401
|
Fernandez-Lafuente R. Stabilization of multimeric enzymes: Strategies to prevent subunit dissociation. Enzyme Microb Technol 2009. [DOI: 10.1016/j.enzmictec.2009.08.009] [Citation(s) in RCA: 485] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
402
|
|
403
|
|
404
|
Sayar N, Chen B, Lye G, Woodley J. Process modelling and simulation of a transketolase mediated reaction: Analysis of alternative modes of operation. Biochem Eng J 2009. [DOI: 10.1016/j.bej.2009.02.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
405
|
How to overcome limitations in biotechnological processes - examples from hydroxynitrile lyase applications. Trends Biotechnol 2009; 27:599-607. [DOI: 10.1016/j.tibtech.2009.07.005] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2009] [Revised: 07/01/2009] [Accepted: 07/13/2009] [Indexed: 11/17/2022]
|
406
|
Rosche B, Li XZ, Hauer B, Schmid A, Buehler K. Microbial biofilms: a concept for industrial catalysis? Trends Biotechnol 2009; 27:636-43. [PMID: 19783314 DOI: 10.1016/j.tibtech.2009.08.001] [Citation(s) in RCA: 140] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2009] [Revised: 08/13/2009] [Accepted: 08/14/2009] [Indexed: 11/18/2022]
Abstract
Biofilm reactors have long been commercially used in the treatment of wastewater and off-gas. New opportunities are arising with the rapid expansion of our understanding of biofilm biology over the last few years. Biofilms have great potential as industrial workhorses for the sustainable production of chemicals because of their inherent characteristics of self-immobilization, high resistance to reactants and long-term activity, which all facilitate continuous processing. A variety of biofilm reactor configurations have been explored for productive catalysis and some reactors have been operated continuously for months. Sectors that might particularly benefit from this biofilm approach include synthetic chemistry (ranging from specialty to bulk chemicals), bioenergy, biologics and the food industry.
Collapse
Affiliation(s)
- Bettina Rosche
- The University of New South Wales, School of Biotechnology and Biomolecular Sciences, Sydney, NSW 2052, Australia.
| | | | | | | | | |
Collapse
|
407
|
Whole-cell biocatalysis for 1-naphthol production in liquid-liquid biphasic systems. Appl Environ Microbiol 2009; 75:6545-52. [PMID: 19700554 DOI: 10.1128/aem.00434-09] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Whole-cell biocatalysis to oxidize naphthalene to 1-naphthol in liquid-liquid biphasic systems was performed. Escherichia coli expressing TOM-Green, a variant of toluene ortho-monooxygenase (TOM), was used for this oxidation. Three different solvents, dodecane, dioctyl phthalate, and lauryl acetate, were screened for biotransformations in biphasic media. Of the solvents tested, lauryl acetate gave the best results, producing 0.72 +/- 0.03 g/liter 1-naphthol with a productivity of 0.46 +/- 0.02 g/g (dry weight) cells after 48 h. The effects of the organic phase ratio and the naphthalene concentration in the organic phase were investigated. The highest 1-naphthol concentration (1.43 g/liter) and the highest 1-naphthol productivity (0.55 g/g [dry weight] cells) were achieved by optimization of the organic phase. The ability to recycle both free cells and cells immobilized in calcium alginate was tested. Both free and immobilized cells lost more than approximately 60% of their activity after the first run, which could be attributed to product toxicity. On a constant-volume basis, an eightfold improvement in 1-naphthol production was achieved using biphasic media compared to biotransformation in aqueous media.
Collapse
|
408
|
|
409
|
Shitu JO, Chartrain M, Woodley JM. Evaluating the impact of substrate and product concentration on a whole-cell biocatalyst during a Baeyer-Villiger reaction. BIOCATAL BIOTRANSFOR 2009. [DOI: 10.1080/10242420802539046] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
410
|
Leak DJ, Sheldon RA, Woodley JM, Adlercreutz P. Biocatalysts for selective introduction of oxygen. BIOCATAL BIOTRANSFOR 2009. [DOI: 10.1080/10242420802393519] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
411
|
Bioreduction of α-chloroacetophenone by whole cells of marine fungi. Biotechnol Lett 2009; 31:1559-63. [DOI: 10.1007/s10529-009-0037-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2009] [Revised: 05/18/2009] [Accepted: 05/19/2009] [Indexed: 10/20/2022]
|
412
|
Chen QH, Fu ML, Liu J, Zhang HF, He GQ, Ruan H. Optimization of ultrasonic-assisted extraction (UAE) of betulin from white birch bark using response surface methodology. ULTRASONICS SONOCHEMISTRY 2009; 16:599-604. [PMID: 19110462 DOI: 10.1016/j.ultsonch.2008.11.009] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2008] [Revised: 10/21/2008] [Accepted: 11/12/2008] [Indexed: 05/27/2023]
Abstract
Betulin is an abundant naturally occurring triterpene, which makes it a potentially important raw material for a precursor of biologically active compounds. The objective of the current study was to determine the optimum UAE conditions for betulin from B. papyfera bark. The optimum conditions were evaluated with fractional factorial design and optimized using response surface methodology. High yields of betulin were observed from white birch bark by UAE technology. The solvent concentration and the ratio of material to solvent were the most significant parameters on betulin extraction as evaluated through FFD. The extraction conditions were further investigated with central composite design. The fitted second-order model revealed that the optimal conditions consisted of 98% ethonal concentration, 1:42 the ratio of white birch bark to solvent, extraction temperature 50 degrees C, ultrasonic frequency 5kHz and extraction time 3h. Under the optimized condition, the maximum productivity of betulin predicted is 23.17%. The extraction productivity and purity of betulin under the optimized extraction conditions were great higher than that of the non-optimized condition. The present study demonstrates that ultrasound is a great efficiency tool for the fast extraction of betulin from white birch bark.
Collapse
Affiliation(s)
- Qi-he Chen
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310029, PR China.
| | | | | | | | | | | |
Collapse
|
413
|
Abstract
Enantiopure sulfoxides are prevalent in drugs and are useful chiral auxiliaries in organic synthesis. The biocatalytic enantioselective oxidation of prochiral sulfides is a direct and economical approach for the synthesis of optically pure sulfoxides. The selection of suitable biocatalysts requires rapid and reliable high-throughput screening methods. Here we present four different methods for detecting sulfoxides produced via whole-cell biocatalysis, three of which were exploited for high-throughput screening. Fluorescence detection based on the acid activation of omeprazole was utilized for high-throughput screening of mutant libraries of toluene monooxygenases, but no active variants have been discovered yet. The second method is based on the reduction of sulfoxides to sulfides, with the coupled release and measurement of iodine. The availability of solvent-resistant microtiter plates enabled us to modify the method to a high-throughput format. The third method, selective inhibition of horse liver alcohol dehydrogenase, was used to rapidly screen highly active and/or enantioselective variants at position V106 of toluene ortho-monooxygenase in a saturation mutagenesis library, using methyl-p-tolyl sulfide as the substrate. A success rate of 89% (i.e., 11% false positives) was obtained, and two new mutants were selected. The fourth method is based on the colorimetric detection of adrenochrome, a back-titration procedure which measures the concentration of the periodate-sensitive sulfide. Due to low sensitivity during whole-cell screening, this method was found to be useful only for determining the presence or absence of sulfoxide in the reaction. The methods described in the present work are simple and inexpensive and do not require special equipment.
Collapse
|
414
|
Bernardino SMSA, Fernandes P, Fonseca LP. A new biocatalyst: Penicillin G acylase immobilized in sol-gel micro-particles with magnetic properties. Biotechnol J 2009; 4:695-702. [DOI: 10.1002/biot.200800287] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
415
|
Sustainable biocatalytic synthesis of L-homophenylalanine as pharmaceutical drug precursor. Biotechnol Adv 2009; 27:286-96. [DOI: 10.1016/j.biotechadv.2009.01.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2008] [Revised: 01/02/2009] [Accepted: 01/14/2009] [Indexed: 11/17/2022]
|
416
|
Chemoenzymatic Synthesis of Chiral Pharmaceutical Intermediates. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2009. [DOI: 10.1201/9781420077070.ch16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
417
|
Gernaey KV, Woodley JM, Sin G. Introducing mechanistic models in Process Analytical Technology education. Biotechnol J 2009; 4:593-9. [DOI: 10.1002/biot.200800323] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
418
|
Efficient Synthesis of (S)-1-(2-chlorophenyl)ethanol in the Submerged Culture of Alternaria alternata Isolate. CHINESE JOURNAL OF CATALYSIS 2009. [DOI: 10.1016/s1872-2067(08)60103-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
419
|
Bergeron LM, Gomez L, Whitehead TA, Clark DS. Self-renaturing enzymes: Design of an enzyme-chaperone chimera as a new approach to enzyme stabilization. Biotechnol Bioeng 2009; 102:1316-22. [DOI: 10.1002/bit.22254] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
420
|
Metabolic engineering of Escherichia coli for enhanced production of (R)- and (S)-3-hydroxybutyrate. Appl Environ Microbiol 2009; 75:3137-45. [PMID: 19304817 DOI: 10.1128/aem.02667-08] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Synthetic metabolic pathways have been constructed for the production of enantiopure (R)- and (S)-3-hydroxybutyrate (3HB) from glucose in recombinant Escherichia coli strains. To promote maximal activity, we profiled three thiolase homologs (BktB, Thl, and PhaA) and two coenzyme A (CoA) removal mechanisms (Ptb-Buk and TesB). Two enantioselective 3HB-CoA dehydrogenases, PhaB, producing the (R)-enantiomer, and Hbd, producing the (S)-enantiomer, were utilized to control the 3HB chirality across two E. coli backgrounds, BL21Star(DE3) and MG1655(DE3), representing E. coli B- and K-12-derived strains, respectively. MG1655(DE3) was found to be superior for the production of each 3HB stereoisomer, although the recombinant enzymes exhibited lower in vitro specific activities than BL21Star(DE3). Hbd in vitro activity was significantly higher than PhaB activity in both strains. The engineered strains achieved titers of enantiopure (R)-3HB and (S)-3HB as high as 2.92 g liter(-1) and 2.08 g liter(-1), respectively, in shake flask cultures within 2 days. The NADPH/NADP+ ratio was found to be two- to three-fold higher than the NADH/NAD+ ratio under the culture conditions examined, presumably affecting in vivo activities of PhaB and Hbd and resulting in greater production of (R)-3HB than (S)-3HB. To the best of our knowledge, this study reports the highest (S)-3HB titer achieved in shake flask E. coli cultures to date.
Collapse
|
421
|
Improving low-temperature activity of Sulfolobus acidocaldarius 2-keto-3-deoxygluconate aldolase. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2009; 2:233-9. [PMID: 19478916 DOI: 10.1155/2009/194186] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2008] [Accepted: 02/12/2009] [Indexed: 11/17/2022]
Abstract
Sulfolobus acidocaldarius 2-keto-3-deoxygluconate aldolase (SacKdgA) displays optimal activity at 95 degrees C and is studied as a model enzyme for aldol condensation reactions. For application of SacKdgA at lower temperatures, a library of randomly generated mutants was screened for improved synthesis of 2-keto-3-deoxygluconate from pyruvate and glyceraldehyde at the suboptimal temperature of 50 degrees C. The single mutant SacKdgA-V193A displayed a threefold increase in activity compared with wild type SacKdgA. The increased specific activity at 40-60 degrees C of this mutant was observed, not only for the condensation of pyruvate with glyceraldehyde, but also for several unnatural acceptor aldehydes. The optimal temperature for activity of SacKdgA-V193A was lower than for the wild type enzyme, but enzymatic stability of the mutant was similar to that of the wild type, indicating that activity and stability were uncoupled. Valine193 has Van der Waals interactions with Lysine153, which covalently binds the substrate during catalysis. The mutation V193A introduced space close to this essential residue, and the increased activity of the mutant presumably resulted from increased flexibility of Lysine153. The increased activity of SacKdgA-V193A with unaffected stability demonstrates the potential for optimizing extremely thermostable aldolases for synthesis reactions at moderate temperatures.
Collapse
|
422
|
Tao J, Xu JH. Biocatalysis in development of green pharmaceutical processes. Curr Opin Chem Biol 2009; 13:43-50. [DOI: 10.1016/j.cbpa.2009.01.018] [Citation(s) in RCA: 149] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2008] [Revised: 01/16/2009] [Accepted: 01/26/2009] [Indexed: 10/21/2022]
|
423
|
Bergeron LM, Tokatlian T, Gomez L, Clark DS. Redirecting the inactivation pathway of penicillin amidase and increasing amoxicillin production via a thermophilic molecular chaperone. Biotechnol Bioeng 2009; 102:417-24. [PMID: 18846552 DOI: 10.1002/bit.22142] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
We have previously shown that a single-subunit thermosome from Methanocaldococcus jannaschii (rTHS) can stabilize enzymes in semi-aqueous media (Bergeron et al., 2008b). In the present study, rTHS was used to stabilize penicillin amidase (PGA) in methanol-water mixtures. Including methanol in the reaction medium for amoxicillin synthesis can suppress unwanted hydrolysis reactions but inactivate PGA. Inactivation and reactivation pathways proposed for PGA illustrate the predictability of enzyme stabilization by rTHS in co-solvents. Calcium was necessary for reversible dissociation of the two PGA subunits in methanol-water and the presence of calcium resulted in an enhancement of chaperone-assisted stabilization. rTHS also acted as a stabilizer in the enzymatic synthesis of the beta-lactam antibiotic amoxicillin. rTHS stabilized PGA, increasing its half-life in 35% methanol by fivefold at 37 degrees C. Stabilization by rTHS was enhanced but did not require the presence of ATP. Including rTHS in fed-batch reactions performed in methanol-water resulted in nearly 4 times more amoxicillin than when the reaction was run without rTHS, and over threefold higher selectivity towards amoxicillin synthesis compared to aqueous conditions without rTHS. The thermosome and other thermophilic chaperones may thus be generally useful for stabilizing enzymes in their soluble form and expanding the range of conditions suitable for biocatalysis.
Collapse
Affiliation(s)
- Lisa M Bergeron
- Department of Chemical Engineering, University of California, Berkeley, California 94720, USA
| | | | | | | |
Collapse
|
424
|
Thomsen MS, Nidetzky B. Coated-wall microreactor for continuous biocatalytic transformations using immobilized enzymes. Biotechnol J 2009; 4:98-107. [PMID: 18618472 DOI: 10.1002/biot.200800051] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Malene S Thomsen
- Research Center Applied Biocatalysis, Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, Graz, Austria
| | | |
Collapse
|
425
|
An efficient approach to bioconversion kinetic model generation based on automated microscale experimentation integrated with model driven experimental design. Chem Eng Sci 2009. [DOI: 10.1016/j.ces.2008.09.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
426
|
Developing Aspergillus as a host for heterologous expression. Biotechnol Adv 2009; 27:53-75. [DOI: 10.1016/j.biotechadv.2008.09.001] [Citation(s) in RCA: 173] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2008] [Revised: 09/04/2008] [Accepted: 09/07/2008] [Indexed: 12/11/2022]
|
427
|
Koszelewski D, Lavandera I, Clay D, Guebitz GM, Rozzell D, Kroutil W. Formal asymmetric biocatalytic reductive amination. Angew Chem Int Ed Engl 2008; 47:9337-40. [PMID: 18972473 DOI: 10.1002/anie.200803763] [Citation(s) in RCA: 180] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Dominik Koszelewski
- Research Centre Applied Biocatalysis, c/o Department of Chemistry, Organic and Bioorganic Chemistry, University of Graz, Heinrichstrasse 28, 8010 Graz, Austria
| | | | | | | | | | | |
Collapse
|
428
|
Steenkamp L, Brady D. Optimisation of stabilised Carboxylesterase NP for enantioselective hydrolysis of naproxen methyl ester. Process Biochem 2008. [DOI: 10.1016/j.procbio.2008.09.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
429
|
Wei L, Makowski T, Martinez C, Ghosh A. Efficient synthesis of (R)-3-amino-1,1,1-trifluoropropan-2-ol via a Dakin–West reaction followed by enantioselective reduction. ACTA ACUST UNITED AC 2008. [DOI: 10.1016/j.tetasy.2008.12.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
430
|
Avi M, Wiedner R, Griengl H, Schwab H. Improvement of a Stereoselective Biocatalytic Synthesis by Substrate and Enzyme Engineering: 2-Hydroxy-(4′-oxocyclohexyl)acetonitrile as the Model. Chemistry 2008; 14:11415-22. [DOI: 10.1002/chem.200800609] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
431
|
Koszelewski D, Lavandera I, Clay D, Guebitz G, Rozzell D, Kroutil W. Formal Asymmetric Biocatalytic Reductive Amination. Angew Chem Int Ed Engl 2008. [DOI: 10.1002/ange.200803763] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Dominik Koszelewski
- Research Centre Applied Biocatalysis, c/o Department of Chemistry, Organic and Bioorganic Chemistry, University of Graz, Heinrichstrasse 28, 8010 Graz (Austria), Fax: (+43) 316‐380‐9840
| | - Iván Lavandera
- Research Centre Applied Biocatalysis, c/o Department of Chemistry, Organic and Bioorganic Chemistry, University of Graz, Heinrichstrasse 28, 8010 Graz (Austria), Fax: (+43) 316‐380‐9840
| | - Dorina Clay
- Research Centre Applied Biocatalysis, c/o Department of Chemistry, Organic and Bioorganic Chemistry, University of Graz, Heinrichstrasse 28, 8010 Graz (Austria), Fax: (+43) 316‐380‐9840
| | - Georg M. Guebitz
- Institute of Environmental Biotechnology, Research Centre Applied Biocatalysis, University of Technology, Petersgasse 12, 8010 Graz (Austria)
| | | | - Wolfgang Kroutil
- Research Centre Applied Biocatalysis, c/o Department of Chemistry, Organic and Bioorganic Chemistry, University of Graz, Heinrichstrasse 28, 8010 Graz (Austria), Fax: (+43) 316‐380‐9840
| |
Collapse
|
432
|
Dickerson MB, Sandhage KH, Naik RR. Protein- and Peptide-Directed Syntheses of Inorganic Materials. Chem Rev 2008; 108:4935-78. [PMID: 18973389 DOI: 10.1021/cr8002328] [Citation(s) in RCA: 655] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Matthew B. Dickerson
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433-7702; School of Materials Science and Engineering, Georgia Institute of Technology, 771 Ferst Drive, Atlanta, Georgia 30332-0245; and School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, Georgia 30332-0245
| | - Kenneth H. Sandhage
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433-7702; School of Materials Science and Engineering, Georgia Institute of Technology, 771 Ferst Drive, Atlanta, Georgia 30332-0245; and School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, Georgia 30332-0245
| | - Rajesh R. Naik
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433-7702; School of Materials Science and Engineering, Georgia Institute of Technology, 771 Ferst Drive, Atlanta, Georgia 30332-0245; and School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, Georgia 30332-0245
| |
Collapse
|
433
|
Voss CV, Gruber CC, Faber K, Knaus T, Macheroux P, Kroutil W. Orchestration of concurrent oxidation and reduction cycles for stereoinversion and deracemisation of sec-alcohols. J Am Chem Soc 2008; 130:13969-72. [PMID: 18821754 DOI: 10.1021/ja804816a] [Citation(s) in RCA: 138] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Black and white are opposites as are oxidation and reduction. Performing an oxidation, for example, of a sec-alcohol and a reduction of the corresponding ketone in the same vessel without separation of the reagents seems to be an impossible task. Here we show that oxidative cofactor recycling of NADP (+) and reductive regeneration of NADH can be performed simultaneously in the same compartment without significant interference. Regeneration cycles can be run in opposing directions beside each other enabling one-pot transformation of racemic alcohols to one enantiomer via concurrent enantioselective oxidation and asymmetric reduction employing defined alcohol dehydrogenases with opposite stereo- and cofactor-preference. Thus, by careful selection of appropriate enzymes, NADH recycling can be performed in the presence of NADP (+) recycling to achieve overall, for example, deracemisation of sec-alcohols or stereoinversion representing a possible concept for a "green" equivalent to the chemical-intensive Mitsunobu inversion.
Collapse
Affiliation(s)
- Constance V Voss
- Department of Chemistry, Organic and Bioorganic Chemistry, University of Graz, Heinrichstrasse 28, A-8010 Graz, Austria
| | | | | | | | | | | |
Collapse
|
434
|
Chen B, Woodley J, Micheletti M, Baganz F, Lye G. Process modelling to accelerate biocatalytic process development. J Biotechnol 2008. [DOI: 10.1016/j.jbiotec.2008.07.1092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
435
|
Vazquez-Figueroa E, Yeh V, Broering JM, Chaparro-Riggers JF, Bommarius AS. Thermostable variants constructed via the structure-guided consensus method also show increased stability in salts solutions and homogeneous aqueous-organic media. Protein Eng Des Sel 2008; 21:673-80. [PMID: 18799474 DOI: 10.1093/protein/gzn048] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Enzyme instability is a major factor preventing widespread adoption of enzymes for catalysis. Stability at high temperatures and in the presence of high salt concentrations and organic solvents would allow enzymes to be employed for transformations of compounds not readily soluble in low temperature or in purely aqueous systems. Furthermore, many redox enzymes require costly cofactors for function and consequently a robust cofactor regeneration system. In this work, we demonstrate how thermostable variants developed via an amino acid sequence-based consensus method also showed improved stability in solutions with high concentrations of kosmotropic and chaotropic salts and water-miscible organic solvents. This is invaluable to protein engineers since deactivation in salt solutions and organic solvents is not well understood, rendering a priori design of enzyme stability in these media difficult. Variants of glucose 1-dehydrogenase (GDH) were studied in solutions of different salts along the Hofmeister series and in the presence of varying amounts of miscible organic solvent. Only the most stable variants showed little deactivation dependence on salt-type and salt concentration. Kinetic stability, expressed by the deactivation rate constant k(d,obs), did not always correlate with thermodynamic stability of variants, as measured by melting temperature T(m). However, a strong correlation (R(2) > 0.95) between temperature stability and organic solvent stability was found when plotting T(50)(60) versus C(50)(60) values. All GDH variants retained stability in homogeneous aqueous-organic solvents with >80% v/v of organic solvent.
Collapse
Affiliation(s)
- E Vazquez-Figueroa
- School of Chemical and Biomolecular Engineering, Parker H. Petit Institute for Bioengineering and Bioscience, Atlanta, GA 30332-0363, USA
| | | | | | | | | |
Collapse
|
436
|
De novo biosynthetic pathways: rational design of microbial chemical factories. Curr Opin Biotechnol 2008; 19:468-74. [PMID: 18725289 DOI: 10.1016/j.copbio.2008.07.009] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2008] [Revised: 07/25/2008] [Accepted: 07/29/2008] [Indexed: 12/18/2022]
Abstract
Increasing interest in the production of organic compounds from non-petroleum-derived feedstocks, especially biomass, is a significant driver for the construction of new recombinant microorganisms for this purpose. As a discipline, Metabolic Engineering has provided a framework for the development of such systems. Efforts have traditionally been focused, first, on the optimization of natural producers, later progressing towards re-construction of natural pathways in heterologous hosts. To maximize the potential of microbes for biosynthetic purposes, new tools and methodologies within Metabolic Engineering are needed for the proposition and construction of de novo designed pathways. This review will focus on recent advances towards the design and assembly of biosynthetic pathways, and provide a Synthetic Biology perspective for the construction of microbial chemical factories.
Collapse
|
437
|
Hussain W, Pollard DJ, Truppo M, Lye GJ. Enzymatic ketone reductions with co-factor recycling: Improved reactions with ionic liquid co-solvents. ACTA ACUST UNITED AC 2008. [DOI: 10.1016/j.molcatb.2008.01.006] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
438
|
Henderson RK, Jiménez-González C, Preston C, Constable DJ, Woodley JM. PEER REVIEW ORIGINAL RESEARCH: EHS & LCA assessment for 7-ACA synthesis A case study for comparing biocatalytic & chemical synthesis. Ind Biotechnol (New Rochelle N Y) 2008. [DOI: 10.1089/ind.2008.4.180] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Richard K. Henderson
- GlaxoSmithKline CEHS, Park Road, Ware, Hertfordshire SG12 0DP UK Tel. +44 1920 882968 Fax: +44 1920 884469 E-mail: , Corresponding author
| | | | | | | | - John M. Woodley
- Centre for BioProcess Engineering, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
439
|
Kosjek B, Fleitz FJ, Dormer PG, Kuethe JT, Devine PN. Asymmetric bioreduction of α,β-unsaturated nitriles and ketones. ACTA ACUST UNITED AC 2008. [DOI: 10.1016/j.tetasy.2008.05.023] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
440
|
Law H, Lewis D, McRobbie I, Woodley J. Model visualization for evaluation of biocatalytic processes. FOOD AND BIOPRODUCTS PROCESSING 2008. [DOI: 10.1016/j.fbp.2008.03.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
441
|
Woodley JM. New opportunities for biocatalysis: making pharmaceutical processes greener. Trends Biotechnol 2008; 26:321-7. [PMID: 18436317 DOI: 10.1016/j.tibtech.2008.03.004] [Citation(s) in RCA: 284] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2007] [Revised: 02/29/2008] [Accepted: 03/10/2008] [Indexed: 12/01/2022]
Abstract
The pharmaceutical industry requires synthetic routes to be environmentally compatible as well as to fulfill the demands of process economics and product specification and to continually reduce development times. Biocatalysis has the potential to deliver 'greener' chemical syntheses, and in this review some of these opportunities are outlined and outstanding challenges presented. Future development will require research targeted towards increased commercial availability of key enzymes, as well as the improvement of enzyme stability and substrate repertoire, to fully realize the potential of biocatalysis for making pharmaceutical processes greener.
Collapse
Affiliation(s)
- John M Woodley
- Center for BioProcess Engineering, Department of Chemical and Biochemical Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark.
| |
Collapse
|
442
|
Julsing MK, Cornelissen S, Bühler B, Schmid A. Heme-iron oxygenases: powerful industrial biocatalysts? Curr Opin Chem Biol 2008; 12:177-86. [DOI: 10.1016/j.cbpa.2008.01.029] [Citation(s) in RCA: 131] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2007] [Revised: 01/18/2008] [Accepted: 01/18/2008] [Indexed: 11/24/2022]
|
443
|
Truppo M, Escalettes F, Turner N. Rapid Determination of Both the Activity and Enantioselectivity of Ketoreductases. Angew Chem Int Ed Engl 2008; 47:2639-41. [DOI: 10.1002/anie.200705046] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
444
|
Truppo M, Escalettes F, Turner N. Rapid Determination of Both the Activity and Enantioselectivity of Ketoreductases. Angew Chem Int Ed Engl 2008. [DOI: 10.1002/ange.200705046] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
445
|
Hilker I, Gutiérrez MC, Furstoss R, Ward J, Wohlgemuth R, Alphand V. Preparative scale Baeyer–Villiger biooxidation at high concentration using recombinant Escherichia coli and in situ substrate feeding and product removal process. Nat Protoc 2008; 3:546-54. [DOI: 10.1038/nprot.2007.532] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
446
|
Feingersch R, Shainsky J, Wood TK, Fishman A. Protein engineering of toluene monooxygenases for synthesis of chiral sulfoxides. Appl Environ Microbiol 2008; 74:1555-66. [PMID: 18192418 PMCID: PMC2258606 DOI: 10.1128/aem.01849-07] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2007] [Accepted: 12/27/2007] [Indexed: 11/20/2022] Open
Abstract
Enantiopure sulfoxides are valuable asymmetric starting materials and are important chiral auxiliaries in organic synthesis. Toluene monooxygenases (TMOs) have been shown previously to catalyze regioselective hydroxylation of substituted benzenes and phenols. Here we show that TMOs are also capable of performing enantioselective oxidation reactions of aromatic sulfides. Mutagenesis of position V106 in the alpha-hydroxylase subunit of toluene ortho-monooxygenase (TOM) of Burkholderia cepacia G4 and the analogous position I100 in toluene 4-monooxygenase (T4MO) of Pseudomonas mendocina KR1 improved both rate and enantioselectivity. Variant TomA3 V106M of TOM oxidized methyl phenyl sulfide to the corresponding sulfoxide at a rate of 3.0 nmol/min/mg protein compared with 1.6 for the wild-type enzyme, and the enantiomeric excess (pro-S) increased from 51% for the wild type to 88% for this mutant. Similarly, T4MO variant TmoA I100G increased the wild-type oxidation rate by 1.7-fold, and the enantiomeric excess rose from 86% to 98% (pro-S). Both wild-type enzymes showed lower activity with methyl para-tolyl sulfide as a substrate, but the improvement in the activity and enantioselectivity of the mutants was more dramatic. For example, T4MO variant TmoA I100G oxidized methyl para-tolyl sulfide 11 times faster than the wild type did and changed the selectivity from 41% pro-R to 77% pro-S. A correlation between regioselectivity and enantioselectivity was shown for TMOs studied in this work. Using in silico homology modeling, it is shown that residue I100 in T4MO aids in steering the substrate into the active site at the end of the long entrance channel. It is further hypothesized that the main function of V106 in TOM is the proper positioning or docking of the substrate with respect to the diiron atoms. The results from this work suggest that when the substrate is not aligned correctly in the active site, the oxidation rate is decreased and enantioselectivity is impaired, resulting in products with both chiral configurations.
Collapse
Affiliation(s)
- Roi Feingersch
- Department of Biotechnology and Food Engineering and Institute of Catalysis Science and Technology, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | | | | | | |
Collapse
|
447
|
Evolutionary ecology and multidisciplinary approaches to prospecting for monooxygenases as biocatalysts. Antonie van Leeuwenhoek 2008; 94:75-84. [PMID: 18283556 DOI: 10.1007/s10482-008-9227-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2007] [Accepted: 02/01/2008] [Indexed: 10/22/2022]
Abstract
New techniques to explore microbial diversity have led to resurgent interest in prospecting for natural products (bioprospecting or biodiscovery). Although many bioprospecting projects may share little in common at first glance, the vast majority share one particular challenge. Their targets are rare to very rare members of complex natural assemblages. Despite the advances made in bringing new organisms into cultivation and application of culture-independent techniques to isolation of novel genes there remain systematic biases against relatively rare organisms with specific growth requirements. These can frequently be overcome by application of multidisciplinary approaches that take into account principles of evolutionary ecology. Our experiences with prospecting for soluble di-iron monooxygenases (SDIMO) indicate that conventional approaches to organism isolation and metagenomic cloning systematically under-sample diversity in this enzyme family. This reflects that SDIMO-containing organisms are typically relatively low-abundance members of natural assemblages (thus biased against by direct cloning) and SDIMOs have discrete physiological roles in each organism (thus are not amenable to generic enrichment culture strategies). We have sought to overcome this by a PCR-based survey of gene diversity to guide evaluation of subsequent culture or cloning studies. A surprising outcome of this survey was that conventional PCR approaches using degenerate primers also systematically under-sampled diversity, but nested PCR strategies revealed unprecedented diversity. We conclude that many PCR-based gene-prospecting studies are likely to have under-estimated the impact of target:competitor ratios on their success.
Collapse
|
448
|
Kahakeaw D, Reetz M. A Cell-Based Adrenaline Assay for Automated High-Throughput Activity Screening of Epoxide Hydrolases. Chem Asian J 2008; 3:233-8. [DOI: 10.1002/asia.200700325] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
449
|
Electroenzymatic strategies for deracemization, stereoinversion and asymmetric synthesis of amino acids. Electrochim Acta 2008. [DOI: 10.1016/j.electacta.2007.11.058] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
450
|
Fox RJ, Huisman GW. Enzyme optimization: moving from blind evolution to statistical exploration of sequence-function space. Trends Biotechnol 2008; 26:132-8. [PMID: 18222559 DOI: 10.1016/j.tibtech.2007.12.001] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2007] [Revised: 11/30/2007] [Accepted: 12/05/2007] [Indexed: 12/29/2022]
Abstract
Directed evolution is a powerful tool for the creation of commercially useful enzymes, particularly those approaches that are based on in vitro recombination methods, such as DNA shuffling. Although these types of search algorithms are extraordinarily efficient compared with purely random methods, they do not explicitly represent or interrogate the genotype-phenotype relationship and are essentially blind in nature. Recently, however, researchers have begun to apply multivariate statistical techniques to model protein sequence-function relationships and guide the evolutionary process by rapidly identifying beneficial diversity for recombination. In conjunction with state-of-the-art library generation methods, the statistical approach to sequence optimization is now being used routinely to create enzymes efficiently for industrial applications.
Collapse
Affiliation(s)
- Richard J Fox
- Codexis, Inc., 200 Penobscot Drive, Redwood City, CA 94063, USA.
| | | |
Collapse
|