center for Infectious Diseases (RCI); Nijmegen The Netherlands
| | - F. L. van de Veerdonk
- Department of Internal Medicine; Radboud University Medical Center; Radboud Center for Infectious Diseases (RCI); Nijmegen The Netherlands
| |
Collapse
|
400
|
Baris S, Alroqi F, Kiykim A, Karakoc-Aydiner E, Ogulur I, Ozen A, Charbonnier LM, Bakır M, Boztug K, Chatila TA, Barlan IB. Severe Early-Onset Combined Immunodeficiency due to Heterozygous Gain-of-Function Mutations in STAT1. J Clin Immunol 2016; 36:641-8. [PMID: 27379765 DOI: 10.1007/s10875-016-0312-3] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 06/26/2016] [Indexed: 01/19/2023]
Abstract
PURPOSE Loss and gain-of-function (GOF) mutations in human signal transducer and activator of transcription 1 (STAT1) lead to distinct phenotypes. Although recurrent infections are common to both types of STAT1 mutations, GOF mutations are distinguished by chronic mucocutaneous candidiasis and autoimmunity. However, the clinical spectra of STAT1 GOF mutations continue to expand. We here describe two patients with STAT1 GOF mutations presenting early in life with combined immunodeficiency (CID). METHODS Clinical data and laboratory findings including immunophenotyping, level of interferon (IFN)-γ/IL-17(+) T cells, interferon-induced STAT1 phosphorylation, and JAK inhibitor assays were evaluated. Sequencing of STAT1 gene was performed by Sanger sequencer. RESULTS Patient 1 (P1) had persistent oral candidiasis and cytomegalovirus (CMV) infection since 2 months of age and later developed cavitary lung lesions due to Mycobacterium tuberculosis. Patient 2 (P2) presented with oral candidiasis and recurrent pneumonia at 4 months of age and subsequently developed CMV pneumonitis. Both patients suffered heterozygous missense mutations in STAT1, leading to deleterious amino acid substitutions in the DNA binding domain (P1: c.1154C > T; p.T385M; P2. c.971G > T; p.C324F). Circulating CD4(+) T cells of both patients exhibited increased interferon-γ and decreased IL-17 expression as compared to controls. They also exhibited increased IFN-β and -γ-induced STAT1 phosphorylation that was reversed upon treatment with the JAK kinase inhibitor ruxolitinib. CONCLUSION STAT1 GOF mutations may present early in life with CID, consistent with the clinical heterogeneity of the disease. JAK kinase inhibitors may potentially be useful in some patients as adjunct therapy pending definitive treatment with bone marrow transplantation.
Collapse
Affiliation(s)
- Safa Baris
- Division of Pediatric Allergy/Immunology, Marmara University, Fevzi Çakmak Mah. No: 41, Pendik, Istanbul, Turkey.
| | - Fayhan Alroqi
- Division of Immunology, Boston Children's Hospital and Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Ayca Kiykim
- Division of Pediatric Allergy/Immunology, Marmara University, Fevzi Çakmak Mah. No: 41, Pendik, Istanbul, Turkey
| | - Elif Karakoc-Aydiner
- Division of Pediatric Allergy/Immunology, Marmara University, Fevzi Çakmak Mah. No: 41, Pendik, Istanbul, Turkey
| | - Ismail Ogulur
- Division of Pediatric Allergy/Immunology, Marmara University, Fevzi Çakmak Mah. No: 41, Pendik, Istanbul, Turkey
| | - Ahmet Ozen
- Division of Pediatric Allergy/Immunology, Marmara University, Fevzi Çakmak Mah. No: 41, Pendik, Istanbul, Turkey
| | - Louis-Marie Charbonnier
- Division of Immunology, Boston Children's Hospital and Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Mustafa Bakır
- Division of Pediatric Allergy/Immunology, Marmara University, Fevzi Çakmak Mah. No: 41, Pendik, Istanbul, Turkey
| | - Kaan Boztug
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Talal A Chatila
- Division of Immunology, Boston Children's Hospital and Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Isil B Barlan
- Division of Pediatric Allergy/Immunology, Marmara University, Fevzi Çakmak Mah. No: 41, Pendik, Istanbul, Turkey
| |
Collapse
|