401
|
The epidemiological fitness cost of drug resistance in Mycobacterium tuberculosis. Proc Natl Acad Sci U S A 2009; 106:14711-5. [PMID: 19706556 DOI: 10.1073/pnas.0902437106] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The emergence of antibiotic resistance in Mycobacterium tuberculosis has raised the concern that pathogen strains that are virtually untreatable may become widespread. The acquisition of resistance to antibiotics results in a longer duration of infection in a host, but this resistance may come at a cost through a decreased transmission rate. This raises the question of whether the overall fitness of drug-resistant strains is higher than that of sensitive strains--essential information for predicting the spread of the disease. Here, we directly estimate the transmission cost of drug resistance, the rate at which resistance evolves, and the relative fitness of resistant strains. These estimates are made by using explicit models of the transmission and evolution of sensitive and resistant strains of M. tuberculosis, using approximate Bayesian computation, and molecular epidemiology data from Cuba, Estonia, and Venezuela. We find that the transmission cost of drug resistance relative to sensitivity can be as low as 10%, that resistance evolves at rates of approximately 0.0025-0.02 per case per year, and that the overall fitness of resistant strains is comparable with that of sensitive strains. Furthermore, the contribution of transmission to the spread of drug resistance is very high compared with acquired resistance due to treatment failure (up to 99%). Estimating such parameters directly from in vivo data will be critical to understanding and responding to antibiotic resistance. For instance, projections using our estimates suggest that the prevalence of tuberculosis may decline with successful treatment, but the proportion of cases associated with resistance is likely to increase.
Collapse
|
402
|
Bacterial gene amplification: implications for the evolution of antibiotic resistance. Nat Rev Microbiol 2009; 7:578-88. [PMID: 19609259 DOI: 10.1038/nrmicro2174] [Citation(s) in RCA: 248] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Recent data suggest that, in response to the presence of antibiotics, gene duplication and amplification (GDA) constitutes an important adaptive mechanism in bacteria. For example, resistance to sulphonamide, trimethoprim and beta-lactams can be conferred by increased gene dosage through GDA of antibiotic hydrolytic enzymes, target enzymes or efflux pumps. Furthermore, most types of antibiotic resistance mechanism are deleterious in the absence of antibiotics, and these fitness costs can be ameliorated by increased gene dosage of limiting functions. In this Review, we highlight the dynamic properties of gene amplifications and describe how they can facilitate adaptive evolution in response to toxic drugs.
Collapse
|
403
|
Babiker HA, Hastings IM, Swedberg G. Impaired fitness of drug-resistant malaria parasites: evidence and implication on drug-deployment policies. Expert Rev Anti Infect Ther 2009; 7:581-93. [PMID: 19485798 DOI: 10.1586/eri.09.29] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Malaria, a leading parasitic disease, inflicts an enormous toll on human lives and is caused by protozoal parasites belonging to the genus Plasmodium. Antimalarial drugs targeting essential biochemical processes in the parasite are the primary resources for management and control. However, the parasite has established mutations, substantially reducing the efficacy of these drugs. First-line therapy is faced the with the consistent evolution of drug-resistant genotypes carrying these mutations. However, drug-resistant genotypes are likely to be less fit than the wild-type, suggesting that they might disappear by reducing the volume of drug pressure. A substantial body of epidemiological evidence confirmed that the frequency of resistant genotypes wanes when active drug selection declines. Drug selection on the parasite genome that removes genetic variation in the vicinity of drug-resistant genes (hitch-hiking) is common among resistant parasites in the field. This can further disadvantage drug-resistant strains and limit their variability in the face of a mounting immune response. Attempts to provide unequivocal evidence for the fitness cost of drug resistance have monitored the outcomes of laboratory competition experiments of deliberate mixtures of sensitive and resistant strains, in the absence of drug pressure, using isogenic clones produced either by drug selection or gene manipulation. Some of these experiments provided inconclusive results, but they all suggested reduced fitness of drug-resistant clones in the absence of drug pressure. In addition, biochemical analyses provided clearer information demonstrating that the mutation of some antimalarial-targeted enzymes lowers their activity compared with the wild-type enzyme. Here, we review current evidences for the disadvantage of drug-resistance mutations, and discuss some strategies of drug deployment to maximize the cost of resistance and limit its spread.
Collapse
Affiliation(s)
- Hamza A Babiker
- Biochemistry Department, Faculty of Medicine, Sultan Qaboos University, Alkhod, Muscat, Oman.
| | | | | |
Collapse
|
404
|
The fitness cost of streptomycin resistance depends on rpsL mutation, carbon source and RpoS (sigmaS). Genetics 2009; 183:539-46, 1SI-2SI. [PMID: 19652179 DOI: 10.1534/genetics.109.106104] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mutations that cause antibiotic resistance often produce associated fitness costs. These costs have a detrimental effect on the fate of resistant organisms in natural populations and could be exploited in designing drugs, therapeutic regimes, and intervention strategies. The streptomycin resistance (StrR) mutations K42N and P90S in ribosomal protein S12 impair growth on rich medium. Surprisingly, in media with poorer carbon sources, the same StrR mutants grow faster than wild type. This improvement reflects a failure of these StrR mutants to induce the stress-inducible sigma factor RpoS (sigmaS), a key regulator of many stationary-phase and stress-inducible genes. On poorer carbon sources, wild-type cells induce sigmaS, which retards growth. By not inducing sigmaS, StrR mutants escape this self-imposed inhibition. Consistent with this interpretation, the StrR mutant loses its advantage over wild type when both strains lack an RpoS (sigmaS) gene. Failure to induce sigmaS produced the following side effects: (1) impaired induction of several stress-inducible genes, (2) reduced tolerance to thermal stress, and (3) reduced translational fidelity. These results suggest that RpoS may contribute to long-term cell survival, while actually limiting short-term growth rate under restrictive growth conditions. Accordingly, the StrR mutant avoids short-term growth limitation but is sensitized to other stresses. These results highlight the importance of measuring fitness costs under multiple experimental conditions not only to acquire a more relevant estimate of fitness, but also to reveal novel physiological weaknesses exploitable for drug development.
Collapse
|
405
|
Trindade S, Sousa A, Xavier KB, Dionisio F, Ferreira MG, Gordo I. Positive epistasis drives the acquisition of multidrug resistance. PLoS Genet 2009; 5:e1000578. [PMID: 19629166 PMCID: PMC2706973 DOI: 10.1371/journal.pgen.1000578] [Citation(s) in RCA: 194] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2009] [Accepted: 06/25/2009] [Indexed: 11/19/2022] Open
Abstract
The evolution of multiple antibiotic resistance is an increasing global problem. Resistance mutations are known to impair fitness, and the evolution of resistance to multiple drugs depends both on their costs individually and on how they interact—epistasis. Information on the level of epistasis between antibiotic resistance mutations is of key importance to understanding epistasis amongst deleterious alleles, a key theoretical question, and to improving public health measures. Here we show that in an antibiotic-free environment the cost of multiple resistance is smaller than expected, a signature of pervasive positive epistasis among alleles that confer resistance to antibiotics. Competition assays reveal that the cost of resistance to a given antibiotic is dependent on the presence of resistance alleles for other antibiotics. Surprisingly we find that a significant fraction of resistant mutations can be beneficial in certain resistant genetic backgrounds, that some double resistances entail no measurable cost, and that some allelic combinations are hotspots for rapid compensation. These results provide additional insight as to why multi-resistant bacteria are so prevalent and reveal an extra layer of complexity on epistatic patterns previously unrecognized, since it is hidden in genome-wide studies of genetic interactions using gene knockouts. Understanding the nature of genetic interactions, known as epistasis, is crucial in biology. The strength and type of epistasis is relevant for the evolution of sex, buffering of genetic variation, speciation, and the topography of fitness landscapes. While epistasis between gene deletions has been the recent focus of research, interactions between randomly selected alleles, which are of the greatest evolutionary interest, have not. We have studied the strength and type of epistasis amongst alleles that confer antibiotic resistance and have found that: in an antibiotic-free environment, the cost of multiple resistance is smaller than expected—a signature of pervasive positive epistasis amongst alleles that confer resistance to antibiotics; epistatic interactions are allele specific; a significant fraction of resistant mutations can be beneficial in certain resistant genetic backgrounds; some double resistances entail no measurable cost; and some allelic combinations are hotspots for rapid compensation. Overall, our findings provide added reasoning as to why multi-resistance is so difficult to eradicate. Importantly, our results of allelic-specific epistasis reveal an extra layer of complexity on epistatic patterns previously unrecognized.
Collapse
Affiliation(s)
- Sandra Trindade
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- Departamento de Biologia Vegetal and Centro de Biologia Ambiental, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Lisboa, Portugal
| | - Ana Sousa
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Karina Bivar Xavier
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Francisco Dionisio
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- Departamento de Biologia Vegetal and Centro de Biologia Ambiental, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Lisboa, Portugal
| | | | - Isabel Gordo
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- * E-mail:
| |
Collapse
|
406
|
Jones LE, Becks L, Ellner SP, Hairston NG, Yoshida T, Fussmann GF. Rapid contemporary evolution and clonal food web dynamics. Philos Trans R Soc Lond B Biol Sci 2009; 364:1579-91. [PMID: 19414472 PMCID: PMC2690500 DOI: 10.1098/rstb.2009.0004] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Character evolution that affects ecological community interactions often occurs contemporaneously with temporal changes in population size, potentially altering the very nature of those dynamics. Such eco-evolutionary processes may be most readily explored in systems with short generations and simple genetics. Asexual and cyclically parthenogenetic organisms such as microalgae, cladocerans and rotifers, which frequently dominate freshwater plankton communities, meet these requirements. Multiple clonal lines can coexist within each species over extended periods, until either fixation occurs or a sexual phase reshuffles the genetic material. When clones differ in traits affecting interspecific interactions, within-species clonal dynamics can have major effects on the population dynamics. We first consider a simple predator-prey system with two prey genotypes, parametrized with data from a well-studied experimental system, and explore how the extent of differences in defence against predation within the prey population determine dynamic stability versus instability of the system. We then explore how increased potential for evolution affects the community dynamics in a more general community model with multiple predator and multiple prey genotypes. These examples illustrate how microevolutionary 'details' that enhance or limit the potential for heritable phenotypic change can have significant effects on contemporaneous community-level dynamics and the persistence and coexistence of species.
Collapse
Affiliation(s)
- Laura E. Jones
- Department of Ecology and Evolutionary Biology, Cornell UniversityCorson Hall, Ithaca, NY 14853-2701, USA
| | - Lutz Becks
- Department of Ecology and Evolutionary Biology, Cornell UniversityCorson Hall, Ithaca, NY 14853-2701, USA
| | - Stephen P. Ellner
- Department of Ecology and Evolutionary Biology, Cornell UniversityCorson Hall, Ithaca, NY 14853-2701, USA
| | - Nelson G. Hairston
- Department of Ecology and Evolutionary Biology, Cornell UniversityCorson Hall, Ithaca, NY 14853-2701, USA
| | - Takehito Yoshida
- Department of General Systems Studies, University of Tokyo3-8-1 Komaba, Meguro, Tokyo 153-8902, Japan
| | - Gregor F. Fussmann
- Department of Biology, McGill University1205 Avenue Docteur-Penfield, Montreal, Quebec H3A 1B1, Canada
| |
Collapse
|
407
|
Foucault ML, Courvalin P, Grillot-Courvalin C. Fitness cost of VanA-type vancomycin resistance in methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 2009; 53:2354-9. [PMID: 19332680 PMCID: PMC2687198 DOI: 10.1128/aac.01702-08] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2008] [Revised: 03/01/2009] [Accepted: 03/21/2009] [Indexed: 11/20/2022] Open
Abstract
We have quantified the biological cost of VanA-type glycopeptide resistance due to the acquisition of the resistance operon by methicillin-resistant Staphylococcus aureus (MRSA) from Enterococcus sp. Exponential growths of recipient strain HIP11713, its transconjugant VRSA-1, VRSA-5, and VRSA-6 were compared in the absence or, except for HIP11713, in the presence of vancomycin. Induction of resistance was performed by adding vancomycin in both the preculture and the culture or the culture at only 1/50 the MIC. In the absence of vancomycin, the growth rates of the vancomycin-resistant S. aureus (VRSA) strains were similar to that of susceptible MRSA strain HIP11713. When resistance was induced, and under both conditions, there was a significant reduction of the growth rate of the VRSA strains relative to that of HIP11713 and to those of their noninduced counterparts, corresponding to a ca. 20% to 38% reduction in fitness. Competition experiments between isogenic VRSA-1 and HIP11713 mixed at a 1:1, 1:100, or 100:1 ratio revealed a competitive disadvantage of 0.4% to 3% per 10 generations of the transconjugant versus the recipient. This slight fitness burden can be attributed to the basal level of expression of the van genes in the absence of induction combined with a gene dosage effect due to the presence of the van operon on multicopy plasmids. These data indicate that VanA-type resistance, when induced, is highly costly for the MRSA host, whereas in the absence of induction, its biological cost is minimal. Thus, the potential for the dissemination of VRSA clinical isolates should not be underestimated.
Collapse
Affiliation(s)
- Marie-Laure Foucault
- Unité des Agents Antibactériens, Institut Pasteur, 25 Rue du Docteur Roux, 75724 Paris Cedex 15, France
| | | | | |
Collapse
|
408
|
Coates T, Bax R, Coates A. Nasal decolonization of Staphylococcus aureus with mupirocin: strengths, weaknesses and future prospects. J Antimicrob Chemother 2009; 64:9-15. [PMID: 19451132 PMCID: PMC2692503 DOI: 10.1093/jac/dkp159] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Staphylococcus aureus in the nose is a risk factor for endogenous staphylococcal infection. UK guidelines recommend the use of mupirocin for nasal decolonization in certain groups of patients colonized with methicillin-resistant S. aureus (MRSA). Mupirocin is effective at removing S. aureus from the nose over a few weeks, but relapses are common within several months. There are only a few prospective randomized clinical trials that have been completed with sufficient patients, but those that have been reported suggest that clearance of S. aureus from the nose is beneficial in some patient groups for the reduction in the incidence of nosocomial infections. There is no convincing evidence that mupirocin treatment reduces the incidence of surgical site infection. New antibiotics are needed to decolonize the nose because bacterial resistance to mupirocin is rising, and so it will become less effective. Furthermore, a more bactericidal antibiotic than mupirocin is needed, on the grounds that it might reduce the relapse rate, and so clear the patient of MRSA for a longer period of time than mupirocin.
Collapse
Affiliation(s)
- T Coates
- University College London, London, UK.
| | | | | |
Collapse
|
409
|
Vickers AA, Potter NJ, Fishwick CWG, Chopra I, O'Neill AJ. Analysis of mutational resistance to trimethoprim in Staphylococcus aureus by genetic and structural modelling techniques. J Antimicrob Chemother 2009; 63:1112-7. [DOI: 10.1093/jac/dkp090] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
410
|
Abstract
The antibiotic era started in the 1940s and changed the profile of infectious diseases and human demography. The burgeoning classes and numbers promised much and elimination of this major cause of human (and animal) morbidity appeared possible. Bacterial antibiotic resistance which was observed soon after antibiotic introduction has been studied extensively. Diverse mechanisms have been demonstrated and the genetic basis elucidated. The resilience of the prokaryote ecosystems to antibiotic stress has been realized. The paper presents these subjects briefly to afford an overview. The epidemiology of antibiotic resistance is dealt with and community practices in different countries are described. The role of high antibiotic usage environments is indicated. The implication of the wide use of antibiotics in animals has been pointed out. Steadily increasing antibiotic resistance and decreasing numbers of newer antibiotics appear to point to a post-antibiotic period during which treatment of infections would become increasingly difficult. This article attempts to review the global antimicrobial resistance scene and juxtaposes it to the Indian experience. The prevalence in India of antibiotic resistance among major groups of pathogens is described. The factors that determine the prevalent high antibiotic resistance rates have been highlighted. The future research activity to ensure continued utility of antibiotics in the control of infections has been indicated.
Collapse
|
411
|
Martinez JL. The role of natural environments in the evolution of resistance traits in pathogenic bacteria. Proc Biol Sci 2009; 276:2521-30. [PMID: 19364732 DOI: 10.1098/rspb.2009.0320] [Citation(s) in RCA: 288] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Antibiotics are among the most valuable compounds used for fighting human diseases. Unfortunately, pathogenic bacteria have evolved towards resistance. One important and frequently forgotten aspect of antibiotics and their resistance genes is that they evolved in non-clinical (natural) environments before the use of antibiotics by humans. Given that the biosphere is mainly formed by micro-organisms, learning the functional role of antibiotics and their resistance elements in nature has relevant implications both for human health and from an ecological perspective. Recent works have suggested that some antibiotics may serve for signalling purposes at the low concentrations probably found in natural ecosystems, whereas some antibiotic resistance genes were originally selected in their hosts for metabolic purposes or for signal trafficking. However, the high concentrations of antibiotics released in specific habitats (for instance, clinical settings) as a consequence of human activity can shift those functional roles. The pollution of natural ecosystems by antibiotics and resistance genes might have consequences for the evolution of the microbiosphere. Whereas antibiotics produce transient and usually local challenges in microbial communities, antibiotic resistance genes present in gene-transfer units can spread in nature with consequences for human health and the evolution of environmental microbiota that are largely ignored.
Collapse
Affiliation(s)
- Jose L Martinez
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Darwin 3, Cantoblanco, 28049 Madrid, Spain.
| |
Collapse
|
412
|
Débarre F, Lenormand T, Gandon S. Evolutionary epidemiology of drug-resistance in space. PLoS Comput Biol 2009; 5:e1000337. [PMID: 19343211 PMCID: PMC2658742 DOI: 10.1371/journal.pcbi.1000337] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2008] [Accepted: 02/19/2009] [Indexed: 11/29/2022] Open
Abstract
How can we optimize the use of drugs against parasites to limit the evolution
of drug resistance? This question has been addressed by many theoretical
studies focusing either on the mixing of various treatments, or their
temporal alternation. Here we consider a different treatment strategy where
the use of the drug may vary in space to prevent the rise of
drug-resistance. We analyze epidemiological models where drug-resistant and
drug-sensitive parasites compete in a one-dimensional spatially
heterogeneous environment. Two different parasite life-cycles are
considered: (i) direct transmission between hosts, and (ii) vector-borne
transmission. In both cases we find a critical size of the treated area,
under which the drug-resistant strain cannot persist. This critical size
depends on the basic reproductive ratios of each strain in each environment,
on the ranges of dispersal, and on the duration of an infection with
drug-resistant parasites. We discuss optimal treatment strategies that limit
disease prevalence and the evolution of drug-resistance. The spread of drug-resistant parasites erodes the efficacy of therapeutic
treatments against many infectious diseases and is a major threat of the 21st
century. The evolution of drug-resistance depends, among other things, on how
the treatments are administered at the population level. “Resistance
management” consists of finding optimal treatment strategies that both
reduce the consequence of an infection at the individual host level, and limit
the spread of drug-resistance in the pathogen population. Several studies have
focused on the effect of mixing different treatments, or of alternating them in
time. Here, we analyze another strategy, where the use of the drug varies
spatially: there are places where no one receives any treatment. We find that
such a spatial heterogeneity can totally prevent the rise of drug-resistance,
provided that the size of treated patches is below a critical threshold. The
range of parasite dispersal, the relative costs and benefits of being
drug-resistant compared to being drug-sensitive, and the duration of an
infection with drug-resistant parasites are the main factors determining the
value of this threshold. Our analysis thus provides some general guidance
regarding the optimal spatial use of drugs to prevent or limit the evolution of
drug-resistance.
Collapse
Affiliation(s)
- Florence Débarre
- Centre d'Ecologie Fonctionnelle et Evolutive, CNRS-UMR 5175, Montpellier, France.
| | | | | |
Collapse
|
413
|
Ward H, Perron GG, Maclean RC. The cost of multiple drug resistance in Pseudomonas aeruginosa. J Evol Biol 2009; 22:997-1003. [PMID: 19298493 DOI: 10.1111/j.1420-9101.2009.01712.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The spread of bacterial antibiotic resistance mutations is thought to be constrained by their pleiotropic fitness costs. Here we investigate the fitness costs of resistance in the context of the evolution of multiple drug resistance (MDR), by measuring the cost of acquiring streptomycin resistance mutations (StrepR) in independent strains of the bacterium Pseudomonas aeruginosa carrying different rifampicin resistance (RifR) mutations. In the absence of antibiotics, StrepR mutations are associated with similar fitness costs in different RifR genetic backgrounds. The cost of StrepR mutations is greater in a rifampicin-sensitive (RifS) background, directly demonstrating antagonistic epistasis between resistance mutations. In the presence of rifampicin, StrepR mutations have contrasting effects in different RifR backgrounds: StrepR mutations have no detectable costs in some RifR backgrounds and massive fitness costs in others. Our results clearly demonstrate the importance of epistasis and genotype-by-environment interactions for the evolution of MDR.
Collapse
Affiliation(s)
- H Ward
- Department of Zoology, University of Oxford, South Parks Road, Oxford, UK
| | | | | |
Collapse
|
414
|
Martinez JL, Sánchez MB, Martínez-Solano L, Hernandez A, Garmendia L, Fajardo A, Alvarez-Ortega C. Functional role of bacterial multidrug efflux pumps in microbial natural ecosystems. FEMS Microbiol Rev 2009; 33:430-49. [PMID: 19207745 DOI: 10.1111/j.1574-6976.2008.00157.x] [Citation(s) in RCA: 323] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Multidrug efflux pumps have emerged as relevant elements in the intrinsic and acquired antibiotic resistance of bacterial pathogens. In contrast with other antibiotic resistance genes that have been obtained by virulent bacteria through horizontal gene transfer, genes coding for multidrug efflux pumps are present in the chromosomes of all living organisms. In addition, these genes are highly conserved (all members of the same species contain the same efflux pumps) and their expression is tightly regulated. Together, these characteristics suggest that the main function of these systems is not resisting the antibiotics used in therapy and that they should have other roles relevant to the behavior of bacteria in their natural ecosystems. Among the potential roles, it has been demonstrated that efflux pumps are important for processes of detoxification of intracellular metabolites, bacterial virulence in both animal and plant hosts, cell homeostasis and intercellular signal trafficking.
Collapse
Affiliation(s)
- Jose Luis Martinez
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, CSIC, Cantoblanco, Madrid, Spain.
| | | | | | | | | | | | | |
Collapse
|
415
|
|
416
|
Baker-Austin C, McArthur JV, Lindell AH, Wright MS, Tuckfield RC, Gooch J, Warner L, Oliver J, Stepanauskas R. Multi-site analysis reveals widespread antibiotic resistance in the marine pathogen Vibrio vulnificus. MICROBIAL ECOLOGY 2009; 57:151-159. [PMID: 18642041 DOI: 10.1007/s00248-008-9413-8] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2007] [Accepted: 05/21/2008] [Indexed: 05/26/2023]
Abstract
Vibrio vulnificus is a serious opportunistic human pathogen commonly found in subtropical coastal waters, and is the leading cause of seafood-borne mortality in the USA. This taxon does not sustain prolonged presence in clinical or agricultural settings, where it would undergo human-induced selection for antibiotic resistance. Therefore, few studies have verified the effectiveness of commonly prescribed antibiotics in V. vulnificus treatment. Here we screened 151 coastal isolates and 10 primary septicaemia isolates against 26 antimicrobial agents representing diverse modes of action. The frequency of multiple resistances to antibiotics from all sources was unexpectedly high, particularly during summer months, and a substantial proportion of isolates (17.3%) were resistant to eight or more antimicrobial agents. Numerous isolates demonstrated resistance to antibiotics routinely prescribed for V. vulnificus infections, such as doxycycline, tetracycline, aminoglycosides and cephalosporins. These resistances were detected at similar frequencies in virulent and non-virulent strains (PCR-based virulence typing) and were present in septicaemia isolates, underlying the public health implications of our findings. Among environmental isolates, there were no consistent differences in the frequency of resistance between pristine and anthropogenically impacted estuaries, suggesting natural rather than human-derived sources of resistance traits. This report is the first to demonstrate prevalent antibiotic resistance in a human pathogen with no clinical reservoirs, implying the importance of environmental studies in understanding the spread, evolution and public health relevance of antibiotic resistance factors.
Collapse
|
417
|
Martinez JL, Fajardo A, Garmendia L, Hernandez A, Linares JF, Martínez-Solano L, Sánchez MB. A global view of antibiotic resistance. FEMS Microbiol Rev 2009; 33:44-65. [DOI: 10.1111/j.1574-6976.2008.00142.x] [Citation(s) in RCA: 236] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
|
418
|
Insertion mode of a novel anionic antimicrobial peptide MDpep5 (Val-Glu-Ser-Trp-Val) from Chinese traditional edible larvae of housefly and its effect on surface potential of bacterial membrane. J Pharm Biomed Anal 2008; 48:1187-94. [DOI: 10.1016/j.jpba.2008.09.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2008] [Accepted: 09/01/2008] [Indexed: 11/18/2022]
|
419
|
Inactivation of KsgA, a 16S rRNA methyltransferase, causes vigorous emergence of mutants with high-level kasugamycin resistance. Antimicrob Agents Chemother 2008; 53:193-201. [PMID: 19001112 DOI: 10.1128/aac.00873-08] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The methyltransferases RsmG and KsgA methylate the nucleotides G535 (RsmG) and A1518 and A1519 (KsgA) in 16S rRNA, and inactivation of the proteins by introducing mutations results in acquisition of low-level resistance to streptomycin and kasugamycin, respectively. In a Bacillus subtilis strain harboring a single rrn operon (rrnO), we found that spontaneous ksgA mutations conferring a modest level of resistance to kasugamycin occur at a high frequency of 10(-6). More importantly, we also found that once cells acquire the ksgA mutations, they produce high-level kasugamycin resistance at an extraordinarily high frequency (100-fold greater frequency than that observed in the ksgA(+) strain), a phenomenon previously reported for rsmG mutants. This was not the case for other antibiotic resistance mutations (Tsp(r) and Rif(r)), indicating that the high frequency of emergence of a mutation for high-level kasugamycin resistance in the genetic background of ksgA is not due simply to increased persistence of the ksgA strain. Comparative genome sequencing showed that a mutation in the speD gene encoding S-adenosylmethionine decarboxylase is responsible for the observed high-level kasugamycin resistance. ksgA speD double mutants showed a markedly reduced level of intracellular spermidine, underlying the mechanism of high-level resistance. A growth competition assay indicated that, unlike rsmG mutation, the ksgA mutation is disadvantageous for overall growth fitness. This study clarified the similarities and differences between ksgA mutation and rsmG mutation, both of which share a common characteristic--failure to methylate the bases of 16S rRNA. Coexistence of the ksgA mutation and the rsmG mutation allowed cell viability. We propose that the ksgA mutation, together with the rsmG mutation, may provide a novel clue to uncover a still-unknown mechanism of mutation and ribosomal function.
Collapse
|
420
|
Lipsitch M, Colijn C, Cohen T, Hanage WP, Fraser C. No coexistence for free: neutral null models for multistrain pathogens. Epidemics 2008; 1:2-13. [PMID: 21352747 DOI: 10.1016/j.epidem.2008.07.001] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2008] [Revised: 07/21/2008] [Accepted: 07/30/2008] [Indexed: 11/30/2022] Open
Abstract
In most pathogens, multiple strains are maintained within host populations. Quantifying the mechanisms underlying strain coexistence would aid public health planning and improve understanding of disease dynamics. We argue that mathematical models of strain coexistence, when applied to indistinguishable strains, should meet criteria for both ecological neutrality and population genetic neutrality. We show that closed clonal transmission models which can be written in an "ancestor-tracing" form that meets the former criterion will also satisfy the latter. Neutral models can be a parsimonious starting point for studying mechanisms of strain coexistence; implications for past and future studies are discussed.
Collapse
Affiliation(s)
- Marc Lipsitch
- Department of Epidemiology, Harvard School of Public Health, Boston, MA 02115, USA.
| | | | | | | | | |
Collapse
|
421
|
Handel A, Longini IM, Antia R. Antiviral resistance and the control of pandemic influenza: the roles of stochasticity, evolution and model details. J Theor Biol 2008; 256:117-25. [PMID: 18952105 DOI: 10.1016/j.jtbi.2008.09.021] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2008] [Revised: 09/09/2008] [Accepted: 09/18/2008] [Indexed: 11/30/2022]
Abstract
Antiviral drugs, most notably the neuraminidase inhibitors, are an important component of control strategies aimed to prevent or limit any future influenza pandemic. The potential large-scale use of antiviral drugs brings with it the danger of drug resistance evolution. A number of recent studies have shown that the emergence of drug-resistant influenza could undermine the usefulness of antiviral drugs for the control of an epidemic or pandemic outbreak. While these studies have provided important insights, the inherently stochastic nature of resistance generation and spread, as well as the potential for ongoing evolution of the resistant strain have not been fully addressed. Here, we study a stochastic model of drug resistance emergence and consecutive evolution of the resistant strain in response to antiviral control during an influenza pandemic. We find that taking into consideration the ongoing evolution of the resistant strain does not increase the probability of resistance emergence; however, it increases the total number of infecteds if a resistant outbreak occurs. Our study further shows that taking stochasticity into account leads to results that can differ from deterministic models. Specifically, we find that rapid and strong control cannot only contain a drug sensitive outbreak, it can also prevent a resistant outbreak from occurring. We find that the best control strategy is early intervention heavily based on prophylaxis at a level that leads to outbreak containment. If containment is not possible, mitigation works best at intermediate levels of antiviral control. Finally, we show that the results are not very sensitive to the way resistance generation is modeled.
Collapse
Affiliation(s)
- Andreas Handel
- Department of Biology, Emory University, Atlanta, GA 30322, USA.
| | | | | |
Collapse
|
422
|
Majcherczyk PA, Barblan JL, Moreillon P, Entenza JM. Development of glycopeptide-intermediate resistance by Staphylococcus aureus leads to attenuated infectivity in a rat model of endocarditis. Microb Pathog 2008; 45:408-14. [PMID: 18930804 DOI: 10.1016/j.micpath.2008.09.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2008] [Revised: 08/27/2008] [Accepted: 09/12/2008] [Indexed: 12/20/2022]
Abstract
Glycopeptide-intermediate resistant Staphylococcus aureus (GISA) are characterized by multiple changes in the cell wall and an altered expression of global virulence regulators. We investigated whether GISA are affected in their infectivity in a rat model of experimental endocarditis. The glycopeptide-susceptible, methicillin-resistant S. aureus M1V2 and its laboratory-derived GISA M1V16 were examined for their ability to (i) adhere to fibrinogen and fibronectin in vitro, (ii) persist in the bloodstream after intravenous inoculation, (iii) colonize aortic vegetations in rats, and (iv) compete for valve colonization by co-inoculation. Both GISA M1V16 and M1V2 adhered similarly to fibrinogen and fibronectin in vitro. In rats, GISA M1V16 was cleared faster from the blood (P < 0.05) and required 100-times more bacteria than parent M1V2 (10(6) versus 10(4)CFU) to infect 90% of vegetations. GISA M1V16 also had 100 to 1000-times lower bacterial densities in vegetations. Moreover, after co-inoculation with GISA M1V16 and M1V2Rif, a rifampin-resistant variant of M1V2 to discriminate them in organ cultures, GISA M1V16 was out-competed by the glycopeptide-susceptible counterpart. Thus, in rats with experimental endocarditis, GISA showed an attenuated virulence, likely due to a faster clearance from the blood and a reduced fitness in cardiac vegetations. The GISA phenotype appeared globally detrimental to infectivity.
Collapse
Affiliation(s)
- Paul A Majcherczyk
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, CH-1015 Lausanne, Switzerland
| | | | | | | |
Collapse
|
423
|
Comparison of adhesion and virulence of two predominant hospital-acquired methicillin-resistant Staphylococcus aureus clones and clonal methicillin-susceptible S. aureus isolates. Infect Immun 2008; 76:5133-8. [PMID: 18779343 DOI: 10.1128/iai.01697-07] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The virulence of SCCmec type IV hospital-acquired methicillin-resistant Staphylococcus aureus (MRSA) clinical isolates belonging to the major sequence type 8 (ST8 [Lyon clone]) and to a minor upcoming clone, ST5, was compared with that of methicillin-susceptible S. aureus (MSSA) isolates of matching sequence types. In vitro adhesion to human airway epithelial cells (HAECs) as an indicator of dissemination and mortality in a murine sepsis model as an indicator of virulence were evaluated. Ten MRSA isolates and 8 MSSA isolates of ST8 and 8 MRSA isolates and 8 MSSA isolates of ST5 were characterized with respect to multilocus sequence type; agr, spa, and capsule typing; in vitro doubling time; toxin and adhesin gene profiles; and adherence to HAECs. Adherence was significantly lower in the MRSA ST5 group than in the ST8 groups. Infections with MRSA and MSSA isolates ST8 and ST5 were compared. No change in virulence related to the presence of SCCmec was observed, since ST8 but not ST5 caused a significantly lower mortality in its presence. Despite their similar genetic backgrounds, individual clonal MRSA and MSSA isolates were heterogeneous in adherence and virulence. No one of these specific virulence factors determined in vitro was related to mouse mortality. In conclusion, in a bacteremic model, mortality was dependent on the ST and was differentially modulated by SCCmec; within an ST, clonality was not associated with a homogenous outcome.
Collapse
|
424
|
Development, stability, and molecular mechanisms of macrolide resistance in Campylobacter jejuni. Antimicrob Agents Chemother 2008; 52:3947-54. [PMID: 18779354 DOI: 10.1128/aac.00450-08] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Previous studies of macrolide resistance in Campylobacter were primarily focused on strains from various origins or used in vitro systems. In this study, we conducted both in vitro and in vivo experiments to examine the development, stability, and genetic basis of macrolide resistance in Campylobacter jejuni using erythromycin-resistant (Ery(r)) mutants derived from the same parent strain. Chickens inoculated with low-level Ery(r) mutants (MIC = 32 or 64 microg/ml) at 15 days old did not shed highly Ery(r) mutants (MIC > 512 microg/ml) after prolonged exposure to a low dose of tylosin. The low-level Ery resistance was not stable in vitro or in vivo in the absence of macrolide selection pressure. However, high-level Ery resistance displayed remarkable stability in vitro and in vivo. Ribosomal sequence analysis of 69 selected Ery(r) mutants showed that specific point mutations (A2074G or A2074C) occurred in all highly Ery(r) mutants. No mutations in ribosomal protein L4 were observed in any of the in vitro-selected Ery(r) mutants. However, three specific mutations in L4, G74D, G57D, and G57V, were widely found among in vivo-selected Ery(r) mutants. Insertion of three amino acids, TSH, at position 98 in ribosomal protein L22 was observed only in mutants selected in vitro. Inactivation of the CmeABC efflux pump dramatically reduced Ery MICs in Ery(r) mutants. Together, these findings suggest that multiple factors contribute to the emergence of highly Ery(r) Campylobacter in chicken, reveal resistance level-dependent stability of macrolide resistance in C. jejuni, and indicate that C. jejuni utilizes complex and different mechanisms to develop Ery resistance in vitro and in vivo.
Collapse
|
425
|
Pränting M, Negrea A, Rhen M, Andersson DI. Mechanism and fitness costs of PR-39 resistance in Salmonella enterica serovar Typhimurium LT2. Antimicrob Agents Chemother 2008; 52:2734-41. [PMID: 18519732 PMCID: PMC2493140 DOI: 10.1128/aac.00205-08] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2008] [Revised: 04/15/2008] [Accepted: 05/22/2008] [Indexed: 11/20/2022] Open
Abstract
PR-39 is a porcine antimicrobial peptide that kills bacteria with a mechanism that does not involve cell lysis. Here, we demonstrate that Salmonella enterica serovar Typhimurium can rapidly acquire mutations that reduce susceptibility to PR-39. Resistant mutants appeared at a rate of 0.4 x 10(-6) per cell per generation. These mutants were about four times more resistant than the wild type and showed a greatly reduced rate of killing. Genetic analysis revealed mutations in the putative transport protein SbmA as being responsible for the observed resistance. These sbmA mutants were as fit as the wild-type parental strain as measured by growth rates in culture medium and mice and by long-term survival in stationary phase. These results suggest that resistance to certain antimicrobial peptides can rapidly develop without an obvious fitness cost for the bacteria and that resistance development could become a threat to the efficacy of antimicrobial peptides if used in a clinical setting.
Collapse
Affiliation(s)
- Maria Pränting
- Department of Medical Biochemistry and Microbiology, Uppsala University, S-751 23 Uppsala, Sweden
| | | | | | | |
Collapse
|
426
|
Sandegren L, Lindqvist A, Kahlmeter G, Andersson DI. Nitrofurantoin resistance mechanism and fitness cost in Escherichia coli. J Antimicrob Chemother 2008; 62:495-503. [DOI: 10.1093/jac/dkn222] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
427
|
Dramatic activation of antibiotic production in Streptomyces coelicolor by cumulative drug resistance mutations. Appl Environ Microbiol 2008; 74:2834-40. [PMID: 18310410 DOI: 10.1128/aem.02800-07] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We recently described a new method to activate antibiotic production in bacteria by introducing a mutation conferring resistance to a drug such as streptomycin, rifampin, paromomycin, or gentamicin. This method, however, enhanced antibiotic production by only up to an order of magnitude. Working with Streptomyces coelicolor A3(2), we established a method for the dramatic activation of antibiotic production by the sequential introduction of multiple drug resistance mutations. Septuple and octuple mutants, C7 and C8, thus obtained by screening for resistance to seven or eight drugs, produced huge amounts (1.63 g/liter) of the polyketide antibiotic actinorhodin, 180-fold higher than the level produced by the wild type. This dramatic overproduction was due to the acquisition of mutant ribosomes, with aberrant protein and ppGpp synthesis activity, as demonstrated by in vitro protein synthesis assays and by the abolition of antibiotic overproduction with relA disruption. This new approach, called "ribosome engineering," requires less time, cost, and labor than other methods and may be widely utilized for bacterial strain improvement.
Collapse
|
428
|
|
429
|
Nesse RM, Stearns SC. The great opportunity: Evolutionary applications to medicine and public health. Evol Appl 2008; 1:28-48. [PMID: 25567489 PMCID: PMC3352398 DOI: 10.1111/j.1752-4571.2007.00006.x] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2007] [Accepted: 11/27/2007] [Indexed: 02/06/2023] Open
Abstract
Evolutionary biology is an essential basic science for medicine, but few doctors and medical researchers are familiar with its most relevant principles. Most medical schools have geneticists who understand evolution, but few have even one evolutionary biologist to suggest other possible applications. The canyon between evolutionary biology and medicine is wide. The question is whether they offer each other enough to make bridge building worthwhile. What benefits could be expected if evolution were brought fully to bear on the problems of medicine? How would studying medical problems advance evolutionary research? Do doctors need to learn evolution, or is it valuable mainly for researchers? What practical steps will promote the application of evolutionary biology in the areas of medicine where it offers the most? To address these questions, we review current and potential applications of evolutionary biology to medicine and public health. Some evolutionary technologies, such as population genetics, serial transfer production of live vaccines, and phylogenetic analysis, have been widely applied. Other areas, such as infectious disease and aging research, illustrate the dramatic recent progress made possible by evolutionary insights. In still other areas, such as epidemiology, psychiatry, and understanding the regulation of bodily defenses, applying evolutionary principles remains an open opportunity. In addition to the utility of specific applications, an evolutionary perspective fundamentally challenges the prevalent but fundamentally incorrect metaphor of the body as a machine designed by an engineer. Bodies are vulnerable to disease - and remarkably resilient - precisely because they are not machines built from a plan. They are, instead, bundles of compromises shaped by natural selection in small increments to maximize reproduction, not health. Understanding the body as a product of natural selection, not design, offers new research questions and a framework for making medical education more coherent. We conclude with recommendations for actions that would better connect evolutionary biology and medicine in ways that will benefit public health. It is our hope that faculty and students will send this article to their undergraduate and medical school Deans, and that this will initiate discussions about the gap, the great opportunity, and action plans to bring the full power of evolutionary biology to bear on human health problems.
Collapse
|
430
|
Böttger EC, Springer B. Tuberculosis: drug resistance, fitness, and strategies for global control. Eur J Pediatr 2008; 167:141-8. [PMID: 17987316 DOI: 10.1007/s00431-007-0606-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2007] [Revised: 08/22/2007] [Accepted: 09/03/2007] [Indexed: 11/24/2022]
Abstract
Directly observed standardized short-course chemotherapy (DOTS) regimes are an effective treatment for drug susceptible tuberculosis disease. Surprisingly, DOTS has been reported to reduce the transmission of multi-drug resistant tuberculosis, and standardized short-course chemotherapy regimens with first-line agents have been found to be adequate treatments for some patients with drug resistant tuberculosis, including multi-drug resistance. These paradoxical observations and the apparent heterogeneity in treatment outcome of multi-drug resistant tuberculosis when using standard regimens may be due in part to limitations of in vitro drug susceptibility testing based on unique but mistakenly used techniques in diagnostic mycobacteriology. Experimental data and mathematical models indicate that the fitness cost conferred by a resistance determinant is the single most important parameter which determines the spread of drug resistance. Chromosomal alterations that result in resistance to first-line antituberculosis agents, e.g. isoniazid, rifampicin, streptomycin, may or may not be associated with a fitness cost. Based on work in experimental models and from observations in clinical drug resistant isolates a picture emerges in which, among the various resistance mutations that appear with similar rates, those associated with the least fitness cost are selected in the population.
Collapse
Affiliation(s)
- Erik C Böttger
- Nationales Zentrum für Mykobakterien, Institut für Medizinische Mikrobiologie, Universität Zürich, Gloriastrasse 32, 8006, Zürich, Switzerland.
| | | |
Collapse
|
431
|
Yoshida T, Ellner SP, Jones LE, Bohannan BJM, Lenski RE, Hairston NG. Cryptic population dynamics: rapid evolution masks trophic interactions. PLoS Biol 2007; 5:e235. [PMID: 17803356 PMCID: PMC1964773 DOI: 10.1371/journal.pbio.0050235] [Citation(s) in RCA: 157] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2007] [Accepted: 07/03/2007] [Indexed: 11/19/2022] Open
Abstract
Trophic relationships, such as those between predator and prey or between pathogen and host, are key interactions linking species in ecological food webs. The structure of these links and their strengths have major consequences for the dynamics and stability of food webs. The existence and strength of particular trophic links has often been assessed using observational data on changes in species abundance through time. Here we show that very strong links can be completely missed by these kinds of analyses when changes in population abundance are accompanied by contemporaneous rapid evolution in the prey or host species. Experimental observations, in rotifer-alga and phage-bacteria chemostats, show that the predator or pathogen can exhibit large-amplitude cycles while the abundance of the prey or host remains essentially constant. We know that the species are tightly linked in these experimental microcosms, but without this knowledge, we would infer from observed patterns in abundance that the species are weakly or not at all linked. Mathematical modeling shows that this kind of cryptic dynamics occurs when there is rapid prey or host evolution for traits conferring defense against attack, and the cost of defense (in terms of tradeoffs with other fitness components) is low. Several predictions of the theory that we developed to explain the rotifer-alga experiments are confirmed in the phage-bacteria experiments, where bacterial evolution could be tracked. Modeling suggests that rapid evolution may also confound experimental approaches to measuring interaction strength, but it identifies certain experimental designs as being more robust against potential confounding by rapid evolution. The presence and strength of interactions between species has frequently been inferred from observational data on changes in species abundance. For example, correlated cycles in potential predator and prey species may be interpreted as evidence that the species interact, while the absence of such coupled oscillations might be interpreted as evidence for lack of interaction. Here we show that prey abundance can be decoupled from changes in predator abundance when there is genetic variability in the prey for antipredator defense traits, allowing rapid evolutionary changes in prey defense levels. It then appears that the two species are not interacting, when in fact they are. We deduce this from studies of two laboratory microcosm systems, one with algae consumed by rotifers and the other with bacteria attacked by phage. In each, when the prey vary genetically for defense traits and undefended genotypes are superior competitors, defended and undefended prey frequencies evolve in a cyclical way that is almost exactly counterbalancing, so that total prey density remains nearly constant. We show mathematically that these “cryptic cycles” occur whenever conditions are right for predator-prey cycles, when prey vary genetically for defense traits, and when prey defense against predation is effective but inexpensive to produce. Under these conditions, observations of predator and prey population dynamics cannot be trusted to be informative about the strength or even the existence of interspecific trophic links. Contemporary rapid evolution in prey and pathogen species masks strong tropic interactions with predators and hosts. These "cryptic dynamics" reveal a need for a new approach to measuring interaction strengths in food webs.
Collapse
Affiliation(s)
- Takehito Yoshida
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, United States of America
| | - Stephen P Ellner
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, United States of America
| | - Laura E Jones
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, United States of America
| | - Brendan J. M Bohannan
- Department of Biology, University of Oregon, Eugene, Oregon, United States of America
| | - Richard E Lenski
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
| | - Nelson G Hairston
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
432
|
Fitness of Streptococcus pneumoniae fluoroquinolone-resistant strains with topoisomerase IV recombinant genes. Antimicrob Agents Chemother 2007; 52:822-30. [PMID: 18160515 DOI: 10.1128/aac.00731-07] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The low prevalence of ciprofloxacin-resistant (Cp r) Streptococcus pneumoniae isolates carrying recombinant topoisomerase IV genes could be attributed to a fitness cost imposed by the horizontal transfer, which often implies the acquisition of larger-than-normal parE-parC intergenic regions. A study of the transcription of these genes and of the fitness cost for 24 isogenic Cp r strains was performed. Six first-level transformants were obtained either with PCR products containing the parC quinolone resistance-determining regions (QRDRs) of S. pneumoniae Cp r mutants with point mutations or with a PCR product that includes parE-QRDR-ant-parC-QRDR from a Cp r Streptococcus mitis isolate. The latter yielded two strains, T6 and T11, carrying parC-QRDR and parE-QRDR-ant-parC-QRDR, respectively. These first-level transformants were used as recipients in further transformations with the gyrA-QRDR PCR products to obtain 18 second-level transformants. In addition, strain Tr7 (which contains the GyrA E85K change) was used. Reverse transcription-PCR experiments showed that parE and parC were cotranscribed in R6, T6, and T11; and a single promoter located upstream of parE was identified in R6 by primer extension. The fitness of the transformants was estimated by pairwise competition with R6 in both one-cycle and two-cycle experiments. In the one-cycle experiments, most strains carrying the GyrA E85K change showed a fitness cost; the exception was recombinant T14. In the two-cycle experiments, a fitness cost was observed in most first-level transformants carrying the ParC changes S79F, S79Y, and D83Y and the GyrA E85K change; the exceptions were recombinants T6 and T11. The results suggest that there is no impediment due to a fitness cost for the spread of recombinant Cp r S. pneumoniae isolates, since some recombinants (T6, T11, and T14) exhibited an ability to compensate for the cost.
Collapse
|
433
|
In situ growth rates and biofilm development of Pseudomonas aeruginosa populations in chronic lung infections. J Bacteriol 2007; 190:2767-76. [PMID: 18156255 DOI: 10.1128/jb.01581-07] [Citation(s) in RCA: 159] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The growth dynamics of bacterial pathogens within infected hosts are a fundamental but poorly understood feature of most infections. We have focused on the in situ distribution and growth characteristics of two prevailing and transmissible Pseudomonas aeruginosa clones that have caused chronic lung infections in cystic fibrosis (CF) patients for more than 20 years. We used fluorescence in situ hybridization (FISH) directly on sputum specimens to examine the spatial distribution of the infecting P. aeruginosa cells. Mucoid variants were present in sputum as cell clusters surrounded by an extracellular matrix, whereas nonmucoid variants were present mainly as dispersed cells. To obtain estimates of the growth rates of P. aeruginosa in CF lungs, we used quantitative FISH to indirectly measure growth rates of bacteria in sputum samples (reflecting the in vivo lung conditions). The concentration of rRNA in bacteria isolated from sputa was measured and correlated with the rRNA contents of the same bacteria growing in vitro at defined rates. The results showed that most cells were actively growing with doubling times of between 100 and 200 min, with some growing even faster. Only a small stationary-phase subpopulation seemed to be present in sputa. This was found for both mucoid and nonmucoid variants despite their different organizations in sputum. The results suggest that the bacterial population may be confronted with selection forces that favor optimized growth activities. This scenario constitutes a new perspective on the adaptation and evolution of P. aeruginosa during chronic infections in CF patients in particular and on long-term infections in general.
Collapse
|
434
|
Abstract
The treatment of bacterial infections is increasingly complicated because microorganisms can develop resistance to antimicrobial agents. This article discusses the information that is required to predict when antibiotic resistance is likely to emerge in a bacterial population. Indeed, the development of the conceptual and methodological tools required for this type of prediction represents an important goal for microbiological research. To this end, we propose the establishment of methodological guidelines that will allow researchers to predict the emergence of resistance to a new antibiotic before its clinical introduction.
Collapse
Affiliation(s)
- José L Martínez
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública and Unidad Asociada al CSIC Resistencia a los Antibióticos y Virulencia Bacteriana, Cantoblanco, 28049-Madrid, Spain.
| | | | | |
Collapse
|
435
|
Haydel SE, Remenih CM, Williams LB. Broad-spectrum in vitro antibacterial activities of clay minerals against antibiotic-susceptible and antibiotic-resistant bacterial pathogens. J Antimicrob Chemother 2007; 61:353-61. [PMID: 18070832 DOI: 10.1093/jac/dkm468] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES The capacity to properly address the worldwide incidence of infectious diseases lies in the ability to detect, prevent and effectively treat these infections. Therefore, identifying and analysing inhibitory agents are worthwhile endeavours in an era when few new classes of effective antimicrobials have been developed. The use of geological nanomaterials to heal skin infections has been evident since the earliest recorded history, and specific clay minerals may prove valuable in the treatment of bacterial diseases, including infections for which there are no effective antibiotics, such as Buruli ulcer and multidrug-resistant infections. METHODS We have subjected two iron-rich clay minerals, which have previously been used to treat Buruli ulcer patients, to broth culture testing of antibiotic-susceptible and antibiotic-resistant pathogenic bacteria to assess the feasibility of using clay minerals as therapeutic agents. RESULTS One specific mineral, CsAg02, demonstrated bactericidal activity against pathogenic Escherichia coli, extended-spectrum beta-lactamase (ESBL) E. coli, Salmonella enterica serovar Typhimurium, Pseudomonas aeruginosa and Mycobacterium marinum, and a combined bacteriostatic/bactericidal effect against Staphylococcus aureus, penicillin-resistant S. aureus, methicillin-resistant S. aureus (MRSA) and Mycobacterium smegmatis, whereas another mineral with similar structure and bulk crystal chemistry, CsAr02, had no effect on or enhanced bacterial growth. The <0.2 microm fraction of CsAg02 and CsAg02 heated to 200 or 550 degrees C retained bactericidal activity, whereas cation-exchanged CsAg02 and CsAg02 heated to 900 degrees C no longer killed E. coli. CONCLUSIONS Our results indicate that specific mineral products have intrinsic, heat-stable antibacterial properties, which could provide an inexpensive treatment against numerous human bacterial infections.
Collapse
Affiliation(s)
- Shelley E Haydel
- Center for Infectious Diseases and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, AZ, USA.
| | | | | |
Collapse
|
436
|
Role of a sodium-dependent symporter homologue in the thermosensitivity of beta-lactam antibiotic resistance and cell wall composition in Staphylococcus aureus. Antimicrob Agents Chemother 2007; 52:505-12. [PMID: 18056270 DOI: 10.1128/aac.00504-07] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Expression of high-level beta-lactam resistance is known to be thermosensitive in many methicillin-resistant Staphylococcus aureus (MRSA) strains, including strain COL, in which the high methicillin MIC for cultures grown at 37 degrees C (800 microg/ml) was reduced to 12 microg/ml at 42 degrees C. COL grew faster at 42 degrees C than at 37 degrees C and at the higher temperature produced cell walls of abnormal composition: there was an over-representation of the monomeric muropeptide without the oligoglycine chain and an increase in the representation of multimers that contained this wall component as the donor molecule. Screening of a Tn551 insertional library for mutants, in which the high and homogenous beta-lactam antibiotic resistance of strain COL is retained at 42 degrees C, identified mutant C245, which expressed high-level methicillin resistance and produced a cell wall of normal composition independent of the temperature. The Tn551 inactivated gene was found, by homology search, to encode for a sodium-dependent symporter, homologues of which are ubiquitous in both prokaryotic and eukaryotic genomes. Inactivation of this putative symporter in several heteroresistant clinical MRSA isolates caused striking increases in the level of their beta-lactam resistance.
Collapse
|
437
|
Paulander W, Maisnier-Patin S, Andersson DI. Multiple mechanisms to ameliorate the fitness burden of mupirocin resistance in Salmonella typhimurium. Mol Microbiol 2007; 64:1038-48. [PMID: 17501926 DOI: 10.1111/j.1365-2958.2007.05713.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We examined how the fitness costs of mupirocin resistance caused by mutations in the chromosomal isoleucyl-tRNA synthetase gene (ileS) can be ameliorated. Mupirocin-resistant mutants were isolated and four different, resistance-conferring point mutations in the chromosomal ileS gene were identified. Fifty independent lineages of the low-fitness, resistant mutants were serially passaged to evolve compensated mutants with increased fitness. In 34/50 of the evolved lineages, the increase in fitness resulted from additional point mutations in isoleucine tRNA synthetase (IleRS). Measurements in vitro of the kinetics of aminoacylation of wild-type and mutant enzymes showed that resistant IleRS had a reduced rate of aminoacylation due to altered interactions with both tRNAIle and ATP. The intragenic compensatory mutations improved IleRS kinetics towards the wild-type enzyme, thereby restoring bacterial fitness. Seven of the 16 lineages that lacked second-site compensatory mutations in ileS, showed an increase in ileS gene dosage, suggesting that an increased level of defective IleRS compensate for the decrease in aminoacylation activity. Our findings show that the fitness costs of ileS mutations conferring mupirocin resistance can be reduced by several types of mechanisms that may contribute to the stability of mupirocin resistance in clinical settings.
Collapse
Affiliation(s)
- Wilhelm Paulander
- Department of Bacteriology, Swedish Institute for Infectious Disease Control and Microbiology, Tumor and Cell Biology Center, Karolinska Institute, S-171 82 Solna, Sweden
| | | | | |
Collapse
|
438
|
The streptomycin-sulfadiazine-tetracycline antimicrobial resistance element of calf-adapted Escherichia coli is widely distributed among isolates from Washington state cattle. Appl Environ Microbiol 2007; 74:391-5. [PMID: 18039823 DOI: 10.1128/aem.01534-07] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Association of specific antimicrobial resistance patterns with unrelated selective traits has long been implicated in the maintenance of antimicrobial resistance in a population. Previously we demonstrated that Escherichia coli strains with a specific resistance pattern (resistant to streptomycin, sulfadiazine, and tetracycline [SSuT]) have a selective advantage in dairy calf intestinal environments and in the presence of a milk supplement commonly fed to the calves. In the present study we identified the sequence of the genetic element that confers the SSuT phenotype and show that this element is present in a genetically diverse group of E. coli isolates, as assessed by macrorestriction digestion and pulsed-field gel electrophoresis. This element was also found in E. coli isolates from 18 different cattle farms in Washington State. Using in vitro competition experiments we further demonstrated that SSuT strains from 17 of 18 farms were able to outcompete pansusceptible strains. In a separate set of experiments, we were able to transfer the antimicrobial resistance phenotype by electroporation to a laboratory strain of E. coli (DH10B), making that new strain more competitive during in vitro competition with the parental DH10B strain. These data indicate that a relatively large genetic element conferring the SSuT phenotype is widely distributed in E. coli from cattle in Washington State. Furthermore, our results indicate that this element is responsible for maintenance of these traits owing to linkage to genetic traits that confer a selective advantage in the intestinal lumens of dairy calves.
Collapse
|
439
|
Fitness cost and impaired survival in penicillin-resistant Streptococcus gordonii isolates selected in the laboratory. Antimicrob Agents Chemother 2007; 52:337-9. [PMID: 17999969 DOI: 10.1128/aac.00939-07] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cycling of Streptococcus gordonii (115 times) with penicillin resulted in a MIC increase of more than 100-fold, from 0.008 to 2 microg/ml. The 2-microg/ml MIC maximum was already reached after 36 passages but resulted in impaired fitness. Although the MIC did not increase further, fitness was partially recovered during the 79 additional cycles.
Collapse
|
440
|
Olofsson SK, Cars O. Optimizing drug exposure to minimize selection of antibiotic resistance. Clin Infect Dis 2007; 45 Suppl 2:S129-36. [PMID: 17683017 DOI: 10.1086/519256] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
The worldwide increase in antibiotic resistance is a concern for public health. The fact that the choice of dose and treatment duration can affect the selection of antibiotic-resistant mutants is becoming more evident, and an increased number of studies have used pharmacodynamic models to describe the drug exposure and pharmacodynamic breakpoints needed to minimize and predict the development of resistance. However, there remains a lack of sufficient data, and future work is needed to fully characterize these target drug concentrations. More knowledge is also needed of drug pharmacodynamics versus bacteria with different resistance mutations and susceptibility levels. The dosing regimens should exhibit high efficacy not only against susceptible wild-type bacteria but, preferably, also against mutated bacteria that may exist in low numbers in "susceptible" populations. Thus, to prolong the life span of existing and new antibiotics, it is important that dosing regimens be carefully selected on the basis of pharmacokinetic and pharmacodynamic properties that prevent emergence of preexisting and newly formed mutants.
Collapse
Affiliation(s)
- Sara K Olofsson
- Antibiotic Research Unit, Department of Medical Sciences, Clinical Bacteriology and Infectious Diseases, Uppsala University, Uppsala, Sweden
| | | |
Collapse
|
441
|
Binet R, Maurelli AT. Frequency of development and associated physiological cost of azithromycin resistance in Chlamydia psittaci 6BC and C. trachomatis L2. Antimicrob Agents Chemother 2007; 51:4267-75. [PMID: 17908942 PMCID: PMC2167982 DOI: 10.1128/aac.00962-07] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Azithromycin is a major drug used in the treatment and prophylaxis of chlamydial infections. Spontaneous azithromycin-resistant mutants of Chlamydia psittaci 6BC were isolated in vitro in the plaque assay at a frequency of about 10(-8). Isogenic clonal variants with A(2058)C, A(2059)G, or A(2059)C mutations in the unique 23S rRNA gene (Escherichia coli numbering system) displayed MICs for multiple macrolides (i.e., azithromycin, erythromycin, josamycin, and spiramycin) at least 100 times higher than those of the parent strain and were also more resistant to the lincosamide clindamycin. Chlamydia trachomatis L2 variants with a Gln-to-Lys substitution in ribosomal protein L4 at position 66 (E. coli numbering system), conferring an eightfold decrease in azithromycin and erythromycin sensitivities and a fourfold decrease in josamycin and spiramycin sensitivities, were isolated following serial passage in subinhibitory concentrations of azithromycin. Each mutation was stably maintained in the absence of selection but severely affected chlamydial infectivity, as determined by monitoring the development of each isolate over 46 h in the absence of selection, in pure culture or in 1:1 competition with the isogenic parent. Data in this study support the hypothesis that the mechanisms which confer high-level macrolide resistance in chlamydiae carry a prohibitive physiological cost and may thus limit the emergence of highly resistant clones of these important pathogens in vivo.
Collapse
Affiliation(s)
- Rachel Binet
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814-4799, USA
| | | |
Collapse
|
442
|
Bertrand X, Dufour V, Millon L, Beuvier E, Gbaguidi-Haore H, Piarroux R, Vuitton DA, Talon D. Effect of cheese consumption on emergence of antimicrobial resistance in the intestinal microflora induced by a short course of amoxicillin-clavulanic acid. J Appl Microbiol 2007; 102:1052-9. [PMID: 17381749 DOI: 10.1111/j.1365-2672.2006.03148.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
AIM To study in a sequential prospective trial, the effect of cheese consumption on the emergence of Escherichia coli and enterococci resistance to amoxicillin after amoxicillin-clavulanic acid (amoxiclav) treatment. METHODS AND RESULTS The study comprised two phases separated by 1 year. Each phase lasted 75 days for each volunteer (from day -13 to day 61). During the first phase, 18 healthy volunteers were given a 1-g dose of amoxiclav orally twice a day for 5 days (from day 0 to day 4). The design of phase 2 was identical to that of phase 1, except that the volunteers consumed 100 g of hard-cooked cheese from day -6 to day 19. Faecal samples were collected 20 times throughout the trial and were quantitatively assayed for total and amoxicillin-resistant (Amox(R)) E. coli and enterococci. The consumption of experimental cheese was associated with a decrease of Amox(R) enterococci during the post-antibiotic period, with the maximum level of Amox(R) enterococci falling from 6.2% to 0.03%. This effect was not observed for E. coli, and the type of cheese (raw milk vs pasteurized milk) did not influence the results. CONCLUSIONS Consumption of cheese during amoxiclav treatment reduces the emergence of Amox(R) enterococci in faeces. SIGNIFICANCE AND CLINICAL IMPACT OF THE STUDY: Our clinical pilot trial suggests that there are likely to be benefits from consuming probiotic-containing cheese during antibiotic treatment.
Collapse
Affiliation(s)
- X Bertrand
- Service d'Hygiène Hospitalière, Centre Hospitalier Universitaire de Besançon, Besançon, France.
| | | | | | | | | | | | | | | |
Collapse
|
443
|
Fonseca AP, Correia P, Sousa JC, Tenreiro R. Association patterns of Pseudomonas aeruginosa clinical isolates as revealed by virulence traits, antibiotic resistance, serotype and genotype. ACTA ACUST UNITED AC 2007; 51:505-16. [PMID: 17877730 DOI: 10.1111/j.1574-695x.2007.00328.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The aims of this study were to assess the association patterns of 96 clinical isolates of Pseudomonas aeruginosa using hierarchical cluster analysis from data obtained from the measurement of the physicochemical cell surface properties, adhesion and initial biofilm formation abilities, to investigate any correspondence with source, serotype, beta-lactam pattern, motility and M13-PCR genogroup or clonal lineage, as well as to select clinical isolates that could act as representatives of the genotypic and phenotypic diversity of this P. aeruginosa population from a Portuguese Central Hospital. The isolates were phenotypically characterized by their ability to adhere and form biofilms on polystyrene surfaces, their affinity to hexadecane and silicone, their swimming and twitching abilities, their antibiotic susceptibility patterns and their serotypes. No particular phenotypic cluster associated with the same source, serotype, beta-lactam pattern, motility and M13-PCR genogroup and clonal lineage was found. Nevertheless, five representative strains of the P. aeruginosa population from this Hospital, selected on the basis of low genetic similarity, were also found to be dispersed among the phenotypic clusters.
Collapse
Affiliation(s)
- António Pedro Fonseca
- Serviço e Laboratório de Microbiologia, Faculdade de Medicina, Universidade do Porto, Alameda Professor Hernâni Monteiro, Porto, Portugal.
| | | | | | | |
Collapse
|
444
|
Davidson RJ, Melano R, Forward KR. Antimicrobial resistance among invasive isolates of Streptococcus pneumoniae collected across Canada. Diagn Microbiol Infect Dis 2007; 59:75-80. [PMID: 17532592 DOI: 10.1016/j.diagmicrobio.2007.03.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2006] [Revised: 03/20/2007] [Accepted: 03/25/2007] [Indexed: 11/24/2022]
Abstract
Between 2002 and 2003, 736 nonduplicate Streptococcus pneumoniae isolated from blood cultures were collected from 7 of 10 Canadian provinces (10 tertiary care centers). Microdilution broth susceptibility testing was performed using the method prescribed by the Clinical Laboratory Standards Institute. Of the isolates, 16.85% were nonsusceptible to penicillin and 5.4% were highly resistant. Of the S.pneumoniae, 14.1% had reduced susceptibility to erythromycin and 47% had been accounted for by the M phenotype. No isolates were recovered that were resistant to telithromycin. Only 6 isolates were resistant to levofloxacin and gatifloxacin. Of these, 5 strains had intermediate susceptibility to moxifloxacin and 1 was considered susceptible. The rates observed in this study are in keeping with previous surveillance studies among noninvasive isolates.
Collapse
Affiliation(s)
- Ross J Davidson
- Queen Elizabeth II Health Sciences Centre, Dalhousie University, Halifax, Nova Scotia, Canada.
| | | | | |
Collapse
|
445
|
Berrang ME, Ladely SR, Meinersmann RJ, Fedorka-Cray PJ. Subtherapeutic tylosin phosphate in broiler feed affects Campylobacter on carcasses during processing. Poult Sci 2007; 86:1229-33. [PMID: 17495097 DOI: 10.1093/ps/86.6.1229] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Tylosin phosphate is an antimicrobial drug approved for use in broiler feed at subtherapeutic levels for growth promotion. Erythromycin is often the drug of choice for treating humans with campylobacteriosis. Both tylosin and erythromycin are classified as macrolide drugs and cross-resistance between these antimicrobials occurs. Commercial broiler chicks were placed in isolation grow-out chambers and colonized with Campylobacter jejuni. From 14 d of age through grow-out, broilers were fed ad libitim a diet that included 22 ppm of tylosin phosphate (20 g/ton). Control broilers received the same diet without tylosin phosphate. At 42 d of age, broilers were processed in a pilot plant with equipment that closely modeled commercial conditions. Carcass rinses were collected after feather removal, after inside and outside washing, and after immersion chilling. Campylobacter numbers recovered from carcasses after feather removal did not differ according to feed type (3.53 log cfu/mL of rinse for control carcasses, and 3.60 log cfu/mL of rinse for those fed medicated feed). Likewise, medicated feed did not affect Campylobacter numbers on carcasses after inside-outside washing (3.11 and 3.07 log cfu/mL of rinse). However, carcasses of broilers fed tylosin phosphate had lower numbers of Campylobacter after chilling (1.45 log cfu/mL of rinse) than control carcasses (2.31 log cfu/mL of rinse). No Campylobacter isolated from control carcasses were resistant to erythromycin; all Campylobacter recovered from carcasses fed tylosin phosphate were resistant to erythromycin. Application of tylosin phosphate in feed results in lower numbers of Campylobacter on chilled carcasses; however, the Campylobacter that do remain are resistant to erythromycin.
Collapse
Affiliation(s)
- M E Berrang
- USDA-Agricultural Research Service, Bacterial Epidemiology and Antimicrobial Resistance Research Unit, Russell Research Center, Athens, GA 30604-5677, USA.
| | | | | | | |
Collapse
|
446
|
McEvoy CRE, Falmer AA, Gey van Pittius NC, Victor TC, van Helden PD, Warren RM. The role of IS6110 in the evolution of Mycobacterium tuberculosis. Tuberculosis (Edinb) 2007; 87:393-404. [PMID: 17627889 DOI: 10.1016/j.tube.2007.05.010] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2007] [Revised: 05/15/2007] [Accepted: 05/22/2007] [Indexed: 10/23/2022]
Abstract
Members of the Mycobacterium tuberculosis complex contain the transposable element IS6110 which, due to its high numerical and positional polymorphism, has become a widely used marker in epidemiological studies. Here, we review the evidence that IS6110 is not simply a passive or 'junk' DNA sequence, but that, through its transposable activity, it is able to generate genotypic variation that translates into strain-specific phenotypic variation. We also speculate on the role that this variation has played in the evolution of M. tuberculosis and conclude that the presence of a moderate IS6110 copy number within the genome may provide the pathogen with a selective advantage that has aided its virulence.
Collapse
Affiliation(s)
- Christopher R E McEvoy
- DST/NRF Centre of Excellence in Biomedical Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Health Sciences, Stellenbosch University, Tygerberg, South Africa.
| | | | | | | | | | | |
Collapse
|
447
|
Nishimura K, Johansen SK, Inaoka T, Hosaka T, Tokuyama S, Tahara Y, Okamoto S, Kawamura F, Douthwaite S, Ochi K. Identification of the RsmG methyltransferase target as 16S rRNA nucleotide G527 and characterization of Bacillus subtilis rsmG mutants. J Bacteriol 2007; 189:6068-73. [PMID: 17573471 PMCID: PMC1952054 DOI: 10.1128/jb.00558-07] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The methyltransferase RsmG methylates the N7 position of nucleotide G535 in 16S rRNA of Bacillus subtilis (corresponding to G527 in Escherichia coli). Disruption of rsmG resulted in low-level resistance to streptomycin. A growth competition assay revealed that there are no differences in fitness between the rsmG mutant and parent strains under the various culture conditions examined. B. subtilis rsmG mutants emerged spontaneously at a relatively high frequency, 10(-6). Importantly, in the rsmG mutant background, high-level-streptomycin-resistant rpsL (encoding ribosomal protein S12) mutants emerged at a frequency 200 times greater than that seen for the wild-type strain. This elevated frequency in the emergence of high-level streptomycin resistance was facilitated by a mutation pattern in rpsL more varied than that obtained by selection of the wild-type strain.
Collapse
Affiliation(s)
- Kenji Nishimura
- National Food Research Institute, 2-1-12 Kannondai, Tsukuba, Ibaraki, 305-8642, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
448
|
Montero CI, Johnson MR, Chou CJ, Conners SB, Geouge SG, Tachdjian S, Nichols JD, Kelly RM. Responses of wild-type and resistant strains of the hyperthermophilic bacterium Thermotoga maritima to chloramphenicol challenge. Appl Environ Microbiol 2007; 73:5058-65. [PMID: 17557852 PMCID: PMC1951032 DOI: 10.1128/aem.00453-07] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transcriptomes and growth physiologies of the hyperthermophile Thermotoga maritima and an antibiotic-resistant spontaneous mutant were compared prior to and following exposure to chloramphenicol. While the wild-type response was similar to that of mesophilic bacteria, reduced susceptibility of the mutant was attributed to five mutations in 23S rRNA and phenotypic preconditioning to chloramphenicol.
Collapse
Affiliation(s)
- Clemente I Montero
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695-7905, USA
| | | | | | | | | | | | | | | |
Collapse
|
449
|
Okamoto S, Tamaru A, Nakajima C, Nishimura K, Tanaka Y, Tokuyama S, Suzuki Y, Ochi K. Loss of a conserved 7-methylguanosine modification in 16S rRNA confers low-level streptomycin resistance in bacteria. Mol Microbiol 2007; 63:1096-106. [PMID: 17238915 DOI: 10.1111/j.1365-2958.2006.05585.x] [Citation(s) in RCA: 193] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Streptomycin has been an important drug for the treatment of tuberculosis since its discovery in 1944. But numerous strains of Mycobacterium tuberculosis, the bacterial pathogen that causes tuberculosis, are now streptomycin resistant. Although such resistance is often mediated by mutations within rrs, a 16S rRNA gene or rpsL, which encodes the ribosomal protein S12, these mutations are found in a limited proportion of clinically isolated streptomycin-resistant M. tuberculosis strains. Here we have succeeded in identifying a mutation that confers low-level streptomycin resistance to bacteria, including M. tuberculosis. We found that mutations within the gene gidB confer low-level streptomycin resistance and are an important cause of resistance found in 33% of resistant M. tuberculosis isolates. We further clarified that the gidB gene encodes a conserved 7-methylguanosine (m(7)G) methyltransferase specific for the 16S rRNA, apparently at position G527 located in the so-called 530 loop. Thus, we have identified gidB as a new streptomycin-resistance locus and uncovered a resistance mechanism that is mediated by loss of a conserved m(7)G modification in 16S rRNA. The clinical significance of M. tuberculosis gidB mutation also is noteworthy, as gidB mutations emerge spontaneously at a high frequency of 10(-6) and, once emerged, result in vigorous emergence of high-level streptomycin-resistant mutants at a frequency more than 2000 times greater than that seen in wild-type strains. Further studies on the precise function of GidB may provide a basis for developing strategies to suppress pathogenic bacteria, including M. tuberculosis.
Collapse
Affiliation(s)
- Susumu Okamoto
- Microbial Function Laboratory, National Food Research Institute, 2-1-12 Kannondai, Tsukuba, Ibaraki, Japan
| | | | | | | | | | | | | | | |
Collapse
|
450
|
Jones LE, Ellner SP. Effects of rapid prey evolution on predator-prey cycles. J Math Biol 2007; 55:541-73. [PMID: 17483952 DOI: 10.1007/s00285-007-0094-6] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2006] [Revised: 03/15/2007] [Indexed: 11/26/2022]
Abstract
We study the qualitative properties of population cycles in a predator-prey system where genetic variability allows contemporary rapid evolution of the prey. Previous numerical studies have found that prey evolution in response to changing predation risk can have major quantitative and qualitative effects on predator-prey cycles, including: (1) large increases in cycle period, (2) changes in phase relations (so that predator and prey are cycling exactly out of phase, rather than the classical quarter-period phase lag), and (3) "cryptic" cycles in which total prey density remains nearly constant while predator density and prey traits cycle. Here we focus on a chemostat model motivated by our experimental system (Fussmann et al. in Science 290:1358-1360, 2000; Yoshida et al. in Proc roy Soc Lond B 424:303-306, 2003) with algae (prey) and rotifers (predators), in which the prey exhibit rapid evolution in their level of defense against predation. We show that the effects of rapid prey evolution are robust and general, and furthermore that they occur in a specific but biologically relevant region of parameter space: when traits that greatly reduce predation risk are relatively cheap (in terms of reductions in other fitness components), when there is coexistence between the two prey types and the predator, and when the interaction between predators and undefended prey alone would produce cycles. Because defense has been shown to be inexpensive, even cost-free, in a number of systems (Andersson et al. in Curr Opin Microbiol 2:489-493, 1999: Gagneux et al. in Science 312:1944-1946, 2006; Yoshida et al. in Proc Roy Soc Lond B 271:1947-1953, 2004), our discoveries may well be reproduced in other model systems, and in nature. Finally, some of our key results are extended to a general model in which functional forms for the predation rate and prey birth rate are not specified.
Collapse
Affiliation(s)
- Laura E Jones
- Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA.
| | | |
Collapse
|