351
|
Leyman B, Huysmans H, Mc Cafferty S, Combes F, Cox E, Devriendt B, Sanders NN. Comparison of the Expression Kinetics and Immunostimulatory Activity of Replicating mRNA, Nonreplicating mRNA, and pDNA after Intradermal Electroporation in Pigs. Mol Pharm 2018; 15:377-384. [PMID: 29297692 DOI: 10.1021/acs.molpharmaceut.7b00722] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Synthetic mRNA is becoming increasingly popular as an alternative to pDNA-based gene therapy. Currently, multiple synthetic mRNA platforms have been developed. In this study we investigated the expression kinetics and the changes in mRNA encoding cytokine and chemokine levels following intradermal electroporation in pigs of pDNA, self-replicating mRNA, and modified and unmodified mRNA. The self-replicating mRNA tended to induce the highest protein expression, followed by pDNA, modified mRNA, and unmodified mRNA. Interestingly, the self-replicating mRNA was able to maintain its high expression levels during at least 12 days. In contrast, the expression of pDNA and the nonreplicating mRNAs dropped after respectively one and two days. Six days after intradermal electroporation a dose-dependent expression was observed for all vectors. Again, also at lower doses, the self-replicating mRNA tended to show the highest expression. All the mRNA vectors, including the modified mRNA, induced elevated levels of mRNA encoding cytokines and chemokines in the porcine skin after intradermal electroporation, while no such response was noticed after intradermal electroporation of the pDNA vector.
Collapse
Affiliation(s)
- Bregje Leyman
- Faculty of Veterinary Medicine, Department of Nutrition, Genetics, and Ethology, Laboratory for Gene Therapy, Ghent University , Heidestraat 19, 9820 Merelbeke, Belgium
| | - Hanne Huysmans
- Faculty of Veterinary Medicine, Department of Nutrition, Genetics, and Ethology, Laboratory for Gene Therapy, Ghent University , Heidestraat 19, 9820 Merelbeke, Belgium
| | - Séan Mc Cafferty
- Faculty of Veterinary Medicine, Department of Nutrition, Genetics, and Ethology, Laboratory for Gene Therapy, Ghent University , Heidestraat 19, 9820 Merelbeke, Belgium.,Cancer Research Institute (CRIG), Ghent University , 9820 Merelbeke, Belgium
| | - Francis Combes
- Faculty of Veterinary Medicine, Department of Nutrition, Genetics, and Ethology, Laboratory for Gene Therapy, Ghent University , Heidestraat 19, 9820 Merelbeke, Belgium.,Cancer Research Institute (CRIG), Ghent University , 9820 Merelbeke, Belgium
| | - Eric Cox
- Faculty of Veterinary Medicine, Department of Virology, Parasitology, and Immunology, Ghent University , Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Bert Devriendt
- Faculty of Veterinary Medicine, Department of Virology, Parasitology, and Immunology, Ghent University , Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Niek N Sanders
- Faculty of Veterinary Medicine, Department of Nutrition, Genetics, and Ethology, Laboratory for Gene Therapy, Ghent University , Heidestraat 19, 9820 Merelbeke, Belgium.,Cancer Research Institute (CRIG), Ghent University , 9820 Merelbeke, Belgium
| |
Collapse
|
352
|
Pardi N, Hogan MJ, Porter FW, Weissman D. mRNA vaccines - a new era in vaccinology. Nat Rev Drug Discov 2018; 17:261-279. [PMID: 29326426 DOI: 10.1038/nrd.2017.243] [Citation(s) in RCA: 2715] [Impact Index Per Article: 387.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
mRNA vaccines represent a promising alternative to conventional vaccine approaches because of their high potency, capacity for rapid development and potential for low-cost manufacture and safe administration. However, their application has until recently been restricted by the instability and inefficient in vivo delivery of mRNA. Recent technological advances have now largely overcome these issues, and multiple mRNA vaccine platforms against infectious diseases and several types of cancer have demonstrated encouraging results in both animal models and humans. This Review provides a detailed overview of mRNA vaccines and considers future directions and challenges in advancing this promising vaccine platform to widespread therapeutic use.
Collapse
Affiliation(s)
- Norbert Pardi
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Michael J Hogan
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Frederick W Porter
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina 27710, USA
| | - Drew Weissman
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
353
|
Rauch S, Lutz J, Kowalczyk A, Schlake T, Heidenreich R. RNActive® Technology: Generation and Testing of Stable and Immunogenic mRNA Vaccines. Methods Mol Biol 2018; 1499:89-107. [PMID: 27987144 DOI: 10.1007/978-1-4939-6481-9_5] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Developing effective mRNA vaccines poses certain challenges concerning mRNA stability and ability to induce sufficient immune stimulation and requires a specific panel of techniques for production and testing. Here, we describe the production of stabilized mRNA with enhanced immunogenicity, generated using conventional nucleotides only, by introducing changes to the mRNA sequence and by complexation with the nucleotide-binding peptide protamine (RNActive® technology). Methods described here include the synthesis, purification, and protamine complexation of mRNA vaccines as well as a comprehensive panel of in vitro and in vivo methods for evaluation of vaccine quality and immunogenicity.
Collapse
Affiliation(s)
- Susanne Rauch
- CureVac AG, Paul-Ehrlich-Str. 15, 72076, Tübingen, Germany
| | - Johannes Lutz
- CureVac AG, Paul-Ehrlich-Str. 15, 72076, Tübingen, Germany
| | | | - Thomas Schlake
- CureVac AG, Paul-Ehrlich-Str. 15, 72076, Tübingen, Germany
| | | |
Collapse
|
354
|
Guo S, Li H, Ma M, Fu J, Dong Y, Guo P. Size, Shape, and Sequence-Dependent Immunogenicity of RNA Nanoparticles. MOLECULAR THERAPY. NUCLEIC ACIDS 2017; 9:399-408. [PMID: 29246318 PMCID: PMC5701797 DOI: 10.1016/j.omtn.2017.10.010] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 10/14/2017] [Accepted: 10/14/2017] [Indexed: 02/01/2023]
Abstract
RNA molecules have emerged as promising therapeutics. Like all other drugs, the safety profile and immune response are important criteria for drug evaluation. However, the literature on RNA immunogenicity has been controversial. Here, we used the approach of RNA nanotechnology to demonstrate that the immune response of RNA nanoparticles is size, shape, and sequence dependent. RNA triangle, square, pentagon, and tetrahedron with same shape but different sizes, or same size but different shapes were used as models to investigate the immune response. The levels of pro-inflammatory cytokines induced by these RNA nanoarchitectures were assessed in macrophage-like cells and animals. It was found that RNA polygons without extension at the vertexes were immune inert. However, when single-stranded RNA with a specific sequence was extended from the vertexes of RNA polygons, strong immune responses were detected. These immunostimulations are sequence specific, because some other extended sequences induced little or no immune response. Additionally, larger-size RNA square induced stronger cytokine secretion. 3D RNA tetrahedron showed stronger immunostimulation than planar RNA triangle. These results suggest that the immunogenicity of RNA nanoparticles is tunable to produce either a minimal immune response that can serve as safe therapeutic vectors, or a strong immune response for cancer immunotherapy or vaccine adjuvants.
Collapse
Affiliation(s)
- Sijin Guo
- Center for RNA Nanobiotechnology and Nanomedicine, The Ohio State University, Columbus, OH 43210, USA; College of Pharmacy, Division of Pharmaceutics and Pharmaceutical Chemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Hui Li
- Center for RNA Nanobiotechnology and Nanomedicine, The Ohio State University, Columbus, OH 43210, USA; College of Pharmacy, Division of Pharmaceutics and Pharmaceutical Chemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Mengshi Ma
- Center for Research on Environmental Disease, College of Medicine, Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40506, USA
| | - Jian Fu
- Center for Research on Environmental Disease, College of Medicine, Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40506, USA
| | - Yizhou Dong
- Center for RNA Nanobiotechnology and Nanomedicine, The Ohio State University, Columbus, OH 43210, USA; College of Pharmacy, Division of Pharmaceutics and Pharmaceutical Chemistry, The Ohio State University, Columbus, OH 43210, USA; Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA; NCI Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA.
| | - Peixuan Guo
- Center for RNA Nanobiotechnology and Nanomedicine, The Ohio State University, Columbus, OH 43210, USA; College of Pharmacy, Division of Pharmaceutics and Pharmaceutical Chemistry, The Ohio State University, Columbus, OH 43210, USA; College of Medicine, The Ohio State University, Columbus, OH 43210, USA; Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA; NCI Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
355
|
Li J, He Y, Wang W, Wu C, Hong C, Hammond PT. Polyamine-Mediated Stoichiometric Assembly of Ribonucleoproteins for Enhanced mRNA Delivery. Angew Chem Int Ed Engl 2017; 56:13709-13712. [PMID: 28925033 PMCID: PMC5647255 DOI: 10.1002/anie.201707466] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Indexed: 12/31/2022]
Abstract
Messenger RNA (mRNA) represents a promising class of nucleic acid drugs. Although numerous carriers have been developed for mRNA delivery, the inefficient mRNA expression inside cells remains a major challenge. Inspired by the dependence of mRNA on 3'-terminal polyadenosine nucleotides (poly A) and poly A binding proteins (PABPs) for optimal expression, we complexed synthetic mRNA containing a poly A tail with PABPs in a stoichiometric manner and stabilized the ribonucleoproteins (RNPs) with a family of polypeptides bearing different arrangements of cationic side groups. We found that the molecular structure of these polypeptides modulates the degree of PABP-mediated enhancement of mRNA expression. This strategy elicits an up to 20-fold increase in mRNA expression in vitro and an approximately fourfold increase in mice. These findings suggest a set of new design principles for gene delivery by the synergistic co-assembly of mRNA with helper proteins.
Collapse
Affiliation(s)
- Jiahe Li
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Yanpu He
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Wade Wang
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Connie Wu
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Celestine Hong
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Paula T. Hammond
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| |
Collapse
|
356
|
Li J, He Y, Wang W, Wu C, Hong C, Hammond PT. Polyamine‐Mediated Stoichiometric Assembly of Ribonucleoproteins for Enhanced mRNA Delivery. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201707466] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Jiahe Li
- Koch Institute for Integrative Cancer Research Massachusetts Institute of Technology Cambridge MA 02139 USA
- Department of Chemical Engineering Massachusetts Institute of Technology Cambridge MA 02139 USA
| | - Yanpu He
- Koch Institute for Integrative Cancer Research Massachusetts Institute of Technology Cambridge MA 02139 USA
- Department of Chemical Engineering Massachusetts Institute of Technology Cambridge MA 02139 USA
| | - Wade Wang
- Koch Institute for Integrative Cancer Research Massachusetts Institute of Technology Cambridge MA 02139 USA
- Department of Chemistry Massachusetts Institute of Technology Cambridge MA 02139 USA
| | - Connie Wu
- Koch Institute for Integrative Cancer Research Massachusetts Institute of Technology Cambridge MA 02139 USA
- Department of Chemical Engineering Massachusetts Institute of Technology Cambridge MA 02139 USA
| | - Celestine Hong
- Koch Institute for Integrative Cancer Research Massachusetts Institute of Technology Cambridge MA 02139 USA
- Department of Chemical Engineering Massachusetts Institute of Technology Cambridge MA 02139 USA
| | - Paula T. Hammond
- Koch Institute for Integrative Cancer Research Massachusetts Institute of Technology Cambridge MA 02139 USA
- Department of Chemical Engineering Massachusetts Institute of Technology Cambridge MA 02139 USA
| |
Collapse
|
357
|
Abstract
Monoclonal antibodies have a variety of applications in research and medicine. Here, we report development of a new method for production of monoclonal antibodies. Our method relies on in vivo RNA transfection rather than peptide vaccination. We took advantage of RNA transcripts complexed with DOTMA and DOPE lipids to transfect mice. Intravenous administration of our RNA vaccine to mice resulted in expression of the antigenic peptides by splenic dendritic cells and detection of the antigens in the serum. The RNA vaccine stimulated production of specific antibodies against the RNA-encoded peptides. We produced monoclonal antibodies against viral, bacterial, and human antigens. In addition, we showed that our RNA vaccine stimulated humoral immunity and rescued mice infected with influenza A virus. Our method could be used as an efficient tool to generate monoclonal antibodies and to stimulate humoral immunity for research and medical purposes.
Collapse
|
358
|
|
359
|
Iavarone C, O'hagan DT, Yu D, Delahaye NF, Ulmer JB. Mechanism of action of mRNA-based vaccines. Expert Rev Vaccines 2017; 16:871-881. [PMID: 28701102 DOI: 10.1080/14760584.2017.1355245] [Citation(s) in RCA: 148] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
INTRODUCTION The present review summarizes the growing body of work defining the mechanisms of action of this exciting new vaccine technology that should allow rational approaches in the design of next generation mRNA vaccines. Areas covered: Bio-distribution of mRNA, localization of antigen production, role of the innate immunity, priming of the adaptive immune response, route of administration and effects of mRNA delivery systems. Expert commentary: In the last few years, the development of RNA vaccines had a fast growth, the rising number of proof will enable rational approaches to improving the effectiveness and safety of this modern class of medicine.
Collapse
Affiliation(s)
| | | | - Dong Yu
- a GSK Vaccines , Rockville , MD , USA
| | | | | |
Collapse
|
360
|
Richner JM, Jagger BW, Shan C, Fontes CR, Dowd KA, Cao B, Himansu S, Caine EA, Nunes BT, Medeiros DB, Muruato AE, Foreman BM, Luo H, Wang T, Barrett AD, Weaver SC, Vasconcelos PF, Rossi SL, Ciaramella G, Mysorekar IU, Pierson TC, Shi PY, Diamond MS. Vaccine Mediated Protection Against Zika Virus-Induced Congenital Disease. Cell 2017; 170:273-283.e12. [PMID: 28708997 PMCID: PMC5546158 DOI: 10.1016/j.cell.2017.06.040] [Citation(s) in RCA: 198] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 06/19/2017] [Accepted: 06/26/2017] [Indexed: 12/11/2022]
Abstract
The emergence of Zika virus (ZIKV) and its association with congenital malformations has prompted the rapid development of vaccines. Although efficacy with multiple viral vaccine platforms has been established in animals, no study has addressed protection during pregnancy. We tested in mice two vaccine platforms, a lipid nanoparticle-encapsulated modified mRNA vaccine encoding ZIKV prM and E genes and a live-attenuated ZIKV strain encoding an NS1 protein without glycosylation, for their ability to protect against transmission to the fetus. Vaccinated dams challenged with a heterologous ZIKV strain at embryo day 6 (E6) and evaluated at E13 showed markedly diminished levels of viral RNA in maternal, placental, and fetal tissues, which resulted in protection against placental damage and fetal demise. As modified mRNA and live-attenuated vaccine platforms can restrict in utero transmission of ZIKV in mice, their further development in humans to prevent congenital ZIKV syndrome is warranted.
Collapse
Affiliation(s)
- Justin M. Richner
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Brett W. Jagger
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Chao Shan
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Camila R. Fontes
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Kimberly A. Dowd
- Viral Pathogenesis Section, National Institutes of Health, Bethesda, MD 20892 USA
| | - Bin Cao
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Sunny Himansu
- Valera LLC, a Moderna Venture, 500 Technology Square, Cambridge, MA, 02139, USA
| | - Elizabeth A. Caine
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Bruno T.D. Nunes
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, Ministry of Health, Ananindeua, Pará State, Brazil
| | - Daniele B.A. Medeiros
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, Ministry of Health, Ananindeua, Pará State, Brazil
| | - Antonio E. Muruato
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Bryant M. Foreman
- Viral Pathogenesis Section, National Institutes of Health, Bethesda, MD 20892 USA
| | - Huanle Luo
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Tian Wang
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Alan D. Barrett
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Scott C. Weaver
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Institute for Human infections and Immunity, University of Texas Medical Branch, Galveston, TX 77555, USA
- Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Pedro F.C. Vasconcelos
- Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, Ministry of Health, Ananindeua, Pará State, Brazil
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA, Department of Pathology, Pará State University, Belém, Brazil
| | - Shannan L. Rossi
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Institute for Human infections and Immunity, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Giuseppe Ciaramella
- Valera LLC, a Moderna Venture, 500 Technology Square, Cambridge, MA, 02139, USA
| | - Indira U. Mysorekar
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA, Department of Pathology, Pará State University, Belém, Brazil
| | - Theodore C. Pierson
- Viral Pathogenesis Section, National Institutes of Health, Bethesda, MD 20892 USA
| | - Pei-Yong Shi
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Institute for Translational Science, University of Texas Medical Branch, Galveston, TX 77555, USA
- Institute for Human infections and Immunity, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Michael S. Diamond
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA, Department of Pathology, Pará State University, Belém, Brazil
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
- The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
361
|
Kirschman JL, Bhosle S, Vanover D, Blanchard EL, Loomis KH, Zurla C, Murray K, Lam BC, Santangelo PJ. Characterizing exogenous mRNA delivery, trafficking, cytoplasmic release and RNA-protein correlations at the level of single cells. Nucleic Acids Res 2017; 45:e113. [PMID: 28449134 PMCID: PMC5499550 DOI: 10.1093/nar/gkx290] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 03/06/2017] [Accepted: 04/11/2017] [Indexed: 12/25/2022] Open
Abstract
The use of synthetic messenger ribonucleic acid (mRNA) to express specific proteins is a highly promising therapeutic and vaccine approach that avoids many safety issues associated with viral or DNA-based systems. However, in order to optimize mRNA designs and delivery, technology advancements are required to study fundamental mechanisms of mRNA uptake and localization at the single-cell and tissue level. Here, we present a single RNA sensitive fluorescent labeling method which allows us to label and visualize synthetic mRNA without significantly affecting function. This approach enabled single cell characterization of mRNA uptake and release kinetics from endocytic compartments, the measurement of mRNA/protein correlations, and motivated the investigation of mRNA induced cellular stress, all important mechanisms influencing protein production. In addition, we demonstrated this approach can facilitate near-infrared imaging of mRNA localization in vivo and in ex-vivo tissue sections, which will facilitate mRNA trafficking studies in pre-clinical models. Overall, we demonstrate the ability to study fundamental mechanisms necessary to optimize delivery and therapeutic strategies, in order to design the next generation of novel mRNA therapeutics and vaccines.
Collapse
Affiliation(s)
- Jonathan L. Kirschman
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, UA Whitaker Building, 313 Ferst Drive, Atlanta, GA 30332, USA
| | - Sushma Bhosle
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, UA Whitaker Building, 313 Ferst Drive, Atlanta, GA 30332, USA
| | - Daryll Vanover
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, UA Whitaker Building, 313 Ferst Drive, Atlanta, GA 30332, USA
| | - Emmeline L. Blanchard
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, UA Whitaker Building, 313 Ferst Drive, Atlanta, GA 30332, USA
| | - Kristin H. Loomis
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, UA Whitaker Building, 313 Ferst Drive, Atlanta, GA 30332, USA
| | - Chiara Zurla
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, UA Whitaker Building, 313 Ferst Drive, Atlanta, GA 30332, USA
| | - Kathryn Murray
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, UA Whitaker Building, 313 Ferst Drive, Atlanta, GA 30332, USA
| | - Blaine C. Lam
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, UA Whitaker Building, 313 Ferst Drive, Atlanta, GA 30332, USA
| | - Philip J. Santangelo
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, UA Whitaker Building, 313 Ferst Drive, Atlanta, GA 30332, USA
| |
Collapse
|
362
|
Chen H, Zhang W, Zhu G, Xie J, Chen X. Rethinking cancer nanotheranostics. NATURE REVIEWS. MATERIALS 2017; 2:17024. [PMID: 29075517 PMCID: PMC5654564 DOI: 10.1038/natrevmats.2017.24] [Citation(s) in RCA: 742] [Impact Index Per Article: 92.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Advances in nanoparticle synthesis and engineering have produced nanoscale agents affording both therapeutic and diagnostic functions that are often referred to by the portmanteau 'nanotheranostics'. The field is associated with many applications in the clinic, especially in cancer management. These include patient stratification, drug-release monitoring, imaging-guided focal therapy and post-treatment response monitoring. Recent advances in nanotheranostics have expanded this notion and enabled the characterization of individual tumours, the prediction of nanoparticle-tumour interactions, and the creation of tailor-designed nanomedicines for individualized treatment. Some of these applications require breaking the dogma that a nanotheranostic must combine both therapeutic and diagnostic agents within a single, physical entity; instead, it can be a general approach in which diagnosis and therapy are interwoven to solve clinical issues and improve treatment outcomes. In this Review, we describe the evolution and state of the art of cancer nanotheranostics, with an emphasis on clinical impact and translation.
Collapse
Affiliation(s)
- Hongmin Chen
- Center for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, USA
- Bio-imaging Research Center, University of Georgia, Athens, Georgia 30602, USA
| | - Weizhong Zhang
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, USA
| | - Guizhi Zhu
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Jin Xie
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, USA
- Bio-imaging Research Center, University of Georgia, Athens, Georgia 30602, USA
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
363
|
Abraham MK, Peter K, Michel T, Wendel HP, Krajewski S, Wang X. Nanoliposomes for Safe and Efficient Therapeutic mRNA Delivery: A Step Toward Nanotheranostics in Inflammatory and Cardiovascular Diseases as well as Cancer. Nanotheranostics 2017; 1:154-165. [PMID: 29071184 PMCID: PMC5646717 DOI: 10.7150/ntno.19449] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 03/14/2017] [Indexed: 02/07/2023] Open
Abstract
Rationale: Genetic therapy using modified mRNA for specific therapeutic protein expression for disease treatment and vaccination represents a new field of therapeutic and diagnostic medicine. Non-viral vectors transfection using biocompatible nanoliposomes enables safe and efficient delivery of therapeutic mRNA. Objective: Generation of non-toxic, cell-compatible cationic nanoliposomes as nanotheranostic agents to successfully deliver therapeutic mRNA. Methods and results: Cationic nanoliposomes (DC-Cholesterol/DOPE) were generated as transfection vehicles for either eGFP mRNA or the therapeutic anti-inflammatory, CD39 mRNA. We observed no toxicity using these nanoplexes and noted high cell viability after transfection. Nanoplexes for the transfection of eGFP mRNA showed an increase in fluorescence signals on microscopy as compared to the mRNA control after 24 hours in Chinese hamster ovary (CHO) cells (14.29 ± 5.30 vs. 1.49 ± 0.54; mean ± SD respectively; p<0.001) and flow cytometry (57.29 ± 14.59 vs 1.83 ± 0.34; % mean ± SD; p<0.001). Nanoplexes for the transfection of CD39 mRNA showed increased CD39 expression in flow cytometry (45.64 ± 15.3 vs. 3.94 ± 0.45; % mean ± SD; p<0.001) as compared to the mRNA control after 24 hours using CHO cells. We also demonstrated efficient transfection across several cell lines (CHO, HEK293, and A549), as well as long-term protein expression (120 h and 168 h) using these nanoplexes. Conclusions: We have developed and tested non-toxic, safe, and efficient nanoliposome preparations for the delivery of therapeutic mRNA that hold promise for novel therapies in diseases such as inflammatory and cardiovascular diseases, as well as cancer. We have also demonstrated that this approach provides a reliable technology to deliver CD39 mRNA as an anti-inflammatory therapeutic for future nanotheranostics approaches.
Collapse
Affiliation(s)
- Meike-Kristin Abraham
- Department of Thoracic, Cardiac and Vascular Surgery, Clinical Research Laboratory, University Hospital Tübingen, Germany.,Atherothrombosis and Vascular Biology, Baker Heart & Diabetes Institute, Melbourne, Victoria, Australia
| | - Karlheinz Peter
- Atherothrombosis and Vascular Biology, Baker Heart & Diabetes Institute, Melbourne, Victoria, Australia.,Department of Medicine, Monash University, Melbourne, Victoria, Australia
| | - Tatjana Michel
- Department of Thoracic, Cardiac and Vascular Surgery, Clinical Research Laboratory, University Hospital Tübingen, Germany
| | - Hans Peter Wendel
- Department of Thoracic, Cardiac and Vascular Surgery, Clinical Research Laboratory, University Hospital Tübingen, Germany
| | - Stefanie Krajewski
- Department of Thoracic, Cardiac and Vascular Surgery, Clinical Research Laboratory, University Hospital Tübingen, Germany
| | - Xiaowei Wang
- Atherothrombosis and Vascular Biology, Baker Heart & Diabetes Institute, Melbourne, Victoria, Australia.,Department of Medicine, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
364
|
Fernandez E, Diamond MS. Vaccination strategies against Zika virus. Curr Opin Virol 2017; 23:59-67. [PMID: 28432975 PMCID: PMC5576498 DOI: 10.1016/j.coviro.2017.03.006] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 03/09/2017] [Accepted: 03/18/2017] [Indexed: 10/19/2022]
Abstract
The epidemic emergence of Zika virus (ZIKV) in 2015-2016 has been associated with congenital malformations and neurological sequela. Current efforts to develop a ZIKV vaccine build on technologies that successfully reduced infection or disease burden against closely related flaviviruses or other RNA viruses. Subunit-based (DNA plasmid and modified mRNA), viral vectored (adeno- and measles viruses) and inactivated viral vaccines are already advancing to clinical trials in humans after successful mouse and non-human primate studies. Among the greatest challenges for the rapid implementation of immunogenic and protective ZIKV vaccines will be addressing the potential for exacerbating Dengue virus infection or causing Guillain-Barré syndrome through production of cross-reactive immunity targeting related viral or host proteins. Here, we review vaccine strategies under development for ZIKV and the issues surrounding their usage.
Collapse
MESH Headings
- Animals
- Clinical Trials as Topic
- Dengue/epidemiology
- Drug Evaluation, Preclinical
- Drug-Related Side Effects and Adverse Reactions/epidemiology
- Guillain-Barre Syndrome/epidemiology
- Humans
- Mice
- Vaccines, DNA/adverse effects
- Vaccines, DNA/immunology
- Vaccines, DNA/isolation & purification
- Vaccines, Inactivated/adverse effects
- Vaccines, Inactivated/immunology
- Vaccines, Inactivated/isolation & purification
- Vaccines, Subunit/adverse effects
- Vaccines, Subunit/immunology
- Vaccines, Subunit/isolation & purification
- Vaccines, Synthetic/adverse effects
- Vaccines, Synthetic/immunology
- Vaccines, Synthetic/isolation & purification
- Viral Vaccines/adverse effects
- Viral Vaccines/immunology
- Viral Vaccines/isolation & purification
- Zika Virus/immunology
- Zika Virus Infection/prevention & control
Collapse
Affiliation(s)
- Estefania Fernandez
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Michael S Diamond
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA; Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA; Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO 63110, USA; The Andrew M. and Jane M. Bursky Center for Immunology and Immunotherapy Programs, Washington University School of Medicine, Saint Louis, MO 63110, USA.
| |
Collapse
|
365
|
Zhu G, Zhang F, Ni Q, Niu G, Chen X. Efficient Nanovaccine Delivery in Cancer Immunotherapy. ACS NANO 2017; 11:2387-2392. [PMID: 28277646 DOI: 10.1021/acsnano.7b00978] [Citation(s) in RCA: 250] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Vaccines hold tremendous potential for cancer immunotherapy by treating the immune system. Subunit vaccines, including molecular adjuvants and cancer-associated antigens or cancer-specific neoantigens, can elicit potent antitumor immunity. However, subunit vaccines have shown limited clinical benefit in cancer patients, which is in part attributed to inefficient vaccine delivery. In this Perspective, we discuss vaccine delivery by synthetic nanoparticles or naturally derived nanoparticles for cancer immunotherapy. Nanovaccines can efficiently codeliver adjuvants and multiepitope antigens into lymphoid organs and into antigen-presenting cells, and the intracellular release of vaccine and cross-presentation of antigens can be fine-tuned via nanovaccine engineering. Aside from peptide antigens, antigen-encoding mRNA for cancer immunotherapy delivered by nanovaccine will also be discussed.
Collapse
Affiliation(s)
- Guizhi Zhu
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH) , Bethesda, Maryland 20892, United States
| | - Fuwu Zhang
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH) , Bethesda, Maryland 20892, United States
| | - Qianqian Ni
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH) , Bethesda, Maryland 20892, United States
| | - Gang Niu
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH) , Bethesda, Maryland 20892, United States
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH) , Bethesda, Maryland 20892, United States
| |
Collapse
|
366
|
Li J, Wang W, He Y, Li Y, Yan EZ, Zhang K, Irvine DJ, Hammond PT. Structurally Programmed Assembly of Translation Initiation Nanoplex for Superior mRNA Delivery. ACS NANO 2017; 11:2531-2544. [PMID: 28157292 PMCID: PMC5629916 DOI: 10.1021/acsnano.6b08447] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Messenger RNA (mRNA) represents a promising class of nucleic-acid-based therapeutics. While numerous nanocarriers have been developed for mRNA delivery, the inherent labile nature of mRNA results in a very low transfection efficiency and poor expression of desired protein. Here we preassemble the mRNA translation initiation structure through an inherent molecular recognition between 7-methylguanosine (m7G)-capped mRNA and eukaryotic initiation factor 4E (eIF4E) protein to form ribonucleoproteins (RNPs), thereby mimicking the first step of protein synthesis inside cells. Subsequent electrostatic stabilization of RNPs with structurally tunable cationic carriers leads to nanosized complexes (nanoplexes), which elicit high levels of mRNA transfection in different cell types by enhancing intracellular mRNA stability and protein synthesis. By investigating a family of synthetic polypeptides bearing different side group arrangements of cationic charge, we find that the molecular structure modulates the nanoscale distance between the mRNA strand and the eIF4E protein inside the nanoplex, which directly impacts the enhancement of mRNA transfection. To demonstrate the biomedical potential of this approach, we use this approach to introduce mRNA/eIF4E nanoplexes to murine dendritic cells, resulting in increased activation of cytotoxic CD8 T cells ex vivo. More importantly, eIF4E enhances gene expression in lungs following a systemic delivery of luciferase mRNA/eIF4E in mice. Collectively, this bioinspired molecular assembly method could lead to a new paradigm of gene delivery.
Collapse
Affiliation(s)
- Jiahe Li
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Wade Wang
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Yanpu He
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Yingzhong Li
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Emily Z. Yan
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Ketian Zhang
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Darrell J. Irvine
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
- Howard Hughes Medical Institute, Chevy Chase, MD 20815
| | - Paula T. Hammond
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
- Correspondence: David H. Koch Professor in Engineering, Bayer Chair Professor of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, United States.
| |
Collapse
|
367
|
Charge-altering releasable transporters (CARTs) for the delivery and release of mRNA in living animals. Proc Natl Acad Sci U S A 2017; 114:E448-E456. [PMID: 28069945 DOI: 10.1073/pnas.1614193114] [Citation(s) in RCA: 207] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Functional delivery of mRNA to tissues in the body is key to implementing fundamentally new and potentially transformative strategies for vaccination, protein replacement therapy, and genome editing, collectively affecting approaches for the prevention, detection, and treatment of disease. Broadly applicable tools for the efficient delivery of mRNA into cultured cells would advance many areas of research, and effective and safe in vivo mRNA delivery could fundamentally transform clinical practice. Here we report the step-economical synthesis and evaluation of a tunable and effective class of synthetic biodegradable materials: charge-altering releasable transporters (CARTs) for mRNA delivery into cells. CARTs are structurally unique and operate through an unprecedented mechanism, serving initially as oligo(α-amino ester) cations that complex, protect, and deliver mRNA and then change physical properties through a degradative, charge-neutralizing intramolecular rearrangement, leading to intracellular release of functional mRNA and highly efficient protein translation. With demonstrated utility in both cultured cells and animals, this mRNA delivery technology should be broadly applicable to numerous research and therapeutic applications.
Collapse
|
368
|
Edwards DK, Jasny E, Yoon H, Horscroft N, Schanen B, Geter T, Fotin-Mleczek M, Petsch B, Wittman V. Adjuvant effects of a sequence-engineered mRNA vaccine: translational profiling demonstrates similar human and murine innate response. J Transl Med 2017; 15:1. [PMID: 28049494 PMCID: PMC5210268 DOI: 10.1186/s12967-016-1111-6] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 12/15/2016] [Indexed: 02/06/2023] Open
Abstract
Background Prophylactic and therapeutic vaccines often depend upon a strong activation of the innate immune system to drive a potent adaptive immune response, often mediated by a strong adjuvant. For a number of adjuvants immunological readouts may not be consistent across species. Methods In this study, we evaluated the innate immunostimulatory potential of mRNA vaccines in both humans and mice, using a novel mRNA-based vaccine encoding influenza A hemagglutinin of the pandemic strain H1N1pdm09 as a model. This evaluation was performed using an in vitro model of human innate immunity and in vivo in mice after intradermal injection. Results Results suggest that immunostimulation from the mRNA vaccine in humans is similar to that in mice and acts through cellular RNA sensors, with genes for RLRs [ddx58 (RIG-1) and ifih1 (MDA-5)], TLRs (tlr3, tlr7, and tlr8-human only), and CLRs (clec4gp1, clec2d, cledl1) all significantly up-regulated by the mRNA vaccine. The up-regulation of TLR8 and TLR7 points to the involvement of both mDCs and pDCs in the response to the mRNA vaccine in humans. In both humans and mice activation of these pathways drove maturation and activation of immune cells as well as production of cytokines and chemokines known to attract and activate key players of the innate and adaptive immune system. Conclusion This translational approach not only allowed for identification of the basic mechanisms of self-adjuvantation from the mRNA vaccine but also for comparison of the response across species, a response that appears relatively conserved or at least convergent between the in vitro human and in vivo mouse models. Electronic supplementary material The online version of this article (doi:10.1186/s12967-016-1111-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Darin K Edwards
- Sanofi Pasteur, VaxDesign Campus, 2501 Discovery Drive Suite 300, Orlando, FL, USA.
| | - Edith Jasny
- CureVac AG, Paul-Ehrlich-Str. 15, 72076, Tübingen, Germany
| | - Heesik Yoon
- Sanofi Pasteur, VaxDesign Campus, 2501 Discovery Drive Suite 300, Orlando, FL, USA
| | | | - Brian Schanen
- Sanofi Pasteur, VaxDesign Campus, 2501 Discovery Drive Suite 300, Orlando, FL, USA
| | - Tanya Geter
- Sanofi Pasteur, VaxDesign Campus, 2501 Discovery Drive Suite 300, Orlando, FL, USA
| | | | | | - Vaughan Wittman
- Sanofi Pasteur, VaxDesign Campus, 2501 Discovery Drive Suite 300, Orlando, FL, USA
| |
Collapse
|
369
|
Weiss R, Scheiblhofer S, Thalhamer J. Generation and Evaluation of Prophylactic mRNA Vaccines Against Allergy. Methods Mol Biol 2017; 1499:123-139. [PMID: 27987146 DOI: 10.1007/978-1-4939-6481-9_7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Due to the worldwide increase in allergies and a limited efficacy of therapeutic interventions, the need for prophylactic vaccination against allergies has been recognized. mRNA and DNA vaccines have demonstrated their high potential for preventing allergic sensitization by inducing an immunological bias that prevents TH2 sensitization. However, only mRNA vaccines fulfill the stringent safety requirements for vaccination of healthy children. In this chapter, we describe the generation of conventional as well as self-replicating mRNA vaccines and methods to test their prophylactic efficacy in animal models.
Collapse
Affiliation(s)
- Richard Weiss
- Division of Allergy and Immunology, Department of Molecular Biology, University of Salzburg, Hellbrunnerstraße 34, 5020, Salzburg, Austria.
| | - Sandra Scheiblhofer
- Division of Allergy and Immunology, Department of Molecular Biology, University of Salzburg, Hellbrunnerstraße 34, 5020, Salzburg, Austria
| | - Josef Thalhamer
- Division of Allergy and Immunology, Department of Molecular Biology, University of Salzburg, Hellbrunnerstraße 34, 5020, Salzburg, Austria
| |
Collapse
|
370
|
Abstract
RNA vaccines are attractive, because they exhibit characteristics of subunit vaccines and live-attenuated vectors, including flexible production and induction of both humoral and cellular immunity. While human proof-of-concept for RNA vaccines is still pending, the nascent field of RNA therapeutics has already attracted substantial industry and government funding as well as record investments of private venture capital. Most recently, the WHO acknowledged messenger RNA (mRNA) as a new therapeutic class. In this chapter, we briefly review key developments in RNA vaccines and outline the contents of this volume of Methods in Molecular Biology.
Collapse
Affiliation(s)
- Thomas Kramps
- Boehringer Ingelheim Pharma GmbH & Co. KG, Binger Strasse 173, 55216, Ingelheim am Rhein, Germany.
| | - Knut Elbers
- Boehringer Ingelheim GmbH, Binger Strasse 173, 55216, Ingelheim am Rhein, Germany.
| |
Collapse
|
371
|
Hinz T, Kallen K, Britten CM, Flamion B, Granzer U, Hoos A, Huber C, Khleif S, Kreiter S, Rammensee HG, Sahin U, Singh-Jasuja H, Türeci Ö, Kalinke U. The European Regulatory Environment of RNA-Based Vaccines. Methods Mol Biol 2017; 1499:203-222. [PMID: 27987152 DOI: 10.1007/978-1-4939-6481-9_13] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A variety of different mRNA-based drugs are currently in development. This became possible, since major breakthroughs in RNA research during the last decades allowed impressive improvements of translation, stability and delivery of mRNA. This article focuses on antigen-encoding RNA-based vaccines that are either directed against tumors or pathogens. mRNA-encoded vaccines are developed both for preventive or therapeutic purposes. Most mRNA-based vaccines are directly administered to patients. Alternatively, primary autologous cells from cancer patients are modified ex vivo by the use of mRNA and then are adoptively transferred to patients. In the EU no regulatory guidelines presently exist that specifically address mRNA-based vaccines. The existing regulatory framework, however, clearly defines that mRNA-based vaccines in most cases have to be centrally approved. Interestingly, depending on whether RNA-based vaccines are directed against tumors or infectious disease, they are formally considered gene therapy products or not, respectively. Besides an overview on the current clinical use of mRNA vaccines in various therapeutic areas a detailed discussion of the current regulatory situation is provided and regulatory perspectives are discussed.
Collapse
Affiliation(s)
- Thomas Hinz
- Section for Therapeutic Vaccines, Division for Immunology, Paul-Ehrlich-Institut, Paul-Ehrlich-Str. 51-59, 63225, Langen, Germany.
| | | | | | - Bruno Flamion
- URPhyM, NARILIS, University of Namur, Namur, Belgium
| | - Ulrich Granzer
- Granzer, Regulatory Consulting & Services, Munich, Germany
| | - Axel Hoos
- Glaxo Smith Kline, Collegeville, PA, USA
| | | | | | | | - Hans-Georg Rammensee
- Department of Immunology, Institute for Cell Biology, University of Tübingen, Tübingen, Germany
- German Cancer Consortium, DKFZ Partner Site, Tübingen, Germany
| | - Ugur Sahin
- TRON - Translational Oncology at the University Medical Center, Johannes Gutenberg University, Mainz, Germany
- Biopharmaceutical New Technologies (BioNTech) Corporation, Mainz, Germany
- Research Center for Immunotherapy (FZI), Mainz, Germany
| | | | - Özlem Türeci
- CI3, Cluster for individualized Immune Intervention, Mainz, Germany
| | - Ulrich Kalinke
- Institute for Experimental Infection Research, Twincore, Centre for Experimental and Clinical Infection Research a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Feodor-Lynen-Str. 7-9, 30625, Hannover, Germany.
| |
Collapse
|
372
|
Sayour EJ, De Leon G, Pham C, Grippin A, Kemeny H, Chua J, Huang J, Sampson JH, Sanchez-Perez L, Flores C, Mitchell DA. Systemic activation of antigen-presenting cells via RNA-loaded nanoparticles. Oncoimmunology 2016; 6:e1256527. [PMID: 28197373 PMCID: PMC5283636 DOI: 10.1080/2162402x.2016.1256527] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 10/20/2016] [Accepted: 10/28/2016] [Indexed: 12/29/2022] Open
Abstract
While RNA-pulsed dendritic cell (DC) vaccines have shown promise, the advancement of cellular therapeutics is fraught with developmental challenges. To circumvent the challenges of cellular immunotherapeutics, we developed clinically translatable nanoliposomes that can be combined with tumor-derived RNA to generate personalized tumor RNA-nanoparticles (NPs) with considerable scale-up capacity. RNA-NPs bypass MHC restriction, are amenable to central distribution, and can provide near immediate immune induction. We screened commercially available nanoliposomal preparations and identified the cationic lipid 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) as an efficient mRNA courier to antigen-presenting cells (APCs). When administered intravenously, RNA-NPs mediate systemic activation of APCs in reticuloendothelial organs such as the spleen, liver, and bone marrow. RNA-NPs increase percent expression of MHC class I/II, B7 co-stimulatory molecules, and maturation markers on APCs (all vital for T-cell activation). RNA-NPs also increase activation markers on tumor APCs and elicit potent expansion of antigen-specific T-cells superior to peptide vaccines formulated in complete Freund's adjuvant. We demonstrate that both model antigen-encoding and physiologically-relevant tumor-derived RNA-NPs expand potent antitumor T-cell immunity. RNA-NPs were shown to induce antitumor efficacy in a vaccine model and functioned as a suitable alternative to DCs in a stringent cellular immunotherapy model for a radiation/temozolomide resistant invasive murine high-grade glioma. Although cancer vaccines have suffered from weak immunogenicity, we have advanced a RNA-NP formulation that systemically activates host APCs precipitating activated T-cell frequencies necessary to engender antitumor efficacy. RNA-NPs can thus be harnessed as a more feasible and effective immunotherapy to re-program host-immunity.
Collapse
Affiliation(s)
- Elias J Sayour
- Center for Brain Tumor Therapy, UF Brain Tumor Immunotherapy Program, McKnight Brain Institute, Department of Neurosurgery, University of Florida , Gainesville, FL, USA
| | - Gabriel De Leon
- Center for Brain Tumor Therapy, UF Brain Tumor Immunotherapy Program, McKnight Brain Institute, Department of Neurosurgery, University of Florida , Gainesville, FL, USA
| | - Christina Pham
- Center for Brain Tumor Therapy, UF Brain Tumor Immunotherapy Program, McKnight Brain Institute, Department of Neurosurgery, University of Florida , Gainesville, FL, USA
| | - Adam Grippin
- Center for Brain Tumor Therapy, UF Brain Tumor Immunotherapy Program, McKnight Brain Institute, Department of Neurosurgery, University of Florida , Gainesville, FL, USA
| | - Hanna Kemeny
- Department of Neurosurgery, Duke University Medical Center , Durham, NC, USA
| | - Joshua Chua
- Department of Neurosurgery, Duke University Medical Center , Durham, NC, USA
| | - Jianping Huang
- Center for Brain Tumor Therapy, UF Brain Tumor Immunotherapy Program, McKnight Brain Institute, Department of Neurosurgery, University of Florida , Gainesville, FL, USA
| | - John H Sampson
- Department of Neurosurgery, Duke University Medical Center , Durham, NC, USA
| | - Luis Sanchez-Perez
- Department of Neurosurgery, Duke University Medical Center , Durham, NC, USA
| | - Catherine Flores
- Center for Brain Tumor Therapy, UF Brain Tumor Immunotherapy Program, McKnight Brain Institute, Department of Neurosurgery, University of Florida , Gainesville, FL, USA
| | - Duane A Mitchell
- Center for Brain Tumor Therapy, UF Brain Tumor Immunotherapy Program, McKnight Brain Institute, Department of Neurosurgery, University of Florida , Gainesville, FL, USA
| |
Collapse
|
373
|
Platten M, Bunse L, Wick W, Bunse T. Concepts in glioma immunotherapy. Cancer Immunol Immunother 2016; 65:1269-75. [PMID: 27460064 PMCID: PMC11029493 DOI: 10.1007/s00262-016-1874-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Accepted: 07/20/2016] [Indexed: 01/12/2023]
Abstract
Immunotherapeutic concepts in neurooncology have been developed for many decades but have mainly been hampered by poor definition of relevant antigens and selective measures to target the central nervous system. Independent of the recent remarkable successes in clinical immunooncology with checkpoint inhibitors and vaccines, immunotherapy of brain tumors in general and gliomas in particular has evolved with novel neurooncology-specific concepts over the past years providing new phase 1 approaches of individualized immunotherapy to first phase three clinical trials. These concepts are driven by a high medical need in the absence of approved targeted therapies and refute the classic dogma that the central nervous system is immune-privileged and hence inaccessible to potent antitumor immunity. Instead, measures have been taken to improve the odds for successful immunotherapies, including rational targeting of relevant antigens and integration of immunotherapies into standard of care primary radiochemotherapy to increase the efficacy of antitumor immunity in a meaningful time window. This review highlights concepts and challenges associated with epitope discovery and selection and trial design.
Collapse
Affiliation(s)
- Michael Platten
- DKTK Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.
- Department of Neurology, University Hospital Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany.
- National Center of Tumor Diseases (NCT), University Hospital, Im Neuenheimer Feld 460, 69120, Heidelberg, Germany.
| | - Lukas Bunse
- DKTK Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Wolfgang Wick
- Department of Neurology, University Hospital Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- National Center of Tumor Diseases (NCT), University Hospital, Im Neuenheimer Feld 460, 69120, Heidelberg, Germany
- DKTK Clinical Cooperation Unit Neurooncology, German Cancer Research Center [DKFZ], Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Theresa Bunse
- DKTK Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| |
Collapse
|
374
|
Oldenhuis NJ, Eldredge AC, Burts AO, Ryu KA, Chung J, Johnson ME, Guan Z. Biodegradable Dendronized Polymers for Efficient mRNA Delivery. ChemistrySelect 2016. [DOI: 10.1002/slct.201600939] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Nathan J. Oldenhuis
- Department of Chemistry; University of California, Irvine, 1102 Natural Sciences II; Irvine, CA 92697-2025 USA
| | - Alexander C. Eldredge
- Department of Chemistry; University of California, Irvine, 1102 Natural Sciences II; Irvine, CA 92697-2025 USA
| | - Alan O. Burts
- Department of Chemistry; University of California, Irvine, 1102 Natural Sciences II; Irvine, CA 92697-2025 USA
| | - Keun Ah Ryu
- Department of Chemistry; University of California, Irvine, 1102 Natural Sciences II; Irvine, CA 92697-2025 USA
| | - Jae Chung
- Department of Chemistry; University of California, Irvine, 1102 Natural Sciences II; Irvine, CA 92697-2025 USA
| | - Mark E. Johnson
- Department of Chemistry; University of California, Irvine, 1102 Natural Sciences II; Irvine, CA 92697-2025 USA
| | - Zhibin Guan
- Department of Chemistry; University of California, Irvine, 1102 Natural Sciences II; Irvine, CA 92697-2025 USA
| |
Collapse
|
375
|
Selmi A, Vascotto F, Kautz-Neu K, Türeci Ö, Sahin U, von Stebut E, Diken M, Kreiter S. Uptake of synthetic naked RNA by skin-resident dendritic cells via macropinocytosis allows antigen expression and induction of T-cell responses in mice. Cancer Immunol Immunother 2016; 65:1075-83. [PMID: 27422115 PMCID: PMC11028682 DOI: 10.1007/s00262-016-1869-7] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 07/08/2016] [Indexed: 12/31/2022]
Abstract
Intradermal administration of antigen-encoding RNA has entered clinical testing for cancer vaccination. However, insight into the underlying mechanism of RNA uptake, translation and antigen presentation is still limited. Utilizing pharmacologically optimized naked RNA, the dose-response kinetics revealed a rise in reporter signal with increasing RNA amounts and a prolonged RNA translation of reporter protein up to 30 days after intradermal injection. Dendritic cells (DCs) in the dermis were shown to engulf RNA, and the signal arising from the reporter RNA was significantly diminished after DC depletion. Macropinocytosis was relevant for intradermal RNA uptake and translation in vitro and in vivo. By combining intradermal RNA vaccination and inhibition of macropinocytosis, we show that effective priming of antigen-specific CD8(+) T-cells also relies on this uptake mechanism. This report demonstrates that direct antigen translation by dermal DCs after intradermal naked RNA vaccination is relevant for efficient priming of antigen-specific T-cells.
Collapse
Affiliation(s)
- Abderraouf Selmi
- TRON-Translational Oncology at the University Medical Center of Johannes Gutenberg University gGmbH, Freiligrathstraße 12, 55131, Mainz, Germany
- Research Center for Immunotherapy (FZI), University Medical Center of Johannes Gutenberg University, Mainz, Germany
| | - Fulvia Vascotto
- TRON-Translational Oncology at the University Medical Center of Johannes Gutenberg University gGmbH, Freiligrathstraße 12, 55131, Mainz, Germany
| | - Kordula Kautz-Neu
- Department of Dermatology, University Medical Center of Johannes Gutenberg University, Mainz, Germany
| | - Özlem Türeci
- Cluster for Individualized Immune Intervention (CI3), Mainz, Germany
| | - Ugur Sahin
- TRON-Translational Oncology at the University Medical Center of Johannes Gutenberg University gGmbH, Freiligrathstraße 12, 55131, Mainz, Germany
- Research Center for Immunotherapy (FZI), University Medical Center of Johannes Gutenberg University, Mainz, Germany
- BioNTech RNA Pharmaceuticals GmbH, Mainz, Germany
| | - Esther von Stebut
- Department of Dermatology, University Medical Center of Johannes Gutenberg University, Mainz, Germany
| | - Mustafa Diken
- TRON-Translational Oncology at the University Medical Center of Johannes Gutenberg University gGmbH, Freiligrathstraße 12, 55131, Mainz, Germany.
- BioNTech RNA Pharmaceuticals GmbH, Mainz, Germany.
| | - Sebastian Kreiter
- TRON-Translational Oncology at the University Medical Center of Johannes Gutenberg University gGmbH, Freiligrathstraße 12, 55131, Mainz, Germany.
- BioNTech RNA Pharmaceuticals GmbH, Mainz, Germany.
| |
Collapse
|
376
|
Schott JW, Morgan M, Galla M, Schambach A. Viral and Synthetic RNA Vector Technologies and Applications. Mol Ther 2016; 24:1513-27. [PMID: 27377044 DOI: 10.1038/mt.2016.143] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 06/30/2016] [Indexed: 12/21/2022] Open
Abstract
Use of RNA is an increasingly popular method to transiently deliver genetic information for cell manipulation in basic research and clinical therapy. In these settings, viral and nonviral RNA platforms are employed for delivery of small interfering RNA and protein-coding mRNA. Technological advances allowing RNA modification for increased stability, improved translation and reduced immunogenicity have led to increased use of nonviral synthetic RNA, which is delivered in naked form or upon formulation. Alternatively, highly efficient viral entry pathways are exploited to transfer genes of interest as RNA incorporated into viral particles. Current viral RNA transfer technologies are derived from Retroviruses, nonsegmented negative-strand RNA viruses or positive-stranded Alpha- and Flaviviruses. In retroviral particles, the genes of interest can either be incorporated directly into the viral RNA genome or as nonviral RNA. Nonsegmented negative-strand virus-, Alpha- and Flavivirus-derived vectors support prolonged expression windows through replication of viral RNA encoding genes of interest. Mixed technologies combining viral and nonviral components are also available. RNA transfer is ideal for all settings that do not require permanent transgene expression and excludes potentially detrimental DNA integration into the target cell genome. Thus, RNA-based technologies are successfully applied for reprogramming, transdifferentiation, gene editing, vaccination, tumor therapy, and gene therapy.
Collapse
Affiliation(s)
- Juliane W Schott
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany.,Cluster of Excellence REBIRTH, Hannover Medical School, Hannover, Germany
| | - Michael Morgan
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany.,Cluster of Excellence REBIRTH, Hannover Medical School, Hannover, Germany
| | - Melanie Galla
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany.,Cluster of Excellence REBIRTH, Hannover Medical School, Hannover, Germany
| | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany.,Cluster of Excellence REBIRTH, Hannover Medical School, Hannover, Germany.,Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
377
|
Schnee M, Vogel AB, Voss D, Petsch B, Baumhof P, Kramps T, Stitz L. An mRNA Vaccine Encoding Rabies Virus Glycoprotein Induces Protection against Lethal Infection in Mice and Correlates of Protection in Adult and Newborn Pigs. PLoS Negl Trop Dis 2016; 10:e0004746. [PMID: 27336830 PMCID: PMC4918980 DOI: 10.1371/journal.pntd.0004746] [Citation(s) in RCA: 150] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 05/06/2016] [Indexed: 12/18/2022] Open
Abstract
Rabies is a zoonotic infectious disease of the central nervous system (CNS). In unvaccinated or untreated subjects, rabies virus infection causes severe neurological symptoms and is invariably fatal. Despite the long-standing existence of effective vaccines, vaccine availability remains insufficient, with high numbers of fatal infections mostly in developing countries. Nucleic acid based vaccines have proven convincingly as a new technology for the fast development of vaccines against newly emerging pathogens, diseases where no vaccine exists or for replacing already existing vaccines. We used an optimized non-replicating rabies virus glycoprotein (RABV-G) encoding messenger RNA (mRNA) to induce potent neutralizing antibodies (VN titers) in mice and domestic pigs. Functional antibody titers were followed in mice for up to one year and titers remained stable for the entire observation period in all dose groups. T cell analysis revealed the induction of both, specific CD4+ as well as CD8+ T cells by RABV-G mRNA, with the induced CD4+ T cells being higher than those induced by a licensed vaccine. Notably, RABV-G mRNA vaccinated mice were protected against lethal intracerebral challenge infection. Inhibition of viral replication by vaccination was verified by qRT-PCR. Furthermore, we demonstrate that CD4+ T cells are crucial for the generation of neutralizing antibodies. In domestic pigs we were able to induce VN titers that correlate with protection in adult and newborn pigs. This study demonstrates the feasibility of a non-replicating mRNA rabies vaccine in small and large animals and highlights the promises of mRNA vaccines for the prevention of infectious diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Lothar Stitz
- Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
- * E-mail: (BP); (LS)
| |
Collapse
|
378
|
Steinle H, Behring A, Schlensak C, Wendel HP, Avci-Adali M. Concise Review: Application of In Vitro Transcribed Messenger RNA for Cellular Engineering and Reprogramming: Progress and Challenges. Stem Cells 2016; 35:68-79. [DOI: 10.1002/stem.2402] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 04/25/2016] [Accepted: 04/29/2016] [Indexed: 12/21/2022]
Affiliation(s)
- Heidrun Steinle
- Department of Thoracic and Cardiovascular Surgery; University Hospital Tuebingen; Calwerstraße 7/1 Tuebingen 72076 Germany
| | - Andreas Behring
- Department of Thoracic and Cardiovascular Surgery; University Hospital Tuebingen; Calwerstraße 7/1 Tuebingen 72076 Germany
| | - Christian Schlensak
- Department of Thoracic and Cardiovascular Surgery; University Hospital Tuebingen; Calwerstraße 7/1 Tuebingen 72076 Germany
| | - Hans Peter Wendel
- Department of Thoracic and Cardiovascular Surgery; University Hospital Tuebingen; Calwerstraße 7/1 Tuebingen 72076 Germany
| | - Meltem Avci-Adali
- Department of Thoracic and Cardiovascular Surgery; University Hospital Tuebingen; Calwerstraße 7/1 Tuebingen 72076 Germany
| |
Collapse
|
379
|
Kowalczyk A, Doener F, Zanzinger K, Noth J, Baumhof P, Fotin-Mleczek M, Heidenreich R. Self-adjuvanted mRNA vaccines induce local innate immune responses that lead to a potent and boostable adaptive immunity. Vaccine 2016; 34:3882-93. [PMID: 27269061 DOI: 10.1016/j.vaccine.2016.05.046] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 04/20/2016] [Accepted: 05/18/2016] [Indexed: 10/21/2022]
Abstract
mRNA represents a new platform for the development of therapeutic and prophylactic vaccines with high flexibility with respect to production and application. We have previously shown that our two component self-adjuvanted mRNA-based vaccines (termed RNActive® vaccines) induce balanced immune responses comprising both humoral and cellular effector as well as memory responses. Here, we evaluated the early events upon intradermal application to gain more detailed insights into the underlying mode of action of our mRNA-based vaccine. We showed that the vaccine is taken up in the skin by both non-leukocytic and leukocytic cells, the latter being mostly represented by antigen presenting cells (APCs). mRNA was then transported to the draining lymph nodes (dLNs) by migratory dendritic cells. Moreover, the encoded protein was expressed and efficiently presented by APCs within the dLNs as shown by T cell proliferation and immune cell activation, followed by the induction of the adaptive immunity. Importantly, the immunostimulation was limited to the injection site and lymphoid organs as no proinflammatory cytokines were detected in the sera of the immunized mice indicating a favorable safety profile of the mRNA-based vaccines. Notably, a substantial boostability of the immune responses was observed, indicating that mRNA can be used effectively in repetitive immunization schedules. The evaluation of the immunostimulation following prime and boost vaccination revealed no signs of exhaustion as demonstrated by comparable levels of cytokine production at the injection site and immune cell activation within dLNs. In summary, our data provide mechanistic insight into the mode of action and a rational for the use of mRNA-based vaccines as a promising immunization platform.
Collapse
Affiliation(s)
| | - Fatma Doener
- CureVac AG, Paul-Ehrlich-Str. 15, 72076 Tübingen, Germany
| | - Kai Zanzinger
- CureVac AG, Paul-Ehrlich-Str. 15, 72076 Tübingen, Germany
| | - Janine Noth
- CureVac AG, Paul-Ehrlich-Str. 15, 72076 Tübingen, Germany
| | | | | | | |
Collapse
|
380
|
Le PM, Tran TTB, Vu BT, Van Pham P. A preliminary comparison of dendritic cell maturation by total cellular RNA to total cellular lysate derived from breast cancer stem cells. BIOMEDICAL RESEARCH AND THERAPY 2016. [DOI: 10.7603/s40730-016-0028-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
381
|
Park HJ, Ko HL, Jung SY, Jo HB, Nam JH. The Characteristics of RNA Vaccine; its Strengths and Weaknesses. ACTA ACUST UNITED AC 2016. [DOI: 10.4167/jbv.2016.46.3.115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Hyo-Jung Park
- Department of Biotechnology, The Catholic University of Korea, Gyeonggi-do, Korea
| | - Hae Li Ko
- Department of Biotechnology, The Catholic University of Korea, Gyeonggi-do, Korea
| | - Seo-Yeon Jung
- Department of Biotechnology, The Catholic University of Korea, Gyeonggi-do, Korea
| | - Han-Byeol Jo
- Department of Biotechnology, The Catholic University of Korea, Gyeonggi-do, Korea
| | - Jae-Hwan Nam
- Department of Biotechnology, The Catholic University of Korea, Gyeonggi-do, Korea
| |
Collapse
|
382
|
Critical considerations for developing nucleic acid macromolecule based drug products. Drug Discov Today 2015; 21:430-44. [PMID: 26674130 DOI: 10.1016/j.drudis.2015.11.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 11/02/2015] [Accepted: 11/25/2015] [Indexed: 01/02/2023]
Abstract
Protein expression therapy using nucleic acid macromolecules (NAMs) as a new paradigm in medicine has recently gained immense therapeutic potential. With the advancement of nonviral delivery it has been possible to target NAMs against cancer, immunodeficiency and infectious diseases. Owing to the complex and fragile structure of NAMs, however, development of a suitable, stable formulation for a reasonable product shelf-life and efficacious delivery is indeed challenging to achieve. This review provides a synopsis of challenges in the formulation and stability of DNA/m-RNA based medicines and probable mitigation strategies including a brief summary of delivery options to the target cells. Nucleic acid based drugs at various stages of ongoing clinical trials are compiled.
Collapse
|
383
|
RNA-Based Vaccines in Cancer Immunotherapy. J Immunol Res 2015; 2015:794528. [PMID: 26665011 PMCID: PMC4668311 DOI: 10.1155/2015/794528] [Citation(s) in RCA: 154] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 10/26/2015] [Accepted: 11/01/2015] [Indexed: 12/21/2022] Open
Abstract
RNA vaccines traditionally consist of messenger RNA synthesized by in vitro transcription using a bacteriophage RNA polymerase and template DNA that encodes the antigen(s) of interest. Once administered and internalized by host cells, the mRNA transcripts are translated directly in the cytoplasm and then the resulting antigens are presented to antigen presenting cells to stimulate an immune response. Alternatively, dendritic cells can be loaded with either tumor associated antigen mRNA or total tumor RNA and delivered to the host to elicit a specific immune response. In this review, we will explain why RNA vaccines represent an attractive platform for cancer immunotherapy, discuss modifications to RNA structure that have been developed to optimize mRNA vaccine stability and translational efficiency, and describe strategies for nonviral delivery of mRNA vaccines, highlighting key preclinical and clinical data related to cancer immunotherapy.
Collapse
|
384
|
Shin SW, Park KS, Shin WJ, Um SH. mRNA-Producing Pseudo-nucleus System. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2015; 11:5515-5519. [PMID: 26310990 DOI: 10.1002/smll.201501334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 07/19/2015] [Indexed: 06/04/2023]
Abstract
A pseudo-eukaryotic nucleus (PEN) system consisting of a gene-containing DNA hydrogel encapsulated in a liposome is fabricated. Owing to the structural characteristics of gene-containing DNA hydrogel, mRNA transcription efficiency is promoted 2.57-fold. Through the use of PEN as a platform for mRNA delivery to the cytosol, prolonged protein translation is achieved.
Collapse
Affiliation(s)
- Seung Won Shin
- School of Chemical Engineering, Sungkyunkwan University, Suwon, 440-746, Republic of Korea
| | - Kyung Soo Park
- School of Chemical Engineering, Sungkyunkwan University, Suwon, 440-746, Republic of Korea
| | - Woo Jung Shin
- School of Chemical Engineering, Sungkyunkwan University, Suwon, 440-746, Republic of Korea
| | - Soong Ho Um
- School of Chemical Engineering, Sungkyunkwan University, Suwon, 440-746, Republic of Korea
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon, 440-746, Republic of Korea
| |
Collapse
|
385
|
Crowley ST, Rice KG. "Evolving nanoparticle gene delivery vectors for the liver: What has been learned in 30 years". J Control Release 2015; 219:457-470. [PMID: 26439664 DOI: 10.1016/j.jconrel.2015.10.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 10/01/2015] [Accepted: 10/02/2015] [Indexed: 12/18/2022]
Abstract
Nonviral gene delivery to the liver has been under evolution for nearly 30years. Early demonstrations established relatively simple nonviral vectors could mediate gene expression in HepG2 cells which understandably led to speculation that these same vectors would be immediately successful at transfecting primary hepatocytes in vivo. However, it was soon recognized that the properties of a nonviral vector resulting in efficient transfection in vitro were uncorrelated with those needed to achieve efficient nonviral transfection in vivo. The discovery of major barriers to liver gene transfer has set the field on a course to design biocompatible vectors that demonstrate increased DNA stability in the circulation with correlating expression in liver. The improved understanding of what limits nonviral vector gene transfer efficiency in vivo has resulted in more sophisticated, low molecular weight vectors that allow systematic optimization of nanoparticle size, charge and ligand presentation. While the field has evolved DNA nanoparticles that are stable in the circulation, target hepatocytes, and deliver DNA to the cytosol, breaching the nucleus remains the last major barrier to a fully successful nonviral gene transfer system for the liver. The lessons learned along the way are fundamentally important to the design of all systemically delivered nanoparticle nonviral gene delivery systems.
Collapse
Affiliation(s)
- Samuel T Crowley
- Division of Medicinal and Natural Products Chemistry, College of Pharmacy, University of Iowa, Iowa City, IA 52242,USA
| | - Kevin G Rice
- Division of Medicinal and Natural Products Chemistry, College of Pharmacy, University of Iowa, Iowa City, IA 52242,USA.
| |
Collapse
|
386
|
Efficient expression of stabilized mRNA PEG-peptide polyplexes in liver. Gene Ther 2015; 22:993-9. [PMID: 26125604 PMCID: PMC4670273 DOI: 10.1038/gt.2015.68] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 06/14/2015] [Accepted: 06/23/2015] [Indexed: 12/17/2022]
Abstract
The expression efficiency in liver following hydrodynamic delivery of in vitro transcribed mRNA was improved 2000-fold using a codon-optimized mRNA luciferase construct with flanking 3' and 5' human β-globin untranslated regions (UTR mRNA) over an un-optimized mRNA without β-globin UTRs. Nanoparticle UTR mRNA polyplexes were formed using a novel polyacridine PEG-peptide, resulting in an additional 15-fold increase in expression efficiency in the liver. The combined increase in expression for UTR mRNA PEG-peptide polyplexes was 3500-fold over mRNA lacking UTRs and PEG-peptide. The expression efficiency of UTR mRNA polyplex was 10-fold greater than the expression from an equivalent 1 µg dose of pGL3. Maximal expression was maintained from 4 to 24 hours. Serum incubation established the unique ability of the polyacridine PEG-peptide to protect UTR mRNA polyplexes from RNase metabolism by binding to double stranded regions. UTR mRNA PEG-peptide polyplexes are efficient non-viral vectors that circumvent the need for nuclear uptake, representing an advancement toward the development of a targeted gene delivery system to transfect liver hepatocytes.
Collapse
|
387
|
Sequence-engineered mRNA Without Chemical Nucleoside Modifications Enables an Effective Protein Therapy in Large Animals. Mol Ther 2015; 23:1456-64. [PMID: 26050989 PMCID: PMC4817881 DOI: 10.1038/mt.2015.103] [Citation(s) in RCA: 370] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 05/27/2015] [Indexed: 12/24/2022] Open
Abstract
Being a transient carrier of genetic information, mRNA could be a versatile, flexible, and safe means for protein therapies. While recent findings highlight the enormous therapeutic potential of mRNA, evidence that mRNA-based protein therapies are feasible beyond small animals such as mice is still lacking. Previous studies imply that mRNA therapeutics require chemical nucleoside modifications to obtain sufficient protein expression and avoid activation of the innate immune system. Here we show that chemically unmodified mRNA can achieve those goals as well by applying sequence-engineered molecules. Using erythropoietin (EPO) driven production of red blood cells as the biological model, engineered Epo mRNA elicited meaningful physiological responses from mice to nonhuman primates. Even in pigs of about 20 kg in weight, a single adequate dose of engineered mRNA encapsulated in lipid nanoparticles (LNPs) induced high systemic Epo levels and strong physiological effects. Our results demonstrate that sequence-engineered mRNA has the potential to revolutionize human protein therapies.
Collapse
|
388
|
Rasekhian M, Teimoori-Toolabi L, Amini S, Azadmanesh K. An Enterovirus-Like RNA Construct for Colon Cancer Suicide Gene Therapy. IRANIAN BIOMEDICAL JOURNAL 2015; 19:124-32. [PMID: 26025964 PMCID: PMC4571007 DOI: 10.7508/ibj.2015.03.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Background: In gene therapy, the use of RNA molecules as therapeutic agents has shown advantages over plasmid DNA, including higher levels of safety. However, transient nature of RNA has been a major obstacle in application of RNA in gene therapy. Methods: Here, we used the internal ribosomal entry site of encephalomyocarditis virus and the 3’ non-translated region of Poliovirus to design an enterovirus-like RNA for the expression of a reporter gene (enhanced green fluorescent protein) and a suicide gene (thymidine kinase of herpes simplex virus). The expression of these genes was evaluated by flow cytometry and cytotoxicity assay in human colorectal adenocarcinoma cell line (SW480). We then armed RNA molecules with a target sequence for hsa-miR-143 to regulate their expression by microRNA (miRNA) mimics. Results: The results showed effective expression of both genes by Entrovirus-like RNA constructs. The data also showed that the restoration of hsa-miR-143 expression in SW480 leads to a significant translation repression of the introduced reporter and suicide genes. Conclusion: Collectively, our data suggest the potential use of Entrovirus-like RNA molecules in suicide gene therapy. Additionally, as a consequence of the possible downregulated miRNA expression in cancerous tissues, a decreased expression of gene therapy constructs armed with target sequences for such miRNA in cancer tissue is expected.
Collapse
Affiliation(s)
| | | | - Safieh Amini
- Dept. of Hepatitis and HIV, Pasteur Institute of Iran, Tehran, Iran
| | | |
Collapse
|
389
|
Sayour EJ, Sanchez-Perez L, Flores C, Mitchell DA. Bridging infectious disease vaccines with cancer immunotherapy: a role for targeted RNA based immunotherapeutics. J Immunother Cancer 2015; 3:13. [PMID: 25901285 PMCID: PMC4404652 DOI: 10.1186/s40425-015-0058-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 03/18/2015] [Indexed: 01/05/2023] Open
Abstract
Tumor-specific immunotherapy holds the promise of eradicating malignant tumors with exquisite precision without additional toxicity to standard treatments. Cancer immunotherapy has conventionally relied on cell-mediated immunity while successful infectious disease vaccines have been shown to induce humoral immunity. Efficacious cancer immunotherapeutics likely require both cellular and humoral responses, and RNA based cancer vaccines are especially suited to stimulate both arms of the immune system. RNA is inherently immunogenic, inducing innate immune responses to initiate cellular and humoral adaptive immunity, but has limited utility based on its poor in vivo stability. Early work utilized ‘naked’ RNA vaccines, whereas more recent efforts have attempted to encapsulate RNA thereby protecting it from degradation. However, feasibility has been limited by a lack of defined and safe targeting mechanisms for the in vivo delivery of stabilized RNA. As new cancer antigens come to the forefront with novel RNA encapsulation and targeting techniques, RNA vaccines may prove to be a vital, safe and robust method to initiate patient-specific anti-tumor efficacy.
Collapse
Affiliation(s)
- Elias J Sayour
- Department of Neurosurgery, UF Brain Tumor Immunotherapy Program, University of Florida, Gainesville, Fl USA ; Department of Pathology, Duke University Medical Center, Durham, NC USA
| | - Luis Sanchez-Perez
- Division of Neurosurgery, Department of Surgery, Duke Brain Tumor Immunotherapy Program, Duke University Medical Center, Durham, NC USA
| | - Catherine Flores
- Department of Neurosurgery, UF Brain Tumor Immunotherapy Program, University of Florida, Gainesville, Fl USA
| | - Duane A Mitchell
- Department of Neurosurgery, UF Brain Tumor Immunotherapy Program, University of Florida, Gainesville, Fl USA
| |
Collapse
|
390
|
Self-Amplifying mRNA Vaccines. NONVIRAL VECTORS FOR GENE THERAPY - PHYSICAL METHODS AND MEDICAL TRANSLATION 2015; 89:179-233. [DOI: 10.1016/bs.adgen.2014.10.005] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
391
|
Boisguérin V, Castle JC, Loewer M, Diekmann J, Mueller F, Britten CM, Kreiter S, Türeci Ö, Sahin U. Translation of genomics-guided RNA-based personalised cancer vaccines: towards the bedside. Br J Cancer 2014; 111:1469-75. [PMID: 25314223 PMCID: PMC4200076 DOI: 10.1038/bjc.2013.820] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 11/22/2013] [Accepted: 12/09/2013] [Indexed: 12/25/2022] Open
Abstract
Cancer is a disease caused by DNA mutations. Cancer therapies targeting defined functional mutations have shown clinical benefit. However, as 95% of the mutations in a tumour are unique to that single patient and only a small number of mutations are shared between patients, the addressed medical need is modest. A rapidly determined patient-specific tumour mutation pattern combined with a flexible mutation-targeting drug platform could generate a mutation-targeting individualised therapy, which would benefit each single patient. Next-generation sequencing enables the rapid identification of somatic mutations in individual tumours (the mutanome). Immunoinformatics enables predictions of mutation immunogenicity. Mutation-targeting RNA-based vaccines can be rapidly and affordably synthesised as custom GMP drug products. Integration of these cutting-edge technologies into a clinically applicable process holds the promise of a disruptive innovation benefiting cancer patients. Here, we describe our translation of the individualised RNA-based cancer vaccine concept into clinic trials.
Collapse
Affiliation(s)
- V Boisguérin
- 1] TRON gGmbH-Translational Oncology at Johannes Gutenberg-University Medical Center gGmbH, Langenbeckstr 1, Building 708, 55131 Mainz, Germany [2] BioNTech AG, Hölderlinstr 8, 55131 Mainz, Germany
| | - J C Castle
- TRON gGmbH-Translational Oncology at Johannes Gutenberg-University Medical Center gGmbH, Langenbeckstr 1, Building 708, 55131 Mainz, Germany
| | - M Loewer
- TRON gGmbH-Translational Oncology at Johannes Gutenberg-University Medical Center gGmbH, Langenbeckstr 1, Building 708, 55131 Mainz, Germany
| | - J Diekmann
- TRON gGmbH-Translational Oncology at Johannes Gutenberg-University Medical Center gGmbH, Langenbeckstr 1, Building 708, 55131 Mainz, Germany
| | - F Mueller
- 1] TRON gGmbH-Translational Oncology at Johannes Gutenberg-University Medical Center gGmbH, Langenbeckstr 1, Building 708, 55131 Mainz, Germany [2] BioNTech AG, Hölderlinstr 8, 55131 Mainz, Germany [3] TheraCode GmbH, Hölderlinstr 8, 55131 Mainz, Germany
| | - C M Britten
- 1] TRON gGmbH-Translational Oncology at Johannes Gutenberg-University Medical Center gGmbH, Langenbeckstr 1, Building 708, 55131 Mainz, Germany [2] Ribological GmbH, Hölderlinstr 8, 55130 Mainz, Germany
| | - S Kreiter
- TRON gGmbH-Translational Oncology at Johannes Gutenberg-University Medical Center gGmbH, Langenbeckstr 1, Building 708, 55131 Mainz, Germany
| | - Ö Türeci
- 1] University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany [2] Ganymed Pharmaceuticals AG, Freiligrathstraße 12, 55131 Mainz, Germany
| | - U Sahin
- 1] TRON gGmbH-Translational Oncology at Johannes Gutenberg-University Medical Center gGmbH, Langenbeckstr 1, Building 708, 55131 Mainz, Germany [2] BioNTech AG, Hölderlinstr 8, 55131 Mainz, Germany [3] University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
392
|
Schnell SJ, Ma J, Yang W. Three-Dimensional Mapping of mRNA Export through the Nuclear Pore Complex. Genes (Basel) 2014; 5:1032-49. [PMID: 25393401 PMCID: PMC4276925 DOI: 10.3390/genes5041032] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 10/02/2014] [Accepted: 10/20/2014] [Indexed: 11/30/2022] Open
Abstract
The locations of transcription and translation of mRNA in eukaryotic cells are spatially separated by the nuclear envelope (NE). Plenty of nuclear pore complexes (NPCs) embedded in the NE function as the major gateway for the export of transcribed mRNAs from the nucleus to the cytoplasm. Whereas the NPC, perhaps one of the largest protein complexes, provides a relatively large channel for macromolecules to selectively pass through it in inherently three-dimensional (3D) movements, this channel is nonetheless below the diffraction limit of conventional light microscopy. A full understanding of the mRNA export mechanism urgently requires real-time mapping of the 3D dynamics of mRNA in the NPC of live cells with innovative imaging techniques breaking the diffraction limit of conventional light microscopy. Recently, super-resolution fluorescence microscopy and single-particle tracking (SPT) techniques have been applied to the study of nuclear export of mRNA in live cells. In this review, we emphasize the necessity of 3D mapping techniques in the study of mRNA export, briefly summarize the feasibility of current 3D imaging approaches, and highlight the new features of mRNA nuclear export elucidated with a newly developed 3D imaging approach combining SPT-based super-resolution imaging and 2D-to-3D deconvolution algorithms.
Collapse
Affiliation(s)
- Steven J Schnell
- Department of Biology, Temple University, Philadelphia, PA 19122, USA.
| | - Jiong Ma
- Department of Biology, Temple University, Philadelphia, PA 19122, USA.
| | - Weidong Yang
- Department of Biology, Temple University, Philadelphia, PA 19122, USA.
| |
Collapse
|
393
|
Abstract
Recombinant nucleic acids are considered as promising next-generation vaccines. These vaccines express the native antigen upon delivery into tissue, thus mimicking live attenuated vaccines without having the risk of reversion to pathogenicity. They also stimulate the innate immune system, thus potentiating responses. Nucleic acid vaccines are easy to produce at reasonable cost and are stable. During the past years, focus has been on the use of plasmid DNA for vaccination. Now mRNA and replicon vaccines have come into focus as promising technology platforms for vaccine development. This review discusses self-replicating RNA vaccines developed from alphavirus expression vectors. These replicon vaccines can be delivered as RNA, DNA or as recombinant virus particles. All three platforms have been pre-clinically evaluated as vaccines against a number of infectious diseases and cancer. Results have been very encouraging and propelled the first human clinical trials, the results of which have been promising.
Collapse
Affiliation(s)
- Karl Ljungberg
- Department of Microbiology, Tumor and Cell Biology Karolinska Institutet, Stockholm, Sweden
| | | |
Collapse
|
394
|
Van Lint S, Renmans D, Broos K, Dewitte H, Lentacker I, Heirman C, Breckpot K, Thielemans K. The ReNAissanCe of mRNA-based cancer therapy. Expert Rev Vaccines 2014; 14:235-51. [PMID: 25263094 DOI: 10.1586/14760584.2015.957685] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
About 25 years ago, mRNA became a tool of interest in anticancer vaccination approaches. However, due to its rapid degradation in situ, direct application of mRNA was confronted with considerable skepticism during its early use. Consequently, mRNA was for a long time mainly used for the ex vivo transfection of dendritic cells, professional antigen-presenting cells known to stimulate immunity. The interest in direct application of mRNA experienced a revival, as researchers became aware of the many advantages mRNA offers. Today, mRNA is considered to be an ideal vehicle for the induction of strong immune responses against cancer. The growing numbers of preclinical trials and as a consequence the increasing clinical application of mRNA as an off-the-shelf anticancer vaccine signifies a renaissance for transcript-based antitumor therapy. In this review, we highlight this renaissance using a timeline providing all milestones in the application of mRNA for anticancer vaccination.
Collapse
Affiliation(s)
- Sandra Van Lint
- Laboratory of Molecular and Cellular Therapy, Department of Biomedical Sciences, Medical School of the Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, B-1090 Jette, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
395
|
Benteyn D, Heirman C, Bonehill A, Thielemans K, Breckpot K. mRNA-based dendritic cell vaccines. Expert Rev Vaccines 2014; 14:161-76. [PMID: 25196947 DOI: 10.1586/14760584.2014.957684] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Cancer immunotherapy has been proposed as a powerful treatment modality. Active immunotherapy aspires to stimulate the patient's immune system, particularly T cells. These cells can recognize and kill cancer cells and can form an immunological memory. Dendritic cells (DCs) are the professional antigen-presenting cells of our immune system. They take up and process antigens to present them to T cells. Consequently, DCs have been investigated as a means to stimulate cancer-specific T-cell responses. An efficient strategy to program DCs is the use of mRNA, a well-defined and safe molecule that can be easily generated at high purity. Importantly, vaccines consisting of mRNA-modified DCs showed promising results in clinical trials. Therefore, we will introduce cancer immunotherapy and DCs and give a detailed overview on the application of mRNA to generate cancer-fighting DC vaccines.
Collapse
Affiliation(s)
- Daphné Benteyn
- Laboratory of Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, Laarbeeklaan 103/E, 1090 Jette, Belgium
| | | | | | | | | |
Collapse
|
396
|
Kochetov AV. The alien replicon: Artificial genetic constructs to direct the synthesis of transmissible self-replicating RNAs. Bioessays 2014; 36:1204-12. [DOI: 10.1002/bies.201400111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Alex V. Kochetov
- Institute of Cytology & Genetics, SB RAS; Novosibirsk Russia
- Novosibirsk State University; Novosibirsk Russia
| |
Collapse
|
397
|
Kallen KJ, Theß A. A development that may evolve into a revolution in medicine: mRNA as the basis for novel, nucleotide-based vaccines and drugs. THERAPEUTIC ADVANCES IN VACCINES 2014; 2:10-31. [PMID: 24757523 DOI: 10.1177/2051013613508729] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Recent advances strongly suggest that mRNA rather than DNA will be the nucleotide basis for a new class of vaccines and drugs. Therapeutic cancer vaccines against a variety of targets have been developed on this basis and initial clinical experience suggests that preclinical activity can be successfully translated to human application. Likewise, prophylactic vaccines against viral pathogens and allergens have demonstrated their activity in animal models. These successes could be extended preclinically to mRNA protein and gene replacement therapy as well as the induction of pluripotent stem cells by mRNA encoded transcription factors. The production of mRNA-based vaccines and drugs is highly flexible, scalable and cost competitive, and eliminates the requirement of a cold chain. mRNA-based drugs and vaccines offer all the advantages of a nucleotide-based approach at reduced costs and represent a truly disruptive technology that may start a revolution in medicine.
Collapse
|
398
|
Deering RP, Kommareddy S, Ulmer JB, Brito LA, Geall AJ. Nucleic acid vaccines: prospects for non-viral delivery of mRNA vaccines. Expert Opin Drug Deliv 2014; 11:885-99. [PMID: 24665982 DOI: 10.1517/17425247.2014.901308] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Nucleic acid-based vaccines are being developed as a means to combine the positive attributes of both live-attenuated and subunit vaccines. Viral vectors and plasmid DNA vaccines have been extensively evaluated in human clinical trials and have been shown to be safe and immunogenic, although none have been licensed for human use. More recently, mRNA-based vaccine alternatives have emerged and might offer certain advantages over their DNA-based counterparts. AREAS COVERED This review describes the two main categories of mRNA vaccines: conventional non-amplifying and self-amplifying mRNA. It summarizes the initial clinical proof-of-concept studies and outlines the preclinical testing of the next wave of innovations for the technology. Finally, this review highlights the versatile functionality of the mRNA molecule and introduces opportunities for future improvements in vaccine design. EXPERT OPINION The prospects for mRNA vaccines are very promising. Like other types of nucleic acid vaccines, mRNA vaccines have the potential to combine the positive attributes of live attenuated vaccines while obviating many potential safety limitations. Although data from initial clinical trials appear encouraging, mRNA vaccines are far from a commercial product. These initial approaches have spurred innovations in vector design, non-viral delivery, large-scale production and purification of mRNA to quickly move the technology forward. Some improvements have already been tested in preclinical models for both prophylactic and therapeutic vaccine targets and have demonstrated their ability to elicit potent and broad immune responses, including functional antibodies, type 1 T helper cells-type T cell responses and cytotoxic T cells. Though the initial barriers for this nucleic acid vaccine approach seem to be overcome, in our opinion, the future and continued success of this approach lies in a more extensive evaluation of the many non-viral delivery systems described in the literature and gaining a better understanding of the mechanism of action to allow rational design of next generation technologies.
Collapse
Affiliation(s)
- Raquel P Deering
- Novartis Vaccines, Inc. , 350 Massachusetts Ave, Cambridge, MA 02139 , USA +1 617 871 3745 ;
| | | | | | | | | |
Collapse
|
399
|
Rausch S, Schwentner C, Stenzl A, Bedke J. mRNA vaccine CV9103 and CV9104 for the treatment of prostate cancer. Hum Vaccin Immunother 2014; 10:3146-52. [PMID: 25483661 PMCID: PMC4514038 DOI: 10.4161/hv.29553] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 06/01/2014] [Accepted: 06/11/2014] [Indexed: 12/22/2022] Open
Abstract
Among currently available vaccine strategies for cancer, nucleotide-based vaccination is an appealing treatment modality. Curevacs' mRNA containing vaccines (RNActive®) combine the beneficial properties of sufficient antigen-expression, autologous immune-stimulation and a high flexibility with respect to production and application. CV9103 and CV9104 are novel RNActive®-derived anticancer vaccines for the treatment of patients with prostate cancer. After successful phase I/II studies with documentation of good tolerability and favorable immune-activation of CV9103, the vaccine CV9104 is currently undergoing clinical testing in specific clinical settings such as castration resistant prostate cancer and as a neoadjuvant agent in men with high risk prostate cancer prior to surgery. This review discusses the available preclinical and clinical data on the anticancer vaccination treatment with RNActive®-derived anticancer-vaccines CV9103 and CV9104.
Collapse
Affiliation(s)
- Steffen Rausch
- Department of Urology; Eberhard Karls University Tübingen; Tübingen, Germany
| | | | - Arnulf Stenzl
- Department of Urology; Eberhard Karls University Tübingen; Tübingen, Germany
- German Cancer Consortium (DKTK); Partnerstandort Tübingen; German Cancer Research Center (DKFZ); Heidelberg, Germany
| | - Jens Bedke
- Department of Urology; Eberhard Karls University Tübingen; Tübingen, Germany
- German Cancer Consortium (DKTK); Partnerstandort Tübingen; German Cancer Research Center (DKFZ); Heidelberg, Germany
| |
Collapse
|
400
|
Kramps T, Probst J. Messenger RNA-based vaccines: progress, challenges, applications. WILEY INTERDISCIPLINARY REVIEWS-RNA 2013; 4:737-49. [PMID: 23893949 DOI: 10.1002/wrna.1189] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 06/27/2013] [Accepted: 06/27/2013] [Indexed: 12/21/2022]
Abstract
Twenty years after the demonstration that messenger RNA (mRNA) was expressed and immunogenic upon direct injection in mice, the first successful proof-of-concept of specific protection against viral infection in small and large animals was reported. These data indicate wider applicability to infectious disease and should encourage continued translation of mRNA-based prophylactic vaccines into human clinical trials. At the conceptual level, mRNA-based vaccines-more than other genetic vectors-combine the simplicity, safety, and focused immunogenicity of subunit vaccines with favorable immunological properties of live viral vaccines: (1) mRNA vaccines are molecularly defined and carry no excess information. In the environment and upon physical contact, RNA is rapidly degraded by ubiquitous RNases and cannot persist. These characteristics also guarantee tight control over their immunogenic profile (including avoidance of vector-specific immune responses that could interfere with repeated administration), pharmacokinetics, and dosing. (2) mRNA vaccines are synthetically produced by an enzymatic process, just requiring information about the nucleic acid sequence of the desired antigen. This greatly reduces general complications associated with biological vaccine production, such as handling of infectious agents, genetic variability, environmental risks, or restrictions to vaccine distribution. (3) RNA can be tailored to provide potent adjuvant stimuli to the innate immune system by direct activation of RNA-specific receptors; this may reduce the need for additional adjuvants. The formation of native antigen in situ affords great versatility, including intracellular localization, membrane association, posttranslational modification, supra-molecular assembly, or targeted structural optimization of delivered antigen. Messenger RNA vaccines induce balanced immune responses including B cells, helper T cells, and cytotoxic T lymphocytes, rendering them an extremely adaptable platform. This article surveys the design, mode of action, and capabilities of state-of-the-art mRNA vaccines, focusing on the paradigm of influenza prophylaxis.
Collapse
|