401
|
Kuriakose T, Kanneganti TD. Regulation and functions of NLRP3 inflammasome during influenza virus infection. Mol Immunol 2017; 86:56-64. [PMID: 28169000 DOI: 10.1016/j.molimm.2017.01.023] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 01/21/2017] [Accepted: 01/26/2017] [Indexed: 12/27/2022]
Abstract
The NLRP3 inflammasome constitutes a major antiviral host defense mechanism during influenza virus infection. Inflammasome assembly in virus-infected cells facilitates autocatalytic processing of pro-caspase-1 and subsequent cleavage and secretion of proinflammatory cytokines IL-1β and IL-18. The NLRP3 inflammasome is critical for induction of both innate and adaptive immune responses during influenza virus infection. Inflammasome-dependent antiviral responses also regulate immunopathology and tissue repair in the infected lungs. The regulation of NLRP3 inflammasome assembly is an area of active research and recent studies have unraveled multiple cellular and viral factors involved in inflammasome assembly. Emerging studies have also identified the cross talk between inflammasome activation and programmed cell death pathways in influenza virus-infected cells. Here, we review the current literature regarding regulation and functions of NLRP3 inflammasome during influenza virus infection.
Collapse
Affiliation(s)
- Teneema Kuriakose
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | | |
Collapse
|
402
|
Hänggi K, Vasilikos L, Valls AF, Yerbes R, Knop J, Spilgies LM, Rieck K, Misra T, Bertin J, Gough PJ, Schmidt T, de Almodòvar CR, Wong WWL. RIPK1/RIPK3 promotes vascular permeability to allow tumor cell extravasation independent of its necroptotic function. Cell Death Dis 2017; 8:e2588. [PMID: 28151480 PMCID: PMC5386469 DOI: 10.1038/cddis.2017.20] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 12/22/2016] [Accepted: 01/03/2017] [Indexed: 12/13/2022]
Abstract
Necroptosis is an inflammatory form of programmed cell death requiring receptor-interacting protein kinase 1, 3 (RIPK1, RIPK3) and mixed lineage kinase domain-like protein (MLKL). The kinase of RIPK3 phosphorylates MLKL causing MLKL to form a pore-like structure, allowing intracellular contents to release and cell death to occur. Alternatively, RIPK1 and RIPK3 have been shown to regulate cytokine production directly influencing inflammatory immune infiltrates. Recent data suggest that necroptosis may contribute to the malignant transformation of tumor cells in vivo and we asked whether necroptosis may have a role in the tumor microenvironment altering the ability of the tumor to grow or metastasize. To determine if necroptosis in the tumor microenvironment could promote inflammation alone or by initiating necroptosis and thereby influencing growth or metastasis of tumors, we utilized a syngeneic tumor model of metastasis. Loss of RIPK3 in the tumor microenvironment reduced the number of tumor nodules in the lung by 46%. Loss of the kinase activity in RIPK1, a member of the necrosome also reduced tumor nodules in the lung by 38%. However, the loss of kinase activity in RIPK3 or the loss of MLKL only marginally altered the ability of tumor cells to form in the lung. Using bone marrow chimeras, the decrease in tumor nodules in the Ripk3-/- appeared to be due to the stromal compartment rather than the hematopoietic compartment. Transmigration assays showed decreased ability of tumor cells to transmigrate through the vascular endothelial layer, which correlated with decreased permeability in the Ripk3-/- mice after tumor injection. In response to permeability factors, such as vascular endothelial growth factor, RIPK3 null endothelial cells showed decreased p38/HSP27 activation. Taken together, our results suggest an alternative function for RIPK1/RIPK3 in vascular permeability leading to decreased number of metastasis.
Collapse
Affiliation(s)
- Kay Hänggi
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Lazaros Vasilikos
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Aida Freire Valls
- Biochemistry Center, Heidelberg University, Heidelberg, Germany.,Department of General, Visceral and Transplantation Surgery, Heidelberg University, Heidelberg, Germany
| | - Rosario Yerbes
- Biochemistry Center, Heidelberg University, Heidelberg, Germany
| | - Janin Knop
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Lisanne M Spilgies
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Kristy Rieck
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Tvisha Misra
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - John Bertin
- Pattern Recognition Receptor Discovery Performance Unit, Immuno-Inflammation Therapeutic Area, GlaxoSmithKline, Collegeville, PA, USA
| | - Peter J Gough
- Pattern Recognition Receptor Discovery Performance Unit, Immuno-Inflammation Therapeutic Area, GlaxoSmithKline, Collegeville, PA, USA
| | - Thomas Schmidt
- Department of General, Visceral and Transplantation Surgery, Heidelberg University, Heidelberg, Germany
| | | | - W Wei-Lynn Wong
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
403
|
Jorgensen I, Rayamajhi M, Miao EA. Programmed cell death as a defence against infection. Nat Rev Immunol 2017; 17:151-164. [PMID: 28138137 DOI: 10.1038/nri.2016.147] [Citation(s) in RCA: 723] [Impact Index Per Article: 90.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Eukaryotic cells can die from physical trauma, which results in necrosis. Alternatively, they can die through programmed cell death upon the stimulation of specific signalling pathways. In this Review, we discuss the role of different cell death pathways in innate immune defence against bacterial and viral infection: apoptosis, necroptosis, pyroptosis and NETosis. We describe the interactions that interweave different programmed cell death pathways, which create complex signalling networks that cross-guard each other in the evolutionary 'arms race' with pathogens. Finally, we describe how the resulting cell corpses - apoptotic bodies, pore-induced intracellular traps (PITs) and neutrophil extracellular traps (NETs) - promote the clearance of infection.
Collapse
Affiliation(s)
- Ine Jorgensen
- Department of Immunology, Oslo University Hospital, Sognsvannsveien 20, Rikshospitalet 0372, Oslo, Norway
| | - Manira Rayamajhi
- Camargo Pharmaceutical Services, 2505 Meridian Parkway, Suite 175, Durham, North Carolina 27713, USA
| | - Edward A Miao
- Department of Microbiology and Immunology, Lineberger Comprehensive Cancer Center, and Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| |
Collapse
|
404
|
Wegner KW, Saleh D, Degterev A. Complex Pathologic Roles of RIPK1 and RIPK3: Moving Beyond Necroptosis. Trends Pharmacol Sci 2017; 38:202-225. [PMID: 28126382 DOI: 10.1016/j.tips.2016.12.005] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 12/09/2016] [Accepted: 12/15/2016] [Indexed: 02/07/2023]
Abstract
A process of regulated necrosis, termed necroptosis, has been recognized as a major contributor to cell death and inflammation occurring under a wide range of pathologic settings. The core event in necroptosis is the formation of the detergent-insoluble 'necrosome' complex of homologous Ser/Thr kinases, receptor protein interacting kinase 1 (RIPK1) and receptor interacting protein kinase 3 (RIPK3), which promotes phosphorylation of a key prodeath effector, mixed lineage kinase domain-like (MLKL), by RIPK3. Core necroptosis mediators are under multiple controls, which have been a subject of intense investigation. Additional, non-necroptotic functions of these factors, primarily in controlling apoptosis and inflammatory responses, have also begun to emerge. This review will provide an overview of the current understanding of the human disease relevance of this pathway, and potential therapeutic strategies, targeting necroptosis mediators in various pathologies.
Collapse
Affiliation(s)
- Kelby W Wegner
- Master of Science in Biomedical Sciences Program, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Danish Saleh
- Medical Scientist Training Program and Program in Neuroscience, Sackler Graduate School, Tufts University, Boston, MA 02111, USA
| | - Alexei Degterev
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA.
| |
Collapse
|
405
|
Tanzer MC, Khan N, Rickard JA, Etemadi N, Lalaoui N, Spall SK, Hildebrand JM, Segal D, Miasari M, Chau D, Wong WL, McKinlay M, Chunduru SK, Benetatos CA, Condon SM, Vince JE, Herold MJ, Silke J. Combination of IAP antagonist and IFNγ activates novel caspase-10- and RIPK1-dependent cell death pathways. Cell Death Differ 2017; 24:481-491. [PMID: 28106882 DOI: 10.1038/cdd.2016.147] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 10/21/2016] [Accepted: 11/21/2016] [Indexed: 12/13/2022] Open
Abstract
Peptido-mimetic inhibitor of apoptosis protein (IAP) antagonists (Smac mimetics (SMs)) can kill tumour cells by depleting endogenous IAPs and thereby inducing tumour necrosis factor (TNF) production. We found that interferon-γ (IFNγ) synergises with SMs to kill cancer cells independently of TNF- and other cell death receptor signalling pathways. Surprisingly, CRISPR/Cas9 HT29 cells doubly deficient for caspase-8 and the necroptotic pathway mediators RIPK3 or MLKL were still sensitive to IFNγ/SM-induced killing. Triple CRISPR/Cas9-knockout HT29 cells lacking caspase-10 in addition to caspase-8 and RIPK3 or MLKL were resistant to IFNγ/SM killing. Caspase-8 and RIPK1 deficiency was, however, sufficient to protect cells from IFNγ/SM-induced cell death, implying a role for RIPK1 in the activation of caspase-10. These data show that RIPK1 and caspase-10 mediate cell death in HT29 cells when caspase-8-mediated apoptosis and necroptosis are blocked and help to clarify how SMs operate as chemotherapeutic agents.
Collapse
Affiliation(s)
- Maria C Tanzer
- Cell Signalling and Cell Death, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC 3050, Australia
| | - Nufail Khan
- Cell Signalling and Cell Death, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC 3050, Australia
| | - James A Rickard
- Cell Signalling and Cell Death, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC 3050, Australia
| | - Nima Etemadi
- Olivia Newton John Cancer Research Institute, Heidelberg, VIC 3084, Australia.,School of Cancer Medicine, La Trobe University, Melbourne, VIC 3084, Australia
| | - Najoua Lalaoui
- Cell Signalling and Cell Death, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC 3050, Australia
| | - Sukhdeep Kaur Spall
- Cell Signalling and Cell Death, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC 3050, Australia
| | - Joanne M Hildebrand
- Cell Signalling and Cell Death, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC 3050, Australia
| | - David Segal
- Cell Signalling and Cell Death, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC 3050, Australia
| | - Maria Miasari
- School of Cancer Medicine, La Trobe University, Melbourne, VIC 3084, Australia
| | - Diep Chau
- Cell Signalling and Cell Death, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC 3050, Australia
| | - WendyWei-Lynn Wong
- Institute of Experimental Immunology, University of Zurich, Zurich 8057, Switzerland
| | - Mark McKinlay
- TetraLogic Pharmaceuticals Corporation, Malvern, PA 19355, USA
| | | | | | | | - James E Vince
- Cell Signalling and Cell Death, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC 3050, Australia
| | - Marco J Herold
- Cell Signalling and Cell Death, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC 3050, Australia
| | - John Silke
- Cell Signalling and Cell Death, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC 3050, Australia
| |
Collapse
|
406
|
Feltham R, Vince JE, Lawlor KE. Caspase-8: not so silently deadly. Clin Transl Immunology 2017; 6:e124. [PMID: 28197335 PMCID: PMC5292560 DOI: 10.1038/cti.2016.83] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 11/27/2016] [Accepted: 11/29/2016] [Indexed: 12/22/2022] Open
Abstract
Apoptosis is a caspase-dependent programmed form of cell death, which is commonly believed to be an immunologically silent process, required for mammalian development and maintenance of cellular homoeostasis. In contrast, lytic forms of cell death, such as RIPK3- and MLKL-driven necroptosis, and caspase-1/11-dependent pyroptosis, are postulated to be inflammatory via the release of damage associated molecular patterns (DAMPs). Recently, the function of apoptotic caspase-8 has been extended to the negative regulation of necroptosis, the cleavage of inflammatory interleukin-1β (IL-1β) to its mature bioactive form, either directly or via the NLRP3 inflammasome, and the regulation of cytokine transcriptional responses. In view of these recent advances, human autoinflammatory diseases that are caused by mutations in cell death regulatory machinery are now associated with inappropriate inflammasome activation. In this review, we discuss the emerging crosstalk between cell death and innate immune cell inflammatory signalling, particularly focusing on novel non-apoptotic functions of caspase-8. We also highlight the growing number of autoinflammatory diseases that are associated with enhanced inflammasome function.
Collapse
Affiliation(s)
- Rebecca Feltham
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - James E Vince
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Kate E Lawlor
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
407
|
Ren Y, Su Y, Sun L, He S, Meng L, Liao D, Liu X, Ma Y, Liu C, Li S, Ruan H, Lei X, Wang X, Zhang Z. Discovery of a Highly Potent, Selective, and Metabolically Stable Inhibitor of Receptor-Interacting Protein 1 (RIP1) for the Treatment of Systemic Inflammatory Response Syndrome. J Med Chem 2017; 60:972-986. [PMID: 27992216 DOI: 10.1021/acs.jmedchem.6b01196] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
On the basis of its essential role in driving inflammation and disease pathology, cell necrosis has gradually been verified as a promising therapeutic target for treating atherosclerosis, systemic inflammatory response syndrome (SIRS), and ischemia injury, among other diseases. Most necrosis inhibitors targeting receptor-interacting protein 1 (RIP1) still require further optimization because of weak potency or poor metabolic stability. We conducted a phenotypic screen and identified a micromolar hit with novel amide structure. Medicinal chemistry efforts yielded a highly potent, selective, and metabolically stable drug candidate, compound 56 (RIPA-56). Biochemical studies and molecular docking revealed that RIP1 is the direct target of this new series of type III kinase inhibitors. In the SIRS mice disease model, 56 efficiently reduced tumor necrosis factor alpha (TNFα)-induced mortality and multiorgan damage. Compared to known RIP1 inhibitors, 56 is potent in both human and murine cells, is much more stable in vivo, and is efficacious in animal model studies.
Collapse
Affiliation(s)
- Yan Ren
- National Institute of Biological Sciences , No. 7 Science Park Road, Zhongguancun Life Science Park, Changping District, Beijing 102206, China
| | - Yaning Su
- National Institute of Biological Sciences , No. 7 Science Park Road, Zhongguancun Life Science Park, Changping District, Beijing 102206, China
| | - Liming Sun
- National Institute of Biological Sciences , No. 7 Science Park Road, Zhongguancun Life Science Park, Changping District, Beijing 102206, China
| | - Sudan He
- National Institute of Biological Sciences , No. 7 Science Park Road, Zhongguancun Life Science Park, Changping District, Beijing 102206, China
| | - Lingjun Meng
- National Institute of Biological Sciences , No. 7 Science Park Road, Zhongguancun Life Science Park, Changping District, Beijing 102206, China
| | - Daohong Liao
- National Institute of Biological Sciences , No. 7 Science Park Road, Zhongguancun Life Science Park, Changping District, Beijing 102206, China
| | - Xiao Liu
- National Institute of Biological Sciences , No. 7 Science Park Road, Zhongguancun Life Science Park, Changping District, Beijing 102206, China
| | - Yongfen Ma
- National Institute of Biological Sciences , No. 7 Science Park Road, Zhongguancun Life Science Park, Changping District, Beijing 102206, China
| | - Chunyan Liu
- National Institute of Biological Sciences , No. 7 Science Park Road, Zhongguancun Life Science Park, Changping District, Beijing 102206, China
| | - Sisi Li
- National Institute of Biological Sciences , No. 7 Science Park Road, Zhongguancun Life Science Park, Changping District, Beijing 102206, China
| | - Hanying Ruan
- National Institute of Biological Sciences , No. 7 Science Park Road, Zhongguancun Life Science Park, Changping District, Beijing 102206, China
| | - Xiaoguang Lei
- National Institute of Biological Sciences , No. 7 Science Park Road, Zhongguancun Life Science Park, Changping District, Beijing 102206, China
| | - Xiaodong Wang
- National Institute of Biological Sciences , No. 7 Science Park Road, Zhongguancun Life Science Park, Changping District, Beijing 102206, China
| | - Zhiyuan Zhang
- National Institute of Biological Sciences , No. 7 Science Park Road, Zhongguancun Life Science Park, Changping District, Beijing 102206, China.,Collaborative Innovation Center for Cancer Medicine , Beijing 100850, China
| |
Collapse
|
408
|
Mechanisms of RIPK3‐induced inflammation. Immunol Cell Biol 2017; 95:166-172. [DOI: 10.1038/icb.2016.124] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 11/24/2016] [Accepted: 11/27/2016] [Indexed: 12/21/2022]
|
409
|
Chao X, Wang S, Ding WX. Cell Death in Alcohol-Induced Liver Injury. CELLULAR INJURY IN LIVER DISEASES 2017:119-142. [DOI: 10.1007/978-3-319-53774-0_6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
|
410
|
Dey A, Mustafi SB, Saha S, Kumar Dhar Dwivedi S, Mukherjee P, Bhattacharya R. Inhibition of BMI1 induces autophagy-mediated necroptosis. Autophagy 2016; 12:659-70. [PMID: 27050456 DOI: 10.1080/15548627.2016.1147670] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
The clonal self-renewal property conferred by BMI1 is instrumental in maintenance of not only normal stem cells but also cancer-initiating cells from several different malignancies that represent a major challenge to chemotherapy. Realizing the immense pathological significance, PTC-209, a small molecule inhibitor of BMI1 transcription has recently been described. While targeting BMI1 in various systems significantly decreases clonal growth, the mechanisms differ, are context-dependent, and somewhat unclear. We report here that genetic or pharmacological inhibition of BMI1 significantly impacts clonal growth without altering CDKN2A/INK4/ARF or CCNG2 and induces autophagy in ovarian cancer (OvCa) cells through ATP depletion. While autophagy can promote survival or induce cell death, targeting BMI1 engages the PINK1-PARK2-dependent mitochondrial pathway and induces a novel mode of nonapoptotic, necroptosis-mediated cell death. In OvCa, necroptosis is potentiated by activation of the RIPK1-RIPK3 complex that phosphorylates its downstream substrate, MLKL. Importantly, genetic or pharmacological inhibitors of autophagy or RIPK3 rescue clonal growth in BMI1 depleted cells. Thus, we have established a novel molecular link between BMI1, clonal growth, autophagy and necroptosis. In chemoresistant OvCa where apoptotic pathways are frequently impaired, necroptotic cell death modalities provide an important alternate strategy that leverage overexpression of BMI1.
Collapse
Affiliation(s)
- Anindya Dey
- a Department of Obstetrics and Gynecology , Stephenson Cancer Center, University of Oklahoma Health Science Center , Oklahoma City , OK , USA
| | - Soumyajit Banerjee Mustafi
- a Department of Obstetrics and Gynecology , Stephenson Cancer Center, University of Oklahoma Health Science Center , Oklahoma City , OK , USA
| | - Sounik Saha
- b Department of Pathology , Stephenson Cancer Center, University of Oklahoma Health Science Center , Oklahoma City , OK , USA
| | - Shailendra Kumar Dhar Dwivedi
- a Department of Obstetrics and Gynecology , Stephenson Cancer Center, University of Oklahoma Health Science Center , Oklahoma City , OK , USA
| | - Priyabrata Mukherjee
- b Department of Pathology , Stephenson Cancer Center, University of Oklahoma Health Science Center , Oklahoma City , OK , USA
| | - Resham Bhattacharya
- a Department of Obstetrics and Gynecology , Stephenson Cancer Center, University of Oklahoma Health Science Center , Oklahoma City , OK , USA.,c Department of Cell Biology , University of Oklahoma College of Medicine , Oklahoma City , OK , USA
| |
Collapse
|
411
|
Weinlich R, Oberst A, Beere HM, Green DR. Necroptosis in development, inflammation and disease. Nat Rev Mol Cell Biol 2016; 18:127-136. [DOI: 10.1038/nrm.2016.149] [Citation(s) in RCA: 497] [Impact Index Per Article: 55.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
412
|
Abstract
DNA-encoded chemical library technologies are increasingly being adopted in drug discovery for hit and lead generation. DNA-encoded chemistry enables the exploration of chemical spaces four to five orders of magnitude more deeply than is achievable by traditional high-throughput screening methods. Operation of this technology requires developing a range of capabilities including aqueous synthetic chemistry, building block acquisition, oligonucleotide conjugation, large-scale molecular biological transformations, selection methodologies, PCR, sequencing, sequence data analysis and the analysis of large chemistry spaces. This Review provides an overview of the development and applications of DNA-encoded chemistry, highlighting the challenges and future directions for the use of this technology.
Collapse
|
413
|
Galluzzi L, Kepp O, Chan FKM, Kroemer G. Necroptosis: Mechanisms and Relevance to Disease. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2016; 12:103-130. [PMID: 27959630 DOI: 10.1146/annurev-pathol-052016-100247] [Citation(s) in RCA: 513] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Necroptosis is a form of regulated cell death that critically depends on receptor-interacting serine-threonine kinase 3 (RIPK3) and mixed lineage kinase domain-like (MLKL) and generally manifests with morphological features of necrosis. The molecular mechanisms that underlie distinct instances of necroptosis have just begun to emerge. Nonetheless, it has already been shown that necroptosis contributes to cellular demise in various pathophysiological conditions, including viral infection, acute kidney injury, and cardiac ischemia/reperfusion. Moreover, human tumors appear to obtain an advantage from the downregulation of key components of the molecular machinery for necroptosis. Although such an advantage may stem from an increased resistance to adverse microenvironmental conditions, accumulating evidence indicates that necroptosis-deficient cancer cells are poorly immunogenic and hence escape natural and therapy-elicited immunosurveillance. Here, we discuss the molecular mechanisms and relevance to disease of necroptosis.
Collapse
Affiliation(s)
- Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY 10065; .,Equipe 11 labellisée Ligue contre le Cancer, Centre de Recherche des Cordeliers, 75006 Paris, France; .,INSERM, U1138, 75006 Paris, France.,Université Paris Descartes/Paris V, Sorbonne Paris Cité, 75006 Paris, France.,Université Pierre et Marie Curie/Paris VI, 75006 Paris, France.,Gustave Roussy Comprehensive Cancer Institute, 94805 Villejuif, France
| | - Oliver Kepp
- Equipe 11 labellisée Ligue contre le Cancer, Centre de Recherche des Cordeliers, 75006 Paris, France; .,INSERM, U1138, 75006 Paris, France.,Université Paris Descartes/Paris V, Sorbonne Paris Cité, 75006 Paris, France.,Université Pierre et Marie Curie/Paris VI, 75006 Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, 94805 Villejuif, France;
| | | | - Guido Kroemer
- Equipe 11 labellisée Ligue contre le Cancer, Centre de Recherche des Cordeliers, 75006 Paris, France; .,INSERM, U1138, 75006 Paris, France.,Université Paris Descartes/Paris V, Sorbonne Paris Cité, 75006 Paris, France.,Université Pierre et Marie Curie/Paris VI, 75006 Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, 94805 Villejuif, France; .,Department of Women's and Children's Health, Karolinska Institute, Karolinska University Hospital, 17176 Stockholm, Sweden.,Pôle de Biologie, Hôpital Européen George Pompidou, AP-HP, 75015 Paris, France
| |
Collapse
|
414
|
Dara L, Kaplowitz N. The many faces of RIPK3: What about NASH? Hepatology 2016; 64:1411-1413. [PMID: 27338154 PMCID: PMC5074903 DOI: 10.1002/hep.28700] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 06/14/2016] [Indexed: 01/15/2023]
Affiliation(s)
- Lily Dara
- Division of GI/Liver, Department of Medicine, Research Center for Liver Disease, Keck School of Medicine, University of Southern California, Los Angeles, CA.
| | | |
Collapse
|
415
|
Roychowdhury S, McCullough RL, Sanz-Garcia C, Saikia P, Alkhouri N, Matloob A, Pollard K, McMullen MR, Croniger CM, Nagy LE. Receptor interacting protein 3 protects mice from high-fat diet-induced liver injury. Hepatology 2016; 64:1518-1533. [PMID: 27301788 PMCID: PMC5074889 DOI: 10.1002/hep.28676] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 05/02/2016] [Accepted: 05/16/2016] [Indexed: 12/14/2022]
Abstract
UNLABELLED Multiple pathways of programmed cell death are important in liver homeostasis. Hepatocyte death is associated with progression of nonalcoholic fatty liver disease, and inhibition of apoptosis partially protects against liver injury in response to a high-fat diet (HFD). However, the contribution of necroptosis, a caspase-independent pathway of cell death, to HFD-induced liver injury is not known. Wild-type C57BL/6 and receptor interacting protein (RIP) 3-/- mice were randomized to chow or HFD. HFD-fed C57BL/6 mice increased expression of RIP3, the master regulator of necroptosis, as well as phosphorylated mixed lineage kinase domain-like, an effector of necroptotic cell death, in liver. HFD did not increase phosphorylated mixed lineage kinase domain-like in RIP3-/- mice. HFD increased fasting insulin and glucose, as well as glucose intolerance, in C57BL/6 mice. RIP3-/- mice were glucose-intolerant even on the chow diet; HFD further increased fasting glucose and insulin but not glucose intolerance. HFD also increased hepatic steatosis, plasma alanine aminotransferase activity, inflammation, oxidative stress, and hepatocellular apoptosis in wild-type mice; these responses were exacerbated in RIP3-/- mice. Importantly, increased inflammation and injury were associated with early indicators of fibrosis in RIP3-/- compared to C57BL/6 mice. Culture of AML12 hepatocytes with palmitic acid increased cytotoxicity through apoptosis and necrosis. Inhibition of RIP1 with necrostatin-1 or small interfering RNA knockdown of RIP3 reduced palmitic acid-induced cytotoxicity. CONCLUSION Absence of RIP3, a key mediator of necroptosis, exacerbated HFD-induced liver injury, associated with increased inflammation and hepatocyte apoptosis, as well as early fibrotic responses; these findings indicate that shifts in the mode of hepatocellular death can influence disease progression and have therapeutic implications because manipulation of hepatocyte cell death pathways is being considered as a target for treatment of nonalcoholic fatty liver disease. (Hepatology 2016;64:1518-1533).
Collapse
Affiliation(s)
- Sanjoy Roychowdhury
- Center for Liver Disease Research, Department of Pathobiology, Cleveland Clinic, Cleveland, Ohio,Department of Molecular Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Rebecca L. McCullough
- Center for Liver Disease Research, Department of Pathobiology, Cleveland Clinic, Cleveland, Ohio
| | - Carlos Sanz-Garcia
- Center for Liver Disease Research, Department of Pathobiology, Cleveland Clinic, Cleveland, Ohio
| | - Paramananda Saikia
- Center for Liver Disease Research, Department of Pathobiology, Cleveland Clinic, Cleveland, Ohio
| | - Naim Alkhouri
- Department of Gastroenterology, Cleveland Clinic, Cleveland, Ohio,Department of Pediatric Gastroenterology, Cleveland Clinic, Cleveland, Ohio
| | - Ammar Matloob
- Department of Pediatric Gastroenterology, Cleveland Clinic, Cleveland, Ohio
| | - Katherine Pollard
- Center for Liver Disease Research, Department of Pathobiology, Cleveland Clinic, Cleveland, Ohio
| | - Megan R. McMullen
- Center for Liver Disease Research, Department of Pathobiology, Cleveland Clinic, Cleveland, Ohio
| | | | - Laura E. Nagy
- Center for Liver Disease Research, Department of Pathobiology, Cleveland Clinic, Cleveland, Ohio,Department of Gastroenterology, Cleveland Clinic, Cleveland, Ohio,Department of Nutrition, Case Western Reserve University, Cleveland, Ohio,Department of Molecular Medicine, Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|
416
|
Kung JE, Jura N. Structural Basis for the Non-catalytic Functions of Protein Kinases. Structure 2016; 24:7-24. [PMID: 26745528 DOI: 10.1016/j.str.2015.10.020] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 09/18/2015] [Accepted: 10/04/2015] [Indexed: 01/07/2023]
Abstract
Protein kinases are known primarily for their ability to phosphorylate protein substrates, which constitutes an essential biological process. Recently, compelling evidence has accumulated that the functions of many protein kinases extend beyond phosphorylation and include an impressive spectrum of non-catalytic roles, such as scaffolding, allosteric regulation, or even protein-DNA interactions. How the conserved kinase fold shared by all metazoan protein kinases can accomplish these diverse tasks in a specific and regulated manner is poorly understood. In this review, we analyze the molecular mechanisms supporting phosphorylation-independent signaling by kinases and attempt to identify common and unique structural characteristics that enable kinases to perform non-catalytic functions. We also discuss how post-translational modifications, protein-protein interactions, and small molecules modulate these non-canonical kinase functions. Finally, we highlight current efforts in the targeted design of small-molecule modulators of non-catalytic kinase functions, a new pharmacological challenge for which structural considerations are more important than ever.
Collapse
Affiliation(s)
- Jennifer E Kung
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Natalia Jura
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
417
|
Sensitizing acute myeloid leukemia cells to induced differentiation by inhibiting the RIP1/RIP3 pathway. Leukemia 2016; 31:1154-1165. [PMID: 27748372 DOI: 10.1038/leu.2016.287] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 09/27/2016] [Accepted: 09/29/2016] [Indexed: 12/17/2022]
Abstract
Tumor necrosis factor-α (TNF-α)-induced RIP1/RIP3 (receptor-interacting protein kinase 1/receptor-interacting protein kinase 3)-mediated necroptosis has been proposed as an alternative strategy for treating apoptosis-resistant leukemia. However, we found that most acute myeloid leukemia (AML) cells, especially M4 and M5 subtypes, produce TNF and show basal level activation of RIP1/RIP3/MLKL signaling, yet do not undergo necroptosis. TNF, through RIP1/RIP3 signaling, prevents degradation of SOCS1, a key negative regulator of interferon-γ (IFN-γ) signaling. Using both pharmacologic and genetic assays, we show here that inactivation of RIP1/RIP3 resulted in reduction of SOCS1 protein levels and partial differentiation of AML cells. AML cells with inactivated RIP1/RIP3 signaling show increased sensitivity to IFN-γ-induced differentiation. RIP1/RIP3 inactivation combined with IFN-γ treatment significantly attenuated the clonogenic capacity of both primary AML cells and AML cell lines. This combination treatment also compromised the leukemogenic ability of murine AML cells in vivo. Our studies suggest that inhibition of RIP1/RIP3-mediated necroptotic signaling might be a novel strategy for the treatment of AML when combined with other differentiation inducers.
Collapse
|
418
|
Philip NH, DeLaney A, Peterson LW, Santos-Marrero M, Grier JT, Sun Y, Wynosky-Dolfi MA, Zwack EE, Hu B, Olsen TM, Rongvaux A, Pope SD, López CB, Oberst A, Beiting DP, Henao-Mejia J, Brodsky IE. Activity of Uncleaved Caspase-8 Controls Anti-bacterial Immune Defense and TLR-Induced Cytokine Production Independent of Cell Death. PLoS Pathog 2016; 12:e1005910. [PMID: 27737018 PMCID: PMC5063320 DOI: 10.1371/journal.ppat.1005910] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 09/01/2016] [Indexed: 12/29/2022] Open
Abstract
Caspases regulate cell death programs in response to environmental stresses, including infection and inflammation, and are therefore critical for the proper operation of the mammalian immune system. Caspase-8 is necessary for optimal production of inflammatory cytokines and host defense against infection by multiple pathogens including Yersinia, but whether this is due to death of infected cells or an intrinsic role of caspase-8 in TLR-induced gene expression is unknown. Caspase-8 activation at death signaling complexes results in its autoprocessing and subsequent cleavage and activation of its downstream apoptotic targets. Whether caspase-8 activity is also important for inflammatory gene expression during bacterial infection has not been investigated. Here, we report that caspase-8 plays an essential cell-intrinsic role in innate inflammatory cytokine production in vivo during Yersinia infection. Unexpectedly, we found that caspase-8 enzymatic activity regulates gene expression in response to bacterial infection as well as TLR signaling independently of apoptosis. Using newly-generated mice in which caspase-8 autoprocessing is ablated (Casp8DA/DA), we now demonstrate that caspase-8 enzymatic activity, but not autoprocessing, mediates induction of inflammatory cytokines by bacterial infection and a wide variety of TLR stimuli. Because unprocessed caspase-8 functions in an enzymatic complex with its homolog cFLIP, our findings implicate the caspase-8/cFLIP heterodimer in control of inflammatory cytokines during microbial infection, and provide new insight into regulation of antibacterial immune defense. TLR signaling induces expression of key inflammatory cytokines and pro-survival factors that facilitate control of microbial infection. TLR signaling can also engage cell death pathways through activation of enzymes known as caspases. Caspase-8 activates apoptosis in response to infection by pathogens that interfere with NF-κB signaling, including Yersinia, but has also recently been linked to control of inflammatory gene expression. Pathogenic Yersinia can cause severe disease ranging from gastroenteritis to plague. While caspase-8 mediates cell death in response to Yersinia infection as well as other signals, its precise role in gene expression and host defense during in vivo infection is unknown. Here, we show that caspase-8 activity promotes cell-intrinsic cytokine expression, independent of its role in cell death in response to Yersinia infection. Our studies further demonstrate that caspase-8 enzymatic activity plays a previously undescribed role in ensuring optimal TLR-induced gene expression by innate cells during bacterial infection. This work sheds new light on mechanisms that regulate essential innate anti-bacterial immune defense.
Collapse
Affiliation(s)
- Naomi H. Philip
- University of Pennsylvania School of Veterinary Medicine, Department of Pathobiology, Philadelphia, Pennsylvania, United States of America
- University of Pennsylvania Perelman School of Medicine, Institute for Immunology, Philadelphia, Pennsylvania, United States of America
| | - Alexandra DeLaney
- University of Pennsylvania School of Veterinary Medicine, Department of Pathobiology, Philadelphia, Pennsylvania, United States of America
| | - Lance W. Peterson
- University of Pennsylvania School of Veterinary Medicine, Department of Pathobiology, Philadelphia, Pennsylvania, United States of America
- University of Pennsylvania Perelman School of Medicine, Institute for Immunology, Philadelphia, Pennsylvania, United States of America
| | - Melanie Santos-Marrero
- University of Pennsylvania School of Veterinary Medicine, Department of Pathobiology, Philadelphia, Pennsylvania, United States of America
- University of Pennsylvania Perelman School of Medicine, Institute for Immunology, Philadelphia, Pennsylvania, United States of America
| | - Jennifer T. Grier
- University of Pennsylvania School of Veterinary Medicine, Department of Pathobiology, Philadelphia, Pennsylvania, United States of America
| | - Yan Sun
- University of Pennsylvania School of Veterinary Medicine, Department of Pathobiology, Philadelphia, Pennsylvania, United States of America
| | - Meghan A. Wynosky-Dolfi
- University of Pennsylvania School of Veterinary Medicine, Department of Pathobiology, Philadelphia, Pennsylvania, United States of America
| | - Erin E. Zwack
- University of Pennsylvania School of Veterinary Medicine, Department of Pathobiology, Philadelphia, Pennsylvania, United States of America
| | - Baofeng Hu
- University of Pennsylvania School of Veterinary Medicine, Department of Pathobiology, Philadelphia, Pennsylvania, United States of America
| | - Tayla M. Olsen
- University of Washington, Department of Immunology, Seattle, Washington, United States of America
| | - Anthony Rongvaux
- Fred Hutchinson Cancer Research Center, Clinical Research Division and Program in Immunology, Seattle, Washington, United States of America
| | - Scott D. Pope
- Yale University School of Medicine, Department of Immunobiology, New Haven, Connecticut, United States of America
| | - Carolina B. López
- University of Pennsylvania School of Veterinary Medicine, Department of Pathobiology, Philadelphia, Pennsylvania, United States of America
- University of Pennsylvania Perelman School of Medicine, Institute for Immunology, Philadelphia, Pennsylvania, United States of America
| | - Andrew Oberst
- University of Washington, Department of Immunology, Seattle, Washington, United States of America
| | - Daniel P. Beiting
- University of Pennsylvania School of Veterinary Medicine, Department of Pathobiology, Philadelphia, Pennsylvania, United States of America
- University of Pennsylvania Perelman School of Medicine, Institute for Immunology, Philadelphia, Pennsylvania, United States of America
| | - Jorge Henao-Mejia
- University of Pennsylvania Perelman School of Medicine, Institute for Immunology, Philadelphia, Pennsylvania, United States of America
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania and Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Igor E. Brodsky
- University of Pennsylvania School of Veterinary Medicine, Department of Pathobiology, Philadelphia, Pennsylvania, United States of America
- University of Pennsylvania Perelman School of Medicine, Institute for Immunology, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
419
|
Affiliation(s)
- Ulrike Höckendorf
- a III. Medizinische Klinik für Hämatologie und Internistische Onkologie, Klinikum rechts der Isar, Technische Universität München , Munich , Germany
| | - Monica Yabal
- a III. Medizinische Klinik für Hämatologie und Internistische Onkologie, Klinikum rechts der Isar, Technische Universität München , Munich , Germany
| | - Philipp J Jost
- a III. Medizinische Klinik für Hämatologie und Internistische Onkologie, Klinikum rechts der Isar, Technische Universität München , Munich , Germany
| |
Collapse
|
420
|
Wang X, He Z, Liu H, Yousefi S, Simon HU. Neutrophil Necroptosis Is Triggered by Ligation of Adhesion Molecules following GM-CSF Priming. THE JOURNAL OF IMMUNOLOGY 2016; 197:4090-4100. [DOI: 10.4049/jimmunol.1600051] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 09/12/2016] [Indexed: 01/08/2023]
|
421
|
Moriwaki K, Chan FKM. The Inflammatory Signal Adaptor RIPK3: Functions Beyond Necroptosis. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 328:253-275. [PMID: 28069136 DOI: 10.1016/bs.ircmb.2016.08.007] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Receptor interacting protein kinase 3 (RIPK3) is an essential serine/threonine kinase for necroptosis, a type of regulated necrosis. A variety of stimuli can cause RIPK3 activation through phosphorylation. Activated RIPK3 in turn phosphorylates and activates the downstream necroptosis executioner mixed lineage kinase domain-like (MLKL). Necroptosis is a highly inflammatory type of cell death because of the release of intracellular immunogenic contents from disrupted plasma membrane. Indeed, RIPK3-deficient mice exhibited reduced inflammation in many inflammatory disease models. These results have been interpreted as evidence that necroptosis is a key driver for RIPK3-induced inflammation. Interestingly, recent studies show that RIPK3 also regulates NF-κB, inflammasome activation, and kinase-independent apoptosis. These studies also reveal that these nonnecroptotic functions contribute significantly to disease pathogenesis. In this review, we summarize our current understanding of necroptotic and nonnecroptotic functions of RIPK3 and discuss how these effects contribute to RIPK3-mediated inflammation.
Collapse
Affiliation(s)
- K Moriwaki
- Department of Pathology, Immunology and Microbiology Program, University of Massachusetts Medical School, Worcester, MA, United States
| | - F K-M Chan
- Department of Pathology, Immunology and Microbiology Program, University of Massachusetts Medical School, Worcester, MA, United States.
| |
Collapse
|
422
|
NEMO regulates a cell death switch in TNF signaling by inhibiting recruitment of RIPK3 to the cell death-inducing complex II. Cell Death Dis 2016; 7:e2346. [PMID: 27560715 PMCID: PMC5108330 DOI: 10.1038/cddis.2016.245] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 07/01/2016] [Accepted: 07/19/2016] [Indexed: 12/26/2022]
Abstract
Incontinentia Pigmenti (IP) is a rare X-linked disease characterized by early male lethality and multiple abnormalities in heterozygous females. IP is caused by NF-κB essential modulator (NEMO) mutations. The current mechanistic model suggests that NEMO functions as a crucial component mediating the recruitment of the IκB-kinase (IKK) complex to tumor necrosis factor receptor 1 (TNF-R1), thus allowing activation of the pro-survival NF-κB response. However, recent studies have suggested that gene activation and cell death inhibition are two independent activities of NEMO. Here we describe that cells expressing the IP-associated NEMO-A323P mutant had completely abrogated TNF-induced NF-κB activation, but retained partial antiapoptotic activity and exhibited high sensitivity to death by necroptosis. We found that robust caspase activation in NEMO-deficient cells is concomitant with RIPK3 recruitment to the apoptosis-mediating complex. In contrast, cells expressing the ubiquitin-binding mutant NEMO-A323P did not recruit RIPK3 to complex II, an event that prevented caspase activation. Hence NEMO, independently from NF-κB activation, represents per se a key component in the structural and functional dynamics of the different TNF-R1-induced complexes. Alteration of this process may result in differing cellular outcomes and, consequently, also pathological effects in IP patients with different NEMO mutations.
Collapse
|
423
|
de Almagro MC, Goncharov T, Izrael-Tomasevic A, Duttler S, Kist M, Varfolomeev E, Wu X, Lee WP, Murray J, Webster JD, Yu K, Kirkpatrick DS, Newton K, Vucic D. Coordinated ubiquitination and phosphorylation of RIP1 regulates necroptotic cell death. Cell Death Differ 2016; 24:26-37. [PMID: 27518435 PMCID: PMC5260504 DOI: 10.1038/cdd.2016.78] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 06/15/2016] [Accepted: 07/07/2016] [Indexed: 12/23/2022] Open
Abstract
Proper regulation of cell death signaling is crucial for the maintenance of homeostasis and prevention of disease. A caspase-independent regulated form of cell death called necroptosis is rapidly emerging as an important mediator of a number of human pathologies including inflammatory bowel disease and ischemia–reperfusion organ injury. Activation of necroptotic signaling through TNF signaling or organ injury leads to the activation of kinases receptor-interacting protein kinases 1 and 3 (RIP1 and RIP3) and culminates in inflammatory cell death. We found that, in addition to phosphorylation, necroptotic cell death is regulated by ubiquitination of RIP1 in the necrosome. Necroptotic RIP1 ubiquitination requires RIP1 kinase activity, but not necroptotic mediators RIP3 and MLKL (mixed lineage kinase-like). Using immunoaffinity enrichment and mass spectrometry, we profiled numerous ubiquitination events on RIP1 that are triggered during necroptotic signaling. Mutation of a necroptosis-related ubiquitination site on RIP1 reduced necroptotic cell death and RIP1 ubiquitination and phosphorylation, and disrupted the assembly of RIP1 and RIP3 in the necrosome, suggesting that necroptotic RIP1 ubiquitination is important for maintaining RIP1 kinase activity in the necrosome complex. We also observed RIP1 ubiquitination in injured kidneys consistent with a physiological role of RIP1 ubiquitination in ischemia–reperfusion disease. Taken together, these data reveal that coordinated and interdependent RIP1 phosphorylation and ubiquitination within the necroptotic complex regulate necroptotic signaling and cell death.
Collapse
Affiliation(s)
- M Cristina de Almagro
- Department of Early Discovery Biochemistry, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Tatiana Goncharov
- Department of Early Discovery Biochemistry, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Anita Izrael-Tomasevic
- Department of Protein Chemistry, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Stefanie Duttler
- Department of Early Discovery Biochemistry, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Matthias Kist
- Department of Early Discovery Biochemistry, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Eugene Varfolomeev
- Department of Early Discovery Biochemistry, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Xiumin Wu
- Department of Translational Immunology, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Wyne P Lee
- Department of Translational Immunology, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Jeremy Murray
- Department of Structural Biology, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Joshua D Webster
- Department of Pathology, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Kebing Yu
- Department of Protein Chemistry, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Donald S Kirkpatrick
- Department of Protein Chemistry, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Kim Newton
- Departments of Physiological Chemistry, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Domagoj Vucic
- Department of Early Discovery Biochemistry, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA
| |
Collapse
|
424
|
Kuriakose T, Man SM, Malireddi RKS, Karki R, Kesavardhana S, Place DE, Neale G, Vogel P, Kanneganti TD. ZBP1/DAI is an innate sensor of influenza virus triggering the NLRP3 inflammasome and programmed cell death pathways. Sci Immunol 2016; 1. [PMID: 27917412 DOI: 10.1126/sciimmunol.aag2045] [Citation(s) in RCA: 553] [Impact Index Per Article: 61.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The interferon-inducible protein Z-DNA binding protein 1 (ZBP1, also known as DNA-dependent activator of IFN-regulatory factors (DAI) and DLM-1) was identified as a dsDNA sensor, which instigates innate immune responses. However, this classification has been disputed and whether ZBP1 functions as a pathogen sensor during an infection has remained unknown. Herein, we demonstrated ZBP1-mediated sensing of the influenza A virus (IAV) proteins NP and PB1, triggering cell death and inflammatory responses via the RIPK1-RIPK3-Caspase-8 axis. ZBP1 regulates NLRP3 inflammasome activation as well as induction of apoptosis, necroptosis and pyroptosis in IAV-infected cells. Importantly, ZBP1 deficiency protected mice from mortality during IAV infection owing to reduced inflammatory responses and epithelial damage. Overall, these findings indicate that ZBP1 is an innate immune sensor of IAV and highlight its importance in the pathogenesis of IAV infection.
Collapse
Affiliation(s)
- Teneema Kuriakose
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Si Ming Man
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - R K Subbarao Malireddi
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Rajendra Karki
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Sannula Kesavardhana
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - David E Place
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Geoffrey Neale
- Hartwell Center for Bioinformatics & Biotechnology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Peter Vogel
- Animal Resources Center and the Veterinary Pathology Core, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | | |
Collapse
|
425
|
Alvarez-Diaz S, Dillon CP, Lalaoui N, Tanzer MC, Rodriguez DA, Lin A, Lebois M, Hakem R, Josefsson EC, O'Reilly LA, Silke J, Alexander WS, Green DR, Strasser A. The Pseudokinase MLKL and the Kinase RIPK3 Have Distinct Roles in Autoimmune Disease Caused by Loss of Death-Receptor-Induced Apoptosis. Immunity 2016; 45:513-526. [PMID: 27523270 DOI: 10.1016/j.immuni.2016.07.016] [Citation(s) in RCA: 191] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 05/23/2016] [Accepted: 06/06/2016] [Indexed: 12/12/2022]
Abstract
The kinases RIPK1 and RIPK3 and the pseudo-kinase MLKL have been identified as key regulators of the necroptotic cell death pathway, although a role for MLKL within the whole animal has not yet been established. Here, we have shown that MLKL deficiency rescued the embryonic lethality caused by loss of Caspase-8 or FADD. Casp8(-/-)Mlkl(-/-) and Fadd(-/-)Mlkl(-/-) mice were viable and fertile but rapidly developed severe lymphadenopathy, systemic autoimmune disease, and thrombocytopenia. These morbidities occurred more rapidly and with increased severity in Casp8(-/-)Mlkl(-/-) and Fadd(-/-)Mlkl(-/-) mice compared to Casp8(-/-)Ripk3(-/-) or Fadd(-/-)Ripk3(-/-) mice, respectively. These results demonstrate that MLKL is an essential effector of aberrant necroptosis in embryos caused by loss of Caspase-8 or FADD. Furthermore, they suggest that RIPK3 and/or MLKL may exert functions independently of necroptosis. It appears that non-necroptotic functions of RIPK3 contribute to the lymphadenopathy, autoimmunity, and excess cytokine production that occur when FADD or Caspase-8-mediated apoptosis is abrogated.
Collapse
Affiliation(s)
- Silvia Alvarez-Diaz
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria 3050, Australia
| | - Christopher P Dillon
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Najoua Lalaoui
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria 3050, Australia
| | - Maria C Tanzer
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria 3050, Australia
| | - Diego A Rodriguez
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Ann Lin
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
| | - Marion Lebois
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
| | - Razq Hakem
- Ontario Cancer Institute, University Health Network, and Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 2M9, Canada
| | - Emma C Josefsson
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria 3050, Australia
| | - Lorraine A O'Reilly
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria 3050, Australia
| | - John Silke
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria 3050, Australia
| | - Warren S Alexander
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria 3050, Australia.
| | - Douglas R Green
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| | - Andreas Strasser
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria 3050, Australia.
| |
Collapse
|
426
|
Nogusa S, Thapa RJ, Dillon CP, Liedmann S, Oguin TH, Ingram JP, Rodriguez DA, Kosoff R, Sharma S, Sturm O, Verbist K, Gough PJ, Bertin J, Hartmann BM, Sealfon SC, Kaiser WJ, Mocarski ES, López CB, Thomas PG, Oberst A, Green DR, Balachandran S. RIPK3 Activates Parallel Pathways of MLKL-Driven Necroptosis and FADD-Mediated Apoptosis to Protect against Influenza A Virus. Cell Host Microbe 2016; 20:13-24. [PMID: 27321907 PMCID: PMC5026823 DOI: 10.1016/j.chom.2016.05.011] [Citation(s) in RCA: 294] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 04/11/2016] [Accepted: 05/16/2016] [Indexed: 12/26/2022]
Abstract
Influenza A virus (IAV) is a lytic virus in primary cultures of many cell types and in vivo. We report that the kinase RIPK3 is essential for IAV-induced lysis of mammalian fibroblasts and lung epithelial cells. Replicating IAV drives assembly of a RIPK3-containing complex that includes the kinase RIPK1, the pseudokinase MLKL, and the adaptor protein FADD, and forms independently of signaling by RNA-sensing innate immune receptors (RLRs, TLRs, PKR), or the cytokines type I interferons and TNF-α. Downstream of RIPK3, IAV activates parallel pathways of MLKL-driven necroptosis and FADD-mediated apoptosis, with the former reliant on RIPK3 kinase activity and neither on RIPK1 activity. Mice deficient in RIPK3 or doubly deficient in MLKL and FADD, but not MLKL alone, are more susceptible to IAV than their wild-type counterparts, revealing an important role for RIPK3-mediated apoptosis in antiviral immunity. Collectively, these results outline RIPK3-activated cytolytic mechanisms essential for controlling respiratory IAV infection.
Collapse
Affiliation(s)
- Shoko Nogusa
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Roshan J Thapa
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Christopher P Dillon
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Swantje Liedmann
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Thomas H Oguin
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Justin P Ingram
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Diego A Rodriguez
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Rachelle Kosoff
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Shalini Sharma
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Oliver Sturm
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Katherine Verbist
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Peter J Gough
- Pattern Recognition Receptor Discovery Performance Unit, Immuno-Inflammation Therapeutic Area, GlaxoSmithKline, Collegeville, PA 19426, USA
| | - John Bertin
- Pattern Recognition Receptor Discovery Performance Unit, Immuno-Inflammation Therapeutic Area, GlaxoSmithKline, Collegeville, PA 19426, USA
| | - Boris M Hartmann
- Department of Neurology, Icahn School of Medicine at Mt. Sinai, New York, NY 10029, USA
| | - Stuart C Sealfon
- Department of Neurology, Icahn School of Medicine at Mt. Sinai, New York, NY 10029, USA
| | | | | | - Carolina B López
- School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Paul G Thomas
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Andrew Oberst
- Department of Microbiology and Immunology, University of Washington, Seattle, WA 98109, USA
| | - Douglas R Green
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| | - Siddharth Balachandran
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA.
| |
Collapse
|
427
|
Chan FKM. RIPK3 Slams the Brake on Leukemogenesis. Cancer Cell 2016; 30:7-9. [PMID: 27411581 DOI: 10.1016/j.ccell.2016.06.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Evasion of cell death is a key hallmark of cancers. In this issue of Cancer Cell, Höckendorf and colleagues identified RIPK3, an essential kinase for necroptosis, as having a key role in inhibiting acute myeloid leukemia development.
Collapse
Affiliation(s)
- Francis Ka-Ming Chan
- Department of Pathology, Immunology and Microbiology Program, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA.
| |
Collapse
|
428
|
Satz AL. Simulated Screens of DNA Encoded Libraries: The Potential Influence of Chemical Synthesis Fidelity on Interpretation of Structure-Activity Relationships. ACS COMBINATORIAL SCIENCE 2016; 18:415-24. [PMID: 27116029 DOI: 10.1021/acscombsci.6b00001] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Simulated screening of DNA encoded libraries indicates that the presence of truncated byproducts complicates the relationship between library member enrichment and equilibrium association constant (these truncates result from incomplete chemical reactions during library synthesis). Further, simulations indicate that some patterns observed in reported experimental data may result from the presence of truncated byproducts in the library mixture and not structure-activity relationships. Potential experimental methods of minimizing the presence of truncates are assessed via simulation; the relationship between enrichment and equilibrium association constant for libraries of differing purities is investigated. Data aggregation techniques are demonstrated that allow for more accurate analysis of screening results, in particular when the screened library contains significant quantities of truncates.
Collapse
Affiliation(s)
- Alexander L. Satz
- Roche Innovation Center Basel, Grenzacherstrasse
124, 4070 Basel, Switzerland
| |
Collapse
|
429
|
Höckendorf U, Yabal M, Herold T, Munkhbaatar E, Rott S, Jilg S, Kauschinger J, Magnani G, Reisinger F, Heuser M, Kreipe H, Sotlar K, Engleitner T, Rad R, Weichert W, Peschel C, Ruland J, Heikenwalder M, Spiekermann K, Slotta-Huspenina J, Groß O, Jost PJ. RIPK3 Restricts Myeloid Leukemogenesis by Promoting Cell Death and Differentiation of Leukemia Initiating Cells. Cancer Cell 2016; 30:75-91. [PMID: 27411587 DOI: 10.1016/j.ccell.2016.06.002] [Citation(s) in RCA: 146] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 03/04/2016] [Accepted: 06/01/2016] [Indexed: 01/08/2023]
Abstract
Since acute myeloid leukemia (AML) is characterized by the blockade of hematopoietic differentiation and cell death, we interrogated RIPK3 signaling in AML development. Genetic loss of Ripk3 converted murine FLT3-ITD-driven myeloproliferation into an overt AML by enhancing the accumulation of leukemia-initiating cells (LIC). Failed inflammasome activation and cell death mediated by tumor necrosis factor receptor caused this accumulation of LIC exemplified by accelerated leukemia onset in Il1r1(-/-), Pycard(-/-), and Tnfr1/2(-/-) mice. RIPK3 signaling was partly mediated by mixed lineage kinase domain-like. This link between suppression of RIPK3, failed interleukin-1β release, and blocked cell death was supported by significantly reduced RIPK3 in primary AML patient cohorts. Our data identify RIPK3 and the inflammasome as key tumor suppressors in AML.
Collapse
MESH Headings
- Animals
- Apoptosis
- Cell Differentiation
- Down-Regulation
- Gene Expression Profiling/methods
- Gene Expression Regulation, Leukemic
- Humans
- Inflammasomes/metabolism
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Mice
- Neoplasms, Experimental
- Neoplastic Stem Cells/cytology
- Receptor-Interacting Protein Serine-Threonine Kinases/genetics
- Receptor-Interacting Protein Serine-Threonine Kinases/metabolism
- Receptors, Tumor Necrosis Factor/metabolism
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Ulrike Höckendorf
- III. Medical Department for Hematology and Oncology, Klinikum rechts der Isar, Technische Universität München, 81675 München, Germany
| | - Monica Yabal
- III. Medical Department for Hematology and Oncology, Klinikum rechts der Isar, Technische Universität München, 81675 München, Germany
| | - Tobias Herold
- Department of Internal Medicine 3, University Hospital Grosshadern, Ludwig-Maximilians-Universität (LMU), 81377 München, Germany
| | - Enkhtsetseg Munkhbaatar
- III. Medical Department for Hematology and Oncology, Klinikum rechts der Isar, Technische Universität München, 81675 München, Germany
| | - Stephanie Rott
- III. Medical Department for Hematology and Oncology, Klinikum rechts der Isar, Technische Universität München, 81675 München, Germany
| | - Stefanie Jilg
- III. Medical Department for Hematology and Oncology, Klinikum rechts der Isar, Technische Universität München, 81675 München, Germany
| | - Johanna Kauschinger
- III. Medical Department for Hematology and Oncology, Klinikum rechts der Isar, Technische Universität München, 81675 München, Germany
| | - Giovanni Magnani
- Institute of Clinical Chemistry and Pathobiochemistry, Klinikum rechts der Isar, Technische Universität München, 81675 München, Germany
| | - Florian Reisinger
- Institute of Virology, Helmholtz Zentrum München für Gesundheit und Umwelt (HMGU), 85764 Neuherberg, Germany
| | - Michael Heuser
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, 30625 Hannover, Germany
| | - Hans Kreipe
- Institute of Pathology, Hannover Medical School, 30625 Hannover, Germany
| | - Karl Sotlar
- Institute of Pathology, Ludwig-Maximilians-University (LMU), 80337 München, Germany
| | - Thomas Engleitner
- II. Medical Department for Gastroentreology, Klinikum rechts der Isar, Technische Universität München, 81675 München, Germany; German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Roland Rad
- II. Medical Department for Gastroentreology, Klinikum rechts der Isar, Technische Universität München, 81675 München, Germany; German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Wilko Weichert
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Institute of Pathology, Klinikum rechts der Isar, Technische Universität München, 81675 München, Germany
| | - Christian Peschel
- III. Medical Department for Hematology and Oncology, Klinikum rechts der Isar, Technische Universität München, 81675 München, Germany; German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Jürgen Ruland
- Institute of Clinical Chemistry and Pathobiochemistry, Klinikum rechts der Isar, Technische Universität München, 81675 München, Germany; German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Mathias Heikenwalder
- Institute of Virology, Helmholtz Zentrum München für Gesundheit und Umwelt (HMGU), 85764 Neuherberg, Germany; Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Karsten Spiekermann
- Department of Internal Medicine 3, University Hospital Grosshadern, Ludwig-Maximilians-Universität (LMU), 81377 München, Germany; German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Julia Slotta-Huspenina
- Institute of Pathology, Klinikum rechts der Isar, Technische Universität München, 81675 München, Germany
| | - Olaf Groß
- Institute of Clinical Chemistry and Pathobiochemistry, Klinikum rechts der Isar, Technische Universität München, 81675 München, Germany
| | - Philipp J Jost
- III. Medical Department for Hematology and Oncology, Klinikum rechts der Isar, Technische Universität München, 81675 München, Germany; German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.
| |
Collapse
|
430
|
Nogusa S, Slifker MJ, Ingram JP, Thapa RJ, Balachandran S. RIPK3 Is Largely Dispensable for RIG-I-Like Receptor- and Type I Interferon-Driven Transcriptional Responses to Influenza A Virus in Murine Fibroblasts. PLoS One 2016; 11:e0158774. [PMID: 27391363 PMCID: PMC4938532 DOI: 10.1371/journal.pone.0158774] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 06/21/2016] [Indexed: 12/24/2022] Open
Abstract
The kinase RIPK3 is a key regulator of cell death responses to a growing number of viral and microbial agents. We have found that influenza A virus (IAV)-mediated cell death is largely reliant on RIPK3 and that RIPK3-deficient mice are notably more susceptible to lethal infection by IAV than their wild-type counterparts. Recent studies demonstrate that RIPK3 also participates in regulating gene transcription programs during host pro-inflammatory and innate-immune responses, indicating that this kinase is not solely an inducer of cell death and that RIPK3-driven transcriptional responses may collaborate with cell death in promoting clearance of IAV. Here, we carried out DNA microarray analyses to determine the contribution of RIPK3 to the IAV-elicited host transcriptional response. We report that RIPK3 does not contribute significantly to the RLR-activated transcriptome or to the induction of type I IFN genes, although, interestingly, IFN-β production at a post-transcriptional step was modestly attenuated in IAV-infected ripk3-/- fibroblasts. Overall, RIPK3 regulated the expression of <5% of the IAV-induced transcriptome, and no genes were found to be obligate RIPK3 targets. IFN-β signaling was also found to be largely normal in the absence of RIPK3. Together, these results indicate that RIPK3 is not essential for the host antiviral transcriptional response to IAV in murine fibroblasts.
Collapse
Affiliation(s)
- Shoko Nogusa
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania, United States of America
| | - Michael J. Slifker
- Department of Bioinformatics and Biostatistics, Fox Chase Cancer Center, Philadelphia, Pennsylvania, United States of America
| | - Justin P. Ingram
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania, United States of America
| | - Roshan J. Thapa
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania, United States of America
| | - Siddharth Balachandran
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
431
|
Najjar M, Saleh D, Zelic M, Nogusa S, Shah S, Tai A, Finger JN, Polykratis A, Gough PJ, Bertin J, Whalen M, Pasparakis M, Balachandran S, Kelliher M, Poltorak A, Degterev A. RIPK1 and RIPK3 Kinases Promote Cell-Death-Independent Inflammation by Toll-like Receptor 4. Immunity 2016; 45:46-59. [PMID: 27396959 DOI: 10.1016/j.immuni.2016.06.007] [Citation(s) in RCA: 219] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Revised: 03/14/2016] [Accepted: 04/05/2016] [Indexed: 01/28/2023]
Abstract
Macrophages are a crucial component of the innate immune system in sensing pathogens and promoting local and systemic inflammation. RIPK1 and RIPK3 are homologous kinases, previously linked to activation of necroptotic death. In this study, we have described roles for these kinases as master regulators of pro-inflammatory gene expression induced by lipopolysaccharide, independent of their well-documented cell death functions. In primary macrophages, this regulation was elicited in the absence of caspase-8 activity, required the adaptor molecule TRIF, and proceeded in a cell autonomous manner. RIPK1 and RIPK3 kinases promoted sustained activation of Erk, cFos, and NF-κB, which were required for inflammatory changes. Utilizing genetic and pharmacologic tools, we showed that RIPK1 and RIPK3 account for acute inflammatory responses induced by lipopolysaccharide in vivo; notably, this regulation did not require exogenous manipulation of caspases. These findings identified a new pharmacologically accessible pathway that may be relevant to inflammatory pathologies.
Collapse
Affiliation(s)
- Malek Najjar
- Program in Pharmacology and Experimental Therapeutics, Sackler Graduate School, Tufts University, Boston, MA 02111, USA
| | - Danish Saleh
- Medical Scientist Training Program and Program in Neuroscience, Sackler Graduate School, Tufts University, Boston, MA 02111, USA
| | - Matija Zelic
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Shoko Nogusa
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Saumil Shah
- Department of Developmental, Molecular & Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Albert Tai
- Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Joshua N Finger
- Pattern Recognition Receptor Discovery Performance Unit, Immuno-Inflammation Therapeutic Area, GlaxoSmithKline, Collegeville, PA 19426, USA
| | - Apostolos Polykratis
- Institute for Genetics, Center for Molecular Medicine and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, 50674 Cologne, Germany
| | - Peter J Gough
- Pattern Recognition Receptor Discovery Performance Unit, Immuno-Inflammation Therapeutic Area, GlaxoSmithKline, Collegeville, PA 19426, USA
| | - John Bertin
- Pattern Recognition Receptor Discovery Performance Unit, Immuno-Inflammation Therapeutic Area, GlaxoSmithKline, Collegeville, PA 19426, USA
| | - Michael Whalen
- Neuroscience Center and Department of Pediatrics, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Manolis Pasparakis
- Institute for Genetics, Center for Molecular Medicine and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, 50674 Cologne, Germany
| | - Siddharth Balachandran
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Michelle Kelliher
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Alexander Poltorak
- Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Alexei Degterev
- Program in Pharmacology and Experimental Therapeutics, Sackler Graduate School, Tufts University, Boston, MA 02111, USA.,Department of Developmental, Molecular & Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA
| |
Collapse
|
432
|
Helmke C, Raab M, Rödel F, Matthess Y, Oellerich T, Mandal R, Sanhaji M, Urlaub H, Rödel C, Becker S, Strebhardt K. Ligand stimulation of CD95 induces activation of Plk3 followed by phosphorylation of caspase-8. Cell Res 2016; 26:914-34. [PMID: 27325299 PMCID: PMC4973331 DOI: 10.1038/cr.2016.78] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 02/25/2016] [Accepted: 04/18/2016] [Indexed: 02/07/2023] Open
Abstract
Upon interaction of the CD95 receptor with its ligand, sequential association of the adaptor molecule FADD (MORT1), pro-forms of caspases-8/10, and the caspase-8/10 regulator c-FLIP leads to the formation of a death-inducing signaling complex. Here, we identify polo-like kinase (Plk) 3 as a new interaction partner of the death receptor CD95. The enzymatic activity of Plk3 increases following interaction of the CD95 receptor with its ligand. Knockout (KO) or knockdown of caspase-8, CD95 or FADD prevents activation of Plk3 upon CD95 stimulation, suggesting a requirement of a functional DISC for Plk3 activation. Furthermore, we identify caspase-8 as a new substrate for Plk3. Phosphorylation occurs on T273 and results in stimulation of caspase-8 proapoptotic function. Stimulation of CD95 in cells expressing a non-phosphorylatable caspase-8-T273A mutant in a rescue experiment or in Plk3-KO cells generated by CRISPR/Cas9 reduces the processing of caspase-8 prominently. Low T273 phosphorylation correlates significantly with low Plk3 expression in a cohort of 95 anal tumor patients. Our data suggest a novel mechanism of kinase activation within the Plk family and propose a new model for the stimulation of the extrinsic death pathway in tumors with high Plk3 expression.
Collapse
Affiliation(s)
- Christina Helmke
- Department of Gynecology, Goethe University, 60590 Frankfurt, Germany
| | - Monika Raab
- Department of Gynecology, Goethe University, 60590 Frankfurt, Germany
| | - Franz Rödel
- Department of Radiotherapy and Oncology, Goethe University, 60590 Frankfurt, Germany.,German Cancer Consortium (DKTK)/German Cancer Research Center, 69120 Heidelberg, Germany
| | - Yves Matthess
- Department of Gynecology, Goethe University, 60590 Frankfurt, Germany.,German Cancer Consortium (DKTK)/German Cancer Research Center, 69120 Heidelberg, Germany
| | - Thomas Oellerich
- German Cancer Consortium (DKTK)/German Cancer Research Center, 69120 Heidelberg, Germany.,Department of Medicine II, Hematology/Oncology, Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| | - Ranadip Mandal
- Department of Gynecology, Goethe University, 60590 Frankfurt, Germany.,German Cancer Consortium (DKTK)/German Cancer Research Center, 69120 Heidelberg, Germany
| | - Mourad Sanhaji
- Department of Gynecology, Goethe University, 60590 Frankfurt, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany.,Bioanalytics, Institute for Clinical Chemistry, University Medical Center Göttingen, Robert-Koch-Straße 40, 37075 Göttingen, Germany
| | - Claus Rödel
- Department of Radiotherapy and Oncology, Goethe University, 60590 Frankfurt, Germany.,German Cancer Consortium (DKTK)/German Cancer Research Center, 69120 Heidelberg, Germany
| | - Sven Becker
- Department of Gynecology, Goethe University, 60590 Frankfurt, Germany
| | - Klaus Strebhardt
- Department of Gynecology, Goethe University, 60590 Frankfurt, Germany.,German Cancer Consortium (DKTK)/German Cancer Research Center, 69120 Heidelberg, Germany
| |
Collapse
|
433
|
Justus SJ, Ting AT. Cloaked in ubiquitin, a killer hides in plain sight: the molecular regulation of RIPK1. Immunol Rev 2016; 266:145-60. [PMID: 26085213 DOI: 10.1111/imr.12304] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In the past decade, studies have shown how instrumental programmed cell death (PCD) can be in innate and adaptive immune responses. PCD can be a means to maintain homeostasis, prevent or promote microbial pathogenesis, and drive autoimmune disease and inflammation. The molecular machinery regulating these cell death programs has been examined in detail, although there is still much to be explored. A master regulator of programmed cell death and innate immunity is receptor-interacting protein kinase 1 (RIPK1), which has been implicated in orchestrating various pathologies via the induction of apoptosis, necroptosis, and nuclear factor-κB-driven inflammation. These and other roles for RIPK1 have been reviewed elsewhere. In a reflection of the ability of tumor necrosis factor (TNF) to induce either survival or death response, this molecule in the TNF pathway can transduce either a survival or a death signal. The intrinsic killing capacity of RIPK1 is usually kept in check by the chains of ubiquitin, enabling it to serve in a prosurvival capacity. In this review, the intricate regulatory mechanisms responsible for restraining RIPK1 from killing are discussed primarily in the context of the TNF signaling pathway and how, when these mechanisms are disrupted, RIPK1 is free to unveil its program of cellular demise.
Collapse
Affiliation(s)
- Scott J Justus
- Department of Medicine, Icahn School of Medicine at Mount Sinai, Immunology Institute and Tisch Cancer Institute, New York, NY, USA.,Graduate School of Biological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Adrian T Ting
- Department of Medicine, Icahn School of Medicine at Mount Sinai, Immunology Institute and Tisch Cancer Institute, New York, NY, USA
| |
Collapse
|
434
|
Shutinoski B, Alturki NA, Rijal D, Bertin J, Gough PJ, Schlossmacher MG, Sad S. K45A mutation of RIPK1 results in poor necroptosis and cytokine signaling in macrophages, which impacts inflammatory responses in vivo. Cell Death Differ 2016; 23:1628-37. [PMID: 27258786 DOI: 10.1038/cdd.2016.51] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 04/28/2016] [Accepted: 05/05/2016] [Indexed: 02/06/2023] Open
Abstract
Receptor interacting protein kinase 1 (RIPK1) participates in several cell signaling complexes that promote cell activation and cell death. Stimulation of RIPK1 in the absence of caspase signaling induces regulated necrosis (necroptosis), which promotes an inflammatory response. Understanding of the mechanisms through which RIPK1 promotes inflammation has been unclear. Herein we have evaluated the impact of a K45A mutation of RIPK1 on necroptosis of macrophages and the activation of inflammatory response. We show that K45A mutation of RIPK1 results in attenuated necroptosis of macrophages in response to stimulation with LPS, TNFα and IFNβ in the absence of caspase signaling. Impairment in necroptosis correlated with poor phosphorylation of RIPK1, RIPK3 and reduced trimerization of MLKL. Furthermore, K45A mutation of RIPK1 resulted in poor STAT1 phosphorylation (at S727) and expression of RANTES and MIP-1α following TNF-R engagement in the absence of caspase activation. Our results further indicate that in the absence of stimulation by pathogen-associated molecular patterns (PAMPs), cellular inhibitors of apoptotic proteins (cIAPs) prevent the K45-dependent auto-phosphorylation of RIPK1, leading to resistance against necroptosis. Finally, RIPK1(K45A) mice displayed attenuated inflammatory response in vivo as they were significantly resistant against endotoxin shock, but highly susceptible against a challenge with Salmonella typhimurium. This correlated with reduced expression of IL-1β and ROS, and poor processing of caspase 8 by RIPK1(K45A) macrophages. Overall, these results indicate that K45 mediated kinase activity of RIPK1 is not only important for necroptosis but it also has a key role in promoting cytokine signaling and host response to inflammatory stimuli.
Collapse
Affiliation(s)
- B Shutinoski
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada.,Program in Neuroscience and Division of Neurology, The Ottawa Hospital, Ottawa, ON, Canada
| | - N A Alturki
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - D Rijal
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - J Bertin
- Pattern Recognition Receptor Discovery Performance Unit, Immuno-Inflammation Therapeutic Area, GlaxoSmithKline, Collegeville, PA 19426, USA
| | - P J Gough
- Pattern Recognition Receptor Discovery Performance Unit, Immuno-Inflammation Therapeutic Area, GlaxoSmithKline, Collegeville, PA 19426, USA
| | - M G Schlossmacher
- Program in Neuroscience and Division of Neurology, The Ottawa Hospital, Ottawa, ON, Canada
| | - S Sad
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
435
|
Das A, McDonald DG, Dixon-Mah YN, Jacqmin DJ, Samant VN, Vandergrift WA, Lindhorst SM, Cachia D, Varma AK, Vanek KN, Banik NL, Jenrette JM, Raizer JJ, Giglio P, Patel SJ. RIP1 and RIP3 complex regulates radiation-induced programmed necrosis in glioblastoma. Tumour Biol 2016; 37:7525-34. [PMID: 26684801 DOI: 10.1007/s13277-015-4621-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 12/10/2015] [Indexed: 01/20/2023] Open
Abstract
Radiation-induced necrosis (RN) is a relatively common side effect of radiation therapy for glioblastoma. However, the molecular mechanisms involved and the ways RN mechanisms differ from regulated cell death (apoptosis) are not well understood. Here, we compare the molecular mechanism of cell death (apoptosis or necrosis) of C6 glioma cells in both in vitro and in vivo (C6 othotopically allograft) models in response to low and high doses of X-ray radiation. Lower radiation doses were used to induce apoptosis, while high-dose levels were chosen to induce radiation necrosis. Our results demonstrate that active caspase-8 in this complex I induces apoptosis in response to low-dose radiation and inhibits necrosis by cleaving RIP1 and RI. When activation of caspase-8 was reduced at high doses of X-ray radiation, the RIP1/RIP3 necrosome complex II is formed. These complexes induce necrosis through the caspase-3-independent pathway mediated by calpain, cathepsin B/D, and apoptosis-inducing factor (AIF). AIF has a dual role in apoptosis and necrosis. At high doses, AIF promotes chromatinolysis and necrosis by interacting with histone H2AX. In addition, NF-κB, STAT-3, and HIF-1 play a crucial role in radiation-induced inflammatory responses embedded in a complex inflammatory network. Analysis of inflammatory markers in matched plasma and cerebrospinal fluid (CSF) isolated from in vivo specimens demonstrated the upregulation of chemokines and cytokines during the necrosis phase. Using RIP1/RIP3 kinase specific inhibitors (Nec-1, GSK'872), we also establish that the RIP1-RIP3 complex regulates programmed necrosis after either high-dose radiation or TNF-α-induced necrosis requires RIP1 and RIP3 kinases. Overall, our data shed new light on the relationship between RIP1/RIP3-mediated programmed necrosis and AIF-mediated caspase-independent programmed necrosis in glioblastoma.
Collapse
Affiliation(s)
- Arabinda Das
- Department of Neurosurgery (Divisions of Neuro-oncology) and MUSC Brain and Spine Tumor Program CSB 310, Medical University of South Carolina, Charleston, SC, 29425, USA.
| | - Daniel G McDonald
- Department of Radiation Oncology, Medical University of South Carolina, Charleston, SC, USA
| | - Yaenette N Dixon-Mah
- Department of Neurosurgery (Divisions of Neuro-oncology) and MUSC Brain and Spine Tumor Program CSB 310, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Dustin J Jacqmin
- Department of Radiation Oncology, Medical University of South Carolina, Charleston, SC, USA
| | - Vikram N Samant
- Department of Neurosurgery (Divisions of Neuro-oncology) and MUSC Brain and Spine Tumor Program CSB 310, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - William A Vandergrift
- Department of Neurosurgery (Divisions of Neuro-oncology) and MUSC Brain and Spine Tumor Program CSB 310, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Scott M Lindhorst
- Department of Neurosurgery (Divisions of Neuro-oncology) and MUSC Brain and Spine Tumor Program CSB 310, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - David Cachia
- Department of Neurosurgery (Divisions of Neuro-oncology) and MUSC Brain and Spine Tumor Program CSB 310, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Abhay K Varma
- Department of Neurosurgery (Divisions of Neuro-oncology) and MUSC Brain and Spine Tumor Program CSB 310, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Kenneth N Vanek
- Department of Radiation Oncology, Medical University of South Carolina, Charleston, SC, USA
| | - Naren L Banik
- Department of Neurosurgery (Divisions of Neuro-oncology) and MUSC Brain and Spine Tumor Program CSB 310, Medical University of South Carolina, Charleston, SC, 29425, USA
- Ralph H. Johnson VA Medical Center, Charleston, SC, USA
| | - Joseph M Jenrette
- Department of Radiation Oncology, Medical University of South Carolina, Charleston, SC, USA
| | - Jeffery J Raizer
- Department of Neurology and Northwestern Brain Tumor Institute, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Pierre Giglio
- Department of Neurosurgery (Divisions of Neuro-oncology) and MUSC Brain and Spine Tumor Program CSB 310, Medical University of South Carolina, Charleston, SC, 29425, USA
- Department of Neurological Surgery, Ohio State University Wexner Medical College, Columbus, OH, 43210, USA
| | - Sunil J Patel
- Department of Neurosurgery (Divisions of Neuro-oncology) and MUSC Brain and Spine Tumor Program CSB 310, Medical University of South Carolina, Charleston, SC, 29425, USA
| |
Collapse
|
436
|
Dillon CP, Tummers B, Baran K, Green DR. Developmental checkpoints guarded by regulated necrosis. Cell Mol Life Sci 2016; 73:2125-36. [PMID: 27056574 PMCID: PMC11108279 DOI: 10.1007/s00018-016-2188-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 03/18/2016] [Indexed: 10/22/2022]
Abstract
The process of embryonic development is highly regulated through the symbiotic control of differentiation and programmed cell death pathways, which together sculpt tissues and organs. The importance of programmed necrotic (RIPK-dependent necroptosis) cell death during development has recently been recognized as important and has largely been characterized using genetically engineered animals. Suppression of necroptosis appears to be essential for murine development and occurs at three distinct checkpoints, E10.5, E16.5, and P1. These distinct time points have helped delineate the molecular pathways and regulation of necroptosis. The embryonic lethality at E10.5 seen in knockouts of caspase-8, FADD, or FLIP (cflar), components of the extrinsic apoptosis pathway, resulted in pallid embryos that did not exhibit the expected cellular expansions. This was the first suggestion that these factors play an important role in the inhibition of necroptotic cell death. The embryonic lethality at E16.5 highlighted the importance of TNF engaging necroptosis in vivo, since elimination of TNFR1 from casp8 (-/-), fadd (-/-), or cflar (-/-), ripk3 (-/-) embryos delayed embryonic lethality from E10.5 until E16.5. The P1 checkpoint demonstrates the dual role of RIPK1 in both the induction and inhibition of necroptosis, depending on the upstream signal. This review summarizes the role of necroptosis in development and the genetic evidence that helped detail the molecular mechanisms of this novel pathway of programmed cell death.
Collapse
Affiliation(s)
- Christopher P Dillon
- Department of Immunology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Bart Tummers
- Department of Immunology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Katherine Baran
- Department of Immunology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Douglas R Green
- Department of Immunology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA.
| |
Collapse
|
437
|
Zhang J, Yang Y, He W, Sun L. Necrosome core machinery: MLKL. Cell Mol Life Sci 2016; 73:2153-63. [PMID: 27048809 PMCID: PMC11108342 DOI: 10.1007/s00018-016-2190-5] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 03/18/2016] [Indexed: 12/22/2022]
Abstract
In the study of regulated cell death, the rapidly expanding field of regulated necrosis, in particular necroptosis, has been drawing much attention. The signaling of necroptosis represents a sophisticated form of a death pathway. Anti-caspase mechanisms (e.g., using inhibitors of caspases, or genetic ablation of caspase-8) switch cell fate from apoptosis to necroptosis. The initial extracellular death signals regulate RIP1 and RIP3 kinase activation. The RIP3-associated death complex assembly is necessary and sufficient to initiate necroptosis. MLKL was initially identified as an essential mediator of RIP1/RIP3 kinase-initiated necroptosis. Recent studies on the signal transduction using chemical tools and biomarkers support the idea that MLKL is able to make more functional sense for the core machinery of the necroptosis death complex, called the necrosome, to connect to the necroptosis execution. The experimental data available now have pointed that the activated MLKL forms membrane-disrupting pores causing membrane leakage, which extends the prototypical concept of morphological and biochemical events following necroptosis happening in vivo. The key role of MLKL in necroptosis signaling thus sheds light on the logic underlying this unique "membrane-explosive" cell death pathway. In this review, we provide the general concepts and strategies that underlie signal transduction of this form of cell death, and then focus specifically on the role of MLKL in necroptosis.
Collapse
Affiliation(s)
- Jing Zhang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Rd, Shanghai, 200031, China
| | - Yu Yang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Rd, Shanghai, 200031, China
| | - Wenyan He
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Rd, Shanghai, 200031, China
| | - Liming Sun
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Rd, Shanghai, 200031, China.
| |
Collapse
|
438
|
Nagy LE, Ding WX, Cresci G, Saikia P, Shah VH. Linking Pathogenic Mechanisms of Alcoholic Liver Disease With Clinical Phenotypes. Gastroenterology 2016; 150:1756-68. [PMID: 26919968 PMCID: PMC4887335 DOI: 10.1053/j.gastro.2016.02.035] [Citation(s) in RCA: 140] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 01/28/2016] [Accepted: 02/09/2016] [Indexed: 02/07/2023]
Abstract
Alcoholic liver disease (ALD) develops in approximately 20% of alcoholic patients, with a higher prevalence in females. ALD progression is marked by fatty liver and hepatocyte necrosis, as well as apoptosis, inflammation, regenerating nodules, fibrosis, and cirrhosis.(1) ALD develops via a complex process involving parenchymal and nonparenchymal cells, as well as recruitment of other cell types to the liver in response to damage and inflammation. Hepatocytes are damaged by ethanol, via generation of reactive oxygen species and induction of endoplasmic reticulum stress and mitochondrial dysfunction. Hepatocyte cell death via apoptosis and necrosis are markers of ethanol-induced liver injury. We review the mechanisms by which alcohol injures hepatocytes and the response of hepatic sinusoidal cells to alcohol-induced injury. We also discuss how recent insights into the pathogenesis of ALD will affect the treatment and management of patients.
Collapse
Affiliation(s)
- Laura E. Nagy
- Department of Pathobiology, Cleveland Clinic, Cleveland, OH 44195,Department of Gastroenterology and Hepatology, Cleveland Clinic, Cleveland, OH 44195,Department of Medicine, Cleveland Clinic, Cleveland, OH 44195
| | - Wen-Xing Ding
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160
| | - Gail Cresci
- Department of Pathobiology, Cleveland Clinic, Cleveland, OH 44195,Department of Gastroenterology and Hepatology, Cleveland Clinic, Cleveland, OH 44195,Department of Medicine, Cleveland Clinic, Cleveland, OH 44195
| | - Paramananda Saikia
- Department of Pathobiology, Cleveland Clinic, Cleveland, OH 44195,Department of Medicine, Cleveland Clinic, Cleveland, OH 44195
| | - Vijay H. Shah
- Department of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905
| |
Collapse
|
439
|
Wang S, Pacher P, De Lisle RC, Huang H, Ding WX. A Mechanistic Review of Cell Death in Alcohol-Induced Liver Injury. Alcohol Clin Exp Res 2016; 40:1215-1223. [PMID: 27130888 PMCID: PMC5455778 DOI: 10.1111/acer.13078] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Accepted: 03/29/2016] [Indexed: 12/18/2022]
Abstract
Alcoholic liver disease (ALD) is a major health problem in the United States and worldwide without successful treatments. Chronic alcohol consumption can lead to ALD, which is characterized by steatosis, inflammation, fibrosis, cirrhosis, and even liver cancer. Recent studies suggest that alcohol induces both cell death and adaptive cell survival pathways in the liver, and the balance of cell death and cell survival ultimately decides the pathogenesis of ALD. This review summarizes the recent progress on the role and mechanisms of apoptosis, necroptosis, and autophagy in the pathogenesis of ALD. Understanding the complex regulation of apoptosis, necrosis, and autophagy may help to develop novel therapeutic strategies by targeting all 3 pathways simultaneously.
Collapse
Affiliation(s)
- Shaogui Wang
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Pal Pacher
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| | - Robert C. De Lisle
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS 66160
| | - Heqing Huang
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Wen-Xing Ding
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160
| |
Collapse
|
440
|
Moriwaki K, Chan FKM. Necroptosis-independent signaling by the RIP kinases in inflammation. Cell Mol Life Sci 2016; 73:2325-34. [PMID: 27048814 PMCID: PMC4889460 DOI: 10.1007/s00018-016-2203-4] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 03/18/2016] [Indexed: 10/22/2022]
Abstract
Recent advances have identified a signaling cascade involving receptor interacting protein kinase 1 (RIPK1), RIPK3 and the pseudokinase mixed lineage kinase domain-like (MLKL) that is crucial for induction of necroptosis, a non-apoptotic form of cell death. RIPK1-RIPK3-MLKL-mediated necroptosis has been attributed to cause many inflammatory diseases through the release of cellular damage-associated molecular patterns (DAMPs). In addition to necroptosis, emerging evidence suggests that these necroptosis signal adaptors can also facilitate inflammation independent of cell death. In particular, the RIP kinases can drive NF-κB and inflammasome activation independent of cell death. In this review, we will discuss recent discoveries that led to this realization and present arguments why cell death-independent signaling by the RIP kinases may have a more important role in inflammation than necroptosis.
Collapse
Affiliation(s)
- Kenta Moriwaki
- Department of Pathology, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA, 01605, USA
| | - Francis Ka-Ming Chan
- Department of Pathology, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA, 01605, USA.
| |
Collapse
|
441
|
Peltzer N, Darding M, Walczak H. Holding RIPK1 on the Ubiquitin Leash in TNFR1 Signaling. Trends Cell Biol 2016; 26:445-461. [DOI: 10.1016/j.tcb.2016.01.006] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 01/13/2016] [Accepted: 01/19/2016] [Indexed: 12/22/2022]
|
442
|
Degterev A, Linkermann A. Generation of small molecules to interfere with regulated necrosis. Cell Mol Life Sci 2016; 73:2251-67. [PMID: 27048812 PMCID: PMC11108466 DOI: 10.1007/s00018-016-2198-x] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 03/18/2016] [Indexed: 12/16/2022]
Abstract
Interference with regulated necrosis for clinical purposes carries broad therapeutic relevance and, if successfully achieved, has a potential to revolutionize everyday clinical routine. Necrosis was interpreted as something that no clinician might ever be able to prevent due to the unregulated nature of this form of cell death. However, given our growing understanding of the existence of regulated forms of necrosis and the roles of key enzymes of these pathways, e.g., kinases, peroxidases, etc., the possibility emerges to identify efficient and selective small molecule inhibitors of pathologic necrosis. Here, we review the published literature on small molecule inhibition of regulated necrosis and provide an outlook on how combination therapy may be most effective in treatment of necrosis-associated clinical situations like stroke, myocardial infarction, sepsis, cancer and solid organ transplantation.
Collapse
Affiliation(s)
- Alexei Degterev
- Department of Developmental, Molecular & Chemical Biology, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA, 02111, USA.
| | - Andreas Linkermann
- Clinic for Nephrology and Hypertension, University-Hospital Schleswig-Holstein, Campus Kiel, Christian-Albrechts-University Kiel, Fleckenstr. 4, 24105, Kiel, Germany.
| |
Collapse
|
443
|
Vanden Berghe T, Hassannia B, Vandenabeele P. An outline of necrosome triggers. Cell Mol Life Sci 2016; 73:2137-52. [PMID: 27052312 PMCID: PMC4887535 DOI: 10.1007/s00018-016-2189-y] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 03/18/2016] [Indexed: 01/09/2023]
Abstract
Necroptosis was initially identified as a backup cell death program when apoptosis is blocked. However, it is now recognized as a cellular defense mechanism against infections and is presumed to be a detrimental factor in several pathologies driven by cell death. Necroptosis is a prototypic form of regulated necrosis that depends on activation of the necrosome, which is a protein complex in which receptor interacting protein kinase (RIPK) 3 is activated. The RIP homotypic interaction motif (RHIM) is the core domain that regulates activation of the necrosome. To date, three RHIM-containing proteins have been reported to activate the kinase activity of RIPK3 within the necrosome: RIPK1, Toll/IL-1 receptor domain-containing adaptor inducing IFN-β (TRIF), and DNA-dependent activator of interferon regulatory factors (DAI). Here, we review and discuss commonalities and differences of the increasing number of activators of the necrosome. Since the discovery that activation of mixed lineage kinase domain-like (MLKL) by RIPK3 kinase activity is crucial in necroptosis, interest has increased in monitoring and therapeutically targeting their activation. The availability of new phospho-specific antibodies, pharmacologic inhibitors, and transgenic models will allow us to further document the role of necroptosis in degenerative, inflammatory and infectious diseases.
Collapse
Affiliation(s)
- Tom Vanden Berghe
- Inflammation Research Center, VIB, 9000, Ghent, Belgium.
- Department of Biomedical Molecular Biology, Ghent University, 9000, Ghent, Belgium.
| | - Behrouz Hassannia
- Inflammation Research Center, VIB, 9000, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, 9000, Ghent, Belgium
- Laboratory of Eukaryotic Gene Expression and Signal Transduction, Department of Physiology, Ghent University, 9000, Ghent, Belgium
| | - Peter Vandenabeele
- Inflammation Research Center, VIB, 9000, Ghent, Belgium.
- Department of Biomedical Molecular Biology, Ghent University, 9000, Ghent, Belgium.
| |
Collapse
|
444
|
Abstract
Activation of ion channels and pores are essential steps during regulated cell death. Channels and pores participate in execution of apoptosis, necroptosis and other forms of caspase-independent cell death. Within the program of regulated cell death, these channels are strategically located. Ion channels can shrink cells and drive them towards apoptosis, resulting in silent, i.e. immunologically unrecognized cell death. Alternatively, activation of channels can induce cell swelling, disintegration of the cell membrane, and highly immunogenic necrotic cell death. The underlying cell death pathways are not strictly separated as identical stimuli may induce cell shrinkage and apoptosis when applied at low strength, but may also cause cell swelling at pronounced stimulation, resulting in regulated necrosis. Nevertheless, the precise role of ion channels during regulated cell death is far from being understood, as identical channels may support regulated death in some cell types, but may cause cell proliferation, cancer development, and metastasis in others. Along this line, the phospholipid scramblase and Cl(-)/nonselective channel anoctamin 6 (ANO6) shows interesting features, as it participates in apoptotic cell death during lower levels of activation, thereby inducing cell shrinkage. At strong activation, e.g. by stimulation of purinergic P2Y7 receptors, it participates in pore formation, causes massive membrane blebbing, cell swelling, and membrane disintegration. The LRRC8 proteins deserve much attention as they were found to have a major role in volume regulation, apoptotic cell shrinkage and resistance towards anticancer drugs.
Collapse
Affiliation(s)
- Karl Kunzelmann
- Institut für Physiologie, Universität Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany.
| |
Collapse
|
445
|
Vince JE, Silke J. The intersection of cell death and inflammasome activation. Cell Mol Life Sci 2016; 73:2349-67. [PMID: 27066895 PMCID: PMC11108284 DOI: 10.1007/s00018-016-2205-2] [Citation(s) in RCA: 136] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 03/18/2016] [Indexed: 02/07/2023]
Abstract
Inflammasomes sense cellular danger to activate the cysteine-aspartic protease caspase-1, which processes precursor interleukin-1β (IL-1β) and IL-18 into their mature bioactive fragments. In addition, activated caspase-1 or the related inflammatory caspase, caspase-11, can cleave gasdermin D to induce a lytic cell death, termed pyroptosis. The intertwining of IL-1β activation and cell death is further highlighted by research showing that the extrinsic apoptotic caspase, caspase-8, may, like caspase-1, directly process IL-1β, activate the NLRP3 inflammasome itself, or bind to inflammasome complexes to induce apoptotic cell death. Similarly, RIPK3- and MLKL-dependent necroptotic signaling can activate the NLRP3 inflammasome to drive IL-1β inflammatory responses in vivo. Here, we review the mechanisms by which cell death signaling activates inflammasomes to initiate IL-1β-driven inflammation, and highlight the clinical relevance of these findings to heritable autoinflammatory diseases. We also discuss whether the act of cell death can be separated from IL-1β secretion and evaluate studies suggesting that several cell death regulatory proteins can directly interact with, and modulate the function of, inflammasome and IL-1β containing protein complexes.
Collapse
Affiliation(s)
- James E Vince
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia.
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3050, Australia.
| | - John Silke
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3050, Australia
| |
Collapse
|
446
|
Farias Luz N, Balaji S, Okuda K, Barreto AS, Bertin J, Gough PJ, Gazzinelli R, Almeida RP, Bozza MT, Borges VM, Chan FKM. RIPK1 and PGAM5 Control Leishmania Replication through Distinct Mechanisms. THE JOURNAL OF IMMUNOLOGY 2016; 196:5056-63. [PMID: 27183605 DOI: 10.4049/jimmunol.1502492] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 04/20/2016] [Indexed: 11/19/2022]
Abstract
Leishmaniasis is an important parasitic disease found in the tropics and subtropics. Cutaneous and visceral leishmaniasis affect an estimated 1.5 million people worldwide. Despite its human health relevance, relatively little is known about the cell death pathways that control Leishmania replication in the host. Necroptosis is a recently identified form of cell death with potent antiviral effects. Receptor interacting protein kinase 1 (RIPK1) is a critical kinase that mediates necroptosis downstream of death receptors and TLRs. Heme, a product of hemoglobin catabolism during certain intracellular pathogen infections, is also a potent inducer of macrophage necroptosis. We found that human visceral leishmaniasis patients exhibit elevated serum levels of heme. Therefore, we examined the impact of heme and necroptosis on Leishmania replication. Indeed, heme potently inhibited Leishmania replication in bone marrow-derived macrophages. Moreover, we found that inhibition of RIPK1 kinase activity also enhanced parasite replication in the absence of heme. We further found that the mitochondrial phosphatase phosphoglycerate mutase family member 5 (PGAM5), a putative downstream effector of RIPK1, was also required for inhibition of Leishmania replication. In mouse infection, both PGAM5 and RIPK1 kinase activity are required for IL-1β expression in response to Leishmania However, PGAM5, but not RIPK1 kinase activity, was directly responsible for Leishmania-induced IL-1β secretion and NO production in bone marrow-derived macrophages. Collectively, these results revealed that RIPK1 and PGAM5 function independently to exert optimal control of Leishmania replication in the host.
Collapse
Affiliation(s)
- Nivea Farias Luz
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01605; Centro de Pesquisas Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador-BA, 40110-060, Brazil
| | - Sakthi Balaji
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Kendi Okuda
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Aline Silva Barreto
- Departamento de Medicina, Hospital Universitário, Universidade Federal de Sergipe, Aracaju 49010-390, Brazil
| | - John Bertin
- Laboratorio de Imunopatologia, Centro de Pesquisa, Rene Rachou, Fundação Oswaldo Cruz, 30190-002 Belo Horizonte, Brazil
| | - Peter J Gough
- Pattern Recognition Receptor Discovery Performance Unit, Immuno-Inflammation Therapeutic Area, GlaxoSmithKline, Collegeville, PA 19422
| | - Ricardo Gazzinelli
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA 01605; Laboratorio de Imunopatologia, Centro de Pesquisa, Rene Rachou, Fundação Oswaldo Cruz, 30190-002 Belo Horizonte, Brazil
| | - Roque P Almeida
- Departamento de Medicina, Hospital Universitário, Universidade Federal de Sergipe, Aracaju 49010-390, Brazil
| | - Marcelo T Bozza
- Departamento de Imunologia, Instituto de Microbiologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro-RJ, 21941-902, Brazil; and
| | - Valeria M Borges
- Centro de Pesquisas Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador-BA, 40110-060, Brazil;
| | - Francis Ka-Ming Chan
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01605; Immunology and Microbiology Program, University of Massachusetts Medical School, Worcester, MA 01605
| |
Collapse
|
447
|
RIPK3 deficiency or catalytically inactive RIPK1 provides greater benefit than MLKL deficiency in mouse models of inflammation and tissue injury. Cell Death Differ 2016; 23:1565-76. [PMID: 27177019 PMCID: PMC5072432 DOI: 10.1038/cdd.2016.46] [Citation(s) in RCA: 359] [Impact Index Per Article: 39.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 04/13/2016] [Accepted: 04/13/2016] [Indexed: 12/17/2022] Open
Abstract
Necroptosis is a caspase-independent form of cell death that is triggered by activation of the receptor interacting serine/threonine kinase 3 (RIPK3) and phosphorylation of its pseudokinase substrate mixed lineage kinase-like (MLKL), which then translocates to membranes and promotes cell lysis. Activation of RIPK3 is regulated by the kinase RIPK1. Here we analyze the contribution of RIPK1, RIPK3, or MLKL to several mouse disease models. Loss of RIPK3 had no effect on lipopolysaccharide-induced sepsis, dextran sodium sulfate-induced colitis, cerulein-induced pancreatitis, hypoxia-induced cerebral edema, or the major cerebral artery occlusion stroke model. However, kidney ischemia–reperfusion injury, myocardial infarction, and systemic inflammation associated with A20 deficiency or high-dose tumor necrosis factor (TNF) were ameliorated by RIPK3 deficiency. Catalytically inactive RIPK1 was also beneficial in the kidney ischemia–reperfusion injury model, the high-dose TNF model, and in A20−/− mice. Interestingly, MLKL deficiency offered less protection in the kidney ischemia–reperfusion injury model and no benefit in A20−/− mice, consistent with necroptosis-independent functions for RIPK1 and RIPK3. Combined loss of RIPK3 (or MLKL) and caspase-8 largely prevented the cytokine storm, hypothermia, and morbidity induced by TNF, suggesting that the triggering event in this model is a combination of apoptosis and necroptosis. Tissue-specific RIPK3 deletion identified intestinal epithelial cells as the major target organ. Together these data emphasize that MLKL deficiency rather than RIPK1 inactivation or RIPK3 deficiency must be examined to implicate a role for necroptosis in disease.
Collapse
|
448
|
Conrad M, Angeli JPF, Vandenabeele P, Stockwell BR. Regulated necrosis: disease relevance and therapeutic opportunities. Nat Rev Drug Discov 2016; 15:348-66. [PMID: 26775689 PMCID: PMC6531857 DOI: 10.1038/nrd.2015.6] [Citation(s) in RCA: 469] [Impact Index Per Article: 52.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The discovery of regulated cell death presents tantalizing possibilities for gaining control over the life-death decisions made by cells in disease. Although apoptosis has been the focus of drug discovery for many years, recent research has identified regulatory mechanisms and signalling pathways for previously unrecognized, regulated necrotic cell death routines. Distinct critical nodes have been characterized for some of these alternative cell death routines, whereas other cell death routines are just beginning to be unravelled. In this Review, we describe forms of regulated necrotic cell death, including necroptosis, the emerging cell death modality of ferroptosis (and the related oxytosis) and the less well comprehended parthanatos and cyclophilin D-mediated necrosis. We focus on small molecules, proteins and pathways that can induce and inhibit these non-apoptotic forms of cell death, and discuss strategies for translating this understanding into new therapeutics for certain disease contexts.
Collapse
Affiliation(s)
- Marcus Conrad
- Helmholtz Zentrum München, Institute of Developmental Genetics, 85764 Neuherberg, Germany
| | | | - Peter Vandenabeele
- Molecular Signaling and Cell Death Unit, Inflammation Research Center, Flanders Institute for Biotechnology, 9052 Ghent, Belgium
- Molecular Signaling and Cell Death Unit, Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium
- Methusalem Program, Ghent University, 9000 Ghent, Belgium
| | - Brent R Stockwell
- Department of Biological Sciences and Department of Chemistry, Howard Hughes Medical Institute, Columbia University, 550 West 120th Street, Northwest Corner Building, MC 4846, New York, New York 10027, USA
| |
Collapse
|
449
|
Therapeutic hypothermia attenuates tissue damage and cytokine expression after traumatic brain injury by inhibiting necroptosis in the rat. Sci Rep 2016; 6:24547. [PMID: 27080932 PMCID: PMC4832230 DOI: 10.1038/srep24547] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 03/31/2016] [Indexed: 01/09/2023] Open
Abstract
Necroptosis has been shown as an alternative form of cell death in many diseases, but the detailed mechanisms of the neuron loss after traumatic brain injury (TBI) in rodents remain unclear. To investigate whether necroptosis is induced after TBI and gets involved in the neuroprotecton of therapeutic hypothermia on the TBI, we observed the pathological and biochemical change of the necroptosis in the fluid percussion brain injury (FPI) model of the rats. We found that receptor-interacting protein (RIP) 1 and 3, and mixed lineage kinase domain-like protein (MLKL), the critical downstream mediators of necroptosis recently identified in vivo, as well as HMGB1 and the pro-inflammation cytokines TNF-α, IL-6 and IL-18, were increased at an early phase (6 h) in cortex after TBI. Posttraumatic hypothermia (33 °C) led to the decreases in the necroptosis regulators, inflammatory factors and brain tissue damage in rats compared with normothermia-treated TBI animals. Immunohistochemistry studies showed that posttraumatic hypothermia also decreased the necroptosis-associated proteins staining in injured cortex and hippocampal CA1. Therefore, we conclude that the RIP1/RIP3-MLKL-mediated necroptosis occurs after experimental TBI and therapeutic hypothermia may protect the injured central nervous system from tissue damage and the inflammatory responses by targeting the necroptosis signaling after TBI.
Collapse
|
450
|
Wallach D, Kang TB, Dillon CP, Green DR. Programmed necrosis in inflammation: Toward identification of the effector molecules. Science 2016; 352:aaf2154. [PMID: 27034377 DOI: 10.1126/science.aaf2154] [Citation(s) in RCA: 419] [Impact Index Per Article: 46.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Until recently, programmed cell death was conceived of as a single set of molecular pathways. We now know of several distinct sets of death-inducing mechanisms that lead to differing cell-death processes. In one of them--apoptosis--the dying cell affects others minimally. In contrast, programmed necrotic cell death causes release of immunostimulatory intracellular components after cell-membrane rupture. Defining the in vivo relevance of necrotic death is hampered because the molecules initiating it [such as receptor-interacting protein kinase-1 (RIPK1), RIPK3, or caspase-1] also serve other functions. Proteins that participate in late events in two forms of programmed necrosis [mixed lineage kinase domain-like protein (MLKL) in necroptosis and gasdermin-D in pyroptosis] were recently discovered, bringing us closer to identifying molecules that strictly serve in death mediation, thereby providing probes for better assessing its role in inflammation.
Collapse
Affiliation(s)
- David Wallach
- Department of Biomolecular Sciences, The Weizmann Institute of Science, 76100 Rehovot, Israel.
| | - Tae-Bong Kang
- Department of Biotechnology, College of Biomedical and Health Science, Konkuk University, Chung-Ju 380-701, Korea
| | - Christopher P Dillon
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Douglas R Green
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|