351
|
Sivakumar PM, Yetisgin AA, Sahin SB, Demir E, Cetinel S. Bone tissue engineering: Anionic polysaccharides as promising scaffolds. Carbohydr Polym 2022; 283:119142. [DOI: 10.1016/j.carbpol.2022.119142] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/22/2021] [Accepted: 01/10/2022] [Indexed: 12/21/2022]
|
352
|
Comparison of Physicochemical, Mechanical, and (Micro-)Biological Properties of Sintered Scaffolds Based on Natural- and Synthetic Hydroxyapatite Supplemented with Selected Dopants. Int J Mol Sci 2022; 23:ijms23094692. [PMID: 35563084 PMCID: PMC9101299 DOI: 10.3390/ijms23094692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/20/2022] [Accepted: 04/21/2022] [Indexed: 12/24/2022] Open
Abstract
The specific combinations of materials and dopants presented in this work have not been previously described. The main goal of the presented work was to prepare and compare the different properties of newly developed composite materials manufactured by sintering. The synthetic- (SHAP) or natural- (NHAP) hydroxyapatite serves as a matrix and was doped with: (i) organic: multiwalled carbon nanotubes (MWCNT), fullerenes C60, (ii) inorganic: Cu nanowires. Research undertaken was aimed at seeking novel candidates for bone replacement biomaterials based on hydroxyapatite—the main inorganic component of bone, because bone reconstructive surgery is currently mostly carried out with the use of autografts; titanium or other non-hydroxyapatite -based materials. The physicomechanical properties of the developed biomaterials were tested by Scanning Electron Microscopy (SEM), Dielectric Spectroscopy (BSD), Nuclear Magnetic Resonance (NMR), and Differential Scanning Calorimetry (DSC), as well as microhardness using Vickers method. The results showed that despite obtaining porous sinters. The highest microhardness was achieved for composite materials based on NHAP. Based on NMR spectroscopy, residue organic substances could be observed in NHAP composites, probably due to the organic structures that make up the tooth. Microbiology investigations showed that the selected samples exhibit bacteriostatic properties against Gram-positive reference bacterial strain S. epidermidis (ATCC 12228); however, the property was much less pronounced against Gram-negative reference strain E. coli (ATCC 25922). Both NHAP and SHAP, as well as their doped derivates, displayed in good general compatibility, with the exception of Cu-nanowire doped derivates.
Collapse
|
353
|
Sahebalzamani M, Ziminska M, McCarthy HO, Levingstone TJ, Dunne NJ, Hamilton AR. Advancing bone tissue engineering one layer at a time: a layer-by-layer assembly approach to 3D bone scaffold materials. Biomater Sci 2022; 10:2734-2758. [PMID: 35438692 DOI: 10.1039/d1bm01756j] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The layer-by-layer (LbL) assembly technique has shown excellent potential in tissue engineering applications. The technique is mainly based on electrostatic attraction and involves the sequential adsorption of oppositely charged electrolyte complexes onto a substrate, resulting in uniform single layers that can be rapidly deposited to form nanolayer films. LbL has attracted significant attention as a coating technique due to it being a convenient and affordable fabrication method capable of achieving a wide range of biomaterial coatings while keeping the main biofunctionality of the substrate materials. One promising application is the use of nanolayer films fabricated by LbL assembly in the development of 3-dimensional (3D) bone scaffolds for bone repair and regeneration. Due to their versatility, nanoscale films offer an exciting opportunity for tailoring surface and bulk property modification of implants for osseous defect therapies. This review article discusses the state of the art of the LbL assembly technique, and the properties and functions of LbL-assembled films for engineered bone scaffold application, combination of multilayers for multifunctional coatings and recent advancements in the application of LbL assembly in bone tissue engineering. The recent decade has seen tremendous advances in the promising developments of LbL film systems and their impact on cell interaction and tissue repair. A deep understanding of the cell behaviour and biomaterial interaction for the further development of new generations of LbL films for tissue engineering are the most important targets for biomaterial research in the field. While there is still much to learn about the biological and physicochemical interactions at the interface of nano-surface coated scaffolds and biological systems, we provide a conceptual review to further progress in the LbL approach to 3D bone scaffold materials and inform the future of LbL development in bone tissue engineering.
Collapse
Affiliation(s)
- MohammadAli Sahebalzamani
- School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin 9, Ireland. .,Centre for Medical Engineering Research, Dublin City University, Dublin 9, Ireland.
| | - Monika Ziminska
- School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, UK.
| | - Helen O McCarthy
- School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, UK. .,School of Chemical Sciences, Dublin City University, Dublin 9, Ireland
| | - Tanya J Levingstone
- School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin 9, Ireland. .,Centre for Medical Engineering Research, Dublin City University, Dublin 9, Ireland. .,Advanced Manufacturing Research Centre (I-Form), School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin 9, Ireland.,Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland.,Advanced Processing Technology Research Centre, Dublin City University, Dublin 9, Ireland.,Biodesign Europe, Dublin City University, Dublin 9, Ireland
| | - Nicholas J Dunne
- School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin 9, Ireland. .,Centre for Medical Engineering Research, Dublin City University, Dublin 9, Ireland. .,School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, UK. .,Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin 2, Ireland.,Advanced Manufacturing Research Centre (I-Form), School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin 9, Ireland.,Advanced Materials and Bioengineering Research Centre (AMBER), Trinity College Dublin, Dublin 2, Ireland.,Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland.,Advanced Processing Technology Research Centre, Dublin City University, Dublin 9, Ireland.,Biodesign Europe, Dublin City University, Dublin 9, Ireland
| | - Andrew R Hamilton
- Faculty of Engineering and Physical Sciences, University of Southampton, Southampton SO17 1BJ, UK.
| |
Collapse
|
354
|
Adawy A, Diaz R. Probing the Structure, Cytocompatibility, and Antimicrobial Efficacy of Silver-, Strontium-, and Zinc-Doped Monetite. ACS APPLIED BIO MATERIALS 2022; 5:1648-1657. [PMID: 35324139 PMCID: PMC9019811 DOI: 10.1021/acsabm.2c00047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/08/2022] [Indexed: 11/28/2022]
Abstract
Calcium phosphate phases are among the most widely accepted compounds for biomaterial applications, of which the resorbable phases have gained particular attention in recent years. Brushite and its anhydrous form monetite are among the most interesting resorbable calcium phosphate phases that can be applied as cements and for in situ fabrication of three-dimensional (3D) implants. Of these two dicalcium phosphate compounds, monetite is more stable and undergoes slower degradation than brushite. The purpose of the current study is to synthesize and dope monetite with the antimicrobial elements silver and zinc and the osteoinductive element strontium and investigate the possible structural variations as well as their biocompatibility and antimicrobial effectiveness. For this, powder X-ray diffraction (PXRD), energy-dispersive X-ray spectroscopy (EDX), scanning electron microscopy (SEM), and cryo-transmission electron microscopy (cryo-TEM) were used to thoroughly study the synthesized structures. Moreover, the ASTM E-2149-01 protocol and a cell proliferation assay were used to determine the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) and the cytocompatibility of the different phases with the Soas-2 cell line, respectively. The results confirm the successful synthesis and doping procedures, such that zinc was the most incorporated element into the monetite phase and strontium was the least incorporated element. The microbiological studies revealed that silver is a very effective antimicrobial agent at low concentrations but unsuitable at high concentrations because its cytotoxicity would prevail. On the other hand, doping the compounds with zinc led to a reasonable antimicrobial activity without compromising the biocompatibility to obviously high concentrations. The study also highlights that strontium, widely known for its osteoinductivity, bears an antimicrobial effect at high concentrations. The generated doped compounds could be beneficial for prospective studies as bone cements or for scaffold biomaterial applications.
Collapse
Affiliation(s)
- Alaa Adawy
- Unit
of Electron Microscopy and Nanotechnology, Institute for Scientific
and Technological Resources (SCTs), University
of Oviedo, 33006 Oviedo, Asturias, Spain
| | - Raquel Diaz
- Nanomaterials
and Nanotechnology Research Centre—CINN (CSIC), 33940 El Entrego, Spain
| |
Collapse
|
355
|
Dukle A, Murugan D, Nathanael AJ, Rangasamy L, Oh TH. Can 3D-Printed Bioactive Glasses Be the Future of Bone Tissue Engineering? Polymers (Basel) 2022; 14:1627. [PMID: 35458377 PMCID: PMC9027654 DOI: 10.3390/polym14081627] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/28/2022] [Accepted: 04/05/2022] [Indexed: 02/06/2023] Open
Abstract
According to the Global Burden of Diseases, Injuries, and Risk Factors Study, cases of bone fracture or injury have increased to 33.4% in the past two decades. Bone-related injuries affect both physical and mental health and increase the morbidity rate. Biopolymers, metals, ceramics, and various biomaterials have been used to synthesize bone implants. Among these, bioactive glasses are one of the most biomimetic materials for human bones. They provide good mechanical properties, biocompatibility, and osteointegrative properties. Owing to these properties, various composites of bioactive glasses have been FDA-approved for diverse bone-related and other applications. However, bone defects and bone injuries require customized designs and replacements. Thus, the three-dimensional (3D) printing of bioactive glass composites has the potential to provide customized bone implants. This review highlights the bottlenecks in 3D printing bioactive glass and provides an overview of different types of 3D printing methods for bioactive glass. Furthermore, this review discusses synthetic and natural bioactive glass composites. This review aims to provide information on bioactive glass biomaterials and their potential in bone tissue engineering.
Collapse
Affiliation(s)
- Amey Dukle
- Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India; (A.D.); (D.M.); (L.R.)
- School of Biosciences & Technology (SBST), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Dhanashree Murugan
- Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India; (A.D.); (D.M.); (L.R.)
- School of Biosciences & Technology (SBST), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Arputharaj Joseph Nathanael
- Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India; (A.D.); (D.M.); (L.R.)
| | - Loganathan Rangasamy
- Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India; (A.D.); (D.M.); (L.R.)
| | - Tae-Hwan Oh
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Korea
| |
Collapse
|
356
|
Wang P, Wang X, Wang B, Li X, Xie Z, Chen J, Honjo T, Tu X. 3D printing of osteocytic Dll4 integrated with PCL for cell fate determination towards osteoblasts in vitro. Biodes Manuf 2022. [DOI: 10.1007/s42242-022-00196-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
357
|
Li J, Zhang Y, Zhou X, Wang S, Hao R, Han J, Li M, Zhao Y, Chen C, Xu H. Enzymatically functionalized RGD-gelatin scaffolds that recruit host mesenchymal stem cells in vivo and promote bone regeneration. J Colloid Interface Sci 2022; 612:377-391. [PMID: 34998197 DOI: 10.1016/j.jcis.2021.12.091] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/20/2021] [Accepted: 12/14/2021] [Indexed: 01/27/2023]
Abstract
Critical-size bone defects are imposing a substantial biomedical burden. Despite being long regarded as a potential approach to mitigate this burden or an alternative to bone grafts, bone tissue engineering (BTE) has virtually not proceeded to widespread clinical practices. In the BTE field, it is highly required to find a facile method to prepare active scaffolds with tailored biological functions. Here, we immobilized cell adhesive RGD motifs onto gelatin sponge (GS) scaffolds through enzymatic linking. On the basis of the resulting RGD-functionalized GS (RGD/GS) scaffolds, we developed a new and convenient strategy for bone defect repair, in which the scaffolds were first used to recruit mesenchymal stem cells (MSCs) from skeletal muscle, immediately followed by their engraftment into bone defect. We demonstrated significantly enhanced host cells homing into RGD/GS scaffolds as a result of specific RGD-integrin interactions, and the recruited host cells showed a strong osteogenic differentiation potential. After ectopic implantation of cell-laden RGD/GS scaffolds into critical-size mouse bone defects, marked bone tissue regeneration occurred. The presented strategy not only provides an agile route for the preparation of bioactive scaffolds and the construction of osteoinductive bone-graft substitutes, but also avoids or minimizes the complicated and laborious cell isolation, in vitro expansion and cell seeding procedures used in the conventional BTE.
Collapse
Affiliation(s)
- Junling Li
- Department of Biological and Energy Chemical Engineering, College of Chemical Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China; Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Key Lab for Biotech-Drugs of National Health Commission, Shandong First Medical University & Shandong Academy of Medical Sciences, 6699 Qingdao Road, Ji'nan 250117, China
| | - Yan Zhang
- Department of Biological and Energy Chemical Engineering, College of Chemical Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| | - Xing Zhou
- Qingdao West Coast New Area Marine Development Bureau, 59 Shuilingshan Road, Qingdao 266400, China
| | - Shili Wang
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Key Lab for Biotech-Drugs of National Health Commission, Shandong First Medical University & Shandong Academy of Medical Sciences, 6699 Qingdao Road, Ji'nan 250117, China
| | - Ruirui Hao
- Department of Biological and Energy Chemical Engineering, College of Chemical Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| | - Jinxiang Han
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Key Lab for Biotech-Drugs of National Health Commission, Shandong First Medical University & Shandong Academy of Medical Sciences, 6699 Qingdao Road, Ji'nan 250117, China
| | - Mian Li
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Key Lab for Biotech-Drugs of National Health Commission, Shandong First Medical University & Shandong Academy of Medical Sciences, 6699 Qingdao Road, Ji'nan 250117, China
| | - Yurong Zhao
- Department of Biological and Energy Chemical Engineering, College of Chemical Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| | - Cuixia Chen
- Department of Biological and Energy Chemical Engineering, College of Chemical Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China.
| | - Hai Xu
- Department of Biological and Energy Chemical Engineering, College of Chemical Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China.
| |
Collapse
|
358
|
Calcined Hydroxyapatite with Collagen I Foam Promotes Human MSC Osteogenic Differentiation. Int J Mol Sci 2022; 23:ijms23084236. [PMID: 35457055 PMCID: PMC9028204 DOI: 10.3390/ijms23084236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/01/2022] [Accepted: 04/08/2022] [Indexed: 02/07/2023] Open
Abstract
Collagen I-based foams were modified with calcined or noncalcined hydroxyapatite or calcium phosphates with various particle sizes and pores to monitor their effect on cell interactions. The resulting scaffolds thus differed in grain size, changing from nanoscale to microscopic, and possessed diverse morphological characteristics and resorbability. The materials' biological action was shown on human bone marrow MSCs. Scaffold morphology was identified by SEM. Using viability test, qPCR, and immunohistochemical staining, we evaluated the biological activity of all of the materials. This study revealed that the most suitable scaffold composition for osteogenesis induction is collagen I foam with calcined hydroxyapatite with a pore size of 360 ± 130 µm and mean particle size of 0.130 µm. The expression of osteogenic markers RunX2 and ColI mRNA was promoted, and a strong synthesis of extracellular protein osteocalcin was observed. ColI/calcined HAP scaffold showed significant osteogenic potential, and can be easily manipulated and tailored to the defect size, which gives it great potential for bone tissue engineering applications.
Collapse
|
359
|
GelMA Hydrogel Reinforced with 3D Printed PEGT/PBT Scaffolds for Supporting Epigenetically-Activated Human Bone Marrow Stromal Cells for Bone Repair. J Funct Biomater 2022; 13:jfb13020041. [PMID: 35466223 PMCID: PMC9036254 DOI: 10.3390/jfb13020041] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/28/2022] [Accepted: 04/06/2022] [Indexed: 12/15/2022] Open
Abstract
Epigenetic approaches using the histone deacetylase 2 and 3 inhibitor-MI192 have been reported to accelerate stem cells to form mineralised tissues. Gelatine methacryloyl (GelMA) hydrogels provide a favourable microenvironment to facilitate cell delivery and support tissue formation. However, their application for bone repair is limited due to their low mechanical strength. This study aimed to investigate a GelMA hydrogel reinforced with a 3D printed scaffold to support MI192-induced human bone marrow stromal cells (hBMSCs) for bone formation. Cell culture: The GelMA (5 wt%) hydrogel supported the proliferation of MI192-pre-treated hBMSCs. MI192-pre-treated hBMSCs within the GelMA in osteogenic culture significantly increased alkaline phosphatase activity (p ≤ 0.001) compared to control. Histology: The MI192-pre-treated group enhanced osteoblast-related extracellular matrix deposition and mineralisation (p ≤ 0.001) compared to control. Mechanical testing: GelMA hydrogels reinforced with 3D printed poly(ethylene glycol)-terephthalate/poly(butylene terephthalate) (PEGT/PBT) scaffolds exhibited a 1000-fold increase in the compressive modulus compared to the GelMA alone. MI192-pre-treated hBMSCs within the GelMA–PEGT/PBT constructs significantly enhanced extracellular matrix collagen production and mineralisation compared to control (p ≤ 0.001). These findings demonstrate that the GelMA–PEGT/PBT construct provides enhanced mechanical strength and facilitates the delivery of epigenetically-activated MSCs for bone augmentation strategies.
Collapse
|
360
|
Eini E, Ghaemi A, Rahim F. Bone Using Stem Cells for Maxillofacial Bone Disorders: A Systematic Review and Meta-analysis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022:119-135. [PMID: 35389197 DOI: 10.1007/5584_2022_706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
Due to economic, cultural, environmental, and social factors, the prevalence of maxillofacial bone disorders varies in different parts of the world. The present meta-analysis was conducted to assess the efficacy and safety of different type of stem cells-based scaffolds and their construction methods in maxillofacial bone disorders. We searched major indexing databases, including PubMed/Medline, ISI Web of Science, Scopus, Embase, and Cochrane Central without any language, study region, or type restrictions. A systematic search of articles published up to July 2021 was done. Of the 428 studies found through initial searches, 36 met the inclusion criteria. After applying the exclusion criteria, the main properties of 32 articles on 643 animals and 4 experimental studies on 52 patients (age range from 43 to 74 years) included in this meta-analysis. Our pooled analysis showed that stem cells-based scaffolds significantly improved the bone regeneration and formation in maxillofacial bone disorders (Prevalence: 0.54; 95% CI: 0.43, 0.64, P < 00001, I2 = 90 2). According to the results of these studies, in most studies, bone marrow-derived mesenchymal stem cells (BMSCs) have been used to regenerate bone, and these cells are still the gold standard in bone tissue engineering, a growth factor that is one of the three sides of the tissue engineering triangle. Bone morphogenetic proteins (BMP) especially BMP2 and platelet-rich plasma (PRP) are the most widely used growth factor and scaffold respectively. Platelet-rich plasma (PRP) is used as a scaffold and since it contains proteins, it also used as a growth factor and can be a stimulant of ossification. It seems that the future perspective of bone tissue engineering is to use the prototyping rapid method to build a composite and patient-specific scaffold from CT and MRI images, along with genetically modified stem cells.
Collapse
Affiliation(s)
- Ebrahim Eini
- MSD, Department of Orthodontics, School of Dentistry, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Fakher Rahim
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
- Health Research Institute, Thalassemia and Hemoglobinopathies Research Centre, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
361
|
Ramos-Rodriguez DH, Pashneh-Tala S, Bains AK, Moorehead RD, Kassos N, Kelly AL, Paterson TE, Orozco-Diaz CA, Gill AA, Ortega Asencio I. Demonstrating the Potential of Using Bio-Based Sustainable Polyester Blends for Bone Tissue Engineering Applications. Bioengineering (Basel) 2022; 9:163. [PMID: 35447723 PMCID: PMC9025038 DOI: 10.3390/bioengineering9040163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 11/17/2022] Open
Abstract
Healthcare applications are known to have a considerable environmental impact and the use of bio-based polymers has emerged as a powerful approach to reduce the carbon footprint in the sector. This research aims to explore the suitability of using a new sustainable polyester blend (Floreon™) as a scaffold directed to aid in musculoskeletal applications. Musculoskeletal problems arise from a wide range of diseases and injuries related to bones and joints. Specifically, bone injuries may result from trauma, cancer, or long-term infections and they are currently considered a major global problem in both developed and developing countries. In this work we have manufactured a series of 3D-printed constructs from a novel biopolymer blend using fused deposition modelling (FDM), and we have modified these materials using a bioceramic (wollastonite, 15% w/w). We have evaluated their performance in vitro using human dermal fibroblasts and rat mesenchymal stromal cells. The new sustainable blend is biocompatible, showing no differences in cell metabolic activity when compared to PLA controls for periods 1-18 days. FloreonTM blend has proven to be a promising material to be used in bone tissue regeneration as it shows an impact strength in the same range of that shown by native bone (just under 10 kJ/m2) and supports an improvement in osteogenic activity when modified with wollastonite.
Collapse
Affiliation(s)
- David H. Ramos-Rodriguez
- Mechanisms of Health and Disease, The School of Clinical Dentistry, The University of Sheffield, Sheffield S10 2TA, UK; (D.H.R.-R.); (S.P.-T.); (A.K.B.)
- Kroto Research Institute, Department of Materials Science and Engineering, The University of Sheffield, Sheffield S3 7HQ, UK
| | - Samand Pashneh-Tala
- Mechanisms of Health and Disease, The School of Clinical Dentistry, The University of Sheffield, Sheffield S10 2TA, UK; (D.H.R.-R.); (S.P.-T.); (A.K.B.)
- Kroto Research Institute, Department of Materials Science and Engineering, The University of Sheffield, Sheffield S3 7HQ, UK
| | - Amanpreet Kaur Bains
- Mechanisms of Health and Disease, The School of Clinical Dentistry, The University of Sheffield, Sheffield S10 2TA, UK; (D.H.R.-R.); (S.P.-T.); (A.K.B.)
| | - Robert D. Moorehead
- The Henry Royce Institute, Department of Materials Science and Engineering, The University of Sheffield, Sir Robert Hadfield Building, Sheffield S1 3JD, UK;
| | - Nikolaos Kassos
- Polymer IRC, School of Engineering, University of Bradford, Sheffield BD7 1DP, UK; (N.K.); (A.L.K.)
| | - Adrian L. Kelly
- Polymer IRC, School of Engineering, University of Bradford, Sheffield BD7 1DP, UK; (N.K.); (A.L.K.)
| | - Thomas E. Paterson
- Automatic Control and Systems Engineering, University of Sheffield, Sheffield S1 3JD, UK;
| | - C. Amnael Orozco-Diaz
- Department of Oncology & Metabolism, Medical School, The University of Sheffield, Sheffield S10 2RX, UK;
| | - Andrew A. Gill
- Floreon-Transforming Packaging Ltd., Aura Innovation Centre, Bridgehead Business Park, Meadow Rd., Hessle HU13 0GD, UK;
| | - Ilida Ortega Asencio
- Mechanisms of Health and Disease, The School of Clinical Dentistry, The University of Sheffield, Sheffield S10 2TA, UK; (D.H.R.-R.); (S.P.-T.); (A.K.B.)
| |
Collapse
|
362
|
Suliman S, Mieszkowska A, Folkert J, Rana N, Mohamed-Ahmed S, Fuoco T, Finne-Wistrand A, Dirscherl K, Jørgensen B, Mustafa K, Gurzawska-Comis K. Immune-instructive copolymer scaffolds using plant-derived nanoparticles to promote bone regeneration. Inflamm Regen 2022; 42:12. [PMID: 35366945 PMCID: PMC8977008 DOI: 10.1186/s41232-022-00196-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 02/13/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Age-driven immune signals cause a state of chronic low-grade inflammation and in consequence affect bone healing and cause challenges for clinicians when repairing critical-sized bone defects in elderly patients.
Methods
Poly(l-lactide-co-ɛ-caprolactone) (PLCA) scaffolds are functionalized with plant-derived nanoparticles from potato, rhamnogalacturonan-I (RG-I), to investigate their ability to modulate inflammation in vitro in neutrophils and macrophages at gene and protein levels. The scaffolds’ early and late host response at gene, protein and histological levels is tested in vivo in a subcutaneous rat model and their potential to promote bone regeneration in an aged rodent was tested in a critical-sized calvaria bone defect. Significant differences were tested using one-way ANOVA, followed by a multiple-comparison Tukey’s test with a p value ≤ 0.05 considered significant.
Results
Gene expressions revealed PLCA scaffold functionalized with plant-derived RG-I with a relatively higher amount of galactose than arabinose (potato dearabinated (PA)) to reduce the inflammatory state stimulated by bacterial LPS in neutrophils and macrophages in vitro. LPS-stimulated neutrophils show a significantly decreased intracellular accumulation of galectin-3 in the presence of PA functionalization compared to Control (unmodified PLCA scaffolds). The in vivo gene and protein expressions revealed comparable results to in vitro. The host response is modulated towards anti-inflammatory/ healing at early and late time points at gene and protein levels. A reduced foreign body reaction and fibrous capsule formation is observed when PLCA scaffolds functionalized with PA were implanted in vivo subcutaneously. PLCA scaffolds functionalized with PA modulated the cytokine and chemokine expressions in vivo during early and late inflammatory phases. PLCA scaffolds functionalized with PA implanted in calvaria defects of aged rats downregulating pro-inflammatory gene markers while promoting osteogenic markers after 2 weeks in vivo.
Conclusion
We have shown that PLCA scaffolds functionalized with plant-derived RG-I with a relatively higher amount of galactose play a role in the modulation of inflammatory responses both in vitro and in vivo subcutaneously and promote the initiation of bone formation in a critical-sized bone defect of an aged rodent. Our study addresses the increasing demand in bone tissue engineering for immunomodulatory 3D scaffolds that promote osteogenesis and modulate immune responses.
Collapse
|
363
|
Man K, Joukhdar H, Manz XD, Brunet MY, Jiang LH, Rnjak-Kovacina J, Yang XB. Bone tissue engineering using 3D silk scaffolds and human dental pulp stromal cells epigenetic reprogrammed with the selective histone deacetylase inhibitor MI192. Cell Tissue Res 2022; 388:565-581. [PMID: 35362831 PMCID: PMC9110470 DOI: 10.1007/s00441-022-03613-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 03/11/2022] [Indexed: 11/30/2022]
Abstract
Epigenetics plays a critical role in regulating mesenchymal stem cells’ (MSCs) fate for tissue repair and regeneration. There is increasing evidence that the inhibition of histone deacetylase (HDAC) isoform 3 can enhance MSC osteogenesis. This study investigated the potential of using a selective HDAC2 and 3 inhibitor, MI192, to promote human dental pulp stromal cells (hDPSCs) bone-like tissue formation in vitro and in vivo within porous Bombyx Mori silk scaffolds. Both 2 and 5 wt% silk scaffolds were fabricated and characterised. The 5 wt% scaffolds possess thicker internal lamellae, reduced scaffold swelling and degradation rates, whilst increased compressive modulus in comparison to the 2 wt% silk scaffold. MI192 pre-treatment of hDPSCs on 5 wt% silk scaffold significantly enhanced hDPSCs alkaline phosphatase activity (ALP). The expression of osteoblast-related genes (RUNX2, ALP, Col1a, OCN) was significantly upregulated in the MI192 pre-treated cells. Histological analysis confirmed that the MI192 pre-treated hDPSCs-silk scaffold constructs promoted bone extracellular matrix (ALP, Col1a, OCN) deposition and mineralisation compared to the untreated group. Following 6 weeks of subcutaneous implantation in nude mice, the MI192 pre-treated hDPSCs-silk scaffold constructs enhanced the vascularisation and extracellular matrix mineralisation compared to untreated control. In conclusion, these findings demonstrate the potential of using epigenetic reprogramming and silk scaffolds to promote hDPSCs bone formation efficacy, which provides evidence for clinical translation of this technology for bone augmentation.
Collapse
Affiliation(s)
- Kenny Man
- Biomaterials & Tissue Engineering Group, School of Dentistry, University of Leeds, WTBB, St. James's University Hospital, Leeds, LS97TF, UK.,School of Chemical Engineering, University of Birmingham, Birmingham, UK
| | - Habib Joukhdar
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, Australia
| | - Xue D Manz
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, Australia.,Department of Pulmonary Medicine, Amsterdam UMC, VU University Medical Centre, Amsterdam, The Netherlands
| | - Mathieu Y Brunet
- School of Chemical Engineering, University of Birmingham, Birmingham, UK
| | - Lin-Hua Jiang
- School of Biomedical Sciences, University of Leeds, Leeds, UK
| | - Jelena Rnjak-Kovacina
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, Australia
| | - Xuebin B Yang
- Biomaterials & Tissue Engineering Group, School of Dentistry, University of Leeds, WTBB, St. James's University Hospital, Leeds, LS97TF, UK.
| |
Collapse
|
364
|
Hixon KR, Miller AN. Animal models of impaired long bone healing and tissue engineering- and cell-based in vivo interventions. J Orthop Res 2022; 40:767-778. [PMID: 35072292 DOI: 10.1002/jor.25277] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 12/05/2021] [Accepted: 01/16/2022] [Indexed: 02/04/2023]
Abstract
Bone healing after injury typically follows a systematic process and occurs spontaneously under appropriate physiological conditions. However, impaired long bone healing is still quite common and may require surgical intervention. Various complications can result in different forms of impaired bone healing including nonunion, critical-size defects, or stress fractures. While a nonunion may occur due to impaired biological signaling and/or mechanical instability, a critical-size defect exhibits extensive bone loss that will not spontaneously heal. Comparatively, a stress fracture occurs from repetitive forces and results in a non-healing crack or break in the bone. Clinical standards of treatment vary between these bone defects due to their pathological differences. The use of appropriate animal models for modeling healing defects is critical to improve current treatment methods and develop novel rescue therapies. This review provides an overview of these clinical bone healing impairments and current animal models available to study the defects in vivo. The techniques used to create these models are compared, along with the outcomes, to clarify limitations and future objectives. Finally, rescue techniques focused on tissue engineering and cell-based therapies currently applied in animal models are specifically discussed to analyze their ability to initiate healing at the defect site, providing information regarding potential future therapies. In summary, this review focuses on the current animal models of nonunion, critical-size defects, and stress fractures, as well as interventions that have been tested in vivo to provide an overview of the clinical potential and future directions for improving bone healing.
Collapse
Affiliation(s)
- Katherine R Hixon
- Department of Orthopaedic Surgery, Washington University, St. Louis, Missouri, USA.,Thayer School of Engineering, Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, USA
| | - Anna N Miller
- Department of Orthopaedic Surgery, Washington University, St. Louis, Missouri, USA
| |
Collapse
|
365
|
Tien Lam N, Minh Quan V, Boonrungsiman S, Sukyai P. Effectiveness of bio-dispersant in homogenizing hydroxyapatite for proliferation and differentiation of osteoblast. J Colloid Interface Sci 2022; 611:491-502. [PMID: 34973654 DOI: 10.1016/j.jcis.2021.12.088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/27/2021] [Accepted: 12/14/2021] [Indexed: 11/28/2022]
Abstract
Hydroxyapatite (HA), an inorganic compound, plays an essential role in the proliferation and differentiation of bone cells. Using cellulose nanocrystals (CNCs) as green dispersants to improve homogenization of HA is promising in the fabrication of nanocomposite scaffolds with biocompatibility for bone tissue engineering. The HA/CNC (HC) nanoparticle suspension was incorporated in polyvinyl alcohol (PVA)-based scaffold to investigate the physical and chemical properties. The PVA/HC composites demonstrated high porous structure and swelling ability for cell attachment and a 3-fold improvement in compressive modulus compared with free HC scaffold. Moreover, the presence of HC nanoparticles has promoted the proliferation and mineralization of pre-osteoblast. Our findings could provide an effective strategy by using bio-dispersants to incorporate mineral elements into synthetic polymers for the fabrication of functional tissue engineering scaffolds.
Collapse
Affiliation(s)
- Nga Tien Lam
- Cellulose for Future Materials and Technologies Special Research Unit, Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Chatuchak, Bangkok 10900, Thailand
| | - Vo Minh Quan
- Cellulose for Future Materials and Technologies Special Research Unit, Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Chatuchak, Bangkok 10900, Thailand
| | - Suwimon Boonrungsiman
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Prakit Sukyai
- Cellulose for Future Materials and Technologies Special Research Unit, Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Chatuchak, Bangkok 10900, Thailand; Center for Advanced Studies for Agriculture and Food, Kasetsart University Institute for Advanced Studies, Kasetsart University, Chatuchak, Bangkok 10900, Thailand.
| |
Collapse
|
366
|
Asghari N, Irani S, Pezeshki-Moddaress M, Zandi M, Mohamadali M. Neuronal differentiation of mesenchymal stem cells by polyvinyl alcohol/Gelatin/crocin and beta-carotene. Mol Biol Rep 2022; 49:2999-3006. [PMID: 35025028 DOI: 10.1007/s11033-022-07123-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 01/04/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUND Nerve tissues are important in coordinating the motions and movements of the body. Nerve tissue repair and regeneration is a slow process that might take a long time and cost a lot of money. As a result, tissue engineering was employed to treat nerve tissue lesions. The aim of this study was to investigate the proliferation of C6 cells and human mesenchymal stem cells derived bone marrow (hBMMSCs) differentiate into neuronal-like cells on the polyvinyl alcohol/gelatin/crocin (PVA/Gel/Cro) nanofiber scaffolds in vitro. METHODS PVA/Gel scaffolds containing crocin in three concentrations (1%, 3%, and 5%) were prepared by the electrospinning method. The human bone marrow-derived mesenchymal stem cells (hBMSCs) differentiation on the PVA/Gel/Cro 5% that induced by beta-carotene (βC), was analyzed during 10 days. Morphology of differentiated cells on the scaffolds was taken by scanning electron microscope (SEM). The expression of the neural cell markers was studied by quantitative reverse transcription- polymerase chain reaction (qRT-PCR) and immunocytochemistry (ICC). RESULTS MTT results of C6 cells culture on the scaffolds showed that proliferation and metabolic activity on PVA/Gel scaffold containing crocin 5% (PVA/Gel/Cro 5%) are significantly more than the other concentrations (P = 0.01). MSC differentiation to nerve-like cells was approved by MAP-2 expression at the mRNA level and NESTIN and MAP-2 at the protein level. CONCLUSIONS These results suggested that PVA/Gel/Cro 5% and βC could lead to hBMSCs differentiation to neural cells.
Collapse
Affiliation(s)
- Niloofar Asghari
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Shiva Irani
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | | | - Mojgan Zandi
- Department of Biomaterials, Iran Polymer and Petrochemical Institute, Tehran, Iran
| | - Marjan Mohamadali
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
367
|
Yamada S, Yassin MA, Schwarz T, Mustafa K, Hansmann J. Optimization and Validation of a Custom-Designed Perfusion Bioreactor for Bone Tissue Engineering: Flow Assessment and Optimal Culture Environmental Conditions. Front Bioeng Biotechnol 2022; 10:811942. [PMID: 35402393 PMCID: PMC8990132 DOI: 10.3389/fbioe.2022.811942] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 03/07/2022] [Indexed: 11/29/2022] Open
Abstract
Various perfusion bioreactor systems have been designed to improve cell culture with three-dimensional porous scaffolds, and there is some evidence that fluid force improves the osteogenic commitment of the progenitors. However, because of the unique design concept and operational configuration of each study, the experimental setups of perfusion bioreactor systems are not always compatible with other systems. To reconcile results from different systems, the thorough optimization and validation of experimental configuration are required in each system. In this study, optimal experimental conditions for a perfusion bioreactor were explored in three steps. First, an in silico modeling was performed using a scaffold geometry obtained by microCT and an expedient geometry parameterized with porosity and permeability to assess the accuracy of calculated fluid shear stress and computational time. Then, environmental factors for cell culture were optimized, including the volume of the medium, bubble suppression, and medium evaporation. Further, by combining the findings, it was possible to determine the optimal flow rate at which cell growth was supported while osteogenic differentiation was triggered. Here, we demonstrated that fluid shear stress up to 15 mPa was sufficient to induce osteogenesis, but cell growth was severely impacted by the volume of perfused medium, the presence of air bubbles, and medium evaporation, all of which are common concerns in perfusion bioreactor systems. This study emphasizes the necessity of optimization of experimental variables, which may often be underreported or overlooked, and indicates steps which can be taken to address issues common to perfusion bioreactors for bone tissue engineering.
Collapse
Affiliation(s)
- Shuntaro Yamada
- Centre of Translational Oral Research, Tissue Engineering Group, Department of Clinical Dentistry, University of Bergen, Bergen, Norway
- *Correspondence: Shuntaro Yamada, ; Jan Hansmann,
| | - Mohammed A. Yassin
- Centre of Translational Oral Research, Tissue Engineering Group, Department of Clinical Dentistry, University of Bergen, Bergen, Norway
| | - Thomas Schwarz
- Translational Centre Regenerative Therapies, Fraunhofer Institute for Silicate Research ISC, Würzburg, Germany
| | - Kamal Mustafa
- Centre of Translational Oral Research, Tissue Engineering Group, Department of Clinical Dentistry, University of Bergen, Bergen, Norway
| | - Jan Hansmann
- Translational Centre Regenerative Therapies, Fraunhofer Institute for Silicate Research ISC, Würzburg, Germany
- Chair of Tissue Engineering and Regenerative Medicine, University Hospital Würzburg, Würzburg, Germany
- Department Electrical Engineering, University of Applied Sciences Würzburg-Schweinfurt, Würzburg, Germany
- *Correspondence: Shuntaro Yamada, ; Jan Hansmann,
| |
Collapse
|
368
|
Bondareva J, Dubinin ON, Kuzminova YO, Shpichka AI, Kosheleva NV, Lychagin AV, Shibalova AA, Pozdnyakov AA, Akhatov I, Timashev P, Evlashin SA. Biodegradable iron-silicon implants produced by additive manufacturing. Biomed Mater 2022; 17. [PMID: 35334477 DOI: 10.1088/1748-605x/ac6124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 03/25/2022] [Indexed: 11/12/2022]
Abstract
Due to many negative and undesirable side effects from the use of permanent implants, the development of temporary implants based on biocompatible and biodegradable materials is a promising area of modern medicine. In the presented study, we have investigated complex-shaped iron-silicon (Fe-Si) scaffolds that can be used as potential biodegradable framework structures for creating solid implants for bone grafting. Since iron and silicon are biocompatible materials, and their alloy should also have biocompatibility. It has been demonstrated that cells UC-MSC and 3T3 were attached to, spread, and proliferated on the Fe-Si scaffolds' surface. Most of UC-MSC and 3T3 remained viable, only single dead cells were observed. According to the results of biological testing, the scaffolds have shown that deposition of calcium phosphate particles occurs on day one in the scaffold at the defect site that can be used as a primary marker of osteodifferentiation. These results demonstrate that the 3D-printed porous iron-silicon (Fe-Si) alloy scaffolds are promising structures for bone grafting and regeneration.
Collapse
Affiliation(s)
- Julia Bondareva
- Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, bld. 1, Moscow, Skolkovo, 121205, RUSSIAN FEDERATION
| | - Oleg N Dubinin
- Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, bld. 1, Moscow, Skolkovo, 121205, RUSSIAN FEDERATION
| | - Yulia O Kuzminova
- Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, bld. 1, Moscow, Skolkovo, 121205, RUSSIAN FEDERATION
| | - Anastasia I Shpichka
- I M Sechenov First Moscow State Medical University Institute of Regenerative Medicine, 8-2 Trubetskaya St, Moscow, 119991, RUSSIAN FEDERATION
| | - Nastasya V Kosheleva
- I M Sechenov First Moscow State Medical University Institute of Regenerative Medicine, 8-2 Trubetskaya St, Moscow, 119991, RUSSIAN FEDERATION
| | - Alexey V Lychagin
- I M Sechenov First Moscow State Medical University Institute of Regenerative Medicine, 8-2 Trubetskaya St, Moscow, 119991, RUSSIAN FEDERATION
| | - Anastasia A Shibalova
- FSBSI Institute of Nanotechnology of Microelectronics of the Russian Academy of Sciences, 32A Leninsky Prospekt, Moscow, 119991, RUSSIAN FEDERATION
| | - Artem A Pozdnyakov
- I M Sechenov First Moscow State Medical University Institute of Regenerative Medicine, 8-2 Trubetskaya St, Moscow, 119991, Russia, Moskva, Moskóvskaâ óblast', 119991, RUSSIAN FEDERATION
| | - Iskander Akhatov
- Center for Design, Manufacturing and Materials, Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, bld. 1, Moscow, Skolkovo, Moscow, 121205, RUSSIAN FEDERATION
| | - Peter Timashev
- Sechenov University, 8-2 Trubetskaya St, Moscow, 119991, RUSSIAN FEDERATION
| | - Stanislav Alexandrovich Evlashin
- Center for Design, Manufacturing and Materials, Skoltech, Bolshoy Boulevard 30, bld. 1, Moscow, Skolkovo, 121205, RUSSIAN FEDERATION
| |
Collapse
|
369
|
Bone Cell Exosomes and Emerging Strategies in Bone Engineering. Biomedicines 2022; 10:biomedicines10040767. [PMID: 35453517 PMCID: PMC9033129 DOI: 10.3390/biomedicines10040767] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/16/2022] [Accepted: 03/21/2022] [Indexed: 01/27/2023] Open
Abstract
Bone tissue remodeling is a highly regulated process balancing bone formation and resorption through complex cellular crosstalk between resident bone and microenvironment cells. This cellular communication is mediated by direct cell and cell–matrix contact, autocrine, endocrine, and paracrine receptor mediated mechanisms such as local soluble signaling molecules and extracellular vesicles including nanometer sized exosomes. An impairment in this balanced process leads to development of pathological conditions. Bone tissue engineering is an emerging interdisciplinary field with potential to address bone defects and disorders by synthesizing three-dimensional bone substitutes embedded with cells for clinical implantation. However, current cell-based therapeutic approaches have faced hurdles due to safety and ethical concerns, challenging their clinical translation. Recent studies on exosome-regulated bone homeostasis and regeneration have gained interest as prospective cell free therapy in conjugation with tissue engineered bone grafts. However, exosome research is still in its nascent stages of bone tissue engineering. In this review, we specifically describe the role of exosomes secreted by cells within bone microenvironment such as osteoblasts, osteocytes, osteoclasts, mesenchymal stem cell cells, immune cells, endothelial cells, and even tumor cells during bone homeostasis and crosstalk. We also review exosome-based osteoinductive functionalization strategies for various bone-based biomaterials such as ceramics, polymers, and metals in bone tissue engineering. We further highlight biomaterials as carrier agents for exosome delivery to bone defect sites and, finally, the influence of various biomaterials in modulation of cell exosome secretome.
Collapse
|
370
|
Nugud A, Alghfeli L, Elmasry M, El-Serafi I, El-Serafi AT. Biomaterials as a Vital Frontier for Stem Cell-Based Tissue Regeneration. Front Cell Dev Biol 2022; 10:713934. [PMID: 35399531 PMCID: PMC8987776 DOI: 10.3389/fcell.2022.713934] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 03/11/2022] [Indexed: 01/01/2023] Open
Abstract
Biomaterials and tissue regeneration represent two fields of intense research and rapid advancement. Their combination allowed the utilization of the different characteristics of biomaterials to enhance the expansion of stem cells or their differentiation into various lineages. Furthermore, the use of biomaterials in tissue regeneration would help in the creation of larger tissue constructs that can allow for significant clinical application. Several studies investigated the role of one or more biomaterial on stem cell characteristics or their differentiation potential into a certain target. In order to achieve real advancement in the field of stem cell-based tissue regeneration, a careful analysis of the currently published information is critically needed. This review describes the fundamental description of biomaterials as well as their classification according to their source, bioactivity and different biological effects. The effect of different biomaterials on stem cell expansion and differentiation into the primarily studied lineages was further discussed. In conclusion, biomaterials should be considered as an essential component of stem cell differentiation strategies. An intense investigation is still required. Establishing a consortium of stem cell biologists and biomaterial developers would help in a systematic development of this field.
Collapse
Affiliation(s)
- Ahmed Nugud
- Pediatric Department, Aljalila Children Hospital, Dubai, United Arab Emirates
| | - Latifa Alghfeli
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Moustafa Elmasry
- Department of Biomedical and Clinical Sciences (BKV), Linköping University, Linköping, Sweden
- Department of Hand Surgery and Plastic Surgery and Burns, Linköping University Hospital, Linköping, Sweden
| | - Ibrahim El-Serafi
- Department of Hand Surgery and Plastic Surgery and Burns, Linköping University Hospital, Linköping, Sweden
- Basic Medical Sciences Department, College of Medicine, Ajman University, Ajman, United Arab Emirates
| | - Ahmed T. El-Serafi
- Department of Biomedical and Clinical Sciences (BKV), Linköping University, Linköping, Sweden
- Department of Hand Surgery and Plastic Surgery and Burns, Linköping University Hospital, Linköping, Sweden
| |
Collapse
|
371
|
Elshohna M, Tsouklidis N. Top 50 Cited Bone Graft Orthopedic Papers. Cureus 2022; 14:e23419. [PMID: 35481294 PMCID: PMC9033642 DOI: 10.7759/cureus.23419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 03/21/2022] [Indexed: 12/03/2022] Open
Abstract
The purpose of this research is to recognize the highest 50 most-mentioned articles in the literature concentrating on bone grafts. That has been accomplished with the use of the Scopus database and the search slogan "bone grafts," and we inquired for the 50 most-cited articles on bone grafting. The study was completed in September 2020. We investigated the articles issued between 1970 and 2020. The articles were organized and classified based on the total number of citations. We appraised the following information relating to each article: first author, year of publication, journal, and title. A total of 1,580 studies matched our search standards, of which the 50 most-cited extended between 1,862 and 403 citations. Seven articles were cited more than 1,000 times. The article by Marx et al. was the maximum-cited article, with 1,862 citations, followed by Younger et al.'s with 1,461 and Giannoudis et al.'s with 1,245. The majority of the studies originated from the United States (n = 30) and were published in the 2000s. Biomaterials was the most regular destination journal (n = 8), followed by the Journal of Bone and Joint Surgery American series (n = 7). A maximum of the articles focused on the different types of bone grafts and their alternatives including bone tissue engineering (n=29). Our investigation of the highest 50 articles linking to bone grafting has emphasized the most significant papers in the field. These cover a wide-ranging variety of topics including types, management, and mechanism of action of bone grafts. To recognize the present treatment guidelines and how the use of bone grafting has grown, it is vital to know the most-cited articles relating to this grafting.
Collapse
|
372
|
Mi X, Su Z, Fu Y, Li S, Mo A. 3D printing of Ti 3C 2-MXene-incorporated composite scaffolds for accelerated bone regeneration. Biomed Mater 2022; 17. [PMID: 35316803 DOI: 10.1088/1748-605x/ac5ffe] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 03/22/2022] [Indexed: 02/08/2023]
Abstract
Grafting of bone-substitute biomaterials plays a vital role in the reconstruction of bone defects. However, the design of bioscaffolds with osteoinductive agents and biomimetic structures for regeneration of critical-sized bone defects is difficult. Ti3C2 MXene-belonging to a new class of two-dimensional (2D) nanomaterials-exhibits excellent biocompatibility, and antibacterial properties, and promotes osteogenesis. However, its application in preparing 3D-printed tissue-engineered bone scaffolds for repairing bone defects has not been explored. In this work, Ti3C2 MXene was incorporated into composite scaffolds composed of hydroxyapatite (HA) and sodium alginate (SA) via extrusion-based 3D printing to evaluate its potential in bone regeneration. MXene composite scaffolds were fabricated and characterized by SEM, XPS, mechanical properties and porosity. The biocompatibility and osteoinductivity of MXene composite scaffolds were evaluated by cell adhesion, CCK-8 test, qRT-PCR, ALP activity and ARS tests of BMSCs. A rat calvarial defect model was performed to explore the osteogenic activity of the MXene composite scaffolds in vivo. The results showed the obtained scaffold had a uniform structure, macropore morphology, and high mechanical strength. In vitro experimental results revealed that the scaffold exhibited excellent biocompatibility with bone mesenchymal stem cells, promoted cell proliferation, upregulated osteogenic gene expression, enhanced alkaline phosphatase activity, and promoted mineralized-nodule formation. The experimental results confirmed that the scaffold effectively promoted bone regeneration in a model of critical-sized calvarial- bone-defect in vivo and promoted bone healing to a significantly greater degree than scaffolds without added Ti3C2 MXene did. Conclusively, the Ti3C2 MXene composite 3D-printed scaffolds are promising for clinical bone defect treatment, and the results of this study provide a theoretical basis for the development of practical applications for tissue-engineered bone scaffolds.
Collapse
Affiliation(s)
- Xue Mi
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Implantology., Sichuan University West China Hospital of Stomatology, No.14,3Rd Section Of Ren Min Nan Rd. ChengDu, SiChuan 610041,China., Chengdu, Sichuan, 610041, CHINA
| | - Zhenya Su
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Implantology., Sichuan University West China Hospital of Stomatology, No.14,3Rd Section Of Ren Min Nan Rd. ChengDu, SiChuan 610041,China., Chengdu, Sichuan, 610041, CHINA
| | - Yu Fu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Implantology., Sichuan University West China Hospital of Stomatology, No.14,3Rd Section Of Ren Min Nan Rd. ChengDu, SiChuan 610041,China., Chengdu, Sichuan, 610041, CHINA
| | - Shiqi Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Implantology., Sichuan University West China Hospital of Stomatology, No.14,3Rd Section Of Ren Min Nan Rd. ChengDu, SiChuan 610041,China., Chengdu, Sichuan, 610041, CHINA
| | - Anchun Mo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Implantology., Sichuan University West China College of Stomatology, No.14,3Rd Section Of Ren Min Nan Rd. ChengDu, SiChuan 610041,China., Chengdu, 610041, CHINA
| |
Collapse
|
373
|
Poly(lactic acid)-Based Electrospun Fibrous Structures for Biomedical Applications. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12063192] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Poly(lactic acid)(PLA) is an aliphatic polyester that can be derived from natural and renewable resources. Owing to favorable features, such as biocompatibility, biodegradability, good thermal and mechanical performance, and processability, PLA has been considered as one of the most promising biopolymers for biomedical applications. Particularly, electrospun PLA nanofibers with distinguishing characteristics, such as similarity to the extracellular matrix, large specific surface area and high porosity with small pore size and tunable mechanical properties for diverse applications, have recently given rise to advanced spillovers in the medical area. A variety of PLA-based nanofibrous structures have been explored for biomedical purposes, such as wound dressing, drug delivery systems, and tissue engineering scaffolds. This review highlights the recent advances in electrospinning of PLA-based structures for biomedical applications. It also gives a comprehensive discussion about the promising approaches suggested for optimizing the electrospun PLA nanofibrous structures towards the design of specific medical devices with appropriate physical, mechanical and biological functions.
Collapse
|
374
|
Wei M, Hsu YI, Asoh TA, Sung MH, Uyama H. Design of Injectable Poly(γ-glutamic acid)/Chondroitin Sulfate Hydrogels with Mineralization Ability. ACS APPLIED BIO MATERIALS 2022; 5:1508-1518. [PMID: 35286062 DOI: 10.1021/acsabm.1c01269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Biocompatible hydrogels are considered promising agents for application in bone tissue engineering. However, the design of reliable hydrogels with satisfactory injectability, mechanical strength, and a rapid biomineralization rate for bone regeneration remains challenging. Herein, injectable hydrogels are fabricated using hydrazide-modified poly(γ-glutamic acid) and oxidized chondroitin sulfate by combining acylhydrazone bonds and ionic bonding of carboxylic acid groups or sulfate groups with calcium ions (Ca2+). The resulting hydrogels display a fast gelation rate and good self-healing ability due to the acylhydrazone bonds. The introduction of Ca2+ at a moderate concentration enhances the mechanical strength of the hydrogels. The self-healing capacity of hydrogels is improved, with a healing efficiency of 87.5%, because the addition of Ca2+ accelerates the healing process of hydrogels. Moreover, the hydrogels can serve as a robust template for biomineralization. The mineralized hydrogels with increasing Ca2+ concentration exhibit rapid formation and high crystallization of apatite after immersion in simulated body fluid. The hydrogels containing the aldehyde groups possess good bioadhesion to the bone and cartilage tissues. With these superior properties, the developed hydrogels demonstrate potential applicability in bone tissue engineering.
Collapse
Affiliation(s)
- Meng Wei
- Department of Applied Chemistry, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yu-I Hsu
- Department of Applied Chemistry, Osaka University, Suita, Osaka 565-0871, Japan
| | - Taka-Aki Asoh
- Department of Applied Chemistry, Osaka University, Suita, Osaka 565-0871, Japan
| | - Moon-Hee Sung
- Department of Advanced Fermentation Fusion Science and Technology, Kookmin University, Seongbuk-gu, Seoul 136-702, Korea
| | - Hiroshi Uyama
- Department of Applied Chemistry, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
375
|
Wang S, Umrath F, Cen W, Salgado AJ, Reinert S, Alexander D. Pre-Conditioning with IFN-γ and Hypoxia Enhances the Angiogenic Potential of iPSC-Derived MSC Secretome. Cells 2022; 11:cells11060988. [PMID: 35326438 PMCID: PMC8946902 DOI: 10.3390/cells11060988] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/03/2022] [Accepted: 03/10/2022] [Indexed: 12/23/2022] Open
Abstract
Induced pluripotent stem cell (iPSC) derived mesenchymal stem cells (iMSCs) represent a promising source of progenitor cells for approaches in the field of bone regeneration. Bone formation is a multi-step process in which osteogenesis and angiogenesis are both involved. Many reports show that the secretome of mesenchymal stromal stem cells (MSCs) influences the microenvironment upon injury, promoting cytoprotection, angiogenesis, and tissue repair of the damaged area. However, the effects of iPSC-derived MSCs secretome on angiogenesis have seldom been investigated. In the present study, the angiogenic properties of IFN-γ pre-conditioned iMSC secretomes were analyzed. We detected a higher expression of the pro-angiogenic genes and proteins of iMSCs and their secretome under IFN-γ and hypoxic stimulation (IFN-H). Tube formation and wound healing assays revealed a higher angiogenic potential of HUVECs in the presence of IFN-γ conditioned iMSC secretome. Sprouting assays demonstrated that within Coll/HA scaffolds, HUVECs spheroids formed significantly more and longer sprouts in the presence of IFN-γ conditioned iMSC secretome. Through gene expression analyses, pro-angiogenic genes (FLT-1, KDR, MET, TIMP-1, HIF-1α, IL-8, and VCAM-1) in HUVECs showed a significant up-regulation and down-regulation of two anti-angiogenic genes (TIMP-4 and IGFBP-1) compared to the data obtained in the other groups. Our results demonstrate that the iMSC secretome, pre-conditioned under inflammatory and hypoxic conditions, induced the highest angiogenic properties of HUVECs. We conclude that pre-activated iMSCs enhance their efficacy and represent a suitable cell source for collagen/hydroxyapatite with angiogenic properties.
Collapse
Affiliation(s)
- Suya Wang
- Department of Oral and Maxillofacial Surgery, University Hospital Tübingen, 72076 Tübingen, Germany; (S.W.); (F.U.); (W.C.); (S.R.)
| | - Felix Umrath
- Department of Oral and Maxillofacial Surgery, University Hospital Tübingen, 72076 Tübingen, Germany; (S.W.); (F.U.); (W.C.); (S.R.)
| | - Wanjing Cen
- Department of Oral and Maxillofacial Surgery, University Hospital Tübingen, 72076 Tübingen, Germany; (S.W.); (F.U.); (W.C.); (S.R.)
| | - António José Salgado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal;
- ICVS/3B’s–PT Government Associate Laboratory, University of Minho, 4710-057 Braga, Portugal
| | - Siegmar Reinert
- Department of Oral and Maxillofacial Surgery, University Hospital Tübingen, 72076 Tübingen, Germany; (S.W.); (F.U.); (W.C.); (S.R.)
| | - Dorothea Alexander
- Department of Oral and Maxillofacial Surgery, University Hospital Tübingen, 72076 Tübingen, Germany; (S.W.); (F.U.); (W.C.); (S.R.)
- Correspondence:
| |
Collapse
|
376
|
Synergistic effect of cell and molecule: imprinted substrates for bone tissue engineering. Mol Biol Rep 2022; 49:4595-4605. [DOI: 10.1007/s11033-022-07306-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 02/23/2022] [Indexed: 11/24/2022]
|
377
|
Dhania S, Bernela M, Rani R, Parsad M, Grewal S, Kumari S, Thakur R. Scaffolds the backbone of tissue engineering: Advancements in use of polyhydroxyalkanoates (PHA). Int J Biol Macromol 2022; 208:243-259. [PMID: 35278518 DOI: 10.1016/j.ijbiomac.2022.03.030] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/05/2022] [Accepted: 03/07/2022] [Indexed: 12/11/2022]
Abstract
Our body is built to heal from inside out naturally but wide-ranging medical conditions necessitate the need for artificial assistance, and therefore, something that can assist the body to heal wounds and damaged tissues quickly and efficiently is of utmost importance. Tissue engineering technology helps to regenerate new tissue to replace the diseased or injured one. The technology uses biodegradable porous three-dimensional scaffolds for mimicking the structure and functions of the natural extracellular matrix. The material and design of scaffolds are critical areas of biomaterial research. Biomaterial-based three-dimensional structures have been the most promising material to serve as scaffolds for seeding cells, both in vivo and in vitro. One such material is polyhydroxyalkanoates (PHAs) which are thermoplastic biopolyesters that are highly suitable for this purpose due to their enhanced biocompatibility, biodegradability, thermo-processability, diverse mechanical properties, non-toxicity and natural origin. Moreover, they have tremendous possibilities of customization through biological physical and chemical modification as well as blending with other materials. They are being used for several tissue engineering applications such as bone graft substitute, cardiovascular patches, stents, for nerve repair and in implantology as valves and sutures. The present review overviews usage of a multitude of PHA-based biomaterials for a wide range of tissue engineering applications, based on their properties suitable for the specific applications.
Collapse
Affiliation(s)
- Sunena Dhania
- Department of Bio & Nanotechnology, Guru Jambheshwar University of Science and Technology, Hisar 125001, Haryana, India
| | - Manju Bernela
- Department of Biotechnology, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Ruma Rani
- ICAR-National Research Centre on Equines, Hisar 125001, Haryana, India
| | - Minakshi Parsad
- Department of Animal Biotechnology, LUVAS, Hisar 125001, Haryana, India
| | - Sapna Grewal
- Department of Bio & Nanotechnology, Guru Jambheshwar University of Science and Technology, Hisar 125001, Haryana, India
| | - Santosh Kumari
- Department of Bio & Nanotechnology, Guru Jambheshwar University of Science and Technology, Hisar 125001, Haryana, India
| | - Rajesh Thakur
- Department of Bio & Nanotechnology, Guru Jambheshwar University of Science and Technology, Hisar 125001, Haryana, India.
| |
Collapse
|
378
|
Chen C, Yang H, Yang X, Ma Q. Tannic acid: a crosslinker leading to versatile functional polymeric networks: a review. RSC Adv 2022; 12:7689-7711. [PMID: 35424749 PMCID: PMC8982347 DOI: 10.1039/d1ra07657d] [Citation(s) in RCA: 136] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 02/22/2022] [Indexed: 12/20/2022] Open
Abstract
With the thriving of mussel-inspired polyphenol chemistry as well as the demand for low-cost analogues to polydopamine in adhesive design, tannic acid has gradually become a research focus because of its wide availability, health benefits and special chemical properties. As a natural building block, tannic acid could be used as a crosslinker either supramolecularly or chemically, ensuring versatile functional polymeric networks for various applications. Up to now, a systematic summary on tannic-acid-based networks has still been waiting for an update and outlook. In this review, the common features of tannic acid are summarized in detail, followed by the introduction of covalent and non-covalent crosslinking methods leading to various tannic-acid-based materials. Moreover, recent progress in the application of tannic acid composites is also summarized, including bone regeneration, skin adhesives, wound dressings, drug loading and photothermal conversion. Above all, we also provide further prospects concerning tannic-acid-crosslinked materials.
Collapse
Affiliation(s)
- Chen Chen
- Key Laboratory of New Material Research Institute, Department of Acupuncture-Moxibustion and Tuina, Shandong University of Traditional Chinese Medicine Jinan 250355 China
| | - Hao Yang
- The First Affiliated Hospital of Shandong First Medical University (Shandong Qianfoshan Hospital) Jinan 250014 China
| | - Xiao Yang
- The First Affiliated Hospital of Shandong First Medical University (Shandong Qianfoshan Hospital) Jinan 250014 China
| | - Qinghai Ma
- The First Affiliated Hospital of Shandong First Medical University (Shandong Qianfoshan Hospital) Jinan 250014 China
| |
Collapse
|
379
|
Bandzerewicz A, Gadomska-Gajadhur A. Into the Tissues: Extracellular Matrix and Its Artificial Substitutes: Cell Signalling Mechanisms. Cells 2022; 11:914. [PMID: 35269536 PMCID: PMC8909573 DOI: 10.3390/cells11050914] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/02/2022] [Accepted: 03/04/2022] [Indexed: 02/06/2023] Open
Abstract
The existence of orderly structures, such as tissues and organs is made possible by cell adhesion, i.e., the process by which cells attach to neighbouring cells and a supporting substance in the form of the extracellular matrix. The extracellular matrix is a three-dimensional structure composed of collagens, elastin, and various proteoglycans and glycoproteins. It is a storehouse for multiple signalling factors. Cells are informed of their correct connection to the matrix via receptors. Tissue disruption often prevents the natural reconstitution of the matrix. The use of appropriate implants is then required. This review is a compilation of crucial information on the structural and functional features of the extracellular matrix and the complex mechanisms of cell-cell connectivity. The possibilities of regenerating damaged tissues using an artificial matrix substitute are described, detailing the host response to the implant. An important issue is the surface properties of such an implant and the possibilities of their modification.
Collapse
|
380
|
BMP-2 Enhances Osteogenic Differentiation of Human Adipose-Derived and Dental Pulp Stem Cells in 2D and 3D In Vitro Models. Stem Cells Int 2022; 2022:4910399. [PMID: 35283997 PMCID: PMC8916887 DOI: 10.1155/2022/4910399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 07/02/2021] [Accepted: 11/08/2021] [Indexed: 12/25/2022] Open
Abstract
Bone tissue provides support and protection to different organs and tissues. Aging and different diseases can cause a decrease in the rate of bone regeneration or incomplete healing; thus, tissue-engineered substitutes can be an acceptable alternative to traditional therapies. In the present work, we have developed an in vitro osteogenic differentiation model based on mesenchymal stem cells (MSCs), to first analyse the influence of the culture media and the origin of the cells on the efficiency of this process and secondly to extrapolate it to a 3D environment to evaluate its possible application in bone regeneration therapies. Two osteogenic culture media were used (one commercial from Stemcell Technologies and a second supplemented with dexamethasone, ascorbic acid, glycerol-2-phosphate, and BMP-2), with human cells of a mesenchymal phenotype from two different origins: adipose tissue (hADSCs) and dental pulp (hDPSCs). The expression of osteogenic markers in 2D cultures was evaluated in several culture periods by means of the immunofluorescence technique and real-time gene expression analysis, taking as reference MG-63 cells of osteogenic origin. The same strategy was extrapolated to a 3D environment of polylactic acid (PLA), with a 3% alginate hydrogel. The expression of osteogenic markers was detected in both hADSCs and hDPSCs, cultured in either 2D or 3D environments. However, the osteogenic differentiation of MSCs was obtained based on the culture medium and the cell origin used, since higher osteogenic marker levels were found when hADSCs were cultured with medium supplemented with BMP-2. Furthermore, the 3D culture used was suitable for cell survival and osteogenic induction.
Collapse
|
381
|
Stevanovic M, Selakovic D, Vasovic M, Ljujic B, Zivanovic S, Papic M, Zivanovic M, Milivojevic N, Mijovic M, Tabakovic SZ, Jokanovic V, Arnaut A, Milanovic P, Jovicic N, Rosic G. Comparison of Hydroxyapatite/Poly(lactide-co-glycolide) and Hydroxyapatite/Polyethyleneimine Composite Scaffolds in Bone Regeneration of Swine Mandibular Critical Size Defects: In Vivo Study. Molecules 2022; 27:1694. [PMID: 35268796 PMCID: PMC8911599 DOI: 10.3390/molecules27051694] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 02/01/2023] Open
Abstract
Reconstruction of jaw bone defects present a significant problem because of specific aesthetic and functional requirements. Although widely used, the transplantation of standard autograft and allograft materials is still associated with significant constraints. Composite scaffolds, combining advantages of biodegradable polymers with bioceramics, have potential to overcome limitations of standard grafts. Polyethyleneimine could be an interesting novel biocompatible polymer for scaffold construction due to its biocompatibility and chemical structure. To date, there have been no in vivo studies assessing biological properties of hydroxyapatite bioceramics scaffold modified with polyethyleneimine. The aim of this study was to evaluate in vivo effects of composite scaffolds of hydroxyapatite ceramics and poly(lactide-co-glycolide) and novel polyethyleneimine on bone repair in swine's mandibular defects, and to compare them to conventional bone allograft (BioOss). Scaffolds were prepared using the method of polymer foam template in three steps. Pigs, 3 months old, were used and defects were made in the canine, premolar, and molar area of their mandibles. Four months following the surgical procedure, the bone was analyzed using radiological, histological, and gene expression techniques. Hydroxyapatite ceramics/polyethyleneimine composite scaffold demonstrated improved biological behavior compared to conventional allograft in treatment of swine's mandibular defects, in terms of bone density and bone tissue histological characteristics.
Collapse
Affiliation(s)
- Momir Stevanovic
- Department of Dentistry, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (M.S.); (M.V.); (S.Z.); (M.P.); (A.A.); (P.M.)
- Department of Maxillofacial Surgery, Medical Faculty Pristina in Kosovska Mitrovica, 38220 Kosovska Mitrovica, Serbia;
| | - Dragica Selakovic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (D.S.); (G.R.)
| | - Miroslav Vasovic
- Department of Dentistry, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (M.S.); (M.V.); (S.Z.); (M.P.); (A.A.); (P.M.)
| | - Biljana Ljujic
- Department of Genetics, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia;
| | - Suzana Zivanovic
- Department of Dentistry, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (M.S.); (M.V.); (S.Z.); (M.P.); (A.A.); (P.M.)
| | - Milos Papic
- Department of Dentistry, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (M.S.); (M.V.); (S.Z.); (M.P.); (A.A.); (P.M.)
| | - Marko Zivanovic
- Department of Science, Institute for Information Technologies Kragujevac, University of Kragujevac, 34000 Kragujevac, Serbia; (M.Z.); (N.M.)
| | - Nevena Milivojevic
- Department of Science, Institute for Information Technologies Kragujevac, University of Kragujevac, 34000 Kragujevac, Serbia; (M.Z.); (N.M.)
| | - Milica Mijovic
- Institute of Pathology, Faculty of Medicine, University in Priština, 38220 Kosovska Mitrovica, Serbia;
| | - Sasa Z. Tabakovic
- Department of Maxillofacial Surgery, Medical Faculty Pristina in Kosovska Mitrovica, 38220 Kosovska Mitrovica, Serbia;
| | - Vukoman Jokanovic
- Department of Atomic Physics, Vinca Institute of Nuclear Sciences, 11000 Belgrade, Serbia;
| | - Aleksandra Arnaut
- Department of Dentistry, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (M.S.); (M.V.); (S.Z.); (M.P.); (A.A.); (P.M.)
| | - Pavle Milanovic
- Department of Dentistry, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (M.S.); (M.V.); (S.Z.); (M.P.); (A.A.); (P.M.)
| | - Nemanja Jovicic
- Department of Histology and Embryology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Gvozden Rosic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (D.S.); (G.R.)
| |
Collapse
|
382
|
Silva RD, Carvalho LT, Moraes RM, Medeiros SDF, Lacerda TM. Biomimetic Biomaterials Based on Polysaccharides: Recent Progress and Future Perspectives. MACROMOL CHEM PHYS 2022. [DOI: 10.1002/macp.202100501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Rodrigo Duarte Silva
- Nanotechnology National Laboratory for Agriculture (LNNA) Embrapa Instrumentation Rua XV de Novembro 1452 São Carlos SP 13560‐970 Brazil
| | - Layde Teixeira Carvalho
- Department of Chemical Engineering Engineering School of Lorena University of São Paulo (EEL‐USP) Lorena SP 12602‐810 Brazil
| | - Rodolfo Minto Moraes
- Department of Material Engineering Engineering School of Lorena University of São Paulo, (EEL‐USP) Lorena SP 12602‐810 Brazil
| | - Simone de Fátima Medeiros
- Department of Chemical Engineering Engineering School of Lorena University of São Paulo (EEL‐USP) Lorena SP 12602‐810 Brazil
| | - Talita Martins Lacerda
- Department of Biotechnology Engineering School of Lorena University of São Paulo (EEL‐USP) Lorena SP 12602‐810 Brazil
| |
Collapse
|
383
|
Hara K, Hellem E, Yamada S, Sariibrahimoglu K, Mølster A, Gjerdet NR, Hellem S, Mustafa K, Yassin MA. Efficacy of treating segmental bone defects through endochondral ossification: 3D printed designs and bone metabolic activities. Mater Today Bio 2022; 14:100237. [PMID: 35280332 PMCID: PMC8914554 DOI: 10.1016/j.mtbio.2022.100237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/15/2022] [Accepted: 03/05/2022] [Indexed: 10/25/2022] Open
Abstract
Three-dimensional printing (3D printing) is a promising technique for producing scaffolds for bone tissue engineering applications. Porous scaffolds can be printed directly, and the design, shape and porosity can be controlled. 3D synthetic biodegradable polymeric scaffolds intended for in situ bone regeneration must meet stringent criteria, primarily appropriate mechanical properties, good 3D design, adequate biocompatibility and the ability to enhance bone formation. In this study, healing of critical-sized (5 mm) femur defects of rats was enhanced by implanting two different designs of 3D printed poly(l-lactide-co-ε-caprolactone) (poly(LA-co-CL)) scaffolds seeded with rat bone marrow mesenchymal stem cells (rBMSC), which had been pre-differentiated in vitro into cartilage-forming chondrocytes. Depending on the design, the scaffolds had an interconnected porous structure of 300-500 μm and porosity of 50-65%. According to a computational simulation, the internal force distribution was consistent with scaffold designs and comparable between the two designs. Moreover, the defects treated with 3D-printed scaffolds seeded with chondrocyte-like cells exhibited significantly increased bone formation up to 15 weeks compared with empty defects. In all experimental animals, bone metabolic activity was monitored by positron emission tomography 1, 3, 5, 7, 11 and 14 weeks after surgery. This demonstrated a time-dependent relationship between scaffold design and metabolic activity. This confirmed that successful regeneration was highly reproducible. The in vitro and in vivo data indicated that the experimental setups had promising outcomes and could facilitate new bone formation through endochondral ossification.
Collapse
Affiliation(s)
- Kenji Hara
- Centre of Translational Oral Research (TOR) - Tissue Engineering Group, Department of Clinical Dentistry, University of Bergen, Bergen, Norway
- Department of Oral and Maxillofacial Surgery, Fujieda Heisei Memorial Hospital, Japan
| | - Endre Hellem
- Centre of Translational Oral Research (TOR) - Tissue Engineering Group, Department of Clinical Dentistry, University of Bergen, Bergen, Norway
| | - Shuntaro Yamada
- Centre of Translational Oral Research (TOR) - Tissue Engineering Group, Department of Clinical Dentistry, University of Bergen, Bergen, Norway
| | - Kemal Sariibrahimoglu
- Centre of Translational Oral Research (TOR) - Tissue Engineering Group, Department of Clinical Dentistry, University of Bergen, Bergen, Norway
| | - Anders Mølster
- Department of Clinical Medicine University of Bergen, Bergen, Norway
| | - Nils R Gjerdet
- Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Sølve Hellem
- Centre of Translational Oral Research (TOR) - Tissue Engineering Group, Department of Clinical Dentistry, University of Bergen, Bergen, Norway
| | - Kamal Mustafa
- Centre of Translational Oral Research (TOR) - Tissue Engineering Group, Department of Clinical Dentistry, University of Bergen, Bergen, Norway
| | - Mohammed A Yassin
- Centre of Translational Oral Research (TOR) - Tissue Engineering Group, Department of Clinical Dentistry, University of Bergen, Bergen, Norway
| |
Collapse
|
384
|
Liu Y, Nadeem A, Sebastian S, Olsson MA, Wai SN, Styring E, Engellau J, Isaksson H, Tägil M, Lidgren L, Raina DB. Bone mineral: A trojan horse for bone cancers. Efficient mitochondria targeted delivery and tumor eradication with nano hydroxyapatite containing doxorubicin. Mater Today Bio 2022; 14:100227. [PMID: 35265825 PMCID: PMC8898975 DOI: 10.1016/j.mtbio.2022.100227] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 02/23/2022] [Accepted: 02/25/2022] [Indexed: 11/04/2022] Open
Abstract
Efficient systemic pharmacological treatment of solid tumors is hampered by inadequate tumor concentration of cytostatics necessitating development of smart local drug delivery systems. To overcome this, we demonstrate that doxorubicin (DOX), a cornerstone drug used for osteosarcoma treatment, shows reversible accretion to hydroxyapatite (HA) of both nano (nHA) and micro (mHA) size. nHA particles functionalized with DOX get engulfed in the lysosome of osteosarcoma cells where the acidic microenvironment causes a disruption of the binding between DOX and HA. The released DOX then accumulates in the mitochondria causing cell starvation, reduced migration and apoptosis. The HA+DOX delivery system was also tested in-vivo on osteosarcoma bearing mice. Locally delivered DOX via the HA particles had a stronger tumor eradication effect compared to the controls as seen by PET-CT and immunohistochemical staining of proliferation and apoptosis markers. These results indicate that in addition to systemic chemotherapy, an adjuvant nHA could be used as a carrier for intracellular delivery of DOX for prevention of tumor recurrence after surgical resection in an osteosarcoma. Furthermore, we demonstrate that nHA particles are pivotal in this approach but a combination of nHA with mHA could increase the safety associated with particulate nanomaterials while maintaining similar therapeutic potential.
Collapse
Affiliation(s)
- Yang Liu
- Department of Clinical Sciences Lund, Orthopedics, The Faculty of Medicine, Lund University, Lund, Sweden
| | - Aftab Nadeem
- Department of Molecular Biology and the Laboratory for Molecular Infection Medicine, Sweden (MIMS), Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden
| | - Sujeesh Sebastian
- Department of Clinical Sciences Lund, Orthopedics, The Faculty of Medicine, Lund University, Lund, Sweden
| | - Martin A. Olsson
- Department of Theoretical Chemistry, Chemical Centre, Lund University, Lund, Sweden
| | - Sun N. Wai
- Department of Molecular Biology and the Laboratory for Molecular Infection Medicine, Sweden (MIMS), Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden
| | - Emelie Styring
- Department of Clinical Sciences Lund, Orthopedics, The Faculty of Medicine, Lund University, Lund, Sweden
| | - Jacob Engellau
- Medical Radiation Physics, Lund University, Lund, Sweden
- Department of Hematology, Oncology and Radiation Physics, Skåne University Hospital, Lund, Sweden
| | - Hanna Isaksson
- Department of Clinical Sciences Lund, Orthopedics, The Faculty of Medicine, Lund University, Lund, Sweden
- Department of Biomedical Engineering, Lund University, Lund, Sweden
| | - Magnus Tägil
- Department of Clinical Sciences Lund, Orthopedics, The Faculty of Medicine, Lund University, Lund, Sweden
| | - Lars Lidgren
- Department of Clinical Sciences Lund, Orthopedics, The Faculty of Medicine, Lund University, Lund, Sweden
| | - Deepak Bushan Raina
- Department of Clinical Sciences Lund, Orthopedics, The Faculty of Medicine, Lund University, Lund, Sweden
| |
Collapse
|
385
|
Supercritical Foaming and Impregnation of Polycaprolactone and Polycaprolactone-Hydroxyapatite Composites with Carvacrol. Processes (Basel) 2022. [DOI: 10.3390/pr10030482] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Polycaprolactone (PCL) and polycaprolactone-hydroxyapatite (PCL-HA) scaffolds were produced by foaming in supercritical carbon dioxide (scCO2) at 20 MPa, as well as in one-step foaming and impregnation process using carvacrol as an antibacterial agent with proven activity against Gram-positive and Gram-negative bacteria. The experimental design was developed to study the influence of temperature (40 °C and 50 °C), HA content (10 and 20 wt.%), and depressurization rate (one and two-step decompression) on the foams’ morphology, porosity, pore size distribution, and carvacrol impregnation yield. The characterization of the foams was carried out using scanning electron microscopy (SEM, SEM-FIB), Gay-Lussac density bottle measurements, and Fourier–transform infrared (FTIR) analyses. The obtained results demonstrate that processing PCL and PCL-HA scaffolds by means of scCO2 foaming enables preparing foams with porosity in the range of 65.55–74.39% and 61.98–67.13%, at 40 °C and 50 °C, respectively. The presence of carvacrol led to a lower porosity. At 40 °C and one-step decompression at a slow rate, the porosity of impregnated scaffolds was higher than at 50 °C and two- step fast decompression. However, a narrower pore size distribution was obtained at the last processing conditions. PCL scaffolds with HA resulted in higher carvacrol impregnation yields than neat PCL foams. The highest carvacrol loading (10.57%) was observed in the scaffold with 10 wt.% HA obtained at 50 °C.
Collapse
|
386
|
Computer vision-aided bioprinting for bone research. Bone Res 2022; 10:21. [PMID: 35217642 PMCID: PMC8881598 DOI: 10.1038/s41413-022-00192-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 12/10/2021] [Accepted: 12/21/2021] [Indexed: 02/08/2023] Open
Abstract
Bioprinting is an emerging additive manufacturing technology that has enormous potential in bone implantation and repair. The insufficient accuracy of the shape of bioprinted parts is a primary clinical barrier that prevents widespread utilization of bioprinting, especially for bone design with high-resolution requirements. During the last five years, the use of computer vision for process control has been widely practiced in the manufacturing field. Computer vision can improve the performance of bioprinting for bone research with respect to various aspects, including accuracy, resolution, and cell survival rate. Hence, computer vision plays a substantial role in addressing the current defect problem in bioprinting for bone research. In this review, recent advances in the application of computer vision in bioprinting for bone research are summarized and categorized into three groups based on different defect types: bone scaffold process control, deep learning, and cell viability models. The collection of printing parameters, data processing, and feedback of bioprinting information, which ultimately improves printing capabilities, are further discussed. We envision that computer vision may offer opportunities to accelerate bioprinting development and provide a new perception for bone research.
Collapse
|
387
|
Golebiowska AA, Nukavarapu SP. Bio-inspired zonal-structured matrices for bone-cartilage interface engineering. Biofabrication 2022; 14:025016. [PMID: 35147514 DOI: 10.1088/1758-5090/ac5413] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 02/08/2022] [Indexed: 11/11/2022]
Abstract
Design and development of scaffold structures for osteochondral (OC) interface regeneration is a significant engineering challenge. Recent efforts are aimed at recapitulating the unique compositional and hierarchical structure of an OC interface. Conventional scaffold fabrication techniques often have limited design control and reproducibility, and the development of OC scaffolds with zonal hierarchy and structural integrity between zones is especially challenging. In this study, a series of multi-zonal and gradient structures were designed and fabricated using three-dimensional bioprinting. We developed OC scaffolds with bi-phasic and tri-phasic configurations to support the zonal structure of OC tissue, and gradient scaffold configurations to enable smooth transitions between the zones to more closely mimic a bone-cartilage interface. A biodegradable polymer, polylactic acid, was used for the fabrication of zonal/gradient scaffolds to provide mechanical strength and support OC function. The formation of the multi-zonal and gradient scaffolds was confirmed through scanning electron microscopy imaging and micro-computed tomography scanning. Precisely controlled hierarchy with tunable porosity along the scaffold length established the formation of the bio-inspired scaffolds with different zones/gradient structure. In addition, we also developed a novel bioprinting method to selectively introduce cells into desired scaffold zones of the zonal/gradient scaffolds via concurrent printing of a cell-laden hydrogel within the porous template. Live/dead staining of the cell-laden hydrogel introduced in the cartilage zone showed uniform cell distribution with high cell viability. Overall, our study developed bio-inspired scaffold structures with structural hierarchy and mechanical integrity for bone-cartilage interface engineering.
Collapse
Affiliation(s)
- Aleksandra A Golebiowska
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT-06269, United States of America
| | - Syam P Nukavarapu
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT-06269, United States of America
- Department of Materials Science & Engineering, University of Connecticut, Storrs, CT-06269, United States of America
- Department of Orthopaedic Surgery, University of Connecticut Health, Farmington, CT-06032, United States of America
| |
Collapse
|
388
|
Enderami SE, Shafiei SS, Shamsara M, Enderami SE, Rostamian Tabari A. Evaluation of Osteogenic Differentiation of Bone Marrow-Derived Mesenchymal Stem Cell on Highly Porous Polycaprolactone Scaffold Reinforced With Layered Double Hydroxides Nanoclay. Front Bioeng Biotechnol 2022; 10:805969. [PMID: 35284421 PMCID: PMC8909131 DOI: 10.3389/fbioe.2022.805969] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 02/02/2022] [Indexed: 11/13/2022] Open
Abstract
In recent decades, bone tissue engineering has had an effective role in introducing orthopedic implants. In this regard, polymeric scaffolds reinforced with bioactive nanomaterials can offer great potential in tissue engineering implants for replacing bone loss in patients. In this study, the thermally induced phase separation method was used to fabricate three-dimensional highly porous scaffolds made of layered double hydroxide (LDH)/polycaprolactone (PCL) nanocomposites with varied LDH contents ranging from 0.1 wt.% to 10 wt.%. The Phase identification, morphology, and elemental composition were studied using X-ray diffraction, scanning electron microscopy, and energy-dispersive X-ray spectroscopy, respectively. Interconnected pores ranging from 5 to 150 µm were detected in all samples. The results revealed that the inclusion of LDH to PCL scaffold reinforced mechanical strength and compressive modulus increased from 0.6418 to 1.3251 for the pure PCL and PCL + LDH (1 Wt.%) scaffolds, respectively. Also, thermal stability, degradation rate, and biomineralization especially in comparison with the pure PCL were enhanced. Adhesion, viability, and proliferation of human bone marrow-derived mesenchymal stem cells (hBMSCs) seeded on PCL + LDH scaffolds were improved as compared to the pure PCL. Furthermore, the addition of LDH resulted in the increased mineral deposition as well as expression of ALP and RUNX2 osteogenic genes in terms of differentiation. All in all, our findings revealed that PCL + LDH (1 Wt.%) scaffold might be an ideal choice for 3D scaffold design in bone tissue engineering approaches.
Collapse
Affiliation(s)
- Seyedeh Elnaz Enderami
- Stem Cell and Regenerative Medicine Department, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Seyedeh Sara Shafiei
- Stem Cell and Regenerative Medicine Department, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
- *Correspondence: Seyedeh Sara Shafiei,
| | - Mehdi Shamsara
- National Research Center for Transgenic Mouse, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Seyed Ehsan Enderami
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Abolfazl Rostamian Tabari
- Stem Cell and Regenerative Medicine Department, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| |
Collapse
|
389
|
Dasari A, Xue J, Deb S. Magnetic Nanoparticles in Bone Tissue Engineering. NANOMATERIALS 2022; 12:nano12050757. [PMID: 35269245 PMCID: PMC8911835 DOI: 10.3390/nano12050757] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/18/2022] [Accepted: 02/19/2022] [Indexed: 12/25/2022]
Abstract
Large bone defects with limited intrinsic regenerative potential represent a major surgical challenge and are associated with a high socio-economic burden and severe reduction in the quality of life. Tissue engineering approaches offer the possibility to induce new functional bone regeneration, with the biomimetic scaffold serving as a bridge to create a microenvironment that enables a regenerative niche at the site of damage. Magnetic nanoparticles have emerged as a potential tool in bone tissue engineering that leverages the inherent magnetism of magnetic nano particles in cellular microenvironments providing direction in enhancing the osteoinductive, osteoconductive and angiogenic properties in the design of scaffolds. There are conflicting opinions and reports on the role of MNPs on these scaffolds, such as the true role of magnetism, the application of external magnetic fields in combination with MNPs, remote delivery of biomechanical stimuli in-vivo and magnetically controlled cell retention or bioactive agent delivery in promoting osteogenesis and angiogenesis. In this review, we focus on the role of magnetic nanoparticles for bone-tissue-engineering applications in both disease modelling and treatment of injuries and disease. We highlight the materials-design pathway from implementation strategy through the selection of materials and fabrication methods to evaluation. We discuss the advances in this field and unmet needs, current challenges in the development of ideal materials for bone-tissue regeneration and emerging strategies in the field.
Collapse
Affiliation(s)
- Akshith Dasari
- Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, Floor 17 Tower Wing, Guy’s Hospital, London Bridge, London SE19RT, UK; (A.D.); (J.X.)
- Faculty of Life Sciences & Medicine, King’s College London, Guy’s Campus, London SE11UL, UK
| | - Jingyi Xue
- Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, Floor 17 Tower Wing, Guy’s Hospital, London Bridge, London SE19RT, UK; (A.D.); (J.X.)
| | - Sanjukta Deb
- Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, Floor 17 Tower Wing, Guy’s Hospital, London Bridge, London SE19RT, UK; (A.D.); (J.X.)
- Correspondence:
| |
Collapse
|
390
|
Effect of Ce-doped bioactive glass/collagen/chitosan nanocomposite scaffolds on the cell morphology and proliferation of rabbit’s bone marrow mesenchymal stem cells-derived osteogenic cells. J Genet Eng Biotechnol 2022; 20:33. [PMID: 35192077 PMCID: PMC8864049 DOI: 10.1186/s43141-022-00302-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 01/15/2022] [Indexed: 12/17/2022]
Abstract
Background Cerium-containing materials have wide applications in the biomedical field, because of the mimetic catalytic activities of cerium. The study aims to deeply estimate the biocompatibility of different scaffolds based on Ce-doped nanobioactive glass, collagen, and chitosan using the first passage of rabbit bone marrow mesenchymal stem cells (BM-MSCs) directed to osteogenic lineage by direct and indirect approach. One percentage of glass filler was used (30 wt. %) in the scaffold, while the percentage of CeO2 in the glass was ranged from 0 to 10 mol. %. Cytotoxicity was evaluated by monitoring of cell morphological changes and reduction in cell proliferation activity of BMMSCs maintained under osteogenic condition using proliferation assays, MTT assay for the direct contact of cells/scaffolds twice in a week, trypan blue and hemocytometer cell counting for indirect contact of cells/scaffolds extracts at day 7. Cell behaviors growth, morphology characteristics were monitored daily under a microscope and cell counting were conducted after 1 week of the incubation of the cells with the extracts of the four composite scaffolds in the osteogenic medium at the end of the week. Results Showed that at 24 h after direct contact with composite scaffold, all scaffolds showed proliferation of cells > 50% and increased in cell density on day 7. The scaffold of the highest percentage of CeO2 in bioactive glass nanoparticles (sample CL/CH/C10) showed the lowest inhibition of cell proliferation (< 25%) at day 7. Moreover, the indirect cell viability test showed that all extracts from the four composite scaffolds did not demonstrate a toxic effect on the cells (inhibition value < 25%). Conclusion The addition of CeO2 to the glass composition improved the biocompatibility of the composite scaffold for the proliferation of rabbit bone marrow mesenchymal stem cells directed to osteogenic lineage. Supplementary Information The online version contains supplementary material available at 10.1186/s43141-022-00302-x.
Collapse
|
391
|
Chen J, Akomolafe OI, Dhakal NP, Pujyam M, Skalli O, Jiang J, Peng C. Nematic Templated Complex Nanofiber Structures by Projection Display. ACS APPLIED MATERIALS & INTERFACES 2022; 14:7230-7240. [PMID: 35084814 DOI: 10.1021/acsami.1c20305] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Oriented arrays of nanofibers are ubiquitous in nature and have been widely used in recreation of the biological functions such as bone and muscle tissue regenerations. However, it remains a challenge to produce nanofiber arrays with a complex organization by using current fabrication techniques such as electrospinning and extrusion. In this work, we propose a method to fabricate the complex organization of nanofiber structures templated by a spatially varying ordered liquid crystal host, which follows the pattern produced by a maskless projection display system. By programming the synchronization of the rotated polarizer and projected segments with different shapes, various configurations of nanofiber organization ranging from a single to two-dimensional lattice of arbitrary topological defects are created in a deterministic manner. The nanofiber arrays can effectively guide and promote neurite outgrowth. The application of nanofibers with arced profiles and topological defects on neural tissue organization is also demonstrated. This finding, combined with the versatility and programmability of nanofiber structures, suggests that they will help solve challenges in nerve repair, neural regeneration, and other related tissue engineering fields.
Collapse
Affiliation(s)
- Juan Chen
- Department of Physics and Materials Science, The University of Memphis, Memphis, Tennessee 38152, United States
| | - Oluwafemi Isaac Akomolafe
- Department of Physics and Materials Science, The University of Memphis, Memphis, Tennessee 38152, United States
| | - Netra Prasad Dhakal
- Department of Physics and Materials Science, The University of Memphis, Memphis, Tennessee 38152, United States
| | - Mahesh Pujyam
- Department of Physics and Materials Science, The University of Memphis, Memphis, Tennessee 38152, United States
| | - Omar Skalli
- Department of Biology, The University of Memphis, Memphis, Tennessee 38152, United States
| | - Jinghua Jiang
- Department of Physics and Materials Science, The University of Memphis, Memphis, Tennessee 38152, United States
| | - Chenhui Peng
- Department of Physics and Materials Science, The University of Memphis, Memphis, Tennessee 38152, United States
| |
Collapse
|
392
|
Owida HA, Al-Nabulsi JI, Alnaimat F, Al-Ayyad M, Turab NM, Al Sharah A, Shakur M. Recent Applications of Electrospun Nanofibrous Scaffold in Tissue Engineering. Appl Bionics Biomech 2022; 2022:1953861. [PMID: 35186119 PMCID: PMC8849965 DOI: 10.1155/2022/1953861] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 01/12/2022] [Accepted: 01/21/2022] [Indexed: 02/06/2023] Open
Abstract
Tissue engineering is a relatively new area of research that combines medical, biological, and engineering fundamentals to create tissue-engineered constructs that regenerate, preserve, or slightly increase the functions of tissues. To create mature tissue, the extracellular matrix should be imitated by engineered structures, allow for oxygen and nutrient transmission, and release toxins during tissue repair. Numerous recent studies have been devoted to developing three-dimensional nanostructures for tissue engineering. One of the most effective of these methods is electrospinning. Numerous nanofibrous scaffolds have been constructed over the last few decades for tissue repair and restoration. The current review gives an overview of attempts to construct nanofibrous meshes as tissue-engineered scaffolds for various tissues such as bone, cartilage, cardiovascular, and skin tissues. Also, the current article addresses the recent improvements and difficulties in tissue regeneration using electrospinning.
Collapse
Affiliation(s)
- Hamza Abu Owida
- Medical Engineering Department, Faculty of Engineering, Al-Ahliyya Amman University, Amman 19328, Jordan
| | - Jamal I. Al-Nabulsi
- Medical Engineering Department, Faculty of Engineering, Al-Ahliyya Amman University, Amman 19328, Jordan
| | - Feras Alnaimat
- Medical Engineering Department, Faculty of Engineering, Al-Ahliyya Amman University, Amman 19328, Jordan
| | - Muhammad Al-Ayyad
- Medical Engineering Department, Faculty of Engineering, Al-Ahliyya Amman University, Amman 19328, Jordan
| | - Nidal M. Turab
- Department of Networks and Information Security, Faculty of Information Technology, Al-Ahliyya Amman University, Amman 19328, Jordan
| | - Ashraf Al Sharah
- Computer Engineering, Faculty of Engineering, Al-Ahliyya Amman University, Amman 19328, Jordan
| | - Murad Shakur
- Medical Engineering Department, Faculty of Engineering, Al-Ahliyya Amman University, Amman 19328, Jordan
| |
Collapse
|
393
|
Polakova D, Capek L, Bartos M, Kejzlar P, Rysova M, Martinova L, Sevcu A. The stiffness variability of a silk fibroin scaffold during bone cell proliferation. Proc Inst Mech Eng H 2022; 236:9544119211070345. [PMID: 35125026 DOI: 10.1177/09544119211070345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Complex assessment of gradual changes in scaffold morphology and stiffness is an essential step in bone filler development. Current approach, however, does not reflect long term cell proliferation effect as the mechanical tests are usually conducted on pristine materials without cells or cell influence on material stiffness is evaluated after one time period only. Here, biocompatible silk fibroin (SF) porous scaffolds envisioned for bone defect filling were prepared by dissolving of fibroin fibers, followed by dialysis, freeze-drying and final stabilization. Particular attention was devoted to the influence of bone cell proliferation up to 2 months on the stiffness of the material. The morphology of the material was studied in terms of its inner structure and the overall changes in the surface characteristics due to proliferation of MG 63 bone cell line. The SF scaffold stiffness significantly increased during first month followed by its decline during second month due to bone cell seeding. After 2 months, the SF scaffold was completely colonized, which resulted in a gradual decay of its structure. The length of degradation due to bone cell proliferation and mechanical behavior corresponded to the requirements set for reasonable filler material indicating that porous SF scaffolds comprise a promising biomaterial for bone regeneration.
Collapse
Affiliation(s)
- Dagmar Polakova
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Liberec 1, Czech Republic
- Faculty of Mechatronics, Informatics and Interdisciplinary Studies, Technical University of Liberec, Liberec 1, Czech Republic
| | - Lukas Capek
- Faculty of Textile Engineering, Technical University of Liberec, Liberec 1, Czech Republic
| | - Martin Bartos
- Institute of Dental Medicine, First Faculty of Medicine, Charles University and General Hospital in Prague, Prague 2, Czech Republic
- Institute of Anatomy, First Faculty of Medicine, Charles University, Prague 2, Czech Republic
| | - Pavel Kejzlar
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Liberec 1, Czech Republic
| | - Miroslava Rysova
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Liberec 1, Czech Republic
| | - Lenka Martinova
- Faculty of Textile Engineering, Technical University of Liberec, Liberec 1, Czech Republic
| | - Alena Sevcu
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Liberec 1, Czech Republic
| |
Collapse
|
394
|
Sheppard AJ, Barfield AM, Barton S, Dong Y. Understanding Reactive Oxygen Species in Bone Regeneration: A Glance at Potential Therapeutics and Bioengineering Applications. Front Bioeng Biotechnol 2022; 10:836764. [PMID: 35198545 PMCID: PMC8859442 DOI: 10.3389/fbioe.2022.836764] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 01/19/2022] [Indexed: 01/24/2023] Open
Abstract
Although the complex mechanism by which skeletal tissue heals has been well described, the role of reactive oxygen species (ROS) in skeletal tissue regeneration is less understood. It has been widely recognized that a high level of ROS is cytotoxic and inhibits normal cellular processes. However, with more recent discoveries, it is evident that ROS also play an important, positive role in skeletal tissue repair, specifically fracture healing. Thus, dampening ROS levels can potentially inhibit normal healing. On the same note, pathologically high levels of ROS cause a sharp decline in osteogenesis and promote nonunion in fracture repair. This delicate balance complicates the efforts of therapeutic and engineering approaches that aim to modulate ROS for improved tissue healing. The physiologic role of ROS is dependent on a multitude of factors, and it is important for future efforts to consider these complexities. This review first discusses how ROS influences vital signaling pathways involved in the fracture healing response, including how they affect angiogenesis and osteogenic differentiation. The latter half glances at the current approaches to control ROS for improved skeletal tissue healing, including medicinal approaches, cellular engineering, and enhanced tissue scaffolds. This review aims to provide a nuanced view of the effects of ROS on bone fracture healing which will inspire novel techniques to optimize the redox environment for skeletal tissue regeneration.
Collapse
Affiliation(s)
- Aaron J. Sheppard
- Department of Orthopaedic Surgery, Louisiana State University Health Shreveport, Shreveport, LA, United States
- School of Medicine, Louisiana State University Health Shreveport, Shreveport, LA, United States
| | - Ann Marie Barfield
- Department of Orthopaedic Surgery, Louisiana State University Health Shreveport, Shreveport, LA, United States
- School of Medicine, Louisiana State University Health Shreveport, Shreveport, LA, United States
| | - Shane Barton
- Department of Orthopaedic Surgery, Louisiana State University Health Shreveport, Shreveport, LA, United States
| | - Yufeng Dong
- Department of Orthopaedic Surgery, Louisiana State University Health Shreveport, Shreveport, LA, United States
| |
Collapse
|
395
|
Khosalim IP, Zhang YY, Yiu CKY, Wong HM. Synthesis of a graphene oxide/agarose/hydroxyapatite biomaterial with the evaluation of antibacterial activity and initial cell attachment. Sci Rep 2022; 12:1971. [PMID: 35121806 PMCID: PMC8816921 DOI: 10.1038/s41598-022-06020-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 01/18/2022] [Indexed: 01/24/2023] Open
Abstract
Various materials are used in bone tissue engineering (BTE). Graphene oxide (GO) is a good candidate for BTE due to its antibacterial activity and biocompatibility. In this study, an innovative biomaterial consists of GO, agarose and hydroxyapatite (HA) was synthesized using electrophoresis system. The characterization of the synthesized biomaterial showed that needle-like crystals with high purity were formed after 10 mA/10 h of electrophoresis treatment. Furthermore, the calcium-phosphate ratio was similar to thermodynamically stable HA. In the synthesized biomaterial with addition of 1.0 wt% of GO, the colony forming units test showed significantly less Staphylococcus aureus. Initial attachment of MC3T3-E1 cells on the synthesized biomaterial was observed which showed the safety of the synthesized biomaterial for cell viability. This study showed that the synthesized biomaterial is a promising material that can be used in BTE.
Collapse
Affiliation(s)
- Ingrid Patricia Khosalim
- Paediatric Dentistry and Orthodontics, Faculty of Dentistry, The University of Hong Kong, Hong Kong, SAR, China
| | - Yu Yuan Zhang
- Paediatric Dentistry and Orthodontics, Faculty of Dentistry, The University of Hong Kong, Hong Kong, SAR, China
| | - Cynthia Kar Yung Yiu
- Paediatric Dentistry and Orthodontics, Faculty of Dentistry, The University of Hong Kong, Hong Kong, SAR, China
| | - Hai Ming Wong
- Paediatric Dentistry and Orthodontics, Faculty of Dentistry, The University of Hong Kong, Hong Kong, SAR, China.
| |
Collapse
|
396
|
Ghanbari E, Mehdipour A, Khazaei M, Khoshfeterat AB, Niknafs B. A review of recent advances on osteogenic applications of Silk fibroin as a potential bio-scaffold in bone tissue engineering. INT J POLYM MATER PO 2022. [DOI: 10.1080/00914037.2022.2032707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Elham Ghanbari
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahmad Mehdipour
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mozafar Khazaei
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Tissue Engineering, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | | | - Behrooz Niknafs
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
397
|
Bioengineered Living Bone Grafts-A Concise Review on Bioreactors and Production Techniques In Vitro. Int J Mol Sci 2022; 23:ijms23031765. [PMID: 35163687 PMCID: PMC8836415 DOI: 10.3390/ijms23031765] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 01/29/2022] [Accepted: 01/30/2022] [Indexed: 12/26/2022] Open
Abstract
It has been observed that bone fractures carry a risk of high mortality and morbidity. The deployment of a proper bone healing method is essential to achieve the desired success. Over the years, bone tissue engineering (BTE) has appeared to be a very promising approach aimed at restoring bone defects. The main role of the BTE is to apply new, efficient, and functional bone regeneration therapy via a combination of bone scaffolds with cells and/or healing promotive factors (e.g., growth factors and bioactive agents). The modern approach involves also the production of living bone grafts in vitro by long-term culture of cell-seeded biomaterials, often with the use of bioreactors. This review presents the most recent findings concerning biomaterials, cells, and techniques used for the production of living bone grafts under in vitro conditions. Particular attention has been given to features of known bioreactor systems currently used in BTE: perfusion bioreactors, rotating bioreactors, and spinner flask bioreactors. Although bioreactor systems are still characterized by some limitations, they are excellent platforms to form bioengineered living bone grafts in vitro for bone fracture regeneration. Moreover, the review article also describes the types of biomaterials and sources of cells that can be used in BTE as well as the role of three-dimensional bioprinting and pulsed electromagnetic fields in both bone healing and BTE.
Collapse
|
398
|
Mahdavi MR, Kehtari M, Mellati A, Mansour RN, Mahdavi M, Mahdavi M, Enderami SE. Improved biological behaviours and osteoinductive capacity of the gelatin nanofibers while composites with GO/MgO. Cell Biochem Funct 2022; 40:189-198. [PMID: 35118692 DOI: 10.1002/cbf.3688] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 01/07/2022] [Accepted: 01/18/2022] [Indexed: 11/06/2022]
Abstract
Among the many polymers introduced for bone tissue engineering, natural polymers have more advantages due to their high biocompatibility and biodegradability, despite their low mechanical properties. Herein, gelatin nanofibers with and without magnesium oxide (MgO) and graphene oxide (GO) nanoparticles were fabricated by electrospinning. The fabricated gelatin and gelatin/GO/MgO nanofibers were examined using scanning electron microscopy, protein adsorption, cell attachment and viability assays. The results revealed that biological behaviours of the gelatin nanofibers significantly improved while incorporated with MgO and GO nanoparticles. In the following, osteosupportive capacity of the fabricated scaffolds was investigated by Alizarin-red staining, alkaline phosphatase activity, and calcium content, and bone-related gene and protein assays. The results revealed that the highest osteogenic differentiation potential of human-induced pluripotent stem cells (hiPSCs) was detected while these cells were cultured on the gelatin/GO/MgO nanofibers. However, these makers in the hiPSCs cultured on the gelatin nanofibers were also significantly increased in comparison with the cells cultured on the tissue culture plates as a control. In conclusion, the results revealed that predictable disadvantages in gelatin nanofibers can be greatly improved by the addition of MgO and GO nanoparticles, and the resulting composite scaffold could be a potential candidate for use in bone tissue engineering.
Collapse
Affiliation(s)
| | - Mousa Kehtari
- School of Biology, Faculty of Science, University of Tehran, Tehran, Iran
| | - Amir Mellati
- Department of Tissue Engineering and regenerative medicine, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | | | - Mehrad Mahdavi
- Department of Cellular and Molecular, Sinaye Mehr Research Center, Sari, Iran
| | - Mahan Mahdavi
- Department of Cellular and Molecular, Sinaye Mehr Research Center, Sari, Iran
| | - Seyed Ehsan Enderami
- Immunogenetics Research Center, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.,Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
399
|
|
400
|
Gregory DA, Taylor CS, Fricker AT, Asare E, Tetali SS, Haycock JW, Roy I. Polyhydroxyalkanoates and their advances for biomedical applications. Trends Mol Med 2022; 28:331-342. [DOI: 10.1016/j.molmed.2022.01.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 01/20/2022] [Accepted: 01/24/2022] [Indexed: 01/27/2023]
|