401
|
Guo S, Yao Q, Ke Z, Chen H, Wu J, Liu C. Resveratrol attenuates high glucose-induced oxidative stress and cardiomyocyte apoptosis through AMPK. Mol Cell Endocrinol 2015; 412:85-94. [PMID: 26054749 DOI: 10.1016/j.mce.2015.05.034] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 05/27/2015] [Indexed: 12/16/2022]
Abstract
BACKGROUND Diabetic cardiomyopathy (DCM) suggests a direct cellular insult to myocardium. Hyperglycemia-induced oxidative stress and apoptosis have been implicated in the pathogenesis of DCM. NADPH oxidase is a major source of reactive oxygen species (ROS) generation in cardiomyocytes. Resveratrol, a naturally occurring polyphenol, has shown beneficial effects on some cardiovascular complications associated with diabetes. OBJECTIVES We aimed to examine the role of resveratrol on high glucose-induced NADPH oxidase-derived ROS production and cardiac apoptosis, together with modulation of protein signaling pathways in cardiomyocytes. METHODS Primary cultures of neonatal rat cardiomyocytes were exposed to 30 mmol/L high glucose with or without resveratrol. Cell viability, apoptosis, superoxide formation, NADPH oxidase activity and its subunits expression, antioxidant enzymes activities, as well as the potential regulatory molecules AMPK, Akt and GSK-3β were assessed in cardiac cells. RESULTS Elevated ROS production induced by 30 mmol/L high glucose was inhibited with the addition of resveratrol in primary cultured neonatal rat cardiomyocytes. Consistently, resveratrol markedly suppressed the increased activity of NADPH oxidase and Rac1, as well as the enhanced expression of p67(phox), p47(phox), and gp91(phox) induced by high glucose. Lipid peroxidation, SOD, catalase, GSH-px activity and GSH content was reversed in the presence of resveratrol. Moreover, the expression of pro-apoptotic protein Bax was down regulated while anti-apoptotic protein Bcl-2 was up regulated. And cardiac cell injury and apoptosis were markedly rescued by resveratrol. In addition, resveratrol significantly increased phosphorylation of AMP-activated protein kinase (AMPK) at Thr172 in cardiomyocytes exposed to high glucose. Compound C, the pharmacologic inhibitor of AMPK, could mostly abrogate roles of resveratrol on cardiomyocytes in high glucose. In contrast, Akt and GSK-3β were little influenced by resveratrol. CONCLUSIONS Our data demonstrated that resveratrol protected cardiomyocytes against high glucose-induced apoptosis through suppression NADPH oxidase-derived ROS generation and maintenance endogenous antioxidant defenses. And the protective effects of resveratrol are mostly mediated by AMPK related pathway.
Collapse
Affiliation(s)
- Shuang Guo
- Hubei Province Key Laboratory on Cardiovascular, Cerebrovascular, and Metabolic Disorders, Hubei University of Science and Technology, Xianning, China
| | - Qing Yao
- Hubei Province Key Laboratory on Cardiovascular, Cerebrovascular, and Metabolic Disorders, Hubei University of Science and Technology, Xianning, China
| | - Zhiqiang Ke
- Hubei Province Key Laboratory on Cardiovascular, Cerebrovascular, and Metabolic Disorders, Hubei University of Science and Technology, Xianning, China
| | - Hongguang Chen
- Hubei Province Key Laboratory on Cardiovascular, Cerebrovascular, and Metabolic Disorders, Hubei University of Science and Technology, Xianning, China
| | - Jiliang Wu
- Hubei Province Key Laboratory on Cardiovascular, Cerebrovascular, and Metabolic Disorders, Hubei University of Science and Technology, Xianning, China.
| | - Chao Liu
- Hubei Province Key Laboratory on Cardiovascular, Cerebrovascular, and Metabolic Disorders, Hubei University of Science and Technology, Xianning, China.
| |
Collapse
|
402
|
Abstract
Oxidative stress and lipid peroxidation have been implicated in the pathogenesis of various diseases, including atherosclerosis and fatty liver diseases, and consequently the role of antioxidants in the prevention and treatment of such diseases has received much attention. In particular, the effects of vitamin E, the most important lipophilic radical-scavenging antioxidant, have been investigated extensively. Many in vitro, animal, and epidemiological studies have reported positive results, but large-scale randomized controlled intervention studies and meta-analyses have produced inconsistent and often disappointing results. In the present review article, the role and action of vitamin E are discussed, with consideration of the factors that determine the outcome of vitamin E treatment. Vitamin E should benefit subjects experiencing oxidative stress due to free radicals when administered at the correct time and for an appropriate duration.
Collapse
Affiliation(s)
- Etsuo Niki
- Health Research Institute, National Institute of Advanced Industrial Science & Technology, Ikeda, Japan
- Department of Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kyoto, Japan
- Correspondence to Etsuo Niki, Ph.D. Health Research Institute, National Institute of Advanced Industrial Science & Technology, 1-8-31 Midorigaoka, Ikeda 563-8577, Japan Tel: +81-3-5313-2555 Fax: +81-3-5313-2555 E-mail:
| |
Collapse
|
403
|
|
404
|
Mendes-Júnior LDG, Guimarães DD, Gadelha DDA, Diniz TF, Brandão MCR, Athayde-Filho PF, Lemos VS, França-Silva MDS, Braga VA. The new nitric oxide donor cyclohexane nitrate induces vasorelaxation, hypotension, and antihypertensive effects via NO/cGMP/PKG pathway. Front Physiol 2015; 6:243. [PMID: 26379557 PMCID: PMC4553900 DOI: 10.3389/fphys.2015.00243] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 08/13/2015] [Indexed: 12/19/2022] Open
Abstract
We investigated the cardiovascular effects induced by the nitric oxide donor Cyclohexane Nitrate (HEX). Vasodilatation, NO release and the effects of acute or sub-chronic treatment with HEX on cardiovascular parameters were evaluated. HEX induced endothelium-independent vasodilatation (Maximum effect [efficacy, ME] = 100.4 ± 4.1%; potency [pD2] = 5.1 ± 0.1). Relaxation was attenuated by scavenging nitric oxide (ME = 44.9 ± 9.4% vs. 100.4 ± 4.1%) or by inhibiting the soluble guanylyl cyclase (ME = 38.5 ± 9.7% vs. 100.4 ± 4.1%). In addition, pD2 was decreased after non-selective blockade of K+ channels (pD2 = 3.6 ± 0.1 vs. 5.1 ± 0.1) or by inhibiting KATP channels (pD2 = 4.3 ± 0.1 vs. 5.1 ± 0.1). HEX increased NO levels in mesenteric arteries (33.2 ± 2.3 vs. 10.7 ± 0.2 au, p < 0.0001). Intravenous acute administration of HEX (1–20 mg/kg) induced hypotension and bradycardia in normotensive and hypertensive rats. Furthermore, starting at 6 weeks after the induction of 2K1C hypertension, oral treatment with the HEX (10 mg/Kg/day) for 7 days reduced blood pressure in hypertensive animals (134 ± 6 vs. 170 ± 4 mmHg, respectively). Our data demonstrate that HEX is a NO donor able to produce vasodilatation via NO/cGMP/PKG pathway and activation of the ATP-sensitive K+ channels. Furthermore, HEX acutely reduces blood pressure and heart rate as well as produces antihypertensive effect in renovascular hypertensive rats.
Collapse
Affiliation(s)
| | | | | | - Thiago F Diniz
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais Belo Horizonte, Brazil
| | - Maria C R Brandão
- Department of Chemistry, Federal University of Paraíba João Pessoa, Brazil
| | | | - Virginia S Lemos
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais Belo Horizonte, Brazil
| | | | - Valdir A Braga
- Biotechnology Center, Federal University of Paraíba João Pessoa, Brazil
| |
Collapse
|
405
|
Mathur P, Ding Z, Saldeen T, Mehta JL. Tocopherols in the Prevention and Treatment of Atherosclerosis and Related Cardiovascular Disease. Clin Cardiol 2015; 38:570-6. [PMID: 26272221 DOI: 10.1002/clc.22422] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 04/13/2015] [Accepted: 04/15/2015] [Indexed: 01/19/2023] Open
Abstract
Oxidants/antioxidants play an important role in cellular homeostasis. The human body has endogenous molecules that work as antioxidants, such as glutathione, superoxide dismutase, peroxidases, and catalase. Exogenous substances in the diet, such as β-carotene, ascorbate, and vitamin E, are vital antioxidants. Of these, vitamin E is likely the most important antioxidant in the human diet, and many studies have been performed to elucidate its role in health and disease. Vitamin E is a family of several compounds, of which α-tocopherol is the most widely known analog. α-Tocopherol exhibits antioxidative property in vitro and inhibits oxidation of low-density lipoprotein cholesterol. In addition, α-tocopherol shows anti-inflammatory activity and modulates expression of proteins involved in the uptake, transport, and degradation of atherogenic lipids. Though α-tocopherol exhibits important antioxidant, anti-inflammatory, and antiatherogenic features in vitro, α-tocopherol supplements have failed to consistently reduce atherosclerosis-related events in human trials. The conflicting results have led to reconsideration of the importance previously given to α-tocopherol and led to interest in other members of vitamin E family, especially γ-tocopherol, which exerts a much more potent antioxidant, anti-inflammatory, and cardioprotective effect than α-tocopherol. This reconsideration has been backed by solid laboratory and clinical research. We suggest that the absence of γ-tocopherol in traditional preparations may be one reason for the lack of consistent salutary effects of vitamin E preparations in clinical trials. This review summarizes our current understanding of tocopherols as antioxidant molecules and emerging evidence of an important role of γ-tocopherol in the pathophysiology of atherosclerosis-related cardiovascular disease.
Collapse
Affiliation(s)
- Pankaj Mathur
- Department of Cardiovascular Medicine, University of Arkansas for Medical Sciences and Central Arkansas Veterans Healthcare System, Little Rock, Arkansas
| | - Zufeng Ding
- Department of Cardiovascular Medicine, University of Arkansas for Medical Sciences and Central Arkansas Veterans Healthcare System, Little Rock, Arkansas
| | - Tom Saldeen
- Department of Cardiovascular Medicine, University of Arkansas for Medical Sciences and Central Arkansas Veterans Healthcare System, Little Rock, Arkansas
| | - Jawahar L Mehta
- Department of Cardiovascular Medicine, University of Arkansas for Medical Sciences and Central Arkansas Veterans Healthcare System, Little Rock, Arkansas
| |
Collapse
|
406
|
Lee S, Lim S, Ham O, Lee SY, Lee CY, Park JH, Lee J, Seo HH, Yun I, Han SM, Cha MJ, Choi E, Hwang KC. ROS-mediated bidirectional regulation of miRNA results in distinct pathologic heart conditions. Biochem Biophys Res Commun 2015; 465:349-55. [PMID: 26253469 DOI: 10.1016/j.bbrc.2015.07.160] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 07/31/2015] [Indexed: 10/23/2022]
Abstract
Under distinct pathological heart conditions, the expression of a single miRNA can display completely opposite patterns. However, the mechanism underlying the bidirectional regulation of a single miRNA and the clinical implications of this regulation remain largely unknown. To address this issue, we examined the regulation of miR-1, one of the most abundant miRNAs in the heart, during cardiac hypertrophy and ischemia/reperfusion (I/R). Our data indicated that different magnitudes and chronicities of ROS levels in cardiomyocytes resulted in differential expression of miR-1, subsequently altering the expression of myocardin. In animal models, the administration of a miR-1 mimic attenuated cardiac hypertrophy by suppressing the transverse aortic constriction-induced increase in myocardin expression, whereas the administration of anti-miR-1 ameliorated I/R-induced cardiac apoptosis and deterioration of heart function. Our findings indicated that a pathologic stimulus such as ROS can bidirectionally alter the expression of miRNA to contribute to the development of pathological conditions exhibiting distinct phenotypes and that the meticulous adjustment of the pathological miRNA levels is required to improve clinical outcomes.
Collapse
Affiliation(s)
- Seahyoung Lee
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung, South Korea; Catholic Kwandong University International St. Mary's Hospital, Incheon, South Korea
| | - Soyeon Lim
- Severance Integrative Research Institute for Cerebral and Cardiovascular Disease, Yonsei University Health System, Seoul, South Korea
| | - Onju Ham
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul, South Korea
| | - Se-Yeon Lee
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul, South Korea
| | - Chang Yeon Lee
- Department of Integrated Omics for Biomedical Sciences, Yonsei University, Seoul, South Korea
| | - Jun-Hee Park
- Department of Integrated Omics for Biomedical Sciences, Yonsei University, Seoul, South Korea
| | - Jiyun Lee
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul, South Korea
| | - Hyang-Hee Seo
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul, South Korea
| | - Ina Yun
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul, South Korea
| | - Sun M Han
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul, South Korea
| | - Min-Ji Cha
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung, South Korea
| | - Eunhyun Choi
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung, South Korea; Catholic Kwandong University International St. Mary's Hospital, Incheon, South Korea
| | - Ki-Chul Hwang
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung, South Korea; Catholic Kwandong University International St. Mary's Hospital, Incheon, South Korea.
| |
Collapse
|
407
|
Kornfeld OS, Hwang S, Disatnik MH, Chen CH, Qvit N, Mochly-Rosen D. Mitochondrial reactive oxygen species at the heart of the matter: new therapeutic approaches for cardiovascular diseases. Circ Res 2015; 116:1783-99. [PMID: 25999419 DOI: 10.1161/circresaha.116.305432] [Citation(s) in RCA: 147] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Reactive oxygen species (ROS) have been implicated in a variety of age-related diseases, including multiple cardiovascular disorders. However, translation of ROS scavengers (antioxidants) into the clinic has not been successful. These antioxidants grossly reduce total levels of cellular ROS including ROS that participate in physiological signaling. In this review, we challenge the traditional antioxidant therapeutic approach that targets ROS directly with novel approaches that improve mitochondrial functions to more effectively treat cardiovascular diseases.
Collapse
Affiliation(s)
- Opher S Kornfeld
- From the Department of Chemical and Systems Biology, Stanford University School of Medicine, CA
| | - Sunhee Hwang
- From the Department of Chemical and Systems Biology, Stanford University School of Medicine, CA
| | - Marie-Hélène Disatnik
- From the Department of Chemical and Systems Biology, Stanford University School of Medicine, CA
| | - Che-Hong Chen
- From the Department of Chemical and Systems Biology, Stanford University School of Medicine, CA
| | - Nir Qvit
- From the Department of Chemical and Systems Biology, Stanford University School of Medicine, CA
| | - Daria Mochly-Rosen
- From the Department of Chemical and Systems Biology, Stanford University School of Medicine, CA.
| |
Collapse
|
408
|
Wang L, Fan F, Cao W, Xu H. Ultrasensitive ROS-Responsive Coassemblies of Tellurium-Containing Molecules and Phospholipids. ACS APPLIED MATERIALS & INTERFACES 2015; 7:16054-60. [PMID: 26154159 DOI: 10.1021/acsami.5b04419] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Reactive oxygen species (ROS) play crucial roles in cell signaling and redox homeostasis and are strongly related to metabolic activities. The increase of the ROS concentration in organisms can result in several diseases, such as cardiovascular diseases and cancer. The concentration of ROS in biologically relevant conditions is typically as low as around tens of micromolars to 100 μM H2O2, which makes it necessary to develop ultrasensitive ROS-responsive systems. A general approach is reported here to fabricate an ultrasensitive ROS-responsive system via coassembly between tellurium-containing molecules and phospholipids, combining the ROS-responsiveness of tellurium and the biocompatibility of phospholipids. By using dynamic light scattering, transmission electron microscopy, scanning electron microscopy, and NMR spectra, coassembly behaviors and the responsiveness of the coassemblies have been investigated. These coassemblies can respond to 100 μM H2O2, which is a biologically relevant ROS concentration, and demonstrate reversible redox properties.
Collapse
Affiliation(s)
- Lu Wang
- †Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China
| | - Fuqiang Fan
- †Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China
- ‡The Research Centre for Molecular Science and Engineering, Northeastern University, Shenyang, 110004, People's Republic of China
| | - Wei Cao
- †Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China
| | - Huaping Xu
- †Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China
| |
Collapse
|
409
|
Gene-arsenic interaction in longitudinal changes of blood pressure: Findings from the Health Effects of Arsenic Longitudinal Study (HEALS) in Bangladesh. Toxicol Appl Pharmacol 2015. [PMID: 26220686 DOI: 10.1016/j.taap.2015.07.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Cardiovascular disease (CVD) is the leading cause of morbidity and mortality worldwide and mounting evidence indicates that toxicant exposures can profoundly impact on CVD risk. Epidemiologic studies have suggested that arsenic (As) exposure is positively related to increases in blood pressure (BP), a primary CVD risk factor. However, evidence of whether genetic susceptibility can modify the association between As and BP is lacking. In this study, we used mixed effect models adjusted for potential confounders to examine the interaction between As exposure from well water and potential genetic modifiers on longitudinal change in BP over approximately 7years of follow-up in 1137 subjects selected from the Health Effects of Arsenic Longitudinal Study (HEALS) cohort in Bangladesh. Genotyping was conducted for 235 SNPs in 18 genes related to As metabolism, oxidative stress and endothelial function. We observed interactions between 44 SNPs with well water As for one or more BP outcome measures (systolic, diastolic, or pulse pressure (PP)) over the course of follow-up. The interaction between CYBA rs3794624 and well water As on annual PP remained statistically significant after correction for multiple comparisons (FDR-adjusted p for interaction=0.05). Among individuals with the rs3794624 variant genotype, well water As was associated with a 2.23mmHg (95% CI: 1.14-3.32) greater annual increase in PP, while among those with the wild type, well water As was associated with a 0.13mmHg (95% CI: 0.02-0.23) greater annual increase in PP. Our results suggest that genetic variability may contribute to As-associated increases in BP over time.
Collapse
|
410
|
Tooulia KK, Theodosis-Nobelos P, Rekka EA. Thiomorpholine Derivatives with Hypolipidemic and Antioxidant Activity. Arch Pharm (Weinheim) 2015; 348:629-34. [PMID: 26191791 DOI: 10.1002/ardp.201500147] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 06/02/2015] [Accepted: 06/23/2015] [Indexed: 12/19/2022]
Abstract
A number of thiomorpholine derivatives that are structurally similar to some substituted morpholines possessing antioxidant and hypocholesterolemic activity were synthesized. The new compounds incorporate an antioxidant moiety as the thiomorpholine N-substituent. The derivatives were found to inhibit the ferrous/ascorbate-induced lipid peroxidation of microsomal membrane lipids, with IC50 values as low as 7.5 µΜ. In addition, these compounds demonstrate hypocholesterolemic and hypolipidemic action. The most active compound (5) decreases the triglyceride, total cholesterol, and low-density lipoprotein levels in the plasma of Triton WR-1339-induced hyperlipidemic rats, by 80, 78, and 76%, respectively, at 56 mmol/kg (i.p.). They may also act as squalene synthase inhibitors. The above results indicate that the new molecules may be useful as leads for the design of novel compounds as potentially antiatherogenic factors.
Collapse
Affiliation(s)
- Kyriaki-Konstantina Tooulia
- Department of Pharmaceutical Chemistry, School of Pharmacy, Aristotelian University of Thessaloniki, Thessaloniki, Greece
| | - Panagiotis Theodosis-Nobelos
- Department of Pharmaceutical Chemistry, School of Pharmacy, Aristotelian University of Thessaloniki, Thessaloniki, Greece
| | - Eleni A Rekka
- Department of Pharmaceutical Chemistry, School of Pharmacy, Aristotelian University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
411
|
New perspectives on bioactivity of olive oil: evidence from animal models, human interventions and the use of urinary proteomic biomarkers. Proc Nutr Soc 2015; 74:268-81. [DOI: 10.1017/s0029665115002323] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Olive oil (OO) is the primary source of fat in the Mediterranean diet and has been associated with longevity and a lower incidence of chronic diseases, particularly CHD. Cardioprotective effects of OO consumption have been widely related with improved lipoprotein profile, endothelial function and inflammation, linked to health claims of oleic acid and phenolic content of OO. With CVD being a leading cause of death worldwide, a review of the potential mechanisms underpinning the impact of OO in the prevention of disease is warranted. The current body of evidence relies on mechanistic studies involving animal and cell-based models, epidemiological studies of OO intake and risk factor, small- and large-scale human interventions, and the emerging use of novel biomarker techniques associated with disease risk. Although model systems are important for mechanistic research nutrition, methodologies and experimental designs with strong translational value are still lacking. The present review critically appraises the available evidence to date, with particular focus on emerging novel biomarkers for disease risk assessment. New perspectives on OO research are outlined, especially those with scope to clarify key mechanisms by which OO consumption exerts health benefits. The use of urinary proteomic biomarkers, as highly specific disease biomarkers, is highlighted towards a higher translational approach involving OO in nutritional recommendations.
Collapse
|
412
|
Design and synthesis of 3-triazolo-coumarins and their applications in scavenging radicals and protecting DNA. Chem Res Chin Univ 2015. [DOI: 10.1007/s40242-015-5191-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
413
|
Pastori D, Pignatelli P, Carnevale R, Violi F. Nox-2 up-regulation and platelet activation: Novel insights. Prostaglandins Other Lipid Mediat 2015; 120:50-5. [DOI: 10.1016/j.prostaglandins.2015.03.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Revised: 03/24/2015] [Accepted: 03/27/2015] [Indexed: 12/26/2022]
|
414
|
Advanced glycation end products and schizophrenia: A systematic review. J Psychiatr Res 2015; 66-67:112-7. [PMID: 26001588 DOI: 10.1016/j.jpsychires.2015.04.023] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 03/31/2015] [Accepted: 04/29/2015] [Indexed: 11/21/2022]
Abstract
Oxidative stress has become an exciting area of research on schizophrenia, which is a highly prevalent condition that affects approximately 1% of the worldwide population. Advanced glycation end products (AGEs), which are considered metabolic biomarkers of increased oxidative stress, have a pathogenic role in the development and progression of different oxidative stress-based diseases including atherosclerosis, diabetes, neurodegenerative disorders and schizophrenia. AGE formation and accumulation as well as the activation of its receptor (RAGE) can lead to signaling through several inflammatory signaling pathways and further damaging effects. This systematic review is based on a search conducted in July 2014 in which 6 studies were identified that met our criteria. In this work, we describe how recent methodological advances regarding the role of AGEs may contribute to a better understanding of the pathophysiology of schizophrenia and provide a different approach in the comprehension of the relationship between cardiovascular disease and schizophrenia. These latest findings may lead to new directions for future research on novel diagnostic and treatment strategies.
Collapse
|
415
|
Satoh M, Saburi H, Tanaka T, Matsuura Y, Naitow H, Shimozono R, Yamamoto N, Inoue H, Nakamura N, Yoshizawa Y, Aoki T, Tanimura R, Kunishima N. Multiple binding modes of a small molecule to human Keap1 revealed by X-ray crystallography and molecular dynamics simulation. FEBS Open Bio 2015. [PMID: 26199865 PMCID: PMC4506958 DOI: 10.1016/j.fob.2015.06.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Keap1 is useful target for the design of drugs that regulate the response to oxidative stresses. We determined two complex crystal structures of Keap1 with a small molecule ligand. The ligand binds to Keap1 so as to mimic the physiological substrate Nrf2. From molecular dynamics simulation results, the binding modes observed may be atypical in solution. Key residues for ligand binding are common between crystal and MD structures.
Keap1 protein acts as a cellular sensor for oxidative stresses and regulates the transcription level of antioxidant genes through the ubiquitination of a corresponding transcription factor, Nrf2. A small molecule capable of binding to the Nrf2 interaction site of Keap1 could be a useful medicine. Here, we report two crystal structures, referred to as the soaking and the cocrystallization forms, of the Kelch domain of Keap1 with a small molecule, Ligand1. In these two forms, the Ligand1 molecule occupied the binding site of Keap1 so as to mimic the ETGE motif of Nrf2, although the mode of binding differed in the two forms. Because the Ligand1 molecule mediated the crystal packing in both the forms, the influence of crystal packing on the ligand binding was examined using a molecular dynamics (MD) simulation in aqueous conditions. In the MD structures from the soaking form, the ligand remained bound to Keap1 for over 20 ns, whereas the ligand tended to dissociate in the cocrystallization form. The MD structures could be classified into a few clusters that were related to but distinct from the crystal structures, indicating that the binding modes observed in crystals might be atypical of those in solution. However, the dominant ligand recognition residues in the crystal structures were commonly used in the MD structures to anchor the ligand. Therefore, the present structural information together with the MD simulation will be a useful basis for pharmaceutical drug development.
Collapse
Affiliation(s)
- Mikiya Satoh
- Bio-Specimen Platform Group, RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
- Pharmaceutical Research Laboratories, Toray Industries, Inc., 10-1, Tebiro 6-chome, Kamakura, Kanagawa 248-8555, Japan
| | - Hajime Saburi
- Bio-Specimen Platform Group, RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
- Pharmaceutical Research Laboratories, Toray Industries, Inc., 10-1, Tebiro 6-chome, Kamakura, Kanagawa 248-8555, Japan
| | - Tomoyuki Tanaka
- Bio-Specimen Platform Group, RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Yoshinori Matsuura
- Bio-Specimen Platform Group, RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Hisashi Naitow
- Bio-Specimen Platform Group, RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Rieko Shimozono
- Pharmaceutical Research Laboratories, Toray Industries, Inc., 10-1, Tebiro 6-chome, Kamakura, Kanagawa 248-8555, Japan
| | - Naoyoshi Yamamoto
- Pharmaceutical Research Laboratories, Toray Industries, Inc., 10-1, Tebiro 6-chome, Kamakura, Kanagawa 248-8555, Japan
| | - Hideki Inoue
- Pharmaceutical Research Laboratories, Toray Industries, Inc., 10-1, Tebiro 6-chome, Kamakura, Kanagawa 248-8555, Japan
| | - Noriko Nakamura
- Pharmaceutical Research Laboratories, Toray Industries, Inc., 10-1, Tebiro 6-chome, Kamakura, Kanagawa 248-8555, Japan
| | - Yoshitaka Yoshizawa
- Pharmaceutical Research Laboratories, Toray Industries, Inc., 10-1, Tebiro 6-chome, Kamakura, Kanagawa 248-8555, Japan
| | - Takumi Aoki
- Pharmaceutical Research Laboratories, Toray Industries, Inc., 10-1, Tebiro 6-chome, Kamakura, Kanagawa 248-8555, Japan
| | - Ryuji Tanimura
- Pharmaceutical Research Laboratories, Toray Industries, Inc., 10-1, Tebiro 6-chome, Kamakura, Kanagawa 248-8555, Japan
| | - Naoki Kunishima
- Bio-Specimen Platform Group, RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
- Corresponding author. Tel.: +81 791 58 2937; fax: +81 791 58 2917.
| |
Collapse
|
416
|
Yildirim F, Iskesen I, Kurdal AT, Ozturk T, Taneli F, Gozukara C, Ozbakkaloglu A. Is "Attenuation of Oxidative Stress" Helpful to Understand the Mechanism of Remote Ischemic Preconditioning in Cardiac Surgery? J Cardiothorac Vasc Anesth 2015; 30:134-40. [PMID: 26411813 DOI: 10.1053/j.jvca.2015.06.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Indexed: 11/11/2022]
Abstract
OBJECTIVES The aim of this study was to determine the effect of remote ischemic preconditioning (RIPC) on markers of cardiac ischemia and response to oxidative stress in patients undergoing coronary artery bypass grafting (CABG) surgery. DESIGN A prospective, randomized, and blinded study. SETTING A single-center university hospital. PARTICIPANTS This study included patients who underwent isolated CABG surgery with cardiopulmonary bypass who were selected carefully to prevent confounding with factors known to affect markers of ischemia-reperfusion and response to oxidative stress. INTERVENTIONS The authors randomly assigned patients to RIPC to the left lower extremity using a blood pressure cuff (study group) or a cuff that was applied but not inflated or deflated (control group). MEASUREMENTS AND MAIN RESULTS At 6 hours after CABG surgery, high-sensitivity cardiac troponin T levels were significantly lower in the study group than in the control group. Levels of superoxide dismutase, an antioxidant enzyme, were significantly greater 15 minutes after release of the cross-clamp in the study group, whereas malondialdehyde levels were lower (not significantly) at 1 and 15 minutes after release of the cross-clamp. Hemodynamic parameters were not significantly different at any time point during the study. CONCLUSIONS The authors' method of RIPC before CABG surgery resulted in less myocardial ischemia, as indicated by lower troponin levels. Changes in levels of endogenous antioxidant enzymes supported the hypothesis that this protection from ischemia-reperfusion injury was related to scavenging of free oxygen radicals. Future studies might include a more heterogeneous population and medications that lower the body's response to oxidative stress.
Collapse
Affiliation(s)
| | | | | | | | - Fatma Taneli
- Biochemistry, Celal Bayar University, School of Medicine, Manisa, Turkey
| | - Ceyhun Gozukara
- Biochemistry, Celal Bayar University, School of Medicine, Manisa, Turkey
| | | |
Collapse
|
417
|
Yu Z, Morimoto K, Yu J, Bao W, Okita Y, Okada K. Endogenous superoxide dismutase activation by oral administration of riboflavin reduces abdominal aortic aneurysm formation in rats. J Vasc Surg 2015; 64:737-45. [PMID: 26070605 DOI: 10.1016/j.jvs.2015.03.045] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 03/01/2015] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Vitamin B2 (riboflavin) reportedly has an antioxidant effect through superoxide dismutase (SOD) activation. However, the effect of riboflavin on abdominal aortic aneurysm (AAA) has never been investigated. In the present study, we examined the hypothesis that riboflavin has a protective effect on AAA formation in an experimental rat model. METHODS The AAA model, which was induced with intraluminal elastase and extraluminal calcium chloride, was created in 36 rats. The 36 rats were divided into a riboflavin group (group R; 25 mg/kg/d), and control group (carboxymethyl cellulose). Riboflavin administration by gastric gavage once per day was started at 3 days before aneurysm preparation. On day 3, SOD activity in aneurysm walls was assayed. On day 7, reactive oxygen species (ROS) levels were semiquantified by dihydroethidium staining, and the oxidation product of DNA produced by ROS, 8-hydroxydeoxyguanosine (8-OHdG), was measured by immunohistochemical staining. Histopathologic examination (hematoxylin/eosin and elastica Van Gieson staining) was performed on day 28, and the AAA dilatation ratio was calculated to evaluate the protective effect of riboflavin. RESULTS On day 3, SOD activity was significantly increased in aneurysm walls by riboflavin administration (370 ± 204 U/mL in normal, 334 ± 86 U/mL in control, 546 ± 143 U/mL in group R; P = .021). On day 7, ROS levels and 8-OHdG-positive cells in aneurysm walls were significantly decreased by riboflavin treatment (ROS levels: 1.0 ± 0.1 in normal, 4.5 ± 0.4 in control, 3.1 ± 0.5 in group R, P < .01; 8-OHdG-positive cells: 30 ± 2 cells in normal, 148 ± 20 cells in control, 109 ± 15 cells in group R, P < .01). Riboflavin treatment significantly reduced matrix metalloproteinase (MMP)-9 messenger RNA expression in aneurysm walls (relative expression: MMP-9: 0.4 ± 0.7 in normal, 2.6 ± 1.3 in control, 0.5 ± 0.3 in group R, P < .01). On day 28, the aortic walls were less dilated and had higher elastin content in group R than in control (dilatation ratio: 194.9% ± 10.9% in control, 158.6% ± 2.5% in group R; P <.01). CONCLUSIONS Riboflavin treatment prevents AAA formation in a rat model through an antioxidant effect and might be a potent pharmacologic agent for AAA treatment in clinical practice.
Collapse
MESH Headings
- 8-Hydroxy-2'-Deoxyguanosine
- Administration, Oral
- Animals
- Antioxidants/administration & dosage
- Aorta, Abdominal/drug effects
- Aorta, Abdominal/enzymology
- Aorta, Abdominal/pathology
- Aortic Aneurysm, Abdominal/chemically induced
- Aortic Aneurysm, Abdominal/enzymology
- Aortic Aneurysm, Abdominal/pathology
- Aortic Aneurysm, Abdominal/prevention & control
- Calcium Chloride
- DNA Damage
- Deoxyguanosine/analogs & derivatives
- Deoxyguanosine/metabolism
- Dilatation, Pathologic
- Disease Models, Animal
- Enzyme Activation
- Enzyme Activators/administration & dosage
- Extracellular Signal-Regulated MAP Kinases/metabolism
- Inflammation Mediators/metabolism
- Male
- Matrix Metalloproteinase 9/genetics
- Matrix Metalloproteinase 9/metabolism
- Oxidative Stress/drug effects
- Pancreatic Elastase
- Rats, Sprague-Dawley
- Reactive Oxygen Species/metabolism
- Riboflavin/administration & dosage
- Superoxide Dismutase/metabolism
- Time Factors
Collapse
Affiliation(s)
- Zhenhai Yu
- Division of Cardiovascular Surgery, Department of Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Keisuke Morimoto
- Division of Cardiovascular Surgery, Department of Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Jie Yu
- Division of Cardiovascular Surgery, Department of Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Wulan Bao
- Division of Cardiovascular Surgery, Department of Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yutaka Okita
- Division of Cardiovascular Surgery, Department of Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Kenji Okada
- Division of Cardiovascular Surgery, Department of Surgery, Kobe University Graduate School of Medicine, Kobe, Japan; Division of Cardiovascular Surgery, Department of Surgery, Shinshu University School of Medicine, Matsumoto, Japan.
| |
Collapse
|
418
|
|
419
|
Huguenin GVB, Oliveira GMM, Moreira ASB, Saint'Pierre TD, Gonçalves RA, Pinheiro-Mulder AR, Teodoro AJ, Luiz RR, Rosa G. Improvement of antioxidant status after Brazil nut intake in hypertensive and dyslipidemic subjects. Nutr J 2015; 14:54. [PMID: 26022214 PMCID: PMC4477321 DOI: 10.1186/s12937-015-0043-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 11/20/2014] [Accepted: 05/18/2015] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVES To investigate the effect of partially defatted Granulated Brazil nut (GBN) on biomarkers of oxidative stress and antioxidant status of hypertensive and dyslipidemic patients on nutrition and drug approaches. METHODS Ninety one hypertensive and dyslipidemic subjects of both genders (51.6 % men), mean age 62.1 ± 9.3 years, performed a randomized crossover trial, double-blind, placebo controlled. Subjects received a diet and partially defatted GBN 13 g per day (≈227.5 μg/day of selenium) or placebo for twelve weeks with four-week washout interval. Anthropometric, laboratory and clinic characteristics were investigated at baseline. Plasma selenium (Se), plasma glutathione peroxidase (GPx3) activity, total antioxidant capacity (TAC), 8-epi PGF2α and oxidized LDL were evaluated at the beginning and in the end of each intervention. RESULTS GBN intake significantly increased plasma Se from 87.0 ± 16.8 to 180.6 ± 67.1 μg/L, increased GPx3 activity in 24,8% (from 112.66 ± 40.09 to 128.32 ± 38.31 nmol/min/mL, p < 0,05), and reduced 3.25% of oxidized-LDL levels (from 66.31 ± 23.59 to 60.68 ± 20.88 U/L, p < 0.05). An inverse association between GPx3 and oxidized LDL levels was observed after supplementation with GBN by simple model (β -0.232, p = 0.032) and after adjustment for gender, age, diabetes and BMI (β -0.298, p = 0.008). There wasn't association between GPx3 and 8-epi PGF2α (β -0.209, p = 0.052) by simple model. CONCLUSION The partially defatted GBN intake has a potential benefit to increase plasma selenium, increase enzymatic antioxidant activity of GPx3 and to reduction oxidation in LDL in hypertensive and dyslipidemic patients. TRIAL REGISTRATION ClinicalTrials.gov Identifier NCT01990391; November 20, 2013.
Collapse
Affiliation(s)
- Grazielle V B Huguenin
- Institute of Heart Edson Saad, Federal Universityof Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil.
| | - Glaucia M M Oliveira
- Institute of Heart Edson Saad, Federal Universityof Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil.
| | - Annie S B Moreira
- Clinic of Atherosclerosis and Cardiovascular Disease Prevention, National Institute of Cardiology (INC), Rio de Janeiro, Brazil.
| | - Tatiana D Saint'Pierre
- Chemistry Department, Pontifical Catholic University of Rio de Janeiro (PUC-Rio), Rio de Janeiro, Brazil.
| | - Rodrigo A Gonçalves
- Chemistry Department, Pontifical Catholic University of Rio de Janeiro (PUC-Rio), Rio de Janeiro, Brazil.
| | - Alessandra R Pinheiro-Mulder
- Nutritional Biochemistry Laboratory, Federal University of Rio de Janeiro State (UNIRIO), Rio de Janeiro, Brazil.
| | - Anderson J Teodoro
- Nutritional Biochemistry Laboratory, Federal University of Rio de Janeiro State (UNIRIO), Rio de Janeiro, Brazil.
| | - Ronir R Luiz
- Institute of Heart Edson Saad, Federal Universityof Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil.
| | - Glorimar Rosa
- Institute of Heart Edson Saad, Federal Universityof Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil.
- Departamento de Nutrição e Dietética, Instituto de Nutrição Josué de Castro - Cidade Universitária - Ilha do Fundão, Av. Carlos Chagas Filho, 373, Prédio do Centro de Ciências da Saúde, Bloco J, 2° andar, sala 25, CEP: 21941-902, Rio de Janeiro, Brazil.
| |
Collapse
|
420
|
Impact of Volatile Anesthetics on Oxidative Stress and Inflammation. BIOMED RESEARCH INTERNATIONAL 2015; 2015:242709. [PMID: 26101769 PMCID: PMC4458520 DOI: 10.1155/2015/242709] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 03/10/2015] [Indexed: 01/29/2023]
Abstract
The safety of anesthesia, which is an important step for surgery, can be determined by its impact on oxidative stress and inflammation. The effects of volatile anesthetics such as isoflurane and sevoflurane on oxidative stress and inflammation are reviewed in various (1) cell lines, (2) rodents, and (3) human studies. Isoflurane and sevoflurane are reported to have antioxidant and anti-inflammatory effects in all cells with exception of neuronal cell lines. In addition, various animal studies have indicated that isoflurane and sevoflurane were not only safe but also reduced oxidative stress and inflammation in rodent models. In human studies, oxidative stress, inflammation, and DNA damage were not affected by isoflurane and sevoflurane in patients undergoing minor incision surgeries. On the other hand, elevated oxidative stress, inflammation, and DNA damage have been observed in patients undergoing major surgeries such as abdominal and orthopedic surgeries, hysterectomy, cholecystectomy, and thoracotomy. Although impact of anesthetics on oxidative stress and inflammation is still not clear due to the variations of patients' health conditions, types of surgery and the quantities of anesthetics, isoflurane, and sevoflurane can be considered safe anesthetics with respect to their effect on oxidative stress and inflammation in subjects undergoing minor surgery. Continuous effort evaluating the safety of anesthesia in various aspects is required.
Collapse
|
421
|
van Thiel BS, van der Pluijm I, te Riet L, Essers J, Danser AHJ. The renin-angiotensin system and its involvement in vascular disease. Eur J Pharmacol 2015; 763:3-14. [PMID: 25987425 DOI: 10.1016/j.ejphar.2015.03.090] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 01/15/2015] [Accepted: 03/24/2015] [Indexed: 10/24/2022]
Abstract
The renin-angiotensin system (RAS) plays a critical role in the pathogenesis of many types of cardiovascular diseases including cardiomyopathy, valvular heart disease, aneurysms, stroke, coronary artery disease and vascular injury. Besides the classical regulatory effects on blood pressure and sodium homoeostasis, the RAS is involved in the regulation of contractility and remodelling of the vessel wall. Numerous studies have shown beneficial effect of inhibition of this system in the pathogenesis of cardiovascular diseases. However, dysregulation and overexpression of the RAS, through different molecular mechanisms, also induces, the initiation of vascular damage. The key effector peptide of the RAS, angiotensin II (Ang II) promotes cell proliferation, apoptosis, fibrosis, oxidative stress and inflammation, processes known to contribute to remodelling of the vasculature. In this review, we focus on the components that are under the influence of the RAS and contribute to the development and progression of vascular disease; extracellular matrix defects, atherosclerosis and ageing. Furthermore, the beneficial therapeutic effects of inhibition of the RAS on the vasculature are discussed, as well as the need for additive effects on top of RAS inhibition.
Collapse
Affiliation(s)
- Bibi S van Thiel
- Department of Internal Medicine, Division of Pharmacology and Vascular Medicine, Erasmus MC, Rotterdam, The Netherlands; Department of Genetics, Erasmus MC, Rotterdam, The Netherlands; Department of Vascular Surgery, Erasmus MC, Rotterdam, The Netherlands
| | - Ingrid van der Pluijm
- Department of Genetics, Erasmus MC, Rotterdam, The Netherlands; Department of Vascular Surgery, Erasmus MC, Rotterdam, The Netherlands
| | - Luuk te Riet
- Department of Internal Medicine, Division of Pharmacology and Vascular Medicine, Erasmus MC, Rotterdam, The Netherlands; Department of Vascular Surgery, Erasmus MC, Rotterdam, The Netherlands
| | - Jeroen Essers
- Department of Genetics, Erasmus MC, Rotterdam, The Netherlands; Department of Vascular Surgery, Erasmus MC, Rotterdam, The Netherlands; Department of Radiation Oncology, Erasmus MC, Rotterdam, The Netherlands
| | - A H Jan Danser
- Department of Internal Medicine, Division of Pharmacology and Vascular Medicine, Erasmus MC, Rotterdam, The Netherlands.
| |
Collapse
|
422
|
Chu W, Chepetan A, Zhou D, Shoghi KI, Xu J, Dugan LL, Gropler RJ, Mintun MA, Mach RH. Development of a PET radiotracer for non-invasive imaging of the reactive oxygen species, superoxide, in vivo. Org Biomol Chem 2015; 12:4421-31. [PMID: 24847866 DOI: 10.1039/c3ob42379d] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Reactive oxygen species (ROS) have been implicated in the pathogenesis of a wide range of human disease states and drug toxicities, but development of imaging tools to study ROS biology in vivo remains a challenge. Here we synthesized and validated a novel PET tracer (12) and its (18)F radiolabeled version [(18)F]12 to allow PET ( positron emission tomography) imaging of superoxide in vivo. Initial analysis of ROS reaction kinetics found that compound 12 was rapidly and selectively oxidized by superoxide, but not other ROS. Cell culture studies in EMT6 cells exposed to the cancer chemotherapeutic agent Doxorubicin (DOX), which activates the superoxide-generating enzyme, NADPH oxidase, showed that compound 12 was a sensitive and specific probe for superoxide in cells. The microPET imaging of heart in mice with DOX-induced cardiac inflammation observed 2-fold greater oxidation of [(18)F]12 in the DOX-treated mice compared to controls (p = 0.02), the results were confirmed by distribution studies on organs subsequently removed from the mice and HPLC analysis of [(18)F] radioactivity compounds. These data indicate that compound 12 is a useful PET tracer to imaging ROS in vivo.
Collapse
Affiliation(s)
- Wenhua Chu
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
423
|
Farrokh S, Brillen AL, Haendeler J, Altschmied J, Schaal H. Critical regulators of endothelial cell functions: for a change being alternative. Antioxid Redox Signal 2015; 22:1212-29. [PMID: 25203279 DOI: 10.1089/ars.2014.6023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
SIGNIFICANCE The endothelium regulates vessel dilation and constriction, balances hemostasis, and inhibits thrombosis. In addition, pro- and anti-angiogenic molecules orchestrate proliferation, survival, and migration of endothelial cells. Regulation of all these processes requires fine-tuning of signaling pathways, which can easily be tricked into running the opposite direction when exogenous or endogenous signals get out of hand. Surprisingly, some critical regulators of physiological endothelial functions can turn malicious by mere alternative splicing, leading to the expression of protein isoforms with opposite functions. RECENT ADVANCES While reviewing the evidence of alternative splicing on cellular physiology, it became evident that expression of splice factors and their activities are regulated by externally triggered signaling cascades. Furthermore, genome-wide identification of RNA-binding sites of splicing regulatory proteins now offer a glimpse into the splicing code responsible for alternative splicing of molecules regulating endothelial functions. CRITICAL ISSUES Due to the constantly growing number of transcript and protein isoforms, it will become more and more important to identify and characterize all transcripts and proteins regulating endothelial cell functions. One critical issue will be a non-ambiguous nomenclature to keep consistency throughout different laboratories. FUTURE DIRECTIONS RNA-deep sequencing focusing on exon-exon junction needs to more reliably identify alternative splicing events combined with functional analyses that will uncover more splice variants contributing to or inhibiting proper endothelial functions. In addition, understanding the signals mediating alternative splicing and its regulation might allow us to derive new strategies to preserve endothelial function by suppressing or upregulating specific protein isoforms. Antioxid. Redox Signal. 22, 1212-1229.
Collapse
Affiliation(s)
- Sabrina Farrokh
- 1 Heisenberg-Group-Environmentally-Induced Cardiovascular Degeneration, IUF-Leibniz Research Institute for Environmental Medicine , Düsseldorf, Germany
| | | | | | | | | |
Collapse
|
424
|
Nitric Oxide Bioavailability in Obstructive Sleep Apnea: Interplay of Asymmetric Dimethylarginine and Free Radicals. SLEEP DISORDERS 2015; 2015:387801. [PMID: 26064689 PMCID: PMC4438195 DOI: 10.1155/2015/387801] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 04/15/2015] [Accepted: 04/17/2015] [Indexed: 01/13/2023]
Abstract
Obstructive sleep apnea (OSA) occurs in 2% of middle-aged women and 4% of middle-aged men and is considered an independent risk factor for cerebrovascular and cardiovascular diseases. Nitric oxide (NO) is an important endothelium derived vasodilating substance that plays a critical role in maintaining vascular homeostasis. Low levels of NO are associated with impaired endothelial function. Asymmetric dimethylarginine (ADMA), an analogue of L-arginine, is a naturally occurring product of metabolism found in the human circulation. Elevated levels of ADMA inhibit NO synthesis while oxidative stress decreases its bioavailability, so impairing endothelial function and promoting atherosclerosis. Several clinical trials report increased oxidative stress and ADMA levels in patients with OSA. This review discusses the role of oxidative stress and increased ADMA levels in cardiovascular disease resulting from OSA.
Collapse
|
425
|
Perez C, Monserrat JP, Chen Y, Cohen SM. Exploring hydrogen peroxide responsive thiazolidinone-based prodrugs. Chem Commun (Camb) 2015; 51:7116-9. [PMID: 25811298 PMCID: PMC4659858 DOI: 10.1039/c4cc09921d] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel approach for developing prodrugs based on masked carboxylic acids is described. Rather than using conventional esterase-based activation, thiazolidinone protecting groups have been identified that can reveal carboxylic acid groups upon activation by hydrogen peroxide. This may prove valuable in the continuing development of prodrug strategies that rely on reactive oxygen species (ROS) as a trigger.
Collapse
Affiliation(s)
- Christian Perez
- Department of Chemistry & Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| | | | | | | |
Collapse
|
426
|
Regulation of thrombosis and vascular function by protein methionine oxidation. Blood 2015; 125:3851-9. [PMID: 25900980 DOI: 10.1182/blood-2015-01-544676] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 04/14/2015] [Indexed: 02/07/2023] Open
Abstract
Redox biology is fundamental to both normal cellular homeostasis and pathological states associated with excessive oxidative stress. Reactive oxygen species function not only as signaling molecules but also as redox regulators of protein function. In the vascular system, redox reactions help regulate key physiologic responses such as cell adhesion, vasoconstriction, platelet aggregation, angiogenesis, inflammatory gene expression, and apoptosis. During pathologic states, altered redox balance can cause vascular cell dysfunction and affect the equilibrium between procoagulant and anticoagulant systems, contributing to thrombotic vascular disease. This review focuses on the emerging role of a specific reversible redox reaction, protein methionine oxidation, in vascular disease and thrombosis. A growing number of cardiovascular and hemostatic proteins are recognized to undergo reversible methionine oxidation, in which methionine residues are posttranslationally oxidized to methionine sulfoxide. Protein methionine oxidation can be reversed by the action of stereospecific enzymes known as methionine sulfoxide reductases. Calcium/calmodulin-dependent protein kinase II is a prototypical methionine redox sensor that responds to changes in the intracellular redox state via reversible oxidation of tandem methionine residues in its regulatory domain. Several other proteins with oxidation-sensitive methionine residues, including apolipoprotein A-I, thrombomodulin, and von Willebrand factor, may contribute to vascular disease and thrombosis.
Collapse
|
427
|
Richard PU, Duskey JT, Stolarov S, Spulber M, Palivan CG. New concepts to fight oxidative stress: nanosized three-dimensional supramolecular antioxidant assemblies. Expert Opin Drug Deliv 2015; 12:1527-45. [DOI: 10.1517/17425247.2015.1036738] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
428
|
Brown DI, Griendling KK. Regulation of signal transduction by reactive oxygen species in the cardiovascular system. Circ Res 2015; 116:531-49. [PMID: 25634975 DOI: 10.1161/circresaha.116.303584] [Citation(s) in RCA: 371] [Impact Index Per Article: 37.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Oxidative stress has long been implicated in cardiovascular disease, but more recently, the role of reactive oxygen species (ROS) in normal physiological signaling has been elucidated. Signaling pathways modulated by ROS are complex and compartmentalized, and we are only beginning to identify the molecular modifications of specific targets. Here, we review the current literature on ROS signaling in the cardiovascular system, focusing on the role of ROS in normal physiology and how dysregulation of signaling circuits contributes to cardiovascular diseases, including atherosclerosis, ischemia-reperfusion injury, cardiomyopathy, and heart failure. In particular, we consider how ROS modulate signaling pathways related to phenotypic modulation, migration and adhesion, contractility, proliferation and hypertrophy, angiogenesis, endoplasmic reticulum stress, apoptosis, and senescence. Understanding the specific targets of ROS may guide the development of the next generation of ROS-modifying therapies to reduce morbidity and mortality associated with oxidative stress.
Collapse
Affiliation(s)
- David I Brown
- From the Division of Cardiology, Department of Medicine, Emory University, Atlanta, GA
| | - Kathy K Griendling
- From the Division of Cardiology, Department of Medicine, Emory University, Atlanta, GA.
| |
Collapse
|
429
|
Doherty KR, Talbert DR, Trusk PB, Moran DM, Shell SA, Bacus S. Structural and functional screening in human induced-pluripotent stem cell-derived cardiomyocytes accurately identifies cardiotoxicity of multiple drug types. Toxicol Appl Pharmacol 2015; 285:51-60. [PMID: 25841593 DOI: 10.1016/j.taap.2015.03.008] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 03/05/2015] [Accepted: 03/06/2015] [Indexed: 12/31/2022]
Abstract
Safety pharmacology studies that evaluate new drug entities for potential cardiac liability remain a critical component of drug development. Current studies have shown that in vitro tests utilizing human induced pluripotent stem cell-derived cardiomyocytes (hiPS-CM) may be beneficial for preclinical risk evaluation. We recently demonstrated that an in vitro multi-parameter test panel assessing overall cardiac health and function could accurately reflect the associated clinical cardiotoxicity of 4 FDA-approved targeted oncology agents using hiPS-CM. The present studies expand upon this initial observation to assess whether this in vitro screen could detect cardiotoxicity across multiple drug classes with known clinical cardiac risks. Thus, 24 drugs were examined for their effect on both structural (viability, reactive oxygen species generation, lipid formation, troponin secretion) and functional (beating activity) endpoints in hiPS-CM. Using this screen, the cardiac-safe drugs showed no effects on any of the tests in our panel. However, 16 of 18 compounds with known clinical cardiac risk showed drug-induced changes in hiPS-CM by at least one method. Moreover, when taking into account the Cmax values, these 16 compounds could be further classified depending on whether the effects were structural, functional, or both. Overall, the most sensitive test assessed cardiac beating using the xCELLigence platform (88.9%) while the structural endpoints provided additional insight into the mechanism of cardiotoxicity for several drugs. These studies show that a multi-parameter approach examining both cardiac cell health and function in hiPS-CM provides a comprehensive and robust assessment that can aid in the determination of potential cardiac liability.
Collapse
Affiliation(s)
| | | | | | | | - Scott A Shell
- Quintiles, 777 Oakmont Lane Suite 100, Westmont, IL 60559,USA
| | - Sarah Bacus
- Quintiles, 777 Oakmont Lane Suite 100, Westmont, IL 60559,USA
| |
Collapse
|
430
|
|
431
|
Masisi K, Diehl-Jones WL, Gordon J, Chapman D, Moghadasian MH, Beta T. Carotenoids of aleurone, germ, and endosperm fractions of barley, corn and wheat differentially inhibit oxidative stress. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:2715-2724. [PMID: 25706713 DOI: 10.1021/jf5058606] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The antioxidant potential of carotenoids from aleurone, germ, and endosperm fractions of barley, corn, and wheat has been evaluated. HPLC analysis confirmed the presence of lutein and zeaxanthin carotenoids (nd-15139 μg/kg) in extracts of cereal grain fractions. The antioxidant properties using 2,2-diphenyl-1-picrylhydrazyl, oxygen radical absorbance capacity, 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) assays revealed significantly higher (P<0.001) antioxidant activity in the germ than in the aleurone and endosperm fractions. Using 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide (MTT) assay, 2,2'azobis (2-amidinopropane)dihydrochloride (AAPH)-induced cell loss was effectively reduced by preincubating Caco-2, HT-29, and FHs 74 Int cells with carotenoid extracts. Moreover, carotenoid extracts reduced (P<0.001) AAPH-induced intracellular oxidation in the cell lines, suggesting antioxidant activity. Of the 84 antioxidant pathway genes included in microarray array analysis (HT-29 cells), the expressions of 28 genes were enhanced (P<0.05). Our findings suggest that carotenoids of germ, aleurone, and endosperm fractions improved antioxidant capacity and thus have the potential to mitigate oxidative stress.
Collapse
Affiliation(s)
| | - William L Diehl-Jones
- ΔManitoba Institute of Child Health, John Buhler Research Centre, Winnipeg, Manitoba, Canada R3E 3P4
| | - Joseph Gordon
- ΔManitoba Institute of Child Health, John Buhler Research Centre, Winnipeg, Manitoba, Canada R3E 3P4
- †Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, Manitoba, Canada R3E 0J9
| | - Donald Chapman
- ΔManitoba Institute of Child Health, John Buhler Research Centre, Winnipeg, Manitoba, Canada R3E 3P4
| | - Mohammed H Moghadasian
- ○Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Research Centre, Winnipeg, Manitoba, Canada R2H 2A6
| | | |
Collapse
|
432
|
Chen J, Leskov IL, Yurdagul A, Thiel B, Kevil CG, Stokes KY, Orr AW. Recruitment of the adaptor protein Nck to PECAM-1 couples oxidative stress to canonical NF-κB signaling and inflammation. Sci Signal 2015; 8:ra20. [PMID: 25714462 DOI: 10.1126/scisignal.2005648] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Oxidative stress stimulates nuclear factor κB (NF-κB) activation and NF-κB-dependent proinflammatory gene expression in endothelial cells during several pathological conditions, including ischemia/reperfusion injury. We found that the Nck family of adaptor proteins linked tyrosine kinase signaling to oxidative stress-induced activation of NF-κB through the classic IκB kinase-dependent pathway. Depletion of Nck prevented oxidative stress induced by exogenous hydrogen peroxide or hypoxia/reoxygenation injury from activating NF-κB in endothelial cells, increasing the abundance of the proinflammatory molecules ICAM-1 (intracellular adhesion molecule-1) and VCAM-1 (vascular cell adhesion molecule-1) and recruiting leukocytes. Nck depletion also attenuated endothelial cell expression of genes encoding proinflammatory factors but not those encoding antioxidants. Nck promoted oxidative stress-induced activation of NF-κB by coupling the tyrosine phosphorylation of PECAM-1 (platelet endothelial cell adhesion molecule-1) to the activation of p21-activated kinase, which mediates oxidative stress-induced NF-κB signaling. Consistent with this mechanism, treatment of mice subjected to ischemia/reperfusion injury in the cremaster muscle with a Nck inhibitory peptide blocked leukocyte adhesion and emigration and the accompanying vascular leak. Together, these data identify Nck as an important mediator of oxidative stress-induced inflammation and a potential therapeutic target for ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Jie Chen
- Department of Pathology, Louisiana State University (LSU) Health Sciences Center Shreveport, Shreveport, LA 71130, USA
| | - Igor L Leskov
- Department of Molecular and Cellular Physiology, LSU Health Sciences Center Shreveport, Shreveport, LA 71130, USA
| | - Arif Yurdagul
- Department Cell Biology and Anatomy, LSU Health Sciences Center Shreveport, Shreveport, LA 71130, USA
| | - Bonnie Thiel
- Department of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Christopher G Kevil
- Department of Pathology, Louisiana State University (LSU) Health Sciences Center Shreveport, Shreveport, LA 71130, USA. Department of Molecular and Cellular Physiology, LSU Health Sciences Center Shreveport, Shreveport, LA 71130, USA. Department Cell Biology and Anatomy, LSU Health Sciences Center Shreveport, Shreveport, LA 71130, USA
| | - Karen Y Stokes
- Department of Molecular and Cellular Physiology, LSU Health Sciences Center Shreveport, Shreveport, LA 71130, USA
| | - A Wayne Orr
- Department of Pathology, Louisiana State University (LSU) Health Sciences Center Shreveport, Shreveport, LA 71130, USA. Department Cell Biology and Anatomy, LSU Health Sciences Center Shreveport, Shreveport, LA 71130, USA.
| |
Collapse
|
433
|
|
434
|
Ali T, Waheed H, Shaheen F, Mahmud M, Javed Q, Murtaza I. Increased endogenous serotonin level in diabetic conditions may lead to cardiac valvulopathy via reactive oxygen species regulation. Biologia (Bratisl) 2015. [DOI: 10.1515/biolog-2015-0030] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
435
|
Patra JK, Kim SH, Baek KH. Antioxidant and Free Radical-Scavenging Potential of Essential Oil from E
nteromorpha linza
L. Prepared by Microwave-Assisted Hydrodistillation. J Food Biochem 2015. [DOI: 10.1111/jfbc.12110] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Jayanta Kumar Patra
- School of Biotechnology; Yeungnam University; Gyeongsan Gyeongbuk 712-749 Korea
| | - Sung Hong Kim
- Analysis Research Division; Daegu Center; Korea Basic Science Institute; Daegu Korea
| | - Kwang-Hyun Baek
- School of Biotechnology; Yeungnam University; Gyeongsan Gyeongbuk 712-749 Korea
| |
Collapse
|
436
|
Phillips DJ, Gibson MI. Towards being genuinely smart: ‘isothermally-responsive’ polymers as versatile, programmable scaffolds for biologically-adaptable materials. Polym Chem 2015. [DOI: 10.1039/c4py01539h] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Thermo-responsive polymers are of broad interest in a range of biomedical and biotechnological fields. This review summaries the use of ‘isothermal’ transitions where thermo-responsive polymers are re-programmed to respond to other stimuli, but with the same outputs, with the aim of making them ‘smarter’.
Collapse
Affiliation(s)
| | - Matthew I. Gibson
- Department of Chemistry
- University of Warwick
- Coventry
- UK
- Warwick Medical School
| |
Collapse
|
437
|
Pannala VR, Dash RK. Mechanistic characterization of the thioredoxin system in the removal of hydrogen peroxide. Free Radic Biol Med 2015; 78:42-55. [PMID: 25451645 PMCID: PMC4280359 DOI: 10.1016/j.freeradbiomed.2014.10.508] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 09/25/2014] [Accepted: 10/17/2014] [Indexed: 01/14/2023]
Abstract
The thioredoxin system, which consists of a family of proteins, including thioredoxin (Trx), peroxiredoxin (Prx), and thioredoxin reductase (TrxR), plays a critical role in the defense against oxidative stress by removing harmful hydrogen peroxide (H2O2). Specifically, Trx donates electrons to Prx to remove H2O2 and then TrxR maintains the reduced Trx concentration with NADPH as the cofactor. Despite a great deal of kinetic information gathered on the removal of H2O2 by the Trx system from various sources/species, a mechanistic understanding of the associated enzymes is still not available. We address this issue by developing a thermodynamically consistent mathematical model of the Trx system which entails mechanistic details and provides quantitative insights into the kinetics of the TrxR and Prx enzymes. Consistent with experimental studies, the model analyses of the available data show that both enzymes operate by a ping-pong mechanism. The proposed mechanism for TrxR, which incorporates substrate inhibition by NADPH and intermediate protonation states, well describes the available data and accurately predicts the bell-shaped behavior of the effect of pH on the TrxR activity. Most importantly, the model also predicts the inhibitory effects of the reaction products (NADP(+) and Trx(SH)2) on the TrxR activity for which suitable experimental data are not available. The model analyses of the available data on the kinetics of Prx from mammalian sources reveal that Prx operates at very low H2O2 concentrations compared to their human parasite counterparts. Furthermore, the model is able to predict the dynamic overoxidation of Prx at high H2O2 concentrations, consistent with the available data. The integrated Prx-TrxR model simulations well describe the NADPH and H2O2 degradation dynamics and also show that the coupling of TrxR- and Prx-dependent reduction of H2O2 allowed ultrasensitive changes in the Trx concentration in response to changes in the TrxR concentration at high Prx concentrations. Thus, the model of this sort is very useful for integration into computational H2O2 degradation models to identify its role in physiological and pathophysiological functions.
Collapse
Affiliation(s)
- Venkat R Pannala
- Biotechnology and Bioengineering Center and Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Ranjan K Dash
- Biotechnology and Bioengineering Center and Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA.
| |
Collapse
|
438
|
Bilirubin, platelet activation and heart disease: a missing link to cardiovascular protection in Gilbert's syndrome? Atherosclerosis 2014; 239:73-84. [PMID: 25576848 DOI: 10.1016/j.atherosclerosis.2014.12.042] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 12/18/2014] [Accepted: 12/19/2014] [Indexed: 02/07/2023]
Abstract
Gilbert's syndrome (GS) is a relatively common condition, inducing a benign, non-hemolytic, unconjugated hyperbilirubinemia. Gilbert's Syndrome is associated with mutation in the Uridine Glucuronosyl Transferase 1A1 (UGT1A1) gene promoter, reducing UGT1A1 activity, which normally conjugates bilirubin allowing its elimination from the blood. Individuals with GS demonstrate mildly elevated plasma antioxidant capacity caused by elevated levels of unconjugated bilirubin (UCB), reduced thiols and glutathione. Interestingly, the development of, and risk of mortality from, cardiovascular disease is remarkably reduced in GS individuals. An explanation for this protection may be explained by bilirubin's ability to inhibit multiple processes that induce platelet hyper-reactivity and thrombosis, thus far under-appreciated in the literature. Reactive oxygen species are produced continuously via metabolic processes and have the potential to oxidatively modify proteins and lipids within cell membranes, which may encourage the development of thrombosis and CVDs. Oxidative stress induced platelet hyper-reactivity significantly increases the risk of thrombosis, which can potentially lead to tissue infarction. Here, we discuss the possible mechanisms by which increased antioxidant status might influence platelet function and link this to cardiovascular protection in GS. In summary, this is the first article to discuss the possible role of bilirubin as an anti-thrombotic agent, which inhibits platelet activation and potentially, organ infarction, which could contribute to the reduced mortality rate in mildly hyperbilirbinemic individuals.
Collapse
|
439
|
Deo SH, Holwerda SW, Keller DM, Fadel PJ. Elevated peripheral blood mononuclear cell-derived superoxide production in healthy young black men. Am J Physiol Heart Circ Physiol 2014; 308:H548-52. [PMID: 25527783 DOI: 10.1152/ajpheart.00784.2014] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Several studies have demonstrated that blacks exhibit elevations in systemic oxidative stress. However, the source(s) and mechanism(s) contributing to the elevation in oxidative stress remain unclear. Given that peripheral blood mononuclear cells (PBMCs) can be a major source of NADPH oxidase-derived superoxide production, we tested the hypothesis that young black men demonstrate greater superoxide production and NADPH oxidase expression in PBMCs compared with whites. PBMCs were freshly isolated from whole blood in young normotensive black (n = 18) and white (n = 16) men. Intracellular superoxide production in PBMCs was measured using dihydroethidium fluorescence, protein expression of NADPH oxidase subunits, gp91(phox) (membranous) and p47(phox) (cytosolic) in PBMCs were assessed using Western blot analysis, and plasma protein carbonyls were measured as a marker of systemic oxidative stress. Black men showed elevated intracellular superoxide production (4.3 ± 0.5 vs. 2.0 ± 0.6 relative fluorescence units; black men vs. white men, P < 0.05), increased protein expression for gp91(phox) and p47(phox) (e.g., p47(phox): 1.1 ± 0.2, black men vs. 0.4 ± 0.1, white men, P < 0.05) in PBMCs and higher circulating protein carbonyl levels (22 ± 4 vs. 14 ± 2 nmol/ml; black men vs. white men, P < 0.05). Interestingly, a positive family history of hypertension in black men did not further enhance PBMC-derived intracellular superoxide production or NADPH oxidase subunit protein expression. These findings indicate that black men exhibit greater resting PBMC-derived superoxide production and an upregulation of the NADPH oxidase pathway with a possible contribution to increases in systemic oxidative stress.
Collapse
Affiliation(s)
- Shekhar H Deo
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri
| | - Seth W Holwerda
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri
| | - David M Keller
- Department of Kinesiology, University of Texas at Arlington, Arlington, Texas
| | - Paul J Fadel
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri; Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri; and
| |
Collapse
|
440
|
Vajapey R, Rini D, Walston J, Abadir P. The impact of age-related dysregulation of the angiotensin system on mitochondrial redox balance. Front Physiol 2014; 5:439. [PMID: 25505418 PMCID: PMC4241834 DOI: 10.3389/fphys.2014.00439] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 10/27/2014] [Indexed: 12/13/2022] Open
Abstract
Aging is associated with the accumulation of various deleterious changes in cells. According to the free radical and mitochondrial theory of aging, mitochondria initiate most of the deleterious changes in aging and govern life span. The failure of mitochondrial reduction-oxidation (redox) homeostasis and the formation of excessive free radicals are tightly linked to dysregulation in the Renin Angiotensin System (RAS). A main rate-controlling step in RAS is renin, an enzyme that hydrolyzes angiotensinogen to generate angiotensin I. Angiotensin I is further converted to Angiotensin II (Ang II) by angiotensin-converting enzyme (ACE). Ang II binds with equal affinity to two main angiotensin receptors—type 1 (AT1R) and type 2 (AT2R). The binding of Ang II to AT1R activates NADPH oxidase, which leads to increased generation of cytoplasmic reactive oxygen species (ROS). This Ang II-AT1R–NADPH-ROS signal triggers the opening of mitochondrial KATP channels and mitochondrial ROS production in a positive feedback loop. Furthermore, RAS has been implicated in the decrease of many of ROS scavenging enzymes, thereby leading to detrimental levels of free radicals in the cell. AT2R is less understood, but evidence supports an anti-oxidative and mitochondria-protective function for AT2R. The overlap between age related changes in RAS and mitochondria, and the consequences of this overlap on age-related diseases are quite complex. RAS dysregulation has been implicated in many pathological conditions due to its contribution to mitochondrial dysfunction. Decreased age-related, renal and cardiac mitochondrial dysfunction was seen in patients treated with angiotensin receptor blockers. The aim of this review is to: (a) report the most recent information elucidating the role of RAS in mitochondrial redox hemostasis and (b) discuss the effect of age-related activation of RAS on generation of free radicals.
Collapse
Affiliation(s)
- Ramya Vajapey
- School of Medicine, Northeast Ohio Medical University Rootstown, OH, USA
| | - David Rini
- Division of Cellular and Molecular Medicine, Art as Applied to Medicine, Johns Hopkins University Baltimore, MD, USA
| | - Jeremy Walston
- Division of Geriatrics Medicine and Gerontology, Department of Medicine, Johns Hopkins University Baltimore, MD, USA
| | - Peter Abadir
- Division of Geriatrics Medicine and Gerontology, Department of Medicine, Johns Hopkins University Baltimore, MD, USA
| |
Collapse
|
441
|
Lee SH, Boire TC, Lee JB, Gupta MK, Zachman AL, Rath R, Sung HJ. ROS-cleavable proline oligomer crosslinking of polycaprolactone for pro-angiogenic host response. J Mater Chem B 2014; 2:7109-7113. [PMID: 25343029 PMCID: PMC4203664 DOI: 10.1039/c4tb01094a] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A reactive oxygen species (ROS)-degradable scaffold is fabricated by crosslinking biocompatible, hydrolytically-degradable poly(ε-caprolactone) (PCL) with a ROS-degradable oligoproline peptide, KP7K. The ROS-mediated degradability triggers favorable host responses of the scaffold including improved cell infiltration and angiogenesis in vivo, indicating its unique advantages for tissue engineering applications.
Collapse
Affiliation(s)
- Sue Hyun Lee
- Department of Biomedical Engineering, Vanderbilt University, Nashville TN 37235, USA. Tel: +1-6153226986
| | - Timothy C. Boire
- Department of Biomedical Engineering, Vanderbilt University, Nashville TN 37235, USA. Tel: +1-6153226986
| | - Jung Bok Lee
- Department of Biomedical Engineering, Vanderbilt University, Nashville TN 37235, USA. Tel: +1-6153226986
| | - Mukesh K. Gupta
- Department of Biomedical Engineering, Vanderbilt University, Nashville TN 37235, USA. Tel: +1-6153226986
| | - Angela L. Zachman
- Department of Biomedical Engineering, Vanderbilt University, Nashville TN 37235, USA. Tel: +1-6153226986
| | - Rutwik Rath
- Department of Biomedical Engineering, Vanderbilt University, Nashville TN 37235, USA. Tel: +1-6153226986
| | - Hak-Joon Sung
- Department of Biomedical Engineering, Vanderbilt University, Nashville TN 37235, USA. Tel: +1-6153226986
| |
Collapse
|
442
|
Reverri EJ, Morrissey BM, Cross CE, Steinberg FM. Inflammation, oxidative stress, and cardiovascular disease risk factors in adults with cystic fibrosis. Free Radic Biol Med 2014; 76:261-77. [PMID: 25172163 DOI: 10.1016/j.freeradbiomed.2014.08.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 07/31/2014] [Accepted: 08/05/2014] [Indexed: 12/21/2022]
Abstract
Cystic fibrosis (CF) represents one of a number of localized lung and non-lung diseases with an intense chronic inflammatory component associated with evidence of systemic oxidative stress. Many of these chronic inflammatory diseases are accompanied by an array of atherosclerotic processes and cardiovascular disease (CVD), another condition strongly related to inflammation and oxidative stress. As a consequence of a dramatic increase in long-lived patients with CF in recent decades, the specter of CVD must be considered in these patients who are now reaching middle age and beyond. Buttressed by recent data documenting that CF patients exhibit evidence of endothelial dysfunction, a recognized precursor of atherosclerosis and CVD, the spectrum of risk factors for CVD in CF is reviewed here. Epidemiological data further characterizing the presence and extent of atherogenic processes in CF patients would seem important to obtain. Such studies should further inform and offer mechanistic insights into how other chronic inflammatory diseases potentiate the processes leading to CVDs.
Collapse
Affiliation(s)
- Elizabeth J Reverri
- Department of Nutrition, University of California Davis, One Shields Avenue, 3135 Meyer Hall, Davis, CA 95616, USA
| | - Brian M Morrissey
- Adult Cystic Fibrosis Clinic and Division of Pulmonary-Critical Care Medicine, University of California Davis Medical Center, 4150 V Street, Sacramento, CA 95817, USA
| | - Carroll E Cross
- Adult Cystic Fibrosis Clinic and Division of Pulmonary-Critical Care Medicine, University of California Davis Medical Center, 4150 V Street, Sacramento, CA 95817, USA.
| | - Francene M Steinberg
- Department of Nutrition, University of California Davis, One Shields Avenue, 3135 Meyer Hall, Davis, CA 95616, USA
| |
Collapse
|
443
|
Xi GL, Liu ZQ. Coumarin moiety can enhance abilities of chalcones to inhibit DNA oxidation and to scavenge radicals. Tetrahedron 2014. [DOI: 10.1016/j.tet.2014.08.063] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
444
|
Short-term use of telmisartan attenuates oxidation and improves Prdx2 expression more than antioxidant β-blockers in the cardiovascular systems of spontaneously hypertensive rats. Hypertens Res 2014; 38:106-15. [DOI: 10.1038/hr.2014.151] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2013] [Revised: 08/21/2014] [Accepted: 08/27/2014] [Indexed: 01/12/2023]
|
445
|
Effects of intracoronary melatonin on ischemia–reperfusion injury in ST-elevation myocardial infarction. Heart Vessels 2014; 31:88-95. [DOI: 10.1007/s00380-014-0589-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 10/03/2014] [Indexed: 12/31/2022]
|
446
|
Rengarajan T, Rajendran P, Nandakumar N, Balasubramanian MP, Nishigaki I. Free radical scavenging and antioxidant activity of D-pinitol against 7, 12 dimethylbenz (a) anthracene induced breast cancer in sprague dawley rats. ASIAN PACIFIC JOURNAL OF TROPICAL DISEASE 2014. [DOI: 10.1016/s2222-1808(14)60592-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
447
|
Xu D, Hu L, Su C, Xia X, Zhang P, Fu J, Wang W, Xu D, Du H, Hu Q, Song E, Song Y. Tetrachloro-p-benzoquinone induces hepatic oxidative damage and inflammatory response, but not apoptosis in mouse: The prevention of curcumin. Toxicol Appl Pharmacol 2014; 280:305-13. [DOI: 10.1016/j.taap.2014.08.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 07/05/2014] [Accepted: 08/01/2014] [Indexed: 01/01/2023]
|
448
|
Ivica J, Wilhelm J. Lipophilic fluorescent products of free radicals. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2014; 158:365-72. [DOI: 10.5507/bp.2012.112] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Accepted: 12/06/2012] [Indexed: 12/26/2022] Open
|
449
|
Narayanasamy SK, Simpson DC, Martin I, Grotewiel M, Gronert S. Paraquat exposure and Sod2 knockdown have dissimilar impacts on the Drosophila melanogaster carbonylated protein proteome. Proteomics 2014; 14:2566-77. [PMID: 25091824 DOI: 10.1002/pmic.201400192] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 07/07/2014] [Accepted: 07/30/2014] [Indexed: 12/15/2022]
Abstract
Exposure to Paraquat and RNA interference knockdown of mitochondrial superoxide dismutase (Sod2) are known to result in significant lifespan reduction, locomotor dysfunction, and mitochondrial degeneration in Drosophila melanogaster. Both perturbations increase the flux of the progenitor ROS, superoxide, but the molecular underpinnings of the resulting phenotypes are poorly understood. Improved understanding of such processes could lead to advances in the treatment of numerous age-related disorders. Superoxide toxicity can act through protein carbonylation. Analysis of carbonylated proteins is attractive since carbonyl groups are not present in the 20 canonical amino acids and are amenable to labeling and enrichment strategies. Here, carbonylated proteins were labeled with biotin hydrazide and enriched on streptavidin beads. On-bead digestion was used to release carbonylated protein peptides, with relative abundance ratios versus controls obtained using the iTRAQ MS-based proteomics approach. Western blotting and biotin quantitation assay approaches were also investigated. By both Western blotting and proteomics, Paraquat exposure, but not Sod2 knockdown, resulted in increased carbonylated protein relative abundance. For Paraquat exposure versus control, the median carbonylated protein relative abundance ratio (1.53) determined using MS-based proteomics was in good agreement with that obtained using a commercial biotin quantitation kit (1.36).
Collapse
|
450
|
Li H, Horke S, Förstermann U. Vascular oxidative stress, nitric oxide and atherosclerosis. Atherosclerosis 2014; 237:208-19. [PMID: 25244505 DOI: 10.1016/j.atherosclerosis.2014.09.001] [Citation(s) in RCA: 460] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 07/30/2014] [Accepted: 09/01/2014] [Indexed: 02/07/2023]
Abstract
In the vascular wall, reactive oxygen species (ROS) are produced by several enzyme systems including NADPH oxidase, xanthine oxidase, uncoupled endothelial nitric oxide synthase (eNOS) and the mitochondrial electron transport chain. On the other hand, the vasculature is protected by antioxidant enzyme systems, including superoxide dismutases, catalase, glutathione peroxidases and paraoxonases, which detoxify ROS. Cardiovascular risk factors such as hypercholesterolemia, hypertension, and diabetes mellitus enhance ROS generation, resulting in oxidative stress. This leads to oxidative modification of lipoproteins and phospholipids, mechanisms that contribute to atherogenesis. In addition, oxidation of tetrahydrobiopterin may cause eNOS uncoupling and thus potentiation of oxidative stress and reduction of eNOS-derived NO, which is a protective principle in the vasculature. This review summarizes the latest advances in the role of ROS-producing enzymes, antioxidative enzymes as well as NO synthases in the initiation and development of atherosclerosis.
Collapse
Affiliation(s)
- Huige Li
- Department of Pharmacology, Johannes Gutenberg University Medical Center, 55131 Mainz, Germany
| | - Sven Horke
- Department of Pharmacology, Johannes Gutenberg University Medical Center, 55131 Mainz, Germany
| | - Ulrich Förstermann
- Department of Pharmacology, Johannes Gutenberg University Medical Center, 55131 Mainz, Germany.
| |
Collapse
|