351
|
Yousif SR, Keil FC. The Additive-Area Heuristic: An Efficient but Illusory Means of Visual Area Approximation. Psychol Sci 2019; 30:495-503. [DOI: 10.1177/0956797619831617] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
How do we determine how much of something is present? A large body of research has investigated the mechanisms and consequences of number estimation, yet surprisingly little work has investigated area estimation. Indeed, area is often treated as a pesky confound in the study of number. Here, we describe the additive-area heuristic, a means of rapidly estimating visual area that results in substantial distortions of perceived area in many contexts, visible even in simple demonstrations. We show that when we controlled for additive area, observers were unable to discriminate on the basis of true area, per se, and that these results could not be explained by other spatial dimensions. These findings reflect a powerful perceptual illusion in their own right but also have implications for other work, namely, that which relies on area controls to support claims about number estimation. We discuss several areas of research potentially affected by these findings.
Collapse
|
352
|
Pletzer B, Harris T, Scheuringer A. Sex Differences in Number Magnitude Processing Strategies Are Mediated by Spatial Navigation Strategies: Evidence From the Unit-Decade Compatibility Effect. Front Psychol 2019; 10:229. [PMID: 30809169 PMCID: PMC6379299 DOI: 10.3389/fpsyg.2019.00229] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 01/23/2019] [Indexed: 01/29/2023] Open
Abstract
The hybrid model of number magnitude processing suggests that multi-digit numbers are simultaneously processed holistically (whole number magnitudes) and in a decomposed manner (digit magnitudes). Thus, individual tendencies and situational factors may affect which type of processing becomes dominant in a certain individual in a given situation. The unit-decade compatibility effect has been described as indicative of stronger decomposed number processing. This effect occurs during the comparison of two-digit numbers. Compatible items in which the larger number contains the larger unit digit are easier to solve than incompatible items in which the larger number contains the smaller unit digit. We have previously described women show a larger compatibility effect than men. Furthermore, the compatibility effect is modulated by situational factors like the vertical spacing of the presented numbers. However, it has not been addressed whether situational factors and sex affect the unit-decade compatibility effect interactively. We have also demonstrated that the unit-decade compatibility effects relates to global-local processing, which in turn also affects spatial processing strategies. However, a link between spatial processing strategies and the unit-decade compatibility effect has not yet been established. In the present study we investigate, whether sex differences in the unit-decade compatibility effect (i) depend on the vertical spacing between numbers, (ii) are mediated via sex hormone levels of participants, and (iii) relate to sex differences in spatial processing strategies. 42 men and 41 women completed a two-digit number comparison task as well as a spatial navigation task. The number comparison task modulates compatibility and vertical spacing in a 2 × 2 design. The results confirm a larger compatibility effect in women compared to men and with dense compared to sparse spacing. However, no interactive effect was observed, suggesting that these factors modulate number magnitude processing independently. The progesterone/testosterone ratio was related to the compatibility effect, but did not mediate the sex difference in the compatibility effect. Furthermore, spatial processing strategies were related to the compatibility effect and did mediate the sex difference in the compatibility effect. Participants with a stronger focus on landmarks in the spatial navigation task showed a larger compatibility effect.
Collapse
Affiliation(s)
- Belinda Pletzer
- Department of Psychology, University of Salzburg, Salzburg, Austria.,Centre for Cognitive Neuroscience, University of Salzburg, Salzburg, Austria
| | - TiAnni Harris
- Department of Psychology, University of Salzburg, Salzburg, Austria
| | | |
Collapse
|
353
|
O'Grady S, Xu F. The Development of Nonsymbolic Probability Judgments in Children. Child Dev 2019; 91:784-798. [PMID: 30737769 DOI: 10.1111/cdev.13222] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Two experiments were designed to investigate the developmental trajectory of children's probability approximation abilities. In Experiment 1, results revealed 6- and 7-year-old children's (N = 48) probability judgments improve with age and become more accurate as the distance between two ratios increases. Experiment 2 replicated these findings with 7- to 12-year-old children (N = 130) while also accounting for the effect of the size and the perceived numerosity of target objects. Older children's performance suggested the correct use of proportions for estimating probability; but in some cases, children relied on heuristic shortcuts. These results suggest that children's nonsymbolic probability judgments show a clear distance effect and that the acuity of probability estimations increases with age.
Collapse
Affiliation(s)
| | - Fei Xu
- University of California, Berkeley
| |
Collapse
|
354
|
Amici F, Sánchez-Amaro A, Sebastián-Enesco C, Cacchione T, Allritz M, Salazar-Bonet J, Rossano F. The word order of languages predicts native speakers' working memory. Sci Rep 2019; 9:1124. [PMID: 30718704 PMCID: PMC6362290 DOI: 10.1038/s41598-018-37654-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 12/12/2018] [Indexed: 01/29/2023] Open
Abstract
The relationship between language and thought is controversial. One hypothesis is that language fosters habits of processing information that are retained even in non-linguistic domains. In left-branching (LB) languages, modifiers usually precede the head, and real-time sentence comprehension may more heavily rely on retaining initial information in working memory. Here we presented a battery of working memory and short-term memory tasks to adult native speakers of four LB and four right-branching (RB) languages from Africa, Asia and Europe. In working memory tasks, LB speakers were better than RB speakers at recalling initial stimuli, but worse at recalling final stimuli. Our results show that the practice of parsing sentences in specific directions due to the syntax and word order of our native language not only predicts the way we remember words, but also other non-linguistic stimuli.
Collapse
Affiliation(s)
- Federica Amici
- Junior Research Group "Primate Kin Selection", Max Planck Institute for Evolutionary Anthropology, Department of Primatology, Deutscher Platz 6, 04103, Leipzig, Germany.
- University of Leipzig Faculty of Life Science, Institute of Biology, Behavioral Ecology Research Group, Talstrasse 33, 04103, Leipzig, Germany.
| | - Alex Sánchez-Amaro
- Department of Comparative and Developmental Psychology, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103, Leipzig, Germany
- Department of Cognitive Science, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0515, USA
| | - Carla Sebastián-Enesco
- William James Center for Research, ISPA-Instituto Universitário, Rua Jardim do Tabaco 34, 1149-041, Lisboa, Portugal
| | - Trix Cacchione
- Department of Developmental and Comparative Psychology, Institute of Psychology, University of Bern, Hochschulstrasse 6, 3012, Bern, Switzerland
- Pedagogische Hochschule, University of Applied Sciences Northwestern Switzerland, Bahnhofstrasse 6, 5210, Windisch, Switzerland
| | - Matthias Allritz
- Department of Comparative and Developmental Psychology, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103, Leipzig, Germany
| | - Juan Salazar-Bonet
- Department of International Programs, Florida State University, C/ Blanquerías 2, 46003, Valencia, Spain
| | - Federico Rossano
- Department of Cognitive Science, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0515, USA
| |
Collapse
|
355
|
Precise relative-quantity judgement in the striped field mouse Apodemus agrarius Pallas. Anim Cogn 2019; 22:277-289. [PMID: 30707366 DOI: 10.1007/s10071-019-01244-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 01/14/2019] [Accepted: 01/23/2019] [Indexed: 02/03/2023]
Abstract
Applying the classical experimental scheme of training animals with food rewards to discriminate between quantities of visual stimuli, we demonstrated that not only can striped field mice Apodemus agrarius discriminate between clearly distinctive quantities such as 5 and 10, but some of these mice also exhibit high accuracy in discriminating between quantities that differ only by one. The latter include both small (such as 2 versus 3) and relatively large (such as 5 versus 6, and 8 versus 9) quantities of elements. This is the first evidence of precise relative-quantity judgement in wild rodents. We found striking individual variation in cognitive performance among striped field mice, which possibly reflects individual cognitive variation in natural populations. We speculate that high accuracy in differentiating large quantities is based on the adaptive ability of wild rodents to capture subtle changes in their environment. We suggest that the striped field mouse may be a powerful model species to develop advanced cognitive tests for comparative studies of numerical competence in animals and for understanding evolutionary roots of quantity processing.
Collapse
|
356
|
Howard SR, Avarguès-Weber A, Garcia JE, Greentree AD, Dyer AG. Numerical cognition in honeybees enables addition and subtraction. SCIENCE ADVANCES 2019; 5:eaav0961. [PMID: 30775440 PMCID: PMC6365119 DOI: 10.1126/sciadv.aav0961] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 12/20/2018] [Indexed: 05/31/2023]
Abstract
Many animals understand numbers at a basic level for use in essential tasks such as foraging, shoaling, and resource management. However, complex arithmetic operations, such as addition and subtraction, using symbols and/or labeling have only been demonstrated in a limited number of nonhuman vertebrates. We show that honeybees, with a miniature brain, can learn to use blue and yellow as symbolic representations for addition or subtraction. In a free-flying environment, individual bees used this information to solve unfamiliar problems involving adding or subtracting one element from a group of elements. This display of numerosity requires bees to acquire long-term rules and use short-term working memory. Given that honeybees and humans are separated by over 400 million years of evolution, our findings suggest that advanced numerical cognition may be more accessible to nonhuman animals than previously suspected.
Collapse
Affiliation(s)
- Scarlett R. Howard
- Bio-inspired Digital Sensing (BIDS) Lab, School of Media and Communication, RMIT University, Melbourne, VIC, Australia
| | - Aurore Avarguès-Weber
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Jair E. Garcia
- Bio-inspired Digital Sensing (BIDS) Lab, School of Media and Communication, RMIT University, Melbourne, VIC, Australia
| | - Andrew D. Greentree
- ARC Centre of Excellence for Nanoscale BioPhotonics, School of Science, RMIT University, Melbourne, VIC, Australia
| | - Adrian G. Dyer
- Bio-inspired Digital Sensing (BIDS) Lab, School of Media and Communication, RMIT University, Melbourne, VIC, Australia
- Department of Physiology, Monash University, Clayton, VIC, Australia
| |
Collapse
|
357
|
Geary DC, vanMarle K, Chu FW, Hoard MK, Nugent L. Predicting Age of Becoming a Cardinal Principle Knower. JOURNAL OF EDUCATIONAL PSYCHOLOGY 2019; 111:256-267. [PMID: 37275456 PMCID: PMC10237038 DOI: 10.1037/edu0000277] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Children's first mathematics concept is their understanding of the quantities represented by number words (cardinal value), and the age at which they achieve this insight predicts their readiness for mathematics learning in school. We provide the first exploration of the factors that influence the age of becoming a cardinal principle knower (CPK), with a longitudinal study of 197 (94 boys) children from the beginning to the end of two years of preschool. Core symbolic and non-symbolic quantitative competencies at the beginning of preschool, as well as measures of intelligence, executive function, preliteracy skills, and parental education were used to predict timing of CPK status. Children who achieved early CPK status had higher IQ scores, knew more count words and numerals, and had a better intuitive understanding of relative quantity than their peers. Children who were delayed CPKs, in contrast, had deficits in executive function and poor preliteracy skills. The results add to our understanding of children's conceptual development in mathematics and have implications for the identification of at-risk children and design of interventions for them.
Collapse
Affiliation(s)
- David C. Geary
- Department of Psychological Sciences, University of Missouri
- Interdisciplinary Neuroscience Program, University of Missouri
| | - Kristy vanMarle
- Department of Psychological Sciences, University of Missouri
| | - Felicia W. Chu
- Department of Psychological Sciences, University of Missouri
| | - Mary K. Hoard
- Department of Psychological Sciences, University of Missouri
| | - Lara Nugent
- Department of Psychological Sciences, University of Missouri
| |
Collapse
|
358
|
Gimbert F, Camos V, Gentaz E, Mazens K. What predicts mathematics achievement? Developmental change in 5- and 7-year-old children. J Exp Child Psychol 2019; 178:104-120. [DOI: 10.1016/j.jecp.2018.09.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 07/06/2018] [Accepted: 09/20/2018] [Indexed: 01/29/2023]
|
359
|
Number, time, and space are not singularly represented: Evidence against a common magnitude system beyond early childhood. Psychon Bull Rev 2019; 26:833-854. [PMID: 30684249 DOI: 10.3758/s13423-018-1561-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Our ability to represent temporal, spatial, and numerical information is critical for understanding the world around us. Given the prominence of quantitative representations in the natural world, numerous cognitive, neurobiological, and developmental models have been proposed as a means of describing how we track quantity. One prominent theory posits that time, space, and number are represented by a common magnitude system, or a common neural locus (i.e., Bonn & Cantlon in Cognitive Neuropsychology, 29(1/2), 149-173, 2012; Cantlon, Platt, & Brannon in Trends in Cognitive Sciences, 13(2), 83-91, 2009; Meck & Church in Animal Behavior Processes, 9(3), 320, 1983; Walsh in Trends in Cognitive Sciences, 7(11), 483-488, 2003). Despite numerous similarities in representations of time, space, and number, an increasing body of literature reveals striking dissociations in how each quantity is processed, particularly later in development. These findings have led many researchers to consider the possibility that separate systems may be responsible for processing each quantity. This review will analyze evidence in favor of a common magnitude system, particularly in infancy, which will be tempered by counter evidence, the majority of which comes from experiments with children and adult participants. After reviewing the current data, we argue that although the common magnitude system may account for quantity representations in infancy, the data do not provide support for this system throughout the life span. We also identify future directions for the field and discuss the likelihood of the developmental divergence model of quantity representation, like that of Newcombe (Ecological Psychology, 2, 147-157, 2014), as a more plausible account of quantity development.
Collapse
|
360
|
Lázaro-Gredilla M, Lin D, Guntupalli JS, George D. Beyond imitation: Zero-shot task transfer on robots by learning concepts as cognitive programs. Sci Robot 2019; 4:4/26/eaav3150. [DOI: 10.1126/scirobotics.aav3150] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 11/19/2018] [Indexed: 01/29/2023]
Abstract
Humans can infer concepts from image pairs and apply those in the physical world in a completely different setting, enabling tasks like IKEA assembly from diagrams. If robots could represent and infer high-level concepts, then it would notably improve their ability to understand our intent and to transfer tasks between different environments. To that end, we introduce a computational framework that replicates aspects of human concept learning. Concepts are represented as programs on a computer architecture consisting of a visual perception system, working memory, and action controller. The instruction set of this cognitive computer has commands for parsing a visual scene, directing gaze and attention, imagining new objects, manipulating the contents of a visual working memory, and controlling arm movement. Inferring a concept corresponds to inducing a program that can transform the input to the output. Some concepts require the use of imagination and recursion. Previously learned concepts simplify the learning of subsequent, more elaborate concepts and create a hierarchy of abstractions. We demonstrate how a robot can use these abstractions to interpret novel concepts presented to it as schematic images and then apply those concepts in very different situations. By bringing cognitive science ideas on mental imagery, perceptual symbols, embodied cognition, and deictic mechanisms into the realm of machine learning, our work brings us closer to the goal of building robots that have interpretable representations and common sense.
Collapse
|
361
|
Stahl AE, Feigenson L. Violations of Core Knowledge Shape Early Learning. Top Cogn Sci 2019; 11:136-153. [PMID: 30369059 PMCID: PMC6360129 DOI: 10.1111/tops.12389] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 09/17/2018] [Accepted: 09/17/2018] [Indexed: 01/29/2023]
Abstract
Research on cognitive development has revealed that even the youngest minds detect and respond to events that adults find surprising. These surprise responses suggest that infants have a basic set of "core" expectations about the world that are shared with adults and other species. However, little work has asked what purpose these surprise responses serve. Here we discuss recent evidence that violations of core knowledge offer special opportunities for learning. Infants and young children make predictions about the world on the basis of their core knowledge of objects, quantities, and social entities. We argue that when these predictions fail to match the observed data, infants and children experience an enhanced drive to seek and retain new information. This impact of surprise on learning is not equipotent. Instead, it is directed to entities that are relevant to the surprise itself; this drive propels children-even infants-to form and test new hypotheses about surprising aspects of the world. We briefly consider similarities and differences between these recent findings with infants and children, on the one hand, and findings on prediction errors in humans and non-human animals, on the other. These comparisons raise open questions that require continued inquiry, but suggest that considering phenomena across species, ages, kinds of surprise, and types of learning will ultimately help to clarify how surprise shapes thought.
Collapse
Affiliation(s)
| | - Lisa Feigenson
- Department of Psychological & Brain Sciences, Johns Hopkins University
| |
Collapse
|
362
|
Duyan YA, Balcı F. Metric error monitoring in the numerical estimates. Conscious Cogn 2019; 67:69-76. [DOI: 10.1016/j.concog.2018.11.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 11/09/2018] [Accepted: 11/27/2018] [Indexed: 02/05/2023]
|
363
|
Slusser E, Ribner A, Shusterman A. Language
counts
: Early language mediates the relationship between parent education and children's math ability. Dev Sci 2018; 22:e12773. [DOI: 10.1111/desc.12773] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 10/19/2018] [Indexed: 01/29/2023]
Affiliation(s)
- Emily Slusser
- Department of Child & Adolescent Development San Jose State University San Jose California USA
| | - Andrew Ribner
- Department of Applied Psychology New York University New York New York USA
| | - Anna Shusterman
- Department of Psychology Wesleyan University Middletown Connecticut USA
| |
Collapse
|
364
|
Williford K, Bennequin D, Friston K, Rudrauf D. The Projective Consciousness Model and Phenomenal Selfhood. Front Psychol 2018; 9:2571. [PMID: 30618988 PMCID: PMC6304424 DOI: 10.3389/fpsyg.2018.02571] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 11/30/2018] [Indexed: 01/29/2023] Open
Abstract
We summarize our recently introduced Projective Consciousness Model (PCM) (Rudrauf et al., 2017) and relate it to outstanding conceptual issues in the theory of consciousness. The PCM combines a projective geometrical model of the perspectival phenomenological structure of the field of consciousness with a variational Free Energy minimization model of active inference, yielding an account of the cybernetic function of consciousness, viz., the modulation of the field's cognitive and affective dynamics for the effective control of embodied agents. The geometrical and active inference components are linked via the concept of projective transformation, which is crucial to understanding how conscious organisms integrate perception, emotion, memory, reasoning, and perspectival imagination in order to control behavior, enhance resilience, and optimize preference satisfaction. The PCM makes substantive empirical predictions and fits well into a (neuro)computationalist framework. It also helps us to account for aspects of subjective character that are sometimes ignored or conflated: pre-reflective self-consciousness, the first-person point of view, the sense of minenness or ownership, and social self-consciousness. We argue that the PCM, though still in development, offers us the most complete theory to date of what Thomas Metzinger has called "phenomenal selfhood."
Collapse
Affiliation(s)
- Kenneth Williford
- Department of Philosophy and Humanities, University of Texas at Arlington, Arlington, TX, United States
| | - Daniel Bennequin
- Department of Mathematics, Mathematics Institute of Jussieu–Paris Rive Gauche, University of Paris 7, Paris, France
| | - Karl Friston
- Wellcome Trust Centre for Neuroimaging, University College London, London, United Kingdom
| | - David Rudrauf
- Faculty of Psychology and Education Sciences, Section of Psychology, Swiss Center for Affective Sciences, Centre Universitaire d’Informatique, University of Geneva, Geneva, Switzerland
| |
Collapse
|
365
|
Tosto MG, Garon-Carrier G, Gross S, Petrill SA, Malykh S, Malki K, Hart SA, Thompson L, Karadaghi RL, Yakovlev N, Tikhomirova T, Opfer JE, Mazzocco MMM, Dionne G, Brendgen M, Vitaro F, Tremblay RE, Boivin M, Kovas Y. The nature of the association between number line and mathematical performance: An international twin study. BRITISH JOURNAL OF EDUCATIONAL PSYCHOLOGY 2018; 89:787-803. [PMID: 30548254 DOI: 10.1111/bjep.12259] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 10/29/2018] [Indexed: 01/29/2023]
Abstract
BACKGROUND The number line task assesses the ability to estimate numerical magnitudes. People vary greatly in this ability, and this variability has been previously associated with mathematical skills. However, the sources of individual differences in number line estimation and its association with mathematics are not fully understood. AIMS This large-scale genetically sensitive study uses a twin design to estimate the magnitude of the effects of genes and environments on: (1) individual variation in number line estimation and (2) the covariation of number line estimation with mathematics. SAMPLES We used over 3,000 8- to 16-year-old twins from the United States, Canada, the United Kingdom, and Russia, and a sample of 1,456 8- to 18-year-old singleton Russian students. METHODS Twins were assessed on: (1) estimation of numerical magnitudes using a number line task and (2) two mathematics components: fluency and problem-solving. RESULTS Results suggest that environments largely drive individual differences in number line estimation. Both genes and environments contribute to different extents to the number line estimation and mathematics correlation, depending on the sample and mathematics component. CONCLUSIONS Taken together, the results suggest that in more heterogeneous school settings, environments may be more important in driving variation in number line estimation and its association with mathematics, whereas in more homogeneous school settings, genetic effects drive the covariation between number line estimation and mathematics. These results are discussed in the light of development and educational settings.
Collapse
Affiliation(s)
- Maria Grazia Tosto
- Laboratory for Cognitive Investigations and Behavioral Genetics, Department of Psychology, Institute of Genetic, Neurobiological, and Social Foundations of Child Development, Tomsk State University, Tomsk, Oblast, Russia
| | | | - Susan Gross
- Department of Psychological Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| | - Stephen A Petrill
- Department of Psychology, The Ohio State University, Columbus, Ohio, USA
| | - Sergey Malykh
- Laboratory for Cognitive Investigations and Behavioral Genetics, Department of Psychology, Institute of Genetic, Neurobiological, and Social Foundations of Child Development, Tomsk State University, Tomsk, Oblast, Russia.,Psychological Institute, Russian Academy of Education, Moscow, Russia
| | - Karim Malki
- MRC Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology& Neuroscience, King's College London, UK
| | - Sara A Hart
- Department of Psychology, Florida Center for Reading Research, The Florida State University, Tallahassee, Florida, USA
| | - Lee Thompson
- Department of Psychological Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| | - Rezhaw L Karadaghi
- MRC Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology& Neuroscience, King's College London, UK
| | - Nikita Yakovlev
- Laboratory for Cognitive Investigations and Behavioral Genetics, Department of Psychology, Institute of Genetic, Neurobiological, and Social Foundations of Child Development, Tomsk State University, Tomsk, Oblast, Russia
| | | | - John E Opfer
- Department of Psychology, The Ohio State University, Columbus, Ohio, USA
| | - Michèle M M Mazzocco
- Institute of Child Development, University of Minnesota, Minneapolis, Minnesota, USA
| | - Ginette Dionne
- School of Psychology, Université Laval, Québec City, Québec, Canada
| | - Mara Brendgen
- Department of Psychology, School of Psychology, Université du Québec à Montréal, Québec, Canada
| | - Frank Vitaro
- Department of Psychoeducation, Department of Pediatrics and Psychology, Université de Montréal, Québec, Canada
| | - Richard E Tremblay
- Laboratory for Cognitive Investigations and Behavioral Genetics, Department of Psychology, Institute of Genetic, Neurobiological, and Social Foundations of Child Development, Tomsk State University, Tomsk, Oblast, Russia.,Department of Psychoeducation, Department of Pediatrics and Psychology, Université de Montréal, Québec, Canada.,School of Public Health, Physiotherapy and Sports Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Michel Boivin
- Laboratory for Cognitive Investigations and Behavioral Genetics, Department of Psychology, Institute of Genetic, Neurobiological, and Social Foundations of Child Development, Tomsk State University, Tomsk, Oblast, Russia.,School of Psychology, Université Laval, Québec City, Québec, Canada
| | - Yulia Kovas
- Laboratory for Cognitive Investigations and Behavioral Genetics, Department of Psychology, Institute of Genetic, Neurobiological, and Social Foundations of Child Development, Tomsk State University, Tomsk, Oblast, Russia.,MRC Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology& Neuroscience, King's College London, UK.,Department of Psychology, University of London, UK
| |
Collapse
|
366
|
Arcara G, Franzon F, Gastaldon S, Brotto S, Semenza C, Peressotti F, Zanini C. One can be some but some cannot be one: ERP correlates of numerosity incongruence are different for singular and plural. Cortex 2018; 116:104-121. [PMID: 30545602 DOI: 10.1016/j.cortex.2018.10.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 06/20/2018] [Accepted: 10/24/2018] [Indexed: 01/29/2023]
Abstract
Humans can communicate information on numerosity by means of number words (e.g., one hundred, a couple), but also through Number morphology (e.g., through the singular vs the plural forms of a noun). Agreement violations involving Number morphology (e.g., *one apples) are well known to elicit specific ERP components such as the Left Anterior Negativity (LAN); yet, the relationship between a morphological Number value (e.g., singular vs plural) and its referential numerosity has rarely been considered in the literature. Moreover, even if agreement violations have been proven to be very useful, they do not typically characterise everyday language usage, thus narrowing the scope of the results. In this study we investigated Number morphology from a different perspective, by focusing on the ERP correlates of congruence and incongruence between a depicted numerosity and noun phrases. To this aim we designed a picture-phrase matching paradigm in Italian. In each trial, a picture depicting one or four objects was followed by a grammatically well-formed phrase made up of a quantifier and a content noun inflected either in the singular or in the plural. When analysing ERP time-locked to the content noun, plural phrases after pictures presenting one object elicited a larger negativity, similar to a LAN effect. No significant congruence effect was found in the case of the phrases whose morphological Number value conveyed a numerosity of one. Our results suggest that: 1) incongruence elicits a LAN-like negativity independently from the grammaticality of the utterances and irrespectively of the P600 component; 2) the reference to a numerosity can be partially encoded in an incremental way when processing Number morphology; and, most importantly, 3) the processing of the morphological Number value of plural is different from that of singular as the former shows a narrower interpretability than the latter.
Collapse
Affiliation(s)
| | - Francesca Franzon
- Department of Neuroscience DNS, University of Padova, Padova, Italia; Neuroscience Area, International School for Advanced Studies (SISSA), Trieste, Italia
| | - Simone Gastaldon
- Department of Devolopmental and Social Psychology, University of Padova, Padova, Italia
| | - Silvia Brotto
- Department of Neuroscience DNS, University of Padova, Padova, Italia
| | - Carlo Semenza
- Fondazione Ospedale San Camillo IRCCS, Venezia, Italia; Department of Neuroscience DNS, University of Padova, Padova, Italia; Padova Neuroscience Center, University of Padova, Padova, Italia
| | - Francesca Peressotti
- Department of Devolopmental and Social Psychology, University of Padova, Padova, Italia; Padova Neuroscience Center, University of Padova, Padova, Italia
| | - Chiara Zanini
- Department of Neuroscience DNS, University of Padova, Padova, Italia; Romanisches Seminar, University of Zürich, Zürich, Switzerland
| |
Collapse
|
367
|
Castaldi E, Mirassou A, Dehaene S, Piazza M, Eger E. Asymmetrical interference between number and item size perception provides evidence for a domain specific impairment in dyscalculia. PLoS One 2018; 13:e0209256. [PMID: 30550549 PMCID: PMC6294370 DOI: 10.1371/journal.pone.0209256] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 12/03/2018] [Indexed: 01/29/2023] Open
Abstract
Dyscalculia, a specific learning disability that impacts arithmetical skills, has previously been associated to a deficit in the precision of the system that estimates the approximate number of objects in visual scenes (the so called 'number sense' system). However, because in tasks involving numerosity comparisons dyscalculics' judgements appears disproportionally affected by continuous quantitative dimensions (such as the size of the items), an alternative view linked dyscalculia to a domain-general difficulty in inhibiting task-irrelevant responses. To arbitrate between these views, we evaluated the degree of reciprocal interference between numerical and non-numerical quantitative dimensions in adult dyscalculics and matched controls. We used a novel stimulus set orthogonally varying in mean item size and numerosity, putting particular attention into matching both features' perceptual discriminability. Participants compared those stimuli based on each of the two dimensions. While control subjects showed no significant size interference when judging numerosity, dyscalculics' numerosity judgments were strongly biased by the unattended size dimension. Importantly however, both groups showed the same degree of interference from the unattended dimension when judging mean size. Moreover, only the ability to discard the irrelevant size information when comparing numerosity (but not the reverse) significantly predicted calculation ability across subjects. Overall, our results show that numerosity discrimination is less prone to interference than discrimination of another quantitative feature (mean item size) when the perceptual discriminability of these features is matched, as here in control subjects. By quantifying, for the first time, dyscalculic subjects' degree of interference on another orthogonal dimension of the same stimuli, we are able to exclude a domain-general inhibition deficit as explanation for their poor / biased numerical judgement. We suggest that enhanced reliance on non-numerical cues during numerosity discrimination can represent a strategy to cope with a less precise number sense.
Collapse
Affiliation(s)
- Elisa Castaldi
- Cognitive Neuroimaging Unit, CEA DRF/I2BM, INSERM, Université Paris-Sud, Université Paris-Saclay, NeuroSpin Center, Gif-sur-Yvette, France
| | - Anne Mirassou
- Centre Hospitalier Rives de Seine, Service de Pédiatrie et Néonatologie, Unité de Dépistage des Troubles des Apprentissages, Neuilly-sur-Seine, France
| | - Stanislas Dehaene
- Cognitive Neuroimaging Unit, CEA DRF/I2BM, INSERM, Université Paris-Sud, Université Paris-Saclay, NeuroSpin Center, Gif-sur-Yvette, France
| | - Manuela Piazza
- Center for Mind/Brain Sciences, University of Trento, Trento, Italy
| | - Evelyn Eger
- Cognitive Neuroimaging Unit, CEA DRF/I2BM, INSERM, Université Paris-Sud, Université Paris-Saclay, NeuroSpin Center, Gif-sur-Yvette, France
| |
Collapse
|
368
|
Piazza M, De Feo V, Panzeri S, Dehaene S. Learning to focus on number. Cognition 2018; 181:35-45. [DOI: 10.1016/j.cognition.2018.07.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 07/16/2018] [Accepted: 07/19/2018] [Indexed: 01/29/2023]
|
369
|
|
370
|
Abstract
Our minds constantly evaluate the confidence in what we see, think, and remember. Previous work suggests that confidence is a domain-general currency in adulthood, unifying otherwise independent sensory and perceptual representations. Here, we test whether children also possess a domain-general sense of confidence over otherwise independent perceptual dimensions. Six- to 9-year-olds completed either three simple perceptual discrimination tasks—a number task (“Which group has more dots?”), an area task (“Which blob is bigger?”), and an emotions task (“Which face is happier?”)—or three relative confidence tasks, selecting which of two trials they are more confident on. We find that while children’s discrimination performance across the three tasks was independent and constituted three separate factors, children’s confidence in each of three dimensions was strongly correlated and constituted only a single factor. Our results suggest that confidence is a domain-general currency even in childhood, providing a mechanism by which disparate perceptual representations could be integrated.
Collapse
Affiliation(s)
- Carolyn Baer
- Department of Psychology, University of British Columbia
| | | | - Darko Odic
- Department of Psychology, University of British Columbia
| |
Collapse
|
371
|
|
372
|
Elliott L, Feigenson L, Halberda J, Libertus ME. Bidirectional, Longitudinal Associations Between Math Ability and Approximate Number System Precision in Childhood. JOURNAL OF COGNITION AND DEVELOPMENT 2018. [DOI: 10.1080/15248372.2018.1551218] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
373
|
Liu W, Zhao Y, Wang M, Zhang Z. Regular Distribution Inhibits Generic Numerosity Processing. Front Psychol 2018; 9:2080. [PMID: 30429812 PMCID: PMC6220036 DOI: 10.3389/fpsyg.2018.02080] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 10/09/2018] [Indexed: 01/29/2023] Open
Abstract
This study investigated the role of pattern regularity in approximate numerical processing. Experiment 1 demonstrated that the change in stimulus size has a distinct effect on the adaptation aftereffect for random and regular patterns. For regular patterns, adapting to large patterns and being tested with small patterns caused stronger aftereffects than the reverse treatment, in which the participants adapted to small patterns and were tested with large patterns. For random patterns, this effect was absent. Experiment 2 revealed a distinct connectedness effect on the numerosity processing of random and regular patterns. For random patterns, reference stimuli were perceived to contain fewer items when the dots were connected by lines than when they were not connected, and the number of items in the connected reference was further underestimated when the participants adapted to unconnected patterns with the same number of dots. For regular patterns, this effect was absent. Distinct mechanisms were thus suggested for the numerosity coding of random and regular patterns. For random patterns, the change in primary texture features would be abstracted from numerosity processing, while connectedness could affect this coding by affecting the processing of numerical unit individuation. For regular patterns, generic numerosity processing is inhibited, and numerical judgments appear to be inferred from the visual processing results of texture features such as dot size or the distance between adjacent dots.
Collapse
Affiliation(s)
- Wei Liu
- School of Education, Yunnan Minzu University, Kunming, China
| | - Yajun Zhao
- School of Sociology and Psychology, Southwest University for Nationalities, Chengdu, China
| | - Miao Wang
- School of Education, Yunnan Minzu University, Kunming, China
| | - Zhijun Zhang
- Department of Psychology and Behavioural Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
374
|
Kim D, Opfer JE. Dynamics and development in number-to-space mapping. Cogn Psychol 2018; 107:44-66. [PMID: 30439563 DOI: 10.1016/j.cogpsych.2018.10.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 05/17/2018] [Accepted: 10/11/2018] [Indexed: 01/29/2023]
Abstract
Young children's estimates of numerical magnitude increase approximately logarithmically with actual magnitude. The conventional interpretation of this finding is that children's estimates reflect an innate logarithmic encoding of number. A recent set of findings, however, suggests that logarithmic number-line estimates emerge via a dynamic encoding mechanism that is sensitive to previously encountered stimuli. Here we examine trial-to-trial changes in logarithmicity of numerosity estimates to test an alternative dynamic model (D-MLLM) with both a strong logarithmic component and a weak response to previous stimuli. In support of D-MLLM, first-trial numerosity estimates in both adults (Study 1, 2, 3, and 4) and children (Study 4) were strongly logarithmic, despite zero previous stimuli. Additionally, although numerosity of a previous trial affected adults' estimates, the influence of previous numbers always accompanied the logarithmic-to-linear shift predicted by D-MLLM. We conclude that a dynamic encoding mechanism is not necessary for compressive mapping, but sequential effects on response scaling are a possible source of linearity in adults' numerosity estimation.
Collapse
Affiliation(s)
- Dan Kim
- The Ohio State University, 255 Psychology Building, Columbus, OH 43210, USA.
| | - John E Opfer
- The Ohio State University, 255 Psychology Building, Columbus, OH 43210, USA.
| |
Collapse
|
375
|
Braham EJ, Elliott L, Libertus ME. Using Hierarchical Linear Models to Examine Approximate Number System Acuity: The Role of Trial-Level and Participant-Level Characteristics. Front Psychol 2018; 9:2081. [PMID: 30483169 PMCID: PMC6240605 DOI: 10.3389/fpsyg.2018.02081] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 10/09/2018] [Indexed: 01/29/2023] Open
Abstract
The ability to intuitively and quickly compare the number of items in collections without counting is thought to rely on the Approximate Number System (ANS). To assess individual differences in the precision of peoples' ANS representations, researchers often use non-symbolic number comparison tasks in which participants quickly choose the numerically larger of two arrays of dots. However, some researchers debate whether this task actually measures the ability to discriminate approximate numbers or instead measures the ability to discriminate other continuous magnitude dimensions that are often confounded with number (e.g., the total surface area of the dots or the convex hull of the dot arrays). In this study, we used hierarchical linear models (HLMs) to predict 132 adults' accuracy on each trial of a non-symbolic number comparison task from a comprehensive set of trial-level characteristics (including numerosity ratio, surface area, convex hull, and temporal and spatial variations in presentation format) and participant-level controls (including cognitive abilities such as visual-short term memory, working memory, and math ability) in order to gain a more nuanced understanding of how individuals complete this task. Our results indicate that certain trial-level characteristics of the dot arrays contribute to our ability to compare numerosities, yet numerosity ratio, the critical marker of the ANS, remains a highly significant predictor of accuracy above and beyond trial-level characteristics and across individuals with varying levels of math ability and domain-general cognitive abilities.
Collapse
Affiliation(s)
- Emily J. Braham
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, United States
- Learning Research and Development Center, University of Pittsburgh, Pittsburgh, PA, United States
| | - Leanne Elliott
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Melissa E. Libertus
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, United States
- Learning Research and Development Center, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
376
|
Chesney DL, Matthews PG. Task Constraints Affect Mapping From Approximate Number System Estimates to Symbolic Numbers. Front Psychol 2018; 9:1801. [PMID: 30386272 PMCID: PMC6198106 DOI: 10.3389/fpsyg.2018.01801] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 09/05/2018] [Indexed: 02/01/2023] Open
Abstract
The Approximate Number System (ANS) allows individuals to assess nonsymbolic numerical magnitudes (e.g., the number of apples on a tree) without counting. Several prominent theories posit that human understanding of symbolic numbers is based – at least in part – on mapping number symbols (e.g., 14) to their ANS-processed nonsymbolic analogs. Number-line estimation – where participants place numerical values on a bounded number-line – has become a key task used in research on this mapping. However, some research suggests that such number-line estimation tasks are actually proportion judgment tasks, as number-line estimation requires people to estimate the magnitude of the to-be-placed value, relative to set upper and lower endpoints, and thus do not so directly reflect magnitude representations. Here, we extend this work, assessing performance on nonsymbolic tasks that should more directly interface with the ANS. We compared adults’ (n = 31) performance when placing nonsymbolic numerosities (dot arrays) on number-lines to their performance with the same stimuli on two other tasks: Free estimation tasks where participants simply estimate the cardinality of dot arrays, and ratio estimation tasks where participants estimate the ratio instantiated by a pair of arrays. We found that performance on these tasks was quite different, with number-line and ratio estimation tasks failing to the show classic psychophysical error patterns of scalar variability seen in the free estimation task. We conclude the constraints of tasks using stimuli that access the ANS lead to considerably different mapping performance and that these differences must be accounted for when evaluating theories of numerical cognition. Additionally, participants showed typical underestimation patterns in the free estimation task, but were quite accurate on the ratio task. We discuss potential implications of these findings for theories regarding the mapping between ANS magnitudes and symbolic numbers.
Collapse
Affiliation(s)
- Dana L Chesney
- Department of Psychology, St. John's University, Jamaica, NY, United States
| | - Percival G Matthews
- Department of Educational Psychology, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
377
|
Kutter EF, Bostroem J, Elger CE, Mormann F, Nieder A. Single Neurons in the Human Brain Encode Numbers. Neuron 2018; 100:753-761.e4. [DOI: 10.1016/j.neuron.2018.08.036] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 06/19/2018] [Accepted: 08/24/2018] [Indexed: 01/29/2023]
|
378
|
Cohen DJ, Blanc-Goldhammer D, Quinlan PT. A Mathematical Model of How People Solve Most Variants of the Number-Line Task. Cogn Sci 2018; 42:2621-2647. [PMID: 30375044 PMCID: PMC6286194 DOI: 10.1111/cogs.12698] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 09/26/2018] [Accepted: 10/01/2018] [Indexed: 01/29/2023]
Abstract
Current understanding of the development of quantity representations is based primarily on performance in the number-line task. We posit that the data from number-line tasks reflect the observer's underlying representation of quantity, together with the cognitive strategies and skills required to equate line length and quantity. Here, we specify a unified theory linking the underlying psychological representation of quantity and the associated strategies in four variations of the number-line task: the production and estimation variations of the bounded and unbounded number-line tasks. Comparison of performance in the bounded and unbounded number-line tasks provides a unique and direct way to assess the role of strategy in number-line completion. Each task produces a distinct pattern of data, yet each pattern is hypothesized to arise, at least in part, from the same underlying psychological representation of quantity. Our model predicts that the estimated biases from each task should be equivalent if the different completion strategies are modeled appropriately and no other influences are at play. We test this equivalence hypothesis in two experiments. The data reveal all variations of the number-line task produce equivalent biases except for one: the estimation variation of the bounded number-line task. We discuss the important implications of these findings.
Collapse
Affiliation(s)
- Dale J. Cohen
- Department of Psychology, University of North Carolina Wilmington
| | | | | |
Collapse
|
379
|
Representation of spatial sequences using nested rules in human prefrontal cortex. Neuroimage 2018; 186:245-255. [PMID: 30449729 DOI: 10.1016/j.neuroimage.2018.10.061] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 10/18/2018] [Accepted: 10/22/2018] [Indexed: 01/29/2023] Open
Abstract
Memory for spatial sequences does not depend solely on the number of locations to be stored, but also on the presence of spatial regularities. Here, we show that the human brain quickly stores spatial sequences by detecting geometrical regularities at multiple time scales and encoding them in a format akin to a programming language. We measured gaze-anticipation behavior while spatial sequences of variable regularity were repeated. Participants' behavior suggested that they quickly discovered the most compact description of each sequence in a language comprising nested rules, and used these rules to compress the sequence in memory and predict the next items. Activity in dorsal inferior prefrontal cortex correlated with the amount of compression, while right dorsolateral prefrontal cortex encoded the presence of embedded structures. Sequence learning was accompanied by a progressive differentiation of multi-voxel activity patterns in these regions. We propose that humans are endowed with a simple "language of geometry" which recruits a dorsal prefrontal circuit for geometrical rules, distinct from but close to areas involved in natural language processing.
Collapse
|
380
|
What makes a landmark effective in adolescent and adult rats? Sex and age differences in a navigation task. Learn Behav 2018; 47:156-165. [PMID: 30349970 DOI: 10.3758/s13420-018-0364-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
In three experiments, rats of different ages were trained in a circular pool to find a hidden platform whose location was defined in terms of a single landmark, a cylinder outside the pool. Following training, two main components of the landmark, its shape and pattern, were tested individually. Experiment 1 was performed by adolescent and adult rats (Exp. 1a, males; Exp. 1b, females). Adult rats always learned faster than the adolescent animals. On test trials, interesting tendencies were found-mainly, one favoring males on the shape test trial, and another favoring females on the pattern test trial. Experiment 2 was conducted only with adolescent rats, and these males and females did not differ when learning the task. However, on test trials the males learned more about the landmark shape component than about the landmark pattern component, while the females learned equally about the two components of the landmark. Finally, Experiment 3 was conducted only with adult rats, and again the males and females did not differ when learning the task. However, on test trials the males learned equally about the two components of the landmark (shape and pattern), but the females learned more about the landmark pattern component than about the landmark shape component. This set of experiments supports the claim that male and female rats can learn rather different things about a landmark that signals the location of the platform, with age being a critical variable.
Collapse
|
381
|
Karolis VR, Grinyaev M, Epure A, Tsoy V, Du Rietz E, Banissy MJ, Cappelletti M, Kovas Y. Probing the architecture of visual number sense with parietal tRNS. Cortex 2018; 114:54-66. [PMID: 30316449 DOI: 10.1016/j.cortex.2018.08.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Revised: 05/12/2018] [Accepted: 08/30/2018] [Indexed: 01/29/2023]
Abstract
Theoretical accounts of the visual number sense (VNS), i.e., an ability to discriminate approximate numerosities, remain controversial. A proposal that the VNS represents a process of numerosity extraction, leading to an abstract number representation in the brain, has been challenged by the view that the VNS is non-numerical in its essence and amounts to a weighted integration of continuous magnitude features that typically change with numerosity. In the present study, using two-alternative forced-choice paradigm, we aimed to distinguish between these proposals by probing brain areas implicated in the VNS with transcranial random noise stimulation (tRNS). We generated predictions for the stimulation-related changes in behavioural performance which would be compatible with alternative mechanisms proposed for the VNS. First, we investigated whether the superior parietal (SP) area hosts a numerosity code or whether its function is to modulate weighting of continuous stimulus features. We predicted that stimulation may affect the VNS precision if the SP role is representational, and that it may affect decision threshold if its role is modulatory. Second, we investigated whether the intraparietal (IP) area hosts a numerosity code independently of codes for continuous stimulus features, or whether their representations overlap. If the numerosity code is independent, we predicted that IP stimulation may improve the VNS but not continuous magnitude judgements. Our results were consistent with the hypotheses of a modulatory role of the SP and of the independence of the numerosity code in the IP, whereby suggesting that VNS is an emergent abstract property based on continuous magnitude statistics.
Collapse
Affiliation(s)
- Vyacheslav R Karolis
- Department of Psychosis Studies, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, UK; Frontlab, Institut du Cerveau et de la Moelle épinière (ICM), Hôpital de la Salpêtrière, France.
| | - Mikhail Grinyaev
- International Centre for Research in Human Development, Tomsk State University, Russia
| | - Andreea Epure
- Department of Experimental Psychology, University of Oxford, UK
| | - Vyacheslav Tsoy
- International Centre for Research in Human Development, Tomsk State University, Russia
| | - Ebba Du Rietz
- MRC Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK
| | | | - Marinella Cappelletti
- Department of Psychology, Goldsmiths, University of London, UK; Institute of Cognitive Neuroscience, University College London, UK
| | - Yulia Kovas
- International Centre for Research in Human Development, Tomsk State University, Russia; Department of Psychology, Goldsmiths, University of London, UK
| |
Collapse
|
382
|
Bender A, Rothe-Wulf A, Beller S. Variability in the Alignment of Number and Space Across Languages and Tasks. Front Psychol 2018; 9:1724. [PMID: 30337893 PMCID: PMC6180175 DOI: 10.3389/fpsyg.2018.01724] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 08/27/2018] [Indexed: 01/29/2023] Open
Abstract
While the domains of space and number appear to be linked in human brains and minds, their conceptualization still differs across languages and cultures. For instance, frames of reference for spatial descriptions vary according to task, context, and cultural background, and the features of the mental number line depend on formal education and writing direction. To shed more light on the influence of culture/language and task on such conceptualizations, we conducted a large-scale survey with speakers of five languages that differ in writing systems, preferences for spatial and temporal representations, and/or composition of number words. Here, we report data obtained from tasks on ordered arrangements, including numbers, letters, and written text. Comparing these data across tasks, domains, and languages indicates that, even within a single domain, representations may differ depending on task characteristics, and that the degree of cross-domain alignment varies with domains and culture.
Collapse
Affiliation(s)
- Andrea Bender
- Department of Psychosocial Science, University of Bergen, Bergen, Norway
- SFF Centre for Early Sapiens Behaviour (SapienCE), University of Bergen, Bergen, Norway
- *Correspondence: Andrea Bender
| | | | - Sieghard Beller
- Department of Psychosocial Science, University of Bergen, Bergen, Norway
- SFF Centre for Early Sapiens Behaviour (SapienCE), University of Bergen, Bergen, Norway
| |
Collapse
|
383
|
Kim N, Jang S, Cho S. Testing the Efficacy of Training Basic Numerical Cognition and Transfer Effects to Improvement in Children's Math Ability. Front Psychol 2018; 9:1775. [PMID: 30333768 PMCID: PMC6175973 DOI: 10.3389/fpsyg.2018.01775] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 09/03/2018] [Indexed: 01/29/2023] Open
Abstract
The goals of the present study were to test whether (and which) basic numerical abilities can be improved with training and whether training effects transfer to improvement in children's math achievement. The literature is mixed with evidence that does or does not substantiate the efficacy of training basic numerical ability. In the present study, we developed a child-friendly software named "123 Bakery" which includes four training modules; non-symbolic numerosity comparison, non-symbolic numerosity estimation, approximate arithmetic, and symbol-to-numerosity mapping. Fifty-six first graders were randomly assigned to either the training or control group. The training group participated in 6 weeks of training (5 times a week, 30 minutes per day). All participants underwent pre- and post-training assessment of their basic numerical processing ability (including numerosity discrimination acuity, symbolic/non-symbolic magnitude estimation, approximate arithmetic, and symbol-to-numerosity mapping), overall math achievement and intelligence, 6 weeks apart. The acuity for numerosity discrimination (approximate number sense acuity; hereafter ANS acuity) significantly improved after training, but this training effect did not transfer to improvement in symbolic, exact calculation, or any other math ability. We conclude that basic numerical cognition training leads to improvement in ANS acuity, but whether this effect transfers to symbolic math ability remains to be further tested.
Collapse
Affiliation(s)
- Narae Kim
- Department of Psychology, Chung-Ang University, Seoul, South Korea
| | - Selim Jang
- Department of Psychology, Chung-Ang University, Seoul, South Korea
- Department of Psychology, University of Illinois at Urbana-Champaign, Champaign, IL, United States
| | - Soohyun Cho
- Department of Psychology, Chung-Ang University, Seoul, South Korea
| |
Collapse
|
384
|
Kanjlia S, Feigenson L, Bedny M. Numerical cognition is resilient to dramatic changes in early sensory experience. Cognition 2018; 179:111-120. [PMID: 29935427 PMCID: PMC6701182 DOI: 10.1016/j.cognition.2018.06.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 06/01/2018] [Accepted: 06/05/2018] [Indexed: 01/29/2023]
Abstract
Humans and non-human animals can approximate large visual quantities without counting. The approximate number representations underlying this ability are noisy, with the amount of noise proportional to the quantity being represented. Numerate humans also have access to a separate system for representing exact quantities using number symbols and words; it is this second, exact system that supports most of formal mathematics. Although numerical approximation abilities and symbolic number abilities are distinct in representational format and in their phylogenetic and ontogenetic histories, they appear to be linked throughout development--individuals who can more precisely discriminate quantities without counting are better at math. The origins of this relationship are debated. On the one hand, symbolic number abilities may be directly linked to, perhaps even rooted in, numerical approximation abilities. On the other hand, the relationship between the two systems may simply reflect their independent relationships with visual abilities. To test this possibility, we asked whether approximate number and symbolic math abilities are linked in congenitally blind individuals who have never experienced visual sets or used visual strategies to learn math. Congenitally blind and blind-folded sighted participants completed an auditory numerical approximation task, as well as a symbolic arithmetic task and non-math control tasks. We found that the precision of approximate number representations was identical across congenitally blind and sighted groups, suggesting that the development of the Approximate Number System (ANS) does not depend on visual experience. Crucially, the relationship between numerical approximation and symbolic math abilities is preserved in congenitally blind individuals. These data support the idea that the Approximate Number System and symbolic number abilities are intrinsically linked, rather than indirectly linked through visual abilities.
Collapse
Affiliation(s)
- Shipra Kanjlia
- Department of Psychological and Brain Sciences, Johns Hopkins University, United States.
| | - Lisa Feigenson
- Department of Psychological and Brain Sciences, Johns Hopkins University, United States
| | - Marina Bedny
- Department of Psychological and Brain Sciences, Johns Hopkins University, United States
| |
Collapse
|
385
|
Kopiske KK, Franz VH. Comparing Symbolic and Nonsymbolic Number Lines: Consistent Effects of Notation Across Output Measures. Adv Cogn Psychol 2018; 14:87-100. [PMID: 32256903 PMCID: PMC7121558 DOI: 10.5709/acp-0241-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The mental number line (MNL) is a popular metaphor for magnitude representation in numerical cognition. Its shape has frequently been reported as being nonlinear, based on nonlinear response functions in magnitude estimation. We investigated whether this shape reflects a phenomenon of the mapping from stimulus to internal magnitude representation or of the mapping from internal representation to response. In five experiments, participants (total N = 66) viewed stimuli that represented numerical magnitude either in a symbolic notation (i.e., Arabic digits) or in a nonsymbolic notation (i.e., clouds of dots). Participants estimated these magnitudes by either adjusting the position of a mark on a ruler-like response bar (nonsymbolic response) or by typing the corresponding number on a keyboard (symbolic response). Responses to symbolic stimuli were markedly different from responses to nonsymbolic stimuli, in that they were mostly powershaped. We investigated whether the nonlinearity could be explained by effects of previous trials, but such effects were (a) not strong enough to explain the nonlinear responses and (b) existed only between trials of the same input notation, suggesting that the nonlinearity is due to input mappings. Introducing veridical feedback improved the accuracy of responses, thereby showing a calibration based on the feedback. However, this calibration persisted only temporarily, and responses to nonsymbolic stimuli remained nonlinear. Overall, we conclude that the nonlinearity is a phenomenon of the mapping from nonsymbolic input format to internal magnitude representation and that the phenomenon is surprisingly robust to calibration.
Collapse
Affiliation(s)
- Karl K. Kopiske
- Istituto Italiano di Tecnologia, Center for Neuroscience and Cognitive Systems, Rovereto, TN, Italy
- Chemnitz University of Technology, Institute of Physics, Cognitive Systems Lab, 09126 Chemnitz, Germany
| | - Volker H. Franz
- University of Tübingen, Department of Computer Science, Experimental Cognitive Sciences, Tübingen, Germany
| |
Collapse
|
386
|
Van ’t Noordende JE, Volman MJM, Leseman PPM, Moeller K, Dackermann T, Kroesbergen EH. The Use of Local and Global Ordering Strategies in Number Line Estimation in Early Childhood. Front Psychol 2018; 9:1562. [PMID: 30279668 PMCID: PMC6153329 DOI: 10.3389/fpsyg.2018.01562] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 08/06/2018] [Indexed: 01/29/2023] Open
Abstract
A lot of research has been devoted to number line estimation in primary school. However, less is known about the early onset of number line estimation before children enter formal education. We propose that ordering strategies are building blocks of number line estimation in early childhood. In a longitudinal study, children completed a non-symbolic number line estimation task at age 3.5 and 5 years. Two ordering strategies were identified based on the children's estimation patterns: local and global ordering. Local ordering refers to the correct ordering of successive quantities, whereas global ordering refers to the correct ordering of all quantities across the number line. Results indicated a developmental trend for both strategies. The percentage of children applying local and global ordering strategies increased steeply from 3.5 to 5 years of age. Moreover, children used more advanced local and global ordering strategies at 5 years of age. Importantly, level of strategy use was related to more traditional number line estimation outcome measures, such as estimation accuracy and regression fit scores. These results provide evidence that children use dynamic ordering strategies when solving the number line estimation task in early stages of numerical development.
Collapse
Affiliation(s)
- Jaccoline E. Van ’t Noordende
- Department of Child Development and Education, University of Amsterdam, Amsterdam, Netherlands
- Department of Special Education: Cognitive and Motor Disabilities, Utrecht University, Utrecht, Netherlands
| | - M. J. M. Volman
- Department of Special Education: Cognitive and Motor Disabilities, Utrecht University, Utrecht, Netherlands
| | - Paul P. M. Leseman
- Department of Special Education: Cognitive and Motor Disabilities, Utrecht University, Utrecht, Netherlands
| | - Korbinian Moeller
- Leibniz-Institut für Wissensmedien, Tübingen, Germany
- Department of Psychology, Universität Tübingen, Tübingen, Germany
| | | | | |
Collapse
|
387
|
Anobile G, Burr DC, Iaia M, Marinelli CV, Angelelli P, Turi M. Independent adaptation mechanisms for numerosity and size perception provide evidence against a common sense of magnitude. Sci Rep 2018; 8:13571. [PMID: 30206271 PMCID: PMC6134088 DOI: 10.1038/s41598-018-31893-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 08/09/2018] [Indexed: 01/29/2023] Open
Abstract
How numerical quantity is processed is a central issue for cognition. On the one hand the "number sense theory" claims that numerosity is perceived directly, and may represent an early precursor for acquisition of mathematical skills. On the other, the "theory of magnitude" notes that numerosity correlates with many continuous properties such as size and density, and may therefore not exist as an independent feature, but be part of a more general system of magnitude. In this study we examined interactions in sensitivity between numerosity and size perception. In a group of children, we measured psychophysically two sensory parameters: perceptual adaptation and discrimination thresholds for both size and numerosity. Neither discrimination thresholds nor adaptation strength for numerosity and size correlated across participants. This clear lack of correlation (confirmed by Bayesian analyses) suggests that numerosity and size interference effects are unlikely to reflect a shared sensory representation. We suggest these small interference effects may rather result from top-down phenomena occurring at late decisional levels rather than a primary "sense of magnitude".
Collapse
Affiliation(s)
- Giovanni Anobile
- Department of Developmental Neuroscience, Stella Maris Scientific Institute, Calambrone Pisa, Italy.
| | - David C Burr
- Department of Translational Research on New Technologies in Medicines and Surgery, University of Pisa, Pisa, Italy
- Department of Neuroscience, Psychology, Pharmacology and Child Health, University of Florence, Florence, Italy
| | - Marika Iaia
- Department of History, Society and Human Studies, Lab. of Applied Psychology and Intervention, University of Salento, Lecce, Italy
| | - Chiara V Marinelli
- Department of History, Society and Human Studies, Lab. of Applied Psychology and Intervention, University of Salento, Lecce, Italy
- IRCSS Santa Lucia, Rome, Italy
| | - Paola Angelelli
- Department of History, Society and Human Studies, Lab. of Applied Psychology and Intervention, University of Salento, Lecce, Italy
| | - Marco Turi
- Department of Translational Research on New Technologies in Medicines and Surgery, University of Pisa, Pisa, Italy
- Fondazione Stella Maris Mediterraneo, Chiaromonte, Potenza, Italy
| |
Collapse
|
388
|
Guillaume M, Van Rinsveld A. Comparing Numerical Comparison Tasks: A Meta-Analysis of the Variability of the Weber Fraction Relative to the Generation Algorithm. Front Psychol 2018; 9:1694. [PMID: 30271363 PMCID: PMC6142874 DOI: 10.3389/fpsyg.2018.01694] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Accepted: 08/22/2018] [Indexed: 01/29/2023] Open
Abstract
Since more than 15 years, researchers have been expressing their interest in evaluating the Approximate Number System (ANS) and its potential influence on cognitive skills involving number processing, such as arithmetic. Although many studies reported significant and predictive relations between ANS and arithmetic abilities, there has recently been an increasing amount of published data that failed to replicate such relationship. Inconsistencies lead many researchers to question the validity of the assessment of the ANS itself. In the current meta-analysis of over 68 experimental studies published between 2004 and 2017, we show that the mean value of the Weber fraction (w), the minimal amount of change in magnitude to detect a difference, is very heterogeneous across the literature. Within young adults, w might range from < 10 to more than 60, which is critical for its validity for research and diagnostic purposes. We illustrate here the concern that different methods controlling for non-numerical dimensions lead to substantially variable performance. Nevertheless, studies that referred to the exact same method (e.g., Panamath) showed high consistency among them, which is reassuring. We are thus encouraging researchers only to compare what is comparable and to avoid considering the Weber fraction as an abstract parameter independent from the context. Eventually, we observed that all reported correlation coefficients between the value of w and general accuracy were very high. Such result calls into question the relevance of computing and reporting at all the Weber fraction. We are thus in disfavor of the systematic use of the Weber fraction, to discourage any temptation to compare given data to some values of w reported from different tasks and generation algorithms.
Collapse
Affiliation(s)
- Mathieu Guillaume
- Cognitive Science and Assessment Institute (COSA), University of Luxembourg, Luxembourg, Luxembourg
| | - Amandine Van Rinsveld
- Centre for Research in Cognitive Neuroscience (CRCN), Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
389
|
Abstract
We describe the performance of an aphasic individual, K.A., who showed a selective impairment affecting his ability to perceive spoken language, while largely sparing his ability to perceive written language and to produce spoken language. His spoken perception impairment left him unable to distinguish words or nonwords that differed on a single phoneme and he was no better than chance at auditory lexical decision or single spoken word and single picture matching with phonological foils. Strikingly, despite this profound impairment, K.A. showed a selective sparing in his ability to perceive number words, which he was able to repeat and comprehend largely without error. This case adds to a growing literature demonstrating modality-specific dissociations between number word and non-number word processing. Because of the locus of K.A.'s speech perception deficit for non-number words, we argue that this distinction between number word and non-number word processing arises at a sublexical level of representations in speech perception, in a parallel fashion to what has previously been argued for in the organization of the sublexical level of representation for speech production.
Collapse
Affiliation(s)
| | - Rachel Mis
- b Department of Psychology , Temple University , Philadelphia , PA , USA
| | - Heather Dial
- c Department of Communication Sciences and Disorders , University of Texas-Austin , Austin , TX , USA
| |
Collapse
|
390
|
Pezzelle S, Bernardi R, Piazza M. Probing the mental representation of quantifiers. Cognition 2018; 181:117-126. [PMID: 30179744 DOI: 10.1016/j.cognition.2018.08.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 07/04/2018] [Accepted: 08/14/2018] [Indexed: 01/29/2023]
Abstract
In this study, we investigate the mental representation of non-numerical quantifiers ("some", "many", "all", etc.) by comparing their use in abstract and in grounded perceptual contexts. Using an approach similar to that used in the number domain, we test whether (and to what extent) such representation is constrained by the way we perceive the world through our senses. In two experiments, subjects either judged the similarity of quantifier pairs (presented as written words) or chose among a predetermined list of quantifiers the one that best described a visual image depicting a variable number of target and non-target items. The results were rather consistent across experiments, and indicated that quantifiers are mentally organized on an ordered but non-linear compressed scale where the quantifiers that imply small quantities appear more precisely differentiated across each other compared to those implying large quantities. This fits nicely with the idea that we construct our representations of such symbols mainly by mapping them to the representations of quantities that we derive from perception.
Collapse
Affiliation(s)
- Sandro Pezzelle
- CIMeC - Center for Mind/Brain Sciences, University of Trento, Corso Bettini, 31, Rovereto, Italy.
| | - Raffaella Bernardi
- CIMeC - Center for Mind/Brain Sciences, University of Trento, Corso Bettini, 31, Rovereto, Italy; DISI-Department of Information Engineering and Computer Science, University of Trento, Via Sommarive, 9, Trento, Italy.
| | - Manuela Piazza
- CIMeC - Center for Mind/Brain Sciences, University of Trento, Corso Bettini, 31, Rovereto, Italy.
| |
Collapse
|
391
|
Language, gesture, and judgment: Children's paths to abstract geometry. J Exp Child Psychol 2018; 177:70-85. [PMID: 30170245 DOI: 10.1016/j.jecp.2018.07.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 05/18/2018] [Accepted: 07/14/2018] [Indexed: 01/29/2023]
Abstract
As infants, children are sensitive to geometry when recognizing objects or navigating through rooms; however, explicit knowledge of geometry develops slowly and may be unstable even in adults. How can geometric concepts be both so accessible and so elusive? To examine how implicit and explicit geometric concepts develop, the current study assessed, in 132 children (3-8 years old) while they played a simple geometric judgment task, three distinctive channels: children's choices during the game as well as the language and gestures they used to justify and accompany their choices. Results showed that, for certain geometric properties, children chose the correct card even if they could not express with words (or gestures) why they had made this choice. Furthermore, other geometric concepts were expressed and supported by gestures prior to their articulation in either choices or speech. These findings reveal that gestures and behavioral choices may reflect implicit knowledge and serve as a foundation for the development of geometric reasoning. Altogether, our results suggest that language alone might not be enough for expressing and organizing geometric concepts and that children pursue multiple paths to overcome its limitations, a finding with potential implications for primary education in mathematics.
Collapse
|
392
|
Hart Y, Dillon MR, Marantan A, Cardenas AL, Spelke E, Mahadevan L. The statistical shape of geometric reasoning. Sci Rep 2018; 8:12906. [PMID: 30150653 PMCID: PMC6110727 DOI: 10.1038/s41598-018-30314-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 07/27/2018] [Indexed: 01/29/2023] Open
Abstract
Geometric reasoning has an inherent dissonance: its abstract axioms and propositions refer to perfect, idealized entities, whereas its use in the physical world relies on dynamic perception of objects. How do abstract Euclidean concepts, dynamics, and statistics come together to support our intuitive geometric reasoning? Here, we address this question using a simple geometric task – planar triangle completion. An analysis of the distribution of participants’ errors in localizing a fragmented triangle’s missing corner reveals scale-dependent deviations from a deterministic Euclidean representation of planar triangles. By considering the statistical physics of the process characterized via a correlated random walk with a natural length scale, we explain these results and further predict participants’ estimates of the missing angle, measured in a second task. Our model also predicts the results of a categorical reasoning task about changes in the triangle size and shape even when such completion strategies need not be invoked. Taken together, our findings suggest a critical role for noisy physical processes in our reasoning about elementary Euclidean geometry.
Collapse
Affiliation(s)
- Yuval Hart
- Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - Moira R Dillon
- Department of Psychology, New York University, New York, NY, 10003, USA
| | - Andrew Marantan
- Department of Physics, Harvard University, Cambridge, MA, 02138, USA
| | - Anna L Cardenas
- Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - Elizabeth Spelke
- Department of Psychology, Harvard University, Cambridge, MA, 02138, USA.,Center for Brain Science, Harvard University, Cambridge, MA, 02138, USA
| | - L Mahadevan
- Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA. .,Department of Physics, Harvard University, Cambridge, MA, 02138, USA. .,Center for Brain Science, Harvard University, Cambridge, MA, 02138, USA. .,Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA. .,The Kavli Institute for Bionano Science and Technology, Harvard University, Cambridge, MA, 02138, USA.
| |
Collapse
|
393
|
Spokes AC, Spelke ES. At 4.5 but not 5.5 years, children favor kin when the stakes are moderately high. PLoS One 2018; 13:e0202507. [PMID: 30114290 PMCID: PMC6095549 DOI: 10.1371/journal.pone.0202507] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 08/03/2018] [Indexed: 01/29/2023] Open
Abstract
Adults report more willingness to help siblings over close friends when the stakes are extremely high, such as when deciding whether to donate a kidney or risk injury to rescue someone in peril. When dividing plentiful, low-value resources, in contrast, children expect people to share equally with friends and siblings. Even when distributing limited resources-one instead of many-and distributing to their own social partners rather than fictional characters, children share more with kin and friends than with strangers but do not favor kin over friends until 5.5 years of age. However, no study has tested whether children would preferentially benefit kin if the rewards require that children incur a higher personal cost of their own time and effort. In the present experiment, therefore, we asked if children would work harder for kin over non-kin when playing a challenging geometry game that allowed them to earn rewards for others. We found that 4.5-year-old children calibrated their time and effort in the game differently according to who received the rewards-they played for more trials and answered more trials correctly for kin over non-kin, but 5.5-year-old children did not. The older children may have found the task easier and less costly or may have different social experiences affecting their efforts to benefit others. Nonetheless, 4.5-year-old children's social decisions favored kin as recipients of their generosity.
Collapse
Affiliation(s)
- Annie C. Spokes
- Department of Psychology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Elizabeth S. Spelke
- Department of Psychology, Harvard University, Cambridge, Massachusetts, United States of America
| |
Collapse
|
394
|
Ganor-Stern D. Do Exact Calculation and Computation Estimation Reflect the Same Skills? Developmental and Individual Differences Perspectives. Front Psychol 2018; 9:1316. [PMID: 30100893 PMCID: PMC6073251 DOI: 10.3389/fpsyg.2018.01316] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Accepted: 07/09/2018] [Indexed: 01/29/2023] Open
Abstract
Groups of children in 4th, 5th, and 6th grades and college students performed exact calculation and computation estimation tasks with two-digit multiplication problems. In the former they calculated the exact answer for each problem, and in the latter they estimated whether the result of each problem was larger or smaller than a given reference number. The analyses of speed and accuracy both showed different developmental patterns of the two tasks. While the accuracy of exact calculation increased with age in childhood, the accuracy of the estimation task reached its maximum level already in 4th grade and did not change with age. The reaction time of the exact calculation task was longer than that of the estimation task. The reaction time for both tasks remained constant in childhood and decreased in adulthood, with the improvement in speed larger for the exact calculation task. Similarly, within group variability in accuracy was larger in the exact calculation task than in the computation estimation task. Finally, low correlation was found between the accuracy of the two tasks. Together, these findings suggest that exact calculation and computation estimation reflect at least in part different skills.
Collapse
|
395
|
Coutrot A, Silva R, Manley E, de Cothi W, Sami S, Bohbot VD, Wiener JM, Hölscher C, Dalton RC, Hornberger M, Spiers HJ. Global Determinants of Navigation Ability. Curr Biol 2018; 28:2861-2866.e4. [PMID: 30100340 DOI: 10.1016/j.cub.2018.06.009] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 04/23/2018] [Accepted: 06/06/2018] [Indexed: 01/29/2023]
Abstract
Human spatial ability is modulated by a number of factors, including age [1-3] and gender [4, 5]. Although a few studies showed that culture influences cognitive strategies [6-13], the interaction between these factors has never been globally assessed as this requires testing millions of people of all ages across many different countries in the world. Since countries vary in their geographical and cultural properties, we predicted that these variations give rise to an organized spatial distribution of cognition at a planetary-wide scale. To test this hypothesis, we developed a mobile-app-based cognitive task, measuring non-verbal spatial navigation ability in more than 2.5 million people and sampling populations in every nation state. We focused on spatial navigation due to its universal requirement across cultures. Using a clustering approach, we find that navigation ability is clustered into five distinct, yet geographically related, groups of countries. Specifically, the economic wealth of a nation was predictive of the average navigation ability of its inhabitants, and gender inequality was predictive of the size of performance difference between males and females. Thus, cognitive abilities, at least for spatial navigation, are clustered according to economic wealth and gender inequalities globally, which has significant implications for cross-cultural studies and multi-center clinical trials using cognitive testing.
Collapse
Affiliation(s)
- Antoine Coutrot
- Institute of Behavioural Neuroscience, Department of Experimental Psychology, Division of Psychology and Language Sciences, University College London, London, UK; Laboratoire des Sciences du Numérique de Nantes, CNRS, Université de Nantes, France
| | - Ricardo Silva
- Department of Statistical Science and CSML, University College London, London, UK
| | - Ed Manley
- Centre for Advanced Spatial Analysis, University College London, London, UK
| | - Will de Cothi
- Institute of Behavioural Neuroscience, Department of Experimental Psychology, Division of Psychology and Language Sciences, University College London, London, UK
| | - Saber Sami
- Norwich Medical School, University of East Anglia, Norwich, UK
| | - Véronique D Bohbot
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | - Jan M Wiener
- Department of Psychology, Ageing and Dementia Research Centre, Bournemouth University, Poole, UK
| | | | - Ruth C Dalton
- Department of Architecture and Built Environment, Northumbria University, Newcastle upon Tyne, UK
| | | | - Hugo J Spiers
- Institute of Behavioural Neuroscience, Department of Experimental Psychology, Division of Psychology and Language Sciences, University College London, London, UK.
| |
Collapse
|
396
|
Fischer MH, Shaki S. Number concepts: abstract and embodied. Philos Trans R Soc Lond B Biol Sci 2018; 373:20170125. [PMID: 29914993 PMCID: PMC6015824 DOI: 10.1098/rstb.2017.0125] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/08/2018] [Indexed: 01/29/2023] Open
Abstract
Numerical knowledge, including number concepts and arithmetic procedures, seems to be a clear-cut case for abstract symbol manipulation. Yet, evidence from perceptual and motor behaviour reveals that natural number knowledge and simple arithmetic also remain closely associated with modal experiences. Following a review of behavioural, animal and neuroscience studies of number processing, we propose a revised understanding of psychological number concepts as grounded in physical constraints, embodied in experience and situated through task-specific intentions. The idea that number concepts occupy a range of positions on the continuum between abstract and modal conceptual knowledge also accounts for systematic heuristics and biases in mental arithmetic, thus inviting psycho-logical approaches to the study of the mathematical mind.This article is part of the theme issue 'Varieties of abstract concepts: development, use and representation in the brain'.
Collapse
Affiliation(s)
- Martin H Fischer
- Division of Cognitive Sciences, Department of Psychology, University of Potsdam, Karl-Liebknecht-Strasse 24-25, House 14, 14476 Potsdam OT Golm, Germany
- Department of Behavioral Sciences, Ariel University, Ariel 40700, Israel
| | - Samuel Shaki
- Department of Behavioral Sciences, Ariel University, Ariel 40700, Israel
| |
Collapse
|
397
|
Lupyan G, Winter B. Language is more abstract than you think, or, why aren't languages more iconic? Philos Trans R Soc Lond B Biol Sci 2018; 373:20170137. [PMID: 29915005 PMCID: PMC6015821 DOI: 10.1098/rstb.2017.0137] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/09/2018] [Indexed: 01/29/2023] Open
Abstract
How abstract is language? We show that abstractness pervades every corner of language, going far beyond the usual examples of freedom and justice In the light of the ubiquity of abstract words, the need to understand where abstract meanings come from becomes ever more acute. We argue that the best source of knowledge about abstract meanings may be language itself. We then consider a seemingly unrelated question: Why isn't language more iconic? Iconicity-a resemblance between the form of words and their meanings-can be immensely useful in language learning and communication. Languages could be much more iconic than they currently are. So why aren't they? We suggest that one reason is that iconicity is inimical to abstraction because iconic forms are too connected to specific contexts and sensory depictions. Form-meaning arbitrariness may allow language to better convey abstract meanings.This article is part of the theme issue 'Varieties of abstract concepts: development, use and representation in the brain'.
Collapse
Affiliation(s)
- Gary Lupyan
- Department of Psychology, University of Wisconsin, Madison, WI 53706, USA
| | - Bodo Winter
- Department of English Language and Applied Linguistics, University of Birmingham, Birmingham, UK
| |
Collapse
|
398
|
Nature and nurture effects on the spatiality of the mental time line. Sci Rep 2018; 8:11710. [PMID: 30076378 PMCID: PMC6076263 DOI: 10.1038/s41598-018-29584-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 07/03/2018] [Indexed: 01/29/2023] Open
Abstract
The nature-nurture debate regarding the origin of mental lines is fundamental for cognitive neuroscience. We examined natural-nurture effects on the mental time line, applying three different challenges to the directionality of time representation. We tested (1) patients with left-neglect and healthy participants, who are (2) left-to-right or right-to-left readers/writers, using (3) a lateralized left-right button press or a vocal mode in response to a mental time task, which asks participants to judge whether events have already happened in the past or are still to happen in the future. Using lateralized responses, a spatial-temporal association of response code (STEARC) effect was found, in concordance with the cultural effects. With vocal responses (no lateralization), past and future events showed similar results in both cultures. In patients with neglect, who have a deficit of spatial attention in processing the left side of space, future events were processed more slowly and less accurately than past events in both cultures. Our results indicate the existence of a “natural” disposition to map past and future events along a horizontal mental time line, which is affected by the different ways in which spatial representation of time is introduced.
Collapse
|
399
|
Okruszek Ł, Wordecha M, Jarkiewicz M, Kossowski B, Lee J, Marchewka A. Brain correlates of recognition of communicative interactions from biological motion in schizophrenia. Psychol Med 2018; 48:1862-1871. [PMID: 29173243 DOI: 10.1017/s0033291717003385] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND Recognition of communicative interactions is a complex social cognitive ability which is associated with a specific neural activity in healthy individuals. However, neural correlates of communicative interaction processing from whole-body motion have not been known in patients with schizophrenia (SCZ). Therefore, the current study aims to examine the neural activity associated with recognition of communicative interactions in SCZ by using displays of the dyadic interactions downgraded to minimalistic point-light presentations. METHODS Twenty-six healthy controls (HC) and 25 SCZ were asked to judge whether two agents presented only by point-light displays were communicating or acting independently. Task-related activity and functional connectivity of brain structures were examined with General Linear Model and Generalized Psychophysiological Interaction approach, respectively. RESULTS HC were significantly more efficient in recognizing each type of action than SCZ. At the neural level, the activity of the right posterior superior temporal sulcus (pSTS) was observed to be higher in HC compared with SCZ for communicative v. individual action processing. Importantly, increased connectivity of the right pSTS with structures associated with mentalizing (left pSTS) and mirroring networks (left frontal areas) was observed in HC, but not in SCZ, during the presentation of social interactions. CONCLUSION Under-recruitment of the right pSTS, a structure known to have a pivotal role in social processing, may also be of importance for higher-order social cognitive deficits in SCZ. Furthermore, decreased task-related connectivity of the right pSTS may result in reduced use of additional sources of information (for instance motor resonance signals) during social cognitive processing in schizophrenia.
Collapse
Affiliation(s)
- Ł Okruszek
- Faculty of Psychology, University of Warsaw, Warsaw, Poland
| | - M Wordecha
- Clinical Neuroscience Lab, Institute of Psychology, Polish Academy of Sciences, Warsaw, Poland
| | - M Jarkiewicz
- Institute of Psychiatry and Neurology, Warsaw, Poland
| | - B Kossowski
- Laboratory of Brain Imaging, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - J Lee
- Department of Psychiatry & Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, UCLA, Los Angeles, CA, USA
- VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| | - A Marchewka
- Laboratory of Brain Imaging, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
400
|
Mueller SM, Brand M. Approximate Number Processing Skills Contribute to Decision Making Under Objective Risk: Interactions With Executive Functions and Objective Numeracy. Front Psychol 2018; 9:1202. [PMID: 30057562 PMCID: PMC6053537 DOI: 10.3389/fpsyg.2018.01202] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 06/22/2018] [Indexed: 01/29/2023] Open
Abstract
Research on the cognitive abilities involved in decision making has shown that, under objective risk conditions (i.e., when explicit information about possible outcomes and risks is available), superior decisions are especially predicted by executive functions and exact number processing skills, also referred to as objective numeracy. So far, decision-making research has mainly focused on exact number processing skills, such as performing calculations or transformations of symbolic numbers. There is evidence that such exact numeric skills are based on approximate number processing (ANP) skills, which enable quick and accurate processing of non-symbolic numbers (e.g., Chen and Li, 2014). Very few studies, however, have investigated ANP skills in the context of risky decision making and have analyzed direct associations among the aforementioned sub functions. Possible interactions between the closely related skills have not been considered. The current study (N = 128) examines interactions of ANP skills with executive functions and objective numeracy, in predicting risky choice behavior. ANP skills are represented by the accuracy in a dot-comparison task. Decision making is measured by two versions of the Game of Dice Task (GDT), which place different emphases on the reflection of potential risks. The results show two-way as well as three-way interactions between the measures of ANP skills, executive functions, and objective numeracy in predicting risky decisions in both GDT versions. The riskiest decisions were most frequently made in case of low scores in all of the three competencies, while good performance in any one of them resulted in significant reductions of disadvantageous decisions. The findings indicate that high ANP skills can positively affect choice behavior in individuals who have weaknesses in reflectively attributed skills, namely executive functions and objective numeracy. Potential compensatory effects and mechanisms of ANP in decision making are discussed.
Collapse
Affiliation(s)
- Silke M Mueller
- General Psychology: Cognition and Center for Behavioral Addiction Research, University of Duisburg-Essen, Duisburg, Germany
| | - Matthias Brand
- General Psychology: Cognition and Center for Behavioral Addiction Research, University of Duisburg-Essen, Duisburg, Germany.,Erwin L. Hahn Institute for Magnetic Resonance Imaging, Essen, Germany
| |
Collapse
|