351
|
Mielke MM, Hagen CE, Xu J, Chai X, Vemuri P, Lowe VJ, Airey DC, Knopman DS, Roberts RO, Machulda MM, Jack CR, Petersen RC, Dage JL. Plasma phospho-tau181 increases with Alzheimer's disease clinical severity and is associated with tau- and amyloid-positron emission tomography. Alzheimers Dement 2018; 14:989-997. [PMID: 29626426 PMCID: PMC6097897 DOI: 10.1016/j.jalz.2018.02.013] [Citation(s) in RCA: 421] [Impact Index Per Article: 60.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 01/25/2018] [Accepted: 02/05/2018] [Indexed: 01/17/2023]
Abstract
INTRODUCTION We examined and compared plasma phospho-tau181 (pTau181) and total tau: (1) across the Alzheimer's disease (AD) clinical spectrum; (2) in relation to brain amyloid β (Aβ) positron emission tomography (PET), tau PET, and cortical thickness; and (3) as a screening tool for elevated brain Aβ. METHODS Participants included 172 cognitively unimpaired, 57 mild cognitively impaired, and 40 AD dementia patients with concurrent Aβ PET (Pittsburgh compound B), tau PET (AV1451), magnetic resonance imaging, plasma total tau, and pTau181. RESULTS Plasma total tau and pTau181 levels were higher in AD dementia patients than those in cognitively unimpaired. Plasma pTau181 was more strongly associated with both Aβ and tau PET. Plasma pTau181 was a more sensitive and specific predictor of elevated brain Aβ than total tau and was as good as, or better than, the combination of age and apolipoprotein E (APOE). DISCUSSION Plasma pTau181 may have utility as a biomarker of AD pathophysiology and as a noninvasive screener for elevated brain Aβ.
Collapse
Affiliation(s)
- Michelle M Mielke
- Division of Epidemiology, Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota, USA; Department of Neurology, Mayo Clinic, Rochester, MN, USA.
| | - Clinton E Hagen
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota, USA
| | - Jing Xu
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - Xiyun Chai
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | | | - Val J Lowe
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - David C Airey
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | | | - Rosebud O Roberts
- Division of Epidemiology, Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota, USA; Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Mary M Machulda
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | | | - Ronald C Petersen
- Division of Epidemiology, Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota, USA; Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Jeffrey L Dage
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| |
Collapse
|
352
|
Foiani MS, Woollacott IO, Heller C, Bocchetta M, Heslegrave A, Dick KM, Russell LL, Marshall CR, Mead S, Schott JM, Fox NC, Warren JD, Zetterberg H, Rohrer JD. Plasma tau is increased in frontotemporal dementia. J Neurol Neurosurg Psychiatry 2018; 89:804-807. [PMID: 29440230 PMCID: PMC6204947 DOI: 10.1136/jnnp-2017-317260] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 01/16/2018] [Accepted: 01/18/2018] [Indexed: 12/14/2022]
Abstract
BACKGROUND Frontotemporal dementia (FTD) is a heterogeneous neurodegenerative disorder presenting clinically with personality change (behavioural variant FTD (bvFTD)) or language deficits (primary progressive aphasia (PPA)). About a third of FTD is familial with mutations in GRN, MAPT and C9orf72 being the major genetic causes. Robust biomarkers of the underlying pathology are still lacking in FTD with no markers currently being able to distinguish those with tau and TDP-43 inclusions during life. METHODS This study used an ultrasensitive single molecule methodology to measure plasma tau concentrations in 176 participants: 71 with bvFTD, 83 with PPA and 22 healthy controls. The patient group included 36 with pathogenic mutations in either MAPT (n=12), GRN (n=9) or C9orf72 (n=15). Group comparisons were performed between clinical and genetic groups and controls using a linear regression model with bias-corrected bootstrap CIs. Correlative analyses were performed to investigate associations with measures of disease severity and progression. RESULTS Higher plasma tau concentrations were seen in bvFTD (mean 1.96 (SD 1.07) pg/mL) and PPA (2.65 (2.15) pg/mL) compared with controls (1.67 (0.50) pg/mL). Investigating the PPA group further showed significantly higher levels compared with controls in each of the PPA subtypes (non-fluent, semantic and logopenic variants, as well as a fourth group not meeting criteria for one of the three main variants). In the genetic groups, only the MAPT group had significantly increased concentrations (2.62 (1.39) pg/mL) compared with controls. No significant correlations were seen with cross-sectional or longitudinal brain volumes, serum neurofilament light chain concentrations or disease duration. CONCLUSION Plasma tau levels are increased in FTD in all clinical groups, but in the genetic subtypes only in MAPT mutations, the group of patients who definitively have tau pathology at postmortem. Future studies will be required in pathologically confirmed cohorts to investigate this association further, and whether plasma tau will be helpful in differentiating patients with FTD with tau from those with other pathologies.
Collapse
Affiliation(s)
- Martha S Foiani
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
- UK Dementia Research Institute at UCL, London, UK
| | - Ione Oc Woollacott
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Institute of Neurology, London, UK
| | - Carolin Heller
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
- UK Dementia Research Institute at UCL, London, UK
| | - Martina Bocchetta
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Institute of Neurology, London, UK
| | - Amanda Heslegrave
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
- UK Dementia Research Institute at UCL, London, UK
| | - Katrina M Dick
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Institute of Neurology, London, UK
| | - Lucy L Russell
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Institute of Neurology, London, UK
| | - Charles R Marshall
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Institute of Neurology, London, UK
| | - Simon Mead
- MRC Prion Unit at UCL, Institute of Prion Diseases, London, UK
| | - Jonathan M Schott
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Institute of Neurology, London, UK
| | - Nick C Fox
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Institute of Neurology, London, UK
| | - Jason D Warren
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Institute of Neurology, London, UK
| | - Henrik Zetterberg
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Jonathan D Rohrer
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Institute of Neurology, London, UK
| |
Collapse
|
353
|
Gardner RC, Rubenstein R, Wang KKW, Korley FK, Yue JK, Yuh EL, Mukherje P, Valadka AB, Okonkwo DO, Diaz-Arrastia R, Manley GT. Age-Related Differences in Diagnostic Accuracy of Plasma Glial Fibrillary Acidic Protein and Tau for Identifying Acute Intracranial Trauma on Computed Tomography: A TRACK-TBI Study. J Neurotrauma 2018; 35:2341-2350. [PMID: 29717620 DOI: 10.1089/neu.2018.5694] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Plasma tau and glial fibrillary acidic protein (GFAP) are promising biomarkers for identifying traumatic brain injury (TBI) patients with intracranial trauma on computed tomography (CT). Accuracy in older adults with mild TBI (mTBI), the fastest growing TBI population, is unknown. Our aim was to assess for age-related differences in diagnostic accuracy of plasma tau and GFAP for identifying intracranial trauma on CT. Samples from 169 patients (age <40 years [n = 79], age 40-59 years [n = 60], age 60 years+ [n = 30]), a subset of patients from the Transforming Research and Clinical Knowledge in TBI (TRACK-TBI) Pilot study who presented with mTBI (Glasgow Coma Scale score of 13-15), received head CT, and consented to blood draw within 24 h of injury, were assayed for hyperphosphorylated-tau (P-tau), total-tau (T-tau; both via amplification-linked enhanced immunoassay using multi-arrayed fiberoptics), and GFAP (via sandwich enzyme-linked immunosorbent assay). P-tau, T-tau, P-tau:T-tau ratio, and GFAP concentration were significantly associated with CT findings. Overall, discriminative ability declined with increasing age for all assays, but this decline was only statistically significant for GFAP (area under the receiver operating characteristic curve [AUC]: old 0.73 [reference group; ref] vs. young 0.93 [p = 0.037] or middle-aged 0.92 [p = 0.0497]). P-tau concentration consistently showed the highest diagnostic accuracy across all age-groups (AUC: old 0.84 [ref] vs. young 0.95 [p = 0.274] or middle-aged 0.93 [p = 0.367]). Comparison of models including P-tau alone versus P-tau plus GFAP revealed significant added value of GFAP. In conclusion, the GFAP assay was less accurate for identifying intracranial trauma on CT among older versus younger mTBI patients. Mechanisms of this age-related difference, including role of assay methodology, specific TBI neuroanatomy, pre-existing conditions, and anti-thrombotic use, warrant further study.
Collapse
Affiliation(s)
- Raquel C Gardner
- 1 Department of Neurology, Memory and Aging Center, and Weill Institute for Neurosciences, University of California San Francisco , San Francisco, California.,2 Department of Neurology and Center for Population Brain Health, San Francisco Veterans Affairs Medical Center , San Francisco, California
| | - Richard Rubenstein
- 3 Departments of Neurology and Physiology/Pharmacology, Laboratory of Neurodegenerative Diseases and CNS Biomarker Discovery, State University of New York Downstate Medical Center , Brooklyn, New York
| | - Kevin K W Wang
- 4 Program for Neurotrauma, Neuroproteomics and Biomarker Research, Departments of Emergency Medicine, Psychiatry, Neuroscience and Chemistry, University of Florida , Gainesville, Florida.,5 Brain Rehabilitation Research Center , Malcom Randall VA Medical Center, Gainesville, Florida
| | - Frederick K Korley
- 6 Department of Emergency Medicine, University of Michigan , Ann Arbor, Michigan
| | - John K Yue
- 7 Department of Neurological Surgery, University of California San Francisco , San Francisco, California.,8 Brain and Spinal Injury Center , Zuckerberg San Francisco General Hospital, San Francisco, California
| | - Esther L Yuh
- 8 Brain and Spinal Injury Center , Zuckerberg San Francisco General Hospital, San Francisco, California.,9 Department of Radiology, University of California San Francisco , San Francisco, California
| | - Pratik Mukherje
- 8 Brain and Spinal Injury Center , Zuckerberg San Francisco General Hospital, San Francisco, California.,9 Department of Radiology, University of California San Francisco , San Francisco, California
| | - Alex B Valadka
- 10 Department of Neurological Surgery, Virginia Commonwealth University , Richmond, Virginia
| | - David O Okonkwo
- 11 Department of Neurological Surgery, University of Pittsburgh Medical Center , Pittsburgh, Pennsylvania
| | - Ramon Diaz-Arrastia
- 12 Department of Neurology, University of Pennsylvania Perelman School of Medicine , Philadelphia, Pennsylvania
| | - Geoffrey T Manley
- 7 Department of Neurological Surgery, University of California San Francisco , San Francisco, California.,8 Brain and Spinal Injury Center , Zuckerberg San Francisco General Hospital, San Francisco, California
| |
Collapse
|
354
|
Ashton NJ, Ide M, Schöll M, Blennow K, Lovestone S, Hye A, Zetterberg H. No association of salivary total tau concentration with Alzheimer's disease. Neurobiol Aging 2018; 70:125-127. [PMID: 30007161 DOI: 10.1016/j.neurobiolaging.2018.06.014] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 06/11/2018] [Accepted: 06/11/2018] [Indexed: 11/18/2022]
Abstract
There is a need for an accessible biomarker that can complement current cerebrospinal fluid and imaging biomarkers in an accurate and early diagnosis of Alzheimer disease (AD). Saliva is a rich source of potential biomarkers and proteins related to neurodegenerative disorders have been shown to be present in this matrix, including tau. In this study, we quantified salivary total tau (t-tau) concentration in 160 healthy elderly control, 68 mild cognitive impairment, and 53 AD participants using ultrasensitive Single molecule array (Simoa) technology. No median difference in salivary t-tau concentration was found between AD and mild cognitive impairment or healthy elderly control (12.3 ng/L, 9.8 ng/L and 9.6 ng/L, respectively, p = 0.219). In addition, there was no association of salivary t-tau concentration with neurophysiological assessment or structural magnetic resonance imaging. Despite a nominal increase in AD, due to the large overlaps in concentrations between clinical groups, we conclude that salivary t-tau is a suitable biomarker neither for AD nor for cognitive impairment.
Collapse
Affiliation(s)
- Nicholas J Ashton
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden; Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; King's College London, Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Institute Clinical Neuroscience Institute, London, UK; NIHR Biomedical Research Centre for Mental Health and Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation, London, UK.
| | - Mark Ide
- Periodontology/Oral and Mucosal Biology, Dental Institute, King's College London, London, UK
| | - Michael Schöll
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden; Department of Clinical Sciences, Clinical Memory Research Unit, Malmö, Lund University, Lund, Sweden
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Simon Lovestone
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, UK
| | - Abdul Hye
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Institute Clinical Neuroscience Institute, London, UK; NIHR Biomedical Research Centre for Mental Health and Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation, London, UK
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden; Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, UK; UK Dementia Research Institute at UCL, London, UK
| |
Collapse
|
355
|
Zetterberg H, Blennow K. From Cerebrospinal Fluid to Blood: The Third Wave of Fluid Biomarkers for Alzheimer’s Disease. J Alzheimers Dis 2018; 64:S271-S279. [DOI: 10.3233/jad-179926] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, UK
- UK Dementia Research Institute at UCL, London, UK
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| |
Collapse
|
356
|
Deters KD, Risacher SL, Kim S, Nho K, West JD, Blennow K, Zetterberg H, Shaw LM, Trojanowski JQ, Weiner MW, Saykin AJ. Plasma Tau Association with Brain Atrophy in Mild Cognitive Impairment and Alzheimer's Disease. J Alzheimers Dis 2018; 58:1245-1254. [PMID: 28550246 DOI: 10.3233/jad-161114] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Peripheral (plasma) and central (cerebrospinal fluid, CSF) measures of tau are higher in Alzheimer's disease (AD) relative to prodromal stages and controls. While elevated CSF tau concentrations have been shown to be associated with lower grey matter density (GMD) in AD-specific regions, this correlation has yet to be examined for plasma in a large study. OBJECTIVE Determine the neuroanatomical correlates of plasma tau using voxel-based analysis. METHODS Cross-sectional data for 508 ADNI participants were collected for clinical, plasma total-tau (t-tau), CSF amyloid (Aβ42) and tau, and MRI variables. The relationship between plasma tau and GMD and between CSF t-tau and GMD were assessed on a voxel-by-voxel basis using regression models. Age, sex, APOEɛ4 status, diagnosis, and total intracranial volume were used as covariates where appropriate. Participants were defined as amyloid positive (Aβ+) if CSF Aβ42 was <192 pg/mL. RESULTS Plasma tau was negatively correlated with GMD in the medial temporal lobe (MTL), precuneus, thalamus, and striatum. The associations with thalamus and striatum were independent of diagnosis. A negative correlation also existed between plasma tau and GMD in Aβ+ participants in the MTL, precuneus, and frontal lobe. When compared to CSF t-tau, plasma tau showed a notably different associated brain atrophy pattern, with only small overlapping regions in the fusiform gyrus. CONCLUSION Plasma tau may serve as a non-specific marker for neurodegeneration but is still relevant to AD considering low GMD was associated with plasma tau in Aβ+ participants and not Aβ-participants.
Collapse
Affiliation(s)
- Kacie D Deters
- Department of Radiology and Imaging Sciences, Center for Neuroimaging, Indiana University School of Medicine, Indianapolis, IN, USA.,Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN, USA.,Program in Medical Neuroscience, Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Shannon L Risacher
- Department of Radiology and Imaging Sciences, Center for Neuroimaging, Indiana University School of Medicine, Indianapolis, IN, USA.,Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Sungeun Kim
- Department of Radiology and Imaging Sciences, Center for Neuroimaging, Indiana University School of Medicine, Indianapolis, IN, USA.,Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN, USA.,Department of Electrical and Computer Engineering, State University of New York, Oswego, NY, USA
| | - Kwangsik Nho
- Department of Radiology and Imaging Sciences, Center for Neuroimaging, Indiana University School of Medicine, Indianapolis, IN, USA.,Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - John D West
- Department of Radiology and Imaging Sciences, Center for Neuroimaging, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Department of Molecular Neuroscience, University College London Institute of Neurology, London, UK
| | - Leslie M Shaw
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - John Q Trojanowski
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Michael W Weiner
- Department of Radiology, Medicine, and Psychiatry, University of California San Francisco, San Francisco, CA, USA
| | - Andrew J Saykin
- Department of Radiology and Imaging Sciences, Center for Neuroimaging, Indiana University School of Medicine, Indianapolis, IN, USA.,Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN, USA.,Program in Medical Neuroscience, Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | | |
Collapse
|
357
|
Salama M, Shalash A, Magdy A, Makar M, Roushdy T, Elbalkimy M, Elrassas H, Elkafrawy P, Mohamed W, Abou Donia MB. Tubulin and Tau: Possible targets for diagnosis of Parkinson's and Alzheimer's diseases. PLoS One 2018; 13:e0196436. [PMID: 29742117 PMCID: PMC5942772 DOI: 10.1371/journal.pone.0196436] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Accepted: 04/12/2018] [Indexed: 11/29/2022] Open
Abstract
Neurodegenerative diseases including Alzheimer's disease (AD) and Parkinson's disease (PD) are characterized by progressive neuronal loss and pathological accumulation of some proteins. Developing new biomarkers for both diseases is highly important for the early diagnosis and possible development of neuro-protective strategies. Serum antibodies (AIAs) against neuronal proteins are potential biomarkers for AD and PD that may be formed in response to their release into systemic circulation after brain damage. In the present study, two AIAs (tubulin and tau) were measured in sera of patients of PD and AD, compared to healthy controls. Results showed that both antibodies were elevated in patients with PD and AD compared to match controls. Curiously, the profile of elevation of antibodies was different in both diseases. In PD cases, tubulin and tau AIAs levels were similar. On the other hand, AD patients showed more elevation of tau AIAs compared to tubulin. Our current results suggested that AIAs panel could be able to identify cases with neuro-degeneration when compared with healthy subjects. More interestingly, it is possible to differentiate between PD and AD cases through identifying specific AIAs profile for each neurodegenerative states.
Collapse
Affiliation(s)
- Mohamed Salama
- Medical Experimental Research Center (MERC), Faculty of Medicine, Mansoura University, Mansoura, Egypt
- Toxicology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Ali Shalash
- Department of Neurology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Alshimaa Magdy
- Biochemistry Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Marianne Makar
- Department of Neurology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Tamer Roushdy
- Department of Neurology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Mahmoud Elbalkimy
- Department of Neurology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Hanan Elrassas
- Okasha Institute of Psychiatry, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | | | - Wael Mohamed
- Department of Pharmacology, Faculty of Medicine, Menoufia University, Shebeen Elkoum, Egypt
- Basic Medical Science Department, Kulliyyah of Medicine, International Islamic University Malaysia, Kuantan Pahang, Malaysia
| | - Mohamed B. Abou Donia
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina, United States of America
| |
Collapse
|
358
|
Lashley T, Schott JM, Weston P, Murray CE, Wellington H, Keshavan A, Foti SC, Foiani M, Toombs J, Rohrer JD, Heslegrave A, Zetterberg H. Molecular biomarkers of Alzheimer's disease: progress and prospects. Dis Model Mech 2018; 11:11/5/dmm031781. [PMID: 29739861 PMCID: PMC5992610 DOI: 10.1242/dmm.031781] [Citation(s) in RCA: 129] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The neurodegenerative disorder Alzheimer's disease is characterised by the formation of β-amyloid plaques and neurofibrillary tangles in the brain parenchyma, which cause synapse and neuronal loss. This leads to clinical symptoms, such as progressive memory deficits. Clinically, these pathological changes can be detected in the cerebrospinal fluid and with brain imaging, although reliable blood tests for plaque and tangle pathologies remain to be developed. Plaques and tangles often co-exist with other brain pathologies, including aggregates of transactive response DNA-binding protein 43 and Lewy bodies, but the extent to which these contribute to the severity of Alzheimer's disease is currently unknown. In this 'At a glance' article and poster, we summarise the molecular biomarkers that are being developed to detect Alzheimer's disease and its related pathologies. We also highlight the biomarkers that are currently in clinical use and include a critical appraisal of the challenges associated with applying these biomarkers for diagnostic and prognostic purposes of Alzheimer's disease and related neurodegenerative disorders, also in their prodromal clinical phases.
Collapse
Affiliation(s)
- Tammaryn Lashley
- Queen Square Brain Bank for Neurological Disorders, Department of Molecular Neuroscience, UCL Institute of Neurology, London WC1N 3BG, UK
| | - Jonathan M Schott
- Dementia Research Centre, UCL Institute of Neurology, London WC1N 3BG, UK
| | - Philip Weston
- Dementia Research Centre, UCL Institute of Neurology, London WC1N 3BG, UK
| | - Christina E Murray
- Queen Square Brain Bank for Neurological Disorders, Department of Molecular Neuroscience, UCL Institute of Neurology, London WC1N 3BG, UK
| | - Henny Wellington
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK.,UK Dementia Research Institute, London WC1N 3BG, UK
| | - Ashvini Keshavan
- Dementia Research Centre, UCL Institute of Neurology, London WC1N 3BG, UK
| | - Sandrine C Foti
- Queen Square Brain Bank for Neurological Disorders, Department of Molecular Neuroscience, UCL Institute of Neurology, London WC1N 3BG, UK
| | - Martha Foiani
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK.,UK Dementia Research Institute, London WC1N 3BG, UK
| | - Jamie Toombs
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK.,UK Dementia Research Institute, London WC1N 3BG, UK
| | - Jonathan D Rohrer
- Dementia Research Centre, UCL Institute of Neurology, London WC1N 3BG, UK
| | - Amanda Heslegrave
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK.,UK Dementia Research Institute, London WC1N 3BG, UK
| | - Henrik Zetterberg
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK .,UK Dementia Research Institute, London WC1N 3BG, UK.,Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg, Mölndal S-431 80, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal S-431 80, Sweden
| |
Collapse
|
359
|
Bergman L, Zetterberg H, Kaihola H, Hagberg H, Blennow K, Åkerud H. Blood-based cerebral biomarkers in preeclampsia: Plasma concentrations of NfL, tau, S100B and NSE during pregnancy in women who later develop preeclampsia - A nested case control study. PLoS One 2018; 13:e0196025. [PMID: 29719006 PMCID: PMC5931625 DOI: 10.1371/journal.pone.0196025] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 03/23/2018] [Indexed: 11/26/2022] Open
Abstract
Objective To evaluate if concentrations of the neuronal proteins neurofilament light chain and tau are changed in women developing preeclampsia and to evaluate the ability of a combination of neurofilament light chain, tau, S100B and neuron specific enolase in identifying neurologic impairment before diagnosis of preeclampsia. Methods A nested case-control study within a longitudinal study cohort was performed. 469 healthy pregnant women were enrolled between 2004–2007 and plasma samples were collected at gestational weeks 10, 25, 28, 33 and 37. Plasma concentrations of tau and neurofilament light chain were analyzed in 16 women who eventually developed preeclampsia and 36 controls throughout pregnancy with single molecule array (Simoa) method and compared within and between groups. S100B and NSE had been analyzed previously in the same study population. A statistical model with receiving characteristic operation curve was constructed with the four biomarkers combined. Results Plasma concentrations of neurofilament light chain were significantly increased in women who developed preeclampsia in gestational week 33 (11.85 ng/L, IQR 7.48–39.93 vs 6.80 ng/L, IQR 5.65–11.40) and 37 (22.15 ng/L, IQR 10.93–35.30 vs 8.40 ng/L, IQR 6.40–14.30) and for tau in gestational week 37 (4.33 ng/L, IQR 3.97–12.83 vs 3.77 ng/L, IQR 1.91–5.25) in contrast to healthy controls. A combined model for preeclampsia with tau, neurofilament light chain, S100B and neuron specific enolase in gestational week 25 displayed an area under the curve of 0.77, in week 28 it was 0.75, in week 33 it was 0.89 and in week 37 it was 0.83. Median week for diagnosis of preeclampsia was at 38 weeks of gestation. Conclusion Concentrations of both tau and neurofilament light chain are increased in the end of pregnancy in women developing preeclampsia in contrast to healthy pregnancies. Cerebral biomarkers might reflect cerebral involvement before onset of disease.
Collapse
Affiliation(s)
- Lina Bergman
- Department for Women’s and Children’s health, Uppsala University, Uppsala, Sweden
- Center for Clinical Research, Falun, Sweden
- * E-mail:
| | - Henrik Zetterberg
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- UCL Institute of Neurology, Queen Square, London, United Kingdom
- UK Dementia Research Institute, London, United Kingdom
| | - Helena Kaihola
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Henrik Hagberg
- Perinatal Center, Department of Obstetrics and Gynecology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Centre for the Developing Brain, King's College, London, United Kingdom
| | - Kaj Blennow
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Helena Åkerud
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
360
|
Neergaard JS, Dragsbæk K, Christiansen C, Karsdal MA, Brix S, Henriksen K. Two novel blood-based biomarker candidates measuring degradation of tau are associated with dementia: A prospective study. PLoS One 2018; 13:e0194802. [PMID: 29641555 PMCID: PMC5895005 DOI: 10.1371/journal.pone.0194802] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 03/09/2018] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Truncated tau appears to be specifically related to disease pathology and recent studies have shown the presence and elevation of several truncated tau species in Cerebrospinal fluid (CSF) of subjects with Alzheimer's disease (AD); however, the relevance of truncated Tau measurements in blood is still being studied. OBJECTIVE The aim of the current study was to assess the longitudinal associations between baseline levels of two novel blood biomarker candidates measuring truncated tau, Tau-A and Tau-C, and the risk of incident dementia and AD in elderly women. METHODS Using solid phase competitive ELISA, two tau fragments were detected in serum of 5,309 women from the Prospective Epidemiological Risk Factor study. The study was an observational, prospective study of Danish postmenopausal women. Subjects were followed with registry-linkage for up to 15 years (median follow-up time 13.7 years). Cox regression was used to assess the utility of the biomarker candidates in relation to dementia and AD. RESULTS High levels of Tau-A and Tau-C (above the median) in blood were associated with lower risk of dementia and AD (Tau-A: Dementia HR[95% CI] = 0.85[0.70-1.04]; AD 0.71[0.52-0.98] and Tau-C: Dementia 0.84[0.70-1.00]; AD 0.78[0.60-1.03]). Tau-C gave a very modest increase in the AUC in a 5-year prediction horizon as compared to a reference model with age and education, while a combination of the two did not improve their predictive capacity. CONCLUSIONS Measurement of tau in serum is feasible. The serological tau turnover profile may be related to the diagnosis and development of dementia and AD. The exact processing and profile in serum in relation to cognitive disorders remains to be further assessed to provide simple non-invasive tests to identify subjects with progressive cognitive disorders.
Collapse
Affiliation(s)
- Jesper Skov Neergaard
- Nordic Bioscience A/S, Herlev, Denmark
- DTU Bioengineering, Technical University of Denmark, Kgs, Lyngby, Denmark
- * E-mail:
| | - Katrine Dragsbæk
- Nordic Bioscience A/S, Herlev, Denmark
- DTU Bioengineering, Technical University of Denmark, Kgs, Lyngby, Denmark
| | | | | | - Susanne Brix
- DTU Bioengineering, Technical University of Denmark, Kgs, Lyngby, Denmark
| | | |
Collapse
|
361
|
Hampel H, Vergallo A, Aguilar LF, Benda N, Broich K, Cuello AC, Cummings J, Dubois B, Federoff HJ, Fiandaca M, Genthon R, Haberkamp M, Karran E, Mapstone M, Perry G, Schneider LS, Welikovitch LA, Woodcock J, Baldacci F, Lista S. Precision pharmacology for Alzheimer’s disease. Pharmacol Res 2018; 130:331-365. [DOI: 10.1016/j.phrs.2018.02.014] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 02/11/2018] [Accepted: 02/12/2018] [Indexed: 12/12/2022]
|
362
|
Quinn JP, Corbett NJ, Kellett KAB, Hooper NM. Tau Proteolysis in the Pathogenesis of Tauopathies: Neurotoxic Fragments and Novel Biomarkers. J Alzheimers Dis 2018; 63:13-33. [PMID: 29630551 PMCID: PMC5900574 DOI: 10.3233/jad-170959] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/31/2018] [Indexed: 12/11/2022]
Abstract
With predictions showing that 131.5 million people worldwide will be living with dementia by 2050, an understanding of the molecular mechanisms underpinning disease is crucial in the hunt for novel therapeutics and for biomarkers to detect disease early and/or monitor disease progression. The metabolism of the microtubule-associated protein tau is altered in different dementias, the so-called tauopathies. Tau detaches from microtubules, aggregates into oligomers and neurofibrillary tangles, which can be secreted from neurons, and spreads through the brain during disease progression. Post-translational modifications exacerbate the production of both oligomeric and soluble forms of tau, with proteolysis by a range of different proteases being a crucial driver. However, the impact of tau proteolysis on disease progression has been overlooked until recently. Studies have highlighted that proteolytic fragments of tau can drive neurodegeneration in a fragment-dependent manner as a result of aggregation and/or transcellular propagation. Proteolytic fragments of tau have been found in the cerebrospinal fluid and plasma of patients with different tauopathies, providing an opportunity to develop these fragments as novel disease progression biomarkers. A range of therapeutic strategies have been proposed to halt the toxicity associated with proteolysis, including reducing protease expression and/or activity, selectively inhibiting protease-substrate interactions, and blocking the action of the resulting fragments. This review highlights the importance of tau proteolysis in the pathogenesis of tauopathies, identifies putative sites during tau fragment-mediated neurodegeneration that could be targeted therapeutically, and discusses the potential use of proteolytic fragments of tau as biomarkers for different tauopathies.
Collapse
Affiliation(s)
- James P. Quinn
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Nicola J. Corbett
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Katherine A. B. Kellett
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Nigel M. Hooper
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| |
Collapse
|
363
|
|
364
|
Zetterberg H, Blennow K. Chronic traumatic encephalopathy: fluid biomarkers. HANDBOOK OF CLINICAL NEUROLOGY 2018; 158:323-333. [PMID: 30482360 DOI: 10.1016/b978-0-444-63954-7.00030-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Chronic traumatic encephalopathy (CTE) is a neuropathologic condition that has been described in individuals who have been exposed to repetitive head impacts, including concussions and subconcussive trauma. CTE cannot currently be diagnosed during life. Clinical symptoms of CTE (including changes in mood, behavior, and cognition) are nonspecific and may develop after a latency phase following the injuries. Differential diagnosis based solely on clinical features is, therefore, difficult. For example, some younger patients who do not experience the latency phase (i.e., symptoms of CTE may begin while still being exposed to the repetitive head impacts) may be clinically diagnosed with postconcussive syndrome, a vaguely defined condition that is described in a minority of concussed patients. Some older patients whose initial features of CTE include memory and executive dysfunction and progress to impaired activities of daily living may be clinically diagnosed with Alzheimer disease or another dementia. Although concussions are common in athletes and nonathletes, contact/collision sport athletes, such as boxers, American football players, and ice hockey players, are at greater risk of exposure to both concussion and repetitive subconcussive head impacts. Biomarkers for CTE pathophysiology would be of great value to study and improve our understanding of when and how the disease process starts and develops, as well as how it can be prevented or treated. Here, we review the literature regarding fluid biomarkers for repetitive subconcussive impacts, concussion, postconcussive syndrome, and CTE. We also discuss technical issues and potential pathways forward regarding how to move the most promising biomarker candidates into clinical laboratory practice.
Collapse
Affiliation(s)
- Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, United Kingdom; UK Dementia Research Institute, UCL, London, United Kingdom.
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| |
Collapse
|
365
|
Vu Nu TT, Tran NHT, Nam E, Nguyen TT, Yoon WJ, Cho S, Kim J, Chang KA, Ju H. Blood-based immunoassay of tau proteins for early diagnosis of Alzheimer's disease using surface plasmon resonance fiber sensors. RSC Adv 2018; 8:7855-7862. [PMID: 35539129 PMCID: PMC9078509 DOI: 10.1039/c7ra11637c] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Accepted: 02/06/2018] [Indexed: 11/21/2022] Open
Abstract
We present the immunoassay of tau proteins (total tau and phosphorylated tau) in human sera using surface plasmon resonance (SPR) fiber sensors. This assay aimed at harvesting the advantages of using both SPR fiber sensors and a blood-based assay to demonstrate label-free point-of-care-testing (POCT) patient-friendly assay in a compact format for the early diagnosis of Alzheimer's disease (AD). For conducting the assay, we used human sera of 40 subjects divided into halves, which were grouped into AD patients and control groups according to a number of neuropsychological tests. We found that on an average, the concentrations of both total tau and phosphorylated tau proteins (all known to be higher in cerebrospinal fluid (CSF) and the brain) turned out to be higher in human sera of AD patients than in controls. The limits of detection of total tau and phosphorylated tau proteins were 2.4 pg mL−1 and 1.6 pg mL−1, respectively. In particular, it was found that the AD group exhibited average concentration of total tau proteins 6-fold higher than the control group, while concentration of phosphorylated tau proteins was 3-fold higher than that of the control. We can attribute this inhomogeneity between both types of tau proteins (in terms of increase of control-to-AD in average concentration) to un-phosphorylated tau proteins being more likely to be produced in blood than phosphorylated tau proteins, which possibly is one of the potential key elements playing an important role in AD progress. Blood-based early diagnosis of Alzheimer's disease using a plasmonic fiber sensor that detects immunoreaction of tau proteins.![]()
Collapse
Affiliation(s)
- Truong Thi Vu Nu
- Department of Nano-Physics
- Gachon University
- Seongnam-si
- Republic of Korea
- GachonBionano Research Institute
| | - Nhu Hoa Thi Tran
- Department of Nano-Physics
- Gachon University
- Seongnam-si
- Republic of Korea
- GachonBionano Research Institute
| | - Eunjoo Nam
- Department of Pharmacology
- College of Medicine
- Neuroscience Research Institute
- Gachon University
- Incheon
| | - Tan Tai Nguyen
- Department of Materials Science
- School of Basic Science
- TraVinh University
- TraVinh City
- Vietnam
| | - Won Jung Yoon
- Department of Chemical and Bioengineering
- Gachon University
- Seongnam-si
- Republic of Korea
| | - Sungbo Cho
- Gachon Advanced Institute for Health Science and Technology
- Gachon University
- Incheon 21999
- Republic of Korea
- Department of Biomedical Engineering
| | - Jungsuk Kim
- Gachon Advanced Institute for Health Science and Technology
- Gachon University
- Incheon 21999
- Republic of Korea
- Department of Biomedical Engineering
| | - Keun-A. Chang
- Department of Pharmacology
- College of Medicine
- Neuroscience Research Institute
- Gachon University
- Incheon
| | - Heongkyu Ju
- Department of Nano-Physics
- Gachon University
- Seongnam-si
- Republic of Korea
- GachonBionano Research Institute
| |
Collapse
|
366
|
Abstract
Alzheimer's disease (AD) is an irreversible, incurable, progressive neurodegenerative illness, where dementia symptoms gradually worsen over a number of years. The research of validated biomarkers for AD is essential to improve diagnosis and accelerate the development of new therapies. Biochemical markers including neuroimaging could facilitate diagnosis, predict AD progression from a pre-AD state of mild cognitive impairment, and be used to detect the efficacies of disease-modifying therapies. Established biomarkers of AD from cerebrospinal fluid and neuroimaging are highly accurate, but barriers to clinical implementation exist. The focus on blood-based AD biomarkers has grown exponentially during the past few decades. An ideal diagnostic test for AD should be noninvasive and easily applicable. Clinical cost-effectiveness also needs to be established.
Collapse
Affiliation(s)
- Martina Zvěřová
- Department of Psychiatry, General University Hospital in Prague, Prague, Czech Republic, .,First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic,
| |
Collapse
|
367
|
Zis P, Strydom A. Clinical aspects and biomarkers of Alzheimer's disease in Down syndrome. Free Radic Biol Med 2018; 114:3-9. [PMID: 28870521 PMCID: PMC6451620 DOI: 10.1016/j.freeradbiomed.2017.08.024] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 08/28/2017] [Accepted: 08/30/2017] [Indexed: 12/31/2022]
Abstract
Alzheimer's disease (AD) may affect in excess of 90% of individuals with Down syndrome (DS) after age 60, due to duplication of the APP gene in trisomy of chromosome 21, with neuropathology that is comparable to Sporadic AD and Familial AD (FAD). Previous literature suggested some unique features in clinical presentation of dementia in DS (DSd), which might be due to diagnostic difficulties, or represent a real difference compared to SAD or FAD. We review current knowledge on clinical diagnosis and presentation of dementia in DS in comparison with FAD due to APP mutations and APP duplication. We suggest that the clinical presentation in DS (prominent memory decline and behavioral symptoms, and early development of myoclonus and seizures) are similar to the clinical features associated with APP mutations that is known to have an increased Aβ42/ Aβ40 ratio, and highlight the relative lack of vascular complications associated with cerebral amyloid angiopathy in DS in comparison with those rare individuals with FAD due to duplication APP. We consider the biomarker evidence associated with DS and DSd with reference to Aβ peptide levels and oxidative stress, and suggest future directions for research to explore the potential mechanisms associated with the clinical presentation of DSd.
Collapse
Affiliation(s)
- Panagiotis Zis
- Academic Department of Neurosciences, Sheffield Teaching Hospitals NHS Foundation Trust, UK
| | - Andre Strydom
- Division of Psychiatry, University College London, London, UK; Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neurosciences, King's College London, London, UK; The LonDownS Consortium, London, UK.
| |
Collapse
|
368
|
Kasai T, Tatebe H, Kondo M, Ishii R, Ohmichi T, Yeung WTE, Morimoto M, Chiyonobu T, Terada N, Allsop D, Nakagawa M, Mizuno T, Tokuda T. Increased levels of plasma total tau in adult Down syndrome. PLoS One 2017; 12:e0188802. [PMID: 29190730 PMCID: PMC5708632 DOI: 10.1371/journal.pone.0188802] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Accepted: 11/13/2017] [Indexed: 11/18/2022] Open
Abstract
Down syndrome (DS) is the most prevalent chromosomal abnormality. Early-onset dementia with the pathology of Alzheimer's disease (AD) frequently develops in DS. Reliable blood biomarkers are needed to support the diagnosis for dementia in DS, since positron emission tomography or cerebrospinal fluid sampling is burdensome, particularly for patients with DS. Plasma t-tau is one of the established biomarkers for the diagnosis of AD, suggesting the potential value of t-tau as a biomarker for dementia in DS. The aim of this study was to assess and compare plasma levels of t-tau in adults with DS and in an age-matched control population. In this study, plasma levels of t-tau in 21 patients with DS and 22 control participants were measured by an ultrasensitive immunoassay technology, the single-molecule immunoarray (Simoa) method. We observed significantly increased plasma t-tau levels in the DS group (mean ± standard deviation (SD) = 0.643±0.493) compared to those in the control group (mean ± SD = 0.470±0.232): P = 0.0050. Moreover, age dependent correlation of plasma t-tau was only found in the DS group, and not in the control group. These findings suggest that elevated plasma t-tau levels reflect AD pathology and therefore have potential as an objective biomarker to detect dementia in adult DS.
Collapse
Affiliation(s)
- Takashi Kasai
- Department of Neurology, Kyoto Prefectural University of Medicine, Kyoto, Japan
- * E-mail:
| | - Harutsugu Tatebe
- Department of Neurology, Kyoto Prefectural University of Medicine, Kyoto, Japan
- Department of Zaitaku (Homecare) Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Masaki Kondo
- Department of Neurology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Ryotaro Ishii
- Department of Neurology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Takuma Ohmichi
- Department of Neurology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Wing Tung Esther Yeung
- Department of Neurology, Kyoto Prefectural University of Medicine, Kyoto, Japan
- Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Masafumi Morimoto
- Department of Pediatrics, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan
| | - Tomohiro Chiyonobu
- Department of Pediatrics, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan
- North Medical Center, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | | | - David Allsop
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, United Kingdom
| | - Masanori Nakagawa
- Department of Neurology, Kyoto Prefectural University of Medicine, Kyoto, Japan
- North Medical Center, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Toshiki Mizuno
- Department of Neurology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Takahiko Tokuda
- Department of Neurology, Kyoto Prefectural University of Medicine, Kyoto, Japan
- Department of Molecular Pathobiology of Brain Diseases, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
369
|
Mattsson N, Zetterberg H, Nielsen N, Blennow K, Dankiewicz J, Friberg H, Lilja G, Insel PS, Rylander C, Stammet P, Aneman A, Hassager C, Kjaergaard J, Kuiper M, Pellis T, Wetterslev J, Wise M, Cronberg T. Serum tau and neurological outcome in cardiac arrest. Ann Neurol 2017; 82:665-675. [PMID: 28981963 PMCID: PMC5725735 DOI: 10.1002/ana.25067] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 10/02/2017] [Accepted: 10/04/2017] [Indexed: 02/03/2023]
Abstract
Objective To test serum tau as a predictor of neurological outcome after cardiac arrest. Methods We measured the neuronal protein tau in serum at 24, 48, and 72 hours after cardiac arrest in 689 patients in the prospective international Target Temperature Management trial. The main outcome was poor neurological outcome, defined as Cerebral Performance Categories 3–5 at 6 months. Results Increased tau was associated with poor outcome at 6 months after cardiac arrest (median = 38.5, interquartile range [IQR] = 5.7–245ng/l in poor vs median = 1.5, IQR = 0.7–2.4ng/l in good outcome, for tau at 72 hours, p < 0.0001). Tau improved prediction of poor outcome compared to using clinical information (p < 0.0001). Tau cutoffs had low false‐positive rates (FPRs) for good outcome while retaining high sensitivity for poor outcome. For example, tau at 72 hours had FPR = 2% (95% CI = 1–4%) with sensitivity = 66% (95% CI = 61–70%). Tau had higher accuracy than serum neuron‐specific enolase (NSE; the area under the receiver operating characteristic curve was 0.91 for tau vs 0.86 for NSE at 72 hours, p = 0.00024). During follow‐up (up to 956 days), tau was significantly associated with overall survival. The accuracy in predicting outcome by serum tau was equally high for patients randomized to 33 °C and 36 °C targeted temperature after cardiac arrest. Interpretation Serum tau is a promising novel biomarker for prediction of neurological outcome in patients with cardiac arrest. It may be significantly better than serum NSE, which is recommended in guidelines and currently used in clinical practice in several countries to predict outcome after cardiac arrest. Ann Neurol 2017;82:665–675
Collapse
Affiliation(s)
- Niklas Mattsson
- Clinical Memory Research Unit, Faculty of Medicine, Lund University, Lund, Sweden.,Department of Clinical Sciences, Neurology, Lund University, Skåne University Hospital, Lund, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Department of Molecular Neuroscience, UCL Institute of Neurology, London, United Kingdom.,UK Dementia Research Institute, London, United Kingdom
| | - Niklas Nielsen
- Department of Clinical Sciences, Anesthesia, and Intensive Care, Lund University, Helsingborg Hospital, Lund, Sweden
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Josef Dankiewicz
- Department of Clinical Sciences, Cardiology, Lund University, Skåne University Hospital, Lund, Sweden
| | - Hans Friberg
- Department of Clinical Sciences, Anesthesia, and Intensive Care, Lund University, Skåne University Hospital, Lund, Sweden
| | - Gisela Lilja
- Department of Clinical Sciences, Neurology, Lund University, Skåne University Hospital, Lund, Sweden
| | - Philip S Insel
- Clinical Memory Research Unit, Faculty of Medicine, Lund University, Lund, Sweden
| | - Christian Rylander
- Department of Anesthesiology and Intensive Care Medicine, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Pascal Stammet
- Department of Anesthesia and Intensive Care, Luxembourg Hospital Center, Luxembourg
| | - Anders Aneman
- Intensive Care Unit, Liverpool Hospital, South Western Sydney Local Health District, Sydney, New South Wales, Australia
| | - Christian Hassager
- Department of Cardiology B2142, Heart Center, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Jesper Kjaergaard
- Department of Cardiology B2142, Heart Center, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Michael Kuiper
- Department of Intensive Care, Medical Center Leeuwarden, Leeuwarden, the Netherlands
| | - Tommaso Pellis
- Anesthesia and Intensive Care, Card. G. Panico Hospital Agency, Tricase, Italy
| | - Jørn Wetterslev
- Copenhagen Trial Unit, Center of Clinical Intervention Research, Rigshospitalet, Copenhagen, Denmark
| | - Matthew Wise
- Adult Critical Care, University Hospital of Wales, Heath Park, Cardiff, United Kingdom
| | - Tobias Cronberg
- Department of Clinical Sciences, Neurology, Lund University, Skåne University Hospital, Lund, Sweden
| |
Collapse
|
370
|
|
371
|
Mielke MM, Hagen CE, Wennberg AMV, Airey DC, Savica R, Knopman DS, Machulda MM, Roberts RO, Jack CR, Petersen RC, Dage JL. Association of Plasma Total Tau Level With Cognitive Decline and Risk of Mild Cognitive Impairment or Dementia in the Mayo Clinic Study on Aging. JAMA Neurol 2017; 74:1073-1080. [PMID: 28692710 DOI: 10.1001/jamaneurol.2017.1359] [Citation(s) in RCA: 149] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Importance The utility of plasma total tau level as a prognostic marker for cognitive decline and dementia is not well understood. Objectives To determine (1) the association between plasma total tau level, cognitive decline, and risk of mild cognitive impairment (MCI) and dementia; (2) whether this association differs by the presence of elevated brain amyloid β (Aβ); and (3) whether plasma total tau level is associated with cognitive decline over a short interval of 15 months. Design, Setting, and Participants The present analyses included 458 participants who were enrolled in a population-based cohort study between October 2008 and June 2013. All included participants had available plasma total tau levels, Aβ positron emission tomography imaging, and a complete neuropsychological examine at the same visit, as well as at least 1 follow-up visit. Exposures Concentration of plasma total tau. Main Outcomes and Measures Risk of MCI and dementia; global and domain-specific cognitive decline. Results Of the 458 participants, 287 (62.7%) were men; mean (SD) age was 80.6 (5.6) years. Among cognitively normal (CN) participants oversampled for elevated brain Aβ, both the middle (hazard ratio [HR], 2.43; 95% CI, 1.25-4.72) and highest (HR, 2.02; 95% CI, 1.01-4.06) tertiles of plasma total tau level, compared with the lowest, were associated with an increased risk of MCI. Among participants with MCI, higher plasma total tau levels were not significantly associated with risk of dementia (all-cause dementia or Alzheimer disease). Among all participants, higher levels of plasma total tau, examined as a continuous variable, were associated with significant (P < .05) declines in global cognition, memory, attention, and visuospatial ability over a median follow-up of 3.0 years (range, 1.1-4.9 years). In additional analyses restricting the follow-up to 15 months, plasma total tau did not predict decline among CN participants. However, among participants with MCI, higher plasma total tau levels were associated with greater decline in both visuospatial ability (regression coefficient [b] = -0.50 [0.15], P < .001) and global cognition (b = -0.27 [0.10], P = .009) at 15 months. Adjusting for elevated brain Aβ did not attenuate any association. There was no interaction between plasma total tau level and brain Aβ for prognosis with any outcome. Conclusions and Relevance These results suggest that elevated plasma total tau levels are associated with cognitive decline, but the results differ based on cognitive status and the duration of follow-up. The association between plasma total tau levels and cognition is independent of elevated brain Aβ.
Collapse
Affiliation(s)
- Michelle M Mielke
- Division of Epidemiology, Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota.,Department of Neurology, Mayo Clinic, Rochester, Minnesota
| | - Clinton E Hagen
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota
| | - Alexandra M V Wennberg
- Division of Epidemiology, Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota
| | - David C Airey
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana
| | - Rodolfo Savica
- Division of Epidemiology, Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota.,Department of Neurology, Mayo Clinic, Rochester, Minnesota
| | | | - Mary M Machulda
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, Minnesota
| | - Rosebud O Roberts
- Division of Epidemiology, Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota.,Department of Neurology, Mayo Clinic, Rochester, Minnesota
| | | | | | - Jeffrey L Dage
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana
| |
Collapse
|
372
|
El Rahman HAA, Salama M, Gad El-Hak SA, El-Harouny MA, ElKafrawy P, Abou-Donia MB. A Panel of Autoantibodies Against Neural Proteins as Peripheral Biomarker for Pesticide-Induced Neurotoxicity. Neurotox Res 2017; 33:316-336. [PMID: 28875469 DOI: 10.1007/s12640-017-9793-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 07/21/2017] [Accepted: 08/03/2017] [Indexed: 12/16/2022]
Abstract
In the present study, we screened the sera of subjects chronically exposed to mixtures of pesticides (composed mainly of organophosphorus compounds (OPs) and others) and developed neurological symptoms for the presence of autoantibodies against cytoskeletal neural proteins. OPs have a well-characterized clinical profile resulting from acute cholinergic crisis. However, some of these compounds cause neuronal degeneration and demyelination known as organophosphorus compound-induced delayed neurotoxicity (OPIDN) and/or organophosphorus compound-induced chronic neurotoxicity (OPICN). Studies from our group have demonstrated the presence of autoantibodies to essential neuronal and glial proteins against cytoskeletal neural proteins in patients with chemical-induced brain injury. In this study, we screened the serum of 50 pesticide-exposed subjects and 25 non-exposed controls, using Western blot analysis against the following proteins: neurofilament triplet proteins (NFPs), tubulin, microtubule-associated tau proteins (Tau), microtubule-associated protein-2 (MAP-2), myelin basic protein (MBP), myelin-associated glycoprotein (MAG), glial fibrillary acidic protein (GFAP), calcium-calmodulin kinase II (CaMKII), glial S100-B protein, and alpha-synuclein (SNCA). Serum reactivity was measured as arbitrary chemiluminescence units. As a group, exposed subjects had significantly higher levels of autoantibody reactivity in all cases examined. The folds of increase in of autoantibodies against neural proteins of the subjects compared to healthy humans in descending order were as follows: MBP, 7.67, MAG 5.89, CaMKII 5.50, GFAP 5.1, TAU 4.96, MAP2 4.83, SNCA 4.55, NFP 4.55, S-100B 2.43, and tubulin 1.78. This study has demonstrated the presence of serum autoantibodies to central nervous system-specific proteins in a group of farmers chronically exposed to pesticides who developed neurological signs and symptoms of neural injury. These autoantibodies can be used as future diagnostic/therapeutic target for OP-induced neurotoxicity.
Collapse
Affiliation(s)
- Heba Allah Abd El Rahman
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Mohamed Salama
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Seham A Gad El-Hak
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Mona A El-Harouny
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | | | - Mohamed B Abou-Donia
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina, 27710, USA.
| |
Collapse
|
373
|
Tatebe H, Kasai T, Ohmichi T, Kishi Y, Kakeya T, Waragai M, Kondo M, Allsop D, Tokuda T. Quantification of plasma phosphorylated tau to use as a biomarker for brain Alzheimer pathology: pilot case-control studies including patients with Alzheimer's disease and down syndrome. Mol Neurodegener 2017; 12:63. [PMID: 28866979 PMCID: PMC5582385 DOI: 10.1186/s13024-017-0206-8] [Citation(s) in RCA: 173] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 08/18/2017] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND There is still a substantial unmet need for less invasive and lower-cost blood-based biomarkers to detect brain Alzheimer's disease (AD) pathology. This study is aimed to determine whether quantification of plasma tau phosphorylated at threonine 181 (p-tau181) is informative in the diagnosis of AD. METHODS We have developed a novel ultrasensitive immunoassay to quantify plasma p-tau181, and measured the levels of plasma p-tau181 in three cohorts. RESULTS In the first cohort composed of 20 AD patients and 15 age-matched controls, the plasma levels of p-tau181 were significantly higher in the AD patients than those in the controls (0.171 ± 0.166 pg/ml in AD versus 0.0405 ± 0.0756 pg/ml in controls, p = 0.0039). The percentage of the subjects whose levels of plasma p-tau181 exceeded the cut-off value (0.0921 pg/ml) was significantly higher in the AD group compared with the control group (60% in AD versus 16.7% in controls, p = 0.0090). In the second cohort composed of 20 patients with Down syndrome (DS) and 22 age-matched controls, the plasma concentrations of p-tau181 were significantly higher in the DS group (0.767 ± 1.26 pg/ml in DS versus 0.0415 ± 0.0710 pg/ml in controls, p = 0.0313). There was a significant correlation between the plasma levels of p-tau181 and age in the DS group (R2 = 0.4451, p = 0.0013). All of the DS individuals showing an extremely high concentration of plasma p-tau181 (> 1.0 pg/ml) were older than the age of 40. In the third cohort composed of 8 AD patients and 3 patients with other neurological diseases, the levels of plasma p-tau181 significantly correlated with those of CSF p-tau181 (R2 = 0.4525, p = 0.023). CONCLUSIONS We report for the first time quantitative data on the plasma levels of p-tau181 in controls and patients with AD and DS, and these data suggest that the plasma p-tau181 is a promising blood biomarker for brain AD pathology. This exploratory pilot study warrants further large-scale and well-controlled studies to validate the usefulness of plasma p-tau181 as an urgently needed surrogate marker for the diagnosis and disease progression of AD.
Collapse
Affiliation(s)
- Harutsugu Tatebe
- Department of Neurology, Kyoto Prefectural University of Medicine, Kyoto, 602-0841 Japan
- Department of Zaitaku (Homecare) Medicine, Kyoto Prefectural University of Medicine, Kyoto, 602-0841 Japan
| | - Takashi Kasai
- Department of Neurology, Kyoto Prefectural University of Medicine, Kyoto, 602-0841 Japan
| | - Takuma Ohmichi
- Department of Neurology, Kyoto Prefectural University of Medicine, Kyoto, 602-0841 Japan
| | - Yusuke Kishi
- Strategic Marketing Division, SCRUM Inc, Tokyo, 130-0021 Japan
| | - Tomoshi Kakeya
- Strategic Marketing Division, SCRUM Inc, Tokyo, 130-0021 Japan
| | - Masaaki Waragai
- Department of Neurology, Higashi Matsudo Municipal Hospital, Matsudo, 270-2222 Japan
| | - Masaki Kondo
- Department of Neurology, Kyoto Prefectural University of Medicine, Kyoto, 602-0841 Japan
| | - David Allsop
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, LA1 4YQ UK
| | - Takahiko Tokuda
- Department of Neurology, Kyoto Prefectural University of Medicine, Kyoto, 602-0841 Japan
- Department of Molecular Pathobiology of Brain Diseases, Kyoto Prefectural University of Medicine, Kyoto, 602-0841 Japan
| |
Collapse
|
374
|
De Vos A, Bjerke M, Brouns R, De Roeck N, Jacobs D, Van den Abbeele L, Guldolf K, Zetterberg H, Blennow K, Engelborghs S, Vanmechelen E. Neurogranin and tau in cerebrospinal fluid and plasma of patients with acute ischemic stroke. BMC Neurol 2017; 17:170. [PMID: 28854881 PMCID: PMC5577791 DOI: 10.1186/s12883-017-0945-8] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 08/21/2017] [Indexed: 12/19/2022] Open
Abstract
Background While neurogranin has no value as plasma biomarker for Alzheimer’s disease, it may be a potential blood biomarker for traumatic brain injury. This evokes the question whether there are changes in neurogranin levels in blood in other conditions of brain injury, such as acute ischemic stroke (AIS). Methods We therefore explored neurogranin in paired cerebrospinal fluid (CSF)/plasma samples of AIS patients (n = 50) from a well-described prospective study. In parallel, we investigated another neuronal protein, i.e. tau, which has already been suggested as potential AIS biomarker in CSF and blood. ELISA as well as Single Molecule Array (Simoa) technology were used for the biochemical analyses. Statistical analyses included Shapiro-Wilk testing, Mann-Whitney analyses and Pearson’s correlation analysis. Results In contrast to tau, of which high levels in both CSF and plasma were related to stroke characteristics like severity and long-term outcome, plasma neurogranin levels were only correlated with infarct volume. Likewise, CSF neurogranin levels were significantly higher in patients with an infarct volume > 5 mL than in patients with smaller infarct volumes. Finally, neurogranin and tau were significantly correlated in CSF, whereas a weaker relationship was observed in plasma. Conclusions These findings indicate that although plasma and CSF neurogranin may reflect the volume of acute cerebral ischemia, this synaptic protein is less likely to be a potential AIS biomarker. Levels of tau correlated with severity and outcome of stroke in both plasma and CSF, in the present study as well as previous reports, confirming the potential of tau as an AIS biomarker. Electronic supplementary material The online version of this article (10.1186/s12883-017-0945-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ann De Vos
- ADx NeuroSciences NV, Technologiepark 4, 9052, Ghent, Belgium
| | - Maria Bjerke
- Reference Center for Biological Markers of Dementia (BIODEM), Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| | - Raf Brouns
- Department of Neurology, Hospital ZorSaam, Terneuzen, The Netherlands
| | - Naomi De Roeck
- Reference Center for Biological Markers of Dementia (BIODEM), Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| | - Dirk Jacobs
- ADx NeuroSciences NV, Technologiepark 4, 9052, Ghent, Belgium
| | | | - Kaat Guldolf
- Reference Center for Biological Markers of Dementia (BIODEM), Institute Born-Bunge, University of Antwerp, Antwerp, Belgium.,Department of Neurology and Memory Clinic, Hospital Network Antwerp (ZNA) Middelheim and Hoge Beuken, Antwerp, Belgium
| | - Henrik Zetterberg
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
| | - Kaj Blennow
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Sebastiaan Engelborghs
- Reference Center for Biological Markers of Dementia (BIODEM), Institute Born-Bunge, University of Antwerp, Antwerp, Belgium.,Department of Neurology and Memory Clinic, Hospital Network Antwerp (ZNA) Middelheim and Hoge Beuken, Antwerp, Belgium
| | | |
Collapse
|
375
|
Tau plasma levels in subjective cognitive decline: Results from the DELCODE study. Sci Rep 2017; 7:9529. [PMID: 28842559 PMCID: PMC5573353 DOI: 10.1038/s41598-017-08779-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 07/18/2017] [Indexed: 12/23/2022] Open
Abstract
Previous studies have demonstrated increased tau plasma levels in patients with Alzheimer’s disease (AD) and mild cognitive impairment (MCI) due to AD. Much less is known whether increased tau plasma levels can already be detected in the pre-MCI stage of subjective cognitive decline (SCD). In the present study we measured tau plasma levels in 111 SCD patients and 134 age- and gender-matched cognitively healthy controls participating in the DZNE (German Center for Neurodegenerative Diseases) longitudinal study on cognition and dementia (DELCODE). Tau plasma levels were measured using ultra-sensitive, single-molecule array (Simoa) technology. We found no significant different tau plasma levels in SCD (3.4 pg/ml) compared with healthy controls (3.6 pg/ml) after controlling for age, gender, and education (p = 0.137). In addition, tau plasma levels did not correlate with Aβ42 (r = 0.073; p = 0.634), tau (r = −0.179; p = 0.240), and p-tau181 (r = −0.208; p = 0.171) cerebrospinal fluid (CSF) levels in a subgroup of 45 SCD patients with available CSF. In conclusion, plasma tau is not increased in SCD patients. In addition, the lack of correlation between tau in plasma and CSF in the examined cohort suggests that tau levels are affected by different factors in both biofluids.
Collapse
|
376
|
Kovacs GG, Andreasson U, Liman V, Regelsberger G, Lutz MI, Danics K, Keller E, Zetterberg H, Blennow K. Plasma and cerebrospinal fluid tau and neurofilament concentrations in rapidly progressive neurological syndromes: a neuropathology-based cohort. Eur J Neurol 2017; 24:1326-e77. [PMID: 28816001 DOI: 10.1111/ene.13389] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 06/27/2017] [Indexed: 12/25/2022]
Abstract
BACKGROUND AND PURPOSE Cerebrospinal fluid (CSF) tau and neurofilament light chain (NF-L) proteins have proved to be reliable biomarkers for neuronal damage; however, there is a strong need for blood-based tests. METHODS The present study included 132 autopsy cases with rapidly progressive neurological syndromes, including Alzheimer disease (AD) (21), sporadic (65) and genetic (21) Creutzfeldt-Jakob disease (CJD), 25 cases with vascular, neoplastic and inflammatory alterations, and additionally 18 healthy control individuals. CSF tau and NF-L concentrations were measured by enzyme-linked immunosorbent assay. Plasma tau and NF-L concentrations were measured using ultra-sensitive single molecule array technology. RESULTS Plasma and CSF tau (R = 0.59, P < 0.001) and NF-L (R = 0.69, P < 0.001) levels correlated significantly (Spearman test). Plasma tau and NF-L levels were significantly higher in all disease groups compared to healthy controls (P < 0.001). Receiver operating characteristic curves were used and area under the curve values for comparisons with controls were 0.82 (AD), 0.94 (sporadic CJD), 0.92 (genetic CJD) and 0.83 (other neurological disorders) for plasma tau and 0.99, 0.99, 1.00 and 0.96 for plasma NF-L, respectively. Molecular subtyping of sporadic CJD showed a strong effect (linear logistic regression) on plasma tau (P < 0.001) but not NF-L levels (P = 0.19). CONCLUSION Plasma tau and NF-L concentrations are strongly increased in CJD and show similar diagnostic performance to the corresponding CSF measure. Molecular subtypes of sporadic CJD show different levels of plasma tau. Although not disease-specific, these findings support the use of plasma tau and NF-L as tools to identify, or to rule out, neurodegeneration.
Collapse
Affiliation(s)
- G G Kovacs
- Institute of Neurology, Medical University of Vienna, Vienna, Austria.,Prion Disease and Neuropathology Reference Center, Semmelweis University, Budapest, Hungary
| | - U Andreasson
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - V Liman
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - G Regelsberger
- Institute of Neurology, Medical University of Vienna, Vienna, Austria
| | - M I Lutz
- Institute of Neurology, Medical University of Vienna, Vienna, Austria
| | - K Danics
- Prion Disease and Neuropathology Reference Center, Semmelweis University, Budapest, Hungary.,Department of Forensic and Insurance Medicine, Semmelweis University, Budapest, Hungary
| | - E Keller
- Prion Disease and Neuropathology Reference Center, Semmelweis University, Budapest, Hungary.,Department of Forensic and Insurance Medicine, Semmelweis University, Budapest, Hungary
| | - H Zetterberg
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, UK
| | - K Blennow
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| |
Collapse
|
377
|
Platelet phosphorylated TDP-43: an exploratory study for a peripheral surrogate biomarker development for Alzheimer's disease. Future Sci OA 2017; 3:FSO238. [PMID: 29134122 PMCID: PMC5674277 DOI: 10.4155/fsoa-2017-0090] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 07/28/2017] [Indexed: 12/13/2022] Open
Abstract
Aim: Alzheimer's disease (AD) and other forms of dementia create a noncurable disease population in world's societies. To develop a blood-based biomarker is important so that the remedial or disease-altering therapeutic intervention for AD patients would be available at the early stage. Materials & methods: TDP-43 levels were analyzed in postmortem brain tissue and platelets of AD and control subjects. Results: We observed an increased TDP-43 (<60%) in postmortem AD brain regions and similar trends were also observed in patient's platelets. Conclusion: Platelet TDP-43 could be used as a surrogate biomarker that is measurable, reproducible and sensitive for screening the patients with some early clinical signs of AD and can be used to monitor disease prognosis. In this study, we explore to identify an Alzheimer's disease (AD)-selective phospho-specific antibody that recognizes the diseased form of TDP-43 protein in patient's blood-derived platelets. Our results suggest that selective antiphosphorylated TDP-43 antibody discriminates AD from non-demented controls and patients with amyotrophic lateral sclerosis. Therefore, platelet screening with a selective antibody could potentially be a useful tool for diagnostic purposes for AD.
Collapse
|
378
|
Lue LF, Sabbagh MN, Chiu MJ, Jing N, Snyder NL, Schmitz C, Guerra A, Belden CM, Chen TF, Yang CC, Yang SY, Walker DG, Chen K, Reiman EM. Plasma Levels of Aβ42 and Tau Identified Probable Alzheimer's Dementia: Findings in Two Cohorts. Front Aging Neurosci 2017; 9:226. [PMID: 28790911 PMCID: PMC5522888 DOI: 10.3389/fnagi.2017.00226] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 07/03/2017] [Indexed: 01/31/2023] Open
Abstract
The utility of plasma amyloid beta (Aβ) and tau levels for the clinical diagnosis of Alzheimer’s disease (AD) dementia has been controversial. The main objective of this study was to compare Aβ42 and tau levels measured by the ultra-sensitive immunomagnetic reduction (IMR) assays in plasma samples collected at the Banner Sun Health Institute (BSHRI) (United States) with those from the National Taiwan University Hospital (NTUH) (Taiwan). Significant increase in tau levels were detected in AD subjects from both cohorts, while Aβ42 levels were increased only in the NTUH cohort. A regression model incorporating age showed that tau levels identified probable ADs with 81 and 96% accuracy in the BSHRI and NTUH cohorts, respectively, while computed products of Aβ42 and tau increased the accuracy to 84% in the BSHRI cohorts. Using 382.68 (pg/ml)2 as the cut-off value, the product achieved 92% accuracy in identifying AD in the combined cohorts. Overall findings support that plasma Aβ42 and tau assayed by IMR technology can be used to assist in the clinical diagnosis of AD.
Collapse
Affiliation(s)
- Lih-Fen Lue
- Laboratory of Neuroregeneration, Banner Sun Health Research Institute, Sun CityAZ, United States.,Arizona State University-Banner Neurodegenerative Disease Research Center, Biodesign Institute, Arizona State University, TempeAZ, United States
| | - Marwan N Sabbagh
- Cleo Roberts Center for Clinical Research, Banner Sun Health Research Institute, Sun CityAZ, United States
| | - Ming-Jang Chiu
- Department of Neurology, National Taiwan University Hospital, College of Medicine, National Taiwan UniversityTaipei, Taiwan.,Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan UniversityTaipei, Taiwan.,Department of Psychology, National Taiwan UniversityTaipei, Taiwan
| | - Naomi Jing
- Department of Statistics, College of Letters and Sciences, University of California, Berkeley, BerkeleyCA, United States
| | | | - Christopher Schmitz
- Arizona State University-Banner Neurodegenerative Disease Research Center, Biodesign Institute, Arizona State University, TempeAZ, United States
| | - Andre Guerra
- Arizona State University-Banner Neurodegenerative Disease Research Center, Biodesign Institute, Arizona State University, TempeAZ, United States
| | - Christine M Belden
- Cleo Roberts Center for Clinical Research, Banner Sun Health Research Institute, Sun CityAZ, United States
| | - Ta-Fu Chen
- Department of Neurology, National Taiwan University Hospital, College of Medicine, National Taiwan UniversityTaipei, Taiwan.,Department of Medical Imaging, National Taiwan University Hospital, College of Medicine, National Taiwan UniversityTaipei, Taiwan
| | | | | | - Douglas G Walker
- Laboratory of Neuroregeneration, Banner Sun Health Research Institute, Sun CityAZ, United States.,Arizona State University-Banner Neurodegenerative Disease Research Center, Biodesign Institute, Arizona State University, TempeAZ, United States
| | - Kewei Chen
- Banner Alzheimer's Institute, PhoenixAZ, United States
| | - Eric M Reiman
- Banner Alzheimer's Institute, PhoenixAZ, United States.,Translational Genomics Research Institute, PhoenixAZ, United States.,Arizona Alzheimer's Consortium, PhoenixAZ, United States
| |
Collapse
|
379
|
Abstract
The utility of the levels of amyloid beta (Aβ) peptide and tau in blood for diagnosis, drug development, and assessment of clinical trials for Alzheimer's disease (AD) has not been established. The lack of availability of ultra-sensitive assays is one critical issue that has impeded progress. The levels of Aβ species and tau in plasma and serum are much lower than levels in cerebrospinal fluid. Furthermore, plasma or serum contain high levels of assay-interfering factors, resulting in difficulties in the commonly used singulex or multiplex ELISA platforms. In this review, we focus on two modern immune-complex-based technologies that show promise to advance this field. These innovative technologies are immunomagnetic reduction technology and single molecule array technology. We describe the technologies and discuss the published studies using these technologies. Currently, the potential of utilizing these technologies to advance Aβ and tau as blood-based biomarkers for AD requires further validation using already collected large sets of samples, as well as new cohorts and population-based longitudinal studies.
Collapse
|
380
|
Sabbagh MN. Editorial Introduction to the Special Issue from the International Symposium on Biomarkers for Alzheimer's Disease and Related Disorders. Neurol Ther 2017; 6:1-4. [PMID: 28733962 PMCID: PMC5520814 DOI: 10.1007/s40120-017-0068-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Indexed: 11/17/2022] Open
Affiliation(s)
- Marwan N Sabbagh
- Department of Neurology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, USA.
| |
Collapse
|
381
|
Toorell H, Zetterberg H, Blennow K, Sävman K, Hagberg H. Increase of neuronal injury markers Tau and neurofilament light proteins in umbilical blood after intrapartum asphyxia. J Matern Fetal Neonatal Med 2017. [PMID: 28629249 DOI: 10.1080/14767058.2017.1344964] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
AIM Compare the levels of the brain injury biomarkers Tau and neurofilament light protein (NFL) in cases of asphyxia with those in controls. MATERIALS AND METHODS We analyzed the neuronal proteins Tau and NFL in umbilical blood of 10 cases of severe-moderate intrapartum asphyxia and in 18 control cases. RESULTS The levels of both Tau and neurofilament were significantly higher after asphyxia and it appeared to be a correlation between the levels of the biomarkers and the severity of the insult. DISCUSSION Future studies are warranted to support or refute the value of Tau/NFLin clinical practice. CONCLUSION Fetal asphyxia remains a clinical problem resulting in life-long neurological disabilities. We urgently need more accurate early predictive markers to direct the clinician when to provide neuroprotective therapy.
Collapse
Affiliation(s)
- Hanna Toorell
- a Perinatal Center, Institute of Clinical Sciences, University of Gothenburg, Sahlgrenska University Hospital , Gothenburg , Sweden
| | - Henrik Zetterberg
- b Clinical Neurochemistry Laboratory , Mölndal , Sweden.,c Department of Psychiatry and Neurochemistry , Institute of Neuroscience and Physiology , Mölndal , Sweden.,d Department of Molecular Neuroscience , UCL Institute of Neurology, University College London , London , UK
| | - Kaj Blennow
- b Clinical Neurochemistry Laboratory , Mölndal , Sweden.,c Department of Psychiatry and Neurochemistry , Institute of Neuroscience and Physiology , Mölndal , Sweden
| | - Karin Sävman
- e Department of Pediatrics , Institute of Clinical Sciences, University of Gothenburg , Gothenburg , Sweden
| | - Henrik Hagberg
- a Perinatal Center, Institute of Clinical Sciences, University of Gothenburg, Sahlgrenska University Hospital , Gothenburg , Sweden.,f Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering , King's College London, St. Thomas' Hospital , London , UK
| |
Collapse
|
382
|
Abstract
A set of core cerebrospinal fluid (CSF) biomarkers for Alzheimer's disease (AD) includes total tau (T-tau), phosphorylated tau (P-tau) and β-amyloid 42 (Aβ42). These biomarkers reflect some of the key aspects of AD pathophysiology, including neuronal degeneration, tau phosphorylation with tangle formation, and Aβ aggregation with deposition of the peptide into plaques. The core AD CSF biomarkers have been validated clinically in numerous studies, and found to have a very high diagnostic performance to identify AD, both in the dementia and in the mild cognitive impairment stages of the disease. CSF Aβ42 has also been found to show very high concordance with amyloid PET to identify brain amyloid deposition. The synaptic protein neurogranin is a novel candidate CSF biomarker for AD and prodromal AD. High CSF neurogranin predicts future cognitive decline and seems to be more specific for AD than, for example, T-tau. Importantly, technical developments have given ultrasensitive measurement techniques that allow measurement of brain-specific proteins such as tau and neurofilament light (NFL) in blood samples. Both plasma tau and NFL are increased in AD, and a recent study showed that plasma NFL has a diagnostic performance comparable to the core AD CSF biomarkers, and predicted future cognitive decline. Future large longitudinal clinical studies are warranted to determine the potential for plasma tau and NFL to serve as first-in-line screening tools for neurodegeneration in primary care.
Collapse
Affiliation(s)
- Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden.
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.
| |
Collapse
|
383
|
Mattsson N, Andreasson U, Zetterberg H, Blennow K. Association of Plasma Neurofilament Light With Neurodegeneration in Patients With Alzheimer Disease. JAMA Neurol 2017; 74:557-566. [PMID: 28346578 PMCID: PMC5822204 DOI: 10.1001/jamaneurol.2016.6117] [Citation(s) in RCA: 700] [Impact Index Per Article: 87.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Question What is the importance of plasma neurofilament light in Alzheimer disease? Findings In this case-control study of 193 cognitively healthy controls, 197 patients with mild cognitive impairment, and 180 patients with Alzheimer disease dementia, plasma neurofilament light was associated with Alzheimer disease and correlated with future progression of cognitive decline, brain atrophy, and brain hypometabolism. Meaning Plasma neurofilament light may be a promising noninvasive biomarker for Alzheimer disease. Importance Existing cerebrospinal fluid (CSF) or imaging (tau positron emission tomography) biomarkers for Alzheimer disease (AD) are invasive or expensive. Biomarkers based on standard blood test results would be useful in research, drug development, and clinical practice. Plasma neurofilament light (NFL) has recently been proposed as a blood-based biomarker for neurodegeneration in dementias. Objective To test whether plasma NFL concentrations are increased in AD and associated with cognitive decline, other AD biomarkers, and imaging evidence of neurodegeneration. Design, Setting, and Participants In this prospective case-control study, an ultrasensitive assay was used to measure plasma NFL concentration in 193 cognitively healthy controls, 197 patients with mild cognitive impairment (MCI), and 180 patients with AD dementia from the Alzheimer’s Disease Neuroimaging Initiative. The study dates were September 7, 2005, to February 13, 2012. The plasma NFL analysis was performed in September 2016. Main Outcomes and Measures Associations were tested between plasma NFL and diagnosis, Aβ pathologic features, CSF biomarkers of neuronal injury, cognition, brain structure, and metabolism. Results Among 193 cognitively healthy controls, 197 patients with mild cognitive impairment, and 180 patients with AD with dementia, plasma NFL correlated with CSF NFL (Spearman ρ = 0.59, P < .001). Plasma NFL was increased in patients with MCI (mean, 42.8 ng/L) and patients with AD dementia (mean, 51.0 ng/L) compared with controls (mean, 34.7 ng/L) (P < .001) and had high diagnostic accuracy for patients with AD with dementia vs controls (area under the receiver operating characteristic curve, 0.87, which is comparable to established CSF biomarkers). Plasma NFL was particularly high in patients with MCI and patients with AD dementia with Aβ pathologic features. High plasma NFL correlated with poor cognition and AD-related atrophy (at baseline and longitudinally) and with brain hypometabolism (longitudinally). Conclusions and Relevance Plasma NFL is associated with AD diagnosis and with cognitive, biochemical, and imaging hallmarks of the disease. This finding implies a potential usefulness for plasma NFL as a noninvasive biomarker in AD.
Collapse
Affiliation(s)
- Niklas Mattsson
- Clinical Memory Research Unit, Department of Clinical Sciences, Faculty of Medicine, Lund University, Lund, Sweden2Memory Clinic, Skåne University Hospital, Scania, Sweden3Department of Neurology, Skåne University Hospital, Scania, Sweden
| | - Ulf Andreasson
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden5Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Möndal, Sweden
| | - Henrik Zetterberg
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden5Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Möndal, Sweden6Department of Molecular Neuroscience, University College London Institute of Neurology, Queen Square, London, England
| | - Kaj Blennow
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden5Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Möndal, Sweden
| | | |
Collapse
|
384
|
Zetterberg H. Applying fluid biomarkers to Alzheimer's disease. Am J Physiol Cell Physiol 2017; 313:C3-C10. [PMID: 28424166 DOI: 10.1152/ajpcell.00007.2017] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 04/18/2017] [Accepted: 04/18/2017] [Indexed: 01/20/2023]
Abstract
Alzheimer's disease (AD) is a common neurodegenerative disease that starts with a clinically silent phase of a decade or more during which brain pathologies accumulate predominantly in the medial temporal lobe but also elsewhere in the brain. Network dysfunction and clinical symptoms typically appear when senile plaque (amyloid-β) and neurofibrillary tangle (tau) pathologies meet in the brain parenchyma, producing synapse and neuronal loss. For plaque and tangle pathologies, reliable fluid biomarkers have been developed. These require sampling of cerebrospinal fluid. Reliable blood tests for plaque and tangle pathologies are currently lacking, but blood tests for general neurodegeneration have recently been developed. In AD, plaques and tangles often coexist with other pathologies, including Lewy bodies, and to what extent these contribute to symptoms is currently unknown. There are also important differential diagnoses that may be possible to distinguish from AD with the aid of biomarkers. The scope of this review is fluid biomarkers for AD and related pathologies. The purpose is to provide the reader with an updated account of currently available fluid biomarkers for AD and clinically relevant differential diagnoses.
Collapse
Affiliation(s)
- Henrik Zetterberg
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden; .,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Department of Molecular Neuroscience, University College London Institute of Neurology, London, United Kingdom; and.,UK Dementia Research Institute, London, United Kingdom
| |
Collapse
|
385
|
Lane CA, Parker TD, Cash DM, Macpherson K, Donnachie E, Murray-Smith H, Barnes A, Barker S, Beasley DG, Bras J, Brown D, Burgos N, Byford M, Jorge Cardoso M, Carvalho A, Collins J, De Vita E, Dickson JC, Epie N, Espak M, Henley SMD, Hoskote C, Hutel M, Klimova J, Malone IB, Markiewicz P, Melbourne A, Modat M, Schrag A, Shah S, Sharma N, Sudre CH, Thomas DL, Wong A, Zhang H, Hardy J, Zetterberg H, Ourselin S, Crutch SJ, Kuh D, Richards M, Fox NC, Schott JM. Study protocol: Insight 46 - a neuroscience sub-study of the MRC National Survey of Health and Development. BMC Neurol 2017; 17:75. [PMID: 28420323 PMCID: PMC5395844 DOI: 10.1186/s12883-017-0846-x] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 03/21/2017] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Increasing age is the biggest risk factor for dementia, of which Alzheimer's disease is the commonest cause. The pathological changes underpinning Alzheimer's disease are thought to develop at least a decade prior to the onset of symptoms. Molecular positron emission tomography and multi-modal magnetic resonance imaging allow key pathological processes underpinning cognitive impairment - including β-amyloid depostion, vascular disease, network breakdown and atrophy - to be assessed repeatedly and non-invasively. This enables potential determinants of dementia to be delineated earlier, and therefore opens a pre-symptomatic window where intervention may prevent the onset of cognitive symptoms. METHODS/DESIGN This paper outlines the clinical, cognitive and imaging protocol of "Insight 46", a neuroscience sub-study of the MRC National Survey of Health and Development. This is one of the oldest British birth cohort studies and has followed 5362 individuals since their birth in England, Scotland and Wales during one week in March 1946. These individuals have been tracked in 24 waves of data collection incorporating a wide range of health and functional measures, including repeat measures of cognitive function. Now aged 71 years, a small fraction have overt dementia, but estimates suggest that ~1/3 of individuals in this age group may be in the preclinical stages of Alzheimer's disease. Insight 46 is recruiting 500 study members selected at random from those who attended a clinical visit at 60-64 years and on whom relevant lifecourse data are available. We describe the sub-study design and protocol which involves a prospective two time-point (0, 24 month) data collection covering clinical, neuropsychological, β-amyloid positron emission tomography and magnetic resonance imaging, biomarker and genetic information. Data collection started in 2015 (age 69) and aims to be completed in 2019 (age 73). DISCUSSION Through the integration of data on the socioeconomic environment and on physical, psychological and cognitive function from 0 to 69 years, coupled with genetics, structural and molecular imaging, and intensive cognitive and neurological phenotyping, Insight 46 aims to identify lifetime factors which influence brain health and cognitive ageing, with particular focus on Alzheimer's disease and cerebrovascular disease. This will provide an evidence base for the rational design of disease-modifying trials.
Collapse
Affiliation(s)
- Christopher A. Lane
- Dementia Research Centre, Institute of Neurology, University College London, London, UK
| | - Thomas D. Parker
- Dementia Research Centre, Institute of Neurology, University College London, London, UK
| | - Dave M. Cash
- Dementia Research Centre, Institute of Neurology, University College London, London, UK
- Translational Imaging Group, Centre for Medical Image Computing, University College London, London, UK
| | - Kirsty Macpherson
- Dementia Research Centre, Institute of Neurology, University College London, London, UK
| | - Elizabeth Donnachie
- Leonard Wolfson Experimental Neurology Centre, Institute of Neurology, University College London, London, UK
| | - Heidi Murray-Smith
- Dementia Research Centre, Institute of Neurology, University College London, London, UK
| | - Anna Barnes
- Institute of Nuclear Medicine, University College London Hospitals, London, UK
| | - Suzie Barker
- Dementia Research Centre, Institute of Neurology, University College London, London, UK
| | - Daniel G. Beasley
- Translational Imaging Group, Centre for Medical Image Computing, University College London, London, UK
| | - Jose Bras
- Department of Molecular Neuroscience, Institute of Neurology, University College London, London, UK
- Department of Medical Sciences and Institute of Biomedicine - iBiMED, University of Aveiro, Aveiro, Portugal
| | - David Brown
- Institute of Nuclear Medicine, University College London Hospitals, London, UK
| | - Ninon Burgos
- Translational Imaging Group, Centre for Medical Image Computing, University College London, London, UK
| | | | - M. Jorge Cardoso
- Translational Imaging Group, Centre for Medical Image Computing, University College London, London, UK
| | - Ana Carvalho
- Institute of Nuclear Medicine, University College London Hospitals, London, UK
| | - Jessica Collins
- Dementia Research Centre, Institute of Neurology, University College London, London, UK
| | - Enrico De Vita
- Lysholm Department of Neuroradiology, The National Hospital for Neurology and Neurosurgery, Queen Square, London, UK
- Neuroradiological Academic Unit, Department of Brain Repair and Rehabilitation, Institute of Neurology, University College London, London, UK
| | - John C. Dickson
- Institute of Nuclear Medicine, University College London Hospitals, London, UK
| | - Norah Epie
- Dementia Research Centre, Institute of Neurology, University College London, London, UK
| | - Miklos Espak
- Translational Imaging Group, Centre for Medical Image Computing, University College London, London, UK
| | - Susie M. D. Henley
- Dementia Research Centre, Institute of Neurology, University College London, London, UK
| | - Chandrashekar Hoskote
- Lysholm Department of Neuroradiology, The National Hospital for Neurology and Neurosurgery, Queen Square, London, UK
| | - Michael Hutel
- Dementia Research Centre, Institute of Neurology, University College London, London, UK
- Translational Imaging Group, Centre for Medical Image Computing, University College London, London, UK
| | - Jana Klimova
- Dementia Research Centre, Institute of Neurology, University College London, London, UK
| | - Ian B. Malone
- Dementia Research Centre, Institute of Neurology, University College London, London, UK
| | - Pawel Markiewicz
- Translational Imaging Group, Centre for Medical Image Computing, University College London, London, UK
| | - Andrew Melbourne
- Translational Imaging Group, Centre for Medical Image Computing, University College London, London, UK
| | - Marc Modat
- Dementia Research Centre, Institute of Neurology, University College London, London, UK
- Translational Imaging Group, Centre for Medical Image Computing, University College London, London, UK
| | - Anette Schrag
- Department of Clinical Neuroscience, Institute of Neurology, University College London, London, UK
| | - Sachit Shah
- Lysholm Department of Neuroradiology, The National Hospital for Neurology and Neurosurgery, Queen Square, London, UK
- Neuroradiological Academic Unit, Department of Brain Repair and Rehabilitation, Institute of Neurology, University College London, London, UK
| | - Nikhil Sharma
- MRC Unit for Lifelong Health and Ageing at UCL, London, UK
- National Hospital for Neurology and Neurosurgery, London, UK
| | - Carole H. Sudre
- Dementia Research Centre, Institute of Neurology, University College London, London, UK
- Translational Imaging Group, Centre for Medical Image Computing, University College London, London, UK
| | - David L. Thomas
- Leonard Wolfson Experimental Neurology Centre, Institute of Neurology, University College London, London, UK
- Neuroradiological Academic Unit, Department of Brain Repair and Rehabilitation, Institute of Neurology, University College London, London, UK
| | - Andrew Wong
- MRC Unit for Lifelong Health and Ageing at UCL, London, UK
| | - Hui Zhang
- Department of Computer Science and Centre for Medical Image Computing, University College London, London, UK
| | - John Hardy
- Reta Lila Weston Research Laboratories, Department of Molecular Neuroscience, Institute of Neurology, University College London, London, UK
| | - Henrik Zetterberg
- Department of Molecular Neuroscience, Institute of Neurology, University College London, London, UK
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Sebastien Ourselin
- Translational Imaging Group, Centre for Medical Image Computing, University College London, London, UK
| | - Sebastian J. Crutch
- Dementia Research Centre, Institute of Neurology, University College London, London, UK
| | - Diana Kuh
- MRC Unit for Lifelong Health and Ageing at UCL, London, UK
| | | | - Nick C. Fox
- Dementia Research Centre, Institute of Neurology, University College London, London, UK
| | - Jonathan M. Schott
- Dementia Research Centre, Institute of Neurology, University College London, London, UK
| |
Collapse
|
386
|
Chiu MJ, Fan LY, Chen TF, Chen YF, Chieh JJ, Horng HE. Plasma Tau Levels in Cognitively Normal Middle-Aged and Older Adults. Front Aging Neurosci 2017; 9:51. [PMID: 28321189 PMCID: PMC5337523 DOI: 10.3389/fnagi.2017.00051] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 02/21/2017] [Indexed: 12/15/2022] Open
Abstract
Using an ultra-sensitive technique, an immunomagnetic reduction assay, the plasma tau level can be measured to a limit of quantification of pg/ml. In total 126 cognitively normal middle-aged and older adults (45–95 years old) were recruited. The plasma tau levels were significantly higher in the older group (aged 65–95 years) 18.14 ± 7.33 pg/ml than those in the middle-aged group (aged 45–64 years) 14.35 ± 6.49 pg/ml when controlled gender and ApoEε4 carrier status (F = 3.102, P = 0.029). The ApoEε4 carriers had higher plasma tau levels than the non-carriers when controlled age and gender (F = 6.149, P = 0.001). Men had higher plasma tau levels than their women counterparts when controlled ApoEε4 carrier status and gender (F = 6.149, P = 0.001). The plasma tau levels were found to be positively associated with their ages (r = 0.359, P < 0.001). Regression analysis showed that age explained approximately 13% of the variance in the plasma tau levels, and explained more than 10% of the variance in the volumes of the hippocampus and white matter hypodensity (R2 change 0.123~0.167, all P < 0.001), and explained less than 10% of the variance in the volume of the amygdala, and central part of the corpus callosum (R2 change 0.085~0.097, all P = 0.001). However, the plasma tau levels do not further explain any residual variance in the volume of brain structures. In conclusion, the effect of age on the plasma tau levels should always be considered in clinical applications of this surrogate biomarker to middle-aged and elderly subjects.
Collapse
Affiliation(s)
- Ming-Jang Chiu
- Department of Neurology, National Taiwan University Hospital, College of Medicine, National Taiwan UniversityTaipei, Taiwan; Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan UniversityTaipei, Taiwan; Department of Psychology, National Taiwan UniversityTaipei, Taiwan; Graduate Institute of Biomedical Engineering and Bioinformatics, National Taiwan UniversityTaipei, Taiwan
| | - Ling-Yun Fan
- Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan UniversityTaipei, Taiwan; Section of Neurology, Department of Psychosomatic Medicine, Taipei City HospitalTaipei, Taiwan
| | - Ta-Fu Chen
- Department of Neurology, National Taiwan University Hospital, College of Medicine, National Taiwan University Taipei, Taiwan
| | - Ya-Fang Chen
- Department of Medical Imaging, National Taiwan University Hospital, College of Medicine, National Taiwan University Taipei, Taiwan
| | - Jen-Jei Chieh
- Institute of Electro-Optical Science and Technology, National Taiwan Normal University Taipei, Taiwan
| | - Herng-Er Horng
- Institute of Electro-Optical Science and Technology, National Taiwan Normal University Taipei, Taiwan
| |
Collapse
|
387
|
Diagnostic value of blood thiamine metabolites in Alzheimer's disease examined by 11C-PiB PET scanning. Future Sci OA 2017; 3:FSO172. [PMID: 28670464 PMCID: PMC5481811 DOI: 10.4155/fsoa-2016-0087] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 01/12/2017] [Indexed: 01/22/2023] Open
Abstract
AIM We evaluated the diagnostic value of blood thiamine metabolites for Alzheimer's disease (AD) by using positron emission tomography with 11C-Pittsburgh compound B (11C-PiB PET) scanning. METHODS Thirty-eight clinically diagnosed AD patients were voluntarily recruited. Blood thiamine metabolites were measured by high-performance liquid chromatography. All the patients received 11C-PiB PET scanning for the measurement of cerebral amyloid deposition. RESULTS Thiamine diphosphate (TDP) had 66.7% sensitivity and 80.0% specificity for AD diagnosis, while the γ-value representing the best combination of thiamine metabolites and age had 24.2% sensitivity and 100.0% specificity according to the cut-off value of our previous study. CONCLUSION Blood TDP but not γ-value exhibited results significant for AD diagnosis.
Collapse
|
388
|
Giacomelli C, Daniele S, Martini C. Potential biomarkers and novel pharmacological targets in protein aggregation-related neurodegenerative diseases. Biochem Pharmacol 2017; 131:1-15. [PMID: 28159621 DOI: 10.1016/j.bcp.2017.01.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 01/26/2017] [Indexed: 10/20/2022]
Abstract
The aggregation of specific proteins plays a pivotal role in the etiopathogenesis of several neurodegenerative diseases (NDs). β-Amyloid (Aβ) peptide-containing plaques and intraneuronal neurofibrillary tangles composed of hyperphosphorylated protein tau are the two main neuropathological lesions in Alzheimer's disease. Meanwhile, Parkinson's disease is defined by the presence of intraneuronal inclusions (Lewy bodies), in which α-synuclein (α-syn) has been identified as a major protein component. The current literature provides considerable insights into the mechanisms underlying oligomeric-related neurodegeneration, as well as the relationship between protein aggregation and ND, thus facilitating the development of novel putative biomarkers and/or pharmacological targets. Recently, α-syn, tau and Aβ have been shown to interact each other or with other "pathological proteins" to form toxic heteroaggregates. These latest findings are overcoming the concept that each neurodegenerative disease is related to the misfolding of a single specific protein. In this review, potential opportunities and pharmacological approaches targeting α-syn, tau and Aβ and their oligomeric forms are highlighted with examples from recent studies. Protein aggregation as a biomarker of NDs, in both the brain and peripheral fluids, is deeply explored. Finally, the relationship between biomarker establishment and assessment and their use as diagnostics or therapeutic targets are discussed.
Collapse
Affiliation(s)
- Chiara Giacomelli
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Simona Daniele
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Claudia Martini
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy.
| |
Collapse
|