351
|
Yu WL, Kim SN. The effect of acupuncture on pain and swelling of arthritis animal models: A systematic review and meta-analysis. Front Genet 2023; 14:1153980. [PMID: 37113994 PMCID: PMC10126438 DOI: 10.3389/fgene.2023.1153980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/27/2023] [Indexed: 04/29/2023] Open
Abstract
Arthritis, the inflammation of joints, attributes to the patient's pain, joint deformation, and limited range of motion. Emerging studies have shown the effects of acupuncture on different types of arthritis. We aimed to assess the effects of acupuncture on arthritis animal models and summarize the related mechanisms. We retrieved studies that met our criteria from PubMed, MEDLINE, EMBASE and the Research Information Service System. The quality assessment was evaluated by using the Systematic Review Centre for Laboratory Animal Experimentation's risk of bias tool. The pain withdrawal latency, pain withdrawal threshold, and paw volume data were digitized using Engauge Digitizer software. The meta-analysis was performed, and the figures were generated using RevMan software. The meta-analysis of data from 21 animal studies revealed that acupuncture increased tolerance to pain stimuli, and reduced swelling in arthritis animals. Although the number of included studies is insufficient, the results suggest acupuncture to be effective in improving arthritis-induced inflammation and pain by regulating the nervous and immune system.
Collapse
|
352
|
Ma K, Singh G, Wang J, O-Sullivan I, Votta-Velis G, Bruce B, Anbazhagan AN, van Wijnen AJ, Im HJ. Targeting Vascular Endothelial Growth Factor Receptors as a Therapeutic Strategy for Osteoarthritis and Associated Pain. Int J Biol Sci 2023; 19:675-690. [PMID: 36632459 PMCID: PMC9830519 DOI: 10.7150/ijbs.79125] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 12/09/2022] [Indexed: 01/04/2023] Open
Abstract
Pain is the major reason that patients suffering from osteoarthritis (OA) seek medical care. We found that vascular endothelial growth factors (VEGFs) mediate signaling in OA pain pathways. To determine the specific contributions of VEGFs and their receptors (VEGFRs) to joint pathology and pain transmission during OA progression, we studied intra-articular (IA) injections of VEGF ligands into murine knee joints. Only VEGF ligands specific for the activation of VEGFR1, but not VEGFR2, induced allodynia within 30 min. Interventions in OA by inhibitors of VEGFRs were done in vivo using a preclinical murine OA model by IA injections of selective inhibitors of VEGFR1/VEGFR2 kinase (pazopanib) or VEGFR2 kinase (vandetanib). OA phenotypes were evaluated using pain-associated murine behavioral tests and histopathologic analyses. Alterations in VEGF/VEGFR signaling by drugs were determined in knee joints, dorsal root ganglia, and spinal cord by immunofluorescence microscopy. Pazopanib immediately relieved OA pain by interfering with pain transmission pathways. Pain reduction by vandetanib was mainly due to the inhibition of cartilage degeneration by suppressing VEGFR2 expression. In conclusion, IA administration of pazopanib, which simultaneously inhibits VEGFR1 and VEGFR2, can be developed as an ideal OA disease-modifying drug that rapidly reduces joint pain and simultaneously inhibits cartilage degeneration.
Collapse
Affiliation(s)
- Kaige Ma
- Department of Biomedical Engineering, the University of Illinois at Chicago, Chicago, IL, USA.,Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gurjit Singh
- Department of Biomedical Engineering, the University of Illinois at Chicago, Chicago, IL, USA
| | - Jun Wang
- Department of Biomedical Engineering, the University of Illinois at Chicago, Chicago, IL, USA
| | - InSug O-Sullivan
- Department of Biomedical Engineering, the University of Illinois at Chicago, Chicago, IL, USA
| | - Gina Votta-Velis
- Department of Anesthesiology, the University of Illinois at Chicago, Chicago, IL, USA
| | - Benjamin Bruce
- Jesse Brown Veterans Affairs Medical Center (JBVAMC) at Chicago, IL 60612, USA
| | | | - Andre J. van Wijnen
- Department of Biomedical Engineering, the University of Illinois at Chicago, Chicago, IL, USA.,Department of Biochemistry, University of Vermont, Burlington, VT 05405, USA.,✉ Corresponding authors: Hee-Jeong Im, Department of Biomedical Engineering, University of Illinois at Chicago, 851 S. Morgan St, Chicago, IL, USA. E-mail: ; Dr. Andre J. van Wijnen, Department of Biochemistry, University of Vermont, Burlington, VT 05405, USA. E-mail address:
| | - Hee-Jeong Im
- Department of Biomedical Engineering, the University of Illinois at Chicago, Chicago, IL, USA.,Jesse Brown Veterans Affairs Medical Center (JBVAMC) at Chicago, IL 60612, USA.,✉ Corresponding authors: Hee-Jeong Im, Department of Biomedical Engineering, University of Illinois at Chicago, 851 S. Morgan St, Chicago, IL, USA. E-mail: ; Dr. Andre J. van Wijnen, Department of Biochemistry, University of Vermont, Burlington, VT 05405, USA. E-mail address:
| |
Collapse
|
353
|
Yajima M, Takahashi Y, Sugimura YK, Kato F. Pregabalin attenuates long-lasting post-inflammatory nociplastic mechanical sensitization in mice. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2023; 13:100131. [PMID: 37215502 PMCID: PMC10195975 DOI: 10.1016/j.ynpai.2023.100131] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 04/25/2023] [Accepted: 04/25/2023] [Indexed: 05/24/2023]
Abstract
Nociplastic pain, the most recently proposed mechanistic descriptor of chronic pain, is the pain resulting from an altered nociceptive system and network without clear evidence of nociceptor activation, injury or disease in the somatosensory system. As the pain-associated symptoms in many patients suffering from undiagnosed pain would result from the nociplastic mechanisms, it is an urgent issue to develop pharmaceutical therapies that would mitigate the aberrant nociception in nociplastic pain. We have recently reported that a single injection of formalin to the upper lip shows sustained sensitization lasting for more than 12 days at the bilateral hindpaws, where there is no injury or neuropathy in rats. Using the equivalent model in mice, we show that pregabalin (PGB), a drug used for treating neuropathic pain, significantly attenuates this formalin-induced widespread sensitization at the bilateral hindpaws, even on the 6 day after the initial single orofacial injection of formalin. On the 10th day after formalin injection, the hindlimb sensitization before PGB injection was no more significant in mice receiving daily PGB injections, unlike those receiving daily vehicle injections. This result suggests that PGB would act on the central pain mechanisms that undergo nociplastic changes triggered by initial inflammation and mitigate widespread sensitization resulting from the established changes.
Collapse
Affiliation(s)
- Manami Yajima
- Center for Neuroscience of Pain and Department of Neuroscience, The Jikei University School of Medicine, Tokyo, Japan
- Department of Dental Anesthesiology, School of Dental Medicine, Tsurumi University, Yokohama, Japan
| | - Yukari Takahashi
- Center for Neuroscience of Pain and Department of Neuroscience, The Jikei University School of Medicine, Tokyo, Japan
| | - Yae K. Sugimura
- Center for Neuroscience of Pain and Department of Neuroscience, The Jikei University School of Medicine, Tokyo, Japan
| | - Fusao Kato
- Center for Neuroscience of Pain and Department of Neuroscience, The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
354
|
Zhang FM, Wang B, Hu H, Li QY, Chen HH, Luo LT, Jiang ZJ, Zeng MX, Liu XJ. Transcriptional Profiling of TGF-β Superfamily Members in Lumbar DRGs of Rats Following Sciatic Nerve Axotomy and Activin C Inhibits Neuropathic Pain. Endocr Metab Immune Disord Drug Targets 2023; 23:375-388. [PMID: 36201267 DOI: 10.2174/1871530322666221006114557] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 08/04/2022] [Accepted: 09/29/2022] [Indexed: 02/05/2023]
Abstract
BACKGROUND Neuroinflammation and cytokines play critical roles in neuropathic pain and axon degeneration/regeneration. Cytokines of transforming growth factor-β superfamily have implications in pain and injured nerve repair processing. However, the transcriptional profiles of the transforming growth factor-β superfamily members in dorsal root ganglia under neuropathic pain and axon degeneration/regeneration conditions remain elusive. OBJECTIVE We aimed to plot the transcriptional profiles of transforming growth factor-β superfamily components in lumbar dorsal root ganglia of sciatic nerve-axotomized rats and to further verify the profiles by testing the analgesic effect of activin C, a representative cytokine, on neuropathic pain. METHODS Adult male rats were axotomized in sciatic nerves, and lumbar dorsal root ganglia were isolated for total RNA extraction or section. A custom microarray was developed and employed to plot the gene expression profiles of transforming growth factor-β superfamily components. Realtime RT-PCR was used to confirm changes in the expression of activin/inhibin family genes, and then in situ hybridization was performed to determine the cellular locations of inhibin α, activin βC, BMP-5 and GDF-9 mRNAs. The rat spared nerve injury model was performed, and a pain test was employed to determine the effect of activin C on neuropathic pain. RESULTS The expression of transforming growth factor-β superfamily cytokines and their signaling, including some receptors and signaling adaptors, were robustly upregulated. Activin βC subunit mRNAs were expressed in the small-diameter dorsal root ganglion neurons and upregulated after axotomy. Single intrathecal injection of activin C inhibited neuropathic pain in spared nerve injury model. CONCLUSION This is the first report to investigate the transcriptional profiles of members of transforming growth factor-β superfamily in axotomized dorsal root ganglia. The distinct cytokine profiles observed here might provide clues toward further study of the role of transforming growth factor-β superfamily in the pathogenesis of neuropathic pain and axon degeneration/regeneration after peripheral nerve injury.
Collapse
Affiliation(s)
- Feng-Ming Zhang
- School of Pharmacy, Nantong University, Nantong, Jiangsu Province, 226001, China
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, 210029, China
| | - Bing Wang
- School of Pharmacy, Nantong University, Nantong, Jiangsu Province, 226001, China
| | - Han Hu
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Sciences, No. 1 Beigou Xiangshan, Beijing, 100093, China
| | - Qing-Yi Li
- Pain and Related Disease Research Lab, Shantou University Medical College, Shantou, Guangdong Province, 515041, China
| | - Hao-Hao Chen
- Pain and Related Disease Research Lab, Shantou University Medical College, Shantou, Guangdong Province, 515041, China
| | - Li-Ting Luo
- School of Pharmacy, Nantong University, Nantong, Jiangsu Province, 226001, China
| | - Zuo-Jie Jiang
- Pain and Related Disease Research Lab, Shantou University Medical College, Shantou, Guangdong Province, 515041, China
| | - Mei-Xing Zeng
- Pain and Related Disease Research Lab, Shantou University Medical College, Shantou, Guangdong Province, 515041, China
| | - Xing-Jun Liu
- School of Pharmacy, Nantong University, Nantong, Jiangsu Province, 226001, China
- Pain and Related Disease Research Lab, Shantou University Medical College, Shantou, Guangdong Province, 515041, China
| |
Collapse
|
355
|
Jin J, Kang DH, Jeon J, Lee HG, Kim WM, Yoon MH, Choi JI. Imbalance in the spinal serotonergic pathway induces aggravation of mechanical allodynia and microglial activation in carrageenan inflammation. Korean J Pain 2023; 36:51-59. [PMID: 36581598 PMCID: PMC9812699 DOI: 10.3344/kjp.22297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 12/31/2022] Open
Abstract
Background This study investigated the effect of an excess and a deficit of spinal 5-hydroxytryptamine (5-HT) on the mechanical allodynia and neuroglia activation in a rodent pain model of carrageenan inflammation. Methods Male Sprague-Dawley rats were implanted with an intrathecal (i.t.) catheter to administer the drug. To induce an excess or deficit of 5-HT in the spinal cord, animals were given either three i.t. 5-HT injections at 24-hour intervals or a single i.t. injection of 5,7-dihydroxytryptamine (5,7-DHT) before carrageenan inflammation. Mechanical allodynia was measured using the von Frey test for 0-4 hours (early phase) and 24-28 hours (late phase) after carrageenan injection. The changes in the activation of microglia and astrocyte were examined using immunofluorescence of the dorsal horn of the lumbar spinal cord. Results Both an excess and a deficit of spinal 5-HT had no or a minimal effect on the intensity of mechanical allodynia during the early phase but prevented the attenuation of mechanical allodynia during the late phase, which was observed in animals not treated with i.t. 5-HT or 5,7-DHT. Animals with an excess or deficit of 5-HT showed stronger activation of microglia, but not astrocyte, during the early and late phases, than did normal animals. Conclusions Imbalance in the descending 5-HT pathway in the spinal cord could aggravate the mechanical allodynia and enhance the activation of microglia, suggesting that the spinal 5-HT pathway plays an essential role in maintaining the nociceptive processing in balance between facilitation and inhibition in inflammatory pain caused by carrageenan inflammation.
Collapse
Affiliation(s)
- Junxiu Jin
- Department of Anesthesiology and Pain Medicine, Chonnam National University Hospital, Chonnam National University Medical School, Gwangju, Korea,BioMedical Sciences Graduate Program (BMSGP), Chonnam National University Medical School, Hwasun, Korea
| | - Dong Ho Kang
- Department of Anesthesiology and Pain Medicine, Chonnam National University Hospital, Chonnam National University Medical School, Gwangju, Korea
| | - Jin Jeon
- Department of Anesthesiology and Pain Medicine, Chonnam National University Hospital, Chonnam National University Medical School, Gwangju, Korea
| | - Hyung Gon Lee
- Department of Anesthesiology and Pain Medicine, Chonnam National University Hospital, Chonnam National University Medical School, Gwangju, Korea,BioMedical Sciences Graduate Program (BMSGP), Chonnam National University Medical School, Hwasun, Korea
| | - Woong Mo Kim
- Department of Anesthesiology and Pain Medicine, Chonnam National University Hospital, Chonnam National University Medical School, Gwangju, Korea,BioMedical Sciences Graduate Program (BMSGP), Chonnam National University Medical School, Hwasun, Korea,Woong Mo Kim, Department of Anesthesiology and Pain Medicine, Chonnam National University Hospital, Chonnam National University Medical School, 42 Jebong-ro, Dong-gu, Gwangju 61469, Korea, Tel: +82-62-220-6894, Fax: +82-62-232-6294, E-mail:
| | - Myung Ha Yoon
- Department of Anesthesiology and Pain Medicine, Chonnam National University Hospital, Chonnam National University Medical School, Gwangju, Korea,BioMedical Sciences Graduate Program (BMSGP), Chonnam National University Medical School, Hwasun, Korea
| | - Jeong Il Choi
- Department of Anesthesiology and Pain Medicine, Chonnam National University Hospital, Chonnam National University Medical School, Gwangju, Korea,BioMedical Sciences Graduate Program (BMSGP), Chonnam National University Medical School, Hwasun, Korea,Correspondence: Jeong Il Choi Department of Anesthesiology and Pain Medicine, Chonnam National University Hospital, Chonnam National University Medical School, 42 Jebong-ro, Dong-gu, Gwangju 61469, Korea, Tel: +82-62-220-6895, Fax: +82-62-232-6294, E-mail:
| |
Collapse
|
356
|
Burand Jr. AJ, Waltz TB, Manis AD, Hodges MR, Stucky CL. HomeCageScan analysis reveals ongoing pain in Fabry rats. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2023; 13:100113. [PMID: 36660199 PMCID: PMC9843259 DOI: 10.1016/j.ynpai.2022.100113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 01/06/2023]
Abstract
HomeCageScan (HCS) is an automated behavioral scoring system that can be used to classify and quantify rodent behaviors in the home cage. Although HCS has been used for a number of inducible models of severe pain, little has been done to test this system in clinically relevant genetic disease models associated with chronic pain such as Fabry disease. Rats with Fabry disease exhibit mechanical hypersensitivity, however, it is unclear if these rodents also exhibit ongoing non-evoked pain. Therefore, we analyzed HCS data from male and female rats with Fabry disease. Using hierarchical clustering and principal component analysis, we found both sex and genotype differences in several home cage behaviors. Additionally, we used hierarchical clustering to derive behavioral clusters in an unbiased manner. Analysis of these behavioral clusters showed that primarily female Fabry animals moved less, spent less time caring for themselves (e.g., less time spent grooming and drinking), explored less, and slept more; changes that are similar to lifestyle changes observed in patients with long lasting chronic pain. We also show that sniffing, one of the exploratory behaviors that is depressed in Fabry animals, can be partly restored with the analgesic gabapentin, suggesting that depressed sniffing may reflect ongoing pain. Therefore, this approach to HCS data analysis can be used to assess drug efficacy in Fabry disease and potentially other genetic and inducible rodent models associated with persistent pain.
Collapse
Affiliation(s)
- Anthony J. Burand Jr.
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, United States
| | - Tyler B. Waltz
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, United States
| | - Anna D. Manis
- Department of Physiology, Medical College of Wisconsin, Milwaukee, United States
| | - Matthew R. Hodges
- Department of Physiology, Medical College of Wisconsin, Milwaukee, United States
- Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, United States
| | - Cheryl L. Stucky
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, United States
- Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, United States
| |
Collapse
|
357
|
Yap TA, Daver N, Mahendra M, Zhang J, Kamiya-Matsuoka C, Meric-Bernstam F, Kantarjian HM, Ravandi F, Collins ME, Francesco MED, Dumbrava EE, Fu S, Gao S, Gay JP, Gera S, Han J, Hong DS, Jabbour EJ, Ju Z, Karp DD, Lodi A, Molina JR, Baran N, Naing A, Ohanian M, Pant S, Pemmaraju N, Bose P, Piha-Paul SA, Rodon J, Salguero C, Sasaki K, Singh AK, Subbiah V, Tsimberidou AM, Xu QA, Yilmaz M, Zhang Q, Li Y, Bristow CA, Bhattacharjee MB, Tiziani S, Heffernan TP, Vellano CP, Jones P, Heijnen CJ, Kavelaars A, Marszalek JR, Konopleva M. Complex I inhibitor of oxidative phosphorylation in advanced solid tumors and acute myeloid leukemia: phase I trials. Nat Med 2023; 29:115-126. [PMID: 36658425 PMCID: PMC11975418 DOI: 10.1038/s41591-022-02103-8] [Citation(s) in RCA: 146] [Impact Index Per Article: 73.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 10/21/2022] [Indexed: 01/21/2023]
Abstract
Although targeting oxidative phosphorylation (OXPHOS) is a rational anticancer strategy, clinical benefit with OXPHOS inhibitors has yet to be achieved. Here we advanced IACS-010759, a highly potent and selective small-molecule complex I inhibitor, into two dose-escalation phase I trials in patients with relapsed/refractory acute myeloid leukemia (NCT02882321, n = 17) and advanced solid tumors (NCT03291938, n = 23). The primary endpoints were safety, tolerability, maximum tolerated dose and recommended phase 2 dose (RP2D) of IACS-010759. The PK, PD, and preliminary antitumor activities of IACS-010759 in patients were also evaluated as secondary endpoints in both clinical trials. IACS-010759 had a narrow therapeutic index with emergent dose-limiting toxicities, including elevated blood lactate and neurotoxicity, which obstructed efforts to maintain target exposure. Consequently no RP2D was established, only modest target inhibition and limited antitumor activity were observed at tolerated doses, and both trials were discontinued. Reverse translational studies in mice demonstrated that IACS-010759 induced behavioral and physiological changes indicative of peripheral neuropathy, which were minimized with the coadministration of a histone deacetylase 6 inhibitor. Additional studies are needed to elucidate the association between OXPHOS inhibition and neurotoxicity, and caution is warranted in the continued development of complex I inhibitors as antitumor agents.
Collapse
Affiliation(s)
- Timothy A Yap
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Department of Investigational Cancer Therapeutics (Phase I Program), The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Naval Daver
- Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mikhila Mahendra
- Translational Research to AdvanCe Therapeutics and Innovation in ONcology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jixiang Zhang
- Department of Symptom Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Carlos Kamiya-Matsuoka
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Funda Meric-Bernstam
- Department of Investigational Cancer Therapeutics (Phase I Program), The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hagop M Kantarjian
- Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Farhad Ravandi
- Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Meghan E Collins
- Department of Nutritional Sciences, College of Natural Sciences, The University of Texas at Austin, Austin, TX, USA
- Department of Pediatrics, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
| | - Maria Emilia Di Francesco
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ecaterina E Dumbrava
- Department of Investigational Cancer Therapeutics (Phase I Program), The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Siqing Fu
- Department of Investigational Cancer Therapeutics (Phase I Program), The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sisi Gao
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Translational Research to AdvanCe Therapeutics and Innovation in ONcology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jason P Gay
- Translational Research to AdvanCe Therapeutics and Innovation in ONcology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sonal Gera
- Translational Research to AdvanCe Therapeutics and Innovation in ONcology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jing Han
- Translational Research to AdvanCe Therapeutics and Innovation in ONcology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - David S Hong
- Department of Investigational Cancer Therapeutics (Phase I Program), The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Elias J Jabbour
- Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Zhenlin Ju
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Daniel D Karp
- Department of Investigational Cancer Therapeutics (Phase I Program), The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Alessia Lodi
- Department of Nutritional Sciences, College of Natural Sciences, The University of Texas at Austin, Austin, TX, USA
- Department of Pediatrics, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
| | - Jennifer R Molina
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Natalia Baran
- Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Aung Naing
- Department of Investigational Cancer Therapeutics (Phase I Program), The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Maro Ohanian
- Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shubham Pant
- Department of Gastrointestinal Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Naveen Pemmaraju
- Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Prithviraj Bose
- Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sarina A Piha-Paul
- Department of Investigational Cancer Therapeutics (Phase I Program), The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jordi Rodon
- Department of Investigational Cancer Therapeutics (Phase I Program), The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Carolina Salguero
- Department of Investigational Cancer Therapeutics (Phase I Program), The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Koji Sasaki
- Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Anand K Singh
- Department of Symptom Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Vivek Subbiah
- Department of Investigational Cancer Therapeutics (Phase I Program), The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Apostolia M Tsimberidou
- Department of Investigational Cancer Therapeutics (Phase I Program), The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Quanyun A Xu
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Musa Yilmaz
- Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Qi Zhang
- Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yuan Li
- Department of Biostatistics and Data Science, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Christopher A Bristow
- Translational Research to AdvanCe Therapeutics and Innovation in ONcology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Meenakshi B Bhattacharjee
- Department of Pathology and Laboratory Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Stefano Tiziani
- Department of Nutritional Sciences, College of Natural Sciences, The University of Texas at Austin, Austin, TX, USA
- Department of Pediatrics, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
- Department of Oncology, Dell Medical School, Livestrong Cancer Institutes, The University of Texas at Austin, Austin, TX, USA
| | - Timothy P Heffernan
- Translational Research to AdvanCe Therapeutics and Innovation in ONcology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Christopher P Vellano
- Translational Research to AdvanCe Therapeutics and Innovation in ONcology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Philip Jones
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Cobi J Heijnen
- Department of Symptom Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Psychological Sciences, Rice University, Houston, TX, USA
| | - Annemieke Kavelaars
- Department of Symptom Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Joseph R Marszalek
- Translational Research to AdvanCe Therapeutics and Innovation in ONcology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Marina Konopleva
- Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
358
|
Raff H, Glaeser BL, Szabo A, Olsen CM, Everson CA. Sleep restriction during opioid abstinence affects the hypothalamic-pituitary-adrenal (HPA) axis in male and female rats. Stress 2023; 26:2185864. [PMID: 36856367 PMCID: PMC10339708 DOI: 10.1080/10253890.2023.2185864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 02/23/2023] [Indexed: 03/02/2023] Open
Abstract
Hypothalamic-pituitary-adrenal (HPA) axis dynamics are disrupted by opioids and may be involved in substance abuse; this persists during withdrawal and abstinence and is associated with co-morbid sleep disruption leading to vulnerability to relapse. We hypothesized that chronic sleep restriction (SR) alters the HPA axis diurnal rhythm and the sexually dimorphic response to acute stressor during opioid abstinence. We developed a rat model to evaluate the effect of persistent sleep loss during opioid abstinence on HPA axis dynamics in male and female rats. Plasma ACTH and corticosterone were measured diurnally and in response to acute restraint stress in rats Before (control) compared to During subsequent opioid abstinence without or with SR. Abstinence, regardless of sleep state, led to an increase in plasma ACTH and corticosterone in the morning in males. There was a tendency for higher PM plasma ACTH during abstinence in SR males (p = 0.076). ACTH and corticosterone responses to restraint were reduced in male SR rats whereas there was a failure to achieve the post-restraint nadir in female SR rats. There was no effect of the treatments or interventions on adrenal weight normalized to body weight. SR resulted in a dramatic increase in hypothalamic PVN AVP mRNA and plasma copeptin in male but not female rats. This corresponded to the attenuation of the HPA axis stress response in SR males during opioid abstinence. We have identified a potentially unique, sexually dimorphic role for magnocellular vasopressin in the control of the HPA axis during opioid abstinence and sleep restriction.
Collapse
Affiliation(s)
- Hershel Raff
- Department of Medicine (Endocrinology and Molecular Medicine), Surgery, and Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Endocrine Research Laboratory, Aurora St. Luke’s Medical Center, Advocate Aurora Research Institute, Milwaukee, Wisconsin, USA
| | - Breanna L. Glaeser
- Department of Pharmacology & Toxicology and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Aniko Szabo
- Division of Biostatistics, Institute for Health & Equity, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Christopher M. Olsen
- Departments of Pharmacology & Toxicology and Neurosurgery, Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Carol A. Everson
- Department of Medicine (Endocrinology and Molecular Medicine) and Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
359
|
Chen H, Liao C, Yang X, Zhou H, Wu Y, Sun Q, Li S, Zhang W. Multi-omics analysis revealed the role of CYP1A2 in the induction of mechanical allodynia in type 1 diabetes. Front Genet 2023; 14:1151340. [PMID: 37035728 PMCID: PMC10076588 DOI: 10.3389/fgene.2023.1151340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 03/10/2023] [Indexed: 04/11/2023] Open
Abstract
Background: Mechanical allodynia (MA) is one of the leading clinical symptoms of painful diabetic peripheral neuropathy (PDPN), which is a primary reason for non-traumatic amputations, foot ulceration, and gait abnormalities in patients with diabetes. However, the pathogenic mechanisms of MA have not yet been fully elucidated, and there is no effective treatment. This study aims to study the potential pathogenetic mechanisms of MA and to provide targets for the therapy of MA. Methods: A single intraperitoneal injection of streptozotocin induced type 1 diabetes in rat models. Subsequently, rats were divided into the control group, the diabetic group without MA, and the diabetic group with MA based on weekly behavioral assays. The differentially expressed lipids in the sciatic nerve of each group were detected using untargeted lipidomics, and the differentially expressed genes in the sciatic nerve of each group were detected by transcriptomics. The pathogenesis of MA was predicted using integrated analysis and validated by immunofluorescence staining and transmission electron microscopy. Results: Untargeted lipidomics revealed the accumulation of a more severe lipid in MA rats. Transcriptomics results suggested that differentially expressed genes in MA rats were primarily related to lipid droplets and myelin sheath. Integrated analysis results indicated that the downregulation of Cytochrome P450 1A2 (CYP1A2) expression was closely linked to lipid metabolism disorders. Immunofluorescence staining demonstrated that down-regulation of CYP1A2 expression occurred in MA rats. Transmission electron microscopy results showed that more severe lipid droplet accumulation and myelin sheath degeneration occurred in MA rats. Conclusion: Our findings imply that the downregulation of CYP1A2 expression leads to disorders of lipid metabolism and further leads to lipid droplet accumulation and myelin sheath degeneration, which might ultimately lead to the development of MA. Therefore, our study contributes to promoting the understanding of the molecular mechanisms of MA and providing potential targets for the clinical treatment of MA.
Collapse
|
360
|
Kędziora M, Boccella S, Marabese I, Mlost J, Infantino R, Maione S, Starowicz K. Inhibition of anandamide breakdown reduces pain and restores LTP and monoamine levels in the rat hippocampus via the CB 1 receptor following osteoarthritis. Neuropharmacology 2023; 222:109304. [PMID: 36341807 DOI: 10.1016/j.neuropharm.2022.109304] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 07/15/2022] [Accepted: 10/23/2022] [Indexed: 11/06/2022]
Abstract
Chronic pain is a persistent, complex condition that contributes to impaired mood, anxiety and emotional problems. Osteoarthritis (OA) is one of the major causes of chronic pain in adults and elderly people. A substantial body of evidence demonstrate that hippocampal neural circuits, especially monoamine dopamine and serotonin levels, contributes to negative affect and avoidance motivation experienced during pain. Current pharmacological strategies for OA patients are unsatisfying and the endocannabinoid system modulation might represent an alternative for the treatment of OA-related pain. In the present study, we used a rat model of osteoarthritis induced by intra-articular injection of sodium monoiodoacetate to assess, 28 days post-induction, the contribution of endocannabinoid system on the possible alteration in pain perception and affective behavior, in LTP and monoamine levels in the lateral entorhinal cortex-dentate gyrus pathway. The results show that OA-related chronic pain induces working memory impairment and depressive-like behavior appearance, diminishes LTP, decreases dopamine levels and increases serotonin levels in the rat dentate gyrus. URB597 administration (i.p., 1 mg/kg) reduces hyperalgesia and mechanical allodynia, improves recognition memory and depressive-live behavior, restores LTP and normalizes monoamine levels in the hippocampus. The effect was observed 60-120 min post-treatment and was blocked by AM251, which proves the action of URB597 via the CB1 receptor. Therefore, our study confirms the role of anandamide in OA-related chronic pain management at the behavioral and hippocampal levels. This article is part of the Special Issue on 'Advances in mechanisms and therapeutic targets relevant to pain'.
Collapse
Affiliation(s)
- Marta Kędziora
- Department of Neurochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Cracow, Poland
| | - Serena Boccella
- Department of Experimental Medicine, Division of Pharmacology, University of Campania "L. Vanvitelli", Naples, Italy
| | - Ida Marabese
- Department of Experimental Medicine, Division of Pharmacology, University of Campania "L. Vanvitelli", Naples, Italy
| | - Jakub Mlost
- Department of Neurochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Cracow, Poland
| | - Rosmara Infantino
- Department of Experimental Medicine, Division of Pharmacology, University of Campania "L. Vanvitelli", Naples, Italy
| | - Sabatino Maione
- Department of Experimental Medicine, Division of Pharmacology, University of Campania "L. Vanvitelli", Naples, Italy; IRCSS, Neuromed, Pozzilli (IS), 86077, Italy; ERG, Endocannabinoid Research Group, CNR, Pozzuoli, Italy
| | - Katarzyna Starowicz
- Department of Neurochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Cracow, Poland.
| |
Collapse
|
361
|
Wang ZH, Feng Y, Hu Q, Wang XL, Zhang L, Liu TT, Zhang JT, Yang X, Fu QY, Fu DN, Hu J, Liu T. Keratinocyte TLR2 and TLR7 contribute to chronic itch through pruritic cytokines and chemokines in mice. J Cell Physiol 2023; 238:257-273. [PMID: 36436135 DOI: 10.1002/jcp.30923] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 11/03/2022] [Accepted: 11/10/2022] [Indexed: 11/28/2022]
Abstract
Although neuronal Toll-like receptors (TLRs) (e.g., TLR2, TLR3, and TLR7) have been implicated in itch sensation, the roles of keratinocyte TLRs in chronic itch are elusive. Herein, we evaluated the roles of keratinocyte TLR2 and TLR7 in chronic itch under dry skin and psoriasis conditions, which was induced by either acetone-ether-water treatment or 5% imiquimod cream in mice, respectively. We found that TLR2 and TLR7 signaling were significantly upregulated in dry skin and psoriatic skin in mice. Chronic itch and epidermal hyperplasia induced by dry skin or psoriasis were comparably reduced in TLR2 and TLR7 knockout mice. In the dry skin model, the enhanced messenger RNA (mRNA) expression levels of pruritic CXCL1/2, IL-31, IL-33, ST2, IL-6, IL-17A, TNF-α, and IFN-γ were inhibited in TLR2-/- mice, while CXCL2, IL-31, and IL-6 were inhibited in TLR7-/- mice. In psoriasis model, the enhanced mRNA expression levels of pruritic CXCL1/2, IL-31, IL-33, ST2, IL-6, and TNF-α were inhibited in TLR2-/- mice, while CXCL1/2, IL-31, IL-33, ST2, IL-6, IL-17A, and TNF-α were inhibited in TLR7-/- mice. Incubation with Staphylococcus aureus (S. aureus) peptidoglycan (PGN-SA) (a TLR2 agonist), imiquimod (a TLR7 agonist), and miR142-3p (a putative TLR7 agonist) were sufficient to upregulate the expression of pruritic cytokines or chemokines in cultured keratinocyte HaCaT cells. Finally, pharmacological blockade of C-X-C Motif Chemokine Receptor 1/2 and high mobility group box protein 1 dose-dependently attenuated acute and chronic itch in mice. Together, these results indicate that keratinocyte TLR2 and TLR7 signaling pathways are distinctly involved in the pathogenesis of chronic itch.
Collapse
Affiliation(s)
- Zhi-Hong Wang
- Department of Endocrinology, The Second Affiliated Hospital of Soochow University, Suzhou, China.,Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Yu Feng
- Department of Endocrinology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Qingfang Hu
- Department of Endocrinology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Xue-Long Wang
- Department of Thoracic Surgery, Capital Medical University Electric Power Teaching Hospital Beijing, Beijing, China
| | - Li Zhang
- Department of Anesthesiology, The First People's Hospital of Kunshan Affiliated with Jiangsu University, Kunshan, China
| | - Teng-Teng Liu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Jiang-Tao Zhang
- Institute of Pain Medicine and Special Environmental Medicine, Nantong University, Nantong, China
| | - Xiaohua Yang
- The Affiliated Haian Hospital of Nantong University, Haian, China
| | - Qing-Yue Fu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Dan-Ni Fu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Ji Hu
- Department of Endocrinology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Tong Liu
- Institute of Pain Medicine and Special Environmental Medicine, Nantong University, Nantong, China.,College of Life Sciences, Yanan University, Yanan, China.,Suzhou Key Laboratory of Intelligent Medicine and Equipment, Soochow University, Suzhou, China
| |
Collapse
|
362
|
de Oliveira MG, Monica FZ, Passos GR, Victorio JA, Davel AP, Oliveira ALL, Parada CA, D’Ancona CAL, Hill WG, Antunes E. Selective Pharmacological Inhibition of NOX2 by GSK2795039 Improves Bladder Dysfunction in Cyclophosphamide-Induced Cystitis in Mice. Antioxidants (Basel) 2022; 12:92. [PMID: 36670953 PMCID: PMC9854480 DOI: 10.3390/antiox12010092] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/21/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023] Open
Abstract
Interstitial cystitis/bladder pain syndrome (IC/BPS) is a chronic inflammatory disease without consistently effective treatment. Among the many mediators implicated in cystitis, the overproduction of reactive oxygen species (ROS) seems to play a key role, although the main source of ROS remains unclear. This study aimed to investigate the contribution of NADPH oxidase (NOX) isoforms in ROS generation and the voiding dysfunction of cyclophosphamide (CYP, 300 mg/Kg, ip, 24 h)-induced cystitis in adult female mice, a well-recognized animal model to study IC/BPS, by using GKT137831 (5 mg/Kg, ip, three times in a 24 h period) or GSK2795039 (5 mg/Kg, ip, three times in a 24 h period) to inhibit NOX1/4 or NOX2, respectively. Our results showed that treatment with GSK2795039 improved the dysfunctional voiding behavior induced by CYP, reduced bladder edema and inflammation, and preserved the urothelial barrier integrity and tight junction occludin expression, besides inhibiting the characteristic vesical pain and bladder superoxide anion generation. In contrast, the NOX1/4 inhibitor GKT137831 had no significant protective effects. Taken together, our in vivo and ex vivo data demonstrate that NOX2 is possibly the main source of ROS observed in cystitis-induced CYP in mice. Therefore, selective inhibition of NOX2 by GSK2795039 may be a promising target for future therapies for IC/BPS.
Collapse
Affiliation(s)
- Mariana G. de Oliveira
- Department of Translational Medicine, Pharmacology Area, Faculty of Medical Sciences, University of Campinas (UNICAMP), Alexander Fleming St., Campinas 13083-881, SP, Brazil
| | - Fabíola Z. Monica
- Department of Translational Medicine, Pharmacology Area, Faculty of Medical Sciences, University of Campinas (UNICAMP), Alexander Fleming St., Campinas 13083-881, SP, Brazil
| | - Gabriela R. Passos
- Department of Translational Medicine, Pharmacology Area, Faculty of Medical Sciences, University of Campinas (UNICAMP), Alexander Fleming St., Campinas 13083-881, SP, Brazil
| | - Jamaira A. Victorio
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas 13083-881, SP, Brazil
| | - Ana Paula Davel
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas 13083-881, SP, Brazil
| | - Anna Lethicia Lima Oliveira
- Laboratory of the Study of Pain, Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas 13083-881, SP, Brazil
| | - Carlos A. Parada
- Laboratory of the Study of Pain, Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas 13083-881, SP, Brazil
| | - Carlos A. L. D’Ancona
- Department of Surgery, Division of Urology, Faculty of Medical Sciences, University of Campinas, Campinas 13083-881, SP, Brazil
| | - Warren G. Hill
- Laboratory of Voiding Dysfunction, Nephrology Division, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Edson Antunes
- Department of Translational Medicine, Pharmacology Area, Faculty of Medical Sciences, University of Campinas (UNICAMP), Alexander Fleming St., Campinas 13083-881, SP, Brazil
| |
Collapse
|
363
|
Chen Y, Wang G, Zhang W, Han Y, Zhang L, Xu H, Meng S, Lu L, Xue Y, Shi J. An orbitofrontal cortex-anterior insular cortex circuit gates compulsive cocaine use. SCIENCE ADVANCES 2022; 8:eabq5745. [PMID: 36563158 PMCID: PMC9788779 DOI: 10.1126/sciadv.abq5745] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 11/23/2022] [Indexed: 06/01/2023]
Abstract
Compulsive drug use, a cardinal symptom of drug addiction, is characterized by persistent substance use despite adverse consequences. However, little is known about the neural circuit mechanisms behind this behavior. Using a footshock-punished cocaine self-administration procedure, we found individual variability of rats in the process of drug addiction, and rats with compulsive cocaine use presented increased neural activity of the anterior insular cortex (aIC) compared with noncompulsive rats. Chemogenetic manipulating activity of aIC neurons, especially aIC glutamatergic neurons, bidirectionally regulated compulsive cocaine intake. Furthermore, the aIC received inputs from the orbitofrontal cortex (OFC), and the OFC-aIC circuit was enhanced in rats with compulsive cocaine use. Suppression of the OFC-aIC circuit switched rats from punishment resistance to sensitivity, while potentiation of this circuit increased compulsive cocaine use. In conclusion, our results found that aIC glutamatergic neurons and the OFC-aIC circuit gated the shift from controlled to compulsive cocaine use, which could serve as potential therapeutic targets for drug addiction.
Collapse
Affiliation(s)
- Yang Chen
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing 100191, China
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Guibin Wang
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Wen Zhang
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing 100191, China
| | - Ying Han
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing 100191, China
| | - Libo Zhang
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing 100191, China
- Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Hubo Xu
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing 100191, China
| | - Shiqiu Meng
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing 100191, China
| | - Lin Lu
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing 100191, China
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China
| | - Yanxue Xue
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing 100191, China
- The Key Laboratory for Neuroscience of the Ministry of Education and Health, Peking University, Beijing 100191, China
- Chinese Institute for Brain Research, Beijing 102206, China
| | - Jie Shi
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing 100191, China
- Peking University Shenzhen Hospital, Shenzhen 518036, China
- The Key Laboratory for Neuroscience of the Ministry of Education and Health, Peking University, Beijing 100191, China
- Chinese Institute for Brain Research, Beijing 102206, China
- The State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China
| |
Collapse
|
364
|
Lopas LA, Shen H, Zhang N, Jang Y, Tawfik VL, Goodman SB, Natoli RM. Clinical Assessments of Fracture Healing and Basic Science Correlates: Is There Room for Convergence? Curr Osteoporos Rep 2022; 21:216-227. [PMID: 36534307 DOI: 10.1007/s11914-022-00770-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/11/2022] [Indexed: 12/23/2022]
Abstract
PURPOSE OF REVIEW The purpose of this review is to summarize the clinical and basic science methods used to assess fracture healing and propose a framework to improve the translational possibilities. RECENT FINDINGS Mainstays of fracture healing assessment include clinical examination, various imaging modalities, and assessment of function. Pre-clinical studies have yielded insight into biomechanical progression as well as the genetic, molecular, and cellular processes of fracture healing. Efforts are emerging to identify early markers to predict impaired healing and possibly early intervention to alter these processes. Despite of the differences in clinical and preclinical research, opportunities exist to unify and improve the translational efforts between these arenas to develop and optimize our ability to assess and predict fracture healing, thereby improving the clinical care of these patients.
Collapse
Affiliation(s)
- Luke A Lopas
- Department of Orthopaedic Surgery, Indiana University School of Medicine, 1801 N. Senate Blvd Suite 535, Indianapolis, IN, USA.
| | - Huaishuang Shen
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, USA
- Department of Orthopaedic Surgery, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Ning Zhang
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Yohan Jang
- Department of Orthopaedic Surgery, Indiana University School of Medicine, 1801 N. Senate Blvd Suite 535, Indianapolis, IN, USA
| | - Vivianne L Tawfik
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Stuart B Goodman
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, USA
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Roman M Natoli
- Department of Orthopaedic Surgery, Indiana University School of Medicine, 1801 N. Senate Blvd Suite 535, Indianapolis, IN, USA
| |
Collapse
|
365
|
Meregalli C, Monza L, Jongen JLM. A mechanistic understanding of the relationship between skin innervation and chemotherapy-induced neuropathic pain. FRONTIERS IN PAIN RESEARCH (LAUSANNE, SWITZERLAND) 2022; 3:1066069. [PMID: 36582196 PMCID: PMC9792502 DOI: 10.3389/fpain.2022.1066069] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 11/24/2022] [Indexed: 12/14/2022]
Abstract
Neuropathic pain is a frequent complication of chemotherapy-induced peripheral neurotoxicity (CIPN). Chemotherapy-induced peripheral neuropathies may serve as a model to study mechanisms of neuropathic pain, since several other common causes of peripheral neuropathy like painful diabetic neuropathy may be due to both neuropathic and non-neuropathic pain mechanisms like ischemia and inflammation. Experimental studies are ideally suited to study changes in morphology, phenotype and electrophysiologic characteristics of primary afferent neurons that are affected by chemotherapy and to correlate these changes to behaviors reflective of evoked pain, mainly hyperalgesia and allodynia. However, hyperalgesia and allodynia may only represent one aspect of human pain, i.e., the sensory-discriminative component, while patients with CIPN often describe their pain using words like annoying, tiring and dreadful, which are affective-emotional descriptors that cannot be tested in experimental animals. To understand why some patients with CIPN develop neuropathic pain and others not, and which are the components of neuropathic pain that they are experiencing, experimental and clinical pain research should be combined. Emerging evidence suggests that changes in subsets of primary afferent nerve fibers may contribute to specific aspects of neuropathic pain in both preclinical models and in patients with CIPN. In addition, the role of cutaneous neuroimmune interactions is considered. Since obtaining dorsal root ganglia and peripheral nerves in patients is problematic, analyses performed on skin biopsies from preclinical models as well as patients provide an opportunity to study changes in primary afferent nerve fibers and to associate these changes to human pain. In addition, other biomarkers of small fiber damage in CIPN, like corneal confocal microscope and quantitative sensory testing, may be considered.
Collapse
Affiliation(s)
- Cristina Meregalli
- School of Medicine and Surgery, Experimental Neurology Unit and Milan Center for Neuroscience, University of Milano-Bicocca, Monza, Italy,Correspondence: Cristina Meregalli
| | - Laura Monza
- School of Medicine and Surgery, Experimental Neurology Unit and Milan Center for Neuroscience, University of Milano-Bicocca, Monza, Italy
| | - Joost L. M. Jongen
- Department of Neurology, Brain Tumor Center, Erasmus MC Cancer Institute, Rotterdam, Netherlands
| |
Collapse
|
366
|
Klazas M, Naamneh MS, Zheng W, Lazarovici P. Gabapentin Increases Intra-Epidermal and Peptidergic Nerve Fibers Density and Alleviates Allodynia and Thermal Hyperalgesia in a Mouse Model of Acute Taxol-Induced Peripheral Neuropathy. Biomedicines 2022; 10:biomedicines10123190. [PMID: 36551946 PMCID: PMC9775678 DOI: 10.3390/biomedicines10123190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/05/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
The clinical pathology of Taxol-induced peripheral neuropathy (TIPN), characterized by loss of sensory sensitivity and pain, is mirrored in a preclinical pharmacological mice model in which Gabapentin, produced anti-thermal hyperalgesia and anti-allodynia effects. The study aimed to investigate the hypothesis that gabapentin may protect against Taxol-induced neuropathic pain in association with an effect on intra-epidermal nerve fibers density in the TIPN mice model. A TIPN study schedule was induced in mice by daily injection of Taxol during the first week of the experiment. Gabapentin therapy was performed during the 2nd and 3rd weeks. The neuropathic pain was evaluated during the whole experiment by the Von Frey, tail flick, and hot plate tests. Intra-epidermal nerve fibers (IENF) density in skin biopsies was measured at the end of the experiment by immunohistochemistry of ubiquitin carboxyl-terminal hydrolase PGP9.5 pan-neuronal and calcitonin gene-related (CGRP) peptides-I/II- peptidergic markers. Taxol-induced neuropathy was expressed by 80% and 73% reduction in the paw density of IENFs and CGPR, and gabapentin treatment corrected by 83% and 46% this reduction, respectively. Gabapentin-induced increase in the IENF and CGRP nerve fibers density, thus proposing these evaluations as an additional objective end-point tool in TIPN model studies using gabapentin as a reference compound.
Collapse
Affiliation(s)
- Michal Klazas
- Pharmacy Unit, School of Pharmacy Institute for Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112002, Israel
| | - Majdi Saleem Naamneh
- Pharmacology Unit, School of Pharmacy Institute for Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112002, Israel
| | - Wenhua Zheng
- Center of Reproduction, Development and Aging and Institute of Translation Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau 999078, China
| | - Philip Lazarovici
- Pharmacology Unit, School of Pharmacy Institute for Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112002, Israel
- Correspondence: ; Tel.: +972-2-6758729; Fax: +972-2-6757490
| |
Collapse
|
367
|
Huang M, Wang G, Lin Y, Guo Y, Ren X, Shao J, Cao J, Zang W, Li Z. Dopamine receptor D2, but not D1, mediates the reward circuit from the ventral tegmental area to the central amygdala, which is involved in pain relief. Mol Pain 2022; 18:17448069221145096. [PMID: 36464669 PMCID: PMC9742700 DOI: 10.1177/17448069221145096] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Pain involves both sensory and affective dimensions. The amygdala is a key player in linking nociceptive stimuli to negative emotional behaviors or affective states. Relief of pain is rewarding and activates brain reward circuits. Whether the reward circuit from the ventral tegmental area (VTA) to the central amygdala (CeA) is involved in pain relief remains unexplored. Using a model of experimental postsurgical pain, we found that pain relief elicited conditioned place preference (CPP), activated CeA-projecting dopaminergic cells in the VTA, and decreased dopaminergic D2 receptor expression in the CeA. Activation of the VTA-CeA neural pathway using optogenetic approaches relieved incisional pain. Administration of a D2 receptor agonist reversed the pain relief elicited by light-induced activation of the VTA-CeA pathway. These findings indicate that the VTA-CeA circuit is involved in pain relief in mice via dopamine receptor D2 in the CeA.
Collapse
Affiliation(s)
- Minjie Huang
- Department of Human Anatomy, Basic Medical Sciences College, Zhengzhou University, Zhengzhou, Henan Province, China,Department of Human Anatomy, Basic Medical Sciences College, Sanquan College of Xinxiang Medical University, Xinxiang, China
| | - Guoqing Wang
- Department of Human Anatomy, Basic Medical Sciences College, Zhengzhou University, Zhengzhou, Henan Province, China,Department of Neurosurgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Yazhou Lin
- Department of Human Anatomy, Basic Medical Sciences College, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Yanyan Guo
- Department of Human Anatomy, Basic Medical Sciences College, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Xiuhua Ren
- Department of Human Anatomy, Basic Medical Sciences College, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Jinping Shao
- Department of Human Anatomy, Basic Medical Sciences College, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Jing Cao
- Department of Human Anatomy, Basic Medical Sciences College, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Weidong Zang
- Department of Human Anatomy, Basic Medical Sciences College, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Zhihua Li
- Department of Human Anatomy, Basic Medical Sciences College, Zhengzhou University, Zhengzhou, Henan Province, China,Zhihua Li, Department of Human Anatomy, Basic Medical Sciences College, Zhengzhou University, 1 Science Road, Zhengzhou 450001, Henan Province, China.
| |
Collapse
|
368
|
Domiati S, Abd El Galil K, Ragab H. Molecular Mechanics Simulations and Experimental Investigation of the Effect of Tadalafil on Various Inflammatory Pain Mediators. ACS OMEGA 2022; 7:43747-43758. [PMID: 36506154 PMCID: PMC9730770 DOI: 10.1021/acsomega.2c04761] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 11/09/2022] [Indexed: 06/17/2023]
Abstract
PURPOSE Tadalafil's exact analgesic mechanism is still unclear. The current study aimed to elucidate this mechanism in an inflammatory pain model. METHODS Computer-assisted simulation docking experiments were carried out to assess the binding of tadalafil to different ligands. The anti-inflammatory and analgesic effects of tadalafil were evaluated using formalin-induced paw edema and a von Frey filament test, respectively. The plantar paw of the mice was then dissected to quantify iNOS, nNOS, COX-2, TNFα, IL1, and IL10 gene expression levels using a real-time polymerase chain reaction. iNOS, TNFα, and COX-2 inhibition was reassessed in vitro using the ELISA technique. One-way analysis of variance followed by post hoc Tukey test or t-test was used to compare the means. RESULTS Docking analysis showed a superior binding score of tadalafil to COX-2, iNOS, IL-1, and TNF-α compared to that of indomethacin and morphine and a similar binding score to nNOS and IL-10 relative to that of indomethacin. In the in vivo study, tadalafil, after an hour of formalin administration, inhibited significantly paw edema, similar to indomethacin. Furthermore, it significantly increased the withdrawal force in the von Frey filament test as compared to the negative control, which was similar to the effect observed with indomethacin and morphine. The RT-PCR revealed that tadalafil reduced significantly the iNOS, COX-2, and TNF-α gene expressions but had no effect on nNOS, IL 1, and IL10. In vitro ELISA tests confirmed the inhibition of iNOS, COX-2, and TNF-α. CONCLUSION Tadalafil probably exerts its analgesic effect through the simultaneous inhibition of iNOS, COX-2, and TNF-α, which is not the case with other nonsteroidal anti-inflammatory drugs. Nevertheless, further studies are required to confirm its mechanism.
Collapse
Affiliation(s)
- Souraya Domiati
- Department
of Pharmacology and Therapeutics, Faculty of Pharmacy, Beirut Arab University, Beirut1107 2809, Lebanon
| | - Khaled Abd El Galil
- Department
of Pharmaceutical Sciences, Faculty of Pharmacy, Beirut Arab University, Beirut1107 2809, Lebanon
- Department
of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, Mansoura35516, Egypt
| | - Hanan Ragab
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria21521, Egypt
| |
Collapse
|
369
|
Harris HM, Gul W, ElSohly MA, Sufka KJ. Differential Effects of Cannabidiol and a Novel Cannabidiol Analog on Oxycodone Place Preference and Analgesia in Mice: an Opioid Abuse Deterrent with Analgesic Properties. Cannabis Cannabinoid Res 2022; 7:804-813. [PMID: 34962133 PMCID: PMC9784596 DOI: 10.1089/can.2021.0050] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Background and Purpose: This study sought to determine whether cannabidiol (CBD) or a CBD derivative, CBD monovalinate monohemisuccinate (CBD-val-HS), could attenuate the development of oxycodone reward while retaining its analgesic effects. Experimental Approach: To determine the effect on oxycodone reward, animals were enrolled in the conditioned place preference paradigm and received either saline or oxycodone (3.0 mg/kg) in combination with either CBD or CBD-val-HS utilizing three sets of drug-/no drug-conditioning trials. To determine if the doses of CBD or CBD-val-HS that blocked opioid reward would affect nociceptive processes, animals were enrolled in the hot plate and abdominal writhing assays when administered alone or in combination with a subanalgesic (1.0 mg/kg) or analgesic (3.0 mg/kg) dose of oxycodone. Key Results: Results from condition place preference demonstrated CBD was not able attenuate oxycodone place preference while CBD-val-HS attenuated these rewarding effects at 8.0 mg/kg and was void of rewarding or aversive properties. In contrast to CBD, CBD-val-HS alone produced analgesic effects in both nociceptive assays but was most effective compared with oxycodone against thermal nociception. Of interest, there was a differential interaction of CBD and CBD-val-HS×oxycodone across the two nociceptive assays producing subadditive responses on the hot plate assay, whereas additive responses were observed in the abdominal writhing assay. Conclusion: These findings suggest CBD-val-HS alone, a nonrewarding analgesic compound, could be useful in pain management and addiction treatment settings.
Collapse
Affiliation(s)
- Hannah M. Harris
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, Mississippi, USA
| | - Waseem Gul
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, Mississippi, USA
- ElSohly Laboratories, Inc., Oxford, Mississippi, USA
| | - Mahmoud A. ElSohly
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, Mississippi, USA
- ElSohly Laboratories, Inc., Oxford, Mississippi, USA
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, University of Mississippi, University, Mississippi, USA
| | - Kenneth J. Sufka
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, Mississippi, USA
- Department of Psychology, University of Mississippi, University, Mississippi, USA
| |
Collapse
|
370
|
Cilostazol Alleviates NLRP3 Inflammasome-Induced Allodynia/Hyperalgesia in Murine Cerebral Cortex Following Transient Ischemia: Focus on TRPA1/Glutamate and Akt/Dopamine/BDNF/Nrf2 Trajectories. Mol Neurobiol 2022; 59:7194-7211. [PMID: 36127628 PMCID: PMC9616778 DOI: 10.1007/s12035-022-03024-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 08/29/2022] [Indexed: 12/02/2022]
Abstract
Global cerebral ischemia/reperfusion (I/R) provokes inflammation that augments neuropathic pain. Cilostazol (CLZ) has pleiotropic effects including neuroprotection in several ravaging central disorders; nonetheless, its potential role in transient central ischemic-induced allodynia and hyperalgesia has not been asserted before. Rats were allocated into 4 groups; sham, sham + CLZ, and 45 min-bilateral carotid occlusion followed by a 48 h-reperfusion period either with or without CLZ (50 mg/kg; p.o) post-treatment. CLZ prolonged latency of hindlimb withdrawal following von Frey filaments, 4 °C cold, and noxious mechanical stimulations. Histopathological alterations and the immunoexpression of glial fibrillary acidic protein induced by I/R were reduced by CLZ in the anterior cingulate cortex (ACC) area, while, CLZ enhanced intact neuronal count. Meanwhile, CLZ modulated cerebral cortical glutamate, dopamine neurotransmission, and transient receptor potential ankyrin 1 (TRPA1). CLZ anti-inflammatory potential was mediated by the downregulated p65 NF-κB and sirtuin-1 enhancement to reduce nucleotide-binding domain-like receptor protein 3 (NLRP3), apoptosis-associated speck-like protein (ASC), active caspase-1, and interleukin-1β, indicative of inflammasome deactivation. It also revealed an antioxidant capacity via boosting nuclear factor E2-related factor (Nrf2) enhancing glutathione through forkhead box protein O3a (FOXO3a) reduction. Additionally, CLZ triggered neuronal survival by promoting the p-content of Akt, TrkB, and CREB as well as BDNF content. A novel approach of CLZ in hindering global cerebral I/R-mediated neuropathy is firstly documented herein to forward its adjunct action via deactivating the NLRP3 inflammasome, besides enhancing Nrf2 axis, neuronal survival, and dopamine neurotransmission as well as inhibiting TRPA1 and excitotoxicity.
Collapse
|
371
|
Patterson FM, Miralami R, Olivier AK, McNulty K, Wood JW, Prabhu RK, Priddy LB. Increase in serum nerve growth factor but not intervertebral disc degeneration following whole-body vibration in rats. Clin Biomech (Bristol, Avon) 2022; 100:105823. [PMID: 36427488 PMCID: PMC9742305 DOI: 10.1016/j.clinbiomech.2022.105823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 11/11/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022]
Abstract
BACKGROUND Low back pain is a leading cause of disability and is frequently associated with whole-body vibration exposure in industrial workers and military personnel. While the pathophysiological mechanisms by which whole-body vibration causes low back pain have been studied in vivo, there is little data to inform low back pain diagnosis. Using a rat model of repetitive whole-body vibration followed by recovery, our objective was to determine the effects of vibration frequency on hind paw withdrawal threshold, circulating nerve growth factor concentration, and intervertebral disc degeneration. METHODS Male Sprague-Dawley rats were vibrated for 30 min at an 8 Hz or 11 Hz frequency every other day for two weeks and then recovered (no vibration) for one week. Von Frey was used to determine hind paw mechanical sensitivity every two days. Serum nerve growth factor concentration was determined every four days. At the three-week endpoint, intervertebral discs were graded histologically for degeneration. FINDINGS The nerve growth factor concentration increased threefold in the 8 Hz group and twofold in the 11 Hz group. The nerve growth factor concentration did not return to baseline by the end of the one-week recovery period for the 8 Hz group. Nerve growth factor serum concentration did not coincide with intervertebral disc degeneration, as no differences in degeneration were observed among groups. Mechanical sensitivity generally decreased over time for all groups, suggesting a habituation (desensitization) effect. INTERPRETATION This study demonstrates the potential of nerve growth factor as a diagnostic biomarker for low back pain due to whole-body vibration.
Collapse
Affiliation(s)
- Folly M Patterson
- Department of Agricultural and Biological Engineering, Mississippi State University, 130 Creelman Street, Mississippi State, MS, 39762, USA; Center for Advanced Vehicular Systems, Mississippi State University, 200 Research Blvd, Starkville, MS 39759, USA.
| | - Raheleh Miralami
- Department of Agricultural and Biological Engineering, Mississippi State University, 130 Creelman Street, Mississippi State, MS, 39762, USA; Center for Advanced Vehicular Systems, Mississippi State University, 200 Research Blvd, Starkville, MS 39759, USA.
| | - Alicia K Olivier
- Department of Pathobiology and Population Medicine, College of Veterinary Medicine, Mississippi State University, 240 Wise Center Drive, Mississippi State, MS 39762, USA.
| | - Kaylin McNulty
- Department of Pathobiology and Population Medicine, College of Veterinary Medicine, Mississippi State University, 240 Wise Center Drive, Mississippi State, MS 39762, USA.
| | - John W Wood
- Department of Agricultural and Biological Engineering, Mississippi State University, 130 Creelman Street, Mississippi State, MS, 39762, USA; Center for Advanced Vehicular Systems, Mississippi State University, 200 Research Blvd, Starkville, MS 39759, USA.
| | - R K Prabhu
- Department of Agricultural and Biological Engineering, Mississippi State University, 130 Creelman Street, Mississippi State, MS, 39762, USA; Center for Advanced Vehicular Systems, Mississippi State University, 200 Research Blvd, Starkville, MS 39759, USA.
| | - Lauren B Priddy
- Department of Agricultural and Biological Engineering, Mississippi State University, 130 Creelman Street, Mississippi State, MS, 39762, USA; Center for Advanced Vehicular Systems, Mississippi State University, 200 Research Blvd, Starkville, MS 39759, USA.
| |
Collapse
|
372
|
Gutierrez A, Harvey EL, Creehan KM, Taffe MA. The long-term effects of repeated heroin vapor inhalation during adolescence on measures of nociception and anxiety-like behavior in adult Wistar rats. Psychopharmacology (Berl) 2022; 239:3939-3952. [PMID: 36287213 PMCID: PMC9672020 DOI: 10.1007/s00213-022-06267-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 10/17/2022] [Indexed: 11/25/2022]
Abstract
RATIONALE Adolescents represent a vulnerable group due to increased experimentation with illicit substances that is often associated with the adolescent period, and because adolescent drug use can result in long-term effects that differ from those caused by drug use initiated during adulthood. OBJECTIVES The purpose of the present study was to determine the effects of repeated heroin vapor inhalation during adolescence on measures of nociception, and anxiety-like behavior during adulthood in female and male Wistar rats. METHODS Rats were exposed twice daily to 30 min of heroin vapor from post-natal day (PND) 36 to PND 45. At 12 weeks of age, baseline thermal nociception was assessed across a range of temperatures with a warm-water tail-withdrawal assay. Anxiety-like behavior was assessed in an elevated plus-maze (EPM) and activity was measured in an open-field arena. Starting at 23 weeks of age, baseline thermal nociception was re-assessed, nociception was determined after acute heroin or naloxone injection, and anxiety-like behavior was redetermined in the EPM. RESULTS Adolescent heroin inhalation altered baseline thermal nociception in female rats at 12 weeks of age and in both female and male rats at ~ 23 weeks. Heroin-treated animals exhibited anxiety-like behavior when tested in the elevated plus-maze, showed blunted heroin-induced analgesia, but exhibited no effect on naloxone-induced hyperalgesia. CONCLUSIONS The present study demonstrates that heroin vapor inhalation during adolescence produces behavioral and physiological consequences in rats that persist well into adulthood.
Collapse
Affiliation(s)
- Arnold Gutierrez
- Department of Psychiatry, University of California, San Diego, Mail Code 0714, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Eric L Harvey
- Department of Psychiatry, University of California, San Diego, Mail Code 0714, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Kevin M Creehan
- Department of Psychiatry, University of California, San Diego, Mail Code 0714, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Michael A Taffe
- Department of Psychiatry, University of California, San Diego, Mail Code 0714, 9500 Gilman Drive, La Jolla, CA, 92093, USA.
| |
Collapse
|
373
|
Daryab M, Faizi M, Mahboubi A, Aboofazeli R. Preparation and Characterization of Lidocaine-Loaded, Microemulsion-Based Topical Gels. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2022; 21:e123787. [PMID: 35765506 PMCID: PMC9191217 DOI: 10.5812/ijpr.123787] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 06/07/2021] [Accepted: 06/07/2021] [Indexed: 01/26/2023]
Abstract
Microemulsion-based gels (MBGs) were prepared for transdermal delivery of lidocaine and evaluated for their potential for local anesthesia. Lidocaine solubility was measured in various oils, and phase diagrams were constructed to map the concentration range of oil, surfactant, cosurfactant, and water for oil-in-water (o/w) microemulsion (ME) domains, employing the water titration method at different surfactant/cosurfactant weight ratios. Refractive index, electrical conductivity, droplet size, zeta potential, pH, viscosity, and stability of fluid o/w MEs were evaluated. Carbomer® 940 was incorporated into the fluid drug-loaded MEs as a gelling agent. Microemulsion-based gels were characterized for spreadability, pH, viscosity, and in-vitro drug release measurements, and based on the results obtained, the best MBGs were selected and subsequently subjected to ex-vivo rat skin permeation anesthetic effect and irritation studies. Data indicated the formation of nano-sized droplets of MEs ranging from 20 - 52 nm with a polydispersity of less than 0.5. In-vitro release and ex-vivo permeation studies on MBGs showed significantly higher drug release and permeation in comparison to the marketed topical gel. Developed MBG formulations demonstrated greater potential for transdermal delivery of lidocaine and advantage over the commercially available gel product, and therefore, they may be considered as potential vehicles for the topical delivery of lidocaine.
Collapse
Affiliation(s)
- Mahshid Daryab
- Department of Pharmaceutics, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehrdad Faizi
- Department of Pharmacology and Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arash Mahboubi
- Department of Pharmaceutics, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Food Safety Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Corresponding Author: Department of Pharmaceutics, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Reza Aboofazeli
- Department of Pharmaceutics, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Protein Technology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Corresponding Author: Department of Pharmaceutics, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
374
|
SIRT1-Enriched Exosomes Derived from Bone Marrow Mesenchymal Stromal Cells Alleviate Peripheral Neuropathy via Conserving Mitochondrial Function. J Mol Neurosci 2022; 72:2507-2516. [PMID: 36534294 DOI: 10.1007/s12031-022-02091-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022]
Abstract
Diabetic peripheral neuropathy (DPN) is a highly prevalent diabetic complication characterized at the molecular level by mitochondrial dysfunction and deleterious oxidative damage. No effective treatments for DPN are currently available. The present study was developed to examine the impact of exosomes derived from bone marrow mesenchymal stromal cells (BMSCs) overexpressing sirtuin 1 (SIRT1) on DPN through antioxidant activity and the preservation of mitochondrial homeostasis. A DPN model was established using 20-week-old diabetic model mice (db/db). Exosomes were prepared from control BMSCs (exo-control) and BMSCs that had been transduced with a SIRT1 lentivirus (exo-SIRT1). Sensory and motor nerve conduction velocity values were measured to assess neurological function, and mechanical and thermal sensitivity were analyzed in these animals. Exo-SIRT1 preparations exhibited a high loading capacity and readily accumulated within peripheral nerves following intravenous administration, whereupon they were able to promote improved neurological recovery relative to exo-control treatment. DPN mice exhibited significantly improved nerve conduction velocity following exo-SIRT1 treatment. Relative to exo-control-treated mice, those that underwent exo-SIRT1 treatment exhibited significantly elevated TOMM20 and Nrf2/HO-1 expression, reduced MDA levels, increased GSH and SOD activity, and increased MMP. Together, these results revealed that both exo-control and exo-SIRT1 administration was sufficient to reduce the morphological and behavioral changes observed in DPN model mice, with exo-SIRT1 treatment exhibiting superior therapeutic efficacy. These data thus provide a foundation for future efforts to explore other combinations of gene therapy and exosome treatment in an effort to alleviate DPN.
Collapse
|
375
|
Yu M, Ye F, Ma C, Jin X, Ji H, Wang D, Yang Y, Zhu C, Tang Z. Ligustrazine mitigates chronic venous disease-induced pain hyperalgesia through desensitization of inflammation-associated TRPA1 activity in DRG. JOURNAL OF ETHNOPHARMACOLOGY 2022; 298:115667. [PMID: 36030028 DOI: 10.1016/j.jep.2022.115667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 08/09/2022] [Accepted: 08/19/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ligustrazine, an important active ingredient extracted from Ligusticum chuanxiong hort, has been widely used to cure cardiovascular diseases and exerts an analgesic effect. AIMS OF THIS STUDY The aim of this study is to investigate whether ligustrazine mitigates chronic venous disease (CVeD)-induced pain and to explore its underlying mechanisms. MATERIALS AND METHODS A mouse model of CVeD was established by vein ligature. Ligustrazine was administered intraperitoneally to CVeD mice for a single injection (20 mg/kg, 100 mg/kg, and 200 mg/kg) or once a day for three weeks (100 mg/kg and 200 mg/kg), and TRPA1 overexpressed HEK 293 cells were treated with ligustrazine (600 μM) in the presence of mustard oil (100 μM) for 2 min. Patch clamp and calcium imaging were used to measure the inhibitory response of ligustrazine on DRG neurons and TRPA1 transfected HEK293 cells. RESULTS The present results showed that mice receiving vein ligature surgery exhibited obvious pain hypersensitivity to mechanical, cold and thermal stimuli, whereas ligustrazine significantly reversed the pain hyperalgesia in CVeD mice. Furthermore, ligustrazine desensitized transient receptor potential ankyrin 1 (TRPA1) activity in the dorsal root ganglion (DRG) neurons, resulting in suppressing the DRG neuronal excitability in the CVeD mice. However, ligustrazine could not directly inhibit the response of TRPA1 transfected HEK293 cells to mustard oil. Strikingly, ligustrazine restricted the macrophage infiltration and decreased the mRNA levels of Interleukin-1β (IL-1β) and NOD-like receptor protein 3 (NLRP3) in the DRG neurons of the CVeD mice. CONCLUSIONS The present study provided evidence that ligustrazine alleviated pain hypersensitivity to mechanical, cold and thermal stimuli in CVeD mice. Ligustrazine could weaken the activity of TRPA1 in the DRG to mitigate CVeD-induced pain hyperalgesia mainly through inhibition of inflammation. Our findings identify that ligustrazine may be a new therapeutic agent for the treatment of CVeD-induced pain.
Collapse
Affiliation(s)
- Mei Yu
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China; Department of Pharmacy, Taizhou Hospital of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Taizhou, Jiangsu, 225300, China
| | - Fan Ye
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China
| | - Chao Ma
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China
| | - Xiang Jin
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China
| | - Haiwang Ji
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China
| | - Dijun Wang
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China
| | - Yan Yang
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China
| | - Chan Zhu
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China
| | - Zongxiang Tang
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China.
| |
Collapse
|
376
|
de Bengy AF, Decorps J, Martin LS, Pagnon A, Chevalier FP, Sigaudo-Roussel D, Fromy B. Alpha-Lipoic Acid Supplementation Restores Early Age-Related Sensory and Endothelial Dysfunction in the Skin. Biomedicines 2022; 10:2887. [PMID: 36359407 PMCID: PMC9687533 DOI: 10.3390/biomedicines10112887] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/02/2022] [Accepted: 11/08/2022] [Indexed: 09/13/2024] Open
Abstract
Many changes characterize skin aging, and the resulting dysfunctions still constitute a real challenge for our society. The aim of this study was to compare the skin aging of two rat strains, Wistar and Brown Norway (BN), considered as "poorly aging" and "healthy aging" models, respectively, and to assess the effect of alpha-lipoic acid (LPA), especially on skin microcirculation. To this purpose, various skin characteristics were studied at 6, 12, and 24 months and compared to the results of LPA treatment performed at 12 or 24 months. Skin aging occurred in both strains, but we showed an early occurrence of different age-related disorders in the Wistar strain compared to BN strain, especially regarding weight gain, glycemia dysregulation, basal skin perfusion, endothelial function, and skin resistance to low pressure. LPA treatment tended to improve skin resistance to low pressure in BN but not in Wistar despite the improvement of basal skin perfusion, endothelial function, and skin sensory sensitivity. Overall, this study confirmed the healthier aging of BN compared to Wistar strain and the positive effect of LPA on both general state and skin microcirculation.
Collapse
Affiliation(s)
| | - Johanna Decorps
- CNRS, LBTI UMR5305, Univ. Lyon, Université Claude Bernard Lyon 1, 7 Passage du Vercors, CEDEX 7, 69367 Lyon, France
| | - Lisa S. Martin
- CNRS, LBTI UMR5305, Univ. Lyon, Université Claude Bernard Lyon 1, 7 Passage du Vercors, CEDEX 7, 69367 Lyon, France
| | - Aurélie Pagnon
- Novotec Labs, ZAC du Chêne, Europarc, 11 rue Edison, 69500 Bron, France
| | - Fabien P. Chevalier
- CNRS, LBTI UMR5305, Univ. Lyon, Université Claude Bernard Lyon 1, 7 Passage du Vercors, CEDEX 7, 69367 Lyon, France
| | - Dominique Sigaudo-Roussel
- CNRS, LBTI UMR5305, Univ. Lyon, Université Claude Bernard Lyon 1, 7 Passage du Vercors, CEDEX 7, 69367 Lyon, France
| | - Bérengère Fromy
- CNRS, LBTI UMR5305, Univ. Lyon, Université Claude Bernard Lyon 1, 7 Passage du Vercors, CEDEX 7, 69367 Lyon, France
| |
Collapse
|
377
|
López‐Estévez S, López‐Torrellardona JM, Parera M, Martínez V. Long-lasting visceral hypersensitivity in a model of DSS-induced colitis in rats. Neurogastroenterol Motil 2022; 34:e14441. [PMID: 36239298 PMCID: PMC9787759 DOI: 10.1111/nmo.14441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 05/31/2022] [Accepted: 07/18/2022] [Indexed: 12/30/2022]
Abstract
BACKGROUND Persistent visceral hypersensitivity is a key component of functional and inflammatory gastrointestinal diseases. Current animal models fail to fully reproduce the characteristics of visceral pain in humans, particularly as it relates to persistent hypersensitivity. This work explores the validity of DSS-induced colitis in rats as a model to mimic chronic intestinal hypersensitivity. METHODS Exposure to DSS (5% for 7 days) was used to induce colitis in rats. Thereafter, changes in viscerosensitivity (visceromotor responses to colorectal distension-CRD), the presence of somatic referred pain (mechanosensitivity of the hind paws, von Frey test) and the expression (qRT-PCR) of sensory-related markers (colon, lumbosacral DRGs, and lumbosacral spinal cord) were assessed at different times during the 35 days period after colitis induction. RESULTS Following colitis, a sustained increase in visceromotor responses to CRD were observed, indicative of the presence of visceral hypersensitivity. Responses in animals without colitis remained stable over time. In colitic animals, somatic referred hypersensitivity was also detected. DSS-induced colitis was associated to a differential expression of sensory-related markers (with both pro- and anti-nociceptive action) in the colon, lumbosacral DRGs and lumbosacral spinal cord; indicating the presence of peripheral and central sensitization. CONCLUSIONS AND INFERENCES DSS-induced colitis in rats is associated to the generation of a long-lasting state of visceral (colonic) hypersensitivity, despite clinical colitis resolution. This model reproduces the changes in intestinal sensitivity characteristics of inflammatory and functional gastrointestinal disorders in humans and can be used in the characterization of new pharmacological treatments against visceral pain.
Collapse
Affiliation(s)
- Sergio López‐Estévez
- Department of Cell Biology, Physiology and ImmunologyUniversitat Autònoma de BarcelonaBarcelonaSpain
- Neuroscience InstituteUniversitat Autònoma de BarcelonaBarcelonaSpain
| | | | - Marc Parera
- Department of Cell Biology, Physiology and ImmunologyUniversitat Autònoma de BarcelonaBarcelonaSpain
| | - Vicente Martínez
- Department of Cell Biology, Physiology and ImmunologyUniversitat Autònoma de BarcelonaBarcelonaSpain
- Neuroscience InstituteUniversitat Autònoma de BarcelonaBarcelonaSpain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd)Instituto de Salud Carlos IIIMadridSpain
| |
Collapse
|
378
|
Temmermand R, Barrett JE, Fontana ACK. Glutamatergic systems in neuropathic pain and emerging non-opioid therapies. Pharmacol Res 2022; 185:106492. [PMID: 36228868 PMCID: PMC10413816 DOI: 10.1016/j.phrs.2022.106492] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/05/2022] [Accepted: 10/06/2022] [Indexed: 01/14/2023]
Abstract
Neuropathic pain, a disease of the somatosensory nervous system, afflicts many individuals and adequate management with current pharmacotherapies remains elusive. The glutamatergic system of neurons, receptors and transporters are intimately involved in pain but, to date, there have been few drugs developed that therapeutically modulate this system. Glutamate transporters, or excitatory amino acid transporters (EAATs), remove excess glutamate around pain transmitting neurons to decrease nociception suggesting that the modulation of glutamate transporters may represent a novel approach to the treatment of pain. This review highlights and summarizes (1) the physiology of the glutamatergic system in neuropathic pain, (2) the preclinical evidence for dysregulation of glutamate transport in animal pain models, and (3) emerging novel therapies that modulate glutamate transporters. Successful drug discovery requires continuous focus on basic and translational methods to fully elucidate the etiologies of this disease to enable the development of targeted therapies. Increasing the efficacy of astrocytic EAATs may serve as a new way to successfully treat those suffering from this devastating disease.
Collapse
Affiliation(s)
- Rhea Temmermand
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - James E Barrett
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Andréia C K Fontana
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, USA.
| |
Collapse
|
379
|
Ahmadi B, Issa S, Duarte FCK, Srbely J, Bartlewski PM. Ultrasonographic assessment of skeletal muscles after experimentally induced neurogenic inflammation (facet injury) in rats. Exp Biol Med (Maywood) 2022; 247:1873-1884. [PMID: 36113006 PMCID: PMC9742751 DOI: 10.1177/15353702221119802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
This study set out to examine ultrasonographic attributes of non-neurosegmentally (pectoral-forelimb) and neurosegmentally linked (hindlimb) myotomes in an experimental model that leads to neurogenic inflammation in segmentally linked myotomes, and to evaluate quantitative correlations among ultrasonographic attributes of the muscles, relative content of various inflammatory mediators, and nociceptive thresholds (hot and mechanical) in rats. Twelve male Wistar Kyoto rats were randomly divided into two equinumerous groups: surgery group, in which the left lumbar (L4-L6) facet joints were compressed for 3 min with modified Kelly forceps under general anesthesia, and sham-operated rats. All ultrasonograms were obtained with the Vevo 2100 Visual Sonic scanner connected to a 24-MHz transducer at four different time points: pre-surgery and 7, 14, and 21 days after surgical procedures. Digital ultrasonographic images of quadriceps femoris, hamstring, and pectoral-brachial muscle groups were analyzed using a polygonal meter region of interest placed on the largest cross-sectional area of the muscles displayed in Image ProPlus® analytical software to compute numerical pixel values and pixel heterogeneity (standard deviation of mean pixel values). On day 21, pain behavior tests (hot plate and von Frey) were performed and then all animals were euthanized. Protein expression of inflammatory mediators in biceps brachii and rectus femoris muscles was measured by Western blot. The most prominent differences in muscle echotextural attributes between the two subsets of rats occurred 14 days post-surgery in pectoral-brachial and quadriceps femoris muscles. The expression of calcitonin-gene-related peptide was directly related to both echotextural variables only in biceps brachii (pixel intensity: r = 0.65, P = 0.02; and heterogeneity: r = 0.66, P = 0.02, respectively). Our findings have revealed the occurrence of echotextural changes in skeletal muscles of rats during myositis; however, the accumulation of inflammatory mediators and the outcomes of sensory tests did not relate to the changes in first-order echotextural characteristics of affected hindlimb muscles.
Collapse
Affiliation(s)
- Bahareh Ahmadi
- Department of Biomedical Sciences, Ontario Veterinary College, Guelph, ON N1G 2W1, Canada,Bahareh Ahmadi.
| | - Sara Issa
- Department of Biomedical Sciences, Ontario Veterinary College, Guelph, ON N1G 2W1, Canada
| | - Felipe CK Duarte
- Department of Research and Innovation, Canadian Memorial Chiropractic College, Toronto, ON M2H 3J1, Canada
| | - John Srbely
- Department of Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Pawel M Bartlewski
- Department of Biomedical Sciences, Ontario Veterinary College, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
380
|
Zhang XY, Barakat A, Diaz-delCastillo M, Vollert J, Sena ES, Heegaard AM, Rice AS, Soliman N. Systematic review and meta-analysis of studies in which burrowing behaviour was assessed in rodent models of disease-associated persistent pain. Pain 2022; 163:2076-2102. [PMID: 35353780 PMCID: PMC9578533 DOI: 10.1097/j.pain.0000000000002632] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 02/24/2022] [Accepted: 02/28/2022] [Indexed: 12/09/2022]
Abstract
ABSTRACT Burrowing behaviour is used to assess pain-associated behaviour in laboratory rodents. To gain insight into how models of disease-associated persistent pain and analgesics affect burrowing behaviour, we performed a systematic review and meta-analysis of studies that assessed burrowing behaviour. A systematic search in March 2020 and update in September 2020 was conducted in 4 databases. Study design characteristics and experimental data were extracted, followed by a random-effects meta-analysis. We explored the association between burrowing and monofilament-induced limb withdrawal. Dose response relationship was investigated for some analgesics. Forty-five studies were included in the meta-analysis, in which 16 model types and 14 drug classes were used. Most experiments used rat (79%) and male (72%) animals. Somatic inflammation and trauma-induced neuropathy models were associated with reduced burrowing behaviour. Analgesics (nonsteroidal anti-inflammatory drug and gabapentinoids) attenuated burrowing deficits in these models. Reporting of measures to reduce risk of bias was unclear except for randomisation which was high. There was not a correlation ( R2 = 0.1421) between burrowing and monofilament-induced limb withdrawal. Opioids, gabapentin, and naproxen showed reduced burrowing behaviour at high doses, whereas ibuprofen and celecoxib showed opposite trend. The findings indicate that burrowing could be used to assess pain-associated behaviour. We support the use of a portfolio of composite measures including spontaneous and stimulus-evoked tests. The information collected here could help in designing experiments involving burrowing assessment in models of disease-associated pain.
Collapse
Affiliation(s)
- Xue Ying Zhang
- Pain Research, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Ahmed Barakat
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Marta Diaz-delCastillo
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jan Vollert
- Pain Research, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom
- Division of Neurological Pain Research and Therapy, Department of Neurology, University Hospital of Schleswig-Holstein, Campus Kiel, Germany
- Department of Anaesthesiology, Intensive Care and Pain Medicine, University Hospital Muenster, Germany
- Neurophysiology, Mannheim Centre of Translational Neuroscience (MCTN), Medical Faculty Mannheim, Heidelberg University, Germany
| | - Emily S. Sena
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Anne-Marie Heegaard
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Andrew S.C. Rice
- Pain Research, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Nadia Soliman
- Pain Research, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom
| |
Collapse
|
381
|
Mitra S, Thomas SA, Martin JA, Williams J, Woodhouse K, Chandra R, Li JX, Lobo MK, Sim FJ, Dietz DM. EGR3 regulates opioid-related nociception and motivation in male rats. Psychopharmacology (Berl) 2022; 239:3539-3550. [PMID: 36098762 PMCID: PMC10094589 DOI: 10.1007/s00213-022-06226-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 08/24/2022] [Indexed: 01/11/2023]
Abstract
Chronic pain can be a debilitating condition, leading to profound changes in nearly every aspect of life. However, the reliance on opioids such as oxycodone for pain management is thought to initiate dependence and addiction liability. The neurobiological intersection at which opioids relieve pain and possibly transition to addiction is poorly understood. Using RNA sequencing pathway analysis in rats with complete Freund's adjuvant (CFA)-induced chronic inflammation, we found that the transcriptional signatures in the medial prefrontal cortex (mPFC; a brain region where pain and reward signals integrate) elicited by CFA in combination with oxycodone differed from those elicited by CFA or oxycodone alone. However, the expression of Egr3 was augmented in all animals receiving oxycodone. Furthermore, virus-mediated overexpression of EGR3 in the mPFC increased mechanical pain relief but not the affective aspect of pain in animals receiving oxycodone, whereas pharmacological inhibition of EGR3 via NFAT attenuated mechanical pain relief. Egr3 overexpression also increased the motivation to obtain oxycodone infusions in a progressive ratio test without altering the acquisition or maintenance of oxycodone self-administration. Taken together, these data suggest that EGR3 in the mPFC is at the intersection of nociceptive and addictive-like behaviors.
Collapse
Affiliation(s)
- Swarup Mitra
- Program in Neuroscience, Department of Pharmacology and Toxicology, The State University of New York at Buffalo, 955 Main Street, Buffalo, NY, 14203, USA.
- Department of Biomedical Sciences, John C. Edwards School of Medicine, Marshall University, 1700, 3rd Avenue, Huntington, WV, 25755, USA.
| | - Shruthi A Thomas
- Program in Neuroscience, Department of Pharmacology and Toxicology, The State University of New York at Buffalo, 955 Main Street, Buffalo, NY, 14203, USA
| | - Jennifer A Martin
- Program in Neuroscience, Department of Pharmacology and Toxicology, The State University of New York at Buffalo, 955 Main Street, Buffalo, NY, 14203, USA
| | - Jamal Williams
- Program in Neuroscience, Department of Pharmacology and Toxicology, The State University of New York at Buffalo, 955 Main Street, Buffalo, NY, 14203, USA
| | - Kristen Woodhouse
- Program in Neuroscience, Department of Pharmacology and Toxicology, The State University of New York at Buffalo, 955 Main Street, Buffalo, NY, 14203, USA
| | - Ramesh Chandra
- Department of Anatomy and Neurobiology, University of Maryland, Baltimore, MD, USA
| | - Jun Xu Li
- Program in Neuroscience, Department of Pharmacology and Toxicology, The State University of New York at Buffalo, 955 Main Street, Buffalo, NY, 14203, USA
| | - Mary Kay Lobo
- Department of Anatomy and Neurobiology, University of Maryland, Baltimore, MD, USA
| | - Fraser J Sim
- Program in Neuroscience, Department of Pharmacology and Toxicology, The State University of New York at Buffalo, 955 Main Street, Buffalo, NY, 14203, USA
| | - David M Dietz
- Program in Neuroscience, Department of Pharmacology and Toxicology, The State University of New York at Buffalo, 955 Main Street, Buffalo, NY, 14203, USA.
| |
Collapse
|
382
|
Morgan A, Adank D, Johnson K, Butler E, Patel S. 2-Arachidonoylglycerol-mediated endocannabinoid signaling modulates mechanical hypersensitivity associated with alcohol withdrawal in mice. Alcohol Clin Exp Res 2022; 46:2010-2024. [PMID: 36125319 PMCID: PMC10091740 DOI: 10.1111/acer.14949] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 09/05/2022] [Accepted: 09/15/2022] [Indexed: 02/01/2023]
Abstract
BACKGROUND Alcohol use disorder (AUD) commonly occurs in patients with chronic pain, and a major barrier to achieving abstinence and preventing relapse is the emergence of hyperalgesia during alcohol withdrawal. Elucidating novel therapeutic approaches to target hyperalgesia associated with alcohol withdrawal could have important implications for treating AUD. Here, we examined the role of 2-arachidonoylglycerol (2-AG)-mediated endocannabinoid (eCB) signaling in the regulation of hyperalgesia associated with alcohol withdrawal in mice. We tested the hypothesis that pharmacological augmentation of 2-AG signaling could reduce hyperalgesia during withdrawal. METHODS Male and female C57BL/6J mice were tested during withdrawal from a continuous access two-bottle choice (2BC) paradigm to investigate how eCB signaling modulates mechanical and thermal sensitivity during withdrawal. Mice were pretreated with the monoacylglycerol lipase (MAGL) inhibitor JZL184 to elevate levels of 2-AG. Rimonabant or AM630 were given to block CB1 and CB2 receptor activity, respectively. DO34 was given to reduce 2-AG by inhibiting the 2-AG synthetic enzyme diacylglycerol lipase (DAGL). RESULTS After 72 h of withdrawal, male and female mice exhibited increased mechanical, but not thermal, hypersensitivity, which normalized by 7 days. This effect was reversed by pretreatment with JZL184. The effects of JZL184 were prevented by coadministration of either the CB1 or the CB2 antagonist. DO34, Rimonabant, and AM630 exacerbated mechanical hypersensitivity during alcohol withdrawal, causing an earlier onset and persistent hypersensitivity even 1 week into withdrawal. CONCLUSIONS Our findings demonstrate the critical role of 2-AG signaling in the bidirectional regulation of mechanical sensitivity during alcohol withdrawal, with enhancement of 2-AG levels reducing sensitivity, and inhibition of 2-AG signaling exacerbating sensitivity. These data suggest that 2-AG augmentation represents a novel approach to the treatment of alcohol withdrawal-associated hyperalgesia and AUD in patients with comorbid pain disorders.
Collapse
Affiliation(s)
- Amanda Morgan
- Department of Psychiatry and Behavioral SciencesNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| | - Danielle Adank
- Vanderbilt Brain Institute, Vanderbilt UniversityNashvilleTennesseeUSA
| | - Keenan Johnson
- Department of Psychiatry and Behavioral SciencesNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| | - Emily Butler
- Interdisciplinary Program in NeuroscienceVanderbilt UniversityNashvilleTennesseeUSA
| | - Sachin Patel
- Department of Psychiatry and Behavioral SciencesNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| |
Collapse
|
383
|
Nozawa K, Karasawa Y, Shidahara Y, Ushida T. Efficacy of Combination Therapy with Pregabalin in Neuropathic Pain: A Preclinical Study in the Rat L5 Spinal Nerve Ligation Model. J Pain Res 2022; 15:3469-3478. [PMID: 36338796 PMCID: PMC9635478 DOI: 10.2147/jpr.s383981] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 10/27/2022] [Indexed: 11/27/2022] Open
Abstract
PURPOSE Neuropathic pain is sometimes difficult to manage because of limited efficacy of analgesic monotherapy even at high doses. Combination therapy may help address this issue, but there is little evidence for its effectiveness. Therefore, we evaluated the efficacy of combination therapy with pregabalin, an anchor drug for treating neuropathic pain, using the rat L5 spinal nerve ligation model. METHODS Experiments were performed on four-week-old L5 spinal nerve ligated male Sprague-Dawley rats. Mechanical allodynia was assessed using the von Frey test, where the 50% withdrawal threshold was evaluated for five drugs: pregabalin, duloxetine, venlafaxine, tramadol, and celecoxib. The single-drug experiment included 112 rats, where each drug was tested independently. Median effective doses (ED50s) were determined. Combinations of pregabalin with each of the other four drugs were tested (n=84). The 50% withdrawal threshold in the von Frey test was evaluated. The ED50 of each combination was determined experimentally. Isobolographic analyses were conducted to assess the synergistic potential of the drug combinations, excluding pregabalin-celecoxib, since the ED50 of celecoxib could not be determined. RESULTS In the single-drug experiment, all drugs except celecoxib resulted in a dose-dependent increase in the 50% withdrawal threshold 2 h after administration, with a maximum possible effect ranging from 4.4% to 79.6%. Similarly, all pregabalin combinations demonstrated a dose-dependent increase in the 50% withdrawal threshold, with pregabalin-tramadol showing the greatest increment. Isobolographic analysis of this combination revealed synergistic effects. Specifically, the combination index was γ=0.4 (<1). Combinations of pregabalin with duloxetine and venlafaxine demonstrated additive (γ=0.9) and antagonistic effects (γ=2.0), respectively. CONCLUSION This study demonstrated that combination of pregabalin with tramadol has synergistic antiallodynic effects, while that with duloxetine has additive effects. Moreover, pregabalin combined with venlafaxine was potentially antagonistic. Pregabalin combined with tramadol may serve as a promising drug combination for the effective management of neuropathic pain.
Collapse
Affiliation(s)
- Kazutaka Nozawa
- Medical Affairs, Viatris Pharmaceuticals Japan Inc., Minato-ku, Tokyo, Japan,Correspondence: Kazutaka Nozawa, Medical Affairs, Viatris Pharmaceuticals Japan Inc, Minato-ku, Tokyo, Japan, Tel +81 80-5001-3029, Email
| | - Yusuke Karasawa
- Medical Affairs, Viatris Pharmaceuticals Japan Inc., Minato-ku, Tokyo, Japan
| | - Yuka Shidahara
- Bioscience Business Division, KAC Co., Ltd, Ritto, Shiga, Japan
| | - Takahiro Ushida
- Multidisciplinary Pain Center, Aichi Medical University, Nagakute, Aichi, Japan
| |
Collapse
|
384
|
Coexistence of chronic hyperalgesia and multilevel neuroinflammatory responses after experimental SCI: a systematic approach to profiling neuropathic pain. J Neuroinflammation 2022; 19:264. [PMID: 36309729 PMCID: PMC9617391 DOI: 10.1186/s12974-022-02628-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 10/20/2022] [Indexed: 11/11/2022] Open
Abstract
Background People with spinal cord injury (SCI) frequently develop neuropathic pain (NP) that worsens disability and diminishes rehabilitation efficacy. Chronic NP is presently incurable due to poor understanding of underlying mechanisms. We hypothesized that multilocus neuroinflammation (NIF) might be a driver of SCI NP, and tested it by investigating whether NP coexisted with central NIF, neurotransmission (NTM), neuromodulation (NML) and neuroplasticity (NPL) changes post-SCI. Methods Female Sprague–Dawley rats (230–250 g) with T10 compression or laminectomy were evaluated for physical conditions, coordinated hindlimb functions, neurological reflexes, and mechanical/thermal sensitivity thresholds at 1 day post-injury (p.i.) and weekly thereafter. Eight weeks p.i., central nervous system tissues were histochemically and immunohistochemically characterized for parameters/markers of histopathology and NIF/NTM/NML/NPL. Also analyzed was the correlative relationship between levels of selected biomarkers and thermosensitivity thresholds via statistical linear regression. Results SCI impaired sensorimotor functions, altered reflexes, and produced spontaneous pain signs and hypersensitivity to evoked nociceptive, mechanical, and thermal inputs. Only injured spinal cords exhibited neural lesion, microglia/astrocyte activation, and abnormal expression of proinflammatory cytokines, as well as NIF/NTM/NML/NPL markers. Brains of SCI animals displayed similar pathophysiological signs in the gracile and parabrachial nuclei (GrN and PBN: sensory relay), raphe magnus nucleus and periaqueduct gray (RMN and PAG: pain modulation), basolateral amygdala (BLA: emotional-affective dimension of pain), and hippocampus (HPC: memory/mood/neurogenesis). SCI augmented sensory NTM/NPL (GrN and PBN); increased GAD67 (PAG) level; reduced serotonin (RMN) and fear-off neuronal NTR2 (BLA) expressions; and perturbed neurogenesis (HPC). Conclusion T10 compression caused chronic hyperalgesia that coexisted with NIF/NTM/NML/NPL responses at multilevel neuroaxis centers. The data have provided multidimensional biomarkers as new mechanistic leads to profile SCI NP for therapeutic/therapy development. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-022-02628-2.
Collapse
|
385
|
Gao Y, Ji W, Lu M, Wang Z, Jia X, Wang D, Cao P, Hu C, Sun X, Wang Z. Systemic pharmacological verification of Guizhi Fuling decoction in treating endometriosis-associated pain. JOURNAL OF ETHNOPHARMACOLOGY 2022; 297:115540. [PMID: 35870685 DOI: 10.1016/j.jep.2022.115540] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 07/03/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Guizhi Fuling decoction (GZFL decoction) is a famous formula in the Synopsis of the Golden Chamber, which has a long history in treating endometriosis. However, its exact mechanism remains unclear. AIM OF STUDY This study aims to explore the mechanism of GZFL decoction in treating endometriosis, especially in alleviating endometriosis-associated pain. MATERIALS AND METHODS A combination of system pharmacology and pharmacodynamics was used to explore the specific mechanism of GZFL decoction in the treatment of endometriosis-associated pain. First, the TCMSP database was used to search the components of the GZFL decoction; the parameter index was set as oral bioavailability (OB) ≥ 30% and drug-likeness (DL) ≥ 0.18, while the active ingredients of the drug were screened out. The disease targets of endometriosis were obtained from the TTD, OMIM, Genecards, and DisGeNET databases; the keyword was "endometriosis pain". Network construction and analysis were performed using Cytoscape 3.7.2 software; the David database was used to enrich and analyze the pathways for alleviating endometriosis pain after GZFL decoction treatment. In addition, the network results were verified using experimental animal and cell research. RESULTS The results showed the following targets: 76 for the effective chemical components in the prescription, 1329 for disease pain, and 278 for the intersection of drugs and endometriosis pain. The enrichment results for these targets showed that the TNF-PI3K/Akt pathway exhibited research significance. In endometriosis rat models, the GZFL decoction reduced the volume of lesions and relieved pain symptoms. It also reduced the serum levels of IL-6, IL-1β, and TNF-α as well as their expression in the lesion tissues. The GZFL decoction also suppressed the activation of PI3K/Akt downstream signaling proteins. CONCLUSIONS GZFL decoction could reduce the volume of lesions, suppress inflammation, and decrease the sensitivity to pain in endometriosis rat models through inhibiting PI3K/Akt pathway. This study provides a possible target for traditional Chinese medicine in treating endometriosis-associated pain.
Collapse
Affiliation(s)
- Yang Gao
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wenjing Ji
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Man Lu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhiheng Wang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xurui Jia
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Dawei Wang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Peng Cao
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Chunping Hu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiaoyan Sun
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China.
| | - Zhigang Wang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China.
| |
Collapse
|
386
|
Haile CN, Baker MD, Sanchez SA, Lopez Arteaga CA, Duddupudi AL, Cuny GD, Norton EB, Kosten TR, Kosten TA. An Immunconjugate Vaccine Alters Distribution and Reduces the Antinociceptive, Behavioral and Physiological Effects of Fentanyl in Male and Female Rats. Pharmaceutics 2022; 14:2290. [PMID: 36365109 PMCID: PMC9694531 DOI: 10.3390/pharmaceutics14112290] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/13/2022] [Accepted: 10/18/2022] [Indexed: 09/15/2023] Open
Abstract
Fentanyl (FEN) is a potent synthetic opioid associated with increasing incidence of opioid use disorder (OUD) and fatal opioid overdose. Vaccine immunotherapy for FEN-associated disorders may be a viable therapeutic strategy. Here, we expand and confirm our previous study in mice showing immunological and antinociception efficacy of our FEN vaccine administered with the adjuvant dmLT. In this study, immunized male and female rats produced significant levels of anti-FEN antibodies that were highly effective at neutralizing FEN-induced antinociception in the tail flick assay and hot plate assays. The vaccine also decreased FEN brain levels following drug administration. Immunization blocked FEN-induced, but not morphine-induced, rate-disrupting effects on schedule-controlled responding. Vaccination prevented decreases on physiological measures (oxygen saturation, heart rate) and reduction in overall activity following FEN administration in male rats. The impact of FEN on these measures was greater in unvaccinated male rats compared to unvaccinated female rats. Cross-reactivity assays showed anti-FEN antibodies bound to FEN and sufentanil but not to morphine, methadone, buprenorphine, or oxycodone. These data support further clinical development of this vaccine to address OUD in humans.
Collapse
Affiliation(s)
- Colin N. Haile
- Department of Psychology & TIMES, University of Houston, Houston, TX 77204, USA
| | - Miah D. Baker
- Department of Psychology & TIMES, University of Houston, Houston, TX 77204, USA
| | - Sergio A. Sanchez
- Department of Psychology & TIMES, University of Houston, Houston, TX 77204, USA
| | | | - Anantha L. Duddupudi
- Department of Pharmacological & Pharmaceutical Sciences, University of Houston, Houston, TX 77204, USA
| | - Gregory D. Cuny
- Department of Pharmacological & Pharmaceutical Sciences, University of Houston, Houston, TX 77204, USA
| | - Elizabeth B. Norton
- Department of Microbiology & Immunology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Thomas R. Kosten
- Menninger Department of Psychiatry, Baylor College of Medicine, Houston, TX 77030, USA
- The Michael E DeBakey Veteran’s Affairs Medical Center, Houston, TX 77030, USA
| | - Therese A. Kosten
- Department of Psychology & TIMES, University of Houston, Houston, TX 77204, USA
| |
Collapse
|
387
|
Wang M, Tutt JO, Dorricott NO, Parker KL, Russo AF, Sowers LP. Involvement of the cerebellum in migraine. Front Syst Neurosci 2022; 16:984406. [PMID: 36313527 PMCID: PMC9608746 DOI: 10.3389/fnsys.2022.984406] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 09/27/2022] [Indexed: 11/14/2022] Open
Abstract
Migraine is a disabling neurological disease characterized by moderate or severe headaches and accompanied by sensory abnormalities, e.g., photophobia, allodynia, and vertigo. It affects approximately 15% of people worldwide. Despite advancements in current migraine therapeutics, mechanisms underlying migraine remain elusive. Within the central nervous system, studies have hinted that the cerebellum may play an important sensory integrative role in migraine. More specifically, the cerebellum has been proposed to modulate pain processing, and imaging studies have revealed cerebellar alterations in migraine patients. This review aims to summarize the clinical and preclinical studies that link the cerebellum to migraine. We will first discuss cerebellar roles in pain modulation, including cerebellar neuronal connections with pain-related brain regions. Next, we will review cerebellar symptoms and cerebellar imaging data in migraine patients. Lastly, we will highlight the possible roles of the neuropeptide calcitonin gene-related peptide (CGRP) in migraine symptoms, including preclinical cerebellar studies in animal models of migraine.
Collapse
Affiliation(s)
- Mengya Wang
- Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, IA, United States
| | - Joseph O. Tutt
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | | | - Krystal L. Parker
- Department of Psychiatry, University of Iowa, Iowa City, IA, United States
| | - Andrew F. Russo
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, United States,Department of Neurology, University of Iowa, Iowa City, IA, United States,Center for the Prevention and Treatment of Visual Loss, Veterans Administration Health Center, Iowa City, IA, United States
| | - Levi P. Sowers
- Center for the Prevention and Treatment of Visual Loss, Veterans Administration Health Center, Iowa City, IA, United States,Department of Pediatrics, University of Iowa, Iowa City, IA, United States,*Correspondence: Levi P. Sowers
| |
Collapse
|
388
|
Rein B, Jones E, Tuy S, Boustani C, Johnson JA, Malenka RC, Smith ML. Protocols for the social transfer of pain and analgesia in mice. STAR Protoc 2022; 3:101756. [PMID: 36227742 PMCID: PMC9576629 DOI: 10.1016/j.xpro.2022.101756] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/17/2022] [Accepted: 09/16/2022] [Indexed: 11/05/2022] Open
Abstract
We provide protocols for the social transfer of pain and analgesia in mice. We describe the steps to induce pain or analgesia (pain relief) in bystander mice with a 1-h social interaction with a partner injected with CFA (complete Freund's adjuvant) or CFA and morphine, respectively. We detail behavioral tests to assess pain or analgesia in the untreated bystander mice. This protocol has been validated in mice and rats and can be used for investigating mechanisms of empathy. For complete details on the use and execution of this protocol, please refer to Smith et al. (2021).
Collapse
Affiliation(s)
- Benjamin Rein
- Nancy Pritzker Laboratory, Department of Psychiatry & Behavioral Sciences, Stanford University, Palo Alto, CA 94306, USA
| | - Erin Jones
- Department of Psychological Sciences, University of San Diego, San Diego, CA 92110, USA
| | - Sabrena Tuy
- Department of Psychological Sciences, University of San Diego, San Diego, CA 92110, USA
| | - Cali Boustani
- Department of Psychological Sciences, University of San Diego, San Diego, CA 92110, USA
| | - Julia A. Johnson
- Department of Psychological Sciences, University of San Diego, San Diego, CA 92110, USA
| | - Robert C. Malenka
- Nancy Pritzker Laboratory, Department of Psychiatry & Behavioral Sciences, Stanford University, Palo Alto, CA 94306, USA
| | - Monique L. Smith
- Nancy Pritzker Laboratory, Department of Psychiatry & Behavioral Sciences, Stanford University, Palo Alto, CA 94306, USA,Corresponding author
| |
Collapse
|
389
|
Aulehner K, Leenaars C, Buchecker V, Stirling H, Schönhoff K, King H, Häger C, Koska I, Jirkof P, Bleich A, Bankstahl M, Potschka H. Grimace scale, burrowing, and nest building for the assessment of post-surgical pain in mice and rats-A systematic review. Front Vet Sci 2022; 9:930005. [PMID: 36277074 PMCID: PMC9583882 DOI: 10.3389/fvets.2022.930005] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 08/22/2022] [Indexed: 11/04/2022] Open
Abstract
Several studies suggested an informative value of behavioral and grimace scale parameters for the detection of pain. However, the robustness and reliability of the parameters as well as the current extent of implementation are still largely unknown. In this study, we aimed to systematically analyze the current evidence-base of grimace scale, burrowing, and nest building for the assessment of post-surgical pain in mice and rats. The following platforms were searched for relevant articles: PubMed, Embase via Ovid, and Web of Science. Only full peer-reviewed studies that describe the grimace scale, burrowing, and/or nest building as pain parameters in the post-surgical phase in mice and/or rats were included. Information about the study design, animal characteristics, intervention characteristics, and outcome measures was extracted from identified publications. In total, 74 papers were included in this review. The majority of studies have been conducted in young adult C57BL/6J mice and Sprague Dawley and Wistar rats. While there is an apparent lack of information about young animals, some studies that analyzed the grimace scale in aged rats were identified. The majority of studies focused on laparotomy-associated pain. Only limited information is available about other types of surgical interventions. While an impact of surgery and an influence of analgesia were rather consistently reported in studies focusing on grimace scales, the number of studies that assessed respective effects was rather low for nest building and burrowing. Moreover, controversial findings were evident for the impact of analgesics on post-surgical nest building activity. Regarding analgesia, a monotherapeutic approach was identified in the vast majority of studies with non-steroidal anti-inflammatory (NSAID) drugs and opioids being most commonly used. In conclusion, most evidence exists for grimace scales, which were more frequently used to assess post-surgical pain in rodents than the other behavioral parameters. However, our findings also point to relevant knowledge gaps concerning the post-surgical application in different strains, age levels, and following different surgical procedures. Future efforts are also necessary to directly compare the sensitivity and robustness of different readout parameters applied for the assessment of nest building and burrowing activities.
Collapse
Affiliation(s)
- Katharina Aulehner
- Institute of Pharmacology, Toxicology and Pharmacy, Ludwig-Maximilians-University, Munich, Germany
| | - Cathalijn Leenaars
- Institute for Laboratory Animal Science, Hannover Medical School, Hanover, Germany
| | - Verena Buchecker
- Institute of Pharmacology, Toxicology and Pharmacy, Ludwig-Maximilians-University, Munich, Germany
| | - Helen Stirling
- Institute of Pharmacology, Toxicology and Pharmacy, Ludwig-Maximilians-University, Munich, Germany
| | - Katharina Schönhoff
- Institute of Pharmacology, Toxicology and Pharmacy, Ludwig-Maximilians-University, Munich, Germany
| | - Hannah King
- Institute of Pharmacology, Toxicology and Pharmacy, Ludwig-Maximilians-University, Munich, Germany
| | - Christine Häger
- Institute for Laboratory Animal Science, Hannover Medical School, Hanover, Germany
| | - Ines Koska
- Institute of Pharmacology, Toxicology and Pharmacy, Ludwig-Maximilians-University, Munich, Germany
| | - Paulin Jirkof
- Office for Animal Welfare and 3Rs, University of Zurich, Zurich, Switzerland
| | - André Bleich
- Institute for Laboratory Animal Science, Hannover Medical School, Hanover, Germany
| | - Marion Bankstahl
- Institute for Laboratory Animal Science, Hannover Medical School, Hanover, Germany
| | - Heidrun Potschka
- Institute of Pharmacology, Toxicology and Pharmacy, Ludwig-Maximilians-University, Munich, Germany
| |
Collapse
|
390
|
de Melo Candeia GLO, Costa WK, de Oliveira AM, Napoleão TH, Guedes Paiva PM, Ferreira MRA, Lira Soares LA. Anti-inflammatory, antinociceptive effects and involvement of opioid receptors in the antinociceptive activity of Eugenia uniflora leaves obtained with water, ethanol, and propylene glycol mixture. JOURNAL OF ETHNOPHARMACOLOGY 2022; 296:115508. [PMID: 35779820 DOI: 10.1016/j.jep.2022.115508] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 06/15/2022] [Accepted: 06/22/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Eugenia uniflora (Myrtaceae) is a species native to Brazil and has a traditional use in the treatment of inflammation. AIM OF THE STUDY To evaluate the anti-inflammatory and antinociceptive effects, and the involvement of opioid receptors in the antinociceptive activity of extract and fractions from Eugenia uniflora leaves. MATERIALS AND METHODS TLC and HPLC were used to characterize the spray-dried extract (SDE) and fractions. In the in vivo assays, Swiss (Mus musculus) mice were used. Carrageenan-induced hind-paw edema and carrageenan-induced peritonitis models were used to determine the anti-inflammatory effect of the extract (50, 100, or 200 mg/kg). Acetic acid-induced writhing, tail-flick, and formalin tests were used to determine the antinociceptive effect of the extract (50, 100, or 200 mg/kg). The aqueous (AqF) and ethyl acetate (EAF) fractions (6.25, 12.5, and 25 mg/kg) were then combined with naloxone to evaluate the involvement of opioid receptors in the antinociceptive activity. RESULTS In this work, the TLC and HPLC analysis evidenced the enrichment of EAF, which higher concentration of gallic acid (5.29 ± 0.0004 %w/w), and ellagic acid (1.28 ± 0.0002 %w/w) and mainly myricitrin (8.64 ± 0.0002 %w/w). The extract decreased the number of total leukocytes and neutrophils in the peritoneal cavity (p < 0.05), at doses of 100 and 200 mg/kg and showed significant inhibition in the increase of paw edema volume (p < 0.05). The treatment per oral route (doses of 50, 100, and 200 mg/kg) significantly reduced the nociceptive response in acetic acid-induced abdominal writhing (p < 0.05). The effect of the extract on the tail-flick test showed a significant increase in latency time of animals treated at doses of 200 and 100 mg/kg (p < 0.05). The extract and ethyl acetate fraction reduced the nociceptive effect in both phases of formalin at all tested doses. The naloxone reversed the antinociceptive effect of EAF, suggesting that opioid receptors are involved in mediating the antinociceptive activity of EAF of E. uniflora in the formalin test. CONCLUSION The current study demonstrates the anti-inflammatory and analgesic activities of water: ethanol: propylene glycol spray-dried extract from E. uniflora leaves using in vivo pharmacological models in mice. Our findings suggest that spray-dried extract and ethyl acetate fraction exhibit peripheral and central antinociceptive activity with the involvement of opioid receptors that may be related to the presence of flavonoids, mainly myricitrin.
Collapse
Affiliation(s)
- Glenda Laíssa Oliveira de Melo Candeia
- Post-Graduate Program in Pharmaceutical Sciences, Federal University of Pernambuco, Recife, PE, Brazil; Pharmacognosy Laboratory, Department of Pharmaceutical Sciences, Federal University of Pernambuco, Recife, PE, Brazil
| | - Wêndeo Kennedy Costa
- Laboratório de Bioquímica de Proteínas, Departamento de Bioquímica, Universidade Federal de Pernambuco, Avenida Professor Moraes Rego, s/n, Cidade Universitária, 50670-420, Recife, PE, Brazil
| | - Alisson Macário de Oliveira
- Laboratório de Bioquímica de Proteínas, Departamento de Bioquímica, Universidade Federal de Pernambuco, Avenida Professor Moraes Rego, s/n, Cidade Universitária, 50670-420, Recife, PE, Brazil
| | - Thiago Henrique Napoleão
- Laboratório de Bioquímica de Proteínas, Departamento de Bioquímica, Universidade Federal de Pernambuco, Avenida Professor Moraes Rego, s/n, Cidade Universitária, 50670-420, Recife, PE, Brazil
| | - Patrícia Maria Guedes Paiva
- Laboratório de Bioquímica de Proteínas, Departamento de Bioquímica, Universidade Federal de Pernambuco, Avenida Professor Moraes Rego, s/n, Cidade Universitária, 50670-420, Recife, PE, Brazil
| | | | - Luiz Alberto Lira Soares
- Post-Graduate Program in Pharmaceutical Sciences, Federal University of Pernambuco, Recife, PE, Brazil; Pharmacognosy Laboratory, Department of Pharmaceutical Sciences, Federal University of Pernambuco, Recife, PE, Brazil.
| |
Collapse
|
391
|
Anti-Inflammatory and Analgesic Effects of Curcumin Nanoparticles Associated with Diclofenac Sodium in Experimental Acute Inflammation. Int J Mol Sci 2022; 23:ijms231911737. [PMID: 36233038 PMCID: PMC9570253 DOI: 10.3390/ijms231911737] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 09/29/2022] [Accepted: 09/29/2022] [Indexed: 11/17/2022] Open
Abstract
The present study evaluated the anti-inflammatory and analgesic effects of conventional curcumin (cC) and curcumin nanoparticles (nC) associated with diclofenac sodium (D) in experimental acute inflammation (AI) induced by carrageenan administration. Seven groups of eight randomly selected Wistar-Bratislava white rats were evaluated. One group was the control (C), and AI was induced in the other six groups. The AI group was treated with saline solution, the AID group was treated with D, the AIcC200 and AInC200 groups were treated with cC and nC, respectively, while AIcC200D and AInC200D were treated with cC and nC, respectively, both associated with D. Conventional curcumin, nC, and D were administered in a single dose of 200 mg/kg b.w. for cC and nC and 5 mg/kg b.w. for D. Association of cC or nC to D resulted in significant antinociceptive activity, and improved mechanical pressure stimulation and heat thresholds at 3, 5, 7 and 24 h (p < 0.03). The association of cC and nC with D (AIcC200D and AInC200D groups) showed significantly lower plasma and tissue levels of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and interleukin-1β (IL-1β) up to 2.5 times, with the best results in the group who received nC. Moreover, AInC200D presented the least severe histopathological changes with a reduced level of inflammation in the dermis and hypodermis. The combination of nC to D showed efficiency in reducing pain, inflammatory cytokines, and histological changes in acute inflammation.
Collapse
|
392
|
Youn DH, Jun J, Kim TW, Park K. Spinal orexin A attenuates opioid-induced mechanical hypersensitivity in the rat. Korean J Pain 2022; 35:433-439. [PMID: 36175342 PMCID: PMC9530684 DOI: 10.3344/kjp.2022.35.4.433] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 08/04/2022] [Accepted: 08/09/2022] [Indexed: 11/05/2022] Open
Abstract
Background Repeated administration of opioid analgesics for pain treatment can produce paradoxical hyperalgesia via peripheral and/or central mechanisms. Thus, this study investigated whether spinally (centrally) administered orexin A attenuates opioid-induced hyperalgesia (OIH). Methods [D-Ala2, N-Me-Phe4, Gly5-ol]-enkephalin (DAMGO), a selective μ-opioid receptor agonist, was used to induce mechanical hypersensitivity and was administered intradermally (4 times, 1-hour intervals) on the rat hind paw dorsum. To determine whether post- or pretreatments with spinal orexin A, dynorphin A, and anti-dynorphin A were effective in OIH, the drugs were injected through an intrathecal catheter whose tip was positioned dorsally at the L3 segment of the spinal cord (5 μg for all). Mechanical hypersensitivity was assessed using von Frey monofilaments. Results Repeated intradermal injections of DAMGO resulted in mechanical hypersensitivity in rats, lasting more than 8 days. Although the first intrathecal treatment of orexin A on the 6th day after DAMGO exposure did not show any significant effect on the mechanical threshold, the second (on the 8th day) significantly attenuated the DAMGO-induced mechanical hypersensitivity, which disappeared when the type 1 orexin receptor (OX1R) was blocked. However, intrathecal administration of dynorphin or an anti-dynorphin antibody (dynorphin antagonists) had no effect on DAMGO-induced hypersensitivity. Lastly, pretreatment with orexin A, dynorphin, or anti-dynorphin did not prevent DAMGO-induced mechanical hypersensitivity. Conclusions Spinal orexin A attenuates mechanical hyperalgesia induced by repetitive intradermal injections of DAMGO through OX1R. These data suggest that OIH can be potentially treated by activating the orexin A-OX1R pathway in the spinal dorsal horn.
Collapse
Affiliation(s)
- Dong-Ho Youn
- Department of Oral Physiology, School of Dentistry, Kyungpook National University, Daegu, Korea.,Advanced Dental Device Development Institute, School of Dentistry, Kyungpook National University, Daegu, Korea
| | - Jiyeon Jun
- Department of Oral Physiology, School of Dentistry, Kyungpook National University, Daegu, Korea.,Advanced Dental Device Development Institute, School of Dentistry, Kyungpook National University, Daegu, Korea
| | - Tae Wan Kim
- Department of Physiology, College of Veterinary Medicine, Kyungpook National University, Daegu, Korea
| | - Kibeom Park
- Department of Anesthesiology and Pain Medicine, Keimyung University Dongsan Hospital, Keimyung University School of Medicine, Daegu, Korea
| |
Collapse
|
393
|
Suzuki Y, Nakagawa S, Endo T, Sotome A, Yuan R, Asano T, Otsuguro S, Maenaka K, Iwasaki N, Kadoya K. High-Throughput Screening Assay Identifies Berberine and Mubritinib as Neuroprotection Drugs for Spinal Cord Injury via Blood-Spinal Cord Barrier Protection. Neurotherapeutics 2022; 19:1976-1991. [PMID: 36178590 PMCID: PMC9723073 DOI: 10.1007/s13311-022-01310-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2022] [Indexed: 12/13/2022] Open
Abstract
Because the breakdown of the blood-brain spinal cord barrier (BBSCB) worsens many central nervous system (CNS) diseases, prevention of BBSCB breakdown has been a major therapeutic target, especially for spinal cord injury (SCI). However, effective drugs that protect BBSCB function have yet to be developed. The purpose of the current study was 1) to develop a high-throughput screening assay (HTSA) to identify candidate drugs to protect BBSCB function, 2) to identify candidate drugs from existing drugs with newly developed HTSA, and 3) to examine the therapeutic effects of candidate drugs on SCI. Our HTSA included a culture of immortalized human brain endothelial cells primed with candidate drugs, stress with H2O2, and evaluation of their viability. A combination of the resazurin-based assay with 0.45 mM H2O2 qualified as a reliable HTSA. Screening of 1,570 existing drugs identified 90 drugs as hit drugs. Through a combination of reproducibility tests, exclusion of drugs inappropriate for clinical translation, and dose dependency tests, berberine, mubritinib, and pioglitazone were identified as a candidate. An in vitro BBSCB functional test revealed that berberine and mubritinib, but not pioglitazone, protected BBSCB from oxygen-glucose deprivation and reoxygenation stress. Additionally, these two drugs minimized BBSCB breakdown 1 day after cervical SCI in mice. Furthermore, berberine and mubritinib reduced neuronal loss and improved gait performance 8 weeks after SCI. Collectively, the current study established a useful HTSA to identify potential neuroprotective drugs by maintaining BBSCB function and demonstrated the neuroprotective effect of berberine and mubritinib after SCI.
Collapse
Affiliation(s)
- Yuki Suzuki
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita 15 jo, Nishi 7 chome, Kita-ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Shinsuke Nakagawa
- Department of Pharmaceutical Care and Health Sciences, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan
| | - Takeshi Endo
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita 15 jo, Nishi 7 chome, Kita-ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Akihito Sotome
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita 15 jo, Nishi 7 chome, Kita-ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Rufei Yuan
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita 15 jo, Nishi 7 chome, Kita-ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Tsuyoshi Asano
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita 15 jo, Nishi 7 chome, Kita-ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Satoko Otsuguro
- Center for Research and Education On Drug Discovery, Department of Medical Pharmacology, Hokkaido University, Kita 12 jo, Nishi 6 chome, Kita-ku, Sapporo, Hokkaido, 060-0812, Japan
| | - Katsumi Maenaka
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12 jo, Nishi 6 chome, Kita-ku, Sapporo, Hokkaido, 060-0812, Japan
| | - Norimasa Iwasaki
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita 15 jo, Nishi 7 chome, Kita-ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Ken Kadoya
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita 15 jo, Nishi 7 chome, Kita-ku, Sapporo, Hokkaido, 060-8638, Japan.
| |
Collapse
|
394
|
Jhumka ZA, Abdus-Saboor IJ. Next generation behavioral sequencing for advancing pain quantification. Curr Opin Neurobiol 2022; 76:102598. [PMID: 35780688 DOI: 10.1016/j.conb.2022.102598] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 05/17/2022] [Accepted: 05/24/2022] [Indexed: 11/28/2022]
Abstract
With symptoms such as spontaneous pain and pathologically heightened sensitivity to stimuli, chronic pain accounts for about 20% of physician visits and up to 2/3 of patients are dissatisfied with current treatments. Much of our knowledge on pain processing and analgesics has emerged from behavioral studies performed on animals presenting the same symptoms under pathological conditions. While humans can verbally describe their pain, studies on rodents have relied on behavioral assays providing non-exhaustive characterization or altering animals' original sensitivity through repetitive stimulations. The emergence of what we term "next-generation behavioral sequencing" is now permitting us to quantitatively describe behavioral features on millisecond to minutes long timescales that lie beyond easy detection with the unaided eye. Here, we summarize emerging videography and computational based behavioral approaches that have the potential to significantly improve pain research.
Collapse
Affiliation(s)
- Z Anissa Jhumka
- Zuckerman Mind Brain Behavior Institute and Department of Biological Sciences, Columbia University, New York, NY, USA. https://twitter.com/AnissaJhumka
| | - Ishmail J Abdus-Saboor
- Zuckerman Mind Brain Behavior Institute and Department of Biological Sciences, Columbia University, New York, NY, USA. ia2458columbia.edu
| |
Collapse
|
395
|
Domínguez-Oliva A, Mota-Rojas D, Hernández-Avalos I, Mora-Medina P, Olmos-Hernández A, Verduzco-Mendoza A, Casas-Alvarado A, Whittaker AL. The neurobiology of pain and facial movements in rodents: Clinical applications and current research. Front Vet Sci 2022; 9:1016720. [PMID: 36246319 PMCID: PMC9556725 DOI: 10.3389/fvets.2022.1016720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/12/2022] [Indexed: 11/30/2022] Open
Abstract
One of the most controversial aspects of the use of animals in science is the production of pain. Pain is a central ethical concern. The activation of neural pathways involved in the pain response has physiological, endocrine, and behavioral consequences, that can affect both the health and welfare of the animals, as well as the validity of research. The strategy to prevent these consequences requires understanding of the nociception process, pain itself, and how assessment can be performed using validated, non-invasive methods. The study of facial expressions related to pain has undergone considerable study with the finding that certain movements of the facial muscles (called facial action units) are associated with the presence and intensity of pain. This review, focused on rodents, discusses the neurobiology of facial expressions, clinical applications, and current research designed to better understand pain and the nociceptive pathway as a strategy for implementing refinement in biomedical research.
Collapse
Affiliation(s)
- Adriana Domínguez-Oliva
- Master in Science Program “Maestría en Ciencias Agropecuarias”, Universidad Autónoma Metropolitana, Mexico City, Mexico
| | - Daniel Mota-Rojas
- Neurophysiology, Behavior and Animal Welfare Assesment, DPAA, Universidad Autónoma Metropolitana, Mexico City, Mexico
- *Correspondence: Daniel Mota-Rojas
| | - Ismael Hernández-Avalos
- Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Cuautitlán Izcalli, Mexico
| | - Patricia Mora-Medina
- Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Cuautitlán Izcalli, Mexico
| | - Adriana Olmos-Hernández
- Division of Biotechnology-Bioterio and Experimental Surgery, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City, Mexico
| | - Antonio Verduzco-Mendoza
- Division of Biotechnology-Bioterio and Experimental Surgery, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City, Mexico
| | - Alejandro Casas-Alvarado
- Neurophysiology, Behavior and Animal Welfare Assesment, DPAA, Universidad Autónoma Metropolitana, Mexico City, Mexico
| | - Alexandra L. Whittaker
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA, Australia
| |
Collapse
|
396
|
Alotaibi M, Al-Aqil F, Alqahtani F, Alanazi M, Nadeem A, Ahmad SF, Lapresa R, Alharbi M, Alshammari A, Alotaibi M, Saleh T, Alrowis R. Alleviation of cisplatin-induced neuropathic pain, neuronal apoptosis, and systemic inflammation in mice by rapamycin. Front Aging Neurosci 2022; 14:891593. [PMID: 36248001 PMCID: PMC9554141 DOI: 10.3389/fnagi.2022.891593] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 08/15/2022] [Indexed: 11/30/2022] Open
Abstract
Platinum-based chemotherapeutic treatment of cancer patients is associated with debilitating adverse effects. Several adverse effects have been well investigated, and can be managed satisfactorily, but chemotherapy-induced peripheral neuropathy (CIPN) remains poorly treated. Our primary aim in this study was to investigate the neuroprotective effect of the immunomodulatory drug rapamycin in the mitigation of cisplatin-induced neurotoxicity. Pain assays were performed in vivo to determine whether rapamycin would prevent or significantly decrease cisplatin-induced neurotoxicity in adult male Balb/c mice. Neuropathic pain induced by both chronic and acute exposure to cisplatin was measured by hot plate assay, cold plate assay, tail-flick test, and plantar test. Rapamycin co-treatment resulted in significant reduction in cisplatin-induced nociceptive-like symptoms. To understand the underlying mechanisms behind rapamycin-mediated neuroprotection, we investigated its effect on certain inflammatory mediators implicated in the propagation of chemotherapy-induced neurotoxicity. Interestingly, cisplatin was found to significantly increase peripheral IL-17A expression and CD8- T cells, which were remarkably reversed by the pre-treatment of mice with rapamycin. In addition, rapamycin reduced the cisplatin-induced neuronal apoptosis marked by decreased neuronal caspase-3 activity. The rapamycin neuroprotective effect was also associated with reversal of the changes in protein expression of p21Cip1, p53, and PUMA. Collectively, rapamycin alleviated some features of cisplatin-induced neurotoxicity in mice and can be further investigated for the treatment of cisplatin-induced peripheral neuropathy.
Collapse
Affiliation(s)
- Moureq Alotaibi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
- *Correspondence: Moureq Alotaibi,
| | - Faten Al-Aqil
- Deanship of Scientific Research, King Saud University, Riyadh, Saudi Arabia
| | - Faleh Alqahtani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Miteb Alanazi
- Pharmacy Services, King Saud University Medical City, Riyadh, Saudi Arabia
| | - Ahmed Nadeem
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Sheikh F. Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Rebeca Lapresa
- Institute of Functional Biology and Genomics, Consejo Superior de Investigaciones Científicas (CSIC), University of Salamanca, Salamanca, Spain
- Institute of Biomedical Research of Salamanca, University Hospital of Salamanca, Consejo Superior de Investigaciones Científicas (CSIC), University of Salamanca, Salamanca, Spain
| | - Metab Alharbi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Abdulrahman Alshammari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Muteb Alotaibi
- Department of Neurology, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Tareq Saleh
- Department of Basic Medical Sciences, Faculty of Medicine, The Hashemite University, Zarqa, Jordan
| | - Raed Alrowis
- Department of Periodotics and Community Dentistry, College of Dentistry, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
397
|
Barradas M, Plaza A, Colmenarejo G, Lázaro I, Costa-Machado LF, Martín-Hernández R, Micó V, López-Aceituno JL, Herranz J, Pantoja C, Tejero H, Diaz-Ruiz A, Al-Shahrour F, Daimiel L, Loria-Kohen V, de Molina AR, Efeyan A, Serrano M, Pozo OJ, Sala-Vila A, Fernandez-Marcos PJ. Fatty acids homeostasis during fasting predicts protection from chemotherapy toxicity. Nat Commun 2022; 13:5677. [PMID: 36167809 PMCID: PMC9515185 DOI: 10.1038/s41467-022-33352-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 09/09/2022] [Indexed: 12/27/2022] Open
Abstract
Fasting exerts beneficial effects in mice and humans, including protection from chemotherapy toxicity. To explore the involved mechanisms, we collect blood from humans and mice before and after 36 or 24 hours of fasting, respectively, and measure lipid composition of erythrocyte membranes, circulating micro RNAs (miRNAs), and RNA expression at peripheral blood mononuclear cells (PBMCs). Fasting coordinately affects the proportion of polyunsaturated versus saturated and monounsaturated fatty acids at the erythrocyte membrane; and reduces the expression of insulin signaling-related genes in PBMCs. When fasted for 24 hours before and 24 hours after administration of oxaliplatin or doxorubicin, mice show a strong protection from toxicity in several tissues. Erythrocyte membrane lipids and PBMC gene expression define two separate groups of individuals that accurately predict a differential protection from chemotherapy toxicity, with important clinical implications. Our results reveal a mechanism of fasting associated with lipid homeostasis, and provide biomarkers of fasting to predict fasting-mediated protection from chemotherapy toxicity. Fasting has been reported to protect from chemotherapy-associated toxicity. Here, the authors show that fatty acid profiles in erythrocyte membranes and gene expression from peripheral blood mononuclear cells are associated to the fasting-mediated benefits during cancer treatment in mice and patients.
Collapse
Affiliation(s)
- Marta Barradas
- Metabolic Syndrome Group-BIOPROMET, CEI UAM+CSIC, Madrid Institute for Advanced Studies-IMDEA Food, Madrid, Spain.
| | - Adrián Plaza
- Metabolic Syndrome Group-BIOPROMET, CEI UAM+CSIC, Madrid Institute for Advanced Studies-IMDEA Food, Madrid, Spain.
| | - Gonzalo Colmenarejo
- Biostatistics and Bioinformatics Unit, CEI UAM+CSIC, Madrid Institute for Advanced Studies-IMDEA Food, Madrid, Spain
| | - Iolanda Lázaro
- Cardiovascular risk and nutrition, Hospital del Mar Medical Research Institute-IMIM, Barcelona, Spain
| | - Luis Filipe Costa-Machado
- Metabolic Syndrome Group-BIOPROMET, CEI UAM+CSIC, Madrid Institute for Advanced Studies-IMDEA Food, Madrid, Spain
| | - Roberto Martín-Hernández
- Biostatistics and Bioinformatics Unit, CEI UAM+CSIC, Madrid Institute for Advanced Studies-IMDEA Food, Madrid, Spain
| | - Victor Micó
- Nutritional Genomics of Cardiovascular Disease and Obesity, Madrid Institute for Advanced Studies-IMDEA Food, Madrid, Spain
| | - José Luis López-Aceituno
- Metabolic Syndrome Group-BIOPROMET, CEI UAM+CSIC, Madrid Institute for Advanced Studies-IMDEA Food, Madrid, Spain
| | - Jesús Herranz
- Biostatistics and Bioinformatics Unit, CEI UAM+CSIC, Madrid Institute for Advanced Studies-IMDEA Food, Madrid, Spain
| | - Cristina Pantoja
- Metabolic Syndrome Group-BIOPROMET, CEI UAM+CSIC, Madrid Institute for Advanced Studies-IMDEA Food, Madrid, Spain
| | - Hector Tejero
- Bioinformatics Unit, Spanish National Cancer Research Centre-CNIO, Madrid, Spain
| | - Alberto Diaz-Ruiz
- Nutritional Interventions Group, Precision Nutrition and Aging, CEI UAM+CSIC, Madrid Institute for Advanced Studies-IMDEA Food, Madrid, Spain
| | - Fatima Al-Shahrour
- Bioinformatics Unit, Spanish National Cancer Research Centre-CNIO, Madrid, Spain
| | - Lidia Daimiel
- Nutritional Genomics of Cardiovascular Disease and Obesity, Madrid Institute for Advanced Studies-IMDEA Food, Madrid, Spain
| | - Viviana Loria-Kohen
- Nutrition and Clinical Trials Unit, Platform GENYAL, CEI UAM+CSIC, Madrid Institute for Advanced Studies-IMDEA Food, Madrid, Spain
| | - Ana Ramirez de Molina
- Nutrition and Clinical Trials Unit, Platform GENYAL, CEI UAM+CSIC, Madrid Institute for Advanced Studies-IMDEA Food, Madrid, Spain.,Molecular Oncology and Nutritional Genomics of Cancer Group, CEI UAM+CSIC, Madrid Institute for Advanced Studies-IMDEA Food, Madrid, Spain
| | - Alejo Efeyan
- Metabolism and Cell Signaling Group, Spanish National Cancer Research Centre-CNIO, Madrid, Spain
| | - Manuel Serrano
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Oscar J Pozo
- Applied Metabolomics Research Group, Hospital del Mar Medical Research Institute-(IMIM), Barcelona, Spain
| | - Aleix Sala-Vila
- Cardiovascular risk and nutrition, Hospital del Mar Medical Research Institute-IMIM, Barcelona, Spain.,Fatty Acid Research Institute, Sioux Falls, SD, USA
| | - Pablo J Fernandez-Marcos
- Metabolic Syndrome Group-BIOPROMET, CEI UAM+CSIC, Madrid Institute for Advanced Studies-IMDEA Food, Madrid, Spain.
| |
Collapse
|
398
|
Bumgarner JR, Becker-Krail DD, White RC, Nelson RJ. Machine learning and deep learning frameworks for the automated analysis of pain and opioid withdrawal behaviors. Front Neurosci 2022; 16:953182. [PMID: 36225736 PMCID: PMC9549170 DOI: 10.3389/fnins.2022.953182] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 09/08/2022] [Indexed: 11/23/2022] Open
Abstract
The automation of behavioral tracking and analysis in preclinical research can serve to advance the rate of research outcomes, increase experimental scalability, and challenge the scientific reproducibility crisis. Recent advances in the efficiency, accuracy, and accessibility of deep learning (DL) and machine learning (ML) frameworks are enabling this automation. As the ongoing opioid epidemic continues to worsen alongside increasing rates of chronic pain, there are ever-growing needs to understand opioid use disorders (OUDs) and identify non-opioid therapeutic options for pain. In this review, we examine how these related needs can be advanced by the development and validation of DL and ML resources for automated pain and withdrawal behavioral tracking. We aim to emphasize the utility of these tools for automated behavioral analysis, and we argue that currently developed models should be deployed to address novel questions in the fields of pain and OUD research.
Collapse
|
399
|
Functional Gait Assessment Using Manual, Semi-Automated and Deep Learning Approaches Following Standardized Models of Peripheral Nerve Injury in Mice. Biomolecules 2022; 12:biom12101355. [PMID: 36291564 PMCID: PMC9599622 DOI: 10.3390/biom12101355] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/17/2022] [Accepted: 09/20/2022] [Indexed: 12/02/2022] Open
Abstract
Objective: To develop a standardized model of stretch−crush sciatic nerve injury in mice, and to compare outcomes of crush and novel stretch−crush injuries using standard manual gait and sensory assays, and compare them to both semi-automated as well as deep-learning gait analysis methods. Methods: Initial studies in C57/Bl6 mice were used to develop crush and stretch−crush injury models followed by histologic analysis. In total, 12 eight-week-old 129S6/SvEvTac mice were used in a six-week behavioural study. Behavioral assessments using the von Frey monofilament test and gait analysis recorded on a DigiGait platform and analyzed through both Visual Gait Lab (VGL) deep learning and standardized sciatic functional index (SFI) measurements were evaluated weekly. At the termination of the study, neurophysiological nerve conduction velocities were recorded, calf muscle weight ratios measured and histological analyses performed. Results: Histological evidence confirmed more severe histomorphological injury in the stretch−crush injured group compared to the crush-only injured group at one week post-injury. Von Frey monofilament paw withdrawal was significant for both groups at week one compared to baseline (p < 0.05), but not between groups with return to baseline at week five. SFI showed hindered gait at week one and two for both groups, compared to baseline (p < 0.0001), with return to baseline at week five. Hind stance width (HSW) showed similar trends as von Frey monofilament test as well as SFI measurements, yet hind paw angle (HPA) peaked at week two. Nerve conduction velocity (NCV), measured six weeks post-injury, at the termination of the study, did not show any significant difference between the two groups; yet, calf muscle weight measurements were significantly different between the two, with the stretch−crush group demonstrating a lower (poorer) weight ratio relative to uninjured contralateral legs (p < 0.05). Conclusion: Stretch−crush injury achieved a more reproducible and constant injury compared to crush-only injuries, with at least a Sunderland grade 3 injury (perineurial interruption) in histological samples one week post-injury in the former. However, serial behavioral outcomes were comparable between the two crush groups, with similar kinetics of recovery by von Frey testing, SFI and certain VGL parameters, the latter reported for the first time in rodent peripheral nerve injury. Semi-automated and deep learning-based approaches for gait analysis are promising, but require further validation for evaluation in murine hind-limb nerve injuries.
Collapse
|
400
|
De Luca MA, Tocco G, Mostallino R, Laus A, Caria F, Musa A, Pintori N, Ucha M, Poza C, Ambrosio E, Di Chiara G, Castelli MP. Pharmacological characterization of novel synthetic opioids: Isotonitazene, metonitazene, and piperidylthiambutene as potent MU opioid receptor agonists. Neuropharmacology 2022; 221:109263. [PMID: 36154843 DOI: 10.1016/j.neuropharm.2022.109263] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 09/07/2022] [Accepted: 09/17/2022] [Indexed: 11/30/2022]
Abstract
Recent trends of opioid abuse and related fatalities have highlighted the critical role of Novel Synthetic Opioids (NSOs). We studied the μ-opioid-like properties of isotonitazene (ITZ), metonitazene (MTZ), and piperidylthiambutene (PTB) using different approaches. In vitro studies showed that ITZ and MTZ displayed a higher potency in both rat membrane homogenates (EC50: 0.99 and 19.1 nM, respectively) and CHO-MOR (EC50: 0.71 and 10.0 nM, respectively) than [D-Ala2, NMe-Phe4, Gly-ol5]-enkephalin (DAMGO), with no difference in maximal efficacy (Emax) between DAMGO and NSOs. ITZ also has higher affinity (Ki: 0.06 and 0.05 nM) at the MOR than DAMGO in both systems, whilst MTZ has higher affinity in CHO-MOR (Ki = 0.23 nM) and similar affinity in rat cerebral cortex (Ki = 0.22 nM). PTB showed lower affinity and potency than DAMGO. In vivo, ITZ displayed higher analgesic potency than fentanyl and morphine (ED50: 0.00156, 0.00578, 2.35 mg/kg iv, respectively); ITZ (0.01 mg/kg iv) and MTZ (0.03 mg/kg iv) reduced behavioral activity and increased dialysate dopamine (DA) in the NAc shell (max. about 200% and 170% over basal value, respectively. Notably, ITZ elicited an increase in DA comparable to that of higher dose of morphine (1 mg/kg iv), but higher than the same dose of fentanyl (0.01 mg/kg iv). In silico, induced fit docking (IFD) and metadynamic simulations (MTD) showed that binding modes and structural changes at the receptor, ligand stability, and the overall energy score of NSOs were consistent with the results of the biological assays.
Collapse
Affiliation(s)
| | - Graziella Tocco
- Department of Life and Environmental Sciences, University of Cagliari, Italy
| | | | - Antonio Laus
- Department of Life and Environmental Sciences, University of Cagliari, Italy
| | - Francesca Caria
- Department of Biomedical Sciences, University of Cagliari, Italy
| | - Aurora Musa
- Department of Biomedical Sciences, University of Cagliari, Italy
| | - Nicholas Pintori
- Department of Biomedical Sciences, University of Cagliari, Italy
| | - Marcos Ucha
- Department of Psychobiology, National University for Distance Learning (UNED), Madrid, Spain
| | - Celia Poza
- Department of Psychobiology, National University for Distance Learning (UNED), Madrid, Spain
| | - Emilio Ambrosio
- Department of Psychobiology, National University for Distance Learning (UNED), Madrid, Spain
| | - Gaetano Di Chiara
- Department of Biomedical Sciences, University of Cagliari, Italy; CNR Institute of Neuroscience, Cagliari Section, University of Cagliari, Italy.
| | - M Paola Castelli
- Department of Biomedical Sciences, University of Cagliari, Italy.
| |
Collapse
|