351
|
Kim GD. Ursolic Acid Decreases the Proliferation of MCF-7 Cell-Derived Breast Cancer Stem-Like Cells by Modulating the ERK and PI3K/AKT Signaling Pathways. Prev Nutr Food Sci 2021; 26:434-444. [PMID: 35047440 PMCID: PMC8747966 DOI: 10.3746/pnf.2021.26.4.434] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Cancer stem cells are strong drivers of metastasis and cancer relapse, which makes them important therapeutic targets. Ursolic acid (UA), a pentacyclic triterpenoid, has anticancer effects in various types of cancer; however, little is known about its effect on the growth of MCF-7 cell-derived breast cancer stem (BCS)-like cells in estrogen receptor positive breast cancer. In this study, the anticancer activity of UA in MCF-7 cell-derived BCS-like cells and its mechanism of action were evaluated. Furthermore, its inhibitory effects on the proliferation of MCF-7 cell-derived BCS-like cells were compared with that on MCF-7 cells. In MCF-7 cells, UA increased p53 and p21 expression but decreased cyclin D, cyclin E, CDK4, and CDK2 expression to induce cell cycle arrest in the G0/G1 phase. Moreover, UA significantly suppressed migration, invasion, and colony formation in MCF-7 cells, and suppressed mammosphere formation in a concentration- dependent manner. In MCF-7 cell-derived BCS-like cells, UA significantly decreased migration, suppressed p-PI3K, p-AKT, and p-ERK expression, and enhanced p-FoxO1/FoxO3a expression. Accordingly, in MCF-7 cell-derived BCS-like cells, UA suppressed proliferation in part by downregulating ERK and PI3K/AKT signaling pathways. These findings provide the first evidence for the selective effects of UA in BCSs.
Collapse
Affiliation(s)
- Gi Dae Kim
- Department of Food and Nutrition, Kyungnam University, Gyeongnam 51767, Korea
| |
Collapse
|
352
|
Lešnik S, Bren U. Mechanistic Insights into Biological Activities of Polyphenolic Compounds from Rosemary Obtained by Inverse Molecular Docking. Foods 2021; 11:67. [PMID: 35010191 PMCID: PMC8750736 DOI: 10.3390/foods11010067] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/23/2021] [Accepted: 12/24/2021] [Indexed: 01/18/2023] Open
Abstract
Rosemary (Rosmarinus officinalis L.) represents a medicinal plant known for its various health-promoting properties. Its extracts and essential oils exhibit antioxidative, anti-inflammatory, anticarcinogenic, and antimicrobial activities. The main compounds responsible for these effects are the diterpenes carnosic acid, carnosol, and rosmanol, as well as the phenolic acid ester rosmarinic acid. However, surprisingly little is known about the molecular mechanisms responsible for the pharmacological activities of rosemary and its compounds. To discern these mechanisms, we performed a large-scale inverse molecular docking study to identify their potential protein targets. Listed compounds were separately docked into predicted binding sites of all non-redundant holo proteins from the Protein Data Bank and those with the top scores were further examined. We focused on proteins directly related to human health, including human and mammalian proteins as well as proteins from pathogenic bacteria, viruses, and parasites. The observed interactions of rosemary compounds indeed confirm the beforementioned activities, whereas we also identified their potential for anticoagulant and antiparasitic actions. The obtained results were carefully checked against the existing experimental findings from the scientific literature as well as further validated using both redocking procedures and retrospective metrics.
Collapse
Affiliation(s)
- Samo Lešnik
- Laboratory of Physical Chemistry and Chemical Thermodynamics, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova 17, SI-2000 Maribor, Slovenia;
| | - Urban Bren
- Laboratory of Physical Chemistry and Chemical Thermodynamics, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova 17, SI-2000 Maribor, Slovenia;
- Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Glagoljaška 8, SI-6000 Koper, Slovenia
| |
Collapse
|
353
|
Jiang P, Li F, Liu Z, Hao S, Gao J, Li S. BTB and CNC homology 1 (Bach1) induces lung cancer stem cell phenotypes by stimulating CD44 expression. Respir Res 2021; 22:320. [PMID: 34949193 PMCID: PMC8697453 DOI: 10.1186/s12931-021-01918-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/17/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Growing evidence suggests that cancer stem cells (CSCs) are responsible for cancer initiation in tumors. Bach1 has been identified to contribute to several tumor progression, including lung cancer. The role of Bach1 in CSCs remains poorly known. Therefore, the function of Bach1 on lung CSCs was focused currently. METHODS The expression of Bach1, CD133, CD44, Sox2, Nanog and Oct4 mRNA was assessed using Real-Time Quantitative Reverse Transcription PCR (RT-qPCR). Protein expression of Bach1, CD133, CD44, Sox2, Nanog, Oct4, p53, BCL2, BAX, p-p38, p-AKT1, c-Fos and c-Jun protein was analyzed by western blotting. 5-ethynyl-29-deoxyuridine (EdU), colony formation, Flow cytometry analysis and transwell invasion assay were carried out to analyze lung cancer cell proliferation, apoptosis and invasion respectively. Tumor sphere formation assay was utilized to evaluate spheroid capacity. Flow cytometry analysis was carried out to isolate CD133 or CD44 positive lung cancer cells. The relationship between Bach1 and CD44 was verified using ChIP-qPCR and dual-luciferase reporter assay. Xenograft tumor tissues were collected for hematoxylin and eosin (HE) staining and IHC analysis to evaluate histology and Ki-67. RESULTS The ratio of CD44 + CSCs from A549 and SPC-A1 cells were significantly enriched. Tumor growth of CD44 + CSCs was obviously suppressed in vivo compared to CD44- CSCs. Bach1 expression was obviously increased in CD44 + CSCs. Then, via using the in vitro experiment, it was observed that CSCs proliferation and invasion were greatly reduced by the down-regulation of Bach1 while cell apoptosis was triggered by knockdown of Bach1. Loss of Bach1 was able to repress tumor-sphere formation and tumor-initiating CSC markers. A repression of CSCs growth and metastasis of shRNA-Bach1 was confirmed using xenograft models and caudal vein injection. The direct interaction between Bach1 and CD44 was confirmed by ChIP-qPCR and dual-luciferase reporter assay. Furthermore, mitogen-activated protein kinases (MAPK) signaling pathway was selected and we proved the effects of Bach1 on lung CSCs were associated with the activation of the MAPK pathway. As manifested, loss of Bach1 was able to repress p-p38, p-AKT1, c-Fos, c-Jun protein levels in lung CSCs. Inhibition of MAPK signaling remarkably restrained lung CSCs growth and CSCs properties induced by Bach1 overexpression. CONCLUSION In summary, we imply that Bach1 demonstrates great potential for the treatment of lung cancer metastasis and recurrence via activating CD44 and MPAK signaling.
Collapse
Affiliation(s)
- Pan Jiang
- Department of Nutrition, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, China
| | - Fan Li
- Department of Nutrition, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, China
| | - Zilong Liu
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, China
| | - Shengyu Hao
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, China.
| | - Jian Gao
- Department of Nutrition, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, China.
| | - Shanqun Li
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, China.
| |
Collapse
|
354
|
Cui X, Huang X, Huang M, Zhou S, Guo L, Yu W, Duan M, Jiang B, Zeng J, Zhou J, Huang X, Liang P, Zhang P. miR-24-3p obstructs the proliferation and migration of HSFs after thermal injury by targeting PPAR-β and positively regulated by NF-κB. Exp Dermatol 2021; 31:841-853. [PMID: 34932851 DOI: 10.1111/exd.14517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 12/03/2021] [Accepted: 12/19/2021] [Indexed: 11/30/2022]
Abstract
Thermal injury repair is a complex process during which the maintenance of the proliferation and migration of human skin fibroblasts (HSFs) exert a crucial role. MicroRNAs have been proven to exert an essential function in repairing skin burns. This study delves into the regulatory effects of miR-24-3p on the migration and proliferation of HSFs that have sustained a thermal injury; thereby, providing deeper insight into thermal injury repair pathogenesis. The PPAR-β protein expression level progressively increased in a time-dependent manner on the 12th , 24th , and 48th hour following the thermal injury of the HSFs. The knockdown of PPAR-β markedly suppressed the proliferation of and migration of HSF. Following thermal injury, the knockdown also promoted the inflammatory cytokine IL-6, TNF-, PTGS-2, and P65 expression. PPAR-β contrastingly exhibited an opposite trend. A targeted relationship between PPAR-β and miR-24-3p was predicted and verified. miR-24-3p inhibited thermal injured-HSFs proliferation and migration and facilitated inflammatory cytokine expression through the regulation of PPAR-β. p65 directly targeted the transcriptional precursor of miR-24 and promoted miR-24 expression. A negative correlation between miR-24-3p expression level and PPAR-β expression level in rats burnt dermal tissues was observed. Our findings reveal that miR-24-3p is conducive to rehabilitating the denatured dermis, which may be beneficial in providing effective therapy of skin burns.
Collapse
Affiliation(s)
- Xu Cui
- Department of Burns and Plastic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P. R. China
| | - Xu Huang
- Department of Hyperbaric Oxygen, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P. R. China
| | - Mitao Huang
- Department of Burns and Plastic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P. R. China
| | - Situo Zhou
- Department of Burns and Plastic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P. R. China
| | - Le Guo
- Department of Burns and Plastic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P. R. China
| | - Wenchang Yu
- Department of Burns and Plastic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P. R. China
| | - Mengting Duan
- Department of Burns and Plastic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P. R. China
| | - Bimei Jiang
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, 410008, P. R. China
| | - Jizhang Zeng
- Department of Burns and Plastic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P. R. China
| | - Jie Zhou
- Department of Burns and Plastic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P. R. China
| | - Xiaoyuan Huang
- Department of Burns and Plastic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P. R. China
| | - Pengfei Liang
- Department of Burns and Plastic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P. R. China
| | - Pihong Zhang
- Department of Burns and Plastic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P. R. China
| |
Collapse
|
355
|
Diagnostic value of PPARδ and miRNA-17 expression levels in patients with non-small cell lung cancer. Sci Rep 2021; 11:24136. [PMID: 34921177 PMCID: PMC8683395 DOI: 10.1038/s41598-021-03312-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 11/25/2021] [Indexed: 12/25/2022] Open
Abstract
The PPARδ gene codes protein that belongs to the peroxisome proliferator-activated receptor (PPAR) family engaged in a variety of biological processes, including carcinogenesis. Specific biological and clinical roles of PPARδ in non-small cell lung cancer (NSCLC) is not fully explained. The association of PPARα with miRNA regulators (e.g. miRNA-17) has been documented, suggesting the existence of a functional relationship of all PPARs with epigenetic regulation. The aim of the study was to determine the PPARδ and miR-17 expression profiles in NSCLC and to assess their diagnostic value in lung carcinogenesis. PPARδ and miR-17 expressions was assessed by qPCR in NSCLC tissue samples (n = 26) and corresponding macroscopically unchanged lung tissue samples adjacent to the primary lesions served as control (n = 26). PPARδ and miR-17 expression were significantly lower in NSCLC than in the control (p = 0.0001 and p = 0.0178; respectively). A receiver operating characteristic (ROC) curve analysis demonstrated the diagnostic potential in discriminating NSCLC from the control with an area under the curve (AUC) of 0.914 for PPARδ and 0.692 for miR-17. Significant increase in PPARδ expression in the control for current smokers vs. former smokers (p = 0.0200) and increase in miR-17 expression in control tissue adjacent to adenocarcinoma subtype (p = 0.0422) were observed. Overexpression of miR-17 was observed at an early stage of lung carcinogenesis, which may suggest that it acts as a putative oncomiR. PPARδ and miR-17 may be markers differentiating tumour tissue from surgical margin and miR-17 may have diagnostic role in NSCLC histotypes differentiation.
Collapse
|
356
|
Leu JG, Wang CM, Chen CY, Yang YF, Shih CY, Lin JT, Chen HM, Liang YJ. The Cell Protective Effect of Adenine on Hypoxia-Reoxygenation Injury through PPAR Delta Activation. Life (Basel) 2021; 11:life11121408. [PMID: 34947939 PMCID: PMC8703696 DOI: 10.3390/life11121408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/01/2021] [Accepted: 12/14/2021] [Indexed: 12/22/2022] Open
Abstract
Ischemia followed by blood supply reperfusion in cardiomyocytes leads to an overproduction of free radicals and a rapid decrease of adenosine triphosphate concentration. The cardioprotective effect of a potential drug, adenine, was evaluated using H9c2 rat cardiomyoblasts. After hypoxia–reoxygenation (HR) treatment consisting of hypoxia for 21 h followed by reoxygenation for 6 h, it was revealed that pretreatment with 200 µM adenine for 2 h effectively prevented HR-induced cell death. Adenine also significantly decreased the production of reactive oxygen species and reduced cell apoptosis after HR injury. The antioxidant effect of adenine was also revealed in this study. Adenine pretreatment significantly reduced the expression of activating transcription factor 4 (ATF4) and glucose-regulated protein 78 (GRP78) proteins, and protein disulfide isomerase induced a protective effect on mitochondria after HR stimulation. Intracellular adenosine monophosphate-activated protein kinase, peroxisome proliferator-activated receptor delta (PPARδ), and perilipin levels were increased by adenine after HR stimulation. Adenine had a protective effect in HR-damaged H9c2 cells. It may be used in multiple preventive medicines in the future.
Collapse
Affiliation(s)
- Jyh-Gang Leu
- School of Medicine, Fu-Jen Catholic University, New Taipei City 24205, Taiwan;
- Division of Nephrology, Department of Internal Medicine, Shin Kong Wu Ho-Su Memorial Hospital, Taipei 11101, Taiwan
| | - Chien-Mei Wang
- Department and Institute of Life Science, Fu-Jen Catholic University, New Taipei City 24205, Taiwan; (C.-M.W.); (H.-M.C.)
| | - Chao-Yi Chen
- Graduate Institute of Applied Science and Engineering, Fu-Jen Catholic University, New Taipei City 24205, Taiwan; (C.-Y.C.); (Y.-F.Y.); (C.-Y.S.)
| | - Yi-Feng Yang
- Graduate Institute of Applied Science and Engineering, Fu-Jen Catholic University, New Taipei City 24205, Taiwan; (C.-Y.C.); (Y.-F.Y.); (C.-Y.S.)
| | - Chin-Yu Shih
- Graduate Institute of Applied Science and Engineering, Fu-Jen Catholic University, New Taipei City 24205, Taiwan; (C.-Y.C.); (Y.-F.Y.); (C.-Y.S.)
| | - Jiun-Tsai Lin
- Energenesis Biomedical Co., Ltd., Taipei 11492, Taiwan;
| | - Han-Min Chen
- Department and Institute of Life Science, Fu-Jen Catholic University, New Taipei City 24205, Taiwan; (C.-M.W.); (H.-M.C.)
- Graduate Institute of Applied Science and Engineering, Fu-Jen Catholic University, New Taipei City 24205, Taiwan; (C.-Y.C.); (Y.-F.Y.); (C.-Y.S.)
- Energenesis Biomedical Co., Ltd., Taipei 11492, Taiwan;
| | - Yao-Jen Liang
- Graduate Institute of Applied Science and Engineering, Fu-Jen Catholic University, New Taipei City 24205, Taiwan; (C.-Y.C.); (Y.-F.Y.); (C.-Y.S.)
- Energenesis Biomedical Co., Ltd., Taipei 11492, Taiwan;
- Correspondence: ; Tel.: +886-2-2905-3593
| |
Collapse
|
357
|
Park SY, Lee HJ, Song JH, Shin YK, Abd El-Aty AM, Ramadan A, Hacimuftuoglu A, Jeong JH, Jung TW. Dimethyl itaconate attenuates palmitate-induced insulin resistance in skeletal muscle cells through the AMPK/FGF21/PPARδ-mediated suppression of inflammation. Life Sci 2021; 287:120129. [PMID: 34774619 DOI: 10.1016/j.lfs.2021.120129] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 10/29/2021] [Accepted: 11/06/2021] [Indexed: 01/22/2023]
Abstract
AIM Itaconate (ITA), a derivative of the tricarboxylic acid cycle, has been documented to have a direct antimicrobial effect by inhibiting isocitrate lyase and suppressing proinflammatory cytokines in LPS-treated macrophages. However, the effects of dimethyl ITA (DITA), a membrane-permeable derivative of ITA, on insulin signaling and inflammation in skeletal muscle in an obese state remain to be elucidated. Thus, this study was designed to investigate the effects of DITA on the impairment of insulin signaling and inflammation in palmitate-treated C2C12 myocytes. MATERIALS AND METHODS Western blotting was used to determine the expression of insulin signaling associated genes, inflammatory markers, fibroblast growth factor 21 (FGF21), and PPARδ expression, as well as AMPK phosphorylation in mouse skeletal muscle cells. Secreted proinflammatory cytokine levels were detected by enzyme-linked immunosorbent assay. Insulin signaling was assessed by glucose uptake assay. KEY FINDINGS Treating C2C12 myocytes with DITA attenuated palmitate-induced aggravation of insulin signaling markers, such as insulin receptor substrate-1 (IRS-1) and Akt phosphorylation and inflammatory markers, such as NFκB and IκB phosphorylation. AMPK phosphorylation, as well as PPARδ and myokine FGF21 expression, were enhanced in C2C12 myocytes by DITA treatment. siRNA-mediated suppression of AMPK or FGF21 expression abolished the effects of DITA on insulin resistance and inflammation in palmitate-treated C2C12 myocytes. SIGNIFICANCE In sum, DITA suppresses inflammation through the AMPK/FGF21/PPARδ signaling, thereby alleviating insulin resistance in palmitate-treated C2C12 myocytes. The current study appears to be an essential basis for performing animal experiments to develop insulin resistance therapeutics.
Collapse
Affiliation(s)
- Seung Yeon Park
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea; Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, Republic of Korea
| | - Hyun Jung Lee
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, Republic of Korea; Department of Anatomy and Cell Biology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - Jin-Ho Song
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - Yong Kyoo Shin
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea.
| | - A M Abd El-Aty
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt; Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum, Turkey.
| | - Amer Ramadan
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - A Hacimuftuoglu
- Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum, Turkey
| | - Ji Hoon Jeong
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea; Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, Republic of Korea
| | - Tae Woo Jung
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea.
| |
Collapse
|
358
|
Chen M, Lin W, Ye R, Yi J, Zhao Z. PPARβ/δ Agonist Alleviates Diabetic Osteoporosis via Regulating M1/M2 Macrophage Polarization. Front Cell Dev Biol 2021; 9:753194. [PMID: 34901001 PMCID: PMC8661472 DOI: 10.3389/fcell.2021.753194] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 11/05/2021] [Indexed: 02/05/2023] Open
Abstract
Diabetic osteoporosis is a common complication in diabetic patients, leading to increased fracture risk and impaired bone healing. As a member of the peroxisome proliferator-activated receptor (PPAR) family, PPARβ/δ agonist is suggested as a therapeutic target for the treatment of metabolic syndrome, and has been reported to positively regulate bone turnover by improving osteogenesis. However, its regulatory role in diabetic osteoporosis has not been reported yet. Here, we explored the therapeutic effects and potential mechanisms of PPARβ/δ agonist to the osteoporotic phenotypes of diabetic mice. Our results indicated that the osteoporotic phenotypes could be significantly ameliorated in diabetic mice by the administration of PPARβ/δ agonists. In vitro experiments suggested that PPARβ/δ agonist treatment could alleviate the abnormal increase of osteoclast activity in diabetic mice by rectifying high glucose-mediated macrophage dysfunction instead of directly inhibiting osteoclast differentiation. Mechanistically, Angptl4 may act as a downstream target of PPARβ/δ to regulate macrophage polarization. In conclusion, our study demonstrates the potential of PPARβ/δ agonist as a therapeutic target for the treatment of osteoporosis and immune homeostasis disorder in diabetic patients.
Collapse
Affiliation(s)
- Miao Chen
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Weimin Lin
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Rui Ye
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jianru Yi
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhihe Zhao
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
359
|
Emerging Therapeutic Agents for Colorectal Cancer. Molecules 2021; 26:molecules26247463. [PMID: 34946546 PMCID: PMC8707340 DOI: 10.3390/molecules26247463] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/03/2021] [Accepted: 12/06/2021] [Indexed: 02/07/2023] Open
Abstract
There are promising new therapeutic agents for CRC patients, including novel small-molecule inhibitors and immune checkpoint blockers. We focused on emerging CRC’s therapeutic agents that have shown the potential for progress in clinical practice. This review provides an overview of tyrosine kinase inhibitors targeting VEGF and KIT, BRAF and MEK inhibitors, TLR9 agonist, STAT3 inhibitors, and immune checkpoint blockers (PD1/PDL-1 inhibitors), for which recent advances have been reported. These new agents have the potential to provide benefits to CRC patients with unmet medical needs.
Collapse
|
360
|
Cao L, Zhu Y, Wang W, Wang G, Zhang S, Cheng H. Emerging Nano-Based Strategies Against Drug Resistance in Tumor Chemotherapy. Front Bioeng Biotechnol 2021; 9:798882. [PMID: 34950650 PMCID: PMC8688801 DOI: 10.3389/fbioe.2021.798882] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 11/19/2021] [Indexed: 02/05/2023] Open
Abstract
Drug resistance is the most significant causes of cancer chemotherapy failure. Various mechanisms of drug resistance include tumor heterogeneity, tumor microenvironment, changes at cellular levels, genetic factors, and other mechanisms. In recent years, more attention has been paid to tumor resistance mechanisms and countermeasures. Nanomedicine is an emerging treatment platform, focusing on alternative drug delivery and improved therapeutic effectiveness while reducing side effects on normal tissues. Here, we reviewed the principal forms of drug resistance and the new possibilities that nanomaterials offer for overcoming these therapeutic barriers. Novel nanomaterials based on tumor types are an excellent modality to equalize drug resistance that enables gain more rational and flexible drug selectivity for individual patient treatment. With the emergence of advanced designs and alternative drug delivery strategies with different nanomaterials, overcome of multidrug resistance shows promising and opens new horizons for cancer therapy. This review discussed different mechanisms of drug resistance and recent advances in nanotechnology-based therapeutic strategies to improve the sensitivity and effectiveness of chemotherapeutic drugs, aiming to show the advantages of nanomaterials in overcoming of drug resistance for tumor chemotherapy, which could accelerate the development of personalized medicine.
Collapse
Affiliation(s)
- Lei Cao
- Department of Pathology, Quanzhou Women’s and Children’s Hospital, Quanzhou, China
| | - Yuqin Zhu
- Department of Pathology, Quanzhou Women’s and Children’s Hospital, Quanzhou, China
| | - Weiju Wang
- Department of Pathology, Qingyuan Maternal and Child Health Hospital, Qingyuan, China
| | - Gaoxiong Wang
- Department of Pathology, Quanzhou Women’s and Children’s Hospital, Quanzhou, China
| | - Shuaishuai Zhang
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Hongwei Cheng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics and Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, China
| |
Collapse
|
361
|
Bahmad HF, Daher D, Aljamal AA, Elajami MK, Oh KS, Alvarez Moreno JC, Delgado R, Suarez R, Zaldivar A, Azimi R, Castellano A, Sackstein R, Poppiti RJ. Repurposing of Anticancer Stem Cell Drugs in Brain Tumors. J Histochem Cytochem 2021; 69:749-773. [PMID: 34165342 PMCID: PMC8647630 DOI: 10.1369/00221554211025482] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 05/03/2021] [Indexed: 11/22/2022] Open
Abstract
Brain tumors in adults may be infrequent when compared with other cancer etiologies, but they remain one of the deadliest with bleak survival rates. Current treatment modalities encompass surgical resection, chemotherapy, and radiotherapy. However, increasing resistance rates are being witnessed, and this has been attributed, in part, to cancer stem cells (CSCs). CSCs are a subpopulation of cancer cells that reside within the tumor bulk and have the capacity for self-renewal and can differentiate and proliferate into multiple cell lineages. Studying those CSCs enables an increasing understanding of carcinogenesis, and targeting CSCs may overcome existing treatment resistance. One approach to weaponize new drugs is to target these CSCs through drug repurposing which entails using drugs, which are Food and Drug Administration-approved and safe for one defined disease, for a new indication. This approach serves to save both time and money that would otherwise be spent in designing a totally new therapy. In this review, we will illustrate drug repurposing strategies that have been used in brain tumors and then further elaborate on how these approaches, specifically those that target the resident CSCs, can help take the field of drug repurposing to a new level.
Collapse
Affiliation(s)
- Hisham F. Bahmad
- Arkadi M. Rywlin M.D. Department of Pathology
and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach,
Florida
| | - Darine Daher
- Faculty of Medicine, American University of
Beirut, Beirut, Lebanon
| | - Abed A. Aljamal
- Department of Internal Medicine, Mount Sinai
Medical Center, Miami Beach, Florida
| | - Mohamad K. Elajami
- Department of Internal Medicine, Mount Sinai
Medical Center, Miami Beach, Florida
| | - Kei Shing Oh
- Arkadi M. Rywlin M.D. Department of Pathology
and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach,
Florida
| | - Juan Carlos Alvarez Moreno
- Arkadi M. Rywlin M.D. Department of Pathology
and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach,
Florida
| | - Ruben Delgado
- Arkadi M. Rywlin M.D. Department of Pathology
and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach,
Florida
| | - Richard Suarez
- Department of Pathology, Herbert Wertheim
College of Medicine, Florida International University, Miami, Florida
| | - Ana Zaldivar
- Arkadi M. Rywlin M.D. Department of Pathology
and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach,
Florida
| | - Roshanak Azimi
- Arkadi M. Rywlin M.D. Department of Pathology
and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach,
Florida
| | - Amilcar Castellano
- Arkadi M. Rywlin M.D. Department of Pathology
and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach,
Florida
- Department of Pathology, Herbert Wertheim
College of Medicine, Florida International University, Miami, Florida
| | - Robert Sackstein
- Department of Translational Medicine,
Translational Glycobiology Institute, Herbert Wertheim College of Medicine,
Florida International University, Miami, Florida
| | - Robert J. Poppiti
- Arkadi M. Rywlin M.D. Department of Pathology
and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach,
Florida
- Department of Pathology, Herbert Wertheim
College of Medicine, Florida International University, Miami, Florida
| |
Collapse
|
362
|
Fahmi MN, Hertapanndika IN, Kusuma F. The Prognostic Value of Cancer Stem Cell Markers in Cervical Cancer: A Systematic Review and Meta-Analysis. Asian Pac J Cancer Prev 2021; 22:4057-4065. [PMID: 34967589 PMCID: PMC9080387 DOI: 10.31557/apjcp.2021.22.12.4057] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 12/18/2021] [Indexed: 11/25/2022] Open
Abstract
OBJECTIVES Prognostic biomarkers in cervical cancer are widely investigated, including cancer stem cell (CSC) markers. However, their significance remains uncertain. This study aimed to determine the role of cervical cancer stem cell (CCSC) markers for survival. MATERIALS AND METHODS We conducted a systematic review and meta-analysis (PROSPERO CRD42021237072) of studies reporting CCSC markers as the prognostic predictor based on PRISMA guidelines. We included English articles investigating associations of CCSCs expression in tissue tumor with overall survival (OS) or disease-free survival (DFS) from PubMed, EBSCO, and The Cochrane Library databases. The quality of studies was analyzed based on Newcastle-Ottawa Quality Assessment Scale. RESULTS From 413 publications, after study selection with inclusion and exclusion criteria, 22 studies were included. High expressions of CCSC markers were associated with poor OS and DFS (HR= 1.05, 95% CI: 1.03 - 1.07, P <0.0001; HR= 1.31, 95% CI: 1.09 - 1.17, P <0.00001; respectively). Sub-analysis of individual CCSC markers indicated significant correlations between CD44 (HR= 1.14, 95% CI: 1.07 - 1.22, P 0.0001), SOX2 (HR= 1.58, 95% CI: 1.17 - 2.14, P 0.003), OCT4 (HR= 1.03, 95% CI: 1.01 - 1.06, P 0.008), ALDH1 (HR= 1.36, 95% CI: 1.13 - 1.64, P 0.001), and CD49f (HR= 3.02, 95% CI: 1.37 - 6.64, P 0.006) with worse OS; OCT4 (HR= 1.14, 95% CI 1.06 - 1.22, P 0.0003), SOX2 (HR= 1.11, 95% CI: 1.06 - 1.16, P <0.0001), and ALDH1 (HR= 1.22, 95% CI: 1.10 - 1.35, P 0.0002) with poor DFS. We did not conduct a meta-analysis for MSI-1 and CK17 because only one study investigated those markers. CONCLUSION Expressions of OCT4, SOX2, and ALDH1 were associated with poor OS and DFS in cervical cancer tissue. These markers might have potential roles as prognostic biomarkers to predict unfavorable survival.
Collapse
Affiliation(s)
- Moh Nailul Fahmi
- Department of Obstetrics and Gynecology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Dr. Sardjito Hospital, Yogyakarta, Indonesia.
- Fellowship Gynecology Oncology Division, Department of Obstetrics and Gynecology, Universitas Indonesia, Dr. Cipto Mangunkusumo General Hospital, Faculty of Medicine, Jakarta, Indonesia.
| | | | - Fitriyadi Kusuma
- Gynecology Oncology Division, Department of Obstetrics and Gynecology, Universitas Indonesia, Dr. Cipto Mangunkusumo General Hospital, Faculty of Medicine, Jakarta, Indonesia.
| |
Collapse
|
363
|
Wei W, Wang L, Xu L, Liang J, Teng L. MiR-199 Reverses the Resistance to Gemcitabine in Pancreatic Cancer by Suppressing Stemness through Regulating the Epithelial-Mesenchymal Transition. ACS OMEGA 2021; 6:31435-31446. [PMID: 34869970 PMCID: PMC8637594 DOI: 10.1021/acsomega.1c02945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 08/04/2021] [Indexed: 06/13/2023]
Abstract
PURPOSE the present study aims to investigate the function of miR-199 on gemcitabine (GEM)-resistance in pancreatic cancer, as well as the underlying mechanism. METHODS the GEM-resistant SW1990 cell line (SW1990/SZ) was established. The CCK-8 assay was used to detect the cell viability. The self-renewal of SW1990/SZ cells was evaluated by sphere formation and the colony formation assay. The apoptosis was detected by flow cytometry and the migration ability was measured by the transwell assay. The dual-luciferase gene reporter assay was utilized to confirm the binding between miR-199 and Snail. The expression level of CD44, ALDH1, Nanog, E-cadherin, Vimentin, β-catenin, and Snail was determined by the Western blotting assay. RESULTS the cell sphere formation rate, number of spheres, and expression level of CD44, ALDH1, and Nanog in GEM-treated SW1990/SZ cells were significantly suppressed by miR-199, accompanied by declined proliferation ability, an increased apoptotic rate, inhibited migration ability, and suppressed EMT progression. The binding site between miR-199 and 3'-UTR of Snail was predicted and confirmed. The inhibitory effect of miR-199 on self-renewal of SW1990/GZ cells and the faciliating property of miR-199 on the inhibitory effect of GEM against the proliferation ability, migration ability, and EMT progression were abolished by overexpressing Snail. CONCLUSION MiR-199 reversed the resistance to GEM in pancreatic cancer by suppressing stemness through regulating the EMT.
Collapse
Affiliation(s)
- Weitian Wei
- Department
of Surgical Oncology, Zhejiang University
School of Medicine First Affiliated Hospital, No. 79 Qingchun Road, Shangcheng District, Hangzhou 310009, China
- Department
of Surgical Oncology, Zhejiang Cancer Hospital, No. 1, East Banshan Road, Gongshu District, Hangzhou 310022, China
| | - Liang Wang
- Department
of Surgical Oncology, Zhejiang Cancer Hospital, No. 1, East Banshan Road, Gongshu District, Hangzhou 310022, China
| | - Liwei Xu
- Department
of Surgical Oncology, Zhejiang Cancer Hospital, No. 1, East Banshan Road, Gongshu District, Hangzhou 310022, China
| | - Jinxiao Liang
- Department
of Surgical Oncology, Zhejiang Cancer Hospital, No. 1, East Banshan Road, Gongshu District, Hangzhou 310022, China
| | - Lisong Teng
- Department
of Surgical Oncology, Zhejiang University
School of Medicine First Affiliated Hospital, No. 79 Qingchun Road, Shangcheng District, Hangzhou 310009, China
| |
Collapse
|
364
|
Lee JW, Lee HY. Targeting Cancer Stem Cell Markers or Pathways: A Potential Therapeutic Strategy for Oral Cancer Treatment. Int J Stem Cells 2021; 14:386-399. [PMID: 34711702 PMCID: PMC8611309 DOI: 10.15283/ijsc21084] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/14/2021] [Accepted: 06/05/2021] [Indexed: 12/16/2022] Open
Abstract
Cancer stem cells (CSCs) are a small subset of cancer cells with stem cell-like properties, self-renewal potential, and differentiation capacity into multiple cell types. Critical genetic alterations or aberrantly activated signaling pathways associated with drug resistance and recurrence have been observed in multiple types of CSCs. In this context, CSCs are considered to be responsible for tumor initiation, growth, progression, therapeutic resistance, and metastasis. Therefore, to effectively eradicate CSCs, tremendous efforts have been devoted to identify specific target molecules that play a critical role in regulating their distinct functions and to develop novel therapeutics, such as proteins, monoclonal antibodies, selective small molecule inhibitors, and small antisense RNA (asRNA) drugs. Similar to other CSC types, oral CSCs can be characterized by certain pluripotency-associated markers, and oral CSCs can also survive and form 3D tumor spheres in suspension culture conditions. These oral CSC-targeting therapeutics selectively suppress specific surface markers or key signaling components and subsequently inhibit the stem-like properties of oral CSCs. A large number of new therapeutic candidates have been tested, and some products are currently in the pre-clinical or clinical development phase. In the present study, we review new oral CSC-targeted therapeutic strategies and discuss the various specific CSC surface markers and key signaling components involved in the stem-like properties, growth, drug resistance, and tumorigenicity of oral CSCs.
Collapse
Affiliation(s)
- Jin Woo Lee
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, Korea.,Department of Molecular Medicine, School of Medicine, Gachon University, Incheon, Korea
| | - Hwa-Yong Lee
- Department of Biomedical Science, Jungwon University, Goesan, Korea.,Division of Science Education, Kangwon National University, Chuncheon, Korea
| |
Collapse
|
365
|
Liu H, Zhao F, Zhang K, Zhao J, Wang Y. Investigating the growth performance, meat quality, immune function and proteomic profiles of plasmal exosomes in Lactobacillus plantarum-treated broilers with immunological stress. Food Funct 2021; 12:11790-11807. [PMID: 34761788 DOI: 10.1039/d1fo01936h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
Abstract
Exosomes are extracellular membranous nanovesicles that carry functional molecules to mediate cell-to-cell communication. To date, whether probiotics improve the immune function of broilers by plasmal exosome cargo is unclear. In this study, 300 broilers were allocated to three treatments: control diet (CON group), control diet + dexamethasone injection (DEX group), and control diet containing 1 × 108 cfu g-1 P8 + DEX injection (P8 + DEX group). The growth performance, meat quality and immune function of plasma and jejunal mucosa were detected. Exosomes were isolated from the plasma and characterized. Then, the exosome protein profile was determined by proteomic analysis. Correlation analyses between the exosomal proteins and growth performance, meat quality, immune function were performed. Lastly, the related protein levels were verified by multiple reaction monitoring (MRM). Results showed that P8 treatment increased the growth performance, meat quality and immune function of DEX-induced broilers with immunological stress. Moreover, the average diameters, cup-shaped morphology and expressed exosomal proteins confirmed that the isolated extracellular vesicles were exosomes. A total of 784 proteins were identified in the exosomes; among which, 126 differentially expressed proteins (DEPs) were found between the DEX and CON groups and 102 DEPs were found between the P8 + DEX and DEX groups. Gene ontology analysis indicated that DEPs between the DEX and CON groups are mainly involved in the metabolic process, cellular anatomical entity, cytoplasm, etc. DEPs between the P8 + DEX and DEX groups are mainly involved in the multicellular organismal process, response to stimulus, cytoplasm, etc. Pathway analysis revealed that most of the DEPs between the DEX and CON groups participated in the ECM-receptor interaction, focal adhesion, regulation of actin cytoskeleton, etc. Most of the DEPs between the P8 + DEX and DEX groups participated in the ErbB and PPAR signaling pathways. Moreover, many DEPs were correlated with the altered parameters of growth performance, meat quality and immunity in P8-treated broilers. MRM further revealed that the upregulated FABP6 and EPCAM in the DEX group were decreased by P8 + DEX treatment, and the downregulated C1QTNF3 in the DEX group was increased by P8 + DEX treatment. In conclusion, our findings demonstrated that P8 may promote the immune function, growth performance and meat quality of broilers with immunological stress by regulating the plasma exosomal proteins, especially the proteins of FABP6, EPCAM and C1QTNF3 and the pathway of PPAR (ILK/FABP6).
Collapse
Affiliation(s)
- Huawei Liu
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China.
| | - Fan Zhao
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China.
| | - Kai Zhang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China.
| | - Jinshan Zhao
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China.
| | - Yang Wang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
366
|
Dixit G, Prabhu A. The pleiotropic peroxisome proliferator activated receptors: Regulation and therapeutics. Exp Mol Pathol 2021; 124:104723. [PMID: 34822814 DOI: 10.1016/j.yexmp.2021.104723] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/02/2021] [Accepted: 11/15/2021] [Indexed: 02/07/2023]
Abstract
The Peroxisome proliferator-activated receptors (PPARs) are key regulators of metabolic events in our body. Owing to their implication in maintenance of homeostasis, both PPAR agonists and antagonists assume therapeutic significance. Understanding the molecular mechanisms of each of the PPAR isotypes in the healthy body and during disease is crucial to exploiting their full therapeutic potential. This article is an attempt to present a rational analysis of the multifaceted therapeutic effects and underlying mechanisms of isotype-specific PPAR agonists, dual PPAR agonists, pan PPAR agonists as well as PPAR antagonists. A holistic understanding of the mechanistic dimensions of these key metabolic regulators will guide future efforts to identify novel molecules in the realm of metabolic, inflammatory and immunotherapeutic diseases.
Collapse
Affiliation(s)
- Gargi Dixit
- Department of Pharmaceutical Chemistry & Quality Assurance, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
| | - Arati Prabhu
- Department of Pharmaceutical Chemistry & Quality Assurance, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India.
| |
Collapse
|
367
|
Zhu H, You J, Wen Y, Jia L, Gao F, Ganesan K, Chen J. Tumorigenic risk of Angelica sinensis on ER-positive breast cancer growth through ER-induced stemness in vitro and in vivo. JOURNAL OF ETHNOPHARMACOLOGY 2021; 280:114415. [PMID: 34271113 DOI: 10.1016/j.jep.2021.114415] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/28/2021] [Accepted: 07/11/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The root of Angelica sinensis is widely used in traditional Chinese Medicine for relieving gynecological discomforts among the women population. However, its hormone-like effects have raised great attention on whether it is appropriate to use in breast cancer (BC) patients. Hence, this study aimed to investigate the tumorigenic effect of aqueous root extract of Angelica sinensis (AS) on estrogen receptor (ER)-positive BC growth through ER-induced stemness in-vitro and in-vivo. MATERIALS AND METHODS The chemical composition of the AS was characterized by HPLC. Cell viability was detected by MTS assay. The in-vivo effect of AS was investigated by xenograft model, immunohistochemistry, histology, Western blot, and self-renewal ability assay. Target verification was used by shRNA construction and transfection. Mammosphere formation assay was performed by flow cytometry. RESULTS AS significantly promoted the proliferation of MCF-7 cells and inhibited the growth of MDA-MB-231 cells. AS significantly induced tumor growth (2.5 mg/kg) in xenograft models and however tamoxifen treatment significantly suppressed the AS-induced tumor growth. AS induced ERα expression in both in-vivo and in-vitro and promoted cancer stem cell activity in ER-positive BC. CONCLUSION AS shows the tumorigenic potential on ER-positive BC growth through ERα induced stemness, suggesting that the usage of AS is not recommended for BC in terms of safety measures.
Collapse
Affiliation(s)
- Hongni Zhu
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong; Shenzhen Institute of Research and Innovation, The University of Hong Kong, Shenzhen Virtual University Park, Nanshan, Shenzhen, China.
| | - Jeishu You
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong; Shenzhen Institute of Research and Innovation, The University of Hong Kong, Shenzhen Virtual University Park, Nanshan, Shenzhen, China
| | - Yi Wen
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong; Shenzhen Institute of Research and Innovation, The University of Hong Kong, Shenzhen Virtual University Park, Nanshan, Shenzhen, China
| | - Lei Jia
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong; Shenzhen Institute of Research and Innovation, The University of Hong Kong, Shenzhen Virtual University Park, Nanshan, Shenzhen, China
| | - Fei Gao
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong; Shenzhen Institute of Research and Innovation, The University of Hong Kong, Shenzhen Virtual University Park, Nanshan, Shenzhen, China
| | - Kumar Ganesan
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong
| | - Jianping Chen
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong; Shenzhen Institute of Research and Innovation, The University of Hong Kong, Shenzhen Virtual University Park, Nanshan, Shenzhen, China; Guangzhou University of Chinese Medicine, Daxuecheng Hongmian Road, Panyu District, Guangzhou, Guangdong Province, China.
| |
Collapse
|
368
|
Wang Y, Li P, Mao S, Mo Z, Cao Z, Luo J, Zhou M, Liu X, Zhang S, Yu L. Exosome CTLA-4 Regulates PTEN/CD44 Signal Pathway in Spleen Deficiency Internal Environment to Promote Invasion and Metastasis of Hepatocellular Carcinoma. Front Pharmacol 2021; 12:757194. [PMID: 34744733 PMCID: PMC8564353 DOI: 10.3389/fphar.2021.757194] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 09/09/2021] [Indexed: 01/26/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common primary cancers, and its pathogenesis is complicated and difficult to screen. Currently, there is no effective treatment. In traditional Chinese medicine, a large proportion of patients with HCC have been diagnosed with spleen deficiency (SD) syndrome and treated with tonifying traditional Chinese medicine, which has significant clinical efficacy. However, the role and molecular mechanism of SD in HCC remain unclear. In this study, 40 mice were randomly divided into four groups: control, SD, HCC, and SD-HCC groups. The liver cancer model of SD was established by reserpine induction and orthotopic transplantation. The effects of SD on the proliferation, apoptosis, invasion, and metastasis of HCC cells were studied by cell proliferation, cell apoptosis, cell scratch, and transwell assay. We found that compared with the HCC group, the protein expressions of cytotoxic T lymphocyte antigen 4 (CTLA-4), programmed cell death protein 1 (PD-1), phosphatase and tensin homolog (PTEN), and AKT (also known as protein kinase B or PKB) in the exosomes of the SD-HCC group were upregulated. In addition, the metastases and self-renewal of exosomes in the SD-HCC group were more aggressive than those in the HCC group, which could be partially reversed with the addition of CTLA-4 inhibitors. Further studies showed that in the internal environment of SD, CTLA-4 promoted tumor invasion and metastasis by regulating the PTEN/CD44 pathway. In conclusion, our findings suggest that during SD in the internal environment, exosome CTLA-4 regulates the PTEN/CD44 signal pathway to promote the proliferation, self-renewal, and metastasis of liver cancer.
Collapse
Affiliation(s)
- Yongdan Wang
- Department of Traditional Chinese Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Pan Li
- Department of Traditional Chinese Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shuai Mao
- Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China.,AMI Key Laboratory of Chinese Medicine in Guangzhou, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Zhuomao Mo
- Department of Traditional Chinese Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhirui Cao
- Department of Traditional Chinese Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jin Luo
- Department of Traditional Chinese Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Meiling Zhou
- Department of Traditional Chinese Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xifeng Liu
- School of Life Sciences, Xiangya Medical College, Central South University, Changsha, China
| | - Shijun Zhang
- Department of Traditional Chinese Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ling Yu
- Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China.,AMI Key Laboratory of Chinese Medicine in Guangzhou, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| |
Collapse
|
369
|
Huang H, Li X, Yu L, Liu L, Zhu H, Cao W, Sun Z, Yu X. Wogonoside inhibits TNF receptor-associated factor 6 (TRAF6) mediated-tumor microenvironment and prognosis of pancreatic cancer. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1460. [PMID: 34734012 PMCID: PMC8506702 DOI: 10.21037/atm-21-4164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/02/2021] [Indexed: 11/06/2022]
Abstract
Background Pancreatic cancer (PC) is one of the worst prognostic cancers. Here, we probed the anti-cancer activity of wogonoside (Wog), a flavonoid isolated from Scutellaria baicalensis Georgi, on PC, as well as potential molecular mechanism. Methods Following Wog stimulation, the viability, proliferation, apoptosis, stem cell-like transition, and mesenchymal transition were detected in PC cells. Bioinformatics analysis was used to identify possible signaling pathways involved in the anti-PC activity of Wog. Tumor necrosis factor (TNF) receptor-associated factor 6 (TRAF6) was overexpressed and TRAF6 activator IL-1β was used in PC cells to confirm whether Wog exerted anti-PC activity via modulating TRAF6. In vivo, an experiment was conducted to further confirm our supposition. Results Wog inhibited PC cell proliferation, promoted cell apoptosis, limited PC cell stem cell-like transition and mesenchymal transition. TNF signaling pathway was activated in PC. Besides, Wog inactivated TRAF6/nuclear factor-kappa B (NF-κB)/p65 pathway in PC cells. TRAF6, vascular cell adhesion molecule-1 (VCAM1), CD44, and matrix metalloproteinase 14 (MMP14) expressions were upregulated in PC tissues and negatively correlated with PC survival and prognosis. Finally, Wog suppressed TRAF6 overexpression-induced PC cell stem cell-like transition and mesenchymal transition in vitro and tumor growth in vivo. Conclusions Wog exerted anti-cancer activity on PC and suppressed the TRAF6 mediated-tumor microenvironment of PC, thereby regulating PC's prognosis.
Collapse
Affiliation(s)
- Hui Huang
- Department of Hepatopancreatobiliary Surgery, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Xia Li
- Department of Endocrinology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Li Yu
- Department of Hepatopancreatobiliary Surgery, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Ling Liu
- Department of Cardiology, Second People's Hospital of Hunan Province, Hunan University of Chinese Medicine, Changsha, China
| | - Hongwei Zhu
- Department of Hepatopancreatobiliary Surgery, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Wei Cao
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Zhongling Sun
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Xiao Yu
- Department of Hepatopancreatobiliary Surgery, The Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
370
|
Chen M, Jing D, Ye R, Yi J, Zhao Z. PPARβ/δ accelerates bone regeneration in diabetic mellitus by enhancing AMPK/mTOR pathway-mediated autophagy. Stem Cell Res Ther 2021; 12:566. [PMID: 34736532 PMCID: PMC8567548 DOI: 10.1186/s13287-021-02628-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 10/16/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Diabetic patients are more vulnerable to skeletal complications. Peroxisome proliferators-activated receptor (PPAR) β/δ has a positive regulatory effect on bone turnover under physiologic glucose concentration; however, the regulatory effect in diabetes mellitus has not been investigated yet. Herein, we explored the effects of PPARβ/δ agonist on the regeneration of diabetic bone defects and the osteogenic differentiation of rat bone marrow mesenchymal stem cells (rBMSCs) under a pathological high-glucose condition. METHODS We detected the effect of PPARβ/δ agonist on osteogenic differentiation of rBMSCs in vitro and investigated the bone healing process in diabetic rats after PPARβ/δ agonist treatment in vivo. RNA sequencing was performed to detect the differentially expressed genes and enriched pathways. Western blot was performed to detect the autophagy-related protein level. Laser confocal microscope (LSCM) and transmission electron microscope (TEM) were used to observe the formation of autophagosomes. RESULTS Our results demonstrated that the activation of PPARβ/δ can improve the osteogenic differentiation of rBMSCs in high-glucose condition and promote the bone regeneration of calvarial defects in diabetic rats, while the inhibition of PPARβ/δ alleviated the osteogenic differentiation of rBMSCs. Mechanistically, the activation of PPARβ/δ up-regulates AMPK phosphorylation, yielding mTOR suppression and resulting in enhanced autophagy activity, which further promotes the osteogenic differentiation of rBMSCs in high-glucose condition. The addition of AMPK inhibitor Compound C or autophagy inhibitor 3-MA inhibited the osteogenesis of rBMSCs in high-glucose condition, suggesting that PPARβ/δ agonist promotes osteogenic differentiation of rBMSCs through AMPK/mTOR-regulated autophagy. CONCLUSION In conclusion, our study demonstrates the potential role of PPARβ/δ as a molecular target for the treatment of impaired bone quality and delayed bone healing in diabetic patients for the first time.
Collapse
Affiliation(s)
- Miao Chen
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Section, South Renmin Road, Chengdu, 610041, Sichuan, China
| | - Dian Jing
- Department of Orthodontics, Shanghai Ninth People's Hospital, Collage of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rui Ye
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Section, South Renmin Road, Chengdu, 610041, Sichuan, China
| | - Jianru Yi
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China. .,Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Section, South Renmin Road, Chengdu, 610041, Sichuan, China.
| | - Zhihe Zhao
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China. .,Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Section, South Renmin Road, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
371
|
Feng L, Wang J, Zhang J, Diao J, He L, Fu C, Liao H, Xu X, Gao Y, Zhou C. Comprehensive Analysis of E3 Ubiquitin Ligases Reveals Ring Finger Protein 223 as a Novel Oncogene Activated by KLF4 in Pancreatic Cancer. Front Cell Dev Biol 2021; 9:738709. [PMID: 34722520 PMCID: PMC8551701 DOI: 10.3389/fcell.2021.738709] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 09/15/2021] [Indexed: 12/22/2022] Open
Abstract
Pancreatic cancer is one of the major malignancies and causes of mortality worldwide. E3 ubiquitin-protein ligases transfer activated ubiquitin from ubiquitin-conjugating enzymes to protein substrates and confer substrate specificity in cancer. In this study, we first downloaded data from The Cancer Genome Atlas pancreatic adenocarcinoma dataset, acquired all 27 differentially expressed genes (DEGs), and identified genomic alterations. Then, the prognostic significance of DEGs was analyzed, and eight DEGs (MECOM, CBLC, MARCHF4, RNF166, TRIM46, LONRF3, RNF39, and RNF223) and two clinical parameters (pathological N stage and T stage) exhibited prognostic significance. RNF223 showed independent significance as an unfavorable prognostic marker and was chosen for subsequent analysis. Next, the function of RNF223 in the pancreatic cancer cell lines ASPC-1 and PANC-1 was investigated, and RNF223 silencing promoted pancreatic cancer growth and migration. To explore the potential targets and pathways of RNF223 in pancreatic cancer, quantitative proteomics was applied to analyze differentially expressed proteins, and metabolism-related pathways were primarily enriched. Finally, the reason for the elevated expression of RNF223 was analyzed, and KLF4 was shown to contribute to the increased expression of RNF233. In conclusion, this study comprehensively analyzed the clinical significance of E3 ligases. Functional assays revealed that RNF223 promotes cancer by regulating cell metabolism. Finally, the elevated expression of RNF223 was attributed to KLF4-mediated transcriptional activation. This study broadens our knowledge regarding E3 ubiquitin ligases and signal transduction and provides novel markers and therapeutic targets in pancreatic cancer.
Collapse
Affiliation(s)
- Lei Feng
- Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jieqing Wang
- The First Affiliated Hospital, Sun Yat-sen university, Guangzhou, China
| | - Jianmin Zhang
- Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jingfang Diao
- Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, China
| | | | - Chaoyi Fu
- Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Hui Liao
- Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaoping Xu
- Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yi Gao
- Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,State Key Laboratory of Organ Failure Research, Southern Medical University, Guangzhou, China
| | - Chenjie Zhou
- Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
372
|
Ma J, Xue H, He LH, Wang LY, Wang XJ, Li X, Zhang L. The Role and Mechanism of Autophagy in Pancreatic Cancer: An Update Review. Cancer Manag Res 2021; 13:8231-8240. [PMID: 34754243 PMCID: PMC8572014 DOI: 10.2147/cmar.s328786] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 09/18/2021] [Indexed: 02/05/2023] Open
Abstract
Pancreatic cancer, with high morbidity and mortality rates, is one of the most malignant tumors worldwide. Despite extensive research, the prognosis remains poor. Autophagy, a lysosomal-mediated, highly conserved degradation process that removes abnormal proteins and damaged organelles from the body, is upregulated in pancreatic ductal adenocarcinoma. Based on differences in the tumor microenvironment and tumor stage, the functions of autophagy in the pathophysiology and treatment of pancreatic cancer differ. In the initial phase, autophagy inhibits the transformation of precancerous lesions to cancer. However, in the progressive stage, autophagy promotes tumor growth. Autophagy is also one of the main mechanisms of drug resistance during treatment. Here, we describe the role of autophagy in pancreatic cancer progression and discuss relevant treatment strategies for this disease.
Collapse
Affiliation(s)
- Jian Ma
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu Province, 730000, People’s Republic of China
- Key Laboratory of Biological Therapy and Regenerative Medicine Transformation Gansu Province, Lanzhou, Gansu Province, 730000, People’s Republic of China
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu Province, 730000, People’s Republic of China
| | - Huan Xue
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu Province, 730000, People’s Republic of China
- Key Laboratory of Biological Therapy and Regenerative Medicine Transformation Gansu Province, Lanzhou, Gansu Province, 730000, People’s Republic of China
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu Province, 730000, People’s Republic of China
| | - Li-Hong He
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu Province, 730000, People’s Republic of China
- Key Laboratory of Biological Therapy and Regenerative Medicine Transformation Gansu Province, Lanzhou, Gansu Province, 730000, People’s Republic of China
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu Province, 730000, People’s Republic of China
| | - Ling-Yun Wang
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu Province, 730000, People’s Republic of China
- Key Laboratory of Biological Therapy and Regenerative Medicine Transformation Gansu Province, Lanzhou, Gansu Province, 730000, People’s Republic of China
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu Province, 730000, People’s Republic of China
| | - Xiao-Juan Wang
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu Province, 730000, People’s Republic of China
- Key Laboratory of Biological Therapy and Regenerative Medicine Transformation Gansu Province, Lanzhou, Gansu Province, 730000, People’s Republic of China
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu Province, 730000, People’s Republic of China
| | - Xun Li
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu Province, 730000, People’s Republic of China
- Key Laboratory of Biological Therapy and Regenerative Medicine Transformation Gansu Province, Lanzhou, Gansu Province, 730000, People’s Republic of China
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu Province, 730000, People’s Republic of China
| | - Lei Zhang
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu Province, 730000, People’s Republic of China
- Key Laboratory of Biological Therapy and Regenerative Medicine Transformation Gansu Province, Lanzhou, Gansu Province, 730000, People’s Republic of China
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu Province, 730000, People’s Republic of China
| |
Collapse
|
373
|
Yu G, Jin M, Huang Y, Aimuzi R, Zheng T, Nian M, Tian Y, Wang W, Luo Z, Shen L, Wang X, Du Q, Xu W, Zhang J. Environmental exposure to perfluoroalkyl substances in early pregnancy, maternal glucose homeostasis and the risk of gestational diabetes: A prospective cohort study. ENVIRONMENT INTERNATIONAL 2021; 156:106621. [PMID: 33984575 DOI: 10.1016/j.envint.2021.106621] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 04/15/2021] [Accepted: 04/30/2021] [Indexed: 05/12/2023]
Abstract
BACKGROUND Humans are widely exposed to environmental perfluoroalkyl substances (PFAS), which may affect glucose homeostasis. However, research linking PFAS exposure to glucose homeostasis during pregnancy is limited and the results were inconsistent. We aimed to investigate the association between PFAS exposure and glucose homeostasis in pregnancy in a large prospective cohort. METHODS A total of 2747 pregnant women who participated in the Shanghai Birth Cohort, had blood samples in early pregnancy and completed a 75 g oral glucose tolerance test (OGTT) at 24-28 gestational weeks were included. 10 PFAS were determined by high-performance liquid chromatography/tandem mass spectrometry (HPLC/MS-MS) in the plasma samples in early pregnancy. Logistic regression was used to explore the associations between PFAS concentrations and gestational diabetes mellitus (GDM), while multiple linear regression was used to model the associations between PFAS and OGTT fasting, 1-h and 2-h glucose levels. Potential confounders were adjusted. Bayesian kernel machine regression (BKMR) and a quantile-based g-computation approach (qgcomp) were employed to explore the joint and independent effects of PFAS on glucose homeostasis. RESULTS The incidence of GDM was 11.8%. One log-unit increment in plasma concentrations in early pregnancy was associated with an increased risk of GDM for perfluorobutane sulfonate (PFBS) (adjusted odd ratio (aOR) = 1.23, 95% confidence interval (95% CI): 1.05, 1.44) and perfluoroheptanoic acid (PFHpA) (aOR = 1.25, 95% CI: 1.07, 1.46). Perfluorooctane sulfonic acid (PFOS), perfluorononanoic acid (PFNA), perfluorodecanoic acid (PFDA), perfluorohexanesulfonate (PFHxS) and PFHpA were positively correlated with 1-h and 2-h glucose levels. Results of the mixed exposure model showed that the joint effects of PFAS were significantly associated with abnormal glucose homeostasis; In the BKMR model, PFAS mixture exposure was positively associated with the GDM incidence, 1-h and 2-h glucose levels and negatively correlated with FBG level. A similar trend could be observed in qgcomp and the positive correlation between PFAS and 2-h glucose level was significant (β = 0.12, 95% CI: 0.04, 0.20). PFOS, PFNA and PFHpA may be the main contributors after controlling for other PFAS congeners. PFOS was significantly correlated with GDM incidence and 2-h glucose level, and PFHpA was significantly associated with FBG and 2-h glucose levels. The above associations were more prominent among women with a normal prepregnant BMI. CONCLUSIONS Environmental exposure to PFAS may affect glucose homeostasis in pregnancy and increase the risk of GDM, especially in normal weight women.
Collapse
Affiliation(s)
- Guoqi Yu
- Ministry of Education -Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Minfei Jin
- Department of Obstetrics and Gynecology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Huang
- Xinhua Hospital Chongming Branch, Shanghai Jiao Tong University School of Medicine, China
| | - Ruxianguli Aimuzi
- Shanghai Jiao Tong University School of Public Health, Shanghai, China
| | - Tao Zheng
- Department of Obstetrics and Gynecology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Nian
- Shanghai Jiao Tong University School of Public Health, Shanghai, China
| | - Ying Tian
- Ministry of Education -Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Jiao Tong University School of Public Health, Shanghai, China
| | - Weiye Wang
- Ministry of Education -Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhongcheng Luo
- Ministry of Education -Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Obstetrics and Gynecology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, Canada
| | - Lisong Shen
- Department of Laboratory Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xipeng Wang
- Department of Obstetrics and Gynecology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qing Du
- Xinhua Hospital Chongming Branch, Shanghai Jiao Tong University School of Medicine, China; Department of Rehabilitation Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Weiping Xu
- Xinhua Hospital Chongming Branch, Shanghai Jiao Tong University School of Medicine, China; Department of Cardiovascular, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Jun Zhang
- Ministry of Education -Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Jiao Tong University School of Public Health, Shanghai, China.
| |
Collapse
|
374
|
Martínez-González J, Cañes L, Alonso J, Ballester-Servera C, Rodríguez-Sinovas A, Corrales I, Rodríguez C. NR4A3: A Key Nuclear Receptor in Vascular Biology, Cardiovascular Remodeling, and Beyond. Int J Mol Sci 2021; 22:ijms222111371. [PMID: 34768801 PMCID: PMC8583700 DOI: 10.3390/ijms222111371] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 12/14/2022] Open
Abstract
The mechanisms committed in the activation and response of vascular and inflammatory immune cells play a major role in tissue remodeling in cardiovascular diseases (CVDs) such as atherosclerosis, pulmonary arterial hypertension, and abdominal aortic aneurysm. Cardiovascular remodeling entails interrelated cellular processes (proliferation, survival/apoptosis, inflammation, extracellular matrix (ECM) synthesis/degradation, redox homeostasis, etc.) coordinately regulated by a reduced number of transcription factors. Nuclear receptors of the subfamily 4 group A (NR4A) have recently emerged as key master genes in multiple cellular processes and vital functions of different organs, and have been involved in a variety of high-incidence human pathologies including atherosclerosis and other CVDs. This paper reviews the major findings involving NR4A3 (Neuron-derived Orphan Receptor 1, NOR-1) in the cardiovascular remodeling operating in these diseases.
Collapse
Affiliation(s)
- José Martínez-González
- Instituto de Investigaciones Biomédicas de Barcelona-Consejo Superior de Investigaciones Científicas (IIBB-CSIC), 08036 Barcelona, Spain; (L.C.); (J.A.); (C.B.-S.)
- CIBER de Enfermedades Cardiovasculares, ISCIII, 28029 Madrid, Spain;
- Instituto de Investigación Biomédica Sant Pau, 08041 Barcelona, Spain
- Correspondence: (J.M.-G.); (C.R.); Tel.: +34-93-5565896 (J.M.-G.); +34-93-5565897 (C.R.)
| | - Laia Cañes
- Instituto de Investigaciones Biomédicas de Barcelona-Consejo Superior de Investigaciones Científicas (IIBB-CSIC), 08036 Barcelona, Spain; (L.C.); (J.A.); (C.B.-S.)
- CIBER de Enfermedades Cardiovasculares, ISCIII, 28029 Madrid, Spain;
- Instituto de Investigación Biomédica Sant Pau, 08041 Barcelona, Spain
| | - Judith Alonso
- Instituto de Investigaciones Biomédicas de Barcelona-Consejo Superior de Investigaciones Científicas (IIBB-CSIC), 08036 Barcelona, Spain; (L.C.); (J.A.); (C.B.-S.)
- CIBER de Enfermedades Cardiovasculares, ISCIII, 28029 Madrid, Spain;
- Instituto de Investigación Biomédica Sant Pau, 08041 Barcelona, Spain
| | - Carme Ballester-Servera
- Instituto de Investigaciones Biomédicas de Barcelona-Consejo Superior de Investigaciones Científicas (IIBB-CSIC), 08036 Barcelona, Spain; (L.C.); (J.A.); (C.B.-S.)
- CIBER de Enfermedades Cardiovasculares, ISCIII, 28029 Madrid, Spain;
- Instituto de Investigación Biomédica Sant Pau, 08041 Barcelona, Spain
| | - Antonio Rodríguez-Sinovas
- CIBER de Enfermedades Cardiovasculares, ISCIII, 28029 Madrid, Spain;
- Cardiovascular Diseases Research Group, Vall d’Hebron Institut de Recerca, Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
| | - Irene Corrales
- Laboratorio de Coagulopatías Congénitas, Banc de Sang i Teixits (BST), 08005 Barcelona, Spain;
- Medicina Transfusional, Vall d’Hebron Institut de Recerca-Universitat Autònoma de Barcelona (VHIR-UAB), 08035 Barcelona, Spain
| | - Cristina Rodríguez
- CIBER de Enfermedades Cardiovasculares, ISCIII, 28029 Madrid, Spain;
- Instituto de Investigación Biomédica Sant Pau, 08041 Barcelona, Spain
- Institut de Recerca Hospital de la Santa Creu i Sant Pau (IRHSCSP), 08041 Barcelona, Spain
- Correspondence: (J.M.-G.); (C.R.); Tel.: +34-93-5565896 (J.M.-G.); +34-93-5565897 (C.R.)
| |
Collapse
|
375
|
Jiang CF, Xie YX, Qian YC, Wang M, Liu LZ, Shu YQ, Bai XM, Jiang BH. TBX15/miR-152/KIF2C pathway regulates breast cancer doxorubicin resistance via promoting PKM2 ubiquitination. Cancer Cell Int 2021; 21:542. [PMID: 34663310 PMCID: PMC8522147 DOI: 10.1186/s12935-021-02235-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/28/2021] [Indexed: 02/14/2023] Open
Abstract
Background Chemoresistance is a critical risk problem for breast cancer treatment. However, mechanisms by which chemoresistance arises remains to be elucidated. The expression of T-box transcription factor 15 (TBX-15) was found downregulated in some cancer tissues. However, role and mechanism of TBX15 in breast cancer chemoresistance is unknown. Here we aimed to identify the effects and mechanisms of TBX15 in doxorubicin resistance in breast cancer. Methods As measures of Drug sensitivity analysis, MTT and IC50 assays were used in DOX-resistant breast cancer cells. ECAR and OCR assays were used to analyze the glycolysis level, while Immunoblotting and Immunofluorescence assays were used to analyze the autophagy levels in vitro. By using online prediction software, luciferase reporter assays, co-Immunoprecipitation, Western blotting analysis and experimental animals models, we further elucidated the mechanisms. Results We found TBX15 expression levels were decreased in Doxorubicin (DOX)-resistant breast cancer cells. Overexpression of TBX15 reversed the DOX resistance by inducing microRNA-152 (miR-152) expression. We found that KIF2C levels were highly expressed in DOX-resistant breast cancer tissues and cells, and KIF2C was a potential target of miR-152. TBX15 and miR-152 overexpression suppressed autophagy and glycolysis in breast cancer cells, while KIF2C overexpression reversed the process. Overexpression of KIF2C increased DOX resistance in cancer cells. Furthermore, KIF2C directly binds with PKM2 for inducing the DOX resistance. KIF2C can prevent the ubiquitination of PKM2 and increase its protein stability. In addition, we further identified that Domain-2 of KIF2C played a major role in the binding with PKM2 and preventing PKM2 ubiquitination, which enhanced DOX resistance by promoting autophagy and glycolysis. Conclusions Our data identify a new mechanism by which TBX15 abolishes DOX chemoresistance in breast cancer, and suggest that TBX15/miR-152/KIF2C axis is a novel signaling pathway for mediating DOX resistance in breast cancer through regulating PKM2 ubiquitination and decreasing PKM2 stability. This finding suggests new therapeutic target and/or novel strategy development for cancer treatment to overcome drug resistance in the future. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-02235-w.
Collapse
Affiliation(s)
- Cheng-Fei Jiang
- Department of Pathology, Nanjing Medical University, 140 Hanzhong Road, Nanjing, 210029, China
| | - Yun-Xia Xie
- The Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Ying-Chen Qian
- Department of Pathology, Nanjing Medical University, 140 Hanzhong Road, Nanjing, 210029, China
| | - Min Wang
- Department of Pathology, Nanjing Medical University, 140 Hanzhong Road, Nanjing, 210029, China
| | - Ling-Zhi Liu
- Department of Medical Oncology, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA, 19107, USA
| | - Yong-Qian Shu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, China
| | - Xiao-Ming Bai
- Department of Pathology, Nanjing Medical University, 140 Hanzhong Road, Nanjing, 210029, China. .,Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA, 19107, USA.
| | - Bing-Hua Jiang
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA, 19107, USA.
| |
Collapse
|
376
|
Subbalakshmi AR, Sahoo S, McMullen I, Saxena AN, Venugopal SK, Somarelli JA, Jolly MK. KLF4 Induces Mesenchymal-Epithelial Transition (MET) by Suppressing Multiple EMT-Inducing Transcription Factors. Cancers (Basel) 2021; 13:5135. [PMID: 34680284 PMCID: PMC8533753 DOI: 10.3390/cancers13205135] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/06/2021] [Accepted: 10/08/2021] [Indexed: 12/24/2022] Open
Abstract
Epithelial-Mesenchymal Plasticity (EMP) refers to reversible dynamic processes where cells can transition from epithelial to mesenchymal (EMT) or from mesenchymal to epithelial (MET) phenotypes. Both these processes are modulated by multiple transcription factors acting in concert. While EMT-inducing transcription factors (TFs)-TWIST1/2, ZEB1/2, SNAIL1/2/3, GSC, and FOXC2-are well-characterized, the MET-inducing TFs are relatively poorly understood (OVOL1/2 and GRHL1/2). Here, using mechanism-based mathematical modeling, we show that transcription factor KLF4 can delay the onset of EMT by suppressing multiple EMT-TFs. Our simulations suggest that KLF4 overexpression can promote a phenotypic shift toward a more epithelial state, an observation suggested by the negative correlation of KLF4 with EMT-TFs and with transcriptomic-based EMT scoring metrics in cancer cell lines. We also show that the influence of KLF4 in modulating the EMT dynamics can be strengthened by its ability to inhibit cell-state transitions at the epigenetic level. Thus, KLF4 can inhibit EMT through multiple parallel paths and can act as a putative MET-TF. KLF4 associates with the patient survival metrics across multiple cancers in a context-specific manner, highlighting the complex association of EMP with patient survival.
Collapse
Affiliation(s)
- Ayalur Raghu Subbalakshmi
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India; (A.R.S.); (S.S.); (S.K.V.)
| | - Sarthak Sahoo
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India; (A.R.S.); (S.S.); (S.K.V.)
| | | | | | - Sudhanva Kalasapura Venugopal
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India; (A.R.S.); (S.S.); (S.K.V.)
| | - Jason A. Somarelli
- Department of Medicine, Duke University, Durham, NC 27708, USA;
- Duke Cancer Institute, Duke University, Durham, NC 27708, USA
| | - Mohit Kumar Jolly
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India; (A.R.S.); (S.S.); (S.K.V.)
| |
Collapse
|
377
|
PRMT5: An Emerging Target for Pancreatic Adenocarcinoma. Cancers (Basel) 2021; 13:cancers13205136. [PMID: 34680285 PMCID: PMC8534199 DOI: 10.3390/cancers13205136] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary The burden of pancreatic ductal adenocarcinoma (PDAC) increases with rising incidence, yet 5-year overall survival remains poor at 17%. Routine comprehensive genomic profiling of PDAC only finds 2.5% of patients who may benefit and receive matched targeted therapy. Protein arginine methyltransferase 5 (PRMT5) as an anti-cancer target has gained significant interest in recent years and high levels of PRMT5 protein are associated with worse survival outcomes across multiple cancer types. Inhibition of PRMT5 in pre-clinical models can lead to cancer growth inhibition. However, PRMT5 is involved in multiple cellular processes, thus determining its mechanism of action is challenging. While past reviews on PRMT5 have focused on its role in diverse cellular processes and past research studies have focused mainly on haematological malignancies and glioblastoma, this review provides an overview of the possible biological mechanisms of action of PRMT5 inhibition and its potential as a treatment in pancreatic cancer. Abstract The overall survival of pancreatic ductal adenocarcinoma (PDAC) remains poor and its incidence is rising. Targetable mutations in PDAC are rare, thus novel therapeutic approaches are needed. Protein arginine methyltransferase 5 (PRMT5) overexpression is associated with worse survival and inhibition of PRMT5 results in decreased cancer growth across multiple cancers, including PDAC. Emerging evidence also suggests that altered RNA processing is a driver in PDAC tumorigenesis and creates a partial dependency on this process. PRMT5 inhibition induces altered splicing and this vulnerability can be exploited as a novel therapeutic approach. Three possible biological pathways underpinning the action of PRMT5 inhibitors are discussed; c-Myc regulation appears central to its action in the PDAC setting. Whilst homozygous MTAP deletion and symmetrical dimethylation levels are associated with increased sensitivity to PRMT5 inhibition, neither measure robustly predicts its growth inhibitory response. The immunomodulatory effect of PRMT5 inhibitors on the tumour microenvironment will also be discussed, based on emerging evidence that PDAC stroma has a significant bearing on disease behaviour and response to therapy. Lastly, with the above caveats in mind, current knowledge gaps and the implications and rationales for PRMT5 inhibitor development in PDAC will be explored.
Collapse
|
378
|
Tang C, Liu J, Hu Q, Zeng S, Yu L. Metastatic colorectal cancer: Perspectives on long non-coding RNAs and promising therapeutics. Eur J Pharmacol 2021; 908:174367. [PMID: 34303661 DOI: 10.1016/j.ejphar.2021.174367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 07/15/2021] [Accepted: 07/21/2021] [Indexed: 01/06/2023]
Abstract
Metastatic colorectal cancer (mCRC) has long been lethal despite the continuous efforts of researchers worldwide to discover and improve therapeutic regimens. Thanks to the emergence of long non-coding RNAs (lncRNAs), which has strongly reshaped our inherent perspectives on the pathophysiological patterns of disease, research in the field has been reinvigorated. Here, we focus on current understanding of the modes of action of lncRNAs, and review their regulatory roles in metastatic colorectal cancer, and discuss correlated potential lncRNA-based therapeutics. All of the discussed studies share clear and promising perspectives on future diagnostic and therapeutic remedies for metastatic colorectal cancer.
Collapse
Affiliation(s)
- Chunyuan Tang
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Junqing Liu
- The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310022, China
| | - Qingqing Hu
- The Fourth Affiliated Hospital, School of Medicine, Zhejiang University, Jinhua, 322023, China
| | - Su Zeng
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Lushan Yu
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| |
Collapse
|
379
|
Ding M, Chen Y, Lang Y, Cui L. The Role of Cellular Prion Protein in Cancer Biology: A Potential Therapeutic Target. Front Oncol 2021; 11:742949. [PMID: 34595121 PMCID: PMC8476782 DOI: 10.3389/fonc.2021.742949] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 08/24/2021] [Indexed: 12/12/2022] Open
Abstract
Prion protein has two isoforms including cellular prion protein (PrPC) and scrapie prion protein (PrPSc). PrPSc is the pathological aggregated form of prion protein and it plays an important role in neurodegenerative diseases. PrPC is a glycosylphosphatidylinositol (GPI)-anchored protein that can attach to a membrane. Its expression begins at embryogenesis and reaches the highest level in adulthood. PrPC is expressed in the neurons of the nervous system as well as other peripheral organs. Studies in recent years have disclosed the involvement of PrPC in various aspects of cancer biology. In this review, we provide an overview of the current understanding of the roles of PrPC in proliferation, cell survival, invasion/metastasis, and stem cells of cancer cells, as well as its role as a potential therapeutic target.
Collapse
Affiliation(s)
- Manqiu Ding
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Yongqiang Chen
- CancerCare Manitoba Research Institute, CancerCare Manitoba, University of Manitoba, Winnipeg, MB, Canada
| | - Yue Lang
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Li Cui
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
380
|
Abstract
Aim: The current investigation is focused on the targeted delivery of doxorubicin through CD44 aptamer-mediated active targeting to the human breast cancer cells. Methods: CD44 aptamer-doxorubicin (Apt-Dox) conjugates were developed by incubating different molar ratios of aptamer and doxorubicin. Cytotoxicity, selective intracellular accumulation and uptake of the Apt-Dox conjugates were analyzed to evaluate the efficacy of Apt-Dox conjugates. Results: Dox was efficiently conjugated with aptamer at 1:2 Apt-Dox molar ratios. Apt-Dox conjugate significantly inhibited the proliferation of CD44-overexpressing breast cancer cells, whereas negligible inhibition of cell proliferation was found in the control cells. Apt-Dox conjugate selectively internalized and accumulated in CD44-overexpressing cells. Conclusion: Apt-Dox conjugate selectively delivers doxorubicin to CD44-expressing cancer cells, thereby inhibiting selective cell proliferation and enhancing the targeted therapy.
Collapse
|
381
|
Cao J, Bhatnagar S, Wang J, Qi X, Prabha S, Panyam J. Cancer stem cells and strategies for targeted drug delivery. Drug Deliv Transl Res 2021; 11:1779-1805. [PMID: 33095384 PMCID: PMC8062588 DOI: 10.1007/s13346-020-00863-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2020] [Indexed: 12/23/2022]
Abstract
Cancer stem cells (CSCs) are a small proportion of cancer cells with high tumorigenic activity, self-renewal ability, and multilineage differentiation potential. Standard anti-tumor therapies including conventional chemotherapy, radiation therapy, and molecularly targeted therapies are not effective against CSCs, and often lead to enrichment of CSCs that can result in tumor relapse. Therefore, it is hypothesized that targeting CSCs is key to increasing the efficacy of cancer therapies. In this review, CSC properties including CSC markers, their role in tumor growth, invasiveness, metastasis, and drug resistance, as well as CSC microenvironment are discussed. Further, CSC-targeted strategies including the use of targeted drug delivery systems are examined.
Collapse
Affiliation(s)
- Jin Cao
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
- College of Pharmacy, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Shubhmita Bhatnagar
- College of Pharmacy, University of Minnesota, Minneapolis, MN, 55455, USA
- School of Pharmacy, Temple University, Philadelphia, PA, 19140, USA
| | - Jiawei Wang
- College of Pharmacy, University of Minnesota, Minneapolis, MN, 55455, USA
- College of Pharmacy, University of Texas at Austin, Austin, TX, 78712, USA
| | - Xueyong Qi
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Swayam Prabha
- College of Pharmacy, University of Minnesota, Minneapolis, MN, 55455, USA
- Cancer Research & Molecular Biology and Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Jayanth Panyam
- College of Pharmacy, University of Minnesota, Minneapolis, MN, 55455, USA.
- School of Pharmacy, Temple University, Philadelphia, PA, 19140, USA.
| |
Collapse
|
382
|
Wang J, Lyu SC, Zhu JQ, Li XL, Lang R, He Q. Extended lymphadenectomy benefits patients with borderline resectable pancreatic head cancer-a single-center retrospective study. Gland Surg 2021; 10:2910-2924. [PMID: 34804879 PMCID: PMC8575711 DOI: 10.21037/gs-21-201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 09/09/2021] [Indexed: 11/06/2022]
Abstract
BACKGROUND Whether standard lymphadenectomy or extended lymphadenectomy should be performed is still under debate during pancreaticoduodenectomy (PD). We aimed to compare their morbidity and mortality rates among patients with pancreatic head cancer (PHC). METHODS In this retrospective study, a total of 322 patients were enrolled. According to the scope of intraoperative lymph node dissection, patients were divided into extended lymphadenectomy group (n=120) and standard lymphadenectomy group (n=202). Based on the resectability of the tumor, there were 198 cases of resectable PHC and 124 cases of borderline resectable PHC, respectively, in which further stratified analysis was carried out according to the extent of lymph node dissection. RESULTS All patients completed the operation successfully, with a perioperative morbidity rate of 27.9% and mortality rate of 0.9%. As for the overall patients, patients in the extended lymphadenectomy group had higher neutrophil-to-lymphocyte ratio (NLR), longer operation time, more intraoperative blood loss, lymph node dissection and patients with borderline resectable pancreatic head cancer (BRPHC) (P<0.05). The 1-, 2- and 3-year overall survival rates of patients with extended lymphadenectomy and standard lymphadenectomy were 71.9%, 50.6%, 30.0% and 70.0%, 32.9%, 21.5%, respectively (P=0.068). With regards to patients with BRPHC, the number of lymph node dissection in the extended lymphadenectomy group was more (P<0.05), and the 1-, 2- and 3-year overall survival rates of patients with extended lymphadenectomy and standard lymphadenectomy were 60.7%, 43.3%, 27.4% and 43.2%, 17.7%, 17.7%, respectively (P=0.007). CONCLUSIONS Patients with BRPHC tended to have vast lymph node metastasis. Extended lymphadenectomy can improve their long-term survival.
Collapse
Affiliation(s)
- Jing Wang
- Department of Hepatobiliary and Pancreaticosplenic Surgery, Beijing Organ Transplant Center, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Shao-Cheng Lyu
- Department of Hepatobiliary and Pancreaticosplenic Surgery, Beijing Organ Transplant Center, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Ji-Qiao Zhu
- Department of Hepatobiliary and Pancreaticosplenic Surgery, Beijing Organ Transplant Center, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Xian-Liang Li
- Department of Hepatobiliary and Pancreaticosplenic Surgery, Beijing Organ Transplant Center, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Ren Lang
- Department of Hepatobiliary and Pancreaticosplenic Surgery, Beijing Organ Transplant Center, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Qiang He
- Department of Hepatobiliary and Pancreaticosplenic Surgery, Beijing Organ Transplant Center, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
383
|
Bekmurzayeva A, Ashikbayeva Z, Myrkhiyeva Z, Nugmanova A, Shaimerdenova M, Ayupova T, Tosi D. Label-free fiber-optic spherical tip biosensor to enable picomolar-level detection of CD44 protein. Sci Rep 2021; 11:19583. [PMID: 34599251 PMCID: PMC8486867 DOI: 10.1038/s41598-021-99099-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 09/20/2021] [Indexed: 12/11/2022] Open
Abstract
Increased level of CD44 protein in serum is observed in several cancers and is associated with tumor burden and metastasis. Current clinically used detection methods of this protein are time-consuming and use labeled reagents for analysis. Therefore exploring new label-free and fast methods for its quantification including its detection in situ is of importance. This study reports the first optical fiber biosensor for CD44 protein detection, based on a spherical fiber optic tip device. The sensor is easily fabricated from an inexpensive material (single-mode fiber widely used in telecommunication) in a fast and robust manner through a CO2 laser splicer. The fabricated sensor responded to refractive index change with a sensitivity of 95.76 dB/RIU. The spherical tip was further functionalized with anti-CD44 antibodies to develop a biosensor and each step of functionalization was verified by an atomic force microscope. The biosensor detected a target of interest with an achieved limit of detection of 17 pM with only minor signal change to two control proteins. Most importantly, concentrations tested in this work are very broad and are within the clinically relevant concentration range. Moreover, the configuration of the proposed biosensor allows its potential incorporation into an in situ system for quantitative detection of this biomarker in a clinical setting.
Collapse
Affiliation(s)
- Aliya Bekmurzayeva
- School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan, 010000, Kazakhstan.
- National Laboratory Astana, Nazarbayev University, Nur-Sultan, 010000, Kazakhstan.
| | - Zhannat Ashikbayeva
- School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan, 010000, Kazakhstan.
| | - Zhuldyz Myrkhiyeva
- School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan, 010000, Kazakhstan
| | - Aigerim Nugmanova
- School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan, 010000, Kazakhstan
| | - Madina Shaimerdenova
- School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan, 010000, Kazakhstan
| | - Takhmina Ayupova
- School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan, 010000, Kazakhstan
| | - Daniele Tosi
- School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan, 010000, Kazakhstan
- National Laboratory Astana, Nazarbayev University, Nur-Sultan, 010000, Kazakhstan
| |
Collapse
|
384
|
Huang B, Yan X, Li Y. Cancer Stem Cell for Tumor Therapy. Cancers (Basel) 2021; 13:cancers13194814. [PMID: 34638298 PMCID: PMC8508418 DOI: 10.3390/cancers13194814] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/13/2021] [Accepted: 09/23/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Although many methods have been applied in clinical treatment for tumors, they still always show a poor prognosis. Molecule targeted therapy has revolutionized tumor therapy, and a proper target must be found urgently. With a crucial role in tumor development, metastasis and recurrence, cancer stem cells have been found to be a feasible and potential target for tumor therapy. We list the unique biological characteristics of cancer stem cells and summarize the recent strategies to target cancer stem cells for tumor therapy, through which we hope to provide a comprehensive understanding of cancer stem cells and find a better combinational strategy to target cancer stem cells for tumor therapy. Abstract Tumors pose a significant threat to human health. Although many methods, such as operations, chemotherapy and radiotherapy, have been proposed to eliminate tumor cells, the results are unsatisfactory. Targeting therapy has shown potential due to its specificity and efficiency. Meanwhile, it has been revealed that cancer stem cells (CSCs) play a crucial role in the genesis, development, metastasis and recurrence of tumors. Thus, it is feasible to inhibit tumors and improve prognosis via targeting CSCs. In this review, we provide a comprehensive understanding of the biological characteristics of CSCs, including mitotic pattern, metabolic phenotype, therapeutic resistance and related mechanisms. Finally, we summarize CSCs targeted strategies, including targeting CSCs surface markers, targeting CSCs related signal pathways, targeting CSC niches, targeting CSC metabolic pathways, inducing differentiation therapy and immunotherapy (tumor vaccine, CAR-T, oncolytic virus, targeting CSCs–immune cell crosstalk and immunity checkpoint inhibitor). We highlight the potential of immunity therapy and its combinational anti-CSC therapies, which are composed of different drugs working in different mechanisms.
Collapse
Affiliation(s)
- Binjie Huang
- Department of General Surgery, Second Hospital of Lanzhou University, Lanzhou 730030, China; (B.H.); (X.Y.)
- Key Laboratory of the Digestive System Tumors of Gansu Province, Second Hospital of Lanzhou University, Lanzhou 730030, China
| | - Xin Yan
- Department of General Surgery, Second Hospital of Lanzhou University, Lanzhou 730030, China; (B.H.); (X.Y.)
- Key Laboratory of the Digestive System Tumors of Gansu Province, Second Hospital of Lanzhou University, Lanzhou 730030, China
| | - Yumin Li
- Department of General Surgery, Second Hospital of Lanzhou University, Lanzhou 730030, China; (B.H.); (X.Y.)
- Key Laboratory of the Digestive System Tumors of Gansu Province, Second Hospital of Lanzhou University, Lanzhou 730030, China
- Correspondence: ; Tel.: +86-138-9361-5421
| |
Collapse
|
385
|
Huang S, Cao L, Cheng H, Li D, Li Y, Wu Z. The blooming intersection of subfatin and metabolic syndrome. Rev Cardiovasc Med 2021; 22:799-805. [PMID: 34565078 DOI: 10.31083/j.rcm2203086] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/23/2021] [Accepted: 08/13/2021] [Indexed: 02/05/2023] Open
Abstract
Metabolic Syndrome (MS) remains the leading cause of mortality and morbidity globally. Adipose tissue releases adipokines that play key roles in metabolic and cardio-cerebro-vascular homeostasis. Subfatin, induced after exercise or upon cold exposure in adipose tissue, is a novel secreted protein homologous to Metrn, a neutrophic factor with angiogenic properties. The protein was proved to be of great significance in the browning of white adipose tissue (BWT) and insulin resistance (IR). It affected insulin sensitivity at least via its local autocrine/paracrine action through AMP-activated protein kinase (AMPK) or peroxisome proliferator-activated receptor δ (PPAR-δ) dependent signaling. Subfatin blocked the release of inflammatory mediators, improved intracellular insulin signal transduction and reversed IR. It also improved glucose tolerance and played a key role in metabolism and cardiovascular and cerebrovascular homeostasis. It was reported that the level of serum subfatin was significantly correlated with the occurrence and severity of coronary heart disease, which might be a new target for the treatment of coronary heart disease. In addition, exercise increased the level of subfatin in circulation and adipose tissue, promoted energy consumption, improved glucose and lipid metabolism, increased the heat production of brown fat, and strengthened the anti-inflammatory mechanism. Given its role in metabolic disorders, subfatin is considered as a candidate biomarker of MS. However, the clinical significance of subfatin remains largely unclear. The purpose of this article is to review the research on the effect of subfatin on MS in recent years.
Collapse
Affiliation(s)
- Shenglei Huang
- Department of Hepatobiliary Disease, Fuzhou General Hospital (Dongfang Hospital), Xiamen University, 350025 Fuzhou, Fujian, China
- Department of Hepatobiliary Disease, The 900th Hospital of Joint Logistics Support Force, 350025 Fuzhou, Fujian, China
| | - Lei Cao
- Department of Pathology, Quanzhou Women's and Children's Hospital, 362000 Quanzhou, Fujian, China
| | - Hongwei Cheng
- School of Public Health, Xiamen University, 361002 Xiamen, Fujian, China
| | - Dongliang Li
- Department of Hepatobiliary Disease, Fuzhou General Hospital (Dongfang Hospital), Xiamen University, 350025 Fuzhou, Fujian, China
- Department of Hepatobiliary Disease, The 900th Hospital of Joint Logistics Support Force, 350025 Fuzhou, Fujian, China
| | - Yi Li
- Department of Oncology, 920th Hospital of Joint Logistics Support Force, 650032 Kunming, Yunnan, China
| | - Zhixian Wu
- Department of Hepatobiliary Disease, Fuzhou General Hospital (Dongfang Hospital), Xiamen University, 350025 Fuzhou, Fujian, China
- Department of Hepatobiliary Disease, The 900th Hospital of Joint Logistics Support Force, 350025 Fuzhou, Fujian, China
| |
Collapse
|
386
|
Saydé T, Manczak R, Saada S, Bégaud G, Bessette B, Lespes G, Le Coustumer P, Gaudin K, Dalmay C, Pothier A, Lalloué F, Battu S. Characterization of Glioblastoma Cancer Stem Cells Sorted by Sedimentation Field-Flow Fractionation Using an Ultrahigh-Frequency Range Dielectrophoresis Biosensor. Anal Chem 2021; 93:12664-12671. [PMID: 34491042 DOI: 10.1021/acs.analchem.1c02466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cancer stem cells (CSCs) appear to be an essential target for cancer therapies, in particular, in brain tumors such as Glioblastoma. Nevertheless, their isolation is made difficult by their low content in culture or tumors (<5% of the tumor mass) and is essentially based on the use of fluorescent or magnetic labeling techniques, increasing the risk of differentiation induction. The use of label-free separation methods such as sedimentation field-flow fractionation (SdFFF) is promising, but it becomes necessary to consider a coupling with a detection and characterization method for future identification and purification of CSCs from patient-derived tumors. In this study, we demonstrate for the first time the capability of using an ultrahigh-frequency range dielectrophoresis fluidic biosensor as a detector. This implies an important methodological adaptation of SdFFF cell sorting by the use of a new compatible carrier liquid DEP buffer (DEP-B). After SdFFF sorting, subpopulations derived from U87-MG and LN18 cell lines undergo biological characterization, demonstrating that using DEP-B as a carrier liquid, we sorted by SdFFF subpopulations with specific differentiation characteristics: F1 = differentiated cells/F2 = CSCs. These subpopulations presented high-frequency crossover (HFC) values similar to those measured for standard differentiated (around 110 MHz) and CSC (around 80 MHz) populations. This coupling appeared as a promising solution for the development of an online integration of these two complementary label-free separation/detection technologies.
Collapse
Affiliation(s)
- Tarek Saydé
- EA3842-CAPTuR, GEIST, Faculté de Médecine, Université de Limoges, 2 rue du Dr Marcland, Limoges 87025, France.,ARNA, INSERM U1212, UMR CNRS 5320, Université de Bordeaux, 146 rue Léo Saignat, Bordeaux 33076, France
| | - Rémi Manczak
- XLIM-UMR CNRS 7252, Université de Limoges, 123, avenue Albert Thomas, Limoges 87060 LIMOGES CEDEX, France
| | - Sofiane Saada
- EA3842-CAPTuR, GEIST, Faculté de Médecine, Université de Limoges, 2 rue du Dr Marcland, Limoges 87025, France
| | - Gaelle Bégaud
- EA3842-CAPTuR, GEIST, Faculté de Médecine, Université de Limoges, 2 rue du Dr Marcland, Limoges 87025, France
| | - Barbara Bessette
- EA3842-CAPTuR, GEIST, Faculté de Médecine, Université de Limoges, 2 rue du Dr Marcland, Limoges 87025, France
| | - Gaëtane Lespes
- CNRS, Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux (IPREM), UMR 5254, Université de Pau et des Pays de l'Adour (E2S/UPPA), 2 Avenue Pierre Angot, Pau 64053, France
| | - Philippe Le Coustumer
- Bordeaux Imaging Center, UMS 3420 CNRS-INSERM, Université de Bordeaux, 146 rue Léo Saignat, Bordeaux 33076, France
| | - Karen Gaudin
- ARNA, INSERM U1212, UMR CNRS 5320, Université de Bordeaux, 146 rue Léo Saignat, Bordeaux 33076, France
| | - Claire Dalmay
- XLIM-UMR CNRS 7252, Université de Limoges, 123, avenue Albert Thomas, Limoges 87060 LIMOGES CEDEX, France
| | - Arnaud Pothier
- XLIM-UMR CNRS 7252, Université de Limoges, 123, avenue Albert Thomas, Limoges 87060 LIMOGES CEDEX, France
| | - Fabrice Lalloué
- EA3842-CAPTuR, GEIST, Faculté de Médecine, Université de Limoges, 2 rue du Dr Marcland, Limoges 87025, France
| | - Serge Battu
- EA3842-CAPTuR, GEIST, Faculté de Médecine, Université de Limoges, 2 rue du Dr Marcland, Limoges 87025, France
| |
Collapse
|
387
|
Almeida GM, Pereira C, Park JH, Lemos C, Campelos S, Gullo I, Martins D, Gonçalves G, Leitão D, Neto JL, André A, Borges C, Almeida D, Lee HJ, Kong SH, Kim WH, Carneiro F, Almeida R, Yang HK, Oliveira C. CD44v6 High Membranous Expression Is a Predictive Marker of Therapy Response in Gastric Cancer Patients. Biomedicines 2021; 9:biomedicines9091249. [PMID: 34572441 PMCID: PMC8465138 DOI: 10.3390/biomedicines9091249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/06/2021] [Accepted: 09/08/2021] [Indexed: 01/27/2023] Open
Abstract
In gastric cancer (GC), biomarkers that define prognosis and predict treatment response remain scarce. We hypothesized that the extent of CD44v6 membranous tumor expression could predict prognosis and therapy response in GC patients. Two GC surgical cohorts, from Portugal and South Korea (n = 964), were characterized for the extension of CD44v6 membranous immuno-expression, clinicopathological features, patient survival, and therapy response. The value of CD44v6 expression in predicting response to treatment and its impact on prognosis was determined. High CD44v6 expression was associated with invasive features (perineural invasion and depth of invasion) in both cohorts and with worse survival in the Portuguese GC cohort (HR 1.461; 95% confidence interval 1.002–2.131). Patients with high CD44v6 tumor expression benefited from conventional chemotherapy in addition to surgery (p < 0.05), particularly those with heterogeneous CD44v6-positive and -negative populations (CD44v6_3+) (p < 0.007 and p < 0.009). Our study is the first to identify CD44v6 high membranous expression as a potential predictive marker of response to conventional treatment, but it does not clarify CD44v6 prognostic value in GC. Importantly, our data support selection of GC patients with high CD44v6-expressing tumors for conventional chemotherapy in addition to surgery. These findings will allow better stratification of GC patients for treatment, potentially improving their overall survival.
Collapse
Affiliation(s)
- Gabriela M Almeida
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (G.M.A.); (C.P.); (C.L.); (S.C.); (I.G.); (D.M.); (A.A.); (F.C.); (R.A.)
- Ipatimup—Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135 Porto, Portugal;
- Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal;
| | - Carla Pereira
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (G.M.A.); (C.P.); (C.L.); (S.C.); (I.G.); (D.M.); (A.A.); (F.C.); (R.A.)
- Ipatimup—Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135 Porto, Portugal;
- Doctoral Programme in Biomedicine, Faculty of Medicine of the University of Porto, 4200-319 Porto, Portugal
| | - Ji-Hyeon Park
- Department of Surgery, Seoul National University Hospital, Seoul 03080, Korea; (J.-H.P.); (H.-J.L.); (S.-H.K.); (H.-K.Y.)
| | - Carolina Lemos
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (G.M.A.); (C.P.); (C.L.); (S.C.); (I.G.); (D.M.); (A.A.); (F.C.); (R.A.)
- UnIGENe, IBMC—Institute for Molecular and Cell Biology, 4200-135 Porto, Portugal
- ICBAS—Instituto Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - Sofia Campelos
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (G.M.A.); (C.P.); (C.L.); (S.C.); (I.G.); (D.M.); (A.A.); (F.C.); (R.A.)
- Department of Pathology, Ipatimup Diagnostics, Institute of Molecular Pathology and Immunology, University of Porto, 4200-135 Porto, Portugal
| | - Irene Gullo
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (G.M.A.); (C.P.); (C.L.); (S.C.); (I.G.); (D.M.); (A.A.); (F.C.); (R.A.)
- Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal;
- Department of Pathology, Centro Hospitalar Universitário de São João, 4200-319 Porto, Portugal
| | - Diana Martins
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (G.M.A.); (C.P.); (C.L.); (S.C.); (I.G.); (D.M.); (A.A.); (F.C.); (R.A.)
- Ipatimup—Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135 Porto, Portugal;
- Department of Biomedical Laboratory Sciences, ESTeSC—Coimbra Health School, Polytechnic Institute of Coimbra, 3046-854 Coimbra, Portugal
| | - Gilza Gonçalves
- Ipatimup—Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135 Porto, Portugal;
| | - Dina Leitão
- Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal;
- Department of Pathology, Centro Hospitalar Universitário de São João, 4200-319 Porto, Portugal
| | - João Luís Neto
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal;
| | - Ana André
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (G.M.A.); (C.P.); (C.L.); (S.C.); (I.G.); (D.M.); (A.A.); (F.C.); (R.A.)
- Ipatimup—Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135 Porto, Portugal;
| | - Clara Borges
- Medical Oncology Department, Centro Hospitalar Universitário de São João, 4200-319 Porto, Portugal; (C.B.); (D.A.)
| | - Daniela Almeida
- Medical Oncology Department, Centro Hospitalar Universitário de São João, 4200-319 Porto, Portugal; (C.B.); (D.A.)
| | - Hyuk-Joon Lee
- Department of Surgery, Seoul National University Hospital, Seoul 03080, Korea; (J.-H.P.); (H.-J.L.); (S.-H.K.); (H.-K.Y.)
- Cancer Research Institute, Seoul National University, Seoul 03080, Korea
- Department of Surgery, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Seong-Ho Kong
- Department of Surgery, Seoul National University Hospital, Seoul 03080, Korea; (J.-H.P.); (H.-J.L.); (S.-H.K.); (H.-K.Y.)
- Department of Surgery, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Woo Ho Kim
- Department of Pathology, Seoul National University College of Medicine, Seoul 03080, Korea;
| | - Fátima Carneiro
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (G.M.A.); (C.P.); (C.L.); (S.C.); (I.G.); (D.M.); (A.A.); (F.C.); (R.A.)
- Ipatimup—Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135 Porto, Portugal;
- Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal;
- Department of Pathology, Centro Hospitalar Universitário de São João, 4200-319 Porto, Portugal
| | - Raquel Almeida
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (G.M.A.); (C.P.); (C.L.); (S.C.); (I.G.); (D.M.); (A.A.); (F.C.); (R.A.)
- Ipatimup—Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135 Porto, Portugal;
- Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal;
- Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| | - Han-Kwang Yang
- Department of Surgery, Seoul National University Hospital, Seoul 03080, Korea; (J.-H.P.); (H.-J.L.); (S.-H.K.); (H.-K.Y.)
- Cancer Research Institute, Seoul National University, Seoul 03080, Korea
- Department of Surgery, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Carla Oliveira
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (G.M.A.); (C.P.); (C.L.); (S.C.); (I.G.); (D.M.); (A.A.); (F.C.); (R.A.)
- Ipatimup—Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135 Porto, Portugal;
- Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal;
- Correspondence: ; Tel.: +351-220-408-800
| |
Collapse
|
388
|
Wan Kamarul Zaman WS, Nurul AA, Nordin F. Stem Cells and Cancer Stem Cells: The Jekyll and Hyde Scenario and Their Implications in Stem Cell Therapy. Biomedicines 2021; 9:biomedicines9091245. [PMID: 34572431 PMCID: PMC8468168 DOI: 10.3390/biomedicines9091245] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 08/31/2021] [Accepted: 09/04/2021] [Indexed: 12/12/2022] Open
Abstract
"Jekyll and Hyde" refers to persons with an unpredictably dual personality, who are battling between good and evil within themselves In this regard, even cells consist of good and evil counterparts. Normal stem cells (NSCs) and cancer stem cells (CSCs) are two types of cells that share some similar characteristics but have distinct functions that play a major role in physiological and pathophysiological development. In reality, NSCs such as the adult and embryonic stem cells, are the good cells and the ultimate treatment used in cell therapy. CSCs are the corrupted cells that are a subpopulation of cancer cells within the cancer microenvironment that grow into a massive tumour or malignancy that needs to be treated. Hence, understanding the connection between NSCs and CSCs is important not just in cancer development but also in their therapeutic implication, which is the focus of this review.
Collapse
Affiliation(s)
- Wan Safwani Wan Kamarul Zaman
- Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia
- Centre for Innovation in Medical Engineering (CIME), Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia
- Correspondence:
| | - Asma Abdullah Nurul
- School of Health Science, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia;
| | - Fazlina Nordin
- Centre for Tissue Engineering and Regenerative Medicine (CTERM), Universiti Kebangsaan Malaysia Medical Centre, UKM, Cheras, Kuala Lumpur 56000, Malaysia;
| |
Collapse
|
389
|
Kumar V, Xin X, Ma J, Tan C, Osna N, Mahato RI. Therapeutic targets, novel drugs, and delivery systems for diabetes associated NAFLD and liver fibrosis. Adv Drug Deliv Rev 2021; 176:113888. [PMID: 34314787 PMCID: PMC8440458 DOI: 10.1016/j.addr.2021.113888] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/12/2021] [Accepted: 07/18/2021] [Indexed: 02/08/2023]
Abstract
Type 2 diabetes mellitus (T2DM) associated non-alcoholic fatty liver disease (NAFLD) is the fourth-leading cause of death. Hyperglycemia induces various complications, including nephropathy, cirrhosis and eventually hepatocellular carcinoma (HCC). There are several etiological factors leading to liver disease development, which involve insulin resistance and oxidative stress. Free fatty acid (FFA) accumulation in the liver exerts oxidative and endoplasmic reticulum (ER) stresses. Hepatocyte injury induces release of inflammatory cytokines from Kupffer cells (KCs), which are responsible for activating hepatic stellate cells (HSCs). In this review, we will discuss various molecular targets for treating chronic liver diseases, including homeostasis of FFA, lipid metabolism, and decrease in hepatocyte apoptosis, role of growth factors, and regulation of epithelial-to-mesenchymal transition (EMT) and HSC activation. This review will also critically assess different strategies to enhance drug delivery to different cell types. Targeting nanocarriers to specific liver cell types have the potential to increase efficacy and suppress off-target effects.
Collapse
Affiliation(s)
- Virender Kumar
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Xiaofei Xin
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Jingyi Ma
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Chalet Tan
- Department of Pharmaceutics and Drug Delivery, University of Mississippi, University, MS 38677, USA
| | - Natalia Osna
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68105, USA
| | - Ram I Mahato
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
390
|
Wu W, Klockow JL, Zhang M, Lafortune F, Chang E, Jin L, Wu Y, Daldrup-Link HE. Glioblastoma multiforme (GBM): An overview of current therapies and mechanisms of resistance. Pharmacol Res 2021; 171:105780. [PMID: 34302977 PMCID: PMC8384724 DOI: 10.1016/j.phrs.2021.105780] [Citation(s) in RCA: 342] [Impact Index Per Article: 85.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 07/18/2021] [Accepted: 07/19/2021] [Indexed: 12/21/2022]
Abstract
Glioblastoma multiforme (GBM) is a WHO grade IV glioma and the most common malignant, primary brain tumor with a 5-year survival of 7.2%. Its highly infiltrative nature, genetic heterogeneity, and protection by the blood brain barrier (BBB) have posed great treatment challenges. The standard treatment for GBMs is surgical resection followed by chemoradiotherapy. The robust DNA repair and self-renewing capabilities of glioblastoma cells and glioma initiating cells (GICs), respectively, promote resistance against all current treatment modalities. Thus, durable GBM management will require the invention of innovative treatment strategies. In this review, we will describe biological and molecular targets for GBM therapy, the current status of pharmacologic therapy, prominent mechanisms of resistance, and new treatment approaches. To date, medical imaging is primarily used to determine the location, size and macroscopic morphology of GBM before, during, and after therapy. In the future, molecular and cellular imaging approaches will more dynamically monitor the expression of molecular targets and/or immune responses in the tumor, thereby enabling more immediate adaptation of tumor-tailored, targeted therapies.
Collapse
Affiliation(s)
- Wei Wu
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA 94305, USA
| | - Jessica L Klockow
- Department of Radiation Oncology, Stanford University, Stanford, CA 94305, USA
| | - Michael Zhang
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA 94305, USA; Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA
| | - Famyrah Lafortune
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA 94305, USA
| | - Edwin Chang
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA 94305, USA
| | - Linchun Jin
- Lillian S. Wells Department of Neurosurgery, University of Florida, Gainesville, FL 32611, USA
| | - Yang Wu
- Department of Neuropathology, Institute of Pathology, Technical University of Munich, Munich, Bayern 81675, Germany
| | - Heike E Daldrup-Link
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
391
|
Li Q, Li Y, Jiang H, Xiao Z, Wu X, Zhang H, Zhao Y, Du F, Chen Y, Wu Z, Li J, Hu W, Cho CH, Shen J, Li M. Vitamin D suppressed gastric cancer cell growth through downregulating CD44 expression in vitro and in vivo. Nutrition 2021; 91-92:111413. [PMID: 34450383 DOI: 10.1016/j.nut.2021.111413] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/30/2021] [Accepted: 07/06/2021] [Indexed: 12/31/2022]
Abstract
OBJECTIVES Vitamin D deficiency was found to be associated with increased risk for gastric cancer (GC). We previously found that vitamin D inhibited GC cell growth in vitro. However, the in vivo antitumor effect of vitamin D in GC as well as the underlying mechanisms are not well understood. The aim of this study was to investigate the anticancer effect of vitamin D on GC both in vitro and in vivo. METHODS Human GC cells MKN45, MKN28, and KATO III were used. The expressions of vitamin D receptor (VDR) and CD44 were downregulated by using predesigned siRNA molecules. Cell viability was evaluated by methyl thiazolyl tetrazolium assay. Soft agar assay was used for colony formation of GC cells. Flow cytometry was used to assess CD44-positive cell population. CD44high cancer cells were enriched by using anti-CD44-conjugated magnetic microbeads. Quantitative real-time polymerase chain reaction and Western blot were performed to detect gene and protein expressions, respectively. Clinical samples were collected for evaluation of the correlation of VDR and CD44 expression. Orthotopic tumor-bearing mice were established to evaluate the antitumor effect of vitamin D. RESULTS The results showed that the active form of vitamin D, 1,25(OH)2D3, had a remarkable inhibitory effect in CD44-expressing human GC MKN45 and KATO III cells, but not in CD44-null MKN28 cells. The gene expressions of CD44 and VDR in GC cell lines and GC patient tissues were positively correlated. Furthermore, 1,25(OH)2D3 suppressed MKN45 and KATO III cell growth through VDR-induced suppression of CD44. Additionally, we demonstrated that 1,25(OH)2D3 inhibited Wnt/β-catenin signaling pathway, which might lead to the downregulation of CD44. In an orthotopic GC nude mice model, both oral intake of vitamin D and intraperitoneal injection with 1,25(OH)2D3 could significantly inhibit orthotopic GC growth and CD44 expression in vivo. CONCLUSION To our knowledge, this study provided the first evidence that vitamin D suppressed GC cell growth both in vitro and in vivo through downregulating CD44. The present study sheds light on repurposing vitamin D as a potential therapeutic agent for GC prevention and treatment.
Collapse
Affiliation(s)
- Qianxiu Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Sichuan, China; South Sichuan Institute of Translational Medicine, Sichuan, China
| | - Yifan Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Sichuan, China; South Sichuan Institute of Translational Medicine, Sichuan, China
| | - Houxiang Jiang
- Nanchong Key Laboratory of Individualized Drug Therapy, Department of Pharmacy, Nanchong Central Hospital, The Second Clinical Medical College, North Sichuan Medical College, Sichuan, China
| | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Sichuan, China; South Sichuan Institute of Translational Medicine, Sichuan, China
| | - Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Sichuan, China; South Sichuan Institute of Translational Medicine, Sichuan, China
| | - Hanyu Zhang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Sichuan, China; Department of Gastrointestinal Surgery, the First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wanna Medical College), Anhui, China
| | - Yueshui Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Sichuan, China; South Sichuan Institute of Translational Medicine, Sichuan, China
| | - Fukuan Du
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Sichuan, China; South Sichuan Institute of Translational Medicine, Sichuan, China
| | - Yu Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Sichuan, China; South Sichuan Institute of Translational Medicine, Sichuan, China
| | - Zhigui Wu
- Department of Pharmacy, the Affiliated Hospital of Southwest Medical University, Sichuan, China
| | - Jing Li
- Department of Oncology and Hematology, Hospital (T.C.M) Affiliated to Southwest Medical University, Sichuan, China
| | - Wei Hu
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Guangdong, China
| | - Chi Hin Cho
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Sichuan, China; South Sichuan Institute of Translational Medicine, Sichuan, China; School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Sichuan, China; South Sichuan Institute of Translational Medicine, Sichuan, China.
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Sichuan, China; South Sichuan Institute of Translational Medicine, Sichuan, China.
| |
Collapse
|
392
|
Morin S, Simard M, Flamand N, Pouliot R. Biological action of docosahexaenoic acid in a 3D tissue-engineered psoriatic skin model: Focus on the PPAR signaling pathway. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1866:159032. [PMID: 34428549 DOI: 10.1016/j.bbalip.2021.159032] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 08/02/2021] [Accepted: 08/16/2021] [Indexed: 12/15/2022]
Abstract
N-3 polyunsaturated fatty acids (n-3 PUFAs), and in particular docosahexaenoic acid (DHA), have many beneficial metabolic effects, including reducing epidermal thickness in patients with psoriasis. The positive impacts of DHA in psoriasis could be mediated by its interactions with the PPAR signaling pathway, as well as by its secretion of anti-inflammatory bioactive metabolites, but the detailed metabolism is still not understood. In the present study, we evaluated the influence of DHA on the main features of psoriasis and its effects on the PPAR signaling pathway, in a psoriatic in vitro skin model. Healthy and psoriatic skin substitutes were produced according to the tissue-engineered self-assembly method, using culture media supplemented with 10 μM of DHA. The presence of DHA led to a reduction in the abnormal cell differentiation of psoriatic keratinocytes, seen in the increased expression of filaggrin and keratin 10. DHA was incorporated into the membrane phospholipids of the epidermis and transformed principally into eicosapentaenoic acid (EPA). Furthermore, the addition of DHA into the culture medium led to a decrease in the levels of lipid mediators derived from n-6 PUFAs, mainly prostaglandin E2 (PGE2) and 12-hydroxyeicosatetraenoic acid (12-HETE). Finally, DHA supplementation rebalanced the expression of PPAR receptors and caused a decrease in the secretion of TNF-α. Altogether, our results show that DHA possesses the ability to attenuate the psoriatic characteristics of psoriatic skin substitutes, mostly by restoring epidermal cell differentiation and proliferation, as well as by reducing inflammation.
Collapse
Affiliation(s)
- Sophie Morin
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Axe médecine régénératrice, Centre de recherche du CHU de Québec-Université Laval, Québec, QC G1J 1Z4, Canada; Faculté de pharmacie de l'Université Laval, Québec, QC G1J 1A4, Canada.
| | - Mélissa Simard
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Axe médecine régénératrice, Centre de recherche du CHU de Québec-Université Laval, Québec, QC G1J 1Z4, Canada; Faculté de pharmacie de l'Université Laval, Québec, QC G1J 1A4, Canada.
| | - Nicolas Flamand
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, QC G1V 4G5, Canada; Département de médecine, Faculté de médecine de l'Université Laval, Québec, QC G1V 0A6, Canada.
| | - Roxane Pouliot
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Axe médecine régénératrice, Centre de recherche du CHU de Québec-Université Laval, Québec, QC G1J 1Z4, Canada; Faculté de pharmacie de l'Université Laval, Québec, QC G1J 1A4, Canada.
| |
Collapse
|
393
|
Asano T, Kaneko MK, Kato Y. Development of a Novel Epitope Mapping System: RIEDL Insertion for Epitope Mapping Method. Monoclon Antib Immunodiagn Immunother 2021; 40:162-167. [PMID: 34424761 DOI: 10.1089/mab.2021.0023] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
To clarify the binding region of monoclonal antibodies (mAbs) to target molecules, it is very essential to understand the pharmacological function of each mAb. Although deletion mutants and point mutants are usefully utilized for epitope mapping, we often experience the difficulty of determining the mAb epitope against membrane proteins. We aimed to develop a novel method to determine the binding region of mAbs using epitope tag system. We first checked the reactivity of an anti-CD44 mAb (C44Mab-5) to several deletion mutants of CD44. We then employed the RIEDL tag system ("RIEDL" peptide and LpMab-7 mAb). We inserted the "RIEDL" peptide into the CD44 protein from the 21st to 41st amino acid (AA). The transfectants produced were stained by LpMab-7 and C44Mab-5 in flow cytometry. C44Mab-5 did not react with 30th-361st AA of the deletion mutant of CD44. Furthermore, the reaction of C44Mab-5 to RIEDL tag-inserted CD44 from 25th to 36th AA was lost, although LpMab-7 detected most of the RIEDL tag-inserted CD44 from 21st to 41st AA. The epitope of C44Mab-5 for CD44 was determined to be the peptide from 25th to 36th AA of CD44 using RIEDL insertion for epitope mapping (REMAP) method. The REMAP method might be useful for determining the critical epitope of functional mAbs against many target molecules.
Collapse
Affiliation(s)
- Teizo Asano
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Mika K Kaneko
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yukinari Kato
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan.,Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
394
|
Zhang M, Dai Z, Zhao X, Wang G, Lai R. Anticarin β Inhibits Human Glioma Progression by Suppressing Cancer Stemness via STAT3. Front Oncol 2021; 11:715673. [PMID: 34408983 PMCID: PMC8366317 DOI: 10.3389/fonc.2021.715673] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 07/20/2021] [Indexed: 01/04/2023] Open
Abstract
Glioma is the most common form of malignant brain cancer. It is very difficult to cure malignant glioma because of the presence of glioma stem cells, which are a barrier to cure, have high tumorigenesis, associated with drug resistance, and responsible for relapse by regulating stemness genes. In this study, our results demonstrated that anticarin β, a natural compound from Antiaris toxicaria, can effectively and selectively suppress proliferation and cause apoptosis in glioma cells, which has an IC50 that is 100 times lower than that in mouse normal neural stem cells. Importantly, cell sphere formation assay and real time-quantitative analysis reveal that anticarin β inhibits cancer stemness by modulating related stemness gene expression. Additionally, anticarin β induces DNA damage to regulate the oncogene expression of signal transducer and activator of transcription 3 (STAT3), Akt, mitogen-activated protein kinases (MAPKs), and eventually leading to apoptosis. Furthermore, anticarin β effectively inhibits glioma growth and prolongs the lifts pan of tumor-bearing mice without systemic toxicity in the orthotopic xenograft mice model. These results suggest that anticarin β is a promising candidate inhibitor for malignant glioma.
Collapse
Affiliation(s)
- Min Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms, Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology - The Chinese University of Hong Kong (KIZ-CUHK) Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Kunming, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Zhi Dai
- Key Laboratory of Animal Models and Human Disease Mechanisms, Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology - The Chinese University of Hong Kong (KIZ-CUHK) Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Kunming, China
| | - Xudong Zhao
- Key Laboratory of Animal Models and Human Disease Mechanisms, Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology - The Chinese University of Hong Kong (KIZ-CUHK) Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Kunming, China
| | - Gan Wang
- Key Laboratory of Animal Models and Human Disease Mechanisms, Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology - The Chinese University of Hong Kong (KIZ-CUHK) Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Kunming, China
| | - Ren Lai
- Key Laboratory of Animal Models and Human Disease Mechanisms, Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology - The Chinese University of Hong Kong (KIZ-CUHK) Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Kunming, China
| |
Collapse
|
395
|
Yang P, Rhea PR, Conway T, Nookala S, Hegde V, Gagea M, Ajami NJ, Harribance SL, Ochoa J, Sastry JK, Cohen L. Human Biofield Therapy Modulates Tumor Microenvironment and Cancer Stemness in Mouse Lung Carcinoma. Integr Cancer Ther 2021; 19:1534735420940398. [PMID: 32975128 PMCID: PMC7522816 DOI: 10.1177/1534735420940398] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Studies have demonstrated that purported biofield therapy emitted from humans can inhibit the proliferation of cancer cells and suppress tumor growth in various cancers. We explored the effects of biofield therapy on tumor growth in the Lewis lung carcinoma and expanded mechanistic outcomes. We found biofield therapy did not inhibit tumor growth. However, the experimental (Ex) condition exposed tumors had a significantly higher percentage of necrosis (24.4 ± 6.8%) compared with that of the Control condition (6.5 ± 2.7%; P < .02) and cleaved caspase-3 positive cells were almost 2.3-fold higher (P < .05). Similarly, tumor-infiltrating lymphocytes profiling showed that CD8+/CD45+ immune cell population was significantly increased by 2.7-fold in Ex condition (P < .01) whereas the number of intratumoral FoxP3+/CD4+ (T-reg cells) was 30.4% lower than that of the Control group (P = .01), leading to a significant 3.1-fold increase in the ratio of CD8+/T-reg cells (P < .01). Additionally, there was a 51% lower level of strongly stained CD68+ cells (P < .01), 57.9% lower level of F4/80high/CD206+ (M2 macrophages; P < .02) and a significant 1.8-fold increase of the ratio of M1/M2 macrophages (P < .02). Furthermore, Ex exposure resulted in a 15% reduction of stem cell marker CD44 and a significant 33% reduction of SOX2 compared with that of the Controls (P < .02). The Ex group also engaged in almost 50% less movement throughout the session than the Controls. These findings suggest that exposure to purported biofields from a human is capable of enhancing cancer cell death, in part mediated through modification of the tumor microenvironment and stemness of tumor cells in mouse Lewis lung carcinoma model. Future research should focus on defining the optimal treatment duration, replication with different biofield therapists, and exploring the mechanisms of action.
Collapse
Affiliation(s)
- Peiying Yang
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Patrea R Rhea
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Tara Conway
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sita Nookala
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Venkatesh Hegde
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mihai Gagea
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nadim J Ajami
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Jewel Ochoa
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Lorenzo Cohen
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
396
|
Nong S, Wei Z, Wang Z, Ma L, Guan Y, Ni J. Reduced DAPK1 Expression Promotes Stem Cell-Like Characteristics of Prostate Cancer Cells by Activating ZEB1 via Hippo/YAP Signaling Pathway. Stem Cells Dev 2021; 30:934-945. [PMID: 34289746 DOI: 10.1089/scd.2021.0043] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Prostate cancer (PCa) is a malignant tumor that originates in the male genitourinary system. Downregulation of death-associated protein kinase 1 (DAPK1) is closely related to PCa. Little is known about the functional role of DAPK1 in regulating cancer stem cell (CSC)-like characteristics of PCa cells, and we have conducted research on this topic. Compared with tumor-adjacent normal tissues, DAPK1 was severely downregulated in tumor tissues of PCa patients. DAPK1 expression was also reduced in PCa cell lines with respect to that in normal prostate cells. Moreover, we sorted PCa-CSCs (PCa-CD133+ cells) from PCa cells. PCa-CD133+ cells also exhibited a reduced DAPK1 level and elevated levels of stem cell markers (CD44, OCT4, and SOX2). DAPK1 knockdown promoted sphere formation and enhanced the proportions of PCa-CD133+/PCa-CD133- cells. Inhibition of DAPK1 also accelerated migration and invasion of PCa-CD133+ cells. In addition, DAPK1 interacted with zinc finger E-box-binding homeobox-1 (ZEB1) and repressed ZEB1 expression in PCa-CD133+ cells. DAPK1 suppressed Hippo/YAP signaling pathway by interacting with ZEB1. Finally, we generated a tumor xenograft model to verify the effect of PCa-CD133+ cells following DAPK1 overexpression on tumor growth of PCa. DAPK1 overexpression inhibited tumor growth of PCa and repressed the expression of ZEB1, YAP, and TAZ in the tumor tissues of PCa mice. In conclusion, reduced DAPK1 expression promoted stem cell-like characteristics of PCa cells through activating ZEB1 via Hippo/YAP signaling pathway. Taken together, this work sheds lights on the potential of DAPK1 as a target for PCa therapeutics from bench to clinic.
Collapse
Affiliation(s)
- Shaojun Nong
- Department of Urological Surgery and The Affiliated Hospital of Nantong University, Nantong City, Jiangsu Province, China
| | - Zhongqing Wei
- Department of Urological Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing City, Jiangsu Province, China
| | - Zhiwei Wang
- Department of General Surgery, The Affiliated Hospital of Nantong University, Nantong City, Jiangsu Province, China
| | - Limin Ma
- Department of Urological Surgery and The Affiliated Hospital of Nantong University, Nantong City, Jiangsu Province, China
| | - Yangbo Guan
- Department of Urological Surgery and The Affiliated Hospital of Nantong University, Nantong City, Jiangsu Province, China
| | - Jian Ni
- Department of Urological Surgery and The Affiliated Hospital of Nantong University, Nantong City, Jiangsu Province, China
| |
Collapse
|
397
|
Carty F, Dunbar H, Hawthorne IJ, Ting AE, Stubblefield SR, Van't Hof W, English K. IFN-γ and PPARδ influence the efficacy and retention of multipotent adult progenitor cells in graft vs host disease. Stem Cells Transl Med 2021; 10:1561-1574. [PMID: 34397170 PMCID: PMC8550699 DOI: 10.1002/sctm.21-0008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 06/29/2021] [Accepted: 07/28/2021] [Indexed: 01/14/2023] Open
Abstract
Cell‐based therapy for the treatment of inflammatory disorders has focused on the application of mesenchymal stromal cells (MSCs) and multipotent adult progenitor cells (MAPCs). Despite the recent positive findings in industry‐sponsored clinical trials of MSCs and MAPCs for graft vs host disease (GvHD), cell therapy is efficacious in some but not all patients, highlighting the need to identify strategies to enhance cell‐based therapeutic efficacy. Here, we demonstrate the capacity for interferon (IFN)‐γ licensing to enhance human MAPC efficacy and retention following early administration in a humanized mouse model of acute GvHD (aGvHD). Activation of the nuclear receptor peroxisome proliferator‐activated receptor delta (PPARδ) negatively influenced the retention and efficacy of human MAPCs as well as IFN‐γ‐licensed MAPCs in the aGvHD model. PPARδ antagonism significantly enhanced the efficacy of human MAPCs when administered early in the humanized aGvHD model. COX‐2 expression in human MAPC was significantly decreased in IFN‐γ licensed MAPCs exposed to a PPARδ agonist. Importantly, MAPC exposure to the PPARδ antagonist in the presence of a COX‐2 inhibitor indomethacin before administration significantly reduced the efficacy of PPARδ antagonized MAPCs in the aGvHD humanized mouse model. This is the first study to demonstrate the importance of PPARδ in human MAPC efficacy in vivo and highlights the importance of understanding the disease microenvironment in which cell‐based therapies are to be administered. In particular, the presence of PPARδ ligands may negatively influence MAPC or MSC therapeutic efficacy.
Collapse
Affiliation(s)
- Fiona Carty
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland.,Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Hazel Dunbar
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland.,Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Ian J Hawthorne
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland.,Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co. Kildare, Ireland
| | | | | | - Wouter Van't Hof
- Athersys, Inc, Cleveland, Ohio, USA.,Cleveland Cord Blood Center, Cleveland, Ohio, USA
| | - Karen English
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland.,Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co. Kildare, Ireland
| |
Collapse
|
398
|
Oliveira BSAD, de Assis ACC, Souza NM, Ferreira LFR, Soriano RN, Bilal M, Iqbal HMN. Nanotherapeutic approach to tackle chemotherapeutic resistance of cancer stem cells. Life Sci 2021; 279:119667. [PMID: 34087280 DOI: 10.1016/j.lfs.2021.119667] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 05/16/2021] [Accepted: 05/22/2021] [Indexed: 02/07/2023]
Abstract
Estimates indicate that cancer will become the leading cause of mortality worldwide in the future. Tumorigenesis is a complex process that involves self-sufficiency in signs of growth, insensitivity to anti-growth signals, prevention of apoptosis, unlimited replication, sustained angiogenesis, tissue invasion, and metastasis. Cancer stem cells (CSCs) have an important role in tumor development and resistance. Here we will approach phenotypic plasticity capacity, highly efficient DNA repair systems, anti-apoptotic machinery, sustained stemness features, interaction with the tumor microenvironment, and Notch, Wnt, and Hedgehog signaling pathways. The researches about CSCs as a target in cancer treatment has been growing. Many different options have pointed beneficial results, such as pathways and CSC-surface markers targeting. Besides its limitations, nanotherapeutics have emerged as a potential strategy in this context since they aim to improve pharmacokinetics, biodistribution, and reduce the side effects observed in traditional treatments. Nanoparticles have been studied in this field, mostly for drug delivery and a multitherapy approach. Another widely researched approaches in this area are related to heat therapy, such as photothermal therapy, photodynamic therapy and magnetic hyperthermia, besides molecular targeting. This review will contemplate the most relevant studies that have shown the effects of nanotherapeutics. In conclusion, although the studies analyzed are mostly preclinical, we believe that there is strong evidence that nanoparticles can increase the chances of a better prognosis to cancer in the future. It is also essential to transpose these findings to the clinic to confirm and better understand the role of nanotherapeutics in this context.
Collapse
Affiliation(s)
- Bruna Stefane Alves de Oliveira
- Undergradute student, Department of Medicine, Federal University of Juiz de Fora, Governador Valadares, MG 35032-620, Brazil
| | - Ana Carolina Correa de Assis
- Undergradute student, Department of Medicine, Federal University of Juiz de Fora, Governador Valadares, MG 35032-620, Brazil
| | - Natália Melo Souza
- Undergradute student, Department of Medicine, Federal University of Juiz de Fora, Governador Valadares, MG 35032-620, Brazil
| | - Luiz Fernando Romanholo Ferreira
- Graduate Program in Process Engineering, Tiradentes University (UNIT), Av. Murilo Dantas, 300, Farolândia, 49032-490 Aracaju, Sergipe, Brazil; Institute of Technology and Research (ITP), Tiradentes University (UNIT), Av. Murilo Dantas, 300, Farolândia, 49032-490 Aracaju, Sergipe, Brazil
| | - Renato Nery Soriano
- Division of Physiology and Biophysics, Department of Basic Life Sciences, Federal University of Juiz de Fora, Governador Valadares, MG 35010-177, Brazil
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China.
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico.
| |
Collapse
|
399
|
Arora S, Singh P, Ahmad S, Ahmad T, Dohare R, Almatroodi SA, Alrumaihi F, Rahmani AH, Syed MA. Comprehensive Integrative Analysis Reveals the Association of KLF4 with Macrophage Infiltration and Polarization in Lung Cancer Microenvironment. Cells 2021; 10:cells10082091. [PMID: 34440860 PMCID: PMC8392240 DOI: 10.3390/cells10082091] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/07/2021] [Accepted: 08/12/2021] [Indexed: 01/05/2023] Open
Abstract
Macrophage polarization and infiltration to the tumor microenvironment (TME) is a critical determining factor for tumor progression. Macrophages are polarized into two states—M1 (pro-inflammatory, anti-tumorigenic and stimulated by LPS or IFN-γ) and M2 (anti-inflammatory pro-tumorigenic and stimulated by IL-4) phenotypes. Specifically, M2 macrophages enhance tumor cell growth and survival. Recent evidences suggest the pivotal role of microRNAs in macrophage polarization during the development of Non-small cell lung cancer (NSCLC), thus proposing a new therapeutic option to target lung cancer. In silico analysis determined cogent upregulation of KLF4, downregulation of IL-1β and miR-34a-5p in NSCLC tissues, consequently worsening the overall survival of NSCLC patients. We observed a significant association of KLF4 with macrophage infiltration and polarization in NSCLC. We found that KLF4 is critically implicated in M2 polarization of macrophages, which, in turn, promotes tumorigenesis. KLF4 expression correlated with miR-34a-5p and IL-1β in a feed-forward loop (FFL), both of which are implicated in immune regulation. Mechanistic overexpression of miR-34a-5p in macrophages (IL-4 stimulated) inhibits KLF4, along with downregulation of ARG1, REL-1MB (M2 macrophage specific markers), and upregulation of IL-1β, IL-6, (M1 macrophage specific markers), demonstrating macrophage polarization switch from M2 to M1 phenotype. Moreover, co-culture of these macrophages with NSCLC cells reduces their proliferation, wound healing, clonogenic capacity and enhanced NO-mediated apoptosis. Further, transfection of miR-34a-5p in NSCLC cells, also degrades KLF4, but enhances the expression of KLF4 regulated genes—IL-1β, IL-6 (pro-inflammatory mediators), which is further enhanced upon co-culture with IL-4 stimulated macrophages. Additionally, we observed a significant increase in i-NOS/NO content upon co-culture, suggesting polarization reversion of macrophages from M2 to M1, and eventually leading to anti-tumor effects. Our findings thus show a significant role of KLF4 in tumorigenesis and TAM polarization of NSCLC. However, miR-34a-5p mediated targeting of these molecular networks will provide a better therapeutic intervention for NSCLC.
Collapse
Affiliation(s)
- Shweta Arora
- Translational Research Lab, Department of Biotechnology, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Prithvi Singh
- Centre for Interdisciplinary Research in Basic Sciences, Srinivasa Ramanujan Block, Jamia Millia Islamia, New Delhi 110025, India
| | - Shaniya Ahmad
- Translational Research Lab, Department of Biotechnology, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Tanveer Ahmad
- Multidisciplinary Centre for Advance Research and Studies, Jamia Millia Islamia, New Delhi 110025, India
| | - Ravins Dohare
- Centre for Interdisciplinary Research in Basic Sciences, Srinivasa Ramanujan Block, Jamia Millia Islamia, New Delhi 110025, India
| | - Saleh A Almatroodi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Faris Alrumaihi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Arshad Husain Rahmani
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Mansoor Ali Syed
- Translational Research Lab, Department of Biotechnology, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi 110025, India
| |
Collapse
|
400
|
Kavousipour S, Mohammadi S, Eftekhar E, Barazesh M, Morowvat MH. In Silico Investigation of Signal Peptide Sequences to Enhance Secretion of CD44 Nanobodies Expressed in Escherichia coli. Curr Pharm Biotechnol 2021; 22:1192-1205. [PMID: 33045964 DOI: 10.2174/1389201021666201012162904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 05/01/2020] [Accepted: 09/14/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND The selection of a suitable signal peptide that can direct recombinant proteins from the cytoplasm to the extracellular space is an important criterion affecting the production of recombinant proteins in Escherichia coli, a widely used host. Nanobodies are currently attracting the attention of scientists as antibody alternatives due to their specific properties and feasibility of production in E. coli. OBJECTIVE CD44 nanobodies constitute a potent therapeutic agent that can block CD44/HA interaction in cancer and inflammatory diseases. This molecule may also function as a drug against cancer cells and has been produced previously in E. coli without a signal peptide sequence. The goal of this project was to find a suitable signal peptide to direct CD44 nanobody extracellular secretion in E. coli that will potentially lead to optimization of experimental methods and facilitate downstream steps such as purification. METHODS We analyzed 40 E. coli derived signal peptides retrieved from the Signal Peptide database and selected the best candidate signal peptides according to relevant criteria including signal peptide probability, stability, and physicochemical features, which were evaluated using signalP software version 4.1 and the ProtParam tool, respectively. RESULTS In this in silico study, suitable candidate signal peptide(s) for CD44 nanobody secretory expression were identified. CSGA, TRBC, YTFQ, NIKA, and DGAL were selected as appropriate signal peptides with acceptable D-scores, and appropriate physicochemical and structural properties. Following further analysis, TRBC was selected as the best signal peptide to direct CD44 nanobody expression to the extracellular space of E. coli. CONCLUSION The selected signal peptide, TRBC is the most suitable to promote high-level secretory production of CD44 nanobodies in E. coli and potentially will be useful for scaling up CD44 nanobody production in experimental research as well as in other CD44 nanobody applications. However, experimental work is needed to confirm the data.
Collapse
Affiliation(s)
- Soudabeh Kavousipour
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Shiva Mohammadi
- Department of Biotechnology, School of Advanced Medical Science and Technologies, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ebrahim Eftekhar
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Mahdi Barazesh
- School of Paramedical, Gerash University of Medical Sciences, Gerash, Iran
| | - Mohammad H Morowvat
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran P.O. Box 71468-64685, Shiraz, Iran
| |
Collapse
|