401
|
Abstract
Phosphatidylinositol 3-kinase (PI3K) enzymes phosphorylate phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P(2), also known as PIP(2)], a minor but critically important phospholipid of the inner leaflet of the plasma membrane. The resulting PtdIns(3,4,5)P(3) (PIP(3)) acts as a membrane-bound attractant that recruits and activates a set of proteins to execute specific downstream signaling events to achieve the desired biological outcomes. Several genes that encode different PI3Ks exist in mammalian cells, and in the case of each PI3K, a partner protein that is tightly associated with the kinase ensures that the enzyme is localized to and activated at the correct membrane compartment. Excess PtdIns(3,4,5)P(3) is a major contributor to many forms of cancer, and dysregulation of PI3Ks leads to severe immunological and metabolic abnormalities. Given the multitude of proteins that are regulated by PtdIns(3,4,5)P(3), it is puzzling that not all of these targets are activated as soon as the lipid is produced in the plasma membrane. Reports have begun to shed light on the mechanism by which cells can discriminate between PtdIns(3,4,5)P(3) depending on the distinct PI3K protein that produced it. A study shows that PtdIns(3,4,5)P(3) regulates the degranulation of mast cells, but only if it is made by a PI3K that is associated with a specific adaptor protein. This remarkable specificity challenges our views of how phosphoinositides regulate their downstream effectors.
Collapse
Affiliation(s)
- Tamas Balla
- Eunice Kennedy Shriver National Institute of Child Health and Development, National Institutes of Health, 49 Convent Drive, Bethesda, MD 20892, USA.
| |
Collapse
|
402
|
Chou WW, Guh JY, Tsai JF, Hwang CC, Chiou SJ, Chuang LY. Arecoline-induced phosphorylated p53 and p21WAF1protein expression is dependent on ATM/ATR and phosphatidylinositol-3-kinase in clone-9 cells. J Cell Biochem 2009; 107:408-17. [DOI: 10.1002/jcb.22137] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
403
|
AZAD A, CHIONH F, CEBON J. Targeted agents for the systemic treatment of advanced hepatocellular carcinoma. Asia Pac J Clin Oncol 2009. [DOI: 10.1111/j.1743-7563.2009.01202.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
404
|
Kolokoltsov AA, Saeed MF, Freiberg AN, Holbrook MR, Davey RA. Identification of novel cellular targets for therapeutic intervention against Ebola virus infection by siRNA screening. Drug Dev Res 2009; 70:255-265. [PMID: 20930947 PMCID: PMC2949974 DOI: 10.1002/ddr.20303] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
While much progress has been made in developing drugs against a few prominent viruses such as HIV, few examples exist for emerging infectious agents. In some cases broad spectrum anti-viral drugs, such as ribavirin, are effective, but for some groups of viruses, these show little efficacy in animal models. Traditional methods focus on screening small molecule libraries to identify drugs that target virus factors, with the intention that side-effects to the host can be minimized. However, this greatly limits potential drug targets and virus genes can rapidly mutate to avoid drug action. Recent advances in siRNA gene targeting technologies have provided a powerful tool to specifically target and suppress the expression of cell genes. Since viruses are completely dependent upon host cell proteins for propagation, siRNA screening promises to reveal novel cell proteins and signaling pathways that may be viable targets for drug therapy regimens. Here we used an siRNA screening approach to identify gene products that play critical roles in Ebola virus infection. By gene cluster analysis, proteins in phosphatidylinositol-3-kinase and calcium/calmodulin kinase related networks were identified as important for Zaire Ebola virus infection and prioritized for further evaluation. Key roles of each were confirmed by testing available drugs specific for members of each pathway. Interestingly, both sets of proteins are also important in cancer and subject to intense investigation. Thus development of new drugs against these cancer targets may also prove useful in combating Ebola virus.
Collapse
Affiliation(s)
| | | | | | | | - Robert A. Davey
- Corresponding author: Robert A. Davey, Associate Professor, Department of Microbiology and Immunology, University of Texas Medical Branch, 301 University Blvd, Galveston, Texas, USA. Telephone: 409 772 4915, Fax: 409 772 5065,
| |
Collapse
|
405
|
Abstract
Glucocorticoid resistance or insensitivity is a major barrier to the treatment of several common inflammatory diseases-including chronic obstructive pulmonary disease and acute respiratory distress syndrome; it is also an issue for some patients with asthma, rheumatoid arthritis, and inflammatory bowel disease. Several molecular mechanisms of glucocorticoid resistance have now been identified, including activation of mitogen-activated protein (MAP) kinase pathways by certain cytokines, excessive activation of the transcription factor activator protein 1, reduced histone deacetylase-2 (HDAC2) expression, raised macrophage migration inhibitory factor, and increased P-glycoprotein-mediated drug efflux. Patients with glucocorticoid resistance can be treated with alternative broad-spectrum anti-inflammatory treatments, such as calcineurin inhibitors and other immunomodulators, or novel anti-inflammatory treatments, such as inhibitors of phosphodiesterase 4 or nuclear factor kappaB, although these drugs are all likely to have major side-effects. An alternative treatment strategy is to reverse glucocorticoid resistance by blocking its underlying mechanisms. Some examples of this approach are inhibition of p38 MAP kinase, use of vitamin D to restore interleukin-10 response, activation of HDAC2 expression by use of theophylline, antioxidants, or phosphoinositide-3-kinase-delta inhibitors, and inhibition of macrophage migration inhibitory factor and P-glycoprotein.
Collapse
Affiliation(s)
- Peter J Barnes
- National Heart and Lung Institute, Imperial College, London, UK.
| | | |
Collapse
|
406
|
De Preter K, De Brouwer S, Van Maerken T, Pattyn F, Schramm A, Eggert A, Vandesompele J, Speleman F. Meta-mining of Neuroblastoma and Neuroblast Gene Expression Profiles Reveals Candidate Therapeutic Compounds. Clin Cancer Res 2009; 15:3690-6. [DOI: 10.1158/1078-0432.ccr-08-2699] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
407
|
Kuo KT, Mao TL, Jones S, Veras E, Ayhan A, Wang TL, Glas R, Slamon D, Velculescu VE, Kuman RJ, Shih IM. Frequent activating mutations of PIK3CA in ovarian clear cell carcinoma. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 174:1597-601. [PMID: 19349352 PMCID: PMC2671248 DOI: 10.2353/ajpath.2009.081000] [Citation(s) in RCA: 355] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Accepted: 01/22/2009] [Indexed: 12/21/2022]
Abstract
Ovarian clear cell carcinoma (CCC) is one of the most malignant types of ovarian carcinomas, particularly at advanced stages. Unlike the more common type of ovarian cancer, high-grade serous carcinoma, ovarian CCC is often resistant to platinum-based chemotherapy, and therefore an effective treatment for this tumor type at advanced stages is urgently needed. In this study, we analyzed 97 ovarian CCCs for sequence mutations in KRAS, BRAF, PIK3CA, TP53, PTEN, and CTNNB1 as these mutations frequently occur in other major types of ovarian carcinomas. The samples included 18 CCCs for which affinity-purified tumor cells from fresh specimens were available, 69 microdissected tumors from paraffin tissues, and 10 tumor cell lines. Sequence mutations of PIK3CA, TP53, KRAS, PTEN, CTNNB1, and BRAF occurred in 33%, 15%, 7%, 5%, 3%, and 1% of CCC cases, respectively. Sequence analysis of PIK3CA in 28 affinity-purified CCCs and CCC cell lines showed a mutation frequency of 46%. Samples with PIK3CA mutations showed intense phosphorylated AKT immunoreactivity. These findings demonstrate that ovarian CCCs have a high frequency of activating PIK3CA mutations. We therefore suggest that the use of PIK3CA-targeting drugs may offer a more effective therapeutic approach compared with current chemotherapeutic agents for patients with advanced-stage and recurrent CCC.
Collapse
MESH Headings
- Adenocarcinoma, Clear Cell/genetics
- Adenocarcinoma, Clear Cell/metabolism
- Adenocarcinoma, Clear Cell/pathology
- Adenocarcinoma, Mucinous/genetics
- Adenocarcinoma, Mucinous/metabolism
- Adenocarcinoma, Mucinous/pathology
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Carcinoma, Endometrioid/genetics
- Carcinoma, Endometrioid/metabolism
- Carcinoma, Endometrioid/pathology
- Class I Phosphatidylinositol 3-Kinases
- Cystadenocarcinoma, Serous/genetics
- Cystadenocarcinoma, Serous/metabolism
- Cystadenocarcinoma, Serous/pathology
- Female
- Humans
- Immunoenzyme Techniques
- Mutation/genetics
- Ovarian Neoplasms/genetics
- Ovarian Neoplasms/metabolism
- Ovarian Neoplasms/pathology
- Phosphatidylinositol 3-Kinases/genetics
- Phosphatidylinositol 3-Kinases/metabolism
- Phosphorylation
- Polymorphism, Single Nucleotide/genetics
- Prognosis
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
Collapse
Affiliation(s)
- Kuan-Ting Kuo
- Departments of Pathology, Howard Hughes Medical Institute, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
408
|
Phosphoinositide 3-kinases and their role in inflammation: potential clinical targets in atherosclerosis? Clin Sci (Lond) 2009; 116:791-804. [PMID: 19397491 DOI: 10.1042/cs20080549] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Inflammation has a central role in the pathogenesis of atherosclerosis at various stages of the disease. Therefore it appears of great interest to develop novel and innovative drugs targeting inflammatory proteins for the treatment of atherosclerosis. The PI3K (phosphoinositide 3-kinase) family, which catalyses the phosphorylation of the 3-OH position of phosphoinositides and generates phospholipids, controls a wide variety of intracellular signalling pathways. Recent studies provide evidence for a crucial role of this family not only in immune function, such as inflammatory cell recruitment, and expression and activation of inflammatory mediators, but also in antigen-dependent responses making it an interesting target to modulate inflammatory processes. The present review will focus on the regulation of inflammation within the vasculature during atherogenesis. We will concentrate on the different functions played by each isoform of PI3K in immune cells which could be involved in this pathology, raising the possibility that inhibition of one or more PI3K isoforms may represent an effective approach in the treatment of atherosclerosis.
Collapse
|
409
|
Crowder RJ, Phommaly C, Tao Y, Hoog J, Luo J, Perou CM, Parker JS, Miller MA, Huntsman DG, Lin L, Snider J, Davies SR, Olson JA, Watson MA, Saporita A, Weber JD, Ellis MJ. PIK3CA and PIK3CB inhibition produce synthetic lethality when combined with estrogen deprivation in estrogen receptor-positive breast cancer. Cancer Res 2009; 69:3955-62. [PMID: 19366795 PMCID: PMC2811393 DOI: 10.1158/0008-5472.can-08-4450] [Citation(s) in RCA: 176] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Several phosphoinositide 3-kinase (PI3K) catalytic subunit inhibitors are currently in clinical trial. We therefore sought to examine relationships between pharmacologic inhibition and somatic mutations in PI3K catalytic subunits in estrogen receptor (ER)-positive breast cancer, in which these mutations are particularly common. RNA interference (RNAi) was used to determine the effect of selective inhibition of PI3K catalytic subunits, p110alpha and p110beta, in ER(+) breast cancer cells harboring either mutation (PIK3CA) or gene amplification (PIK3CB). p110alpha RNAi inhibited growth and promoted apoptosis in all tested ER(+) breast cancer cells under estrogen deprived-conditions, whereas p110beta RNAi only affected cells harboring PIK3CB amplification. Moreover, dual p110alpha/p110beta inhibition potentiated these effects. In addition, treatment with the clinical-grade PI3K catalytic subunit inhibitor BEZ235 also promoted apoptosis in ER(+) breast cancer cells. Importantly, estradiol suppressed apoptosis induced by both gene knockdowns and BEZ235 treatment. Our results suggest that PI3K inhibitors should target both p110alpha and p110beta catalytic subunits, whether wild-type or mutant, and be combined with endocrine therapy for maximal efficacy when treating ER(+) breast cancer.
Collapse
Affiliation(s)
- Robert J. Crowder
- Division of Oncology, Department of Medicine, Washington University in St Louis, MO, USA
| | - Chanpheng Phommaly
- Division of Oncology, Department of Medicine, Washington University in St Louis, MO, USA
| | - Yu Tao
- Department of Biostatistics, Washington University in St Louis, MO, USA
| | - Jeremy Hoog
- Division of Oncology, Department of Medicine, Washington University in St Louis, MO, USA
| | - Jingqin Luo
- Department of Biostatistics, Washington University in St Louis, MO, USA
| | - Charles M. Perou
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Joel S. Parker
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Melinda A. Miller
- Center for Translational and Applied Genomics, and the British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - David G. Huntsman
- Center for Translational and Applied Genomics, and the British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - Li Lin
- Division of Oncology, Department of Medicine, Washington University in St Louis, MO, USA
| | - Jacqueline Snider
- Division of Oncology, Department of Medicine, Washington University in St Louis, MO, USA
| | - Sherri R. Davies
- Division of Oncology, Department of Medicine, Washington University in St Louis, MO, USA
| | | | - Mark A. Watson
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis MO USA
- Siteman Comprehensive Cancer Center, St. Louis MO USA
| | - Anthony Saporita
- Division of Oncology, Department of Medicine, Washington University in St Louis, MO, USA
| | - Jason D. Weber
- Division of Oncology, Department of Medicine, Washington University in St Louis, MO, USA
- Siteman Comprehensive Cancer Center, St. Louis MO USA
| | - Matthew J. Ellis
- Division of Oncology, Department of Medicine, Washington University in St Louis, MO, USA
- Siteman Comprehensive Cancer Center, St. Louis MO USA
| |
Collapse
|
410
|
Ottonello L, Bertolotto M, Montecucco F, Bianchi G, Dallegri F. Delayed apoptosis of human monocytes exposed to immune complexes is reversed by oxaprozin: role of the Akt/IkappaB kinase/nuclear factor kappaB pathway. Br J Pharmacol 2009; 157:294-306. [PMID: 19338579 PMCID: PMC2697812 DOI: 10.1111/j.1476-5381.2009.00162.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2008] [Revised: 11/10/2008] [Accepted: 12/09/2008] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND AND PURPOSE Monocytes-macrophages play a key role in the initiation and persistence of inflammatory reactions. Consequently, these cells represent an attractive therapeutic target for switching off overwhelming inflammatory responses. Non-steroidal anti-inflammatory drugs (NSAIDs) are among the most common drugs for the symptomatic treatment of rheumatic diseases. Their effects have been explained on the basis of cyclooxygenase (COX) inhibition. However, some of the actions of these drugs are not related to inhibition of prostaglandin synthesis. EXPERIMENTAL APPROACH We examined the effect of oxaprozin on apoptosis of immune complex-activated monocytes in comparison with drugs of the same class, and the signalling pathway that leads activated monocytes exposed to oxaprozin to apoptosis. In particular, we studied the activity of caspase-3, the involvement of IkappaB kinase (IKK)-nuclear factor kappaB (NF-kappaB) system and the activity of X-linked mammalian inhibitor of apoptosis protein (XIAP), Akt and mitogen-activated protein kinase (MAPK) in activated monocytes in the presence of oxaprozin. KEY RESULTS Immune complexes caused the inhibition of monocyte apoptosis. Oxaprozin reversed in a dose-dependent manner immune complex-induced survival of monocytes, without affecting the apoptosis of resting cells. Other NSAIDs are ineffective. The activity of oxaprozin was related to inhibition of Akt activation that, in turn, prevented p38 MAPK, IKK and NF-kappaB activation. Consistently, the inhibition of NF-kappaB activation reduced the production of the anti-apoptotic molecule XIAP, leading to uncontrolled activity of caspase 3. CONCLUSIONS AND IMPLICATIONS These results suggest that oxaprozin exerts its anti-inflammatory activity also through COX-independent pathways. It is likely that oxaprozin-mediated inhibition of the Akt/IKK/NF-kappaB pathway contributes to its anti-inflammatory properties.
Collapse
Affiliation(s)
- Luciano Ottonello
- First Medical Clinic, Laboratory of Phagocyte Physiopathology and Inflammation, Department of Internal Medicine, University of Genoa, Genoa, Italy.
| | | | | | | | | |
Collapse
|
411
|
Mankoo PK, Sukumar S, Karchin R. PIK3CA somatic mutations in breast cancer: Mechanistic insights from Langevin dynamics simulations. Proteins 2009; 75:499-508. [PMID: 18951408 PMCID: PMC3094910 DOI: 10.1002/prot.22265] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Somatic mutations in PIK3CA (phosphatidylinositol-3 kinase, catalytic subunit, alpha isoform) are reported in breast and other human cancers to concentrate at hotspots within its kinase and helical domains. Most of these mutations cause kinase gain of function in vitro and are associated with oncogenicity in vivo. However, little is known about the mechanisms driving tumor development. We have performed computational structural studies on a homology model of wildtype PIK3CA plus recurrent H1047R, H1047L, and P539R mutations, located in the kinase and helical domains, respectively. The time evolution of the structures show that H1047R/L mutants exhibit a larger area of the catalytic cleft between the kinase N- and C-lobes compared with the wildtype that could facilitate the entrance of substrates. This larger area might yield enhanced substrate-to-product turnover associated with oncogenicity. In addition, the H1047R/L mutants display increased kinase activation loop mobility, compared with the wildtype. The P539R mutant forms more hydrogen bonds and salt-bridge interactions than the wildtype, properties that are associated with enhanced thermostability. Mutant-specific differences in the catalytic cleft and activation loop behavior suggest that structure-based mutant-specific inhibitors can be designed for PIK3CA-positive breast cancers.
Collapse
Affiliation(s)
- Parminder K. Mankoo
- Department of Biomedical Engineering and Institute for Computational Medicine, Johns Hopkins University, Baltimore, Maryland 21218
| | - Saraswati Sukumar
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231
| | - Rachel Karchin
- Department of Biomedical Engineering and Institute for Computational Medicine, Johns Hopkins University, Baltimore, Maryland 21218
| |
Collapse
|
412
|
Abstract
The phosphoinositide 3-kinase (PI3K) family of lipid kinases regulates diverse aspects of lymphocyte behavior. This review discusses how genetic and pharmacological tools have yielded an increasingly detailed understanding of how PI3K enzymes function at different stages of lymphocyte development and activation. Following antigen receptor engagement, activated PI3K generates 3-phosphorylated inositol lipid products that serve as membrane targeting signals for numerous proteins involved in the assembly of multiprotein complexes, termed signalosomes, and immune synapse formation. In B cells, class IA PI3K is the dominant subgroup whose loss causes profound defects in development and antigen responsiveness. In T cells, both class IA and IB PI3K contribute to development and immune function. PI3K also regulates both chemokine responsiveness and antigen-driven changes in lymphocyte trafficking. PI3K modulates the function not only of effector T cells, but also regulatory T cells; these disparate functions culminate in unexpected autoimmune phenotypes in mice with PI3K-deficient T cells. Thus, PI3K signaling is not a simple switch to promote cellular activation, but rather an intricate web of interactions that must be properly balanced to ensure appropriate cellular responses and maintain immune homeostasis. Defining these complexities remains a challenge for pharmaceutical development of PI3K inhibitors to combat inflammation and autoimmunity.
Collapse
Affiliation(s)
- David A Fruman
- Department of Molecular Biology and Biochemistry, and Center for Immunology, University of California at Irvine, Irvine, CA, USA.
| | | |
Collapse
|
413
|
Cherian PT, Koikov LN, Wortman MD, Knittel JJ. Exploring the PI3Kα and γ binding sites with 2,6-disubstituted isonicotinic derivatives. Bioorg Med Chem Lett 2009; 19:2215-9. [DOI: 10.1016/j.bmcl.2009.02.115] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2009] [Revised: 02/24/2009] [Accepted: 02/25/2009] [Indexed: 10/21/2022]
|
414
|
Eckstein N, Servan K, Hildebrandt B, Pölitz A, von Jonquières G, Wolf-Kümmeth S, Napierski I, Hamacher A, Kassack MU, Budczies J, Beier M, Dietel M, Royer-Pokora B, Denkert C, Royer HD. Hyperactivation of the insulin-like growth factor receptor I signaling pathway is an essential event for cisplatin resistance of ovarian cancer cells. Cancer Res 2009; 69:2996-3003. [PMID: 19318572 DOI: 10.1158/0008-5472.can-08-3153] [Citation(s) in RCA: 135] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Platinum plays a central role in the therapy of ovarian cancer, and the emergence of platinum resistance is a major obstacle for clinical management of the disease. We treated A2780 ovarian cancer cells by weekly cycles of cisplatin over a period of 6 months and unveiled that enhanced insulin-like growth factor I receptor (IGF-IR) expression and autocrine IGF-I are associated with hyperactivation of the IGF-IR and phosphatidylinositol-3-OH kinase (PI3K) pathways in cisplatin-resistant cells. IGF-IR expression levels increased during treatment cycles and correlated with cisplatin resistance. Purified IGF-I induced cisplatin resistance in diverse ovarian cancer cell lines, and small molecule inhibitors proved that IGF-IR and PI3K are essential for cisplatin resistance. Similar results were obtained with BG-1 ovarian cancer cells. Cytogenetic and array comparative genomic hybridization analyses revealed selection and de novo formation of chromosomal alterations during resistance development. An analysis of gene expression profiles of primary ovarian carcinomas identified the regulatory subunit PIK3R2 of PI3-kinase as a significant negative prognosis factor for ovarian cancer. We conclude that targeting the IGF-IR and the PI3K pathways is a promising new strategy to treat cisplatin-resistant ovarian carcinomas.
Collapse
Affiliation(s)
- Niels Eckstein
- Center of Advanced European Studies and Research (caesar), Bonn, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
415
|
Isoform-selective phosphoinositide 3'-kinase inhibitors inhibit CXCR4 signaling and overcome stromal cell-mediated drug resistance in chronic lymphocytic leukemia: a novel therapeutic approach. Blood 2009; 113:5549-57. [PMID: 19318683 DOI: 10.1182/blood-2008-06-165068] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Phosphoinositide 3-kinases (PI3Ks) are among the most frequently activated signaling pathways in cancer. In chronic lymphocytic leukemia (CLL), signals from the microenvironment are critical for expansion of the malignant B cells, and cause constitutive activation of PI3Ks. CXCR4 is a key receptor for CLL cell migration and adhesion to marrow stromal cells (MSCs). Because of the importance of CXCR4 and PI3Ks for CLL-microenvironment cross-talk, we investigated the activity of novel, isoform-selective PI3K inhibitors that target different isoforms of the p110-kDa subunit. Inhibition with p110alpha inhibitors (PIK-90 and PI-103) resulted in a significant reduction of chemotaxis and actin polymerization to CXCL12 and reduced migration beneath MSC (pseudoemperipolesis). Western blot and reverse phase protein array analyses consistently demonstrated that PIK-90 and PI-103 inhibited phosphorylation of Akt and S6, whereas p110delta or p110beta/p110delta inhibitors were less effective. In suspension and MSC cocultures, PI-103 and PIK-90 were potent inducers of CLL cell apoptosis. Moreover, these p110alpha inhibitors enhanced the cytotoxicity of fludarabine and reversed the protective effect of MSC on fludarabine-induced apoptosis. Collectively, our data demonstrate that p110alpha inhibitors antagonize stromal cell-derived migration, survival, and drug-resistance signals and therefore provide a rational to explore the therapeutic activity of these promising agents in CLL.
Collapse
|
416
|
Oki K, Tsuji F, Ohashi K, Kageyama M, Aono H, Sasano M. The investigation of synovial genomic targets of bucillamine with microarray technique. Inflamm Res 2009; 58:571-84. [PMID: 19290479 DOI: 10.1007/s00011-009-0021-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2008] [Revised: 12/16/2008] [Accepted: 02/01/2009] [Indexed: 12/30/2022] Open
Abstract
OBJECTIVE To identify the molecular mechanisms of bucillamine activity, global gene expression analysis and pathway analysis were conducted using IL-1 beta-stimulated human fibroblast-like synovial cells (FLS). METHODS Normal human FLS were treated with IL-1 beta in the presence or absence of 10 and 100 microM bucillamine for 6 h. Total RNA was extracted and global gene expression levels were detected using a 44 k human whole genome array. Data were analyzed using Ingenuity pathway analysis. RESULTS Numerous pathways were activated by IL-1 beta stimulation. At both concentrations, bucillamine suppressed nine signal pathways stimulated by IL-1 beta. CONCLUSIONS Bucillamine effectively inhibited fibroblast growth factor (FGF) signaling and tight junction signaling activated by IL-1 beta in FLS. Suppression of these signal pathways may correlate with the pharmacologic mechanisms of bucillamine. In particular, the suppression of FGF signaling by bucillamine is remarkable because the activation of FGF signaling may be involved in rheumatoid arthritis pathology.
Collapse
Affiliation(s)
- Kenji Oki
- Research & Development Center, Santen Pharmaceutical Co., Ltd., 8916-16 Takayama-cho, Ikoma-shi, Nara, 630-0101, Japan.
| | | | | | | | | | | |
Collapse
|
417
|
Borzacchiello G, Mogavero S, De Vita G, Roperto S, Della Salda L, Roperto F. Activated platelet-derived growth factor beta receptor expression, PI3K-AKT pathway molecular analysis, and transforming signals in equine sarcoids. Vet Pathol 2009; 46:589-97. [PMID: 19276057 DOI: 10.1354/vp.08-vp-0191-b-fl] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The equine sarcoid is the most common dermatologic neoplasm reported in horses. Bovine papillomavirus (BPV) types 1 and 2 are associated with sarcoids, in which the expression of the major transforming oncoprotein (E5) is often recorded. The transformation activity of the virus is due to the binding of the E5 to the platelet-derived growth factor beta receptor (PDGFbeta-r). In the present study, we show by Western blot in 4 sarcoid samples and 3 normal equine skin samples that the PDGFbeta-r is more phosphorylated in sarcoid tissue than in normal skin (P < .001). Furthermore, the physical interaction between the activated receptor and the 85-kDa regulatory subunit (p85) of phosphatidylinositol-3-kinase (PI3K) is shown by coimmunoprecipitation. The PI3K-AKT-cyclin D3 molecular pathway downstream to the activation of the PDGFbeta-r is shown to be expressed, and the amount of the investigated molecules is higher than normal (P < .001), suggesting an activation of these effectors in sarcoids. Further, we demonstrate that phospho-JNK and phospho-JUN are more expressed in sarcoids than in normal skin. Our results provide new insights into the pathogenesis of equine sarcoids and support the validity of this in-vivo model to further characterize the molecular pathways underlying BPV E5-induced carcinogenesis.
Collapse
Affiliation(s)
- G Borzacchiello
- Department of Pathology and Animal Health, Faculty of Veterinary Medicine, University of Naples Federico II, Via F. Delpino, 1 80137, Naples, Italy.
| | | | | | | | | | | |
Collapse
|
418
|
Morgan TM, Koreckij TD, Corey E. Targeted therapy for advanced prostate cancer: inhibition of the PI3K/Akt/mTOR pathway. Curr Cancer Drug Targets 2009; 9:237-49. [PMID: 19275762 PMCID: PMC2921605 DOI: 10.2174/156800909787580999] [Citation(s) in RCA: 217] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A large number of novel therapeutics is currently undergoing clinical evaluation for the treatment of prostate cancer, and small molecule signal transduction inhibitors are a promising class of agents. These inhibitors have recently become a standard therapy in renal cell carcinoma and offer significant promise in prostate cancer. Through an understanding of the key pathways involved in prostate cancer progression, a rational drug design can be aimed at the molecules critical to cellular signaling. This may enable administration of selective therapies based on the expression of molecular targets, more appropriately individualizing treatment for prostate cancer patients. One pathway with a prominent role in prostate cancer is the PI3K/Akt/mTOR pathway. Current estimates suggest that PI3K/Akt/mTOR signaling is upregulated in 30-50% of prostate cancers, often through loss of PTEN. Molecular changes in the PI3K/Akt/mTOR signaling pathway have been demonstrated to differentiate benign from malignant prostatic epithelium and are associated with increasing tumor stage, grade, and risk of biochemical recurrence. Multiple inhibitors of this pathway have been developed and are being assessed in the laboratory and in clinical trials, with much attention focusing on mTOR inhibition. Current clinical trials in prostate cancer are assessing efficacy of mTOR inhibitors in combination with multiple targeted or traditional chemotherapies, including bevacizumab, gefitinib, and docetaxel. Completion of these trials will provide substantial information regarding the importance of this pathway in prostate cancer and the clinical implications of its targeted inhibition. In this article we review the data surrounding PI3K/Akt/mTOR inhibition in prostate cancer and their clinical implications.
Collapse
Affiliation(s)
- Todd M. Morgan
- Department of Urology, University of Washington School of Medicine, Seattle, WA, 98195, USA
| | - Theodore D. Koreckij
- Department of Urology, University of Washington School of Medicine, Seattle, WA, 98195, USA
| | - Eva Corey
- Department of Urology, University of Washington School of Medicine, Seattle, WA, 98195, USA
| |
Collapse
|
419
|
Clinical importance of DNA repair inhibitors in cancer therapy. MEMO-MAGAZINE OF EUROPEAN MEDICAL ONCOLOGY 2009. [DOI: 10.1007/s12254-008-0081-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
420
|
Abstract
In contrast with cytotoxic agents that do not differentiate between normal proliferating and tumour cells, targeted therapies primarily exert their actions in cancer cells. Initiation and maintenance of tumours are due to genetic alterations in specific loci. The identification of the genes in which these alterations occur has opened new opportunities for cancer treatment. The PI3K (phosphoinositide 3-kinase) pathway is often overactive in human cancers, and various genetic alterations have been found to cause this. In all cases, PI3K inhibition is considered to be one of the most promising targeted therapies for cancer treatment. The present mini-review provides an update on new PI3K inhibitors currently in or entering clinical development. Recent discoveries, challenges and future prospects will be discussed.
Collapse
|
421
|
Klein S, Levitzki A. Targeting the EGFR and the PKB pathway in cancer. Curr Opin Cell Biol 2009; 21:185-93. [PMID: 19216065 DOI: 10.1016/j.ceb.2008.12.006] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2008] [Accepted: 12/30/2008] [Indexed: 01/01/2023]
Abstract
The EGFR and PKB pathways are frequently activated in cancer, so are prime targets for cancer therapy. To this end, new inhibitors are being tested. EGFR inhibitors as single therapy have little benefit, although therapies that evoke an antitumor immune response are more effective. Resistance mutations within the EGFR are common, as is activation of the antiapoptotic PKB pathway via alternative tyrosine kinase receptors, especially other EGFR family members or IGF1R. To combat resistance, multitargeted EGFR inhibitors and combined inhibition of the EGFR and PKB are being investigated. Inhibition of the EGFR and PKB pathways also sensitizes cancer cells to chemotherapy. Thus, EGFR and PI3K/PKB inhibitors will be most effective when used in rational combinations of targeted inhibitors and traditional chemotherapy.
Collapse
Affiliation(s)
- Shoshana Klein
- Unit of Cellular Signaling, Department of Biological Chemistry, The Hebrew University of Jerusalem, Givat Ram, Jerusalem, Israel.
| | | |
Collapse
|
422
|
Abstract
Protein kinases catalyse key phosphorylation reactions in signalling cascades that affect every aspect of cell growth, differentiation and metabolism. The kinases have become prime targets for drug intervention in the diseased state, especially in cancer. There are currently 10 drugs that have been approved for clinical use and many more in clinical trials. This review summarises the structural basis for protein kinase inhibition and discusses the mode of action for each of the approved drugs in the light of structural results. All but one of the approved compounds target the ATP binding site on the kinase. Both the active and inactive conformations of protein kinases have been used in strategies to produce potent and selective compounds. Targeting the inactive conformation can give high specificity. Targeting the active conformation is favourable where the diseased state has arisen from activating mutations, but such inhibitors generally target several protein kinases. Drug resistance mutations are a potential risk for both conformational states, where drug-binding regions are not directly involved in catalysis. Imatinib (Glivec), the most successful of protein kinase inhibitors, targets the inactive conformation of ABL tyrosine kinase. Newer compounds, such as dasatinib, which targets the ABL active state, have been developed to increase potency and have proved effective for some, but not all, drug-resistant mutations. The first epidermal growth factor receptor (EGFR) inhibitors in clinical use [gefitinib (Iressa) and erlotinib (Tarceva)] targeted the active form of the kinase, and this proved advantageous for patients whose cancer was caused by mutations that resulted in a constitutively active EGFR kinase domain. Newer approved compounds, such as lapatinib (Tykerb), target the inactive conformation with high potency. A further compound that forms a covalent attachment to the kinase has been found to overcome one of the major drug resistance mutations, where the effectiveness of the drug in vivo is dependent on its ability to compete successfully in the presence of cellular concentrations of ATP. Inhibitors of vascular endothelial growth factor receptor (VEGFR) kinase against cancer angiogenesis show the advantage of some relaxation in specificity. Sorafenib, originally developed as RAF inhibitor, is now in clinical use as a VEGFR inhibitor. Temsirolimus (a derivative of rapamycin) is the only example of a drug in clinical use that does not target the kinase ATP site. Instead rapamycin, when in complex with the protein FKBP12, effectively targets mTOR kinase at a site located on a domain, the FRB domain, that appears to be involved in localisation or substrate docking.
Collapse
Affiliation(s)
- Louise N Johnson
- Laboratory of Molecular Biophysics, Department of Biochemistry, University of Oxford, Oxford, UK.
| |
Collapse
|
423
|
Goberdhan DCI, Ogmundsdóttir MH, Kazi S, Reynolds B, Visvalingam SM, Wilson C, Boyd CAR. Amino acid sensing and mTOR regulation: inside or out? Biochem Soc Trans 2009; 37:248-52. [PMID: 19143641 PMCID: PMC2639771 DOI: 10.1042/bst0370248] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
mTOR (mammalian target of rapamycin) plays a key role in determining how growth factor, nutrient and oxygen levels modulate intracellular events critical for the viability and growth of the cell. This is reflected in the impact of aberrant mTOR signalling on a number of major human diseases and has helped to drive research to understand how TOR (target of rapamycin) is itself regulated. While it is clear that amino acids can affect TOR signalling, how these molecules are sensed by TOR remains controversial, perhaps because cells use different mechanisms as environmental conditions change. Even the question of whether they have an effect inside the cell or at its surface remains unresolved. The present review summarizes current ideas and suggests ways in which some of the models proposed might be unified to produce an amino acid detection system that can adapt to environmental change.
Collapse
Affiliation(s)
- Deborah C I Goberdhan
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX1 3QX, UK.
| | | | | | | | | | | | | |
Collapse
|
424
|
Kim JE, Shepherd PR, Chaussade C. Investigating the role of class-IA PI 3-kinase isoforms in adipocyte differentiation. Biochem Biophys Res Commun 2009; 379:830-4. [DOI: 10.1016/j.bbrc.2008.12.089] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2008] [Accepted: 12/16/2008] [Indexed: 11/29/2022]
|
425
|
Vogt PK, Gymnopoulos M, Hart JR. PI 3-kinase and cancer: changing accents. Curr Opin Genet Dev 2009; 19:12-7. [PMID: 19185485 PMCID: PMC2746202 DOI: 10.1016/j.gde.2008.11.011] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2008] [Accepted: 11/26/2008] [Indexed: 02/07/2023]
Abstract
Research on PI 3-kinase (PI3K) is undergoing significant shifts in emphasis. Questions that have been dormant for some time are coming to the forefront, such as the relationship of PTEN to PI3K and the role of AKT in PI3K-driven oncogenesis. Two non-alpha isoforms of Class I PI3K are now established as important determinants in cancer: p110beta and p110delta. The oncogenic activities of p110beta include a non-catalytic function, a finding that will have immediate consequences for drug development.
Collapse
Affiliation(s)
- Peter K Vogt
- Department of Molecular and Experimental Medicine, Division of Oncovirology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | | | | |
Collapse
|
426
|
Abstract
Dysregulated activity of phosphatidylinositol 3-kinase (PI3K) and mammalian target of rapamycin complex 1 (mTORC1) is characteristic feature of hamartoma syndromes. Hamartoma syndromes, dominantly inherited cancer predisposition disorders, affect multiple organs and are manifested by benign tumors consisting of various cell types native to the tissues in which they arise. In the past few years, three inherited hamartoma syndromes, Cowden syndrome (CS), tuberous sclerosis complex (TSC) syndrome, and Peutz-Jeghens syndrome (PJS), have all been linked to a common biochemical pathway: the hyperactivation of PI3K/mTORC1 intracellular signaling. Three tumor suppressors, PTEN (phosphatases and tensin homolog), tuberous sclerosis complex TSC1/TSC2, and LKB1, are negative regulators of PI3K/mTORC1 signaling; disease-related inactivation of these tumor suppressors results in the development of PTEN-associated hamartoma syndromes, TSC and PJS, respectively. The goal of this review is to provide a roadmap for navigating the inherently complex regulation of PI3K/mTORC1 signaling while highlighting the progress that has been made in elucidating the cellular and molecular mechanisms of hamartoma syndromes and identificating potential therapeutic targets for their treatment. Importantly, because the PI3K/mTORC1 pathway is activated in the majority of common human cancers, the identification of novel molecular target(s) for the treatment of hamartoma syndromes may have a broader translational potential, and is critically important not only for therapeutic intervention in hamartoma disorders, but also for the treatment of cancers.
Collapse
Affiliation(s)
- Vera P Krymskaya
- Department of Medicine, and Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania 19104-3403, USA.
| | | |
Collapse
|
427
|
Alterations of insulin signaling in type 2 diabetes: A review of the current evidence from humans. Biochim Biophys Acta Mol Basis Dis 2009; 1792:83-92. [DOI: 10.1016/j.bbadis.2008.10.019] [Citation(s) in RCA: 155] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2008] [Revised: 10/21/2008] [Accepted: 10/21/2008] [Indexed: 01/03/2023]
|
428
|
Waldburger JM, Firestein GS. Garden of therapeutic delights: new targets in rheumatic diseases. Arthritis Res Ther 2009; 11:206. [PMID: 19232066 PMCID: PMC2688217 DOI: 10.1186/ar2556] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Advances in our understanding of the cellular and molecular mechanisms in rheumatic disease fostered the advent of the targeted therapeutics era. Intense research activity continues to increase the number of potential targets at an accelerated pace. In this review, examples of promising targets and agents that are at various stages of clinical development are described. Cytokine inhibition remains at the forefront with the success of tumor necrosis factor blockers, and biologics that block interleukin-6 (IL-6), IL-17, IL-12, and IL-23 and other cytokines are on the horizon. After the success of rituximab and abatacept, other cell-targeted approaches that inhibit or deplete lymphocytes have moved forward, such as blocking BAFF/BLyS (B-cell activation factor of the tumor necrosis factor family/B-lymphocyte stimulator) and APRIL (a proliferation-inducing ligand) or suppressing T-cell activation with costimulation molecule blockers. Small-molecule inhibitors might eventually challenge the dominance of biologics in the future. In addition to plasma membrane G protein-coupled chemokine receptors, small molecules can be designed to block intracellular enzymes that control signaling pathways. Inhibitors of tyrosine kinases expressed in lymphocytes, such as spleen tyrosine kinase and Janus kinase, are being tested in autoimmune diseases. Inactivation of the more broadly expressed mitogen-activated protein kinases could suppress inflammation driven by macrophages and mesenchymal cells. Targeting tyrosine kinases downstream of growth factor receptors might also reduce fibrosis in conditions like systemic sclerosis. The abundance of potential targets suggests that new and creative ways of evaluating safety and efficacy are needed.
Collapse
Affiliation(s)
- Jean M Waldburger
- Division of Rheumatology, Allergy and Immunology, University of California, San Diego School of Medicine, Mail Code 0656, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | | |
Collapse
|
429
|
Billottet C, Banerjee L, Vanhaesebroeck B, Khwaja A. Inhibition of Class I Phosphoinositide 3-Kinase Activity Impairs Proliferation and Triggers Apoptosis in Acute Promyelocytic Leukemia without Affecting Atra-Induced Differentiation. Cancer Res 2009; 69:1027-36. [DOI: 10.1158/0008-5472.can-08-2608] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
430
|
Bahia D, Oliveira LM, Mortara RA, Ruiz JC. Phosphatidylinositol-and related-kinases: a genome-wide survey of classes and subtypes in the Schistosoma mansoni genome for designing subtype-specific inhibitors. Biochem Biophys Res Commun 2009; 380:525-30. [PMID: 19250641 DOI: 10.1016/j.bbrc.2009.01.093] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2009] [Accepted: 01/17/2009] [Indexed: 11/17/2022]
Abstract
Phosphatidylinositol kinases (PIK) are at the heart of one of the major pathways of intracellular signal transduction. The signals made by PIK influence a wide variety of cellular functions, including cell growth, differentiation and survival, glucose metabolism and cytoskeletal organization. Wortmannin strongly binds in vitro to all PIK subtypes and it is therefore an effective antiproliferative agent. This study is the first report on a survey made by similarity searches against Schistosoma mansoni genome available to date for phosphatidylinositol- and related-kinases (SmPIKs). We classified the SmPIKs according to five models (1-5). SmPIK sequences were retrieved from GeneDB (http://www.genedb.org) by means of a combinatorial approach which uses terms defined in genome annotation associated with PFAM (Protein Families) domains, BLAST analysis and COGs (Clusters of Orthologous Groups of proteins). This approach detects the kinase (catalytic) domain structure and also the recently described FAT and FATC motifs.
Collapse
Affiliation(s)
- Diana Bahia
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, UNIFESP, Rua Botucatu 862, 6o andar, 04023-062 São Paulo, SP, Brazil.
| | | | | | | |
Collapse
|
431
|
|
432
|
Liu Q, Thoreen C, Wang J, Sabatini D, Gray NS. mTOR Mediated Anti-Cancer Drug Discovery. DRUG DISCOVERY TODAY. THERAPEUTIC STRATEGIES 2009; 6:47-55. [PMID: 20622997 PMCID: PMC2901551 DOI: 10.1016/j.ddstr.2009.12.001] [Citation(s) in RCA: 138] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The mammalian target of rapamycin (mTOR) is an evolutionarily conserved serine/threonine kinase and the founding member of a signaling pathway that regulates many fundamental features of cell growth and division. In cells, mTOR acts as the catalytic subunit of two functionally distinct complexes, called mTOR Complex 1 (mTORC1) and mTOR Complex 2 (mTORC2). Together, these complexes coordinate a variety of processes that include protein translation, autophagy, proliferation, survival and metabolism in response to nutrient, energy and growth factor signals. Consistent with its role as a growth-promoting pathway, numerous studies have found that Mtor signaling is hyper-activated in a broad spectrum of human cancers. In particular, mTORC2 is considered a primary effector of the phosphatidylinositol-3-kinase (PI3K) signaling pathway, which is mutated in a majority of human cancers, in part through its ability to phosphorylate and regulate the proto-oncogene Akt/PKB. Many biological functions of mTOR have been pharmacologically explored using the natural product rapamycin, an allosteric inhibitor that has been reviewed extensively elsewhere. This review will focus specifically on the development of small molecule ATP-competitive inhibitors of mTOR and their prospects as a targeted therapy.
Collapse
Affiliation(s)
- Qingsong Liu
- Department of Cancer Biology, Dana Farber Cancer Institute, 44 Binney Street, Boston, MA 02115
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 250 Longwood Ave. Boston, MA 02115
| | - Carson Thoreen
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, Ma 02142
- Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Jinhua Wang
- Department of Cancer Biology, Dana Farber Cancer Institute, 44 Binney Street, Boston, MA 02115
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 250 Longwood Ave. Boston, MA 02115
| | - David Sabatini
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, Ma 02142
- Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
- Koch Center for Integrative Cancer Research at MIT, 77 Massachusetts Ave. Cambridge, MA 02139
| | - Nathanael S. Gray
- Department of Cancer Biology, Dana Farber Cancer Institute, 44 Binney Street, Boston, MA 02115
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 250 Longwood Ave. Boston, MA 02115
| |
Collapse
|
433
|
Abstract
Phosphatidylinositol 3-kinase (PI3K) and phosphatase and tensin homolog deleted on chromosome 10 (PTEN) signaling pathway play an important role in multiple cellular functions such as cell metabolism, proliferation, cell-cycle progression, and survival. PI3K is activated by growth factors and angiogenesis inducers such as vascular endothelial growth factor (VEGF) and angiopoietins. The amplification and mutations of PI3K and the loss of the tumor suppressor PTEN are common in various kinds of human solid tumors. The genetic alterations of upstream and downstream of PI3K signaling molecules such as receptor tyrosine kinases and AKT, respectively, are also frequently altered in human cancer. PI3K signaling regulates tumor growth and angiogenesis by activating AKT and other targets, and by inducing HIF-1 and VEGF expression. Angiogenesis is required for tumor growth and metastasis. In this review, we highlight the recent studies on the roles and mechanisms of PI3K and PTEN in regulating tumorigenesis and angiogenesis, and the roles of the downstream targets of PI3K for transmitting the signals. We also discuss the crosstalk of these signaling molecules and cellular events during tumor growth, metastasis, and tumor angiogenesis. Finally, we summarize the potential applications of PI3K, AKT, and mTOR inhibitors and their outcome in clinical trials for cancer treatment.
Collapse
Affiliation(s)
- Bing-Hua Jiang
- Mary Babb Randolph Cancer Center and Department of Microbiology, Immunology and Cell Biology, West Virginia University, Morgantown, West Virginia 26506, USA
| | | |
Collapse
|
434
|
Chapter 17 Emerging Therapies Based on Inhibitors of Phosphatidyl-Inositol-3-Kinases. ANNUAL REPORTS IN MEDICINAL CHEMISTRY 2009. [DOI: 10.1016/s0065-7743(09)04417-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|
435
|
Ihle NT, Lemos R, Schwartz D, Oh J, Halter RJ, Wipf P, Kirkpatrick L, Powis G. Peroxisome proliferator-activated receptor gamma agonist pioglitazone prevents the hyperglycemia caused by phosphatidylinositol 3-kinase pathway inhibition by PX-866 without affecting antitumor activity. Mol Cancer Ther 2009; 8:94-100. [PMID: 19139117 PMCID: PMC2633941 DOI: 10.1158/1535-7163.mct-08-0714] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The phosphatidylinositol 3-kinase (PI3K)/Akt signaling cascade is an important component of the insulin signaling in normal tissues leading to glucose uptake and homeostasis and for cell survival signaling in cancer cells. Hyperglycemia is an on-target side effect of many inhibitors of PI3K/Akt signaling including the specific PI3K inhibitor PX-866. The peroxisome proliferator-activated receptor gamma agonist pioglitazone, used to treat type 2 diabetes, prevents a decrease in glucose tolerance caused by acute administration of PX-866. Our studies have shown that pioglitazone does not inhibit the antitumor activity of PX-866 in A-549 non-small cell lung cancer and HT-29 colon cancer xenografts. In vitro studies also showed that pioglitazone increases 2-[1-(14)C]deoxy-D-glucose uptake in L-6 muscle cells and prevents inhibition of 2-deoxyglucose uptake by PX-866. Neither pioglitazone nor PX-866 had an effect on 2-deoxyglucose uptake in A-549 lung cancer cells. In vivo imaging studies using [18F]2-deoxyglucose (FDG) positron emission tomography showed that pioglitazone increases FDG accumulation by normal tissue but does not significantly alter FDG uptake by A-549 xenografts. Thus, peroxisome proliferator-activated receptor gamma agonists may be useful in overcoming the increase in blood glucose caused by inhibitors of PI3K signaling by preventing the inhibition of normal tissue insulin-mediated glucose uptake without affecting antitumor activity.
Collapse
Affiliation(s)
- Nathan T. Ihle
- MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, U.S.A
| | - Robert Lemos
- MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, U.S.A
| | - David Schwartz
- MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, U.S.A
| | - Junghwan Oh
- MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, U.S.A
| | - Robert J. Halter
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA,15260, U.S.A
| | - Peter Wipf
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA,15260, U.S.A
| | | | - Garth Powis
- MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, U.S.A
| |
Collapse
|
436
|
Cheng CK, Fan QW, Weiss WA. PI3K signaling in glioma--animal models and therapeutic challenges. Brain Pathol 2009; 19:112-20. [PMID: 19076776 PMCID: PMC2614703 DOI: 10.1111/j.1750-3639.2008.00233.x] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2008] [Accepted: 09/25/2008] [Indexed: 01/14/2023] Open
Abstract
The PI3 kinase (PI3K) family plays a complex role in cell biology and metabolism. Signaling through the PI3Ks is frequently activated in many human cancers, including glioblastoma, because of gain-of-function mutations in PIK3CA or loss of PTEN. Experiments involving genetic mouse models and small molecule inhibitors have helped to elucidate the roles of the regulatory and catalytic subunits of PI3K in metabolism and cancer. Downstream of PI3K is Akt, a critical effector of growth, proliferation and survival. The suggested dependence of glioblastoma tumors on PI3K signaling implies that PI3K inhibitors should lead to effective killing of these cancer cells, but that has been shown not to be the case. The engagement of other survival pathways in response to PI3K inhibition prompts the need to develop combination therapies that promote cytotoxicity in cancer cells.
Collapse
Affiliation(s)
- Christine K Cheng
- Department of Neurology, University of California, San Francisco, CA 94143, USA.
| | | | | |
Collapse
|
437
|
Blomberg J, Ruuth K, Jacobsson M, Höglund A, Nilsson JA, Lundgren E. Reduced FAS transcription in clones of U937 cells that have acquired resistance to Fas-induced apoptosis. FEBS J 2008; 276:497-508. [DOI: 10.1111/j.1742-4658.2008.06790.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
438
|
Abstract
PURPOSE OF REVIEW Tuberous sclerosis complex (TSC) is an autosomal dominant neurocutaneous disorder involving benign growths in multiple organ systems of affected patients. Variable phenotypes from mild to severe have been reported for related as well as unrelated patients affected by TSC. The two causative genes, TSC1 and TSC2, which code for hamartin and tuberin respectively, play central roles in regulating cell survival and proliferation signaling pathways. The severity of disease phenotypes of TSC patients is influenced by the activities of genes both up and down-stream in the associated pathways. RECENT FINDINGS The high-expressing12CA repeat variant of the IFNG gene was suggested to contribute lower risk for kidney angiomyolipomas in patients with TSC2 gene mutations. Genetic modifiers for TSC have been localized on chromosomes 3 and 5 of the rat genome. We performed association studies linking the c.68C allele of the 5-hydroxytryptamine receptor 2C gene to lower seizure risk in TSC-affected individuals. SUMMARY Genetic and epigenetic factors affecting the activity of each and every interacting partner of the tuberin-hamartin complex could potentially alter the disease presentation. Identifying functional polymorphic variants of interacting partners affecting TSC gene functions will delineate the mechanisms leading to TSC disease severity, ultimately resulting in treatment strategies.
Collapse
|
439
|
Aller GSV, Carson JD, Fernandes C, Lehr R, Sinnamon RH, Kirkpatrick RB, Tummino PJ, Luo L. Characterization of PI3K class IA isoforms with regulatory subunit p55α using a scintillation proximity assay. Anal Biochem 2008; 383:311-5. [DOI: 10.1016/j.ab.2008.08.037] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2008] [Revised: 08/29/2008] [Accepted: 08/29/2008] [Indexed: 10/21/2022]
|
440
|
Weichhart T, Säemann MD. The PI3K/Akt/mTOR pathway in innate immune cells: emerging therapeutic applications. Ann Rheum Dis 2008; 67 Suppl 3:iii70-4. [PMID: 19022819 DOI: 10.1136/ard.2008.098459] [Citation(s) in RCA: 206] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The phosphatidylinositol-3 kinases (PI3Ks) and the mammalian target of rapamycin (mTOR) pathway have long been recognised as critically regulating metabolism, growth or survival. Recent data indicate that these molecules are also integral players in coordinating defence mechanisms in the innate immune system. In this respect, PI3K and mTOR positively regulate immune cell activation in neutrophils and mast cells. In plasmacytoid dendritic cells, these pathways have recently emerged as important regulators for type I interferon production via activation of the interferon-regulatory factor 7. Interestingly, in myeloid immune cells, PI3K and mTOR seem to constrain full immune cell activation by upregulation of the key anti-inflammatory cytokine interleukin 10 and inhibition of proinflammatory cytokines. These new insights into innate immune cell regulation may pave the way for manipulating distinct features of the innate immune system for therapeutic treatment of various inflammatory diseases and for implementation of improved vaccination strategies.
Collapse
Affiliation(s)
- T Weichhart
- Department of Internal Medicine III, Clinical Division of Nephrology and Dialysis, Medical University Vienna, Vienna, Austria
| | | |
Collapse
|
441
|
Serra V, Markman B, Scaltriti M, Eichhorn PJA, Valero V, Guzman M, Botero ML, Llonch E, Atzori F, Di Cosimo S, Maira M, Garcia-Echeverria C, Parra JL, Arribas J, Baselga J. NVP-BEZ235, a dual PI3K/mTOR inhibitor, prevents PI3K signaling and inhibits the growth of cancer cells with activating PI3K mutations. Cancer Res 2008; 68:8022-30. [PMID: 18829560 DOI: 10.1158/0008-5472.can-08-1385] [Citation(s) in RCA: 624] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Phosphatidylinositol-3-kinase (PI3K) pathway deregulation is a common event in human cancer, either through inactivation of the tumor suppressor phosphatase and tensin homologue deleted from chromosome 10 or activating mutations of p110-alpha. These hotspot mutations result in oncogenic activity of the enzyme and contribute to therapeutic resistance to the anti-HER2 antibody trastuzumab. The PI3K pathway is, therefore, an attractive target for cancer therapy. We have studied NVP-BEZ235, a dual inhibitor of the PI3K and the downstream mammalian target of rapamycin (mTOR). NVP-BEZ235 inhibited the activation of the downstream effectors Akt, S6 ribosomal protein, and 4EBP1 in breast cancer cells. The antiproliferative activity of NVP-BEZ235 was superior to the allosteric selective mTOR complex inhibitor everolimus in a panel of 21 cancer cell lines of different origin and mutation status. The described Akt activation due to mTOR inhibition was prevented by higher doses of NVP-BEZ235. NVP-BEZ235 reversed the hyperactivation of the PI3K/mTOR pathway caused by the oncogenic mutations of p110-alpha, E545K, and H1047R, and inhibited the proliferation of HER2-amplified BT474 cells exogenously expressing these mutations that render them resistant to trastuzumab. In trastuzumab-resistant BT474 H1047R breast cancer xenografts, NVP-BEZ235 inhibited PI3K signaling and had potent antitumor activity. In treated animals, there was complete inhibition of PI3K signaling in the skin at pharmacologically active doses, suggesting that skin may serve as surrogate tissue for pharmacodynamic studies. In summary, NVP-BEZ235 inhibits the PI3K/mTOR axis and results in antiproliferative and antitumoral activity in cancer cells with both wild-type and mutated p110-alpha.
Collapse
Affiliation(s)
- Violeta Serra
- Laboratory of Oncology Research, Medical Oncology Service, Vall d'Hebron University Hospital, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
442
|
Eichhorn PJA, Gili M, Scaltriti M, Serra V, Guzman M, Nijkamp W, Beijersbergen RL, Valero V, Seoane J, Bernards R, Baselga J. Phosphatidylinositol 3-kinase hyperactivation results in lapatinib resistance that is reversed by the mTOR/phosphatidylinositol 3-kinase inhibitor NVP-BEZ235. Cancer Res 2008; 68:9221-30. [PMID: 19010894 PMCID: PMC2587064 DOI: 10.1158/0008-5472.can-08-1740] [Citation(s) in RCA: 395] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Small molecule inhibitors of HER2 are clinically active in women with advanced HER2-positive breast cancer who have progressed on trastuzumab treatment. However, the effectiveness of this class of agents is limited by either primary resistance or acquired resistance. Using an unbiased genetic approach, we performed a genome wide loss-of-function short hairpin RNA screen to identify novel modulators of resistance to lapatinib, a recently approved anti-HER2 tyrosine kinase inhibitor. Here, we have identified the tumor suppressor PTEN as a modulator of lapatinib sensitivity in vitro and in vivo. In addition, we show that two dominant activating mutations in PIK3CA (E545K and H1047R), which are prevalent in breast cancer, also confer resistance to lapatinib. Furthermore, we show that phosphatidylinositol 3-kinase (PI3K)-induced lapatinib resistance can be abrogated through the use of NVP-BEZ235, a dual inhibitor of PI3K/mTOR. Our data show that deregulation of the PI3K pathway, either through loss-of-function mutations in PTEN or dominant activating mutations in PIK3CA, leads to lapatinib resistance, which can be effectively reversed by NVP-BEZ235.
Collapse
Affiliation(s)
- Pieter J A Eichhorn
- Medical Oncology Program, Vall d Hebron Institut de Oncologia, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
443
|
Feigin ME, Muthuswamy SK. ErbB receptors and cell polarity: new pathways and paradigms for understanding cell migration and invasion. Exp Cell Res 2008; 315:707-16. [PMID: 19022245 DOI: 10.1016/j.yexcr.2008.10.034] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2008] [Revised: 10/19/2008] [Accepted: 10/20/2008] [Indexed: 12/25/2022]
Abstract
The ErbB family of receptor tyrosine kinases is involved in initiation and progression of a number of human cancers, and receptor activation or overexpression correlates with poor patient survival. Research over the past two decades has elucidated the molecular mechanisms underlying ErbB-induced tumorigenesis, which has resulted in the development of effective targeted therapies. ErbB-induced signal transduction cascades regulate a wide variety of cell processes, including cell proliferation, apoptosis, cell polarity, migration and invasion. Within tumors, disruption of these core processes, through cooperative oncogenic lesions, results in aggressive, metastatic disease. This review will focus on the ErbB signaling networks that regulate migration and invasion and identify a potential role for cell polarity pathways during cancer progression.
Collapse
Affiliation(s)
- Michael E Feigin
- Cold Spring Harbor Laboratory, One Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | | |
Collapse
|
444
|
|
445
|
Shankar S, Chen Q, Ganapathy S, Singh KP, Srivastava RK. Diallyl trisulfide increases the effectiveness of TRAIL and inhibits prostate cancer growth in an orthotopic model: molecular mechanisms. Mol Cancer Ther 2008; 7:2328-38. [PMID: 18723480 DOI: 10.1158/1535-7163.mct-08-0216] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Recent studies have shown that naturally occurring compounds can enhance the efficacy of chemotherapeutic drugs. The objectives of this study were to investigate the molecular mechanisms by which diallyl trisulfide (DATS) enhanced the therapeutic potential of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) in prostate cancer cells in vitro and on orthotopically transplanted PC-3 prostate carcinoma in nude mice. DATS inhibited cell viability and colony formation and induced apoptosis in PC-3 and LNCaP cells. DATS enhanced the apoptosis-inducing potential of TRAIL in PC-3 cells and sensitized TRAIL-resistant LNCaP cells. Dominant-negative FADD inhibited the synergistic interaction between DATS and TRAIL on apoptosis. DATS induced the expression of DR4, DR5, Bax, Bak, Bim, Noxa, and PUMA and inhibited expression of Mcl-1, Bcl-2, Bcl-X(L), survivin, XIAP, cIAP1, and cIAP2. Oral administration of DATS significantly inhibited growth of orthotopically implanted prostate carcinoma in BALB/c nude mice compared with the control group, without causing weight loss. Cotreatment of mice with DATS and TRAIL was more effective in inhibiting prostate tumor growth and inducing DR4 and DR5 expression, caspase-8 activity, and apoptosis than either agent alone. DATS inhibited angiogenesis (as measured by CD31-positive and factor VIII-positive blood vessels and hypoxia-inducible factor-1alpha, vascular endothelial growth factor, and interleukin-6 expression) and metastasis [matrix metalloproteinase (MMP)-2, MMP-7, MMP-9, and MT-1 MMP expression], which were correlated with inhibition in AKT and nuclear factor-kappaB activation. The combination of DATS and TRAIL was more effective in inhibiting markers of angiogenesis and metastasis than either agent alone. These data suggest that DATS can be combined with TRAIL for the prevention and/or treatment of prostate cancer.
Collapse
Affiliation(s)
- Sharmila Shankar
- Department of Biochemistry, University of Texas Health Science Center at Tyler, 11937 U.S. Highway 271, Tyler, TX 75708-3154, USA
| | | | | | | | | |
Collapse
|
446
|
Ramadan E, Ward M, Guo X, Durkin SS, Sawyer A, Vilela M, Osgood C, Pothen A, Semmes OJ. Physical and in silico approaches identify DNA-PK in a Tax DNA-damage response interactome. Retrovirology 2008; 5:92. [PMID: 18922151 PMCID: PMC2576351 DOI: 10.1186/1742-4690-5-92] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2008] [Accepted: 10/15/2008] [Indexed: 12/16/2022] Open
Abstract
Background We have initiated an effort to exhaustively map interactions between HTLV-1 Tax and host cellular proteins. The resulting Tax interactome will have significant utility toward defining new and understanding known activities of this important viral protein. In addition, the completion of a full Tax interactome will also help shed light upon the functional consequences of these myriad Tax activities. The physical mapping process involved the affinity isolation of Tax complexes followed by sequence identification using tandem mass spectrometry. To date we have mapped 250 cellular components within this interactome. Here we present our approach to prioritizing these interactions via an in silico culling process. Results We first constructed an in silico Tax interactome comprised of 46 literature-confirmed protein-protein interactions. This number was then reduced to four Tax-interactions suspected to play a role in DNA damage response (Rad51, TOP1, Chk2, 53BP1). The first-neighbor and second-neighbor interactions of these four proteins were assembled from available human protein interaction databases. Through an analysis of betweenness and closeness centrality measures, and numbers of interactions, we ranked proteins in the first neighborhood. When this rank list was compared to the list of physical Tax-binding proteins, DNA-PK was the highest ranked protein common to both lists. An overlapping clustering of the Tax-specific second-neighborhood protein network showed DNA-PK to be one of three bridge proteins that link multiple clusters in the DNA damage response network. Conclusion The interaction of Tax with DNA-PK represents an important biological paradigm as suggested via consensus findings in vivo and in silico. We present this methodology as an approach to discovery and as a means of validating components of a consensus Tax interactome.
Collapse
Affiliation(s)
- Emad Ramadan
- George L, Wright Center for Biomedical Proteomics, Eastern Virginia Medical School, Norfolk, VA, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
447
|
Vicinanza M, D'Angelo G, Di Campli A, De Matteis MA. Function and dysfunction of the PI system in membrane trafficking. EMBO J 2008; 27:2457-70. [PMID: 18784754 PMCID: PMC2536629 DOI: 10.1038/emboj.2008.169] [Citation(s) in RCA: 167] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2008] [Accepted: 08/05/2008] [Indexed: 02/01/2023] Open
Abstract
The phosphoinositides (PIs) function as efficient and finely tuned switches that control the assembly-disassembly cycles of complex molecular machineries with key roles in membrane trafficking. This important role of the PIs is mainly due to their versatile nature, which is in turn determined by their fast metabolic interconversions. PIs can be tightly regulated both spatially and temporally through the many PI kinases (PIKs) and phosphatases that are distributed throughout the different intracellular compartments. In spite of the enormous progress made in the past 20 years towards the definition of the molecular details of PI-protein interactions and of the regulatory mechanisms of the individual PIKs and phosphatases, important issues concerning the general principles of the organisation of the PI system and the coordination of the different PI-metabolising enzymes remain to be addressed. The answers should come from applying a systems biology approach to the study of the PI system, through the integration of analyses of the protein interaction data of the PI enzymes and the PI targets with those of the 'phenomes' of the genetic diseases that involve these PI-metabolising enzymes.
Collapse
Affiliation(s)
- Mariella Vicinanza
- Department of Cell Biology and Oncology, Consorzio Mario Negri Sud, Santa Maria Imbaro, Italy
| | - Giovanni D'Angelo
- Department of Cell Biology and Oncology, Consorzio Mario Negri Sud, Santa Maria Imbaro, Italy
| | - Antonella Di Campli
- Department of Cell Biology and Oncology, Consorzio Mario Negri Sud, Santa Maria Imbaro, Italy
| | | |
Collapse
|
448
|
Kharas MG, Janes MR, Scarfone VM, Lilly MB, Knight ZA, Shokat KM, Fruman DA. Ablation of PI3K blocks BCR-ABL leukemogenesis in mice, and a dual PI3K/mTOR inhibitor prevents expansion of human BCR-ABL+ leukemia cells. J Clin Invest 2008; 118:3038-50. [PMID: 18704194 DOI: 10.1172/jci33337] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2007] [Accepted: 07/09/2008] [Indexed: 11/17/2022] Open
Abstract
Some cases of pre-B cell acute lymphoblastic leukemia (pre-B-ALL) are caused by the Philadelphia (Ph) chromosome-encoded BCR-ABL oncogene, and these tend to have a poor prognosis. Inhibitors of the PI3K/AKT pathway reduce BCR-ABL-mediated transformation in vitro; however, the specific PI3K isoforms involved are poorly defined. Using a murine model of Ph+ pre-B-ALL, we found that deletion of both Pik3r1 and Pik3r2, genes encoding class IA PI3K regulatory isoforms, severely impaired transformation. BCR-ABL-dependent pre/pro-B cell lines could be established at low frequency from progenitors that lacked these genes, but the cells were smaller, proliferated more slowly, and failed to cause leukemia in vivo. These cell lines displayed nearly undetectable PI3K signaling function and were resistant to the PI3K inhibitor wortmannin. However, they maintained activation of mammalian target of rapamycin (mTOR) and were more sensitive to rapamycin. Treatment with rapamycin caused feedback activation of AKT in WT cell lines but not PI3K-deficient lines. A dual inhibitor of PI3K and mTOR, PI-103, was more effective than rapamycin at suppressing proliferation of mouse pre-B-ALL and human CD19+CD34+)Ph+ ALL leukemia cells treated with the ABL kinase inhibitor imatinib. Our findings provide mechanistic insights into PI3K dependency in oncogenic networks and provide a rationale for targeting class IA PI3K, alone or together with mTOR, in the treatment of Ph+ ALL.
Collapse
Affiliation(s)
- Michael G Kharas
- Department of Molecular Biology and Biochemistry, Center for Immunology, University of California, Irvine, Irvine, California, USA
| | | | | | | | | | | | | |
Collapse
|
449
|
Kim MS, Rådinger M, Gilfillan AM. The multiple roles of phosphoinositide 3-kinase in mast cell biology. Trends Immunol 2008; 29:493-501. [PMID: 18775670 PMCID: PMC2706663 DOI: 10.1016/j.it.2008.07.004] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2008] [Revised: 07/28/2008] [Accepted: 07/30/2008] [Indexed: 11/24/2022]
Abstract
Mast cells play a central role in the initiation of inflammatory responses associated with asthma and other allergic disorders. Receptor-mediated mast cell growth, differentiation, homing to their target tissues, survival and activation are all controlled, to varying degrees, by phosphoinositide-3-kinase (PI3K)-driven pathways. It is not fully understood how such diverse responses can be differentially regulated by PI3K. However, recent studies have provided greater insight into the mechanisms that control, and those that are controlled by, different PI3K subunit isoforms in mast cells. In this review, we discuss how PI3K influences the mast cell processes described above. Furthermore, we describe how different mast cell receptors use alternative isoforms of PI3K for these functions and discuss potential downstream targets of these isoforms.
Collapse
Affiliation(s)
- Mi-Sun Kim
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, MD 20892, USA
| | - Madeleine Rådinger
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, MD 20892, USA
| | - Alasdair M. Gilfillan
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, MD 20892, USA
| |
Collapse
|
450
|
Assessment of PTEN tumor suppressor activity in nonmammalian models: the year of the yeast. Oncogene 2008; 27:5431-42. [DOI: 10.1038/onc.2008.240] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|