401
|
Pafili K, Gouni-Berthold I, Papanas N, Mikhailidis DP. Abdominal aortic aneurysms and diabetes mellitus. J Diabetes Complications 2015; 29:1330-6. [PMID: 26440573 DOI: 10.1016/j.jdiacomp.2015.08.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 08/16/2015] [Accepted: 08/17/2015] [Indexed: 11/16/2022]
Abstract
There is accumulating evidence that risk profiles differ between coronary artery disease and abdominal aortic aneurysms (AAAs). However, diabetes mellitus (DM) appears to be negatively associated with AAA formation. The underlying mechanisms for this negative relationship are far from defined, but may include: increased arterial wall matrix formation via advanced glycation end products; suppression of plasmin and reduction of levels and activity of matrix metalloproteinases (MMP)-2 and 9; diminished aortic wall macrophage infiltration, elastolysis and neovascularization. In addition, the effect of pharmacological agents used for the treatment of patients with DM on AAA formation has been studied with rather controversial results. Statins, angiotensin converting enzyme inhibitors, angiotensin receptor blockers, fenofibrate, antibiotics and some hypoglycemic agents are beginning to be appreciated for a potential modest protection from AAAs, but further studies are needed.
Collapse
Affiliation(s)
- Kalliopi Pafili
- Diabetes Clinic, Second Department of Internal Medicine, Medical School, Democritus University of Thrace, Alexandroupolis, Greece
| | - Ioanna Gouni-Berthold
- Center for Endocrinology, Diabetes and Preventive Medicine, University of Cologne, Cologne, Germany
| | - Nikolaos Papanas
- Diabetes Clinic, Second Department of Internal Medicine, Medical School, Democritus University of Thrace, Alexandroupolis, Greece.
| | - Dimitri P Mikhailidis
- Department of Clinical Biochemistry (Vascular Disease Prevention Clinics), Royal Free Hospital campus, University College London Medical School, University College London (UCL), London NW3 2QG, UK
| |
Collapse
|
402
|
Varraso R, Camargo CA. The influence of processed meat consumption on chronic obstructive pulmonary disease. Expert Rev Respir Med 2015; 9:703-10. [DOI: 10.1586/17476348.2015.1105743] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
403
|
Kellow NJ, Coughlan MT. Effect of diet-derived advanced glycation end products on inflammation. Nutr Rev 2015; 73:737-59. [PMID: 26377870 DOI: 10.1093/nutrit/nuv030] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Advanced glycation end products (AGEs) formed via the Maillard reaction during the thermal processing of food contributes to the flavor, color, and aroma of food. A proportion of food-derived AGEs and their precursors is intestinally absorbed and accumulates within cells and tissues. AGEs have been implicated in the pathogenesis of diabetes-related complications and several chronic diseases via interaction with the receptor for AGEs, which promotes the transcription of genes that control inflammation. The dicarbonyls, highly reactive intermediates of AGE formation, are also generated during food processing and may incite inflammatory responses through 1) the suppression of protective pathways, 2) the incretin axis, 3) the modulation of immune-mediated signaling, and 4) changes in gut microbiota profile and metabolite sensors. In animal models, restriction of dietary AGEs attenuates chronic low-grade inflammation, but current evidence from human studies is less clear. Here, the emerging relationship between excess dietary AGE consumption and inflammation is explored, the utility of dietary AGE restriction as a therapeutic strategy for the attenuation of chronic diseases is discussed, and possible avenues for future investigation are suggested.
Collapse
Affiliation(s)
- Nicole J Kellow
- N.J. Kellow and M.T. Coughlan are with the Glycation, Nutrition and Metabolism Laboratory, Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia, and the Department of Epidemiology & Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Alfred Medical Research and Education Precinct, Melbourne, Victoria, Australia. M.T. Coughlan is with the Department of Medicine, Central Clinical School, Monash University, Alfred Medical Research and Education Precinct, Melbourne, Victoria, Australia
| | - Melinda T Coughlan
- N.J. Kellow and M.T. Coughlan are with the Glycation, Nutrition and Metabolism Laboratory, Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia, and the Department of Epidemiology & Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Alfred Medical Research and Education Precinct, Melbourne, Victoria, Australia. M.T. Coughlan is with the Department of Medicine, Central Clinical School, Monash University, Alfred Medical Research and Education Precinct, Melbourne, Victoria, Australia.
| |
Collapse
|
404
|
Koulis C, Watson A, Gray S, Jandeleit-Dahm K. Linking RAGE and Nox in diabetic micro- and macrovascular complications. DIABETES & METABOLISM 2015; 41:272-281. [DOI: 10.1016/j.diabet.2015.01.006] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 01/24/2015] [Accepted: 01/30/2015] [Indexed: 12/31/2022]
|
405
|
Awasthi S, Gayathiri SK, Ramya R, Duraichelvan R, Dhason A, Saraswathi NT. Advanced Glycation-Modified Human Serum Albumin Evokes Alterations in Membrane and Eryptosis in Erythrocytes. Appl Biochem Biotechnol 2015; 177:1013-24. [PMID: 26276445 DOI: 10.1007/s12010-015-1793-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Accepted: 08/02/2015] [Indexed: 12/15/2022]
Abstract
Increased burden of advanced glycation end-products (AGEs) in case of hyperglycemic conditions leads to the development of retinopathy, nephropathy, and cardiovascular and neurological disorders such as Alzheimer's disease. AGEs are considered as pro-oxidants, and their accumulation increases the oxidative stress. The prolonged exposure to these AGEs is the fundamental cause of chronic oxidative stress. Abnormal morphology of red blood cells (RBCs) and excessive eryptosis has been observed in diabetes, glomerulonephritis, dyslipidemia, and obesity, but yet the contribution of extracellular AGEs remains undefined. In this study, we investigated the effect of AGEs on erythrocytes to determine their impact on the occurrence of different pathological forms of these blood cells. Specifically, carboxymethyllysine (CML), carboxyethyllysine (CEL), and Arg-pyrimidine (Arg-P) which have been reported to be the most pre-dominant AGEs formed under in vivo conditions were used in this study. Results suggested the eryptotic properties of CML, CEL, and Arg-P for RBCs, which were evident from the highly damaged cell membrane and occurrence of abnormal morphologies. Methylglyoxal-modified albumin showed more severe effects, which can be attributed to the high reactivity and pro-oxidant nature of glycation end products. These findings suggest the possible role of AGE-modified albumin towards the morphological changes in erythrocyte's membrane associated with diabetic conditions.
Collapse
Affiliation(s)
- Saurabh Awasthi
- Molecular Biophysics Lab, School of Chemical and Biotechnology, SASTRA University, Thanjavur, Tamilnadu, 613401, India
| | - S K Gayathiri
- Molecular Biophysics Lab, School of Chemical and Biotechnology, SASTRA University, Thanjavur, Tamilnadu, 613401, India
| | - R Ramya
- Molecular Biophysics Lab, School of Chemical and Biotechnology, SASTRA University, Thanjavur, Tamilnadu, 613401, India
| | | | - A Dhason
- Raman Research Institute, Bangalore, 560080, India
| | - N T Saraswathi
- Molecular Biophysics Lab, School of Chemical and Biotechnology, SASTRA University, Thanjavur, Tamilnadu, 613401, India.
| |
Collapse
|
406
|
Xiong M, Liu L, Liu Z, Gao H. Inhibitory effect of zinc on the advanced glycation end product-induced apoptosis of mouse osteoblastic cells. Mol Med Rep 2015; 12:5286-92. [PMID: 26239716 DOI: 10.3892/mmr.2015.4088] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2014] [Accepted: 06/05/2015] [Indexed: 11/05/2022] Open
Abstract
Osteoporosis and diabetes have become serious health problems worldwide. Previous studies have suggested that diabetes is associated with osteoporosis and increased fracture risk. However, the mechanism underlying diabetes‑induced osteoporosis remains to be elucidated. Therefore, the present study aimed to examine the mechanism underlying diabetes‑induced osteoporosis, and determine the protective effects of zinc, which is known to be closely associated with osteoporosis and diabetes. The results of the present study demonstrated that zinc inhibited advanced glycation end product (AGE)‑induced MC3T3‑E1 cell apoptosis by attenuating the production of reactive oxygen species, inhibiting caspase‑3 and caspase‑9 activation, and inhibiting the release of cytochrome c from between the mitochondria and the cytosol. Furthermore, zinc was found to protect cells against AGE‑induced apoptosis via the mitogen‑activated protein kinase/extracellular signal‑regulated kinase and phosphoinositide 3‑kinase/AKT signaling pathways. In conclusion, these findings enable a better understanding of the mechanism underlying diabetes‑induced osteoporosis, and may indicate a novel target for its prevention and treatment.
Collapse
Affiliation(s)
- Mingyue Xiong
- Department of Traumatic Surgery, Xinqu Hospital, The First Affiliated Hospital of Henan University of Science Technology, Luoyang, Henan 471000, P.R. China
| | - Liqiang Liu
- Department of Traumatic Surgery, Xinqu Hospital, The First Affiliated Hospital of Henan University of Science Technology, Luoyang, Henan 471000, P.R. China
| | - Zhenhui Liu
- Department of Traumatic Surgery, Xinqu Hospital, The First Affiliated Hospital of Henan University of Science Technology, Luoyang, Henan 471000, P.R. China
| | - Hangfei Gao
- Department of Traumatic Surgery, Xinqu Hospital, The First Affiliated Hospital of Henan University of Science Technology, Luoyang, Henan 471000, P.R. China
| |
Collapse
|
407
|
Uribarri J, del Castillo MD, de la Maza MP, Filip R, Gugliucci A, Luevano-Contreras C, Macías-Cervantes MH, Markowicz Bastos DH, Medrano A, Menini T, Portero-Otin M, Rojas A, Sampaio GR, Wrobel K, Wrobel K, Garay-Sevilla ME. Dietary advanced glycation end products and their role in health and disease. Adv Nutr 2015; 6:461-473. [PMID: 26178030 PMCID: PMC4496742 DOI: 10.3945/an.115.008433] [Citation(s) in RCA: 269] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Over the past 2 decades there has been increasing evidence supporting an important contribution from food-derived advanced glycation end products (AGEs) to the body pool of AGEs and therefore increased oxidative stress and inflammation, processes that play a major role in the causation of chronic diseases. A 3-d symposium (1st Latin American Symposium of AGEs) to discuss this subject took place in Guanajuato, Mexico, on 1-3 October 2014 with the participation of researchers from several countries. This review is a summary of the different presentations and subjects discussed, and it is divided into 4 sections. The first section deals with current general knowledge about AGEs. The second section dwells on mechanisms of action of AGEs, with special emphasis on the receptor for advanced glycation end products and the potential role of AGEs in neurodegenerative diseases. The third section discusses different approaches to decrease the AGE burden. The last section discusses current methodologic problems with measurement of AGEs in different samples. The subject under discussion is complex and extensive and cannot be completely covered in a short review. Therefore, some areas of interest have been left out because of space. However, we hope this review illustrates currently known facts about dietary AGEs as well as pointing out areas that require further research.
Collapse
Affiliation(s)
- Jaime Uribarri
- Department of Medicine, The Icahn School of Medicine at Mount Sinai, New York, NY;
| | - María Dolores del Castillo
- Food Bioscience Group, Department of Food Analysis and Bioactivity, Institute of Food Science Research, Spanish National Research Council, Madrid, Spain
| | - María Pía de la Maza
- Institute of Nutrition and Food Technology Dr. Fernando Monckeberg Barros, University of Chile, Santiago, Chile
| | - Rosana Filip
- Department of Pharmacognosy, Institute of Drug Chemistry and Metabolism, School of Pharmacy and Biochemistry, University of Buenos Aires, Buenos Aires, Argentina
| | | | | | | | | | - Alejandra Medrano
- Food Science and Technology Department, School of Chemistry, University of the Republic, Montevideo, Uruguay
| | - Teresita Menini
- College of Osteopathic Medicine, Touro University California, Vallejo, CA
| | - Manuel Portero-Otin
- Metabolic Pathophysiology Department, School of Medicine, Biomedical Research Institute of Lleida, University of Lleida, Lleida, Spain
| | - Armando Rojas
- Biomedical Research Laboratories, Faculty of Medicine, Catholic University of Maule, Talca, Chile; and
| | | | - Kazimierz Wrobel
- Chemistry Department, University of Guanajuato, Guanajuato, Mexico
| | - Katarzyna Wrobel
- Chemistry Department, University of Guanajuato, Guanajuato, Mexico
| | | |
Collapse
|
408
|
Tian JX, Zhao JB, Li M, Li JL, Cao Y, Gregersen H, Tong XL. Distribution of advanced glycation end products and their receptor in the stomach of diabetic rats. Shijie Huaren Xiaohua Zazhi 2015; 23:2714-2721. [DOI: 10.11569/wcjd.v23.i17.2714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To observe the distribution of advanced glycation end products (AGEs) and their receptor (RAGE) in the stomach of diabetic rats.
METHODS: Diabetes mellitus (DM) and control (CON) rats were reared for eight weeks. Fasting plasma glucose (FPG), glycated serum protein (GSP) and gastric layer thickness were measured. The expression of AGEs and RAGE was detected by immunohistochemical staining.
RESULTS: The thickness of the mucosa (781.47 μm ± 137.82 μm vs 709.85 μm ± 169.41 μm) and submucosa (233.39 μm ± 134.05 μm vs 109.32 μm ± 44.43 μm) increased significantly in the DM group compared with the CON group (P < 0.05). The expression of AGEs and RAGE in the mucosa (5.66 ± 1.90 vs 2.25 ± 0.52, 2.79 ± 0.54 vs 1.70 ± 0.30) and muscle (37.37 ± 7.38 vs 24.32 ± 4.02, 4.26 ± 0.80 vs 3.59 ± 0.37) layers of the stomach was significantly higher in the DM group than in the CON group (P < 0.05).
CONCLUSION: The expression of AGEs and RAGE is up-regulated in the stomach of diabetic rats. The increased levels of AGE and RAGE in gastric tissue may contribute to diabetic gastrointestinal dysfunction.
Collapse
|
409
|
Govindaraj J, Sorimuthu Pillai S. Rosmarinic acid modulates the antioxidant status and protects pancreatic tissues from glucolipotoxicity mediated oxidative stress in high-fat diet: streptozotocin-induced diabetic rats. Mol Cell Biochem 2015; 404:143-59. [PMID: 25735949 DOI: 10.1007/s11010-015-2374-6] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 02/23/2015] [Indexed: 12/21/2022]
Abstract
Persistent hyperglycemia and elevated levels of free fatty acids (FFA) contribute to oxidative stress, a proximate cause for the onset and progression of diabetes and its complications. The present study was hypothesized to evaluate the anti-diabetic potential of Rosmarinic acid (RA) during high-fat diet (HFD)-streptozotocin (STZ)-induced type 2 Diabetes (T2D) in wistar albino rats. Oral administration of RA (100 mg/kg b.w) significantly (p < 0.05) increased the insulin sensitivity index (ISI0,120), while the levels of blood glucose, HbA1c, advanced glycation end products (AGE), TNF-α, IL-1β, IL 6, NO, p-JNK, P38 MAPK and NF-κB were significantly reduced, with a concomitant elevation in the plasma insulin levels in diabetic rats. Furthermore, RA treatment significantly (p < 0.05) reduced the levels of triglycerides, FFA and cholesterol in serum, and reduced the levels of lipid peroxides, AOPP's and protein carbonyls in the plasma and pancreas of diabetic rats. The diminished activities of pancreatic superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and glutathione-S-transferase (GST) and the decreased levels of plasma ceruloplasmin, vitamin C, vitamin E and reduced glutathione (GSH) in diabetic rats were also significantly (p < 0.05) recovered upon RA treatment denoting its antioxidant potential which was confirmed by Nrf-2, hemeoxyenase (HO-1) levels. Histological, ultrastructural and immunohistochemical data demonstrate that oral administration of RA protects pancreatic β-cells from oxidative niche in HFD-STZ-induced experimental diabetes. Our findings suggest that the oral treatment with RA alleviates pancreatic β-cell dysfunction and glucolipotoxicity-mediated oxidative stress during HFD-STZ-induced T2DM, perhaps through its antioxidant potential.
Collapse
Affiliation(s)
- Jayanthy Govindaraj
- Department of Biochemistry, University of Madras, Guindy Campus, Chennai, 600 025, Tamilnadu, India
| | | |
Collapse
|
410
|
Uribarri J, He JC. The low AGE diet: a neglected aspect of clinical nephrology practice? Nephron Clin Pract 2015; 130:48-53. [PMID: 25871778 DOI: 10.1159/000381315] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 02/27/2015] [Indexed: 11/19/2022] Open
Abstract
Increasing evidence in the literature suggests an important role for advanced glycation end products (AGEs) in the generation of a state of increased oxidative stress and chronic subclinical inflammation, which underlies most modern chronic diseases, including diabetes, cardiovascular disease and chronic kidney disease (CKD). Although AGEs were originally thought to form only endogenously, primarily as the result of the hyperglycemia of diabetes, it is now clear that exogenous AGEs, specially incorporated in foods, are an important contributor to the body pool of AGEs. Over the past decade, several clinical trials have been performed in a variety of conditions demonstrating that the application of an AGE-restricted diet reduces not only the systemic levels of AGEs but also the levels of markers of oxidative stress and inflammation. This has been shown in CKD patients before and after the initiation of dialysis and either in the presence or absence of coexistent diabetes. Reduction of the AGE content in food is obtained by simple changes in culinary techniques and appears to be a feasible, easily applicable and safe intervention, even in advanced CKD patients.
Collapse
Affiliation(s)
- Jaime Uribarri
- Division of Nephrology, Department of Medicine, The Icahn School of Medicine at Mount Sinai, New York, N.Y., USA
| | | |
Collapse
|
411
|
Nowotny K, Jung T, Höhn A, Weber D, Grune T. Advanced glycation end products and oxidative stress in type 2 diabetes mellitus. Biomolecules 2015; 5:194-222. [PMID: 25786107 PMCID: PMC4384119 DOI: 10.3390/biom5010194] [Citation(s) in RCA: 737] [Impact Index Per Article: 73.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 02/06/2015] [Accepted: 03/02/2015] [Indexed: 12/25/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a very complex and multifactorial metabolic disease characterized by insulin resistance and β cell failure leading to elevated blood glucose levels. Hyperglycemia is suggested to be the main cause of diabetic complications, which not only decrease life quality and expectancy, but are also becoming a problem regarding the financial burden for health care systems. Therefore, and to counteract the continually increasing prevalence of diabetes, understanding the pathogenesis, the main risk factors, and the underlying molecular mechanisms may establish a basis for prevention and therapy. In this regard, research was performed revealing further evidence that oxidative stress has an important role in hyperglycemia-induced tissue injury as well as in early events relevant for the development of T2DM. The formation of advanced glycation end products (AGEs), a group of modified proteins and/or lipids with damaging potential, is one contributing factor. On the one hand it has been reported that AGEs increase reactive oxygen species formation and impair antioxidant systems, on the other hand the formation of some AGEs is induced per se under oxidative conditions. Thus, AGEs contribute at least partly to chronic stress conditions in diabetes. As AGEs are not only formed endogenously, but also derive from exogenous sources, i.e., food, they have been assumed as risk factors for T2DM. However, the role of AGEs in the pathogenesis of T2DM and diabetic complications—if they are causal or simply an effect—is only partly understood. This review will highlight the involvement of AGEs in the development and progression of T2DM and their role in diabetic complications.
Collapse
Affiliation(s)
- Kerstin Nowotny
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany.
| | - Tobias Jung
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany.
| | - Annika Höhn
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany.
| | - Daniela Weber
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany.
| | - Tilman Grune
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany.
| |
Collapse
|
412
|
Effect of advanced glycosylation end products on apoptosis in human adipose tissue-derived stem cells in vitro. Cell Biosci 2015; 5:3. [PMID: 25973170 PMCID: PMC4429817 DOI: 10.1186/2045-3701-5-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2014] [Accepted: 12/24/2014] [Indexed: 12/15/2022] Open
Abstract
Background Both apoptosis and caspase-3 activity in adipose tissue-derived stem cells play an important role in the therapeutic process of diabetes patients. The purpose of this study was to investigate the effect of advanced glycation end products-human serum albumin (AGE-HSA) on apoptosis in human adipose tissue-derived stem cells (ADSCs) and to characterize the signal transduction pathways activated by AGEs that are involved in apoptosis regulation. Results AGE-HSA promoted apoptosis and caspase-3 activity in ADSCs. However, the effects of AGE-HSA were significantly attenuated by an inhibitor of p38 MAPK, but not by inhibitors of JNK MAPK or ERK MAPK. AGE-HSA also upregulated the expression of RAGE. Silencing of the RAGE gene inhibited AGE-HSA-induced apoptosis, and activation and expression of phosphorylated p38 MAPK. Conclusions These results suggest that AGE-HSA promote the apoptosis of ADSCs in vitro via a RAGE-dependent p38 MAPK pathway.
Collapse
|
413
|
Yamagishi SI, Fukami K, Matsui T. Crosstalk between advanced glycation end products (AGEs)-receptor RAGE axis and dipeptidyl peptidase-4-incretin system in diabetic vascular complications. Cardiovasc Diabetol 2015; 14:2. [PMID: 25582643 PMCID: PMC4298871 DOI: 10.1186/s12933-015-0176-5] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 01/05/2015] [Indexed: 12/15/2022] Open
Abstract
Advanced glycation end products (AGEs) consist of heterogenous group of macroprotein derivatives, which are formed by non-enzymatic reaction between reducing sugars and amino groups of proteins, lipids and nucleic acids, and whose process has progressed at an accelerated rate under diabetes. Non-enzymatic glycation and cross-linking of protein alter its structural integrity and function, contributing to the aging of macromolecules. Furthermore, engagement of receptor for AGEs (RAGE) with AGEs elicits oxidative stress generation and subsequently evokes proliferative, inflammatory, and fibrotic reactions in a variety of cells. Indeed, accumulating evidence has suggested the active involvement of accumulation of AGEs in diabetes-associated disorders such as diabetic microangiopathy, atherosclerotic cardiovascular diseases, Alzheimer's disease and osteoporosis. Glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) are incretins, gut hormones secreted from the intestine in response to food intake, both of which augment glucose-induced insulin release, suppress glucagon secretion, and slow gastric emptying. Since GLP-1 and GIP are rapidly degraded and inactivated by dipeptidyl peptidase-4 (DPP-4), inhibition of DPP-4 and/or DPP-4-resistant GLP-1 analogues have been proposed as a potential target for the treatment of diabetes. Recently, DPP-4 has been shown to cleave multiple peptides, and blockade of DPP-4 could exert diverse biological actions in GLP-1- or GIP-independent manner. This article summarizes the crosstalk between AGEs-RAGE axis and DPP-4-incretin system in the development and progression of diabetes-associated disorders and its therapeutic intervention, especially focusing on diabetic vascular complications.
Collapse
Affiliation(s)
- Sho-ichi Yamagishi
- Department of Pathophysiology and Therapeutics of Diabetic Vascular Complications, Kurume University School of Medicine, 67 Asahi-machi, Kurume, 830-0011, Japan.
| | - Kei Fukami
- Department of Medicine, Kurume University School of Medicine, Kurume, 830-0011, Japan.
| | - Takanori Matsui
- Department of Pathophysiology and Therapeutics of Diabetic Vascular Complications, Kurume University School of Medicine, 67 Asahi-machi, Kurume, 830-0011, Japan.
| |
Collapse
|
414
|
Awasthi S, Saraswathi NT. Silybin, a flavonolignan from milk thistle seeds, restrains the early and advanced glycation end product modification of albumin. RSC Adv 2015. [DOI: 10.1039/c5ra15550a] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Silybin exhibited a protective effect towards the non-enzymatic glycation mediated structure functional changes in albumin.
Collapse
Affiliation(s)
- Saurabh Awasthi
- Molecular Biophysics Lab. School of Chemical and Biotechnology
- SASTRA University
- Thanjavur-613401
- India
| | - N. T. Saraswathi
- Molecular Biophysics Lab. School of Chemical and Biotechnology
- SASTRA University
- Thanjavur-613401
- India
| |
Collapse
|
415
|
Navarro M, Fiore A, Fogliano V, Morales FJ. Carbonyl trapping and antiglycative activities of olive oil mill wastewater. Food Funct 2015; 6:574-83. [DOI: 10.1039/c4fo01049c] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The use of natural compounds as antiglycative agents to reduce the load of advanced glycation end products from diet is very promising.
Collapse
Affiliation(s)
- Marta Navarro
- Institute of Food Science
- Technology and Nutrition
- E-28040 Madrid
- Spain
| | - Alberto Fiore
- School of Science
- Engineering & Technology
- Division of Food & Life Sciences
- Abertay University
- Dundee DD1 1HG
| | - Vincenzo Fogliano
- Food Quality and Design group
- Wageningen University & Research Centre
- 6700 EV Wageningen
- The Netherlands
| | | |
Collapse
|
416
|
Kuznetsova LA, Plesneva SA, Sharova TS, Pertseva MN, Shpakov AO. Attenuation of inhibitory influence of hormones on adenylyl cyclase systems in the myocardium and brain of obese and type 2 diabetic rats as affected by the intranasal insulin treatment. J EVOL BIOCHEM PHYS+ 2014. [DOI: 10.1134/s0022093014050044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
417
|
Abstract
Oxidative stress is a common feature observed in a wide spectrum of chronic liver diseases including viral hepatitis, alcoholic, and nonalcoholic steatohepatitis. The nicotinamide adenine dinucleotide phosphate (NADPH) oxidases (NOXs) are emerging as major sources of reactive oxygen species (ROS). Several major isoforms are expressed in the liver, including NOX1, NOX2, and NOX4. While the phagocytic NOX2 has been known to play an important role in Kupffer cell and neutrophil phagocytic activity and inflammation, the nonphagocytic NOX homologues are increasingly recognized as key enzymes in oxidative injury and wound healing. In this review, we will summarize the current advances in knowledge on the regulatory pathways of NOX activation, their cellular distribution, and their role in the modulation of redox signaling in liver diseases.
Collapse
|
418
|
Iannuzzi C, Irace G, Sirangelo I. Differential effects of glycation on protein aggregation and amyloid formation. Front Mol Biosci 2014; 1:9. [PMID: 25988150 PMCID: PMC4428487 DOI: 10.3389/fmolb.2014.00009] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 08/08/2014] [Indexed: 12/28/2022] Open
Abstract
Amyloids are a class of insoluble proteinaceous substances generally composed of linear un-branched fibrils that are formed from misfolded proteins. Conformational diseases such as Alzheimer's disease, transmissible spongiform encephalopathies, and familial amyloidosis are associated with the presence of amyloid aggregates in the affected tissues. The majority of the cases are sporadic, suggesting that several factors must contribute to the onset and progression of these disorders. Among them, in the past 10 years, non-enzymatic glycation of proteins has been reported to stimulate protein aggregation and amyloid deposition. In this review, we analyze the most recent advances in this field suggesting that the effects induced by glycation may not be generalized as strongly depending on the protein structure. Indeed, being a post-translational modification, glycation could differentially affects the aggregation process in promoting, accelerating and/or stabilizing on-pathway and off-pathway species.
Collapse
Affiliation(s)
- Clara Iannuzzi
- Department of Biochemistry, Biophysics and General Pathology, Seconda Università degli Studi di Napoli Naples, Italy
| | - Gaetano Irace
- Department of Biochemistry, Biophysics and General Pathology, Seconda Università degli Studi di Napoli Naples, Italy
| | - Ivana Sirangelo
- Department of Biochemistry, Biophysics and General Pathology, Seconda Università degli Studi di Napoli Naples, Italy
| |
Collapse
|
419
|
Eriksen C, Svensson RB, Scheijen J, Hag AMF, Schalkwijk C, Praet SFE, Schjerling P, Kjær M, Magnusson SP, Couppé C. Systemic stiffening of mouse tail tendon is related to dietary advanced glycation end products but not high-fat diet or cholesterol. J Appl Physiol (1985) 2014; 117:840-7. [PMID: 25103969 DOI: 10.1152/japplphysiol.00584.2014] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Tendon pathology is related to metabolic disease and mechanical overloading, but the effect of metabolic disease on tendon mechanics is unknown. This study investigated the effect of diet and apolipoprotein E deficiency (ApoE(-/-)) on mechanical properties and advanced glycation end product (AGE) cross-linking of non-weight-bearing mouse tail tendons. Twenty ApoE(-/-) male mice were used as a model for hypercholesterolemia along with 26 wild-type (WT) mice. One-half of the mice from each group was fed a normal diet (ND) and the other half was fed a high-fat diet (HFD) to induce obesity. All were killed at 40 wk, and tail tendon fascicles were mechanically tested to failure and analyzed for AGEs. Diets were also analyzed for AGEs. ApoE(-/-) mice displayed a 14% increase in plateau modulus compared with WT mice (P < 0.05), whereas HFD mice displayed a 13% decrease in plateau modulus (P < 0.05) and a 12% decrease in total modulus (P < 0.05) compared with ND mice. Tail tendons of HFD mice had significantly lower concentrations of AGEs [carboxymethyllysine (CML): 26%, P < 0.0001; methylglyoxal-derived hydroimidazolone 1 (MG-H1): 15%, P < 0.005; pentosidine: 13%, P < 0.0005]. The HFD had ∼44-fold lower content of CML (P < 0.01), ∼29-fold lower content of carboxyethyllysine (P < 0.005), and ∼16-fold lower content of MG-H1 (P < 0.05) compared with ND. ApoE(-/-) increased, whereas HFD decreased mouse tail tendon stiffness. Dietary AGE content may be a crucial determinant for accumulation of AGE cross-links in tendons and for tissue compliance. The results demonstrate how systemic metabolic factors may influence tendon health.
Collapse
Affiliation(s)
- C Eriksen
- Institute of Sports Medicine, Department of Orthopedic Surgery M, Bispebjerg Hospital and Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - R B Svensson
- Institute of Sports Medicine, Department of Orthopedic Surgery M, Bispebjerg Hospital and Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - J Scheijen
- Department of Internal Medicine and Cardiovascular Research Institute Maastricht, Maastricht University Medical Center, The Netherlands
| | - A M F Hag
- Cluster for Molecular Imaging, Faculty of Health and Medical Sciences and Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, University of Copenhagen, Denmark
| | - C Schalkwijk
- Department of Internal Medicine and Cardiovascular Research Institute Maastricht, Maastricht University Medical Center, The Netherlands
| | - S F E Praet
- Department of Rehabilitation Medicine, MOVEFIT- Sports medicine, Erasmus University Medical Centre, Rotterdam, The Netherlands; and
| | - P Schjerling
- Institute of Sports Medicine, Department of Orthopedic Surgery M, Bispebjerg Hospital and Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - M Kjær
- Institute of Sports Medicine, Department of Orthopedic Surgery M, Bispebjerg Hospital and Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - S P Magnusson
- Institute of Sports Medicine, Department of Orthopedic Surgery M, Bispebjerg Hospital and Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark; Department of Physical Therapy, Musculoskeletal Rehabilitation Research Unit, Bispebjerg Hospital, Denmark
| | - C Couppé
- Institute of Sports Medicine, Department of Orthopedic Surgery M, Bispebjerg Hospital and Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark; Department of Physical Therapy, Musculoskeletal Rehabilitation Research Unit, Bispebjerg Hospital, Denmark
| |
Collapse
|
420
|
Javed F, Ramalingam S, Ahmed HB, Gupta B, Sundar C, Qadri T, Al-Hezaimi K, Romanos GE. Oral manifestations in patients with neurofibromatosis type-1: A comprehensive literature review. Crit Rev Oncol Hematol 2014; 91:123-9. [DOI: 10.1016/j.critrevonc.2014.02.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 02/07/2014] [Accepted: 02/28/2014] [Indexed: 11/29/2022] Open
|
421
|
Logan AC, Jacka FN. Nutritional psychiatry research: an emerging discipline and its intersection with global urbanization, environmental challenges and the evolutionary mismatch. J Physiol Anthropol 2014; 33:22. [PMID: 25060574 PMCID: PMC4131231 DOI: 10.1186/1880-6805-33-22] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 07/02/2014] [Indexed: 12/14/2022] Open
Abstract
In 21st-century public health, rapid urbanization and mental health disorders are a growing global concern. The relationship between diet, brain function and the risk of mental disorders has been the subject of intense research in recent years. In this review, we examine some of the potential socioeconomic and environmental challenges detracting from the traditional dietary patterns that might otherwise support positive mental health. In the context of urban expansion, climate change, cultural and technological changes and the global industrialization and ultraprocessing of food, findings related to nutrition and mental health are connected to some of the most pressing issues of our time. The research is also of relevance to matters of biophysiological anthropology. We explore some aspects of a potential evolutionary mismatch between our ancestral past (Paleolithic, Neolithic) and the contemporary nutritional environment. Changes related to dietary acid load, advanced glycation end products and microbiota (via dietary choices and cooking practices) may be of relevance to depression, anxiety and other mental disorders. In particular, the results of emerging studies demonstrate the importance of prenatal and early childhood dietary practices within the developmental origins of health and disease concept. There is still much work to be done before these population studies and their mirrored advances in bench research can provide translation to clinical medicine and public health policy. However, the clear message is that in the midst of a looming global epidemic, we ignore nutrition at our peril.
Collapse
Affiliation(s)
- Alan C Logan
- CAMNR, 23679 Calabasas Road Suite 542, Calabasas, CA 91302, USA
| | - Felice N Jacka
- School of Medicine, Deakin University, IMPACT SRC, PO Box 281, Geelong, VIC 3220, Australia
| |
Collapse
|
422
|
Dolores Giron-Gonzalez M, Morales-Portillo A, Salinas-Castillo A, Lopez-Jaramillo FJ, Hernandez-Mateo F, Santoyo-Gonzalez F, Salto-Gonzalez R. Engineered Glycated Amino Dendritic Polymers as Specific Nonviral Gene Delivery Vectors Targeting the Receptor for Advanced Glycation End Products. Bioconjug Chem 2014; 25:1151-61. [DOI: 10.1021/bc5001643] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- M. Dolores Giron-Gonzalez
- Departamento de Bioquimica y Biologia
Molecular II,
Facultad de Farmacia, and ‡Departamento de Quı́mica Organica and §Departamento de Quı́mica
Analítica, Facultad de Ciencias, Instituto de
Biotecnología, Universidad de Granada, E-18071Granada, Spain
| | - Arturo Morales-Portillo
- Departamento de Bioquimica y Biologia
Molecular II,
Facultad de Farmacia, and ‡Departamento de Quı́mica Organica and §Departamento de Quı́mica
Analítica, Facultad de Ciencias, Instituto de
Biotecnología, Universidad de Granada, E-18071Granada, Spain
| | - Alfonso Salinas-Castillo
- Departamento de Bioquimica y Biologia
Molecular II,
Facultad de Farmacia, and ‡Departamento de Quı́mica Organica and §Departamento de Quı́mica
Analítica, Facultad de Ciencias, Instituto de
Biotecnología, Universidad de Granada, E-18071Granada, Spain
| | - F. Javier Lopez-Jaramillo
- Departamento de Bioquimica y Biologia
Molecular II,
Facultad de Farmacia, and ‡Departamento de Quı́mica Organica and §Departamento de Quı́mica
Analítica, Facultad de Ciencias, Instituto de
Biotecnología, Universidad de Granada, E-18071Granada, Spain
| | - Fernando Hernandez-Mateo
- Departamento de Bioquimica y Biologia
Molecular II,
Facultad de Farmacia, and ‡Departamento de Quı́mica Organica and §Departamento de Quı́mica
Analítica, Facultad de Ciencias, Instituto de
Biotecnología, Universidad de Granada, E-18071Granada, Spain
| | - Francisco Santoyo-Gonzalez
- Departamento de Bioquimica y Biologia
Molecular II,
Facultad de Farmacia, and ‡Departamento de Quı́mica Organica and §Departamento de Quı́mica
Analítica, Facultad de Ciencias, Instituto de
Biotecnología, Universidad de Granada, E-18071Granada, Spain
| | - Rafael Salto-Gonzalez
- Departamento de Bioquimica y Biologia
Molecular II,
Facultad de Farmacia, and ‡Departamento de Quı́mica Organica and §Departamento de Quı́mica
Analítica, Facultad de Ciencias, Instituto de
Biotecnología, Universidad de Granada, E-18071Granada, Spain
| |
Collapse
|