351
|
Palata O, Hradilova Podzimkova N, Nedvedova E, Umprecht A, Sadilkova L, Palova Jelinkova L, Spisek R, Adkins I. Radiotherapy in Combination With Cytokine Treatment. Front Oncol 2019; 9:367. [PMID: 31179236 PMCID: PMC6538686 DOI: 10.3389/fonc.2019.00367] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 04/23/2019] [Indexed: 12/22/2022] Open
Abstract
Radiotherapy (RT) plays an important role in the management of cancer patients. RT is used in more than 50% of patients during the course of their disease in a curative or palliative setting. In the past decades it became apparent that the abscopal effect induced by RT might be dependent on the activation of immune system, and that the induction of immunogenic cancer cell death and production of danger-associated molecular patterns from dying cells play a major role in the radiotherapy-mediated anti-tumor efficacy. Therefore, the combination of RT and immunotherapy is of a particular interest that is reflected in designing clinical trials to treat patients with various malignancies. The use of cytokines as immunoadjuvants in combination with RT has been explored over the last decades as one of the immunotherapeutic combinations to enhance the clinical response to anti-cancer treatment. Here we review mainly the data on the efficacy of IFN-α, IL-2, IL-2-based immunocytokines, GM-CSF, and TNF-α used in combinations with various radiotherapeutic techniques in clinical trials. Moreover, we discuss the potential of IL-15 and its analogs and IL-12 cytokines in combination with RT based on the efficacy in preclinical mouse tumor models.
Collapse
Affiliation(s)
- Ondrej Palata
- SOTIO a.s, Prague, Czechia.,Department of Immunology, 2nd Faculty of Medicine and University Hospital Motol, Charles University, Prague, Czechia
| | - Nada Hradilova Podzimkova
- SOTIO a.s, Prague, Czechia.,Department of Immunology, 2nd Faculty of Medicine and University Hospital Motol, Charles University, Prague, Czechia
| | | | | | | | - Lenka Palova Jelinkova
- SOTIO a.s, Prague, Czechia.,Department of Immunology, 2nd Faculty of Medicine and University Hospital Motol, Charles University, Prague, Czechia
| | - Radek Spisek
- SOTIO a.s, Prague, Czechia.,Department of Immunology, 2nd Faculty of Medicine and University Hospital Motol, Charles University, Prague, Czechia
| | - Irena Adkins
- SOTIO a.s, Prague, Czechia.,Department of Immunology, 2nd Faculty of Medicine and University Hospital Motol, Charles University, Prague, Czechia
| |
Collapse
|
352
|
Sottile R, Tannazi M, Johansson MH, Cristiani CM, Calabró L, Ventura V, Cutaia O, Chiarucci C, Covre A, Garofalo C, Pontén V, Tallerico R, Frumento P, Micke P, Maio M, Kärre K, Carbone E. NK- and T-cell subsets in malignant mesothelioma patients: Baseline pattern and changes in the context of anti-CTLA-4 therapy. Int J Cancer 2019; 145:2238-2248. [PMID: 31018250 DOI: 10.1002/ijc.32363] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 04/08/2019] [Indexed: 01/27/2023]
Abstract
Malignant mesothelioma (MM) is a highly aggressive form of cancer with limited treatment options. Although the role of NK cells has been studied in many solid tumors, the pattern of NK-cell subsets and their recognition of mesothelioma cells remain to be explored. We used RNA expression data of MM biopsies derived from the cancer genome atlas to evaluate the immune cell infiltrates. We characterized the phenotype of circulating NK and T cells of 27 MM patients before and after treatment with an anti-CTLA-4 antibody (tremelimumab). These immune cell profiles were compared to healthy controls. The RNA expression data of the MM biopsies indicated the presence of NK cells in a subgroup of patients. We demonstrated that NK cells recognize MM cell lines and that IL-15 stimulation improved NK cell-mediated lysis in vitro. Using multivariate projection models, we found that MM patients had a perturbed ratio of CD56bright and CD56dim NK subsets and increased serum concentrations of the cytokines IL-10, IL-8 and TNF-α. After tremelimumab treatment, the ratio between the CD56bright and CD56dim subsets shifted back towards physiological levels. Furthermore, the improved overall survival was correlated with low TIM-3+ CD8+ T-cell frequency, high DNAM-1+ CD56dim NK-cell frequency and high expression levels of NKp46 on the CD56dim NK cells before and after immune checkpoint blockade. Together, our observations suggest that NK cells infiltrate MM and that they can recognize and kill mesothelioma cells. The disease is associated with distinct lymphocytes patterns, some of which correlate with prognosis or are affected by treatment with tremelimumab.
Collapse
Affiliation(s)
- Rosa Sottile
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Milad Tannazi
- Department of Pharmaceutical Science, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Maria H Johansson
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Costanza Maria Cristiani
- Tumor Immunology and Immunopathology Laboratory, Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Luana Calabró
- Center for Immuno-Oncology, Medical Oncology and Immunotherapy, University Hospital of Siena, Siena, Italy
| | - Valeria Ventura
- Tumor Immunology and Immunopathology Laboratory, Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Ornella Cutaia
- Center for Immuno-Oncology, Medical Oncology and Immunotherapy, University Hospital of Siena, Siena, Italy
| | - Carla Chiarucci
- Center for Immuno-Oncology, Medical Oncology and Immunotherapy, University Hospital of Siena, Siena, Italy
| | - Alessia Covre
- Center for Immuno-Oncology, Medical Oncology and Immunotherapy, University Hospital of Siena, Siena, Italy
| | - Cinzia Garofalo
- Tumor Immunology and Immunopathology Laboratory, Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Victor Pontén
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala University Hospital, Uppsala, Sweden
| | - Rossana Tallerico
- Tumor Immunology and Immunopathology Laboratory, Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Paolo Frumento
- Institute of Environmental Medicine, Unit of Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Patrick Micke
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala University Hospital, Uppsala, Sweden
| | - Michele Maio
- Center for Immuno-Oncology, Medical Oncology and Immunotherapy, University Hospital of Siena, Siena, Italy
| | - Klas Kärre
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Ennio Carbone
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden.,Tumor Immunology and Immunopathology Laboratory, Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Catanzaro, Italy
| |
Collapse
|
353
|
Di Vito C, Mikulak J, Zaghi E, Pesce S, Marcenaro E, Mavilio D. NK cells to cure cancer. Semin Immunol 2019; 41:101272. [PMID: 31085114 DOI: 10.1016/j.smim.2019.03.004] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 03/11/2019] [Accepted: 03/14/2019] [Indexed: 12/12/2022]
Abstract
Natural Killer (NK) cells are innate lymphocytes able to mediate immune-surveillance and clearance of viral infected and tumor-transformed cells. Growing experimental and clinical evidence highlighted a dual role of NK cells either in the control of cancer development/progression or in promoting the onset of immune-suppressant tumor microenvironments. Indeed, several mechanisms of NK cell-mediated tumor escape have been described and these includes cancer-induced aberrant expression of activating and inhibitory receptors (i.e. NK cell immune checkpoints), impairments of NK cell migration to tumor sites and altered NK cell effector-functions. These phenomena highly contribute to tumor progression and metastasis formation. In this review, we discuss the latest insights on those NK cell receptors and related molecules that are currently being implemented in clinics either as possible prognostic factors or therapeutic targets to unleash NK cell anti-tumor effector-functions in vivo. Moreover, we address here the major recent advances in regard to the genetic modification and ex vivo expansion of anti-tumor specific NK cells used in innovative adoptive cellular transfer approaches.
Collapse
Affiliation(s)
- Clara Di Vito
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Joanna Mikulak
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy; Department of Medical Biotechnologies and Translational Medicine (BioMeTra), University of Milan, Italy
| | - Elisa Zaghi
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Silvia Pesce
- Department of Experimental Medicine (DIMES), University of Genoa, Genoa, Italy
| | - Emanuela Marcenaro
- Department of Experimental Medicine (DIMES), University of Genoa, Genoa, Italy; Centre of Excellence for Biomedical Research (CEBR), University of Genoa, Genoa, Italy.
| | - Domenico Mavilio
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy; Department of Medical Biotechnologies and Translational Medicine (BioMeTra), University of Milan, Italy.
| |
Collapse
|
354
|
Inducing Fat to Feed a Natural Killer of Malignancy. Mol Ther 2019; 27:898-899. [PMID: 30992190 DOI: 10.1016/j.ymthe.2019.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
355
|
Guo Q, Huang F, Goncalves C, Del Rincón SV, Miller WH. Translation of cancer immunotherapy from the bench to the bedside. Adv Cancer Res 2019; 143:1-62. [PMID: 31202357 DOI: 10.1016/bs.acr.2019.03.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
The tremendous success of immune checkpoint blockades has revolutionized cancer management. Our increased understanding of the cell types that compose the tumor microenvironment (TME), including those of the innate and adaptive immune system, has helped to shape additional immune modulatory strategies in cancer care. Pre-clinical and clinical investigations targeting novel checkpoint interactions and key pathways that regulate cancer immunity continue to increase rapidly. Various combinatorial drug regimens are being tested in attempt to achieve durable response and survival rates of patients with cancer. This review provides an overview of specific components of the TME, an introduction to novel immune checkpoints, followed by a survey of present day and future combination immune modulatory therapies. The idea that the immune system can recognize and destroy tumor cells was first described in the cancer immunosurveillance hypothesis of Burnet and Thomas. However, early experimental evidence failed to support the concept. It was not until the late 1990s when seminal papers clearly showed the existence of cancer immunosurveillance, leading to the cancer immunoediting hypothesis. In this century, progress in the understanding of negative regulators of the immune response led to the discovery that inhibition of these regulators in patients with cancer could lead to dramatic and durable remissions. Drs. Tasuku Honjo and James P. Allison were awarded the Nobel Prize in 2018 for their pioneering work in this field. We now see rapid advances in cancer immunology and emerging effective therapies revolutionizing cancer care across tumor types in the clinic, while pre-clinical research is moving from a focus on the malignant cells themselves to dissect the highly heterogenic and complex multi-cellular tumor microenvironment (TME).
Collapse
Affiliation(s)
- Qianyu Guo
- Division of Experimental Medicine, Faculty of Medicine, McGill University, Montreal, QC, Canada; Jewish General Hospital, Segal Cancer Centre, Department of Oncology, Montreal, QC, Canada
| | - Fan Huang
- Division of Experimental Medicine, Faculty of Medicine, McGill University, Montreal, QC, Canada; Jewish General Hospital, Segal Cancer Centre, Department of Oncology, Montreal, QC, Canada
| | - Christophe Goncalves
- Jewish General Hospital, Segal Cancer Centre, Department of Oncology, Montreal, QC, Canada
| | - Sonia V Del Rincón
- Division of Experimental Medicine, Faculty of Medicine, McGill University, Montreal, QC, Canada; Jewish General Hospital, Segal Cancer Centre, Department of Oncology, Montreal, QC, Canada
| | - Wilson H Miller
- Division of Experimental Medicine, Faculty of Medicine, McGill University, Montreal, QC, Canada; Jewish General Hospital, Segal Cancer Centre, Department of Oncology, Montreal, QC, Canada; Rossy Cancer Network, Montreal, QC, Canada.
| |
Collapse
|
356
|
Lérias JR, Paraschoudi G, Silva I, Martins J, de Sousa E, Condeço C, Figueiredo N, Carvalho C, Dodoo E, Jäger E, Rao M, Maeurer M. Clinically Relevant Immune Responses against Cytomegalovirus: Implications for Precision Medicine. Int J Mol Sci 2019; 20:ijms20081986. [PMID: 31018546 PMCID: PMC6514820 DOI: 10.3390/ijms20081986] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 04/16/2019] [Accepted: 04/16/2019] [Indexed: 12/12/2022] Open
Abstract
Immune responses to human cytomegalovirus (CMV) can be used to assess immune fitness in an individual. Further to its clinical significance in posttransplantation settings, emerging clinical and translational studies provide examples of immune correlates of protection pertaining to anti-CMV immune responses in the context of cancer or infectious diseases, e.g., tuberculosis. In this viewpoint, we provide a brief overview about CMV-directed immune reactivity and immune fitness in a clinical context and incorporate some of our own findings obtained from peripheral blood or tumour-infiltrating lymphocytes (TIL) from patients with advanced cancer. Observations in patients with solid cancers whose lesions contain both CMV and tumour antigen-specific T-cell subsets are highlighted, due to a possible CMV-associated “bystander” effect in amplifying local inflammation and subsequent tumour rejection. The role of tumour-associated antibodies recognising diverse CMV-derived epitopes is also discussed in light of anti-cancer immune responses. We discuss here the use of anti-CMV immune responses as a theranostic tool—combining immunodiagnostics with a personalised therapeutic potential—to improve treatment outcomes in oncological indications.
Collapse
Affiliation(s)
- Joana R Lérias
- ImmunoSurgery Unit, Champalimaud Centre for the Unknown, Av. Brasília, 1400-038 Lisbon, Portugal.
| | - Georgia Paraschoudi
- ImmunoSurgery Unit, Champalimaud Centre for the Unknown, Av. Brasília, 1400-038 Lisbon, Portugal.
| | - Inês Silva
- ImmunoSurgery Unit, Champalimaud Centre for the Unknown, Av. Brasília, 1400-038 Lisbon, Portugal.
| | - João Martins
- ImmunoSurgery Unit, Champalimaud Centre for the Unknown, Av. Brasília, 1400-038 Lisbon, Portugal.
| | - Eric de Sousa
- ImmunoSurgery Unit, Champalimaud Centre for the Unknown, Av. Brasília, 1400-038 Lisbon, Portugal.
| | - Carolina Condeço
- ImmunoSurgery Unit, Champalimaud Centre for the Unknown, Av. Brasília, 1400-038 Lisbon, Portugal.
| | - Nuno Figueiredo
- Digestive Unit, Champalimaud Centre for the Unknown, Av. Brasília, 1400-038 Lisbon, Portugal.
| | - Carlos Carvalho
- Digestive Unit, Champalimaud Centre for the Unknown, Av. Brasília, 1400-038 Lisbon, Portugal.
| | - Ernest Dodoo
- Department of Oncology and Haematology, Krankenhaus Nordwest, Steinbacher Hohl 2-26, 60488 Frankfurt am Main, Germany.
| | - Elke Jäger
- Department of Oncology and Haematology, Krankenhaus Nordwest, Steinbacher Hohl 2-26, 60488 Frankfurt am Main, Germany.
| | - Martin Rao
- ImmunoSurgery Unit, Champalimaud Centre for the Unknown, Av. Brasília, 1400-038 Lisbon, Portugal.
| | - Markus Maeurer
- ImmunoSurgery Unit, Champalimaud Centre for the Unknown, Av. Brasília, 1400-038 Lisbon, Portugal.
- Department of Oncology and Haematology, Krankenhaus Nordwest, Steinbacher Hohl 2-26, 60488 Frankfurt am Main, Germany.
| |
Collapse
|
357
|
Bentebibel SE, Hurwitz ME, Bernatchez C, Haymaker C, Hudgens CW, Kluger HM, Tetzlaff MT, Tagliaferri MA, Zalevsky J, Hoch U, Fanton C, Aung S, Hwu P, Curti BD, Tannir NM, Sznol M, Diab A. A First-in-Human Study and Biomarker Analysis of NKTR-214, a Novel IL2Rβγ-Biased Cytokine, in Patients with Advanced or Metastatic Solid Tumors. Cancer Discov 2019; 9:711-721. [PMID: 30988166 DOI: 10.1158/2159-8290.cd-18-1495] [Citation(s) in RCA: 175] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 03/25/2019] [Accepted: 04/09/2019] [Indexed: 01/31/2023]
Abstract
NKTR-214 (bempegaldesleukin) is a novel IL2 pathway agonist, designed to provide sustained signaling through heterodimeric IL2 receptor βγ to drive increased proliferation and activation of CD8+ T and natural killer cells without unwanted expansion of T regulatory cells (Treg) in the tumor microenvironment. In this first-in-human multicenter phase I study, NKTR-214 administered as an outpatient regimen was well tolerated and showed clinical activity including tumor shrinkage and durable disease stabilization in heavily pretreated patients. Immune activation and increased numbers of immune cells were observed in the periphery across all doses and cycles with no loss of NKTR-214 activity with repeated administration. On-treatment tumor biopsies demonstrated that NKTR-214 promoted immune cell increase with limited increase of Tregs. Transcriptional analysis of tumor biopsies showed that NKTR-214 engaged the IL2 receptor pathway and significantly increased genes associated with an effector phenotype. Based on safety and pharmacodynamic markers, the recommended phase II dose was determined to be 0.006 mg/kg every three weeks. SIGNIFICANCE: We believe that IL2- and IL2 pathway-targeted agents such as NKTR-214 are key components to an optimal immunotherapy treatment algorithm. Based on its biological activity and tolerability, NKTR-214 is being studied with approved immuno-oncology agents including checkpoint inhibitors.See related commentary by Sullivan, p. 694.This article is highlighted in the In This Issue feature, p. 681.
Collapse
Affiliation(s)
| | | | | | - Cara Haymaker
- The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | | | | | | | | | - Ute Hoch
- Nektar Therapeutics, San Francisco, California
| | | | - Sandra Aung
- Nektar Therapeutics, San Francisco, California
| | - Patrick Hwu
- The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Brendan D Curti
- Providence Cancer Institute and Earle A. Chiles Research Institute, Portland, Oregon
| | - Nizar M Tannir
- The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Mario Sznol
- Yale School of Medicine, New Haven, Connecticut
| | - Adi Diab
- The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
358
|
Ménétrier-Caux C, Ray-Coquard I, Blay JY, Caux C. Lymphopenia in Cancer Patients and its Effects on Response to Immunotherapy: an opportunity for combination with Cytokines? J Immunother Cancer 2019; 7:85. [PMID: 30922400 PMCID: PMC6437964 DOI: 10.1186/s40425-019-0549-5] [Citation(s) in RCA: 206] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 02/27/2019] [Indexed: 12/12/2022] Open
Abstract
Quantitative lymphocyte alterations are frequent in patients with cancer, and strongly impact prognosis and survival. The development of cancers in immunosuppressed patients has demonstrated the contribution of different T cell populations, including CD4+ cells, in the control of cancer occurrence.Whereas absolute numbers of neutrophils, platelets and red blood cells are routinely monitored in clinic following treatments, because of possible short-term complications, absolute lymphocyte counts (ALC), their subpopulations or diversity (phenotype, TCR) are rarely analyzed and never used to choose therapy or as prognostic criteria. The recent identification of immune checkpoint inhibitors (ICPi) as powerful therapeutic agents has revitalized immunotherapy of cancer in a broader group of diseases than anticipated. The status of the immune system is now recognized as an important biomarker for response to these novel treatments. Blood ALC values, along with tumor infiltration by CD8+T cells, and ICPi and ICPi-ligand expression, are likely to be a potential marker of sensitivity to anti-ICPi therapy.In this article, we review the current knowledge on the incidence and significance of lymphopenia in cancer patients, and discuss therapeutic strategies to restore lymphocyte numbers.
Collapse
Affiliation(s)
- Christine Ménétrier-Caux
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Cancer Research Center of Lyon (CRCL), Centre Léon Bérard, F-69008, Lyon, France. .,Innovation in Immuno-monitoring and Immunotherapy Platform (PI3), Centre Léon Bérard, F-69008, Lyon, France.
| | | | - Jean-Yves Blay
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Cancer Research Center of Lyon (CRCL), Centre Léon Bérard, F-69008, Lyon, France.,Medical Oncology department, Centre Léon Bérard, F-69008, Lyon, France
| | - Christophe Caux
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Cancer Research Center of Lyon (CRCL), Centre Léon Bérard, F-69008, Lyon, France.,Innovation in Immuno-monitoring and Immunotherapy Platform (PI3), Centre Léon Bérard, F-69008, Lyon, France
| |
Collapse
|
359
|
Knudson KM, Hicks KC, Alter S, Schlom J, Gameiro SR. Mechanisms involved in IL-15 superagonist enhancement of anti-PD-L1 therapy. J Immunother Cancer 2019; 7:82. [PMID: 30898149 PMCID: PMC6429734 DOI: 10.1186/s40425-019-0551-y] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 02/27/2019] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Immunotherapy targeting PD-1/PD-L1 fails to induce clinical responses in most patients with solid cancers. N-803, formerly ALT-803, is an IL-15 superagonist mutant and dimeric IL-15RαSushi-Fc fusion protein complex that enhances CD8+ T and NK cell expansion and function and exhibits anti-tumor efficacy in preclinical models. Previous in vitro studies have shown that IL-15 increases PD-L1 expression, a negative regulator of CD8+ T and NK cell function. Most reported preclinical studies administered N-803 intraperitoneally not subcutaneously, the current clinical route of administration. N-803 is now being evaluated clinically in combination with PD-1/PD-L1 inhibitors. However, the mechanism of action has not been fully elucidated. Here, we examined the anti-tumor efficacy and immunomodulatory effects of combining N-803 with an anti-PD-L1 antibody in preclinical models of solid carcinomas refractory to anti-PD-L1 or N-803. METHODS Subcutaneous N-803 and an anti-PD-L1 monoclonal antibody were administered as monotherapy or in combination to 4T1 triple negative breast and MC38-CEA colon tumor-bearing mice. Anti-tumor efficacy was evaluated, and a comprehensive analysis of the immune-mediated effects of each therapy was performed on the primary tumor, lung as a site of metastasis, and spleen. RESULTS We demonstrate that N-803 treatment increased PD-L1 expression on immune cells in vivo, supporting the combination of N-803 and anti-PD-L1. N-803 plus anti-PD-L1 was well-tolerated, reduced 4T1 lung metastasis and MC38-CEA tumor burden, and increased survival as compared to N-803 and anti-PD-L1 monotherapies. Efficacy of the combination therapy was dependent on both CD8+ T and NK cells and was associated with increased numbers of these activated immune cells in the lung and spleen. Most alterations to NK and CD8+ T cell phenotype and number were driven by N-803. However, the addition of anti-PD-L1 to N-803 significantly enhanced CD8+ T cell effector function versus N-803 and anti-PD-L1 monotherapies, as indicated by increased Granzyme B and IFNγ production, at the site of metastasis and in the periphery. Increased CD8+ T cell effector function correlated with higher serum IFNγ levels, without related toxicities, and enhanced anti-tumor efficacy of the N-803 plus anti-PD-L1 combination versus either monotherapy. CONCLUSIONS We provide novel insight into the mechanism of action of N-803 plus anti-PD-L1 combination and offer preclinical proof of concept supporting clinical use of N-803 in combination with checkpoint inhibitors, including for patients non- and/or minimally responsive to either monotherapy.
Collapse
Affiliation(s)
- Karin M. Knudson
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD USA
| | - Kristin C. Hicks
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD USA
| | - Sarah Alter
- Altor Bioscience, a NantWorks company, Miramar, FL USA
| | - Jeffrey Schlom
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD USA
| | - Sofia R. Gameiro
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD USA
| |
Collapse
|
360
|
Hudspeth K, Wang S, Wang J, Rahman S, Smith MA, Casey KA, Manna Z, Sanjuan M, Kolbeck R, Hasni S, Ettinger R, Siegel RM. Natural killer cell expression of Ki67 is associated with elevated serum IL-15, disease activity and nephritis in systemic lupus erythematosus. Clin Exp Immunol 2019; 196:226-236. [PMID: 30693467 DOI: 10.1111/cei.13263] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/13/2018] [Indexed: 12/13/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a complex autoimmune disorder whose pathology involves multiple immune cell types, including B and T lymphocytes as well as myeloid cells. While it is clear that autoantibody-producing B cells, as well as CD4+ T cell help, are key contributors to disease, little is known regarding the role of innate lymphoid cells such as natural killer (NK) cells in the pathogenesis of SLE. We have characterized the phenotype of NK cells by multi-color flow cytometry in a large cohort of SLE patients. While the overall percentage of NK cells was similar or slightly decreased compared to healthy controls, a subset of patients displayed a high frequency of NK cells expressing the proliferation marker, Ki67, which was not found in healthy donors. Although expression of Ki67 on NK cells correlated with Ki67 on other immune cell subsets, the frequency of Ki67 on NK cells was considerably higher. Increased frequencies of Ki67+ NK cells correlated strongly with clinical severity and active nephritis and was also related to low NK cell numbers, but not overall leukopenia. Proteomic and functional data indicate that the cytokine interleukin-15 promotes the induction of Ki67 on NK cells. These results suggest a role for NK cells in regulating the immune-mediated pathology of SLE as well as reveal a possible target for therapeutic intervention.
Collapse
Affiliation(s)
- K Hudspeth
- Immunoregulation Section, Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health, Bethesda, MD, USA
| | - S Wang
- Respiratory, Inflammation, and Autoimmunity Group, MedImmune LLC, Gaithersburg, MD, USA
| | - J Wang
- Respiratory, Inflammation, and Autoimmunity Group, MedImmune LLC, Gaithersburg, MD, USA
| | - S Rahman
- Respiratory, Inflammation, and Autoimmunity Group, MedImmune LLC, Gaithersburg, MD, USA
| | - M A Smith
- Respiratory, Inflammation, and Autoimmunity Group, MedImmune LLC, Gaithersburg, MD, USA
| | - K A Casey
- Respiratory, Inflammation, and Autoimmunity Group, MedImmune LLC, Gaithersburg, MD, USA
| | -
- Respiratory, Inflammation, and Autoimmunity Group, MedImmune LLC, Gaithersburg, MD, USA
| | - Z Manna
- Office of the Clinical Director, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health, Bethesda, Maryland, USA
| | - M Sanjuan
- Respiratory, Inflammation, and Autoimmunity Group, MedImmune LLC, Gaithersburg, MD, USA
| | - R Kolbeck
- Respiratory, Inflammation, and Autoimmunity Group, MedImmune LLC, Gaithersburg, MD, USA
| | - S Hasni
- Office of the Clinical Director, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health, Bethesda, Maryland, USA
| | - R Ettinger
- Respiratory, Inflammation, and Autoimmunity Group, MedImmune LLC, Gaithersburg, MD, USA
| | - R M Siegel
- Immunoregulation Section, Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health, Bethesda, MD, USA.,Office of the Clinical Director, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
361
|
Zhao B, Wang Y, Tan X, Zheng X, Wang F, Ke K, Zhang C, Liao N, Dang Y, Shi Y, Zheng Y, Gao Y, Li Q, Liu X, Liu J. An Optogenetic Controllable T Cell System for Hepatocellular Carcinoma Immunotherapy. Theranostics 2019; 9:1837-1850. [PMID: 31037142 PMCID: PMC6485282 DOI: 10.7150/thno.27051] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 01/08/2019] [Indexed: 12/16/2022] Open
Abstract
Rationale: T-cell based immunotherapy increasingly shows broad application prospects in cancer treatment, but its performance in solid tumors is far from our expectation, partly due to the re-inhibition of infiltrated T cells by immunosuppressive tumor microenvironment. Here we presented an artificial synthetic optogenetic circuit to control the immune responses of engineered T cells on demand for promoting and enhancing the therapeutic efficiency of cancer immunotherapy. Methods: We designed and synthesized blue-light inducible artificial immune signaling circuit and transgene expression system. The blue light triggered transgene expression was investigated by luciferase activity assay, qPCR and ELISA. The in vitro cytotoxicity and proliferation assays were carried out on engineered T cells. The in vivo anti-tumor activity of engineered T cells was investigated on xenograft model of human hepatocellular carcinoma. Results: Blue light stimulation could spatiotemporally control gene expression of specific cytokines (IL2, IL15, and TNF-α) in both engineered 293T cells and human primary T cells. This optogenetic engineering strategy significantly enhanced the expansion ability and cytolytic activity of primary T cells upon light irradiation, and the light activated T cells showed high-efficiency of elimination against xenograft of hepatocellular carcinoma cells. Conclusions: The current study represented an engineered remotely control T cell system for solid tumor treatment, and provided a potential strategy to partially overcome the intrinsic shortages of current immune cell therapy.
Collapse
Affiliation(s)
- Bixing Zhao
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou 350025, P. R. China
| | - Yingchao Wang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou 350025, P. R. China
| | - Xionghong Tan
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, P.R. China
| | - Xiaoyuan Zheng
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou 350025, P. R. China
| | - Fei Wang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou 350025, P. R. China
| | - Kun Ke
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China
- Liver Disease Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, P. R. China
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou 350025, P. R. China
| | - Cuilin Zhang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou 350025, P. R. China
| | - Naishun Liao
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou 350025, P. R. China
| | - Yuan Dang
- Department of Comparative, Fuzhou General Hospital, Xiamen University Medical College, 156 Road Xi'erhuanbei, Fuzhou 350025, Fujian, P.R. China
| | - Yingjun Shi
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou 350025, P. R. China
| | - Youshi Zheng
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou 350025, P. R. China
| | - Yunzhen Gao
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou 350025, P. R. China
| | - Qin Li
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China
| | - Xiaolong Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou 350025, P. R. China
| | - Jingfeng Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China
- Liver Disease Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, P. R. China
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou 350025, P. R. China
| |
Collapse
|
362
|
Abstract
Natural killer (NK) cells have evolved to complement T and B cells in host defense against pathogens and cancer. They recognize infected cells and tumors using a sophisticated array of activating, costimulatory, and inhibitory receptors that are expressed on NK cell subsets to create extensive functional diversity. NK cells can be targeted to kill with exquisite antigen specificity by antibody-dependent cellular cytotoxicity. NK and T cells share many of the costimulatory and inhibitory receptors that are currently under evaluation in the clinic for cancer immunotherapy. As with T cells, genetic engineering is being employed to modify NK cells to specifically target them to tumors and to enhance their effector functions. As the selective pressures exerted by immunotherapies to augment CD8+T cell responses may result in loss of MHC class I, NK cells may provide an important fail-safe to eliminate these tumors by their capacity to eliminate tumors that are “missing self.”
Collapse
Affiliation(s)
- Jeffrey S. Miller
- Division of Hematology, Oncology, and Transplantation, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Lewis L. Lanier
- Department of Microbiology and Immunology, University of California, San Francisco, California 94143, USA
- The Parker Institute for Cancer Immunotherapy, San Francisco, California 94143, USA
| |
Collapse
|
363
|
Dougan M, Dranoff G, Dougan SK. Cancer Immunotherapy: Beyond Checkpoint Blockade. ANNUAL REVIEW OF CANCER BIOLOGY 2019; 3:55-75. [PMID: 37539076 PMCID: PMC10400018 DOI: 10.1146/annurev-cancerbio-030518-055552] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Blocking antibodies to the immune checkpoint receptors or their ligands have revolutionized the treatment of diverse malignancies. Many tumors are recognized by adaptive immunity, but these adaptive responses can be inhibited by immunosuppressive mechanisms within the tumor, often through pathways outside of the currently targeted checkpoints. For this reason, only a minority of cancer patients achieve durable responses to current immunotherapies. Multiple novel approaches strive to expand immunotherapy's reach. These may include targeting alternative immune checkpoints. However, many investigational strategies look beyond checkpoint blockade. These include cellular therapies to bypass endogenous immunity and efforts to stimulate new adaptive antitumor responses using vaccines, adjuvants, and combinations with cytotoxic therapy, as well as strategies to inhibit innate immune suppression and modulate metabolism within the tumor microenvironment. The challenge for immunotherapy going forward will be to select rational strategies for overcoming barriers to effective antitumor responses from the myriad possible targets.
Collapse
Affiliation(s)
- Michael Dougan
- Division of Gastroenterology and Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
- Harvard Medical School, Harvard University, Boston, Massachusetts 02115, USA
| | - Glenn Dranoff
- Novartis Institute for Biomedical Research, Cambridge, Massachusetts 02139, USA
| | - Stephanie K Dougan
- Harvard Medical School, Harvard University, Boston, Massachusetts 02115, USA
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
| |
Collapse
|
364
|
Dwyer CJ, Knochelmann HM, Smith AS, Wyatt MM, Rangel Rivera GO, Arhontoulis DC, Bartee E, Li Z, Rubinstein MP, Paulos CM. Fueling Cancer Immunotherapy With Common Gamma Chain Cytokines. Front Immunol 2019; 10:263. [PMID: 30842774 PMCID: PMC6391336 DOI: 10.3389/fimmu.2019.00263] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 01/30/2019] [Indexed: 12/16/2022] Open
Abstract
Adoptive T cell transfer therapy (ACT) using tumor infiltrating lymphocytes or lymphocytes redirected with antigen receptors (CAR or TCR) has revolutionized the field of cancer immunotherapy. Although CAR T cell therapy mediates robust responses in patients with hematological malignancies, this approach has been less effective for treating patients with solid tumors. Additionally, toxicities post T cell infusion highlight the need for safer ACT protocols. Current protocols traditionally expand T lymphocytes isolated from patient tumors or from peripheral blood to large magnitudes in the presence of high dose IL-2 prior to infusion. Unfortunately, this expansion protocol differentiates T cells to a full effector or terminal phenotype in vitro, consequently reducing their long-term survival and antitumor effectiveness in vivo. Post-infusion, T cells face further obstacles limiting their persistence and function within the suppressive tumor microenvironment. Therapeutic manipulation of T cells with common γ chain cytokines, which are critical growth factors for T cells, may be the key to bypass such immunological hurdles. Herein, we discuss the primary functions of the common γ chain cytokines impacting T cell survival and memory and then elaborate on how these distinct cytokines have been used to augment T cell-based cancer immunotherapy.
Collapse
Affiliation(s)
- Connor J Dwyer
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States.,Department of Dermatology and Dermatologic Surgery, Medical University of South Carolina, Charleston, SC, United States
| | - Hannah M Knochelmann
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States.,Department of Dermatology and Dermatologic Surgery, Medical University of South Carolina, Charleston, SC, United States
| | - Aubrey S Smith
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States.,Department of Dermatology and Dermatologic Surgery, Medical University of South Carolina, Charleston, SC, United States
| | - Megan M Wyatt
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States.,Department of Dermatology and Dermatologic Surgery, Medical University of South Carolina, Charleston, SC, United States
| | - Guillermo O Rangel Rivera
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States.,Department of Dermatology and Dermatologic Surgery, Medical University of South Carolina, Charleston, SC, United States
| | - Dimitrios C Arhontoulis
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States.,Department of Dermatology and Dermatologic Surgery, Medical University of South Carolina, Charleston, SC, United States
| | - Eric Bartee
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States
| | - Zihai Li
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States
| | - Mark P Rubinstein
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States.,Department of Surgery, Medical University of South Carolina, Charleston, SC, United States
| | - Chrystal M Paulos
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States.,Department of Dermatology and Dermatologic Surgery, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
365
|
Xiao R, Mansour AG, Huang W, Chrislip LA, Wilkins RK, Queen NJ, Youssef Y, Mao HC, Caligiuri MA, Cao L. Adipocytes: A Novel Target for IL-15/IL-15Rα Cancer Gene Therapy. Mol Ther 2019; 27:922-932. [PMID: 30833178 DOI: 10.1016/j.ymthe.2019.02.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 02/07/2019] [Accepted: 02/07/2019] [Indexed: 12/11/2022] Open
Abstract
IL-15 is a proinflammatory cytokine that plays an essential role in the development and activation of natural killer (NK) cells. Adipose tissue acts as an endocrine organ that secretes cytokines and is an important reservoir for lymphocytes. We hypothesized that activation of the IL-15 signaling in adipose tissue will activate and expand the NK cell population and control tumor growth. We recently developed an adipocyte-targeting recombinant adeno-associated viral (rAAV) vector with minimal off-target transgene expression in the liver. Here, we used this rAAV system to deliver an IL-15/IL-15Rα complex to the abdominal fat by intraperitoneal (i.p.) injection. Adipose IL-15/IL-15Rα complex gene transfer led to the expansion of NK cells in the adipose tissue and spleen in normal mice without notable side effects. The i.p. injection of rAAV-IL-15/IL-15Rα complex significantly suppressed the growth of Lewis lung carcinoma implanted subcutaneously and exerted a significant survival advantage in a B16-F10 melanoma metastasis model. The antitumor effects were associated with the expansion of the NK cells in the blood, spleen, abdominal fat, and tumor, as well as the enhancement of NK cell maturity. Our proof-of-concept preclinical studies demonstrate the safety and efficacy of the adipocyte-specific IL-15/IL-15Rα complex vector as a novel cancer immune gene therapy.
Collapse
Affiliation(s)
- Run Xiao
- The Ohio State University Comprehensive Cancer Center, The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH 43210, USA; Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Anthony G Mansour
- The Ohio State University Comprehensive Cancer Center, The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH 43210, USA; Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Wei Huang
- The Ohio State University Comprehensive Cancer Center, The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH 43210, USA; Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Logan A Chrislip
- The Ohio State University Comprehensive Cancer Center, The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH 43210, USA; Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Ryan K Wilkins
- The Ohio State University Comprehensive Cancer Center, The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH 43210, USA; Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Nicholas J Queen
- The Ohio State University Comprehensive Cancer Center, The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH 43210, USA; Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Youssef Youssef
- The Ohio State University Comprehensive Cancer Center, The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH 43210, USA; Department of Pathology, The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Hsiaoyin C Mao
- The Ohio State University Comprehensive Cancer Center, The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH 43210, USA; Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | | | - Lei Cao
- The Ohio State University Comprehensive Cancer Center, The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH 43210, USA; Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
366
|
Nayyar G, Chu Y, Cairo MS. Overcoming Resistance to Natural Killer Cell Based Immunotherapies for Solid Tumors. Front Oncol 2019; 9:51. [PMID: 30805309 PMCID: PMC6378304 DOI: 10.3389/fonc.2019.00051] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 01/18/2019] [Indexed: 12/22/2022] Open
Abstract
Despite advances in the diagnostic and therapeutic modalities, the prognosis of several solid tumor malignancies remains poor. Different factors associated with solid tumors including a varied genetic signature, complex molecular signaling pathways, defective cross talk between the tumor cells and immune cells, hypoxic and immunosuppressive effects of tumor microenvironment result in a treatment resistant and metastatic phenotype. Over the past several years, immunotherapy has emerged as an attractive therapeutic option against multiple malignancies. The unique ability of natural killer (NK) cells to target cancer cells without antigen specificity makes them an ideal candidate for use against solid tumors. However, the outcomes of adoptive NK cell infusions into patients with solid tumors have been disappointing. Extensive studies have been done to investigate different strategies to improve the NK cell function, trafficking and tumor targeting. Use of cytokines and cytokine analogs has been well described and utilized to enhance the proliferation, stimulation and persistence of NK cells. Other techniques like blocking the human leukocyte antigen-killer cell receptors (KIR) interactions with anti-KIR monoclonal antibodies, preventing CD16 receptor shedding, increasing the expression of activating NK cell receptors like NKG2D, and use of immunocytokines and immune checkpoint inhibitors can enhance NK cell mediated cytotoxicity. Using genetically modified NK cells with chimeric antigen receptors and bispecific and trispecific NK cell engagers, NK cells can be effectively redirected to the tumor cells improving their cytotoxic potential. In this review, we have described these strategies and highlighted the need to further optimize these strategies to improve the clinical outcome of NK cell based immunotherapy against solid tumors.
Collapse
Affiliation(s)
- Gaurav Nayyar
- Department of Pediatrics, New York Medical College, Valhalla, NY, United States
| | - Yaya Chu
- Department of Pediatrics, New York Medical College, Valhalla, NY, United States
| | - Mitchell S Cairo
- Department of Pediatrics, New York Medical College, Valhalla, NY, United States.,Department of Cell Biology & Anatomy, New York Medical College, Valhalla, NY, United States.,Department of Microbiology & Immunology, New York Medical College, Valhalla, NY, United States.,Department of Medicine, New York Medical College, Valhalla, NY, United States.,Department of Pathology, New York Medical College, Valhalla, NY, United States
| |
Collapse
|
367
|
Abstract
Physical inactivity is one of the leading health problems in the world. Strong epidemiological and clinical evidence demonstrates that exercise decreases the risk of more than 35 different disorders and that exercise should be prescribed as medicine for many chronic diseases. The physiology and molecular biology of exercise suggests that exercise activates multiple signaling pathways of major health importance. An anti-inflammatory environment is produced with each bout of exercise, and long-term anti-inflammatory effects are mediated via an effect on abdominal adiposity. There is, however, a need to close the gap between knowledge and practice and assure that basic research is translated, implemented, and anchored in society, leading to change of praxis and political statements. In order to make more people move, we need a true translational perspective on exercise as medicine, from molecular and physiological events to infrastructure and architecture, with direct implications for clinical practice and public health.
Collapse
Affiliation(s)
- Bente Klarlund Pedersen
- Centre of Inflammation and Metabolism/Centre for Physical Activity Research (CIM/CFAS), Rigshospitalet, University of Copenhagen, DK-2100 Copenhagen, Denmark
| |
Collapse
|
368
|
Combination immunotherapies implementing adoptive T-cell transfer for advanced-stage melanoma. Melanoma Res 2019. [PMID: 29521881 DOI: 10.1097/cmr.0000000000000436] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Immunotherapy is a promising method of treatment for a number of cancers. Many of the curative results have been seen specifically in advanced-stage melanoma. Despite this, single-agent therapies are only successful in a small percentage of patients, and relapse is very common. As chemotherapy is becoming a thing of the past for treatment of melanoma, the combination of cellular therapies with immunotherapies appears to be on the rise in in-vivo models and in clinical trials. These forms of therapies include tumor-infiltrating lymphocytes, T-cell receptor, or chimeric antigen receptor-modified T cells, cytokines [interleukin (IL-2), IL-15, IL-12, granulocyte-macrophage colony stimulating factor, tumor necrosis factor-α, interferon-α, interferon-γ], antibodies (αPD-1, αPD-L1, αTIM-3, αOX40, αCTLA-4, αLAG-3), dendritic cell-based vaccines, and chemokines (CXCR2). There are a substantial number of ongoing clinical trials using two or more of these combination therapies. Preliminary results indicate that these combination therapies are a promising area to focus on for cancer treatments, especially melanoma. The main challenges with the combination of cellular and immunotherapies are adverse events due to toxicities and autoimmunity. Identifying mechanisms for reducing or eliminating these adverse events remains a critical area of research. Many important questions still need to be elucidated in regard to combination cellular therapies and immunotherapies, but with the number of ongoing clinical trials, the future of curative melanoma therapies is promising.
Collapse
|
369
|
Abstract
The processes controlled by cytokines may be co-opted by pathologic states, contributing to processes that threaten host well-being. A nuanced understanding of this immense web of chemical communications will allow us to understand the mechanisms and limitations of current therapies and to enhance their therapeutic benefits while minimizing their toxicities. This article reviews the current state of cytokine science in malignancy, focusing on agents that are approved for therapy or are in late-stage development. Promising new directions, including novel engineered.
Collapse
Affiliation(s)
- Ann W Silk
- Rutgers Cancer Institute of New Jersey, 195 Little Albany Street, New Brunswick, NJ 08901, USA; Dana-Farber Cancer Institute, 450 Brookline Ave, Room LW503, Boston, MA 02215, USA
| | - Kim Margolin
- Department of Medical Oncology, City of Hope National Medical Center, 1500 East Duarte Road, Duarte, CA 91010, USA.
| |
Collapse
|
370
|
Sukari A, Abdallah N, Nagasaka M. Unleash the power of the mighty T cells-basis of adoptive cellular therapy. Crit Rev Oncol Hematol 2019; 136:1-12. [PMID: 30878123 DOI: 10.1016/j.critrevonc.2019.01.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 01/22/2019] [Accepted: 01/23/2019] [Indexed: 02/04/2023] Open
Abstract
Adoptive cellular therapy (ACT) is an immunotherapy which involves the passive transfer of lymphocytes into a lymphodepleted host after ex vivo stimulation and expansion. Tumor-infiltrating lymphocytes (TILs) have shown objective tumor responses mainly restricted to melanoma and rely on a laborious manufacturing process. These limitations led to emergence of engineered cells, where normal peripheral blood lymphocytes are modified to express T cell receptors (TCRs) or chimeric antigen receptors (CARs) specific for tumor-associated antigens (TAAs). To date, CD19-targeted chimeric antigen receptor T (CAR T) cells have been the most extensively studied, showing complete and durable responses in B-cell malignancies. Antitumor responses with engineered T cells have often been accompanied by undesired toxicities in clinical trials including cytokine release syndrome (CRS) and neurotoxicity. In this review, we provide an overview of adoptive cellular strategies, early and ongoing clinical trials, adverse events and strategies to mitigate side effects and overcome limitations.
Collapse
Affiliation(s)
- Ammar Sukari
- Department of Oncology, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA.
| | - Nadine Abdallah
- Department of Internal Medicine, Wayne State University, Detroit, MI, 48201, USA
| | - Misako Nagasaka
- Department of Oncology, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA; Department of Advanced Medical Innovation, St. Marianna University Graduate School of Medicine, Kawasaki, Kanagawa, Japan
| |
Collapse
|
371
|
Yao J, Ly D, Dervovic D, Fang L, Lee JB, Kang H, Wang YH, Pham NA, Pan H, Tsao MS, Zhang L. Human double negative T cells target lung cancer via ligand-dependent mechanisms that can be enhanced by IL-15. J Immunother Cancer 2019; 7:17. [PMID: 30670085 PMCID: PMC6343266 DOI: 10.1186/s40425-019-0507-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 01/13/2019] [Indexed: 12/25/2022] Open
Abstract
Background The advents of novel immunotherapies have revolutionized the treatment of cancer. Adoptive cellular therapies using chimeric antigen receptor T (CAR-T) cells have achieved remarkable clinical responses in B cell leukemia and lymphoma but the effect on solid tumors including lung cancer is limited. Here we present data on the therapeutic potential of allogeneic CD3+CD4−CD8− double negative T (DNT) cells as a new cellular therapy for the treatment of lung cancer and underlying mechanisms. Methods DNTs were enriched and expanded ex vivo from healthy donors and phenotyped by flow cytometry. Functionally, their cytotoxicity was determined against primary and established non-small-cell lung cancer (NSCLC) cell lines in vitro or through in vivo adoptive transfer into xenograft models. Mechanistic analysis was performed using blocking antibodies against various cell surface and soluble markers. Furthermore, the role of IL-15 on DNT function was determined. Results We demonstrated that ex vivo expanded DNTs can effectively lyse various human NSCLC cells in vitro and inhibit tumor growth in xenograft models. Expanded DNTs have a cytotoxic phenotype, as they express NKp30, NKG2D, DNAM-1, membrane TRAIL (mTRAIL), perforin and granzyme B, and secrete IFNγ and soluble TRAIL (sTRAIL). DNT-mediated cytotoxicity was dependent on a combination of tumor-expressed ligands for NKG2D, DNAM-1, NKp30 and/or receptors for TRAIL, which differ among different NSCLC cell lines. Furthermore, stimulation of DNTs with IL-15 increased expression of effector molecules on DNTs, their TRAIL production and cytotoxicity against NSCLC in vitro and in vivo. Conclusion Healthy donor-derived DNTs can target NSCLC in vitro and in vivo. DNTs recognize tumors via innate receptors which can be up-regulated by IL-15. DNTs have the potential to be used as a novel adoptive cell therapy for lung cancer either alone or in combination with IL-15. Electronic supplementary material The online version of this article (10.1186/s40425-019-0507-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Junlin Yao
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada.,Department of Immunology, University of Toronto, Toronto, Ontario, Canada.,Present address: Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Dalam Ly
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada.,Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Dzana Dervovic
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada.,Department of Immunology, University of Toronto, Toronto, Ontario, Canada.,Present address: Department of Systems Biology, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Linan Fang
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada.,Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Jong Bok Lee
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada.,Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Hyeonjeong Kang
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada.,Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Yu-Hui Wang
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Nhu-An Pham
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Hongming Pan
- Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Ming-Sound Tsao
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Li Zhang
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada. .,Department of Immunology, University of Toronto, Toronto, Ontario, Canada. .,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada. .,University Health Network, Princess Margaret Cancer Research Tower, 101 College St. Rm 2-807, Toronto, Ontario, M5G 1L7, Canada.
| |
Collapse
|
372
|
Dwivedi A, Karulkar A, Ghosh S, Rafiq A, Purwar R. Lymphocytes in Cellular Therapy: Functional Regulation of CAR T Cells. Front Immunol 2019; 9:3180. [PMID: 30713539 PMCID: PMC6345708 DOI: 10.3389/fimmu.2018.03180] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 12/27/2018] [Indexed: 12/30/2022] Open
Abstract
Lymphocytes especially autologous T cells have been used for the treatment of numerous indications including cancers, autoimmune disorders and infectious diseases. Very recently, FDA approved Chimeric Antigen Receptor T cells (CAR T cells) therapy for relapse and refractory CD19+ B cell acute lymphoblastic leukemia (r/r B-ALL) and r/r diffuse large B cell lymphoma (r/r DLBCL) upon their remarkable success in multiple Phase I-II clinical trials. While CAR T cells are considered as major breakthrough in the field of cancer immunotherapy, the regulation of CAR T cells remains poorly understood. In this review we will discuss the strategies that regulate the CAR T cells efficacy and persistence with focus on roles of different structural component of CAR construct. Different domains of CAR construct, for example, antigen binding domain, hinge, transmembrane, and signaling domain as well as immune-regulatory cytokines have significant impact on CAR T cell efficacy. Finally, this review will highlight the strategies that will promote CAR T cells efficacy and will reduce the toxicity.
Collapse
Affiliation(s)
- Alka Dwivedi
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Atharva Karulkar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Sarbari Ghosh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Afrin Rafiq
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Rahul Purwar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| |
Collapse
|
373
|
The challenges of solid tumor for designer CAR-T therapies: a 25-year perspective. Cancer Gene Ther 2019; 24:89-99. [PMID: 28392558 DOI: 10.1038/cgt.2016.82] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
374
|
Souza-Fonseca-Guimaraes F, Cursons J, Huntington ND. The Emergence of Natural Killer Cells as a Major Target in Cancer Immunotherapy. Trends Immunol 2019; 40:142-158. [PMID: 30639050 DOI: 10.1016/j.it.2018.12.003] [Citation(s) in RCA: 210] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 12/11/2018] [Accepted: 12/12/2018] [Indexed: 12/14/2022]
Abstract
Immune 'checkpoint' inhibitors can increase the activity of tumor-resident cytotoxic lymphocytes and have revolutionized cancer treatment. Current therapies block inhibitory pathways in tumor-infiltrating CD8+ T cells and recent studies have shown similar programs in other effector populations such as natural killer (NK) cells. NK cells are critical for immunosurveillance, particularly the control of metastatic cells or hematological cancers. However, how NK cells specifically recognize transformed cells and dominant negative feedback pathways, as well as how tumors escape NK cell control, remains undefined. This review summarizes recent advances that have illuminated inhibitory checkpoints in NK cells, some of which are shared with conventional cytotoxic T lymphocytes. It also outlines emerging approaches aimed at unleashing the potential of NK cells in immunotherapy.
Collapse
Affiliation(s)
- Fernando Souza-Fonseca-Guimaraes
- Molecular Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia; Department of Medical Biology, University of Melbourne, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria 3010, Australia.
| | - Joseph Cursons
- Department of Medical Biology, University of Melbourne, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria 3010, Australia; Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
| | - Nicholas D Huntington
- Molecular Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia; Department of Medical Biology, University of Melbourne, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria 3010, Australia; Biomedicine Discovery Institute and the Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia.
| |
Collapse
|
375
|
Abstract
The innate immune system has evolved as a first line of defense against invading pathogens and acts via classes of germline-encoded receptor systems to respond with proinflammatory cytokines. Innate immune cells, predominantly cells of the myeloid compartment, are capable of providing a potent basis for boosting adaptive immunity in malignant diseases. The authors review their current understanding of the molecular mechanisms whereby innate pattern recognition receptors participate in immunosurveillance of cancer cells. They discuss how innate effector mechanisms are currently being targeted pharmacologically and how improved understanding of the biology of these pathways is leading to novel immunotherapies of cancer.
Collapse
|
376
|
Chen Y, Sun C, Landoni E, Metelitsa L, Dotti G, Savoldo B. Eradication of Neuroblastoma by T Cells Redirected with an Optimized GD2-Specific Chimeric Antigen Receptor and Interleukin-15. Clin Cancer Res 2019; 25:2915-2924. [PMID: 30617136 DOI: 10.1158/1078-0432.ccr-18-1811] [Citation(s) in RCA: 141] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 11/30/2018] [Accepted: 01/04/2019] [Indexed: 11/16/2022]
Abstract
PURPOSE A delay in encountering the cognate antigen while in the circulation, and the suboptimal costimulation received at the tumor site are key reasons for the limited activity of chimeric antigen receptor-redirected T cells (CAR-T) in solid tumors. We have explored the benefits of incorporating the IL15 cytokine within the CAR cassette to provide both a survival signal before antigen encounter, and an additional cytokine signaling at the tumor site using a neuroblastoma tumor model. EXPERIMENTAL DESIGN We optimized the construct for the CAR specific for the NB-antigen GD2 without (GD2.CAR) or with IL15 (GD2.CAR.15). We then compared the expansion, phenotype, and antitumor activity of T cells transduced with these constructs against an array of neuroblastoma cell lines in vitro and in vivo using a xenogeneic metastatic model of neuroblastoma. RESULTS We observed that optimized GD2.CAR.15-Ts have reduced expression of the PD-1 receptor, are enriched in stem cell-like cells, and have superior antitumor activity upon repetitive tumor exposures in vitro and in vivo as compared with GD2.CAR-Ts. Tumor rechallenge experiments in vivo further highlighted the role of IL15 in promoting enhanced CAR-T antitumor activity and survival, both in the peripheral blood and tissues. Finally, the inclusion of the inducible caspase-9 gene (iC9) safety switch warranted effective on demand elimination of the engineered GD2.CAR.15-Ts. CONCLUSIONS Our results guide new therapeutic options for GD2.CAR-Ts in patients with neuroblastoma, and CAR-T development for a broad range of solid tumors.
Collapse
Affiliation(s)
- Yuhui Chen
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Chuang Sun
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Elisa Landoni
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Leonid Metelitsa
- Department of Pediatrics, Texas Children's Hospital, Houston, Texas
| | - Gianpietro Dotti
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.,Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Barbara Savoldo
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina. .,Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
377
|
Fantini M, David JM, Wong HC, Annunziata CM, Arlen PM, Tsang KY. An IL-15 Superagonist, ALT-803, Enhances Antibody-Dependent Cell-Mediated Cytotoxicity Elicited by the Monoclonal Antibody NEO-201 Against Human Carcinoma Cells. Cancer Biother Radiopharm 2019; 34:147-159. [PMID: 30601063 PMCID: PMC6482908 DOI: 10.1089/cbr.2018.2628] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND A major mechanism of action for therapeutic antibodies is antibody-dependent cell-mediated cytotoxicity (ADCC). ALT-803 is an interleukin-15 superagonist complex that enhances ADCC against human carcinoma cells in vitro and exerts an antitumor activity in murine, rat, and human carcinomas in vivo. The authors investigated the ability of ALT-803 to modulate ADCC mediated by the humanized IgG1 monoclonal antibody (mAb) NEO-201 against human carcinoma cells. MATERIALS AND METHODS ALT-803 modulating activity on ADCC mediated by NEO-201 was evaluated on several NEO-201 ligand-expressing human carcinoma cells. Purified human natural killer (NK) cells from multiple healthy donors were treated with ALT-803 before their use as effectors in ADCC assay. Modulation of NK cell phenotype and cytotoxic function by exposure to ALT-803 was evaluated by flow cytometry and gene expression analysis. RESULTS ALT-803 significantly enhanced ADCC mediated by NEO-201. ALT-803 also upregulated NK activating receptors, antiapoptotic factors, and factors involved in the NK cytotoxicity, as well as downregulated gene expression of NK inhibiting receptors. CONCLUSIONS These findings indicate that ALT-803 can enhance ADCC activity mediated by NEO-201, by modulating NK activation and cytotoxicity, suggesting a possible clinical use of ALT-803 in combination with NEO-201 for the treatment of human carcinomas.
Collapse
Affiliation(s)
| | | | | | - Christina M. Annunziata
- Women's Malignancy Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | | | - Kwong Y. Tsang
- Precision Biologics, Inc., Rockville, Maryland
- Address correspondence to: Kwong Y. Tsang; Precision Biologics, Inc.; 9600 Medical Center Drive, Suite 300, Rockville, MD 20850
| |
Collapse
|
378
|
Sang W, Zhang Z, Dai Y, Chen X. Recent advances in nanomaterial-based synergistic combination cancer immunotherapy. Chem Soc Rev 2019; 48:3771-3810. [DOI: 10.1039/c8cs00896e] [Citation(s) in RCA: 208] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This review aims to summarize various synergistic combination cancer immunotherapy strategies based on nanomaterials.
Collapse
Affiliation(s)
- Wei Sang
- Cancer Centre
- Faculty of Health Sciences
- University of Macau
- Macau SAR 999078
- China
| | - Zhan Zhang
- Cancer Centre
- Faculty of Health Sciences
- University of Macau
- Macau SAR 999078
- China
| | - Yunlu Dai
- Cancer Centre
- Faculty of Health Sciences
- University of Macau
- Macau SAR 999078
- China
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine
- National Institute of Biomedical Imaging and Bioengineering
- National Institutes of Health
- Bethesda
- USA
| |
Collapse
|
379
|
Berraondo P, Sanmamed MF, Ochoa MC, Etxeberria I, Aznar MA, Pérez-Gracia JL, Rodríguez-Ruiz ME, Ponz-Sarvise M, Castañón E, Melero I. Cytokines in clinical cancer immunotherapy. Br J Cancer 2019; 120:6-15. [PMID: 30413827 PMCID: PMC6325155 DOI: 10.1038/s41416-018-0328-y] [Citation(s) in RCA: 769] [Impact Index Per Article: 128.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 10/04/2018] [Accepted: 10/08/2018] [Indexed: 02/08/2023] Open
Abstract
Cytokines are soluble proteins that mediate cell-to-cell communication. Based on the discovery of the potent anti-tumour activities of several pro-inflammatory cytokines in animal models, clinical research led to the approval of recombinant interferon-alpha and interleukin-2 for the treatment of several malignancies, even if efficacy was only modest. These early milestones in immunotherapy have been followed by the recent addition to clinical practice of antibodies that inhibit immune checkpoints, as well as chimeric antigen receptor T cells. A renewed interest in the anti-tumour properties of cytokines has led to an exponential increase in the number of clinical trials that explore the safety and efficacy of cytokine-based drugs, not only as single agents, but also in combination with other immunomodulatory drugs. These second-generation drugs under clinical development include known molecules with novel mechanisms of action, new targets, and fusion proteins that increase half-life and target cytokine activity to the tumour microenvironment or to the desired effector immune cells. In addition, the detrimental activity of immunosuppressive cytokines can be blocked by antagonistic antibodies, small molecules, cytokine traps or siRNAs. In this review, we provide an overview of the novel trends in the cytokine immunotherapy field that are yielding therapeutic agents for clinical trials.
Collapse
Affiliation(s)
- Pedro Berraondo
- Immunology and Immunotherapy Program, Center for Applied Medical Research, CIMA, University of Navarra, Pamplona, Spain.
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain.
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Pamplona, Spain.
| | - Miguel F Sanmamed
- Immunology and Immunotherapy Program, Center for Applied Medical Research, CIMA, University of Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Pamplona, Spain
- Department of Oncology and immunology, Clínica Universidad de Navarra, Pamplona, Spain
| | - María C Ochoa
- Immunology and Immunotherapy Program, Center for Applied Medical Research, CIMA, University of Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Pamplona, Spain
| | - Iñaki Etxeberria
- Immunology and Immunotherapy Program, Center for Applied Medical Research, CIMA, University of Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Pamplona, Spain
| | - Maria A Aznar
- Immunology and Immunotherapy Program, Center for Applied Medical Research, CIMA, University of Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Pamplona, Spain
| | - José Luis Pérez-Gracia
- Immunology and Immunotherapy Program, Center for Applied Medical Research, CIMA, University of Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Pamplona, Spain
- Department of Oncology and immunology, Clínica Universidad de Navarra, Pamplona, Spain
| | - María E Rodríguez-Ruiz
- Immunology and Immunotherapy Program, Center for Applied Medical Research, CIMA, University of Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Pamplona, Spain
- Department of Oncology and immunology, Clínica Universidad de Navarra, Pamplona, Spain
| | - Mariano Ponz-Sarvise
- Immunology and Immunotherapy Program, Center for Applied Medical Research, CIMA, University of Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Pamplona, Spain
- Department of Oncology and immunology, Clínica Universidad de Navarra, Pamplona, Spain
| | - Eduardo Castañón
- Immunology and Immunotherapy Program, Center for Applied Medical Research, CIMA, University of Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Pamplona, Spain
- Department of Oncology and immunology, Clínica Universidad de Navarra, Pamplona, Spain
| | - Ignacio Melero
- Immunology and Immunotherapy Program, Center for Applied Medical Research, CIMA, University of Navarra, Pamplona, Spain.
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain.
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Pamplona, Spain.
- Department of Oncology and immunology, Clínica Universidad de Navarra, Pamplona, Spain.
| |
Collapse
|
380
|
Szostak B, Machaj F, Rosik J, Pawlik A. CTLA4 antagonists in phase I and phase II clinical trials, current status and future perspectives for cancer therapy. Expert Opin Investig Drugs 2018; 28:149-159. [PMID: 30577709 DOI: 10.1080/13543784.2019.1559297] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION In cancer, the immune response to tumor antigens is often suppressed by inhibitors and ligands. Checkpoint blockade, considered one of the most promising frontiers for anti-cancer therapy, aims to stimulate the immune anti-cancer response. Agents such as cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) inhibitors offer prolonged survival with manageable side effects. AREAS COVERED We summarize the recent clinical successes of CTLA-4 inhibitors and place a strong emphasis on those in early phase clinical trials, often in combination with other immune check-point inhibitors, i.e., programmed cell death protein 1 (PD-1) and BRAF/mitogen-activated protein kinase inhibitors. EXPERT OPINION Recent phase I and phase II clinical trials confirm the efficacy of anti-CTLA-4 therapy for treatment of cancers such as renal cell carcinoma. These studies also indicated increased efficacy with combined immune checkpoint blockade with PD-1 or Ras/Raf/mitogen-activated protein kinase/ERK kinase (MEK)/extracellular-signal-regulated kinase (ERK) inhibitors. Researchers must search for new immune targets that may enable more effective and safe immune checkpoint blockade and cancer therapy. This goal may be achieved by next-generation combination therapies to overcome immune checkpoint therapy resistance.
Collapse
Affiliation(s)
- Bartosz Szostak
- a Department of Physiology , Pomeranian Medical University , Szczecin , Poland
| | - Filip Machaj
- a Department of Physiology , Pomeranian Medical University , Szczecin , Poland
| | - Jakub Rosik
- a Department of Physiology , Pomeranian Medical University , Szczecin , Poland
| | - Andrzej Pawlik
- a Department of Physiology , Pomeranian Medical University , Szczecin , Poland
| |
Collapse
|
381
|
NK Cell-Based Immunotherapy in Cancer Metastasis. Cancers (Basel) 2018; 11:cancers11010029. [PMID: 30597841 PMCID: PMC6357056 DOI: 10.3390/cancers11010029] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 12/11/2018] [Accepted: 12/20/2018] [Indexed: 01/01/2023] Open
Abstract
Metastasis represents the leading cause of cancer-related death mainly owing to the limited efficacy of current anticancer therapies on advanced malignancies. Although immunotherapy is rendering promising results in the treatment of cancer, many adverse events and factors hampering therapeutic efficacy, especially in solid tumors and metastases, still need to be solved. Moreover, immunotherapeutic strategies have mainly focused on modulating the activity of T cells, while Natural Killer (NK) cells have only recently been taken into consideration. NK cells represent an attractive target for cancer immunotherapy owing to their innate capacity to eliminate malignant tumors in a non-Major Histocompatibility Complex (MHC) and non-tumor antigen-restricted manner. In this review, we analyze the mechanisms and efficacy of NK cells in the control of metastasis and we detail the immunosubversive strategies developed by metastatic cells to evade NK cell-mediated immunosurveillance. We also share current and cutting-edge clinical approaches aimed at unleashing the full anti-metastatic potential of NK cells, including the adoptive transfer of NK cells, boosting of NK cell activity, redirecting NK cell activity against metastatic cells and the release of evasion mechanisms dampening NK cell immunosurveillance.
Collapse
|
382
|
Abstract
Cytokines that control the immune response were shown to have efficacy in preclinical murine cancer models. Interferon (IFN)-α is approved for treatment of hairy cell leukemia, and interleukin (IL)-2 for the treatment of advanced melanoma and metastatic renal cancer. In addition, IL-12, IL-15, IL-21, and granulocyte macrophage colony-stimulating factor (GM-CSF) have been evaluated in clinical trials. However, the cytokines as monotherapy have not fulfilled their early promise because cytokines administered parenterally do not achieve sufficient concentrations in the tumor, are often associated with severe toxicities, and induce humoral or cellular checkpoints. To circumvent these impediments, cytokines are being investigated clinically in combination therapy with checkpoint inhibitors, anticancer monoclonal antibodies to increase the antibody-dependent cellular cytotoxicity (ADCC) of these antibodies, antibody cytokine fusion proteins, and anti-CD40 to facilitate tumor-specific immune responses.
Collapse
Affiliation(s)
- Thomas A Waldmann
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Clinical Center, Bethesda, Maryland 20892-1374
| |
Collapse
|
383
|
Jochems C, Tritsch SR, Knudson KM, Gameiro SR, Smalley Rumfield C, Pellom ST, Morillon YM, Newman R, Marcus W, Szeto C, Rabizadeh S, Wong HC, Soon-Shiong P, Schlom J. The multi-functionality of N-809, a novel fusion protein encompassing anti-PD-L1 and the IL-15 superagonist fusion complex. Oncoimmunology 2018; 8:e1532764. [PMID: 30713787 PMCID: PMC6343815 DOI: 10.1080/2162402x.2018.1532764] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 09/26/2018] [Accepted: 09/26/2018] [Indexed: 12/22/2022] Open
Abstract
Here we describe a novel bifunctional fusion protein, designated N-809. This molecule comprises the IL-15/IL15Rα superagonist complex containing the Fc-domain of IgG1 (N-803, formerly designated as ALT-803) fused to two single chain anti-PD-L1 domains. The fully human IgG1 portion of the N-809 molecule was designed to potentially mediate antibody dependent cellular cytotoxicity (ADCC). The studies reported here show that N-809 has the same ability to bind PD-L1 as an anti-PD-L1 monoclonal antibody. RNAseq studies show the ability of N-809 to alter the expression of an array of genes of both CD4+ and CD8+ human T cells, and to enhance their proliferation; CD8+ T cells exposed to N-809 also have enhanced ability to lyse human tumor cells. An array of genes was differentially expressed in human natural killer (NK) cells following N-809 treatment, and there was increased expression of several surface activating receptors; there was, however, no increase in the expression of inhibitory receptors known to be upregulated in exhausted NK cells. N-809 also increased the cytotoxic potential of NK cells, as shown by increased expression of granzyme B and perforin. The lysis of several tumor cell types was increased when either NK cells or tumor cells were exposed to N-809. Similarly, the highest level of ADCC was seen when both NK cells (from donors or cancer patients) and tumor cells were exposed to N-809. These studies thus demonstrate the multi-functionality of this novel agent.
Collapse
Affiliation(s)
- Caroline Jochems
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sarah R Tritsch
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Karin M Knudson
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sofia R Gameiro
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Claire Smalley Rumfield
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Samuel T Pellom
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Y Maurice Morillon
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | | | | | | | - Jeffrey Schlom
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
384
|
Kiselevskii MV, Sitdikova SM, Abdullaev AG, Shlyapnikov SA, Chikileva IO. Immunosuppression in sepsis and possibility of its correction. ВЕСТНИК ХИРУРГИИ ИМЕНИ И.И. ГРЕКОВА 2018. [DOI: 10.24884/0042-4625-2018-177-5-105-107] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- M. V. Kiselevskii
- Federal State Budgetary Institution «N.N. Blokhin National Medical Research Centre of Oncology», of the Ministry of Healthcare of the Russian Federation
| | - S. M. Sitdikova
- Federal State Budgetary Institution «N.N. Blokhin National Medical Research Centre of Oncology», of the Ministry of Healthcare of the Russian Federation
| | - A. G. Abdullaev
- Federal State Budgetary Institution «N.N. Blokhin National Medical Research Centre of Oncology», of the Ministry of Healthcare of the Russian Federation
| | - S. A. Shlyapnikov
- Federal State Budgetary Institution Saint-Petersburg I.I. Dzhanelidze Research Institute of Emergency Medicine
| | - I. O. Chikileva
- Federal State Budgetary Institution «N.N. Blokhin National Medical Research Centre of Oncology», of the Ministry of Healthcare of the Russian Federation
| |
Collapse
|
385
|
Sung PS, Jang JW. Natural Killer Cell Dysfunction in Hepatocellular Carcinoma: Pathogenesis and Clinical Implications. Int J Mol Sci 2018; 19:3648. [PMID: 30463262 PMCID: PMC6274919 DOI: 10.3390/ijms19113648] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 11/16/2018] [Accepted: 11/16/2018] [Indexed: 12/14/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is currently the third leading cause of malignancy-related mortalities worldwide. Natural killer (NK) cells are involved in the critical role of first line immunological defense against cancer development. Defects in NK cell functions are recognized as important mechanisms for immune evasion of tumor cells. NK cell function appears to be attenuated in HCC, and many previous reports suggested that NK cells play a critical role in controlling HCC, suggesting that boosting the activity of dysfunctional NK cells can enhance tumor cell killing. However, the detailed mechanisms of NK cell dysfunction in tumor microenvironment of HCC remain largely unknown. A better understanding of the mechanisms of NK cell dysfunction in HCC will help in the NK cell-mediated eradication of cancer cells and prolong patient survival. In this review, we describe the various mechanisms underlying human NK cell dysfunction in HCC. Further, we summarize current advances in the approaches to enhance endogenous NK cell function and in adoptive NK cell therapies, to cure this difficult-to-treat cancer.
Collapse
Affiliation(s)
- Pil Soo Sung
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea.
- The Catholic Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea.
| | - Jeong Won Jang
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea.
- The Catholic Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea.
| |
Collapse
|
386
|
Barroso-Sousa R, Ott PA. Transformation of Old Concepts for a New Era of Cancer Immunotherapy: Cytokine Therapy and Cancer Vaccines as Combination Partners of PD1/PD-L1 Inhibitors. Curr Oncol Rep 2018; 21:1. [PMID: 30498900 DOI: 10.1007/s11912-018-0738-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
PURPOSE OF REVIEW Immune checkpoint inhibitors (ICI) are only effective in a subset of patients. Here, we will review the rationale and data supporting the combination of PD-1 pathway inhibition with recombinant cytokines and neoantigen-based cancer vaccines that can potentially increase the number of patients who will benefit from immunotherapy. RECENT FINDINGS The safety and tolerability of new interleukin(IL)-2 formulations, IL-15 super agonist, and PEGylated IL-10 have been evaluated in early phase clinical trials with promising efficacy data, both as monotherapy and in combination with ICI. Larger studies focusing on the efficacy of these combinations are ongoing. Personalized neoantigen-based cancer vaccines, enabled by improvements in sequencing computational capabilities, have been proven to be feasible, safe, and able to trigger a consistent vaccine-specific immune response in cancer patients. New pharmacologically modified recombinant cytokines and personalized neoantigen-based vaccines may turn these approaches into powerful tools for effective combination immunotherapy.
Collapse
Affiliation(s)
- Romualdo Barroso-Sousa
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Dana 2127, Boston, MA, 02215, USA
| | - Patrick A Ott
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Dana 2127, Boston, MA, 02215, USA.
| |
Collapse
|
387
|
IL-15 enhanced antibody-dependent cellular cytotoxicity mediated by NK cells and macrophages. Proc Natl Acad Sci U S A 2018; 115:E10915-E10924. [PMID: 30373815 DOI: 10.1073/pnas.1811615115] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The goal of cancer immunotherapy is to stimulate the host immune system to attack malignant cells. Antibody-dependent cellular cytotoxicity (ADCC) is a pivotal mechanism of antitumor action of clinically employed antitumor antibodies. IL-15 administered to patients with metastatic malignancy by continuous i.v. infusion at 2 μg/kg/d for 10 days was associated with a 38-fold increase in the number and activation status of circulating natural killer (NK) cells and activation of macrophages which together are ADCC effectors. We investigated combination therapy of IL-15 with rituximab in a syngeneic mouse model of lymphoma transfected with human CD20 and with alemtuzumab (Campath-1H) in a xenograft model of human adult T cell leukemia (ATL). IL-15 greatly enhanced the therapeutic efficacy of both rituximab and alemtuzumab in tumor models. The additivity/synergy was shown to be associated with augmented ADCC. Both NK cells and macrophages were critical elements in the chain of interacting effectors involved in optimal therapeutic responses mediated by rituximab with IL-15. We provide evidence supporting the hypothesis that NK cells interact with macrophages to augment the NK-cell activation and expression of FcγRIV and the capacity of these cells to become effectors of ADCC. The present study supports clinical trials of IL-15 combined with tumor-directed monoclonal antibodies.
Collapse
|
388
|
Flórez-Álvarez L, Hernandez JC, Zapata W. NK Cells in HIV-1 Infection: From Basic Science to Vaccine Strategies. Front Immunol 2018; 9:2290. [PMID: 30386329 PMCID: PMC6199347 DOI: 10.3389/fimmu.2018.02290] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 09/14/2018] [Indexed: 12/12/2022] Open
Abstract
NK cells play a key role in immune response against HIV infection. These cells can destroy infected cells and contribute to adequate and strong adaptive immune responses, by acting on dendritic, T, B, and even epithelial cells. Increased NK cell activity reflected by higher cytotoxic capacity, IFN-γ and chemokines (CCL3, CCL4, and CCL5) production, has been associated with resistance to HIV infection and delayed AIDS progression, demonstrating the importance of these cells in the antiviral response. Recently, a subpopulation of NK cells with adaptive characteristics has been described and associated with lower HIV viremia and control of infection. These evidences, together with some degree of protection shown in vaccine trials based on boosting NK cell activity, suggest that these cells can be a feasible option for new treatment and vaccination strategies to overcome limitations that, classical vaccination approaches, might have for this virus. This review is focus on the NK cells role during the immune response against HIV, including all the effector mechanisms associated to these cells; in addition, changes including phenotypic, functional and frequency modifications during HIV infection will be pointed, highlighting opportunities to vaccine development based in NK cells effector functions.
Collapse
Affiliation(s)
- Lizdany Flórez-Álvarez
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia.,Infettare, Facultad de Medicina, Universidad Cooperativa de Colombia, Medellín, Colombia
| | - Juan C Hernandez
- Infettare, Facultad de Medicina, Universidad Cooperativa de Colombia, Medellín, Colombia
| | - Wildeman Zapata
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia.,Infettare, Facultad de Medicina, Universidad Cooperativa de Colombia, Medellín, Colombia
| |
Collapse
|
389
|
Richards RM, Sotillo E, Majzner RG. CAR T Cell Therapy for Neuroblastoma. Front Immunol 2018; 9:2380. [PMID: 30459759 PMCID: PMC6232778 DOI: 10.3389/fimmu.2018.02380] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 09/25/2018] [Indexed: 12/11/2022] Open
Abstract
Patients with high risk neuroblastoma have a poor prognosis and survivors are often left with debilitating long term sequelae from treatment. Even after integration of anti-GD2 monoclonal antibody therapy into standard, upftont protocols, 5-year overall survival rates are only about 50%. The success of anti-GD2 therapy has proven that immunotherapy can be effective in neuroblastoma. Adoptive transfer of chimeric antigen receptor (CAR) T cells has the potential to build on this success. In early phase clinical trials, CAR T cell therapy for neuroblastoma has proven safe and feasible, but significant barriers to efficacy remain. These include lack of T cell persistence and potency, difficulty in target identification, and an immunosuppressive tumor microenvironment. With recent advances in CAR T cell engineering, many of these issues are being addressed in the laboratory. In this review, we summarize the clinical trials that have been completed or are underway for CAR T cell therapy in neuroblastoma, discuss the conclusions and open questions derived from these trials, and consider potential strategies to improve CAR T cell therapy for patients with neuroblastoma.
Collapse
Affiliation(s)
- Rebecca M. Richards
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, United States
| | - Elena Sotillo
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, United States
| | - Robbie G. Majzner
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
390
|
Suen WCW, Lee WYW, Leung KT, Pan XH, Li G. Natural Killer Cell-Based Cancer Immunotherapy: A Review on 10 Years Completed Clinical Trials. Cancer Invest 2018; 36:431-457. [PMID: 30325244 DOI: 10.1080/07357907.2018.1515315] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
NK cell cancer immunotherapy is an emerging anti-tumour therapeutic strategy that explores NK cell stimulation. In this review, we address strategies developed to circumvent limitations to clinical application of NK cell-based therapies, and comprehensively review the design and results of clinical trials conducted in the past 10 years (2008-2018) to test their therapeutic potential. NK cell-based immunotherapy of solid cancers remains controversial, but merit further detailed investigation.
Collapse
Affiliation(s)
- Wade Chun-Wai Suen
- a Department of Orthopaedics and Traumatology, Faculty of Medicine , The Chinese University of Hong Kong, Prince of Wales Hospital , Shatin , Hong Kong.,b Department of Orthopaedics and Traumatology , Bao-An People's Hospital , Shenzhen , PR China.,c Department of Haematology , University of Cambridge , Cambridge , UK
| | - Wayne Yuk-Wai Lee
- a Department of Orthopaedics and Traumatology, Faculty of Medicine , The Chinese University of Hong Kong, Prince of Wales Hospital , Shatin , Hong Kong.,d Stem Cells and Regenerative Medicine Laboratory, Lui Che Woo Institute of Innovative Medicine, Li Ka Shing Institute of Health Sciences , The Chinese University of Hong Kong, Prince of Wales Hospital , Shatin , Hong Kong
| | - Kam-Tong Leung
- e Department of Paediatrics, Faculty of Medicine , The Chinese University of Hong Kong , Shatin , Hong Kong
| | - Xiao-Hua Pan
- b Department of Orthopaedics and Traumatology , Bao-An People's Hospital , Shenzhen , PR China
| | - Gang Li
- a Department of Orthopaedics and Traumatology, Faculty of Medicine , The Chinese University of Hong Kong, Prince of Wales Hospital , Shatin , Hong Kong.,d Stem Cells and Regenerative Medicine Laboratory, Lui Che Woo Institute of Innovative Medicine, Li Ka Shing Institute of Health Sciences , The Chinese University of Hong Kong, Prince of Wales Hospital , Shatin , Hong Kong.,f The CUHK-ACC Space Medicine Centre on Health Maintenance of Musculoskeletal System , The Chinese University of Hong Kong Shenzhen Research Institute , Shenzhen , PR China
| |
Collapse
|
391
|
Pilipow K, Scamardella E, Puccio S, Gautam S, De Paoli F, Mazza EM, De Simone G, Polletti S, Buccilli M, Zanon V, Di Lucia P, Iannacone M, Gattinoni L, Lugli E. Antioxidant metabolism regulates CD8+ T memory stem cell formation and antitumor immunity. JCI Insight 2018; 3:122299. [PMID: 30232291 DOI: 10.1172/jci.insight.122299] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 08/07/2018] [Indexed: 12/17/2022] Open
Abstract
Adoptive T cell transfer (ACT) immunotherapy benefits from early differentiated stem cell memory T (Tscm) cells capable of persisting in the long term and generating potent antitumor effectors. Due to their paucity ex vivo, Tscm cells can be derived from naive precursors, but the molecular signals at the basis of Tscm cell generation are ill-defined. We found that less differentiated human circulating CD8+ T cells display substantial antioxidant capacity ex vivo compared with more differentiated central and effector memory T cells. Limiting ROS metabolism with antioxidants during naive T cell activation hindered terminal differentiation, while allowing expansion and generation of Tscm cells. N-acetylcysteine (NAC), the most effective molecule in this regard, induced transcriptional and metabolic programs characteristic of self-renewing memory T cells. Upon ACT, NAC-generated Tscm cells established long-term memory in vivo and exerted more potent antitumor immunity in a xenogeneic model when redirected with CD19-specific CAR, highlighting the translational relevance of NAC as a simple and inexpensive method to improve ACT.
Collapse
Affiliation(s)
- Karolina Pilipow
- Laboratory of Translational Immunology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Eloise Scamardella
- Laboratory of Translational Immunology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Simone Puccio
- Laboratory of Translational Immunology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Sanjivan Gautam
- Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Federica De Paoli
- Laboratory of Translational Immunology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Emilia Mc Mazza
- Laboratory of Translational Immunology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Gabriele De Simone
- Laboratory of Translational Immunology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | | | - Marta Buccilli
- Laboratory of Translational Immunology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Veronica Zanon
- Laboratory of Translational Immunology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Pietro Di Lucia
- Division of Immunology, Transplantation and Infectious Diseases and Experimental Imaging Center, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute and Vita-Salute San Raffaele University, Milan, Italy
| | - Matteo Iannacone
- Division of Immunology, Transplantation and Infectious Diseases and Experimental Imaging Center, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute and Vita-Salute San Raffaele University, Milan, Italy
| | - Luca Gattinoni
- Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Enrico Lugli
- Laboratory of Translational Immunology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy.,Humanitas Flow Cytometry Core, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| |
Collapse
|
392
|
Natural Killer Cells in Liver Disease and Hepatocellular Carcinoma and the NK Cell-Based Immunotherapy. J Immunol Res 2018; 2018:1206737. [PMID: 30255103 PMCID: PMC6142725 DOI: 10.1155/2018/1206737] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 08/16/2018] [Indexed: 02/07/2023] Open
Abstract
Nature killer (NK) cells play a critical role in host innate and adaptive immune defense against viral infections and tumors. NK cells are enriched in liver hematopoietic cells with unique NK repertories and functions to safeguard liver cells against hepatitis virus infection or malignancy transformation. However, accumulating evidences were found that the NK cells were modulated by liver diseases and liver cancers including hepatocellular carcinoma (HCC) and showed impaired functions failing to activate the elimination of the viral-infected cells or tumor cells and were further involved in the pathogenesis of liver injury and inflammation. The full characterization of circulation and intrahepatic NK cell phenotype and function in liver disease and liver cancer has not only provided new insight into the disease pathogenesis but has also discovered new targets for developing new NK cell-based therapeutic strategies. This review will discuss and summarize the NK cell phenotypic and functional changes in liver disease and HCC, and the NK cell-based immunotherapy approaches and progresses for cancers including HCC will also be reviewed.
Collapse
|
393
|
Liu L, Zong ZM, Liu Q, Jiang SS, Zhang Q, Cen LQ, Gao J, Gao XG, Huang JD, Liu Y, Yao H. A novel galactose-PEG-conjugated biodegradable copolymer is an efficient gene delivery vector for immunotherapy of hepatocellular carcinoma. Biomaterials 2018; 184:20-30. [PMID: 30195802 DOI: 10.1016/j.biomaterials.2018.08.064] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 08/30/2018] [Accepted: 08/31/2018] [Indexed: 12/20/2022]
Abstract
Successful immunogene therapy depends not only on the therapeutic gene but also on the gene delivery vector. In this study, we synthesized a novel copolymer consisting of low-molecular-weight polyethylenimine (PEI) cross-linked by myo-inositol (INO) and conjugated with a galactose-grafted PEG chain, named LA-PegPI. We characterized the chemical structure and molecular weight of the copolymer and particle properties of LA-PegPI/pDNA. Furthermore, we showed that LA-PegPI/pDNA polyplexes possessed excellent stability in physiological salt solution, low cytotoxicity, and high transfection efficiency in the asialoglycoprotein receptor (ASGPR)-positive liver cells in vitro. Importantly, we also showed that through intraperitoneal injection of LA-PegPI/pDNA nanoparticles, the reporter gene was forcefully expressed in the liver hepatocytes of mice. Finally, we documented that intraperitoneal injection of LA-PegPI/pIL15 nanoparticles effectively suppressed tumor growth and prolonged survival time of tumor-bearing mice via activation of CD8+ T cells and NK cells and upregulation of the cytokines IFN-γ, TNF, and IL12 in an orthotopic hepatocellular carcinoma mouse model. Interestingly, LA-PegPI/pluc nanoparticles could effectively stimulate the proliferation of NK cells and inhibit tumor growth in this model. In summary, LA-PegPI is a useful gene vector for immunogene therapy of hepatocellular carcinoma, and its potential for clinical application warrants further study.
Collapse
Affiliation(s)
- Ling Liu
- Key Laboratory of Coal Processing and Efficient Utilization, Ministry of Education, China University of Mining & Technology, Xuzhou, Jiangsu 221116, PR China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China; Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, PR China
| | - Zhi-Min Zong
- Key Laboratory of Coal Processing and Efficient Utilization, Ministry of Education, China University of Mining & Technology, Xuzhou, Jiangsu 221116, PR China.
| | - Qian Liu
- Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, PR China
| | - Shuang-Shuang Jiang
- Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, PR China
| | - Qian Zhang
- Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, PR China
| | - Lan-Qi Cen
- Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, PR China
| | - Jian Gao
- Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, PR China
| | - Xiao-Ge Gao
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China
| | - Jian-Dong Huang
- Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, PR China; Department of Biochemistry and Shenzhen Institute of Research and Innovation, University of Hong Kong, 999077, Hong Kong, China
| | - Yi Liu
- Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, PR China
| | - Hong Yao
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China; Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, PR China.
| |
Collapse
|
394
|
Batista-Duharte A, Martínez DT, Carlos IZ. Efficacy and safety of immunological adjuvants. Where is the cut-off? Biomed Pharmacother 2018; 105:616-624. [DOI: 10.1016/j.biopha.2018.06.026] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 06/05/2018] [Accepted: 06/05/2018] [Indexed: 12/21/2022] Open
|
395
|
Liu Y, Wang Y, Xing J, Li Y, Liu J, Wang Z. A novel multifunctional anti-CEA-IL15 molecule displays potent antitumor activities. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:2645-2654. [PMID: 30214153 PMCID: PMC6120566 DOI: 10.2147/dddt.s166373] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Introduction Interleukin-15 (IL-15) is an immunomodulatory cytokine. It can activate and expand cytotoxic CD8 T lymphocytes and natural killer cells, leading to potent antitumor effects. Various forms of IL-15 are now in different stages of development for cancer immunotherapy. One of the major issues with IL-15 or IL15–IL15Rα fusion is high toxicity due to systemic activation of immune cells. Materials and methods In this study, we engineered a nanobody–cytokine fusion molecule, anti-CEA-IL15, in which an anti-CEA nanobody was linked to an IL15Rα–IL15 fusion. The nanobody–cytokine fusion exhibited multiple mechanisms to kill tumor cells, including promoting immune cell proliferation and directing antibody-dependent cytotoxicity against CEA-positive tumor cells. Results In xenograft models, anti-CEA-IL15 was localized in the tumor microenvironment and exhibited more potent antitumor activities than non-targeting IL-15, supporting potential application of this multifunctional fusion molecule in tumor immunotherapy. Conclusion We generated and validated a tumortargeting fusion protein, anti-CEA-IL15, which has potent cytokine activity to activate and mobilize the immune system to fight cancer cells. Such strategies may also be applied to other cytokines and tumor-targeting molecules to increase antitumor efficacy.
Collapse
Affiliation(s)
- Yue Liu
- School of Pharmaceutical Sciences, .,Center for Cellular and Structural Biology, Sun Yat-Sen University, Guangzhou, People's Republic of China,
| | - Yanlan Wang
- School of Pharmaceutical Sciences, .,Center for Cellular and Structural Biology, Sun Yat-Sen University, Guangzhou, People's Republic of China,
| | - Jieyu Xing
- School of Pharmaceutical Sciences, .,Center for Cellular and Structural Biology, Sun Yat-Sen University, Guangzhou, People's Republic of China,
| | - Yumei Li
- School of Pharmaceutical Sciences, .,Center for Cellular and Structural Biology, Sun Yat-Sen University, Guangzhou, People's Republic of China,
| | - Jiayu Liu
- School of Pharmaceutical Sciences, .,Center for Cellular and Structural Biology, Sun Yat-Sen University, Guangzhou, People's Republic of China,
| | - Zhong Wang
- School of Pharmaceutical Sciences, .,Center for Cellular and Structural Biology, Sun Yat-Sen University, Guangzhou, People's Republic of China,
| |
Collapse
|
396
|
Dianat-Moghadam H, Rokni M, Marofi F, Panahi Y, Yousefi M. Natural killer cell-based immunotherapy: From transplantation toward targeting cancer stem cells. J Cell Physiol 2018; 234:259-273. [PMID: 30144312 DOI: 10.1002/jcp.26878] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 05/23/2018] [Indexed: 12/19/2022]
Abstract
Natural killer (NK) cells are key players of the innate immune system. NK cells provide protection against infectious pathogens and malignancies in cell. This characteristic may be attributable to their intrinsic diverse potentialities and also their cooperation with adaptive immune lymphocytes, known as B and T cells. The growth, recurrence, and metastasis of cancer cells, and the failure of cytoreductive therapies against cancer cells are due to the small population of intratumor stem-like cells, called cancer stem cells (CSCs). Furthermore, NK cells can efficiently eradicate heterogeneous tumor cells after a long-term treatment. Therefore, NK cell-based therapy is a promising strategy to target and break CSC-associated resistance to anticancer drugs treatment. In this review, we have presented an overview of the emerging knowledge of the characteristics, diversities, and mechanism-driven immune surveillance of human NK cells and advances in NK cell-based immunotherapies. Finally, we will discuss how these cells can be applied to introduce the next generation of vaccine- and immune-based approaches to prevent drug resistance.
Collapse
Affiliation(s)
- Hassan Dianat-Moghadam
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Stem Cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.,Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohsen Rokni
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Faroogh Marofi
- Department of Hematology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yunes Panahi
- Department of Clinical Pharmacy, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mehdi Yousefi
- Stem Cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.,Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
397
|
Bohlen J, McLaughlin SL, Hazard‐Jenkins H, Infante AM, Montgomery C, Davis M, Pistilli EE. Dysregulation of metabolic-associated pathways in muscle of breast cancer patients: preclinical evaluation of interleukin-15 targeting fatigue. J Cachexia Sarcopenia Muscle 2018; 9:701-714. [PMID: 29582584 PMCID: PMC6104109 DOI: 10.1002/jcsm.12294] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 11/27/2017] [Accepted: 01/31/2018] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Breast cancer patients report a perception of increased muscle fatigue, which can persist following surgery and standardized therapies. In a clinical experiment, we tested the hypothesis that pathways regulating skeletal muscle fatigue are down-regulated in skeletal muscle of breast cancer patients and that different muscle gene expression patterns exist between breast tumour subtypes. In a preclinical study, we tested the hypothesis that mammary tumour growth in mice induces skeletal muscle fatigue and that overexpression of the cytokine interleukin-15 (IL-15) can attenuate mammary tumour-induced muscle fatigue. METHODS Early stage non-metastatic female breast cancer patients (n = 14) and female non-cancer patients (n = 6) provided a muscle biopsy of the pectoralis major muscle during mastectomy, lumpectomy, or breast reconstruction surgeries. The breast cancer patients were diagnosed with either luminal (ER+ /PR+ , n = 6), triple positive (ER+ /PR+ /Her2/neu+ , n = 5), or triple negative (ER- /PR- /Her2/neu- , n = 3) breast tumours and were being treated with curative intent either with neoadjuvant chemotherapy followed by surgery or surgery followed by standard post-operative therapy. Biopsies were used for RNA-sequencing to compare the skeletal muscle gene expression patterns between breast cancer patients and non-cancer patients. The C57BL/6 mouse syngeneic mammary tumour cell line, E0771, was used to induce mammary tumours in immunocompetent mice, and isometric muscle contractile properties and fatigue properties were analysed following 4 weeks of tumour growth. RESULTS RNA-sequencing and subsequent bioinformatics analyses revealed a dysregulation of canonical pathways involved in oxidative phosphorylation, mitochondrial dysfunction, peroxisome proliferator-activated receptor signalling and activation, and IL-15 signalling and production. In a preclinical mouse model of breast cancer, the rate of muscle fatigue was greater in mice exposed to mammary tumour growth for 4 weeks, and this greater muscle fatigue was attenuated in transgenic mice that overexpressed the cytokine IL-15. CONCLUSIONS Our data identify novel genes and pathways dysregulated in the muscles of breast cancer patients with early stage non-metastatic disease, with particularly aberrant expression among genes that would predispose these patients to greater muscle fatigue. Furthermore, we demonstrate that IL-15 overexpression can attenuate muscle fatigue associated with mammary tumour growth in a preclinical mouse model of breast cancer. Therefore, we propose that skeletal muscle fatigue is an inherent consequence of breast tumour growth, and this greater fatigue can be targeted therapeutically.
Collapse
Affiliation(s)
- Joseph Bohlen
- Division of Exercise Physiology, Department of Human PerformanceWest Virginia University School of MedicineMorgantownWV26506USA
| | - Sarah L. McLaughlin
- Cancer InstituteWest Virginia University School of MedicineMorgantownWV26506USA
| | - Hannah Hazard‐Jenkins
- Department of SurgeryWest Virginia University School of MedicineMorgantownWV26506USA
| | | | - Cortney Montgomery
- Cancer InstituteWest Virginia University School of MedicineMorgantownWV26506USA
| | - Mary Davis
- Department of Physiology and PharmacologyWest Virginia University School of MedicineMorgantownWV26506USA
| | - Emidio E. Pistilli
- Division of Exercise Physiology, Department of Human PerformanceWest Virginia University School of MedicineMorgantownWV26506USA
- Cancer InstituteWest Virginia University School of MedicineMorgantownWV26506USA
- Department of Microbiology, Immunology and Cell BiologyWest Virginia University School of MedicineMorgantownWV26506USA
- West Virginia Clinical and Translational Sciences InstituteWest Virginia University School of MedicineMorgantownWV26506USA
| |
Collapse
|
398
|
Margolin K, Morishima C, Velcheti V, Miller JS, Lee SM, Silk AW, Holtan SG, Lacroix AM, Fling SP, Kaiser JC, Egan JO, Jones M, Rhode PR, Rock AD, Cheever MA, Wong HC, Ernstoff MS. Phase I Trial of ALT-803, A Novel Recombinant IL15 Complex, in Patients with Advanced Solid Tumors. Clin Cancer Res 2018; 24:5552-5561. [PMID: 30045932 DOI: 10.1158/1078-0432.ccr-18-0945] [Citation(s) in RCA: 155] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 06/02/2018] [Accepted: 07/13/2018] [Indexed: 11/16/2022]
Abstract
Purpose: IL15 induces the activation and proliferation of natural killer (NK) and memory CD8+ T cells and has preclinical antitumor activity. Given the superior activity and favorable kinetics of ALT-803 (IL15N72D:IL15RαSu/IgG1 Fc complex) over recombinant human IL15 (rhIL15) in animal models, we performed this first-in-human phase I trial of ALT-803 in patients with advanced solid tumors.Patients and Methods: Patients with incurable advanced melanoma, renal cell, non-small cell lung, and head and neck cancer were treated with ALT-803 0.3 to 6 μg/kg weekly intravenously or 6 to 20 μg/kg weekly subcutaneously for 4 consecutive weeks, every 6 weeks. Immune correlates included pharmacokinetics, immunogenicity, and lymphocyte expansion and function. Clinical endpoints were toxicity and antitumor activity.Results: Twenty-four patients were enrolled; 11 received intravenous and 13 received subcutaneous ALT-803. Of these patients, nine had melanoma, six renal, three head and neck, and six lung cancer. Although total lymphocyte and CD8+ T-cell expansion were modest, NK cell numbers rose significantly. Neither anti-ALT-803 antibodies nor clinical activity were observed. Overall, ALT-803 was well tolerated, with adverse effects including fatigue and nausea most commonly with intravenous administration, whereas painful injection site wheal was reported most commonly with subcutaneous ALT-803.Conclusions: Subcutaneous ALT-803 produced the expected NK cell expansion and was well tolerated with minimal cytokine toxicities and a strong local inflammatory reaction at injection sites in patients with advanced cancer. These data, together with compelling evidence of synergy in preclinical and clinical studies, provide the rationale for combining ALT-803 with other anticancer agents. Clin Cancer Res; 24(22); 5552-61. ©2018 AACR.
Collapse
Affiliation(s)
- Kim Margolin
- City of Hope National Medical Center, Duarte, California.
| | - Chihiro Morishima
- University of Washington, Seattle, Washington.,Cancer Immunotherapy Trials Network, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | | | | | - Sylvia M Lee
- Seattle Cancer Care Alliance, Seattle, Washington
| | - Ann W Silk
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey
| | | | - Andreanne M Lacroix
- Cancer Immunotherapy Trials Network, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Steven P Fling
- Cancer Immunotherapy Trials Network, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Judith C Kaiser
- Cancer Immunotherapy Trials Network, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Jack O Egan
- Altor BioScience, a Nantworks Company, Miramar, Florida
| | - Monica Jones
- Altor BioScience, a Nantworks Company, Miramar, Florida
| | - Peter R Rhode
- Altor BioScience, a Nantworks Company, Miramar, Florida
| | - Amy D Rock
- Altor BioScience, a Nantworks Company, Miramar, Florida
| | - Martin A Cheever
- Cancer Immunotherapy Trials Network, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Hing C Wong
- Altor BioScience, a Nantworks Company, Miramar, Florida
| | | |
Collapse
|
399
|
Johnson JK, Miller JS. Current strategies exploiting NK-cell therapy to treat haematologic malignancies. Int J Immunogenet 2018; 45:237-246. [PMID: 30009514 DOI: 10.1111/iji.12387] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 05/10/2018] [Accepted: 06/07/2018] [Indexed: 12/30/2022]
Abstract
Natural killer (NK) cells recognize targets that have been changed via malignant transformation or infection. Previously, NK cells were thought to be short-lived, but we now know that NK cells can be long-lived and remember past exposures in response to CMV. NK cells use a plethora of activating and inhibitory receptors to recognize these changes and attack targets, but tumour cells often evade NK cells. Therefore, major efforts are being made to hone in on NK cell antitumour properties in immunotherapy. In the clinical setting, haploidentical NK cells can be adoptively transferred to help treat cancer. To expand NK cells in vivo and enhance tumour targeting, IL-15 is being tested in combination with a glycogen synthase kinase (GSK) 3 inhibitor (CHIR99021), an inhibitor that has been shown to expand mature, highly functional NK cells capable of killing multiple tumour targets. One major limitation to NK cell therapy is lack of specificity. To address this concern, bispecific or trispecific engagers that target NK cells to the tumour and an ADAM17 inhibitor that prevents CD16 shedding after NK cell activation are being tested. Additionally, monoclonal antibodies are being designed to redirect the inhibitory signals that limit NK cell functionality. Further understanding of the biology of NK cells will inform strategies to exploit NK cells for therapeutic purposes.
Collapse
Affiliation(s)
- Jenna K Johnson
- Department of Medicine, Division of Hematology, Oncology, and Transplantation, Masonic Cancer Center, University of Minnesota Masonic Cancer Center, Minneapolis, Minnesota
- Medical Scientist Training Program, University of Minnesota, Minneapolis, Minnesota
| | - Jeffrey S Miller
- Department of Medicine, Division of Hematology, Oncology, and Transplantation, Masonic Cancer Center, University of Minnesota Masonic Cancer Center, Minneapolis, Minnesota
| |
Collapse
|
400
|
Tang L, Zheng Y, Melo MB, Mabardi L, Castaño AP, Xie YQ, Li N, Kudchodkar SB, Wong HC, Jeng EK, Maus MV, Irvine DJ. Enhancing T cell therapy through TCR-signaling-responsive nanoparticle drug delivery. Nat Biotechnol 2018; 36:707-716. [PMID: 29985479 PMCID: PMC6078803 DOI: 10.1038/nbt.4181] [Citation(s) in RCA: 461] [Impact Index Per Article: 65.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Accepted: 06/07/2018] [Indexed: 12/24/2022]
Abstract
Adoptive cell therapy (ACT) with antigen-specific T cells has shown remarkable clinical success, but approaches to safely and effectively augment T cell function, especially in solid tumors, remain of great interest. Here we describe a strategy to “backpack” large quantities of supporting protein drugs on T cells using protein nanogels (NGs) that selectively release these cargos in response to T cell receptor (TCR) activation. We design cell surface-conjugated NGs that respond to an increase in T cell surface reduction potential upon antigen recognition, limiting drug release to sites of antigen encounter such as the tumor microenvironment. Using NGs carrying an IL-15 superagonist complex, we demonstrate that relative to systemic administration of free cytokines, NG delivery selectively expands T cells 16-fold in tumors, and allows at least 8-fold higher doses of cytokine to be administered without toxicity. The improved therapeutic window enables substantially increased tumor clearance by murine T cell and human CAR-T cell therapy in vivo.
Collapse
Affiliation(s)
- Li Tang
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts, USA.,Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Yiran Zheng
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts, USA.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Mariane Bandeira Melo
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts, USA.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Llian Mabardi
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts, USA
| | - Ana P Castaño
- Cellular Immunotherapy Program, Massachusetts General Hospital (MGH) Cancer Center, Charlestown, Massachusetts, USA
| | - Yu-Qing Xie
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Na Li
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts, USA.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | | | - Hing C Wong
- Altor BioScience Corporation, Miramar, Florida, USA
| | - Emily K Jeng
- Altor BioScience Corporation, Miramar, Florida, USA
| | - Marcela V Maus
- Cellular Immunotherapy Program, Massachusetts General Hospital (MGH) Cancer Center, Charlestown, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| | - Darrell J Irvine
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts, USA.,Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.,Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.,Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
| |
Collapse
|