401
|
Gómez-Cabello D, Callejas S, Benguría A, Moreno A, Alonso J, Palmero I. Regulation of the microRNA processor DGCR8 by the tumor suppressor ING1. Cancer Res 2010; 70:1866-74. [PMID: 20179197 DOI: 10.1158/0008-5472.can-09-2088] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The ING family of tumor suppressor proteins controls several cellular functions relevant to antitumor protection, such as cell cycle control, apoptosis, senescence, or migration. ING proteins are functionally linked to the p53 pathway, and they participate in transcriptional control via the recognition of histone marks and recruitment of protein complexes with chromatin-modifying activity to specific promoters. Here, we have investigated the global effect of ING1 in gene regulation through genome-wide analysis of expression profiles in primary embryonic fibroblasts deficient for the Ing1 locus. We find that Ing1 has a predominant role as transcriptional repressor in this setting, affecting the expression of genes involved in a variety of cellular functions. Within the subset of genes showing differential expression, we have identified DGCR8, a protein involved in the early steps of microRNA biogenesis. We show that ING1 binds to the DGCR8 promoter and controls its transcription through chromatin regulation. We also find that ING1 and DGCR8 can cooperate in restraining proliferation. In summary, this study reveals a novel connection between ING1 and a regulator of microRNA biogenesis and identifies new links between tumor suppressor proteins and the microRNA machinery.
Collapse
|
402
|
Musselman CA, Kutateladze TG. PHD fingers: epigenetic effectors and potential drug targets. Mol Interv 2010; 9:314-23. [PMID: 20048137 DOI: 10.1124/mi.9.6.7] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The plant homeodomain (PHD) finger is found in many chromatin-remodeling proteins. This small approximately 65-residue domain functions as an "effector" that binds specific epigenetic marks on histone tails, recruiting transcription factors and nucleosome-associated complexes to chromatin. Mutations in the PHD finger or deletion of this domain are linked to a number of human diseases, including cancer, mental retardation, and immunodeficiency. PHD finger-containing proteins may become valuable diagnostic markers and targets to prevent and treat these disorders. In this review, we highlight the progress recently made in understanding the functional significance of chromatin targeting by mammalian PHD fingers, detail the molecular mechanisms and structural features of "histone code" recognition, and discuss the therapeutic potential of PHD fingers.
Collapse
|
403
|
Smith KT, Martin-Brown SA, Florens L, Washburn MP, Workman JL. Deacetylase inhibitors dissociate the histone-targeting ING2 subunit from the Sin3 complex. CHEMISTRY & BIOLOGY 2010; 17:65-74. [PMID: 20142042 PMCID: PMC2819981 DOI: 10.1016/j.chembiol.2009.12.010] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/08/2009] [Revised: 12/08/2009] [Accepted: 12/15/2009] [Indexed: 02/08/2023]
Abstract
Histone deacetylase (HDAC) inhibitors are in clinical development for several diseases, including cancers and neurodegenerative disorders. HDACs 1 and 2 are among the targets of these inhibitors and are part of multisubunit protein complexes. HDAC inhibitors (HDACis) block the activity of HDACs by chelating a zinc molecule in their catalytic sites. It is not known if the inhibitors have any additional functional effects on the multisubunit HDAC complexes. Here, we find that suberoylanilide hydroxamic acid (SAHA), the first FDA-approved HDACi for cancer, causes the dissociation of the PHD-finger-containing ING2 subunit from the Sin3 deacetylase complex. Loss of ING2 disrupts the in vivo binding of the Sin3 complex to the p21 promoter, an important target gene for cell growth inhibition by SAHA. Our findings reveal a molecular mechanism by which HDAC inhibitors disrupt deacetylase function.
Collapse
Affiliation(s)
- Karen T. Smith
- Stowers Institute for Medical Research, Kansas City, MO 64110
| | | | | | - Michael P. Washburn
- Stowers Institute for Medical Research, Kansas City, MO 64110
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160
| | | |
Collapse
|
404
|
GCN5 is a positive regulator of origins of DNA replication in Saccharomyces cerevisiae. PLoS One 2010; 5:e8964. [PMID: 20126453 PMCID: PMC2813283 DOI: 10.1371/journal.pone.0008964] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2009] [Accepted: 01/05/2010] [Indexed: 12/31/2022] Open
Abstract
GCN5 encodes one of the non-essential Histone Acetyl Transferases in Saccharomyces cerevisiae. Extensive evidence has indicated that GCN5 is a key regulator of gene expression and could also be involved in transcriptional elongation, DNA repair and centromere maintenance. Here we show that the deletion of GCN5 decreases the stability of mini-chromosomes; that the tethering of Gcn5p to a crippled origin of replication stimulates its activity; that high dosage of GCN5 suppresses conditional phenotypes caused by mutant alleles of bona fide replication factors, orc2-1, orc5-1 and mcm5-461. Furthermore, Gcn5p physically associates with origins of DNA replication, while its deletion leads to localized condensation of chromatin at origins. Finally, Deltagcn5 cells display a deficiency in the assembly of pre-replicative complexes. We propose that GCN5 acts as a positive regulator of DNA replication by counteracting the inhibitory effect of Histone Deacetylases.
Collapse
|
405
|
Gruber HE, Hoelscher GL, Ingram JA, Zinchenko N, Hanley EN. Senescent vs. non-senescent cells in the human annulus in vivo: cell harvest with laser capture microdissection and gene expression studies with microarray analysis. BMC Biotechnol 2010; 10:5. [PMID: 20109216 PMCID: PMC2828399 DOI: 10.1186/1472-6750-10-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2009] [Accepted: 01/28/2010] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Senescent cells are well-recognized in the aging/degenerating human disc. Senescent cells are viable, cannot divide, remain metabolically active and accumulate within the disc over time. Molecular analysis of senescent cells in tissue offers a special challenge since there are no cell surface markers for senescence which would let one use fluorescence-activated cell sorting as a method for separating out senescent cells. METHODS We employed a novel laser capture microdissection (LCM) design to selectively harvest senescent and non-senescent annulus cells in paraffin-embedded tissue, and compared their gene expression with microarray analysis. LCM was used to separately harvest senescent and non-senescent cells from 11 human annulus specimens. RESULTS Microarray analysis revealed significant differences in expression levels in senescent cells vs non-senescent cells: 292 genes were upregulated, and 321 downregulated. Genes with established relationships to senescence were found to be significantly upregulated in senescent cells vs. non-senescent cells: p38 (MPAK14), RB-Associated KRAB zinc finger, Discoidin, CUB and LCCL domain, growth arrest and DNA-damage inducible beta, p28ING5, sphingosine-1-phosphate receptor 2 and somatostatin receptor 3; cyclin-dependent kinase 8 showed significant downregulation in senescent cells. Nitric oxidase synthase 1, and heat shock 70 kDa protein 6, both of which were significantly down-regulated in senescent cells, also showed significant changes. Additional genes related to cytokines, cell proliferation, and other processes were also identified. CONCLUSIONS Our LCM-microarray analyses identified a set of genes associated with senescence which were significantly upregulated in senescent vs non-senescent cells in the human annulus. These genes include p38 MAP kinase, discoidin, inhibitor of growth family member 5, and growth arrest and DNA-damage-inducible beta. Other genes, including genes associated with cell proliferation, extracellular matrix formation, cell signaling and other cell functions also showed significant modulation in senescent vs non-senescent cells. The aging/degenerating disc undergoes a well-recognized loss of cells; understanding senescent cells is important since their presence further reduces the disc's ability to generate new cells to replace those lost to necrosis or apoptosis.
Collapse
Affiliation(s)
- Helen E Gruber
- Department of Orthopaedic Surgery, Carolinas Medical Center, Charlotte, NC, USA.
| | | | | | | | | |
Collapse
|
406
|
|
407
|
Abstract
The state of modification of histone tails plays an important role in defining the accessibility of DNA for the transcription machinery and other regulatory factors. It has been extensively demonstrated that the posttranslational modifications of the histone tails, as well as modifications within the nucleosome domain, regulate the level of chromatin condensation and are therefore important in regulating gene expression and other nuclear events. Together with DNA methylation, they constitute the most relevant level of epigenetic regulation of cell functions. Histone modifications are carried out by a multipart network of macromolecular complexes endowed with enzymatic, regulatory, and recognition domains. Not surprisingly, epigenetic alterations caused by aberrant activity of these enzymes are linked to the establishment and maintenance of the cancer phenotype and, importantly, are potentially reversible, since they do not involve genetic mutations in the underlying DNA sequence. Histone modification therapy of cancer is based on the generation of drugs able to interfere with the activity of enzymes involved in histone modifications: new drugs have recently been approved for use in cancer patients, clinically validating this strategy. Unfortunately, however, clinical responses are not always consistent and do not parallel closely the results observed in preclinical models. Here, we present a brief overview of the deregulation of chromatin-associated enzymatic activities in cancer cells and of the main results achieved by histone modification therapeutic approaches.
Collapse
Affiliation(s)
- Chiara Biancotto
- Department of Experimental Oncology, European Institute of Oncology, Via Adamello 16, Milan, Italy
| | | | | |
Collapse
|
408
|
Voss AK, Collin C, Dixon MP, Thomas T. Moz and retinoic acid coordinately regulate H3K9 acetylation, Hox gene expression, and segment identity. Dev Cell 2009; 17:674-86. [PMID: 19922872 DOI: 10.1016/j.devcel.2009.10.006] [Citation(s) in RCA: 137] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2009] [Revised: 09/09/2009] [Accepted: 10/14/2009] [Indexed: 12/19/2022]
Abstract
We report that embryos deficient in the histone acetyltransferase Moz (Myst3/Kat6a) show histone H3 lysine 9 (H3K9) hypoacetylation, corresponding H3K9 hypermethylation, and reduced transcription at Hox gene loci. Consistent with an observed caudal shift in Hox gene expression, segment identity is shifted anteriorly, such that Moz-deficient mice show a profound homeotic transformation of the axial skeleton and the nervous system. Intriguingly, histone acetylation defects are relatively specific to H3K9 at Hox loci, as neither Hox H3K14 acetylation nor bulk H3K9 acetylation levels throughout the genome are strongly affected; H4K16 acetylation actually increases in the absence of Moz. H3K9 hypoacetylation, Hox gene repression, and the homeotic transformation caused by lack of Moz are all reversed by treatment with retinoic acid (RA). In conclusion, our data show that Moz regulates H3K9 acetylation at Hox gene loci and that RA can act independently of Moz to establish specific Hox gene expression boundaries.
Collapse
Affiliation(s)
- Anne K Voss
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia.
| | | | | | | |
Collapse
|
409
|
Voss AK, Thomas T. MYST family histone acetyltransferases take center stage in stem cells and development. Bioessays 2009; 31:1050-61. [PMID: 19722182 DOI: 10.1002/bies.200900051] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Acetylation of histones is an essential element regulating chromatin structure and transcription. MYST (Moz, Ybf2/Sas3, Sas2, Tip60) proteins form the largest family of histone acetyltransferases and are present in all eukaryotes. Surprisingly, until recently this protein family was poorly studied. However, in the last few years there has been a substantial increase in interest in the MYST proteins and a number of key studies have shown that these chromatin modifiers are required for a diverse range of cellular processes, both in health and disease. Translocations affecting MYST histone acetyltransferases can lead to leukemia and solid tumors. Some members of the MYST family are required for the development and self-renewal of stem cell populations; other members are essential for the prevention of inappropriate heterochromatin spreading and for the maintenance of adequate levels of gene expression. In this review we discuss the function of MYST proteins in vivo.
Collapse
Affiliation(s)
- Anne K Voss
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia.
| | | |
Collapse
|
410
|
Wang P, Lin C, Smith ER, Guo H, Sanderson BW, Wu M, Gogol M, Alexander T, Seidel C, Wiedemann LM, Ge K, Krumlauf R, Shilatifard A. Global analysis of H3K4 methylation defines MLL family member targets and points to a role for MLL1-mediated H3K4 methylation in the regulation of transcriptional initiation by RNA polymerase II. Mol Cell Biol 2009; 29:6074-85. [PMID: 19703992 PMCID: PMC2772563 DOI: 10.1128/mcb.00924-09] [Citation(s) in RCA: 291] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Revised: 08/06/2009] [Accepted: 08/17/2009] [Indexed: 11/20/2022] Open
Abstract
A common landmark of activated genes is the presence of trimethylation on lysine 4 of histone H3 (H3K4) at promoter regions. Set1/COMPASS was the founding member and is the only H3K4 methylase in Saccharomyces cerevisiae; however, in mammals, at least six H3K4 methylases, Set1A and Set1B and MLL1 to MLL4, are found in COMPASS-like complexes capable of methylating H3K4. To gain further insight into the different roles and functional targets for the H3K4 methylases, we have undertaken a genome-wide analysis of H3K4 methylation patterns in wild-type Mll1(+/+) and Mll1(-)(/)(-) mouse embryonic fibroblasts (MEFs). We found that Mll1 is required for the H3K4 trimethylation of less than 5% of promoters carrying this modification. Many of these genes, which include developmental regulators such as Hox genes, show decreased levels of RNA polymerase II recruitment and expression concomitant with the loss of H3K4 methylation. Although Mll1 is only required for the methylation of a subset of Hox genes, menin, a component of the Mll1 and Mll2 complexes, is required for the overwhelming majority of H3K4 methylation at Hox loci. However, the loss of MLL3/MLL4 and/or the Set1 complexes has little to no effect on the H3K4 methylation of Hox loci or their expression levels in these MEFs. Together these data provide insight into the redundancy and specialization of COMPASS-like complexes in mammals and provide evidence for a possible role for Mll1-mediated H3K4 methylation in the regulation of transcriptional initiation.
Collapse
Affiliation(s)
- Pengfei Wang
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, Missouri 64110, Nuclear Receptor Biology Section, Clinical Endocrinology Branch, NIDDK, National Institutes of Health, Bethesda, Maryland 20892, Department of Pathology and Laboratory Medicine, Kansas University Medical School, Kansas City, Kansas, Department of Anatomy and Cell Biology, Kansas University Medical School, Kansas City, Kansas
| | - Chengqi Lin
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, Missouri 64110, Nuclear Receptor Biology Section, Clinical Endocrinology Branch, NIDDK, National Institutes of Health, Bethesda, Maryland 20892, Department of Pathology and Laboratory Medicine, Kansas University Medical School, Kansas City, Kansas, Department of Anatomy and Cell Biology, Kansas University Medical School, Kansas City, Kansas
| | - Edwin R. Smith
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, Missouri 64110, Nuclear Receptor Biology Section, Clinical Endocrinology Branch, NIDDK, National Institutes of Health, Bethesda, Maryland 20892, Department of Pathology and Laboratory Medicine, Kansas University Medical School, Kansas City, Kansas, Department of Anatomy and Cell Biology, Kansas University Medical School, Kansas City, Kansas
| | - Hong Guo
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, Missouri 64110, Nuclear Receptor Biology Section, Clinical Endocrinology Branch, NIDDK, National Institutes of Health, Bethesda, Maryland 20892, Department of Pathology and Laboratory Medicine, Kansas University Medical School, Kansas City, Kansas, Department of Anatomy and Cell Biology, Kansas University Medical School, Kansas City, Kansas
| | - Brian W. Sanderson
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, Missouri 64110, Nuclear Receptor Biology Section, Clinical Endocrinology Branch, NIDDK, National Institutes of Health, Bethesda, Maryland 20892, Department of Pathology and Laboratory Medicine, Kansas University Medical School, Kansas City, Kansas, Department of Anatomy and Cell Biology, Kansas University Medical School, Kansas City, Kansas
| | - Min Wu
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, Missouri 64110, Nuclear Receptor Biology Section, Clinical Endocrinology Branch, NIDDK, National Institutes of Health, Bethesda, Maryland 20892, Department of Pathology and Laboratory Medicine, Kansas University Medical School, Kansas City, Kansas, Department of Anatomy and Cell Biology, Kansas University Medical School, Kansas City, Kansas
| | - Madelaine Gogol
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, Missouri 64110, Nuclear Receptor Biology Section, Clinical Endocrinology Branch, NIDDK, National Institutes of Health, Bethesda, Maryland 20892, Department of Pathology and Laboratory Medicine, Kansas University Medical School, Kansas City, Kansas, Department of Anatomy and Cell Biology, Kansas University Medical School, Kansas City, Kansas
| | - Tara Alexander
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, Missouri 64110, Nuclear Receptor Biology Section, Clinical Endocrinology Branch, NIDDK, National Institutes of Health, Bethesda, Maryland 20892, Department of Pathology and Laboratory Medicine, Kansas University Medical School, Kansas City, Kansas, Department of Anatomy and Cell Biology, Kansas University Medical School, Kansas City, Kansas
| | - Christopher Seidel
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, Missouri 64110, Nuclear Receptor Biology Section, Clinical Endocrinology Branch, NIDDK, National Institutes of Health, Bethesda, Maryland 20892, Department of Pathology and Laboratory Medicine, Kansas University Medical School, Kansas City, Kansas, Department of Anatomy and Cell Biology, Kansas University Medical School, Kansas City, Kansas
| | - Leanne M. Wiedemann
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, Missouri 64110, Nuclear Receptor Biology Section, Clinical Endocrinology Branch, NIDDK, National Institutes of Health, Bethesda, Maryland 20892, Department of Pathology and Laboratory Medicine, Kansas University Medical School, Kansas City, Kansas, Department of Anatomy and Cell Biology, Kansas University Medical School, Kansas City, Kansas
| | - Kai Ge
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, Missouri 64110, Nuclear Receptor Biology Section, Clinical Endocrinology Branch, NIDDK, National Institutes of Health, Bethesda, Maryland 20892, Department of Pathology and Laboratory Medicine, Kansas University Medical School, Kansas City, Kansas, Department of Anatomy and Cell Biology, Kansas University Medical School, Kansas City, Kansas
| | - Robb Krumlauf
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, Missouri 64110, Nuclear Receptor Biology Section, Clinical Endocrinology Branch, NIDDK, National Institutes of Health, Bethesda, Maryland 20892, Department of Pathology and Laboratory Medicine, Kansas University Medical School, Kansas City, Kansas, Department of Anatomy and Cell Biology, Kansas University Medical School, Kansas City, Kansas
| | - Ali Shilatifard
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, Missouri 64110, Nuclear Receptor Biology Section, Clinical Endocrinology Branch, NIDDK, National Institutes of Health, Bethesda, Maryland 20892, Department of Pathology and Laboratory Medicine, Kansas University Medical School, Kansas City, Kansas, Department of Anatomy and Cell Biology, Kansas University Medical School, Kansas City, Kansas
| |
Collapse
|
411
|
Larrieu D, Ythier D, Binet R, Brambilla C, Brambilla E, Sengupta S, Pedeux R. ING2 controls the progression of DNA replication forks to maintain genome stability. EMBO Rep 2009; 10:1168-74. [PMID: 19730436 PMCID: PMC2759735 DOI: 10.1038/embor.2009.180] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2009] [Revised: 07/01/2009] [Accepted: 07/02/2009] [Indexed: 11/09/2022] Open
Abstract
Inhibitor of growth 2 (ING2) is a candidate tumour suppressor gene the expression of which is frequently lost in tumours. Here, we identified a new function for ING2 in the control of DNA replication and in the maintenance of genome stability. Global replication rate was markedly reduced during normal S-phase in small interfering RNA (siRNA) ING2 cells, as seen in a DNA fibre spreading experiment. Accordingly, we found that ING2 interacts with proliferating cell nuclear antigen and regulates its amount to the chromatin fraction, allowing normal replication progression and normal cell proliferation. Deregulation of DNA replication has been previously associated with genome instability. Hence, a high proportion of siRNA ING2 cells presented endoreduplication of their genome as well as an increased frequency of sister chromatid exchange. Thus, we propose for the first time that ING2 might function as a tumour suppressor gene by directly maintaining DNA integrity.
Collapse
Affiliation(s)
- Delphine Larrieu
- Molecular Bases of Lung Cancer Progression, INSERM U823, Institut Albert Bonniot, Université Joseph Fourier, Grenoble, 38706 Cedex, France
| | - Damien Ythier
- Molecular Bases of Lung Cancer Progression, INSERM U823, Institut Albert Bonniot, Université Joseph Fourier, Grenoble, 38706 Cedex, France
| | - Romuald Binet
- Molecular Bases of Lung Cancer Progression, INSERM U823, Institut Albert Bonniot, Université Joseph Fourier, Grenoble, 38706 Cedex, France
| | - Christian Brambilla
- Molecular Bases of Lung Cancer Progression, INSERM U823, Institut Albert Bonniot, Université Joseph Fourier, Grenoble, 38706 Cedex, France
| | - Elisabeth Brambilla
- Molecular Bases of Lung Cancer Progression, INSERM U823, Institut Albert Bonniot, Université Joseph Fourier, Grenoble, 38706 Cedex, France
| | - Sagar Sengupta
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Rémy Pedeux
- Molecular Bases of Lung Cancer Progression, INSERM U823, Institut Albert Bonniot, Université Joseph Fourier, Grenoble, 38706 Cedex, France
- INSERM U917, IFR140, Faculté de Médecine, Université de Rennes 1, 35043 Rennes Cedex, France
| |
Collapse
|
412
|
Sun G, Jin S, Baskaran R. MMR/c-Abl-dependent activation of ING2/p73alpha signaling regulates the cell death response to N-methyl-N'-nitro-N-nitrosoguanidine. Exp Cell Res 2009; 315:3163-75. [PMID: 19766113 DOI: 10.1016/j.yexcr.2009.09.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2009] [Revised: 09/10/2009] [Accepted: 09/10/2009] [Indexed: 01/09/2023]
Abstract
Agents inducing O(6)-methylguanine (O(6)MeG) in DNA such as N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) are cytotoxic and a deficiency in mismatch repair (MMR) results in lack of sensitivity to this genotoxin (termed alkylation tolerance). Here, we show that ING2, a member of the inhibitor of growth family, is required for cell death induced by MNNG. We further observe that MNNG treatment increases cellular protein levels of ING2 that is dependent on intact MMR function and that MNNG-induced ING2 localizes and associates with p73alpha in the nucleus. Suppression of ING2 by short hairpin RNA (shRNA) in MMR-proficient colorectal cancer cells decreased its sensitivity to MNNG and, in addition, abrogated MNNG-induced stabilization and acetylation of p73alpha. Interestingly, suppression of p73alpha had a greater impact on MNNG-induced cell death than ING2 leading us to conclude that ING2 regulates the cell death response, in part, through p73alpha. Inhibition of c-Abl by STI571 or suppression of c-Abl expression by shRNA blocked ING2 induction and p73alpha acetylation induced by this alkylator. Similarly, suppression of MMR (MLH1) by shRNA abrogated ING2 induction/p73alpha acetylation. Taken together, these results demonstrate that MLH1/c-Abl-dependent activation of ING2>p73alpha signaling regulates cell death triggered by MNNG and further suggests that dysregulation of this event may, in part, be responsible for alkylation tolerance observed in MMR compromised cells.
Collapse
Affiliation(s)
- Guoming Sun
- Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, E1205 Biomedical Science Tower, Pittsburgh, PA 15261, USA
| | | | | |
Collapse
|
413
|
Kumamoto K, Fujita K, Kurotani R, Saito M, Unoki M, Hagiwara N, Shiga H, Bowman ED, Yanaihara N, Okamura S, Nagashima M, Miyamoto K, Takenoshita S, Yokota J, Harris CC. ING2 is upregulated in colon cancer and increases invasion by enhanced MMP13 expression. Int J Cancer 2009; 125:1306-15. [PMID: 19437536 PMCID: PMC2790157 DOI: 10.1002/ijc.24437] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Inhibitor of growth 2 (ING2) is associated with chromatin remodeling and regulation of gene expression by binding to a methylated histone H3K4 residue and recruiting HDAC complexes to the region. The aim of our study is to investigate the regulation of ING2 expression and the clinical significance of upregulated ING2 in colon cancer. Here, we show that the ING2 mRNA level in colon cancer tissue increased to more than twice than that in normal mucosa in the 45% of colorectal cancer cases that we examined. A putative NF-kappaB binding site was found in the ING2 promoter region. We confirmed that NF-kappaB could bind to the ING2 promoter by EMSA and luciferase assays. Subsequent microarray analyses revealed that ING2 upregulates expression of matrix metalloproteinase 13 (MMP13), which enhances cancer invasion and metastasis. ING2 regulation of MMP13 expression was confirmed in both ING2 overexpression and knock down experiments. MMP13 expression was further induced by coexpression of ING2 with HDAC1 or with mSin3A, suggesting that the ING2-HDAC1-mSin3A complex members regulates expression of MMP13. In vitro invasion assay was performed to determine functional significance of ING2 upregulation. ING2 overexpressed cells exhibited greater invasive potential. Taken together, upregulation of ING2 was associated with colon cancer and MMP13-dependent cellular invasion, indicating that ING2 expression might be involved with cancer invasion and metastasis.
Collapse
Affiliation(s)
- Kensuke Kumamoto
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
- Second Department of Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Kaori Fujita
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Reiko Kurotani
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Motonobu Saito
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
- Second Department of Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Motoko Unoki
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
- Laboratory for Biomarker, The Institute of Physical and Chemical Research, RIKEN, Tokyo, Japan
| | - Nobutoshi Hagiwara
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Hideaki Shiga
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Elise D. Bowman
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Nozomu Yanaihara
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Shu Okamura
- Department of Surgery, Kansai Rosai Hospital, Hyogo, Japan
| | - Makoto Nagashima
- Department of Surgery, Toho University Sakura Medical Center, Chiba, Japan
| | - Kotaro Miyamoto
- Second Department of Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Seiichi Takenoshita
- Second Department of Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Jun Yokota
- Biology Division, National Cancer Center Research Institute, Tokyo, Japan
| | - Curtis C. Harris
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
414
|
Li M, Jin Y, Sun WJ, Yu Y, Bai J, Tong DD, Qi JP, Du JR, Geng JS, Huang Q, Huang XY, Huang Y, Han FF, Meng XN, Rosales JL, Lee KY, Fu SB. Reduced expression and novel splice variants of ING4 in human gastric adenocarcinoma. J Pathol 2009; 219:87-95. [PMID: 19479822 PMCID: PMC3855470 DOI: 10.1002/path.2571] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2008] [Accepted: 04/16/2009] [Indexed: 01/06/2023]
Abstract
ING4, a new member of the ING (inhibitor of growth) family of tumour suppressor genes, has been found to be deleted or down-regulated in gliomas, breast tumours, and head and neck squamous cell carcinomas. The goal of the present study was to investigate whether the expression and alternative splicing of ING4 transcripts are involved in the initiation and progression of stomach adenocarcinoma. ING4 mRNA and protein expression was examined in gastric adenocarcinoma tissues and human gastric adenocarcinoma cell lines by RT-PCR, real-time RT-PCR, tissue microarray immunohistochemistry, and western blot analysis. Alterations in ING4 transcripts were determined through sequence analysis of ING4 cDNA. Our data showed that ING4 mRNA and protein were dramatically reduced in stomach adenocarcinoma cell lines and tissues, and significantly less in female than in male patients. We also found that reduced ING4 mRNA expression correlated with the stage of the tumour. Interestingly, by sequence analysis, we discovered five novel aberrantly spliced variant forms of ING4_v1 and ING4_v2. These variants cause a codon frame-shift and, eventually, deletion of the NLS or PHD domain contributing to the mislocalization of p53 and/or HAT/HDAC complexes and, subsequently, altered gene expression in gastric adenocarcinoma. These results suggest that attenuated and aberrant ING4 expression may be involved in the initiation and progression of stomach adenocarcinoma.
Collapse
Affiliation(s)
- Ming Li
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - Yan Jin
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - Wen-jing Sun
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - Yang Yu
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - Jing Bai
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - Dan-dan Tong
- Department of Pathology, Harbin Medical University, Harbin, China
| | - Ji-ping Qi
- Department of Pathology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jin-rong Du
- Department of Pathology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jing-shu Geng
- Department of Pathology, The Third Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Qi Huang
- Morphology Center, Harbin Medical University, Harbin, China
| | - Xiao-yi Huang
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - Yun Huang
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - Fei-fei Han
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - Xiang-ning Meng
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - Jesusa L Rosales
- Department of Biochemistry and Molecular Biology, The University of Calgary, Calgary, Canada
| | - Ki-Young Lee
- Department of Cell Biology and Anatomy, The University of Calgary, Calgary, Canada
| | - Song-bin Fu
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
- Bio-pharmaceutical Key Laboratory of Heilongjiang Province, Harbin, China
| |
Collapse
|
415
|
Muntean AG, Hess JL. Epigenetic dysregulation in cancer. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 175:1353-61. [PMID: 19717641 DOI: 10.2353/ajpath.2009.081142] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
One of the great paradoxes in cellular differentiation is how cells with identical DNA sequences differentiate into so many different cell types. The mechanisms underlying this process involve epigenetic regulation mediated by alterations in DNA methylation, histone posttranslational modifications, and nucleosome remodeling. It is becoming increasingly clear that disruption of the "epigenome" as a result of alterations in epigenetic regulators is a fundamental mechanism in cancer. This has major implications for the future of both molecular diagnostics as well as cancer chemotherapy.
Collapse
Affiliation(s)
- Andrew G Muntean
- Department of Pathology, University of Michigan Medical School, Ann Arbor MI 48109, USA
| | | |
Collapse
|
416
|
Howell PM, Liu S, Ren S, Behlen C, Fodstad O, Riker AI. Epigenetics in human melanoma. Cancer Control 2009; 16:200-18. [PMID: 19556960 DOI: 10.1177/107327480901600302] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Recent technological advances have allowed us to examine the human genome in greater detail than ever before. This has opened the door to an improved understanding of the gene expression patterns involved with cancer. METHODS A review of the literature was performed to determine the role of epigenetic modifications in human melanoma. We focused the search on histone deacetylation, methylation of gene promoter regions, demethylation of CpG islands, and the role of microRNA. We examined the relationship between human melanoma epigenetics and their importance in tumorigenesis, tumor progression, and inhibition of metastasis. The development and clinical application of select pharmacologic agents are also discussed. RESULTS We identified several articles that have extensively studied the role of epigenetics in melanoma, further elucidating the complex processes involved in gene regulation and expression. Several new agents directly affect epigenetic mechanisms in melanoma, with divergent affects on the metastatic potential of melanoma. CONCLUSIONS Epigenetic mechanisms have emerged as having a central role in gene regulation of human melanoma, including the identification of several putative tumor suppressor genes and oncogenes. Further research will focus on the development of novel therapeutics that will likely target and alter such epigenetic changes.
Collapse
Affiliation(s)
- Paul M Howell
- Basic and Translational Research Department, University of South Alabama, Mitchell Cancer Institute, Mobile, Alabama, USA
| | | | | | | | | | | |
Collapse
|
417
|
Selvi RB, Kundu TK. Reversible acetylation of chromatin: implication in regulation of gene expression, disease and therapeutics. Biotechnol J 2009; 4:375-90. [PMID: 19296442 DOI: 10.1002/biot.200900032] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The eukaryotic genome is a highly dynamic nucleoprotein complex that is comprised of DNA, histones, nonhistone proteins and RNA, and is termed as chromatin. The dynamic of the chromatin is responsible for the regulation of all the DNA-templated phenomena in the cell. Several factors, including the nonhistone chromatin components, ATP-dependent remodeling factors and the chromatin-modifying enzymes, mediate the combinatorial post-translational modifications that control the chromatin fluidity and, thereby, the cellular functions. Among these modifications, reversible acetylation plays a central role in the highly orchestrated network. The enzymes responsible for the reversible acetylation, the histone acetyltransferases (HATs) and histone deacetylases (HDACs), not only act on histone substrates but also on nonhistone proteins. Dysfunction of the HATs/HDACs is associated with various diseases like cancer, diabetes, asthma, cardiac hypertrophy, retroviral pathogenesis and neurodegenerative disorders. Therefore, modulation of these enzymes is being considered as an important therapeutic strategy. Although substantial progress has been made in the area of HDAC inhibitors, we have focused this review on the HATs and their small-molecule modulators in the context of disease and therapeutics. Recent discoveries from different groups have established the involvement of HAT function in various diseases. Furthermore, several new classes of HAT modulators have been identified and their biological activities have also been reported. The scaffold of these small molecules can be used for the design and synthesis of better and efficient modulators with superior therapeutic efficacy.
Collapse
Affiliation(s)
- Ruthrotha B Selvi
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore, India
| | | |
Collapse
|
418
|
Unoki M, Kumamoto K, Takenoshita S, Harris CC. Reviewing the current classification of inhibitor of growth family proteins. Cancer Sci 2009; 100:1173-9. [PMID: 19432890 PMCID: PMC2790152 DOI: 10.1111/j.1349-7006.2009.01183.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2009] [Revised: 03/28/2009] [Accepted: 03/30/2009] [Indexed: 01/13/2023] Open
Abstract
Inhibitor of growth (ING) family proteins have been defined as candidate tumor suppressors for more than a decade. Recent emerging results using siRNA and knockout mice are expanding the previous understanding of this protein family. The results of ING1 knockout mouse experiments revealed that ING1 has a protective effect on apoptosis. Our recent results showed that ING2 is overexpressed in colorectal cancer, and induces colon cancer cell invasion through an MMP13-dependent pathway. Knockdown of ING2 by siRNA induces premature senescence in normal human fibroblast cells, and apoptosis or cell cycle arrest in various adherent cancer cells. Taken together, these results suggest that ING2 may also have roles in cancer progression and/or malignant transformation under some conditions. Additionally, knockdown of ING4 and ING5 by siRNA shows an inhibitory effect on the transition from G(2)/M to G(1) phase and DNA replication, respectively, suggesting that these proteins may play roles during cell proliferation in some context. ING family proteins may play dual roles, similar to transforming growth factor-beta, which has tumor suppressor-like functions in normal epithelium and also oncogenic functions in invasive metastatic cancers. In the present article, we briefly review ING history and propose a possible interpretation of discrepancies between past and recent data.
Collapse
Affiliation(s)
- Motoko Unoki
- Laboratory for Biomarker, The Institute of Physical and Chemical Research, RIKEN, Tokyo, Japan
| | | | | | | |
Collapse
|
419
|
Wang GG, Song J, Wang Z, Dormann HL, Casadio F, Li H, Luo JL, Patel DJ, Allis CD. Haematopoietic malignancies caused by dysregulation of a chromatin-binding PHD finger. Nature 2009; 459:847-51. [PMID: 19430464 PMCID: PMC2697266 DOI: 10.1038/nature08036] [Citation(s) in RCA: 340] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2008] [Revised: 06/11/2009] [Accepted: 04/02/2009] [Indexed: 01/26/2023]
Abstract
Histone H3 lysine 4 methylation (H3K4me) has been proposed as a critical component in regulating gene expression, epigenetic states, and cellular identities1. The biological meaning of H3K4me is interpreted by conserved modules including plant homeodomain (PHD) fingers that recognize varied H3K4me states. The dysregulation of PHD fingers has been implicated in several human diseases, including cancers and immune or neurological disorders. Here we report that fusing an H3K4-trimethylation (H3K4me3)-binding PHD finger, such as the carboxy-terminal PHD finger of PHF23 or JARID1A (also known as KDM5A or RBBP2), to a common fusion partner nucleoporin-98 (NUP98) as identified in human leukaemias, generated potent oncoproteins that arrested haematopoietic differentiation and induced acute myeloid leukaemia in murine models. In these processes, a PHD finger that specifically recognizes H3K4me3/2 marks was essential for leukaemogenesis. Mutations in PHD fingers that abrogated H3K4me3 binding also abolished leukaemic transformation. NUP98-PHD fusion prevented the differentiation-associated removal of H3K4me3 at many loci encoding lineage-specific transcription factors (Hox(s), Gata3, Meis1, Eya1 and Pbx1), and enforced their active gene transcription in murine haematopoietic stem/progenitor cells. Mechanistically, NUP98-PHD fusions act as 'chromatin boundary factors', dominating over polycomb-mediated gene silencing to 'lock' developmentally critical loci into an active chromatin state (H3K4me3 with induced histone acetylation), a state that defined leukaemia stem cells. Collectively, our studies represent, to our knowledge, the first report that deregulation of the PHD finger, an 'effector' of specific histone modification, perturbs the epigenetic dynamics on developmentally critical loci, catastrophizes cellular fate decision-making, and even causes oncogenesis during mammalian development.
Collapse
MESH Headings
- Amino Acid Motifs/genetics
- Amino Acid Motifs/physiology
- Animals
- Cell Transformation, Neoplastic
- Cells, Cultured
- Chromatin/metabolism
- Epigenesis, Genetic
- Gene Expression Regulation, Developmental
- Genes, Homeobox/genetics
- Hematologic Neoplasms/genetics
- Hematologic Neoplasms/metabolism
- Hematologic Neoplasms/pathology
- Hematopoiesis/genetics
- Hematopoietic Stem Cells/metabolism
- Hematopoietic Stem Cells/pathology
- Histones/chemistry
- Histones/metabolism
- Humans
- Intracellular Signaling Peptides and Proteins/chemistry
- Intracellular Signaling Peptides and Proteins/genetics
- Intracellular Signaling Peptides and Proteins/metabolism
- Lysine/metabolism
- Magnetic Resonance Spectroscopy
- Methylation
- Mice
- Models, Molecular
- Nuclear Pore Complex Proteins/chemistry
- Nuclear Pore Complex Proteins/genetics
- Nuclear Pore Complex Proteins/metabolism
- Oncogene Proteins, Fusion/chemistry
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/metabolism
- Protein Binding
- Protein Conformation
- Retinoblastoma-Binding Protein 2
- Transcription, Genetic
- Tumor Suppressor Proteins/chemistry
- Tumor Suppressor Proteins/genetics
- Tumor Suppressor Proteins/metabolism
Collapse
Affiliation(s)
- Gang G Wang
- Laboratory of Chromatin Biology & Epigenetics, The Rockefeller University, New York, New York 10065, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
420
|
Friis RMN, Schultz MC. Untargeted tail acetylation of histones in chromatin: lessons from yeast. Biochem Cell Biol 2009; 87:107-16. [PMID: 19234527 DOI: 10.1139/o08-097] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Dynamic acetylation of lysine residues in the amino-terminal tails of the core histones is functionally important for the regulation of diverse DNA-dependent processes in the nucleus, including replication, transcription, and DNA repair. The targeted and untargeted activities of histone lysine acetylases (KATs) and deacetylases (HDACs) both contribute to the dynamics of chromatin acetylation. While the mechanisms and functional consequences of targeted on histone acetylation are well understood, relatively little is known about untargeted histone acetylation. Here, we review the current understanding of the mechanisms by which untargeted KAT and HDAC activities modulate the acetylation state of nucleosomal histones, focusing on results obtained for H3 and H4 in budding yeast. We also highlight unresolved problems in this area, including the question of how a particular steady-state level of untargeted acetylation is set in the absence of cis-dependent mechanisms that instruct the activity of KATs and HDACs.
Collapse
Affiliation(s)
- R Magnus N Friis
- Department of Biochemistry, University of Alberta, Edmonton, ABT6G2H7, Canada
| | | |
Collapse
|
421
|
Grzenda A, Lomberk G, Zhang JS, Urrutia R. Sin3: master scaffold and transcriptional corepressor. BIOCHIMICA ET BIOPHYSICA ACTA 2009; 1789:443-50. [PMID: 19505602 PMCID: PMC3686104 DOI: 10.1016/j.bbagrm.2009.05.007] [Citation(s) in RCA: 197] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/16/2009] [Revised: 05/21/2009] [Accepted: 05/26/2009] [Indexed: 11/17/2022]
Abstract
Sin3 was isolated over two decades ago as a negative regulator of transcription in budding yeast. Subsequent research has established the protein as a master transcriptional scaffold and corepressor capable of transcriptional silencing via associated histone deacetylases (HDACs). The core Sin3-HDAC complex interacts with a wide variety of repressors and corepressors, providing flexibility and expanded specificity in modulating chromatin structure and transcription. As a result, the Sin3/HDAC complex is involved in an array of biological and cellular processes, including cell cycle progression, genomic stability, embryonic development, and homeostasis. Abnormal recruitment of this complex or alteration of its enzymatic activity has been implicated in neoplastic transformation.
Collapse
Affiliation(s)
- Adrienne Grzenda
- Laboratory of Chromatin Dynamics and Epigenetics, Gastroenterology Research Unit, Departments of Biochemistry and Molecular Biology, Biophysics, and Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Gwen Lomberk
- Laboratory of Chromatin Dynamics and Epigenetics, Gastroenterology Research Unit, Departments of Biochemistry and Molecular Biology, Biophysics, and Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Jin-San Zhang
- Laboratory of Chromatin Dynamics and Epigenetics, Gastroenterology Research Unit, Departments of Biochemistry and Molecular Biology, Biophysics, and Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Raul Urrutia
- Laboratory of Chromatin Dynamics and Epigenetics, Gastroenterology Research Unit, Departments of Biochemistry and Molecular Biology, Biophysics, and Medicine, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
422
|
Perez-Campo FM, Borrow J, Kouskoff V, Lacaud G. The histone acetyl transferase activity of monocytic leukemia zinc finger is critical for the proliferation of hematopoietic precursors. Blood 2009; 113:4866-4874. [PMID: 19264921 PMCID: PMC2686138 DOI: 10.1182/blood-2008-04-152017] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2008] [Accepted: 02/21/2009] [Indexed: 11/20/2022] Open
Abstract
The monocytic leukemia zinc finger (MOZ) gene encodes a large multidomain protein that contains, besides other domains, 2 coactivation domains for the transcription factor Runx1/acute myeloid leukemia 1 and a histone acetyl transferase (HAT) catalytic domain. Recent studies have demonstrated the critical requirement for the complete MOZ protein in hematopoietic stem cell development and maintenance. However, the specific function of the HAT activity of MOZ remains unknown, as it has been shown that MOZ HAT activity is not required either for its role as Runx1 coactivator or for the leukemic transformation induced by MOZ transcriptional intermediary factor 2 (TIF2). To assess the specific requirement for this HAT activity during hematopoietic development, we have generated embryonic stem cells and mouse lines carrying a point mutation that renders the protein catalytically inactive. We report in this study that mice exclusively lacking the HAT activity of MOZ exhibit significant defects in the number of hematopoietic stem cells and hematopoietic committed precursors as well as a defect in B-cell development. Furthermore, we demonstrate that the failure to maintain a normal number of hematopoietic precursors is caused by the inability of HAT(-/-) cells to expand. These results indicate a specific role of MOZ-driven acetylation in controlling a desirable balance between proliferation and differentiation during hematopoiesis.
Collapse
|
423
|
Hu X, Stern HM, Ge L, O'Brien C, Haydu L, Honchell CD, Haverty PM, Peters BA, Wu TD, Amler LC, Chant J, Stokoe D, Lackner MR, Cavet G. Genetic alterations and oncogenic pathways associated with breast cancer subtypes. Mol Cancer Res 2009; 7:511-22. [PMID: 19372580 DOI: 10.1158/1541-7786.mcr-08-0107] [Citation(s) in RCA: 171] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Breast cancers can be divided into subtypes with important implications for prognosis and treatment. We set out to characterize the genetic alterations observed in different breast cancer subtypes and to identify specific candidate genes and pathways associated with subtype biology. mRNA expression levels of estrogen receptor, progesterone receptor, and HER2 were shown to predict marker status determined by immunohistochemistry and to be effective at assigning samples to subtypes. HER2(+) cancers were shown to have the greatest frequency of high-level amplification (independent of the ERBB2 amplicon itself), but triple-negative cancers had the highest overall frequencies of copy gain. Triple-negative cancers also were shown to have more frequent loss of phosphatase and tensin homologue and mutation of RB1, which may contribute to genomic instability. We identified and validated seven regions of copy number alteration associated with different subtypes, and used integrative bioinformatics analysis to identify candidate oncogenes and tumor suppressors, including ERBB2, GRB7, MYST2, PPM1D, CCND1, HDAC2, FOXA1, and RASA1. We tested the candidate oncogene MYST2 and showed that it enhances the anchorage-independent growth of breast cancer cells. The genome-wide and region-specific differences between subtypes suggest the differential activation of oncogenic pathways.
Collapse
Affiliation(s)
- Xiaolan Hu
- Department of Bioinformatics, Genentech, Inc., South San Francisco, CA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
424
|
Abstract
Recent emerging evidence suggests that ING family proteins play roles in carcinogenesis both as oncogenes and tumor suppressor genes depending on the family members and on cell status. Previous results from non-physiologic overexpression experiments showed that all five family members induce apoptosis or cell cycle arrest, thus it had been thought until very recently that all of the family members function as tumor suppressor genes. Therefore restoration of ING family proteins in cancer cells has been proposed as a treatment for cancers. However, ING2 knockdown experiments showed unexpected results: ING2 knockdown led to senescence in normal human fibroblast cells and suppressed cancer cell growth. ING2 is also overexpressed in colorectal cancer, and promotes cancer cell invasion through an MMP13 dependent pathway. Additionally, it was reported that ING2 has two isoforms, ING2a and ING2b. Although expression of ING2a predominates compared with ING2b, both isoforms confer resistance against cell cycle arrest or apoptosis to cancer cells, thus knockdown of both isoforms is critical to remove this resistance. Taken together, these results suggest that ING2 can function as an oncogene in some specific types of cancer cells, indicating restoration of this gene in cancer cells could cause cancer progression. Because knockdown of ING2 suppresses cancer cell invasion and induces apoptosis or cell cycle arrest, ING2 may be an anticancer drug target. In this brief review, we discuss possible clinical applications of ING2 with the latest knowledge of molecular targeted therapies.
Collapse
Affiliation(s)
- M. Unoki
- Laboratory for Biomarker, The Institute of Physical and Chemical Research, RIKEN, Tokyo 108-8639, Japan
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland 20892, USA
| | - K. Kumamoto
- Second Department of Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland 20892, USA
| | - C.C. Harris
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland 20892, USA
| |
Collapse
|
425
|
Iizuka M, Takahashi Y, Mizzen CA, Cook RG, Fujita M, Allis CD, Frierson HF, Fukusato T, Smith MM. Histone acetyltransferase Hbo1: catalytic activity, cellular abundance, and links to primary cancers. Gene 2009; 436:108-14. [PMID: 19393168 PMCID: PMC2674512 DOI: 10.1016/j.gene.2009.01.020] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2008] [Revised: 01/09/2009] [Accepted: 01/24/2009] [Indexed: 12/27/2022]
Abstract
In addition to the well-characterized proteins that comprise the pre-replicative complex, recent studies suggest that chromatin structure plays an important role in DNA replication initiation. One of these chromatin factors is the histone acetyltransferase (HAT) Hbo1 which is unique among HAT enzymes in that it serves as a positive regulator of DNA replication. However, several of the basic properties of Hbo1 have not been previously examined, including its intrinsic catalytic activity, its molecular abundance in cells, and its pattern of expression in primary cancer cells. Here we show that recombinant Hbo1 can acetylate nucleosomal histone H4 in vitro, with a preference for lysines 5 and 12. Using semi-quantitative western blot analysis, we find that Hbo1 is approximately equimolar with the number of active replication origins in normal human fibroblasts but is an order of magnitude more abundant in both MCF7 and Saos-2 established cancer cell lines. Immunohistochemistry for Hbo1 in 11 primary human tumor types revealed strong Hbo1 protein expression in carcinomas of the testis, ovary, breast, stomach/esophagus, and bladder.
Collapse
Affiliation(s)
- Masayoshi Iizuka
- Department of Microbiology, University of Virginia Health System, Charlottesville, Virginia 22908, USA
- Department of Biochemistry, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-ku, Tokyo, 173-8605, Japan
| | - Yoshihisa Takahashi
- Department of Pathology, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-ku, Tokyo, 173-8605, Japan
| | - Craig A. Mizzen
- Department of Biochemistry and Molecular Genetics, University of Virginia Health System, Charlottesville, Virginia 22908, USA
| | - Richard G. Cook
- Department of Immunology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Masatoshi Fujita
- Virology Division, National Cancer Center Research Institute, 5-1-1 Tsukiji, Khuo-ku, Tokyo 104-0045, Japan
| | - C. David Allis
- Department of Biochemistry and Molecular Genetics, University of Virginia Health System, Charlottesville, Virginia 22908, USA
| | - Henry F. Frierson
- Department of Pathology, University of Virginia Health System, Charlottesville, Virginia 22908, USA
| | - Toshio Fukusato
- Department of Pathology, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-ku, Tokyo, 173-8605, Japan
| | - M. Mitchell Smith
- Department of Microbiology, University of Virginia Health System, Charlottesville, Virginia 22908, USA
| |
Collapse
|
426
|
Abstract
The Inhibitor of Growth (ING) tumor suppressors are implicated in oncogenesis, control of DNA damage repair, cellular senescence and apoptosis. All members of the ING family contain unique amino-terminal regions and a carboxy-terminal plant homeodomain (PHD) finger. While the amino-terminal domains associate with a number of protein effectors including distinct components of histone deacetylase (HDAC) and histone acetyltransferase (HAT) complexes, the PHD finger binds strongly and specifically to histone H3 trimethylated at lysine 4 (H3K4me3). In this review we describe the molecular mechanism of H3K4me3 recognition by the ING1-5 PHD fingers, analyze the determinants of the histone specificity and compare the biological activities and structures within subsets of PHD fingers. The atomic-resolution structures of the ING PHD fingers in complex with a H3K4me3 peptide reveal that the histone tail is bound in a large and deep binding site encompassing nearly one-third of the protein surface. An extensive network of intermolecular hydrogen bonds, hydrophobic and cation-pi contacts, and complementary surface interactions coordinate the first six residues of the H3K4me3 peptide. The trimethylated Lys4 occupies an elongated groove, formed by the highly conserved aromatic and hydrophobic residues of the PHD finger, whereas the adjacent groove accommodates Arg2. The two grooves are connected by a narrow channel, the small size of which defines the PHD finger's specificity, excluding interactions with other modified histone peptides. Binding of the ING PHD fingers to H3K4me3 plays a critical role in regulating chromatin acetylation. The ING proteins function as tethering molecules that physically link the HDAC and HAT enzymatic complexes to chromatin. In this review we also highlight progress recently made in understanding the molecular basis underlying biological and tumorigenic activities of the ING tumor suppressors.
Collapse
Affiliation(s)
- Karen S. Champagne
- Department of Pharmacology, University of Colorado Denver School of Medicine, Aurora, Colorado 80045, USA
| | - Tatiana G. Kutateladze
- Department of Pharmacology, University of Colorado Denver School of Medicine, Aurora, Colorado 80045, USA
| |
Collapse
|
427
|
Friis RMN, Wu BP, Reinke SN, Hockman DJ, Sykes BD, Schultz MC. A glycolytic burst drives glucose induction of global histone acetylation by picNuA4 and SAGA. Nucleic Acids Res 2009; 37:3969-80. [PMID: 19406923 PMCID: PMC2709565 DOI: 10.1093/nar/gkp270] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Little is known about what enzyme complexes or mechanisms control global lysine acetylation in the amino-terminal tails of the histones. Here, we show that glucose induces overall acetylation of H3 K9, 18, 27 and H4 K5, 8, 12 in quiescent yeast cells mainly by stimulating two KATs, Gcn5 and Esa1. Genetic and pharmacological perturbation of carbon metabolism, combined with 1H-NMR metabolic profiling, revealed that glucose induction of KAT activity directly depends on increased glucose catabolism. Glucose-inducible Esa1 and Gcn5 activities predominantly reside in the picNuA4 and SAGA complexes, respectively, and act on chromatin by an untargeted mechanism. We conclude that direct metabolic regulation of globally acting KATs can be a potent driving force for reconfiguration of overall histone acetylation in response to a physiological cue.
Collapse
Affiliation(s)
- R Magnus N Friis
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | | | |
Collapse
|
428
|
Peña PV, Musselman CA, Kuo AJ, Gozani, Kutateladze TG. NMR assignments and histone specificity of the ING2 PHD finger. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2009; 47:352-8. [PMID: 19184981 PMCID: PMC2758779 DOI: 10.1002/mrc.2390] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
The ING2 plant homeodomain (PHD) finger is recruited to the nucleosome through specific binding to histone H3 trimethylated at lysine 4 (H3K4me3). Here, we describe backbone and side chain assignments of the ING2 PHD finger, analyze its binding to the unmodified and modified histone and p53 peptides, and map the histone H3 and H3K4me3 binding sites based on chemical shift perturbation analysis.
Collapse
Affiliation(s)
- Pedro V. Peña
- Department of Pharmacology, University of Colorado Denver School of Medicine, Aurora, CO 80045, USA
| | - Catherine A. Musselman
- Department of Pharmacology, University of Colorado Denver School of Medicine, Aurora, CO 80045, USA
| | - Alex J. Kuo
- Department of Biological Sciences, Stanford University, Stanford, CA 94305, USA
| | - Gozani
- Department of Biological Sciences, Stanford University, Stanford, CA 94305, USA
| | - Tatiana G. Kutateladze
- Department of Pharmacology, University of Colorado Denver School of Medicine, Aurora, CO 80045, USA
| |
Collapse
|
429
|
He Y, Imhoff R, Sahu A, Radhakrishnan I. Solution structure of a novel zinc finger motif in the SAP30 polypeptide of the Sin3 corepressor complex and its potential role in nucleic acid recognition. Nucleic Acids Res 2009; 37:2142-52. [PMID: 19223330 PMCID: PMC2673417 DOI: 10.1093/nar/gkp051] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Giant chromatin-modifying complexes regulate gene transcription in eukaryotes by acting on chromatin substrates and 'setting' the histone code. The histone deacetylase (HDAC)-associated mammalian Sin3 corepressor complex regulates a wide variety of genes involved in all aspects of cellular physiology. The recruitment of the corepressor complex by transcription factors to specific regions of the genome is mediated by Sin3 as well as 10 distinct polypeptides that comprise the corepressor complex. Here we report the solution structure of a novel CCCH zinc finger (ZnF) motif in the SAP30 polypeptide, a key component of the corepressor complex. The structure represents a novel fold comprising two beta-strands and two alpha-helices with the zinc organizing center showing remote resemblance to the treble clef motif. In silico analysis of the structure revealed a highly conserved surface that is dominated by basic residues. NMR-based analysis of potential ligands for the SAP30 ZnF motif indicated a strong preference for nucleic acid substrates. We propose that the SAP30 ZnF functions as a double-stranded DNA-binding motif, thereby expanding the known functions of both SAP30 and the mammalian Sin3 corepressor complex. Our results also call into question the common assumption about the exclusion of DNA-binding core subunits within chromatin-modifying/remodeling complexes.
Collapse
Affiliation(s)
| | | | | | - Ishwar Radhakrishnan
- *To whom correspondence should be addressed. Tel: +1 847 467 1173; Fax: +1 847 467 6489;
| |
Collapse
|
430
|
Abstract
DNA and histone methylation are linked and subjected to mitotic inheritance in mammals. Yet how methylation is propagated and maintained between successive cell divisions is not fully understood. A series of enzyme families that can add methylation marks to cytosine nucleobases, and lysine and arginine amino acid residues has been discovered. Apart from methyltransferases, there are also histone modification enzymes and accessory proteins, which can facilitate and/or target epigenetic marks. Several lysine and arginine demethylases have been discovered recently, and the presence of an active DNA demethylase is speculated in mammalian cells. A mammalian methyl DNA binding protein MBD2 and de novo DNA methyltransferase DNMT3A and DNMT3B are shown experimentally to possess DNA demethylase activity. Thus, complex mammalian epigenetic mechanisms appear to be dynamic yet reversible along with a well-choreographed set of events that take place during mammalian development.
Collapse
|
431
|
Hibiya K, Katsumoto T, Kondo T, Kitabayashi I, Kudo A. Brpf1, a subunit of the MOZ histone acetyl transferase complex, maintains expression of anterior and posterior Hox genes for proper patterning of craniofacial and caudal skeletons. Dev Biol 2009; 329:176-90. [PMID: 19254709 DOI: 10.1016/j.ydbio.2009.02.021] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2008] [Revised: 01/22/2009] [Accepted: 02/18/2009] [Indexed: 11/15/2022]
Abstract
The epigenetic mechanism involving chromatin modification plays a critical role in the maintenance of the expression of Hox genes. Here, we characterize a mutant of the medaka fish, named biaxial symmetries (bis), in which brpf1, a subunit of the MOZ histone acetyl transferase (HAT) complex, is mutated. The bis mutant displayed patterning defects both in the anterior-posterior axis of the craniofacial skeleton and the dorsal-ventral axis of the caudal one. In the anterior region, the bis mutant exhibited craniofacial cartilage homeosis. The expression of Hox genes was decreased in the pharyngeal arches, suggesting that the pharyngeal segmental identities were altered in the bis mutant. In the posterior region, the bis mutant exhibited abnormal patterning of the caudal skeleton, which ectopically formed at the dorsal side of the caudal fin. The expression of Zic genes was decreased at the posterior region, suggesting that the dorsal-ventral axis formation of the posterior trunk was disrupted in the bis mutant. We also found that the MOZ-deficient mice exhibited an abnormal patterning of their craniofacial and cervical skeletons and a decrease of Hox transcripts. We propose a common role of the MOZ HAT complex in vertebrates, a complex which is required for the proper patterning for skeletal development.
Collapse
Affiliation(s)
- Kenta Hibiya
- Department of Biological Information, Tokyo Institute of Technology, 4259-B-33 Midori-ku, Nagatsuta, Yokohama 226-8501, Japan
| | | | | | | | | |
Collapse
|
432
|
Groth A. Replicating chromatin: a tale of histonesThis paper is one of a selection of papers published in this Special Issue, entitled CSBMCB’s 51st Annual Meeting – Epigenetics and Chromatin Dynamics, and has undergone the Journal’s usual peer review process. Biochem Cell Biol 2009; 87:51-63. [DOI: 10.1139/o08-102] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Chromatin serves structural and functional roles crucial for genome stability and correct gene expression. This organization must be reproduced on daughter strands during replication to maintain proper overlay of epigenetic fabric onto genetic sequence. Nucleosomes constitute the structural framework of chromatin and carry information to specify higher-order organization and gene expression. When replication forks traverse the chromosomes, nucleosomes are transiently disrupted, allowing the replication machinery to gain access to DNA. Histone recycling, together with new deposition, ensures reassembly on nascent DNA strands. The aim of this review is to discuss how histones — new and old — are handled at the replication fork, highlighting new mechanistic insights and revisiting old paradigms.
Collapse
Affiliation(s)
- Anja Groth
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark (e-mail: )
| |
Collapse
|
433
|
Hung T, Binda O, Champagne KS, Kuo AJ, Johnson K, Chang HY, Simon MD, Kutateladze TG, Gozani O. ING4 mediates crosstalk between histone H3 K4 trimethylation and H3 acetylation to attenuate cellular transformation. Mol Cell 2009; 33:248-56. [PMID: 19187765 PMCID: PMC2650391 DOI: 10.1016/j.molcel.2008.12.016] [Citation(s) in RCA: 165] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2008] [Revised: 10/21/2008] [Accepted: 12/10/2008] [Indexed: 11/16/2022]
Abstract
Aberrations in chromatin dynamics play a fundamental role in tumorigenesis, yet relatively little is known of the molecular mechanisms linking histone lysine methylation to neoplastic disease. ING4 (Inhibitor of Growth 4) is a native subunit of an HBO1 histone acetyltransferase (HAT) complex and a tumor suppressor protein. Here we show a critical role for specific recognition of histone H3 trimethylated at lysine 4 (H3K4me3) by the ING4 PHD finger in mediating ING4 gene expression and tumor suppressor functions. The interaction between ING4 and H3K4me3 augments HBO1 acetylation activity on H3 tails and drives H3 acetylation at ING4 target promoters. Further, ING4 facilitates apoptosis in response to genotoxic stress and inhibits anchorage-independent cell growth, and these functions depend on ING4 interactions with H3K4me3. Together, our results demonstrate a mechanism for brokering crosstalk between H3K4 methylation and H3 acetylation and reveal a molecular link between chromatin modulation and tumor suppressor mechanisms.
Collapse
Affiliation(s)
- Tiffany Hung
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Olivier Binda
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Karen S. Champagne
- Department of Pharmacology, University of Colorado Denver, Aurora, Colorado 80045, USA
| | - Alex J. Kuo
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Kyle Johnson
- Department of Pharmacology, University of Colorado Denver, Aurora, Colorado 80045, USA
| | - Howard Y. Chang
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Matthew D. Simon
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | | | - Or Gozani
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
434
|
Saksouk N, Avvakumov N, Champagne KS, Hung T, Doyon Y, Cayrou C, Paquet E, Ullah M, Landry AJ, Côté V, Yang XJ, Gozani O, Kutateladze TG, Côté J. HBO1 HAT complexes target chromatin throughout gene coding regions via multiple PHD finger interactions with histone H3 tail. Mol Cell 2009; 33:257-65. [PMID: 19187766 PMCID: PMC2677731 DOI: 10.1016/j.molcel.2009.01.007] [Citation(s) in RCA: 145] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2008] [Revised: 11/18/2008] [Accepted: 01/13/2009] [Indexed: 02/07/2023]
Abstract
The HBO1 HAT protein is the major source of histone H4 acetylation in vivo and has been shown to play critical roles in gene regulation and DNA replication. A distinctive characteristic of HBO1 HAT complexes is the presence of three PHD finger domains in two different subunits: tumor suppressor proteins ING4/5 and JADE1/2/3. Biochemical and functional analyses indicate that these domains interact with histone H3 N-terminal tail region, but with a different specificity toward its methylation status. Their combinatorial action is essential in regulating chromatin binding and substrate specificity of HBO1 complexes, as well as cell growth. Importantly, localization analyses on the human genome indicate that HBO1 complexes are enriched throughout the coding regions of genes, supporting a role in transcription elongation. These results underline the importance and versatility of PHD finger domains in regulating chromatin association and histone modification crosstalk within a single protein complex.
Collapse
Affiliation(s)
- Nehmé Saksouk
- Laval University Cancer Research Center, Hôtel-Dieu de Québec (CHUQ), 9 McMahon Street, Quebec City, Qc G1R 2J6, Canada
| | - Nikita Avvakumov
- Laval University Cancer Research Center, Hôtel-Dieu de Québec (CHUQ), 9 McMahon Street, Quebec City, Qc G1R 2J6, Canada
| | - Karen S. Champagne
- Department of Pharmacology, University of Colorado at Denver, Aurora, CO 80045, USA
| | - Tiffany Hung
- Department of Biological Sciences, Stanford University, Stanford, CA 94305, USA
| | - Yannick Doyon
- Laval University Cancer Research Center, Hôtel-Dieu de Québec (CHUQ), 9 McMahon Street, Quebec City, Qc G1R 2J6, Canada
| | - Christelle Cayrou
- Laval University Cancer Research Center, Hôtel-Dieu de Québec (CHUQ), 9 McMahon Street, Quebec City, Qc G1R 2J6, Canada
| | - Eric Paquet
- Laval University Cancer Research Center, Hôtel-Dieu de Québec (CHUQ), 9 McMahon Street, Quebec City, Qc G1R 2J6, Canada
| | - Mukta Ullah
- Goodman Cancer Centre, McGill University and Department of Medicine, McGill University Health Centre, Montreal, Qc H3G 0B1, Canada
| | - Anne-Julie Landry
- Laval University Cancer Research Center, Hôtel-Dieu de Québec (CHUQ), 9 McMahon Street, Quebec City, Qc G1R 2J6, Canada
| | - Valérie Côté
- Laval University Cancer Research Center, Hôtel-Dieu de Québec (CHUQ), 9 McMahon Street, Quebec City, Qc G1R 2J6, Canada
| | - Xiang-Jiao Yang
- Goodman Cancer Centre, McGill University and Department of Medicine, McGill University Health Centre, Montreal, Qc H3G 0B1, Canada
| | - Or Gozani
- Department of Biological Sciences, Stanford University, Stanford, CA 94305, USA
| | | | - Jacques Côté
- Laval University Cancer Research Center, Hôtel-Dieu de Québec (CHUQ), 9 McMahon Street, Quebec City, Qc G1R 2J6, Canada
| |
Collapse
|
435
|
COLES ANDREWH, JONES STEPHENN. The ING gene family in the regulation of cell growth and tumorigenesis. J Cell Physiol 2009; 218:45-57. [PMID: 18780289 PMCID: PMC2872195 DOI: 10.1002/jcp.21583] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The five members of the inhibitor of growth (ING) gene family have garnered significant interest due to their putative roles as tumor suppressors. However, the precise role(s) of these ING proteins in regulating cell growth and tumorigenesis remains uncertain. Biochemical and molecular biological analysis has revealed that all ING members encode a PHD finger motif proposed to bind methylated histones and phosphoinosital, and all ING proteins have been found as components of large chromatin remodeling complexes that also include histone acetyl transferase (HAT) and histone deacetylase (HDAC) enzymes, suggesting a role for ING proteins in regulating gene transcription. Additionally, the results of forced overexpression studies performed in tissue culture have indicated that several of the ING proteins can interact with the p53 tumor suppressor protein and/or the nuclear factor-kappa B (NF-kappaB) protein complex. As these ING-associated proteins play well-established roles in numerous cell processes, including DNA repair, cell growth and survival, inflammation, and tumor suppression, several models have been proposed that ING proteins act as key regulators of cell growth not only through their ability to modify gene transcription but also through their ability to alter p53 and NF-kappaB activity. However, these models have yet to be substantiated by in vivo experimentation. This review summarizes what is currently known about the biological functions of the five ING genes based upon in vitro experiments and recent mouse modeling efforts, and will highlight the potential impact of INGs on the development of cancer.
Collapse
Affiliation(s)
- ANDREW H. COLES
- Department of Cell Biology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - STEPHEN N. JONES
- Department of Cell Biology, University of Massachusetts Medical School, Worcester, Massachusetts
- Department of Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts
| |
Collapse
|
436
|
Baker LA, Allis CD, Wang GG. PHD fingers in human diseases: disorders arising from misinterpreting epigenetic marks. Mutat Res 2008; 647:3-12. [PMID: 18682256 PMCID: PMC2656448 DOI: 10.1016/j.mrfmmm.2008.07.004] [Citation(s) in RCA: 173] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2008] [Accepted: 07/04/2008] [Indexed: 12/14/2022]
Abstract
Histone covalent modifications regulate many, if not all, DNA-templated processes, including gene expression and DNA damage response. The biological consequences of histone modifications are mediated partially by evolutionarily conserved "reader/effector" modules that bind to histone marks in a modification- and context-specific fashion and subsequently enact chromatin changes or recruit other proteins to do so. Recently, the Plant Homeodomain (PHD) finger has emerged as a class of specialized "reader" modules that, in some instances, recognize the methylation status of histone lysine residues, such as histone H3 lysine 4 (H3K4). While mutations in catalytic enzymes that mediate the addition or removal of histone modifications (i.e., "writers" and "erasers") are already known to be involved in various human diseases, mutations in the modification-specific "reader" proteins are only beginning to be recognized as contributing to human diseases. For instance, point mutations, deletions or chromosomal translocations that target PHD fingers encoded by many genes (such as recombination activating gene 2 (RAG2), Inhibitor of Growth (ING), nuclear receptor-binding SET domain-containing 1 (NSD1) and Alpha Thalassaemia and Mental Retardation Syndrome, X-linked (ATRX)) have been associated with a wide range of human pathologies including immunological disorders, cancers, and neurological diseases. In this review, we will discuss the structural features of PHD fingers as well as the diseases for which direct mutation or dysregulation of the PHD finger has been reported. We propose that misinterpretation of the epigenetic marks may serve as a general mechanism for human diseases of this category. Determining the regulatory roles of histone covalent modifications in the context of human disease will allow for a more thorough understanding of normal and pathological development, and may provide innovative therapeutic strategies wherein "chromatin readers" stand as potential drug targets.
Collapse
Affiliation(s)
- Lindsey A. Baker
- Laboratory of Chromatin Biology & Epigenetics, The Rockefeller University, New York, NY 10065
| | - C. David Allis
- Laboratory of Chromatin Biology & Epigenetics, The Rockefeller University, New York, NY 10065
| | - Gang G. Wang
- Laboratory of Chromatin Biology & Epigenetics, The Rockefeller University, New York, NY 10065
| |
Collapse
|
437
|
Soliman MA, Berardi P, Pastyryeva S, Bonnefin P, Feng X, Colina A, Young D, Riabowol K. ING1a expression increases during replicative senescence and induces a senescent phenotype. Aging Cell 2008; 7:783-94. [PMID: 18691180 DOI: 10.1111/j.1474-9726.2008.00427.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The ING family of tumor suppressor proteins affects cell growth, apoptosis and response to DNA damage by modulating chromatin structure through association with different HAT and HDAC complexes. The major splicing isoforms of the ING1 locus are ING1a and INGlb. While INGlb plays a role in inducing apoptosis, the function of ING1a is currently unknown. Here we show that alternative splicing of the ING1 message alters the INGla:INGlb ratio by approximately 30-fold in senescent compared to low passage primary fibroblasts. INGla antagonizes INGlb function in apoptosis, induces the formation of structures resembling senescence-associated heterochromatic foci containing heterochromatin protein 1 gamma, the accumulation of senescence-associated beta-galactosidase activity and promotes senescent cell morphology and cell cycle arrest. Phenotypic effects may result from differential effects on gene expression since ING1a increases levels of both retinoblastoma and the p16 cyclin-dependent kinase inhibitor and ING1a and ING1b have opposite effects on the expression of proliferating nuclear cell antigen (PCNA), which is required for cell growth. Gene expression appears to be altered by targeting of HDAC complexes to gene promoters since INGla associates with several-fold higher levels of HDAC1 in senescent, compared to replication-competent cells and ING1 is found on the PCNA promoter by chromatin immunoprecipitation analysis. These data demonstrate a novel role for the ING1 proteins in differentially regulating senescence-associated chromatin remodeling vs. apoptosis and support the idea that altered ratios of the ING1 splicing isoforms may contribute to establishing the senescent phenotype through HDAC and HAT complex-mediated effects on chromatin structure.
Collapse
Affiliation(s)
- Mohamed A Soliman
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada
| | | | | | | | | | | | | | | |
Collapse
|
438
|
Latrasse D, Benhamed M, Henry Y, Domenichini S, Kim W, Zhou DX, Delarue M. The MYST histone acetyltransferases are essential for gametophyte development in Arabidopsis. BMC PLANT BIOLOGY 2008; 8:121. [PMID: 19040736 PMCID: PMC2606689 DOI: 10.1186/1471-2229-8-121] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2008] [Accepted: 11/28/2008] [Indexed: 05/19/2023]
Abstract
BACKGROUND Histone acetyltransferases (HATs) play critical roles in the regulation of chromatin structure and gene expression. Arabidopsis genome contains 12 HAT genes, but the biological functions of many of them are still unknown. In this work, we studied the evolutionary relationship and cellular functions of the two Arabidopsis HAT genes homologous to the MYST family members. RESULTS An extensive phylogenetic analysis of 105 MYST proteins revealed that they can be divided into 5 classes, each of which contains a specific combination of protein modules. The two Arabidopsis MYST proteins, HAM1 and HAM2, belong to a "green clade", clearly separated from other families of HATs. Using a reverse genetic approach, we show that HAM1 and HAM2 are a functionally redundant pair of genes, as single Arabidopsis ham1 and ham2 mutants displayed a wild-type phenotype, while no double mutant seedling could be recovered. Genetic analysis and cytological study revealed that ham1ham2 double mutation induced severe defects in the formation of male and female gametophyte, resulting in an arrest of mitotic cell cycle at early stages of gametogenesis. RT-PCR experiments and the analysis of transgenic plants expressing the GUS reporter gene under the HAM1 or the HAM2 promoter showed that both genes displayed an overlapping expression pattern, mainly in growing organs such as shoots and flower buds. CONCLUSION The work presented here reveals novel properties for MYST HATs in Arabidopsis. In addition to providing an evolutionary relationship of this large protein family, we show the evidence of a link between MYST and gamete formation as previously suggested in mammalian cells. A possible function of the Arabidopsis MYST protein-mediated histone acetylation during cell division is suggested.
Collapse
Affiliation(s)
- David Latrasse
- Institut de Biotechnologie des Plantes, CNRS UMR8618, Université Paris-sud XI, 91405 Orsay, France
| | - Moussa Benhamed
- Institut de Biotechnologie des Plantes, CNRS UMR8618, Université Paris-sud XI, 91405 Orsay, France
| | - Yves Henry
- Institut de Biotechnologie des Plantes, CNRS UMR8618, Université Paris-sud XI, 91405 Orsay, France
| | - Séverine Domenichini
- Institut de Biotechnologie des Plantes, CNRS UMR8618, Université Paris-sud XI, 91405 Orsay, France
| | - Wanhui Kim
- Institut de Biotechnologie des Plantes, CNRS UMR8618, Université Paris-sud XI, 91405 Orsay, France
| | - Dao-Xiu Zhou
- Institut de Biotechnologie des Plantes, CNRS UMR8618, Université Paris-sud XI, 91405 Orsay, France
| | - Marianne Delarue
- Institut de Biotechnologie des Plantes, CNRS UMR8618, Université Paris-sud XI, 91405 Orsay, France
| |
Collapse
|
439
|
Unoki M, Kumamoto K, Robles AI, Shen JC, Zheng ZM, Harris CC. A novel ING2 isoform, ING2b, synergizes with ING2a to prevent cell cycle arrest and apoptosis. FEBS Lett 2008; 582:3868-74. [PMID: 18951897 PMCID: PMC2613974 DOI: 10.1016/j.febslet.2008.10.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2008] [Revised: 10/10/2008] [Accepted: 10/15/2008] [Indexed: 11/16/2022]
Abstract
We identified a novel inhibitor of growth family member 2 (ING2) isoform, ING2b, which shares exon 2 with ING2a, but lacks the N-terminal p53 binding region. Contrary to ING2a, ING2b's promoter has no p53 binding sites. Consistently, activation of p53 led to suppression of ING2a, leaving ING2b unaffected. Through isoform-specific targeting, we showed that ING2a knockdown suppressed cell growth only in the presence of p53, ING2b knockdown had no effect on cell growth, and knockdown of both induced cell cycle arrest and apoptosis independently of p53. ING2a and ING2b have compensatory roles that protect cells from cell cycle arrest and apoptosis and may be involved in development of chemotherapeutic resistance.
Collapse
Affiliation(s)
- Motoko Unoki
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, NIH, 37 Convent Dr., Bldg. 37, Rm. 3068, Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|
440
|
Making copies of chromatin: the challenge of nucleosomal organization and epigenetic information. Trends Cell Biol 2008; 19:29-41. [PMID: 19027300 DOI: 10.1016/j.tcb.2008.10.002] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2008] [Revised: 10/22/2008] [Accepted: 10/23/2008] [Indexed: 12/18/2022]
Abstract
Understanding the basic mechanisms underlying chromatin dynamics during DNA replication in eukaryotic cells is of fundamental importance. Beyond DNA compaction, chromatin organization represents a means to regulate genome function. Thus, the inheritance and maintenance of the DNA sequence, along with its organization into chromatin, is central for eukaryotic life. To orchestrate DNA replication in the context of chromatin is a challenge, both in terms of accessibility to the compact structures and maintenance of chromatin organization. To meet the challenge of maintenance, cells have evolved efficient nucleosome dynamics involving assembly pathways and chromatin maturation mechanisms that restore chromatin organization in the wake of DNA replication. In this review, we describe our current knowledge concerning how these pathways operate at the nucleosomal level and highlight the key players, such as histone chaperones, chromatin remodelers or modifiers, involved in the process of chromatin duplication. Major advances have been made recently concerning de novo nucleosome assembly and our understanding of its coordination with recycling of parental histones is progressing. Insights into the transmission of chromatin-based information during replication have important implications in the field of epigenetics to fully comprehend how the epigenetic landscape might, or at times might not, be stably maintained in the face of dramatic changes in chromatin structure.
Collapse
|
441
|
The Caenorhabditis elegans ing-3 gene regulates ionizing radiation-induced germ-cell apoptosis in a p53-associated pathway. Genetics 2008; 181:473-82. [PMID: 19015549 DOI: 10.1534/genetics.107.080515] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The inhibitor of growth (ING) family of type II tumor suppressors are encoded by five genes in mammals and by three genes in Caenorhabditis elegans. All ING proteins contain a highly conserved plant homeodomain (PHD) zinc finger. ING proteins are activated by stresses, including ionizing radiation, leading to the activation of p53. ING proteins in mammals and yeast have recently been shown to read the histone code in a methylation-sensitive manner to regulate gene expression. Here we identify and characterize ing-3, the C. elegans gene with the highest sequence identity to the human ING3 gene. ING-3 colocalizes with chromatin in embryos, the germline, and somatic cells. The ing-3 gene is part of an operon but is also transcribed from its own promoter. Both ing-3(RNAi) and ing-3 mutant strains demonstrate that the gene likely functions in concert with the C. elegans p53 homolog, cep-1, to induce germ-cell apoptosis in response to ionizing radiation. Somatically, the ing-3 mutant has a weak kinker uncoordinated (kinker Unc) phenotype, indicating a possible neuronal function.
Collapse
|
442
|
Miotto B, Struhl K. HBO1 histone acetylase is a coactivator of the replication licensing factor Cdt1. Genes Dev 2008; 22:2633-8. [PMID: 18832067 DOI: 10.1101/gad.1674108] [Citation(s) in RCA: 140] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
HBO1 histone acetylase is important for DNA replication licensing. In human cells, HBO1 associates with replication origins specifically during the G1 phase of the cell cycle in a manner that depends on the replication licensing factor Cdt1, but is independent of the Cdt1 repressor Geminin. HBO1 directly interacts with Cdt1, and it enhances Cdt1-dependent rereplication. Thus, HBO1 plays a direct role at replication origins as a coactivator of the Cdt1 licensing factor. As HBO1 is also a transcriptional coactivator, it has the potential to integrate internal and external stimuli to coordinate transcriptional responses with initiation of DNA replication.
Collapse
Affiliation(s)
- Benoit Miotto
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
443
|
Rokudai S, Aikawa Y, Tagata Y, Tsuchida N, Taya Y, Kitabayashi I. Monocytic leukemia zinc finger (MOZ) interacts with p53 to induce p21 expression and cell-cycle arrest. J Biol Chem 2008; 284:237-244. [PMID: 19001415 DOI: 10.1074/jbc.m805101200] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Upon DNA damage, p53 can induce either cell-cycle arrest or apoptosis. Here we show that monocytic leukemia zinc finger (MOZ) forms a complex with p53 to induce p21 expression and cell-cycle arrest. The levels of the p53-MOZ complex increased in response to DNA damage to levels that induce cell-cycle arrest. MOZ(-/-) mouse embryonic fibroblasts failed to arrest in G1 in response to DNA damage, and DNA damage-induced expression of p21 was impaired in MOZ(-/-) cells. These results suggest that MOZ is involved in regulating cell-cycle arrest in the G1 phase. Screening of tumor-associated p53 mutants demonstrated that the G279E mutation in p53 disrupts interactions between p53 and MOZ, but does not affect the DNA binding activity of p53. The leukemia-associated MOZ-CBP fusion protein inhibits p53-mediated transcription. These results suggest that inhibition of p53/MOZ-mediated transcription is involved in tumor pathogenesis and leukemogenesis.
Collapse
Affiliation(s)
- Susumu Rokudai
- Molecular Oncology Division, Radiobiology Division, National Cancer Center Research Institute, Tokyo 104-0045 and the Department of Molecular Cellular Oncology and Microbiology, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Yukiko Aikawa
- Molecular Oncology Division, Radiobiology Division, National Cancer Center Research Institute, Tokyo 104-0045 and the Department of Molecular Cellular Oncology and Microbiology, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Yusuke Tagata
- Molecular Oncology Division, Radiobiology Division, National Cancer Center Research Institute, Tokyo 104-0045 and the Department of Molecular Cellular Oncology and Microbiology, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Nobuo Tsuchida
- Molecular Oncology Division, Radiobiology Division, National Cancer Center Research Institute, Tokyo 104-0045 and the Department of Molecular Cellular Oncology and Microbiology, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Yoichi Taya
- Molecular Oncology Division, Radiobiology Division, National Cancer Center Research Institute, Tokyo 104-0045 and the Department of Molecular Cellular Oncology and Microbiology, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Issay Kitabayashi
- Molecular Oncology Division, Radiobiology Division, National Cancer Center Research Institute, Tokyo 104-0045 and the Department of Molecular Cellular Oncology and Microbiology, Tokyo Medical and Dental University, Tokyo 113-8510, Japan.
| |
Collapse
|
444
|
Martinato F, Cesaroni M, Amati B, Guccione E. Analysis of Myc-induced histone modifications on target chromatin. PLoS One 2008; 3:e3650. [PMID: 18985155 PMCID: PMC2574517 DOI: 10.1371/journal.pone.0003650] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2008] [Accepted: 10/14/2008] [Indexed: 11/24/2022] Open
Abstract
The c-myc proto-oncogene is induced by mitogens and is a central regulator of cell growth and differentiation. The c-myc product, Myc, is a transcription factor that binds a multitude of genomic sites, estimated to be over 10–15% of all promoter regions. Target promoters generally pre-exist in an active or poised chromatin state that is further modified by Myc, contributing to fine transcriptional regulation (activation or repression) of the afferent gene. Among other mechanisms, Myc recruits histone acetyl-transferases to target chromatin and locally promotes hyper-acetylation of multiple lysines on histones H3 and H4, although the identity and combination of the modified lysines is unknown. Whether Myc dynamically regulates other histone modifications (or marks) at its binding sites also remains to be addressed. Here, we used quantitative chromatin immunoprecipitation (qChIP) to profile a total of 24 lysine-acetylation and -methylation marks modulated by Myc at target promoters in a human B-cell line with a regulatable c-myc transgene. Myc binding promoted acetylation of multiple lysines, primarily of H3K9, H3K14, H3K18, H4K5 and H4K12, but significantly also of H4K8, H4K91 and H2AK5. Dimethylation of H3K79 was also selectively induced at target promoters. A majority of target promoters showed co-induction of multiple marks - in various combinations - correlating with recruitment of the two HATs tested (Tip60 and HBO1), incorporation of the histone variant H2A.Z and transcriptional activation. Based on this and previous findings, we surmise that Myc recruits the Tip60/p400 complex to achieve a coordinated histone acetylation/exchange reaction at activated promoters. Our data are also consistent with the additive and redundant role of multiple acetylation events in transcriptional activation.
Collapse
Affiliation(s)
- Francesca Martinato
- Department of Experimental Oncology, European Institute of Oncology (IEO), IFOM-IEO Campus, Milan, Italy
| | - Matteo Cesaroni
- Department of Experimental Oncology, European Institute of Oncology (IEO), IFOM-IEO Campus, Milan, Italy
| | - Bruno Amati
- Department of Experimental Oncology, European Institute of Oncology (IEO), IFOM-IEO Campus, Milan, Italy
- * E-mail: (BA); (EG)
| | - Ernesto Guccione
- Department of Experimental Oncology, European Institute of Oncology (IEO), IFOM-IEO Campus, Milan, Italy
- * E-mail: (BA); (EG)
| |
Collapse
|
445
|
Ullah M, Pelletier N, Xiao L, Zhao SP, Wang K, Degerny C, Tahmasebi S, Cayrou C, Doyon Y, Goh SL, Champagne N, Côté J, Yang XJ. Molecular architecture of quartet MOZ/MORF histone acetyltransferase complexes. Mol Cell Biol 2008; 28:6828-43. [PMID: 18794358 PMCID: PMC2573306 DOI: 10.1128/mcb.01297-08] [Citation(s) in RCA: 171] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2008] [Accepted: 09/08/2008] [Indexed: 11/20/2022] Open
Abstract
The monocytic leukemia zinc finger protein MOZ and the related factor MORF form tetrameric complexes with ING5 (inhibitor of growth 5), EAF6 (Esa1-associated factor 6 ortholog), and the bromodomain-PHD finger protein BRPF1, -2, or -3. To gain new insights into the structure, function, and regulation of these complexes, we reconstituted them and performed various molecular analyses. We found that BRPF proteins bridge the association of MOZ and MORF with ING5 and EAF6. An N-terminal region of BRPF1 interacts with the acetyltransferases; the enhancer of polycomb (EPc) homology domain in the middle part binds to ING5 and EAF6. The association of BRPF1 with EAF6 is weak, but ING5 increases the affinity. These three proteins form a trimeric core that is conserved from Drosophila melanogaster to humans, although authentic orthologs of MOZ and MORF are absent in invertebrates. Deletion mapping studies revealed that the acetyltransferase domain of MOZ/MORF is sufficient for BRPF1 interaction. At the functional level, complex formation with BRPF1 and ING5 drastically stimulates the activity of the acetyltransferase domain in acetylation of nucleosomal histone H3 and free histones H3 and H4. An unstructured 18-residue region at the C-terminal end of the catalytic domain is required for BRPF1 interaction and may function as an "activation lid." Furthermore, BRPF1 enhances the transcriptional potential of MOZ and a leukemic MOZ-TIF2 fusion protein. These findings thus indicate that BRPF proteins play a key role in assembling and activating MOZ/MORF acetyltransferase complexes.
Collapse
Affiliation(s)
- Mukta Ullah
- Department of Medicine, McGill University Health Centre, Montréal, Québec H3G 0B1, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
446
|
Foy RL, Song IY, Chitalia VC, Cohen HT, Saksouk N, Cayrou C, Vaziri C, Côté J, Panchenko MV. Role of Jade-1 in the histone acetyltransferase (HAT) HBO1 complex. J Biol Chem 2008; 283:28817-26. [PMID: 18684714 PMCID: PMC2570895 DOI: 10.1074/jbc.m801407200] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2008] [Revised: 07/11/2008] [Indexed: 01/01/2023] Open
Abstract
Regulation of global chromatin acetylation is important for chromatin remodeling. A small family of Jade proteins includes Jade-1L, Jade-2, and Jade-3, each bearing two mid-molecule tandem plant homology domain (PHD) zinc fingers. We previously demonstrated that the short isoform of Jade-1L protein, Jade-1, is associated with endogenous histone acetyltransferase (HAT) activity. It has been found that Jade-1L/2/3 proteins co-purify with a novel HAT complex, consisting of HBO1, ING4/5, and Eaf6. We investigated a role for Jade-1/1L in the HBO1 complex. When overexpressed individually, neither Jade-1/1L nor HBO1 affected histone acetylation. However, co-expression of Jade-1/1L and HBO1 increased acetylation of the bulk of endogenous histone H4 in epithelial cells in a synergistic manner, suggesting that Jade1/1L positively regulates HBO1 HAT activity. Conversely, small interfering RNA-mediated depletion of endogenous Jade resulted in reduced levels of H4 acetylation. Moreover, HBO1-mediated H4 acetylation activity was enhanced severalfold by the presence of Jade-1/1L in vitro. The removal of PHD fingers affected neither binding nor mutual Jade-1-HBO1 stabilization but completely abrogated the synergistic Jade-1/1L- and HBO1-mediated histone H4 acetylation in live cells and in vitro with reconstituted oligonucleosome substrates. Therefore, PHDs are necessary for Jade-1/1L-induced acetylation of nucleosomal histones by HBO1. In contrast to Jade-1/1L, the PHD zinc finger protein ING4/5 failed to synergize with HBO1 to promote histone acetylation. The physical interaction of ING4/5 with HBO1 occurred in the presence of Jade-1L or Jade-3 but not with the Jade-1 short isoform. In summary, this study demonstrates that Jade-1/1L are crucial co-factors for HBO1-mediated histone H4 acetylation.
Collapse
Affiliation(s)
- Rebecca L Foy
- Department of Medicine, Section of Nephrology, Boston University School of Medicine and Medical Center, Evans Biomedical Research Center, Boston, Massachusetts 02118, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
447
|
Tethering by lamin A stabilizes and targets the ING1 tumour suppressor. Nat Cell Biol 2008; 10:1333-40. [PMID: 18836436 DOI: 10.1038/ncb1792] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2008] [Accepted: 08/26/2008] [Indexed: 12/11/2022]
Abstract
ING proteins interact with core histones through their plant homeodomains (PHDs) and with histone acetyltransferase (HAT) and histone deacetylase (HDAC) complexes to alter chromatin structure. Here we identify a lamin interaction domain (LID) found only in ING proteins, through which they bind to and colocalize with lamin A. Lamin knockout (LMNA(-/-)) cells show reduced levels of ING1 that mislocalize. Ectopic lamin A expression increases ING1 levels and re-targets it to the nucleus to act as an epigenetic regulator. ING1 lacking the LID does not interact with lamin A or affect apoptosis. In LMNA(-/-) cells, apoptosis is not affected by ING1. Mutation of lamin A results in several laminopathies, including Hutchinson-Gilford progeria syndrome (HGPS), a severe premature ageing disorder. HGPS cells have reduced ING1 levels that mislocalize. Expression of LID peptides to block lamin A-ING1 interaction induces phenotypes reminiscent of laminopathies including HGPS. These data show that targeting of ING1 to the nucleus by lamin A maintains ING1 levels and biological function. Known roles for ING proteins in regulating apoptosis and chromatin structure indicate that loss of lamin A-ING interaction may be an effector of lamin A loss, contributing to the HGPS phenotype.
Collapse
|
448
|
ING2 recruits histone methyltransferase activity with methylation site specificity distinct from histone H3 lysines 4 and 9. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1783:1673-80. [DOI: 10.1016/j.bbamcr.2008.04.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2007] [Revised: 04/25/2008] [Accepted: 04/30/2008] [Indexed: 01/19/2023]
|
449
|
Gordon PMK, Soliman MA, Bose P, Trinh Q, Sensen CW, Riabowol K. Interspecies data mining to predict novel ING-protein interactions in human. BMC Genomics 2008; 9:426. [PMID: 18801192 PMCID: PMC2565686 DOI: 10.1186/1471-2164-9-426] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2008] [Accepted: 09/18/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The INhibitor of Growth (ING) family of type II tumor suppressors (ING1-ING5) is involved in many cellular processes such as cell aging, apoptosis, DNA repair and tumorigenesis. To expand our understanding of the proteins with which the ING proteins interact, we designed a method that did not depend upon large-scale proteomics-based methods, since they may fail to highlight transient or relatively weak interactions. Here we test a cross-species (yeast, fly, and human) bioinformatics-based approach to identify potential human ING-interacting proteins with higher probability and accuracy than approaches based on screens in a single species. RESULTS We confirm the validity of this screen and show that ING1 interacts specifically with three of the three proteins tested; p38MAPK, MEKK4 and RAD50. These novel ING-interacting proteins further link ING proteins to cell stress and DNA damage signaling, providing previously unknown upstream links to DNA damage response pathways in which ING1 participates. The bioinformatics approach we describe can be used to create an interaction prediction list for any human proteins with yeast homolog(s). CONCLUSION None of the validated interactions were predicted by the conventional protein-protein interaction tools we tested. Validation of our approach by traditional laboratory techniques shows that we can extract value from the voluminous weak interaction data already elucidated in yeast and fly databases. We therefore propose that the weak (low signal to noise ratio) data from large-scale interaction datasets are currently underutilized.
Collapse
Affiliation(s)
- Paul MK Gordon
- Department of Biochemistry & Molecular Biology, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Mohamed A Soliman
- Department of Biochemistry & Molecular Biology, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Oncology, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Pinaki Bose
- Department of Biochemistry & Molecular Biology, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Oncology, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Quang Trinh
- Department of Biochemistry & Molecular Biology, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Christoph W Sensen
- Department of Biochemistry & Molecular Biology, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Karl Riabowol
- Department of Biochemistry & Molecular Biology, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Oncology, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
450
|
Adenovirus-mediated ING4 expression suppresses lung carcinoma cell growth via induction of cell cycle alteration and apoptosis and inhibition of tumor invasion and angiogenesis. Cancer Lett 2008; 271:105-16. [PMID: 18789575 DOI: 10.1016/j.canlet.2008.05.050] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2008] [Revised: 02/05/2008] [Accepted: 05/27/2008] [Indexed: 01/29/2023]
Abstract
Previous studies demonstrated that ING4 as a novel member of ING (inhibitor of growth) family has potential effect on tumor inhibition via multiple pathways. However, adenovirus-mediated ING4 expression in inhibition of human tumors has not been reported. To explore its therapeutic effect on human lung carcinoma, we constructed a recombinant adenoviral vector Ad-ING4 expressing the humanized ING4 gene derived from murine ING4 with two amino acid modifications at residue 66 (Arg to Lys) and 156 (Ala to Thr) by site-directed mutagenesis. We demonstrated that Ad-ING4-mediated transfection of A549 human lung carcinoma cells induced cell apoptosis, altered cell cycle with S phase reduction and G2/M phase arrest, suppressed cell invasiveness, and down-regulated IL-6, IL-8, MMP-2, and MMP-9 expression of transfected tumor cells. In athymic mice bearing A549 lung tumors, intratumoral injections of Ad-ING4 suppressed the tumor growth and reduced the tumor microvessel formation. Therefore, Ad-ING4 may be useful in gene therapy of human lung carcinoma.
Collapse
|