401
|
Khan M. Interplay of protein misfolding pathway and unfolded-protein response in acute promyelocytic leukemia. Expert Rev Proteomics 2010; 7:591-600. [PMID: 20653512 DOI: 10.1586/epr.10.38] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Protein misfolding has traditionally been linked to the pathogenesis of various neurodegenerative diseases. However, emerging evidence from various laboratories, including ours, suggests that protein misfolding may also play a fundamental role in some malignancies, particularly those caused by fusion oncoprotein generated from chromosomal translocation. Promyelocytic leukemia (PML) fused to the retinoic acid receptor (RAR) is a fusion oncoprotein linked to the transformation of acute promyelocytic leukemia (APL), and is not only a misfolded protein itself, but also promotes misfolding of nuclear receptor corepressor (N-CoR) protein, a corepressor essential for the growth-suppressive function of several tumor-suppressor proteins. PML-RAR promotes misfolding of N-CoR by inducing aberrant post-translational modification, which destabilizes its core and promotes instability. Misfolded N-CoR, thus, contributes to differentiation arrest and survival of APL cells through loss-of-function and aberrant gain-of-function properties. Therapeutic restoration of N-CoR conformation and function with conformation-modifying agents not only releases this differentiation arrest but also sensitizes APL cells to programmed cell death. These findings illustrate the potential of the misfolded N-CoR protein as a conformation-based drugable molecular target for APL, and highlights the promise of various conformation-modifying agents as novel therapeutics for APL. Protein conformational rearrangement, resulting from an inherited or acquired genetic alteration, could be a common pathological phenomenon contributing to transformation in different types of leukemias and solid tumors and, therefore, could serve as a common ground for designing a unifying diagnostic as well as therapeutic approach for a widely diverse disease such as cancer. To that end, APL could serve as a model for the development of a novel conformation-based therapeutic approach for other malignant diseases.
Collapse
Affiliation(s)
- Matiullah Khan
- Cancer Science Institute of Singapore (CSI) and Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Center for Life Sciences, Block MD11, Singapore.
| |
Collapse
|
402
|
Kaufmann K, Pajoro A, Angenent GC. Regulation of transcription in plants: mechanisms controlling developmental switches. Nat Rev Genet 2010; 11:830-42. [PMID: 21063441 DOI: 10.1038/nrg2885] [Citation(s) in RCA: 140] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Unlike animals, plants produce new organs throughout their life cycle using pools of stem cells that are organized in meristems. Although many key regulators of meristem and organ identities have been identified, it is still not well understood how they function at the molecular level and how they can switch an entire developmental programme in which thousands of genes are involved. Recent advances in the genome-wide identification of target genes controlled by key plant transcriptional regulators and their interactions with epigenetic factors provide new insights into general transcriptional regulatory mechanisms that control switches of developmental programmes and cell fates in complex organisms.
Collapse
|
403
|
Physiological roles of class I HDAC complex and histone demethylase. J Biomed Biotechnol 2010; 2011:129383. [PMID: 21049000 PMCID: PMC2964911 DOI: 10.1155/2011/129383] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Accepted: 09/07/2010] [Indexed: 01/04/2023] Open
Abstract
Epigenetic gene silencing is one of the fundamental mechanisms for ensuring proper gene expression patterns during cellular differentiation and development. Histone deacetylases (HDACs) are evolutionally conserved enzymes that remove acetyl modifications from histones and play a central role in epigenetic gene silencing. In cells, HDAC forms a multiprotein complex (HDAC complex) in which the associated proteins are believed to help HDAC carry out its cellular functions. Though each HDAC complex contains distinct components, the presence of isoforms for some of the components expands the variety of complexes and the diversity of their cellular roles. Recent studies have also revealed a functional link between HDAC complexes and specific histone demethylases. In this paper, we summarize the distinct and cooperative roles of four class I HDAC complexes, Sin3, NuRD, CoREST, and NCoR/SMRT, with respect to their component diversity and their relationship with specific histone demethylases.
Collapse
|
404
|
Genome-wide interplay of nuclear receptors with the epigenome. Biochim Biophys Acta Mol Basis Dis 2010; 1812:818-23. [PMID: 20970499 DOI: 10.1016/j.bbadis.2010.10.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Revised: 10/12/2010] [Accepted: 10/14/2010] [Indexed: 01/19/2023]
Abstract
The nuclear receptor superfamily consists of DNA binding transcription factors that are involved in regulating a wide variety of processes such as metabolism, development, reproduction, and immune responses. Upon binding, nuclear receptors modulate transcription through affecting the local chromatin environment via recruitment of various coregulatory proteins. The recent development of new high-throughput sequencing methods allowed for the first time the comprehensive examination of nuclear receptor action in the context of the epigenome. Here, we discuss how recent genome-wide analyses have provided important new insights on the interplay of nuclear receptors and the epigenome in health and disease. This article is part of a Special Issue entitled: Translating nuclear receptors from health to disease.
Collapse
|
405
|
Abstract
PURPOSE OF REVIEW Thyroid hormone (3,3',5-triiodo-L-thyronine) plays an important role in thermogenesis and maintenance of lipid homeostasis. The present article reviews the evidence that 3,3',5-triiodo-L-thyronine regulates lipid metabolism via thyroid hormone receptors, focusing particularly on in-vivo findings using genetically engineered mice. RECENT FINDINGS That lipid metabolism is regulated via thyroid hormone receptor isoforms in a tissue-dependent manner was recently uncovered by using knockin mutant mice harboring an identical mutation in the Thra gene (Thra1(PV) mouse) or the Thrb gene (Thrb(PV) mouse). The mutation in the Thra gene dramatically decreases the mass of both white adipose tissue and liver. In contrast, the mutation in the Thrb gene markedly increases the mass of liver with an excess depot of lipids, but no significant abnormality is observed in white adipose tissue. Molecular studies show that the expression of lipogenic genes is decreased in white adipose tissue of Thra1(PV) mice, but not in Thrb(PV) mice. Markedly increased lipogenic enzyme expression, and decreased fatty acid beta-oxidation activity contribute to the adipogenic steatosis and lipid accumulation in the liver of Thrb(PV) mice. In contrast, reduced expression of genes critical for lipogenesis mediates decreased liver mass with lipid scarcity in Thra1(PV) mice. SUMMARY Studies using Thra1(PV) and Thrb(PV) mice indicate that apo-thyroid hormone receptor-beta and apo-thyroid hormone receptor-alpha-1 mediate distinct deleterious effects on lipid metabolism. Thus, both thyroid hormone receptor isoforms contribute to the pathogenesis of lipid abnormalities in hypothyroidism, but in a target tissue-dependent manner. These studies suggest that thyroid hormone receptor isoform-specific ligands could be designed as therapeutic targets for lipid abnormalities.
Collapse
Affiliation(s)
- Xuguang Zhu
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892-4264, USA
| | | |
Collapse
|
406
|
Konduri SD, Medisetty R, Liu W, Kaipparettu BA, Srivastava P, Brauch H, Fritz P, Swetzig WM, Gardner AE, Khan SA, Das GM. Mechanisms of estrogen receptor antagonism toward p53 and its implications in breast cancer therapeutic response and stem cell regulation. Proc Natl Acad Sci U S A 2010; 107:15081-6. [PMID: 20696891 PMCID: PMC2930589 DOI: 10.1073/pnas.1009575107] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Estrogen receptor alpha (ERalpha) plays an important role in the onset and progression of breast cancer, whereas p53 functions as a major tumor suppressor. We previously reported that ERalpha binds to p53, resulting in inhibition of transcriptional regulation by p53. Here, we report on the molecular mechanisms by which ERalpha suppresses p53's transactivation function. Sequential ChIP assays demonstrated that ERalpha represses p53-mediated transcriptional activation in human breast cancer cells by recruiting nuclear receptor corepressors (NCoR and SMRT) and histone deacetylase 1 (HDAC1). RNAi-mediated down-regulation of NCoR resulted in increased endogenous expression of the cyclin-dependent kinase (CDK)-inhibitor p21(Waf1/Cip1) (CDKN1A) gene, a prototypic transcriptional target of p53. While 17beta-estradiol (E2) enhanced ERalpha binding to p53 and inhibited p21 transcription, antiestrogens decreased ERalpha recruitment and induced transcription. The effects of estrogen and antiestrogens on p21 transcription were diametrically opposite to their known effects on the conventional ERE-containing ERalpha target gene, pS2/TFF1. These results suggest that ERalpha uses dual strategies to promote abnormal cellular proliferation: enhancing the transcription of ERE-containing proproliferative genes and repressing the transcription of p53-responsive antiproliferative genes. Importantly, ERalpha binds to p53 and inhibits transcriptional activation by p53 in stem/progenitor cell-containing murine mammospheres, suggesting a potential role for the ER-p53 interaction in mammary tissue homeostasis and cancer formation. Furthermore, retrospective studies analyzing response to tamoxifen therapy in a subset of patients with ER-positive breast cancer expressing either wild-type or mutant p53 suggest that the presence of wild-type p53 is an important determinant of positive therapeutic response.
Collapse
Affiliation(s)
- Santhi D. Konduri
- aDepartment of Pharmacology and Therapeutics, Center for Genetics and Pharmacology, Roswell Park Cancer Institute, Buffalo, NY 14263
| | - Rajesh Medisetty
- aDepartment of Pharmacology and Therapeutics, Center for Genetics and Pharmacology, Roswell Park Cancer Institute, Buffalo, NY 14263
| | - Wensheng Liu
- aDepartment of Pharmacology and Therapeutics, Center for Genetics and Pharmacology, Roswell Park Cancer Institute, Buffalo, NY 14263
| | - Benny Abraham Kaipparettu
- bDr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, D 70376 Stuttgart, Germany
- cUniversity Tuebingen, D 72074 Tuebingen, Germany
| | - Pratima Srivastava
- aDepartment of Pharmacology and Therapeutics, Center for Genetics and Pharmacology, Roswell Park Cancer Institute, Buffalo, NY 14263
| | - Hiltrud Brauch
- bDr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, D 70376 Stuttgart, Germany
- cUniversity Tuebingen, D 72074 Tuebingen, Germany
| | - Peter Fritz
- bDr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, D 70376 Stuttgart, Germany
- cUniversity Tuebingen, D 72074 Tuebingen, Germany
| | - Wendy M. Swetzig
- aDepartment of Pharmacology and Therapeutics, Center for Genetics and Pharmacology, Roswell Park Cancer Institute, Buffalo, NY 14263
| | - Amanda E. Gardner
- dDepartment of Cancer and Cell Biology, Vontz Center for Molecular Studies, University of Cincinnati College of Medicine, Cincinnati, OH 45267
| | - Sohaib A. Khan
- dDepartment of Cancer and Cell Biology, Vontz Center for Molecular Studies, University of Cincinnati College of Medicine, Cincinnati, OH 45267
| | - Gokul M. Das
- aDepartment of Pharmacology and Therapeutics, Center for Genetics and Pharmacology, Roswell Park Cancer Institute, Buffalo, NY 14263
- 6To whom correspondence should be addressed. E-mail:
| |
Collapse
|
407
|
Histone deacetylases and the nuclear receptor corepressor regulate lytic-latent switch gene 50 in murine gammaherpesvirus 68-infected macrophages. J Virol 2010; 84:12039-47. [PMID: 20719946 DOI: 10.1128/jvi.00396-10] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Gammaherpesviruses are important oncogenic pathogens that transit between lytic and latent life cycles. Silencing the lytic gene expression program enables the establishment of latency and a lifelong chronic infection of the host. In murine gammaherpesvirus 68 (MHV68, γHV68), essential lytic switch gene 50 controls the interchange between lytic and latent gene expression programs. However, negative regulators of gene 50 expression remain largely undefined. We report that the MHV68 lytic cycle is silenced in infected macrophages but not fibroblasts and that histone deacetylases (HDACs) mediate silencing. The HDAC inhibitor trichostatin A (TSA) acts on the gene 50 promoter to induce lytic replication of MHV68. HDAC3, HDAC4, and the nuclear receptor corepressor (NCoR) are required for efficient silencing of gene 50 expression. NCoR is critical for transcriptional repression of cellular genes by unliganded nuclear receptors. Retinoic acid, a known ligand for the NCoR complex, derepresses gene 50 expression and enhances MHV68 lytic replication. Moreover, HDAC3, HDAC4, and NCoR act on the gene 50 promoter and are recruited to this promoter in a retinoic acid-responsive manner. We provide the first example of NCoR-mediated, HDAC-dependent regulation of viral gene expression.
Collapse
|
408
|
Szarc vel Szic K, Ndlovu MN, Haegeman G, Vanden Berghe W. Nature or nurture: let food be your epigenetic medicine in chronic inflammatory disorders. Biochem Pharmacol 2010; 80:1816-32. [PMID: 20688047 DOI: 10.1016/j.bcp.2010.07.029] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Revised: 07/19/2010] [Accepted: 07/23/2010] [Indexed: 01/05/2023]
Abstract
Numerous clinical, physiopathological and epidemiological studies have underlined the detrimental or beneficial role of nutritional factors in complex inflammation related disorders such as allergy, asthma, obesity, type 2 diabetes, cardiovascular disease, rheumatoid arthritis and cancer. Today, nutritional research has shifted from alleviating nutrient deficiencies to chronic disease prevention. It is known that lifestyle, environmental conditions and nutritional compounds influence gene expression. Gene expression states are set by transcriptional activators and repressors and are often locked in by cell-heritable chromatin states. Only recently, it has been observed that the environmental conditions and daily diet can affect transgenerational gene expression via "reversible" heritable epigenetic mechanisms. Epigenetic changes in DNA methylation patterns at CpG sites (epimutations) or corrupt chromatin states of key inflammatory genes and noncoding RNAs, recently emerged as major governing factors in cancer, chronic inflammatory and metabolic disorders. Reciprocally, inflammation, metabolic stress and diet composition can also change activities of the epigenetic machinery and indirectly or directly change chromatin marks. This has recently launched re-exploration of anti-inflammatory bioactive food components for characterization of their effects on epigenome modifying enzymatic activities (acetylation, methylation, phosphorylation, ribosylation, oxidation, ubiquitination, sumoylation). This may allow to improve healthy aging by reversing disease prone epimutations involved in chronic inflammatory and metabolic disorders.
Collapse
Affiliation(s)
- Katarzyna Szarc vel Szic
- Laboratory of Eukaryotic Gene Expression and Signal Transduction (LEGEST), Department of Physiology, Ghent University, K.L. Ledeganckstraat 35, Gent, Belgium
| | | | | | | |
Collapse
|
409
|
Chi P, Allis CD, Wang GG. Covalent histone modifications--miswritten, misinterpreted and mis-erased in human cancers. Nat Rev Cancer 2010; 10:457-69. [PMID: 20574448 PMCID: PMC3262678 DOI: 10.1038/nrc2876] [Citation(s) in RCA: 834] [Impact Index Per Article: 55.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Post-translational modification of histones provides an important regulatory platform for processes such as gene transcription and DNA damage repair. It has become increasingly apparent that the misregulation of histone modification, which is caused by the deregulation of factors that mediate the modification installation, removal and/or interpretation, actively contributes to human cancer. In this Review, we summarize recent advances in understanding the interpretation of certain histone methylations by plant homeodomain finger-containing proteins, and how misreading, miswriting and mis-erasing of histone methylation marks can be associated with oncogenesis and progression. These observations provide us with a greater mechanistic understanding of epigenetic alterations in human cancers and might also help direct new therapeutic interventions in the future.
Collapse
Affiliation(s)
- Ping Chi
- Laboratory of Chromatin Biology & Epigenetics, The Rockefeller University, New York, NY 10065, USA
- Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
| | - C. David Allis
- Laboratory of Chromatin Biology & Epigenetics, The Rockefeller University, New York, NY 10065, USA
- Correspondence to C.D.A. () or G.G.W. (), Contact: 1230 York Avenue, The Rockefeller University, Box 78, New York, NY 10065, USA. Tel: (212) 327-7872; FAX: (212) 327-7849
| | - Gang Greg Wang
- Laboratory of Chromatin Biology & Epigenetics, The Rockefeller University, New York, NY 10065, USA
- Correspondence to C.D.A. () or G.G.W. (), Contact: 1230 York Avenue, The Rockefeller University, Box 78, New York, NY 10065, USA. Tel: (212) 327-7872; FAX: (212) 327-7849
| |
Collapse
|
410
|
Koppen A, Kalkhoven E. Brown vs white adipocytes: The PPARγ coregulator story. FEBS Lett 2010; 584:3250-9. [DOI: 10.1016/j.febslet.2010.06.035] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Revised: 06/21/2010] [Accepted: 06/22/2010] [Indexed: 11/30/2022]
|
411
|
Battaglia S, Maguire O, Thorne JL, Hornung LB, Doig CL, Liu S, Sucheston LE, Bianchi A, Khanim FL, Gommersall LM, Coulter HSO, Rakha S, Giddings I, O'Neill LP, Cooper CS, McCabe CJ, Bunce CM, Campbell MJ. Elevated NCOR1 disrupts PPARalpha/gamma signaling in prostate cancer and forms a targetable epigenetic lesion. Carcinogenesis 2010; 31:1650-60. [PMID: 20466759 DOI: 10.1093/carcin/bgq086] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The loss of anti-proliferative responsiveness in prostate cancer cell lines toward ligands for vitamin D receptor, retinoic acid receptors/retinoid X receptors and peroxisome proliferator activated receptor (PPAR)alpha/gamma may entail underlying epigenetic events, as ligand insensitivity reflects significantly altered messenger RNA expression of corepressors and histone-modifying enzymes. Expression patterns were dependent on phases of the cell cycle and associated with repressed basal gene expression of vitamin D receptor and PPARalpha/gamma target genes, for example CDKN1A [encodes p21((waf1/cip1))]. Elevated nuclear corepressor 1 (NCOR1) and nuclear corepressor 2/silencing mediator of retinoic acid and thyroid hormone receptor protein levels were detected in prostate cancer cell lines compared with non-malignant counterparts. Knockdown of the corepressor NCOR1 significantly elevated basal expression of a cohort of target genes, including CDKN1A. Both chemical [histone deacetylases inhibitor (HDACi)] and NCOR1 knockdown targeting enhanced anti-proliferative sensitivity toward PPARalpha/gamma ligands in prostate cancer cell lines. Pursuing PPARalpha/gamma signaling, microarray approaches were undertaken to identify pathways and genes regulated uniquely by a combination of PPARalpha/gamma activation and HDAC inhibition. Again, HDACi and knockdown approaches demonstrated that elevated NCOR1 expression and activity distorted PPARalpha/gamma gene targets centered on, for example cell cycle control, including CDKN1A and TGFBRAP1. Quantitative real time polymerase chain reaction validation and chromatin immunoprecipitation assays both confirmed that elevated NCOR1 disrupted the ability of PPARalpha/gamma to regulate key target genes (CDKN1A and TGFBRAP1). Interrogation of these relationships in prostate cancer samples using principal component and partial correlation analyses established significant interdependent relationships between NCOR1-PPARalpha/gamma and representative target genes, independently of androgen receptor expression. Therefore, we conclude that elevated NCOR1 distorts the actions of PPARalpha/gamma selectively and generates a potential epigenetic lesion with diagnostic and prognostic significance.
Collapse
Affiliation(s)
- Sebastiano Battaglia
- Institute of Biomedical Research, Wolfson Drive, University of Birmingham Medical School, Edgbaston, B15 2TT, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
412
|
McCall CE, Yoza B, Liu T, El Gazzar M. Gene-specific epigenetic regulation in serious infections with systemic inflammation. J Innate Immun 2010; 2:395-405. [PMID: 20733328 DOI: 10.1159/000314077] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2010] [Accepted: 02/16/2010] [Indexed: 01/24/2023] Open
Abstract
Inflammation is a fundamental biologic process that is evolutionally conserved by a germ line code. The interplay between epigenetics and environment directs the code into temporally distinct inflammatory responses, which can be acute or chronic. Here, we discuss the epigenetic processes of innate immune cells during serious infections with systemic inflammation in four stages: homeostasis, incitement, evolution, and resolution. We describe feed-forward loops of serious infections with systemic inflammation that create gene-specific silent facultative heterochromatin and active euchromatin according to gene function, and speculate on the role of epigenetics in survival.
Collapse
Affiliation(s)
- Charles E McCall
- Translational Science Institute, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA.
| | | | | | | |
Collapse
|
413
|
Joseph B, Hermanson O. Molecular control of brain size: regulators of neural stem cell life, death and beyond. Exp Cell Res 2010; 316:1415-21. [PMID: 20307536 DOI: 10.1016/j.yexcr.2010.03.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2010] [Accepted: 03/15/2010] [Indexed: 02/08/2023]
Abstract
The proper development of the brain and other organs depends on multiple parameters, including strictly controlled expansion of specific progenitor pools. The regulation of such expansion events includes enzymatic activities that govern the correct number of specific cells to be generated via an orchestrated control of cell proliferation, cell cycle exit, differentiation, cell death etc. Certain proteins in turn exert direct control of these enzymatic activities and thus progenitor pool expansion and organ size. The members of the Cip/Kip family (p21Cip1/p27Kip1/p57Kip2) are well-known regulators of cell cycle exit that interact with and inhibit the activity of cyclin-CDK complexes, whereas members of the p53/p63/p73 family are traditionally associated with regulation of cell death. It has however become clear that the roles for these proteins are not as clear-cut as initially thought. In this review, we discuss the roles for proteins of the Cip/Kip and p53/p63/p73 families in the regulation of cell cycle control, differentiation, and death of neural stem cells. We suggest that these proteins act as molecular interfaces, or "pilots", to assure the correct assembly of protein complexes with enzymatic activities at the right place at the right time, thereby regulating essential decisions in multiple cellular events.
Collapse
Affiliation(s)
- Bertrand Joseph
- Department of Oncology-Pathology, Cancer Centrum Karolinska (CCK), Karolinska Institutet, Stockholm, Sweden
| | | |
Collapse
|
414
|
Meyer MB, Goetsch PD, Pike JW. A downstream intergenic cluster of regulatory enhancers contributes to the induction of CYP24A1 expression by 1alpha,25-dihydroxyvitamin D3. J Biol Chem 2010; 285:15599-15610. [PMID: 20236932 DOI: 10.1074/jbc.m110.119958] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
CYP24A1 expression is up-regulated by 1,25-dihydroxyvitamin D(3) (1,25(OH)(2)D(3)) via a vitamin D receptor (VDR)/retinoid X receptor (RXR) heterodimer that binds to two vitamin D response elements (VDREs) located near the proximal promoter. Interestingly, although 1,25(OH)(2)D(3) induced VDR/RXR binding to the VDRE-containing proximal promoter, the VDR/RXR heterodimer also localized to a cluster of at least four potential enhancers located in intergenic regions 50-69 kb downstream of the human CYP24A1 gene and 35-45 kb downstream of the mouse Cyp24a1 gene as revealed by ChIP-chip and ChIP-seq analyses. To address whether this downstream region and potential VDREs located within mediated CYP24A1 induction, we constructed recombinant wild-type and mutant bacterial artificial chromosome clones that spanned mouse and human loci and contained luciferase reporters inserted into their 3'-untranslated regions. The activity of these clones in stably transfected cells revealed that both the proximal and the putative downstream elements contributed to CYP24A1 up-regulation by 1,25(OH)(2)D(3). Further analysis using transfected enhancer fragments led to the identification of contributing regulatory elements in several of these downstream regions. Additional studies of coregulator recruitment using ChIP-chip analysis revealed both similarities and differences between the region located proximal to and those located downstream of the promoter. Recruitment of these coregulators was likely responsible for the increase in RNA polymerase II and histone H4 acetylation, which was also observed in response to 1,25(OH)(2)D(3) at the enhancer sites across the locus. We conclude that a more complex mechanism is responsible for the striking CYP24A1 up-regulation induced by the vitamin D hormone in target cells.
Collapse
Affiliation(s)
- Mark B Meyer
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706
| | - Paul D Goetsch
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706
| | - J Wesley Pike
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706.
| |
Collapse
|
415
|
Ketsawatsomkron P, Pelham CJ, Groh S, Keen HL, Faraci FM, Sigmund CD. Does peroxisome proliferator-activated receptor-gamma (PPAR gamma) protect from hypertension directly through effects in the vasculature? J Biol Chem 2010; 285:9311-9316. [PMID: 20129921 DOI: 10.1074/jbc.r109.025031] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Peroxisome proliferator-activated receptor-gamma (PPAR gamma) is a ligand-activated transcription factor of the nuclear hormone receptor superfamily. Increasing evidence suggests that PPAR gamma is involved in the regulation of vascular function and blood pressure in addition to its well recognized role in metabolism. Thiazolidinediones, PPAR gamma agonists, lower blood pressure and have protective vascular effects through largely unknown mechanisms. In contrast, loss-of-function dominant-negative mutations in human PPAR gamma cause insulin resistance and severe early onset hypertension. Recent studies using genetically manipulated mouse models have begun to specifically address the importance of PPAR gamma in the vasculature. In this minireview, evidence for a protective role of PPAR gamma in the endothelium and vascular smooth muscle, derived largely from studies of genetically manipulated mice, will be discussed.
Collapse
Affiliation(s)
- Pimonrat Ketsawatsomkron
- Department of Internal Medicine, Center on Functional Genomics of Hypertension, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242
| | - Christopher J Pelham
- Department of Internal Medicine, Center on Functional Genomics of Hypertension, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242
| | - Séverine Groh
- Department of Internal Medicine, Center on Functional Genomics of Hypertension, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242
| | - Henry L Keen
- Department of Internal Medicine, Center on Functional Genomics of Hypertension, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242
| | - Frank M Faraci
- Department of Internal Medicine, Center on Functional Genomics of Hypertension, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242
| | - Curt D Sigmund
- Department of Internal Medicine, Center on Functional Genomics of Hypertension, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242.
| |
Collapse
|