401
|
Derkach KV, Romanova IV, Zorina II, Bakhtyukov AA, Perminova AA, Ivantsov AO, Shpakov AO. Effect of High-Dose Metformin on the Metabolic Parameters and Functional State of the Liver of Agouti Mice with Melanocortin Obesity. ADVANCES IN GERONTOLOGY 2020. [DOI: 10.1134/s2079057020010038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
402
|
Ye J, Lin Y, Wang Q, Li Y, Zhao Y, Chen L, Wu Q, Xu C, Zhou C, Sun Y, Ye W, Bai F, Zhou T. Integrated Multichip Analysis Identifies Potential Key Genes in the Pathogenesis of Nonalcoholic Steatohepatitis. Front Endocrinol (Lausanne) 2020; 11:601745. [PMID: 33324350 PMCID: PMC7726207 DOI: 10.3389/fendo.2020.601745] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 10/30/2020] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Nonalcoholic steatohepatitis (NASH) is rapidly becoming a major chronic liver disease worldwide. However, little is known concerning the pathogenesis and progression mechanism of NASH. Our aim here is to identify key genes and elucidate their biological function in the progression from hepatic steatosis to NASH. METHODS Gene expression datasets containing NASH patients, hepatic steatosis patients, and healthy subjects were downloaded from the Gene Expression Omnibus database, using the R packages biobase and GEOquery. Differentially expressed genes (DEGs) were identified using the R limma package. Functional annotation and enrichment analysis of DEGs were undertaken using the R package ClusterProfile. Protein-protein interaction (PPI) networks were constructed using the STRING database. RESULTS Three microarray datasets GSE48452, GSE63067 and GSE89632 were selected. They included 45 NASH patients, 31 hepatic steatosis patients, and 43 healthy subjects. Two up-regulated and 24 down-regulated DEGs were found in both NASH patients vs. healthy controls and in steatosis subjects vs. healthy controls. The most significantly differentially expressed genes were FOSB (P = 3.43×10-15), followed by CYP7A1 (P = 2.87×10-11), and FOS (P = 6.26×10-11). Proximal promoter DNA-binding transcription activator activity, RNA polymerase II-specific (P = 1.30×10-5) was the most significantly enriched functional term in the gene ontology analysis. KEGG pathway enrichment analysis indicated that the MAPK signaling pathway (P = 3.11×10-4) was significantly enriched. CONCLUSION This study characterized hub genes of the liver transcriptome, which may contribute functionally to NASH progression from hepatic steatosis.
Collapse
Affiliation(s)
- Jianzhong Ye
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yishuai Lin
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Qing Wang
- Collaborative Innovation Center for the Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yating Li
- Collaborative Innovation Center for the Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yajie Zhao
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lijiang Chen
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qing Wu
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chunquan Xu
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Cui Zhou
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yao Sun
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wanchun Ye
- Department of Chemotherapy 2, Wenzhou Central Hospital, Wenzhou, China
| | - Fumao Bai
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- *Correspondence: Fumao Bai, ; Tieli Zhou,
| | - Tieli Zhou
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- *Correspondence: Fumao Bai, ; Tieli Zhou,
| |
Collapse
|
403
|
Li K, Zhao B, Wei D, Wang W, Cui Y, Qian L, Liu G. miR‑146a improves hepatic lipid and glucose metabolism by targeting MED1. Int J Mol Med 2019; 45:543-555. [PMID: 31894315 PMCID: PMC6984781 DOI: 10.3892/ijmm.2019.4443] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 11/19/2019] [Indexed: 12/12/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is one of the most common chronic liver diseases worldwide. Increasing evidence has shown that microRNAs (miRNAs) play a vital role in the progression of NAFLD. The aim of the present study was to examine the expression level and roles of miR-146a in fatty liver of high-fat diet (HFD) and ob/ob mice and fatty acid-treated hepatic cells using RT-qPCR and western blot analysis. The results showed that the expression of miR-146a was significantly decreased in the livers of high-fat diet (HFD) and ob/ob mice and free fatty acid-stimulated cells by RT-qPCR. Overexpression of hepatic miR-146a improved glucose and insulin tolerance as well as lipid accumulation in the liver by promoting the oxidative metabolism of fatty acids. In addition, the overexpression of miR-146a increased the amount of mitochondria and promoted mitochondrial respiration in hepatocytes. Similarly, inhibition of miR-146a expression levels significantly reduced mitochondrial numbers in AML12 cells as well as the expression of mitochondrial respiration related genes. Additionally, MED1 was a direct target of miR-146a and restoring MED1 abolished the metabolic effects of miR-146a on lipid metabolism and mitochondrial function. Therefore, results of the present study identified a novel function of miR-146a in glucose and lipid metabolism in targeting MED1, suggesting that miR-146a serves as a potential therapeutic target for metabolic syndrome disease.
Collapse
Affiliation(s)
- Kun Li
- Department of Biomedical and Health Science, School of Life and Health Science, Anhui Science and Technology University, Fengyang, Anhui 233100, P.R. China
| | - Bao Zhao
- Department of Otorhinolaryngology Head and Neck Surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, P.R. China
| | - Diandian Wei
- Department of Biomedical and Health Science, School of Life and Health Science, Anhui Science and Technology University, Fengyang, Anhui 233100, P.R. China
| | - Wenrui Wang
- Department of Biotechnology, School of Life Science and Technology, Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| | - Yixuan Cui
- Department of Otorhinolaryngology Head and Neck Surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, P.R. China
| | - Lisheng Qian
- Department of Biomedical and Health Science, School of Life and Health Science, Anhui Science and Technology University, Fengyang, Anhui 233100, P.R. China
| | - Guodong Liu
- Department of Biomedical and Health Science, School of Life and Health Science, Anhui Science and Technology University, Fengyang, Anhui 233100, P.R. China
| |
Collapse
|
404
|
Hwang KB, Kyaw YY, Kang HR, Seong MS, Cheong J. Mitochondrial dysfunction stimulates HBV gene expression through lipogenic transcription factor activation. Virus Res 2019; 277:197842. [PMID: 31874211 DOI: 10.1016/j.virusres.2019.197842] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 12/12/2019] [Accepted: 12/18/2019] [Indexed: 12/17/2022]
Abstract
In previous studies, we showed two consistent findings regarding the functional relationship between hepatitis B virus (HBV) gene expression and hepatic lipid accumulation. One is that HBV X (HBx) protein expression induces hepatic lipid accumulation via specific transcriptional activation. The other is that hepatic rich lipids increase HBV gene expression. A variety of transcription factors, including nuclear receptors have been defined as regulators of HBV promoters and enhancers. However, the association between these metabolic events and HBV gene expression remains to be clearly elucidated. Here, we showed that lipid accumulation due to mitochondrial dysfunction is associated with an increase in HBV gene expression. Saturated fatty acids increase the expression of lipogenic factors cooperated with C/EBPα and LXRα. In addition, activation of PPARγ and SREBP-1 by fatty acids derived from hepatic lipid accumulation was found to increase HBV gene expression through mitochondrial dysfunction. These results provide that metabolic changes in the hepatic cells play a critical role in the HBV gene induction.
Collapse
Affiliation(s)
- Keum Bit Hwang
- Advanced Molecular Research Centre, Department of Medical Research, Yangon, Myanmar
| | - Yi Yi Kyaw
- Advanced Molecular Research Centre, Department of Medical Research, Yangon, Myanmar; Department of Molecular Biology, Pusan National University, Busan 46241, Republic of Korea
| | - Hyo Rin Kang
- Department of Molecular Biology, Pusan National University, Busan 46241, Republic of Korea
| | - Mi So Seong
- Department of Molecular Biology, Pusan National University, Busan 46241, Republic of Korea
| | - JaeHun Cheong
- Department of Molecular Biology, Pusan National University, Busan 46241, Republic of Korea.
| |
Collapse
|
405
|
Goodus MT, McTigue DM. Hepatic dysfunction after spinal cord injury: A vicious cycle of central and peripheral pathology? Exp Neurol 2019; 325:113160. [PMID: 31863731 DOI: 10.1016/j.expneurol.2019.113160] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 11/17/2019] [Accepted: 12/18/2019] [Indexed: 02/06/2023]
Abstract
The liver is essential for numerous physiological processes, including filtering blood from the intestines, metabolizing fats, proteins, carbohydrates and drugs, and regulating iron storage and release. The liver is also an important immune organ and plays a critical role in response to infection and injury throughout the body. Liver functions are regulated by autonomic parasympathetic innervation from the brainstem and sympathetic innervation from the thoracic spinal cord. Thus, spinal cord injury (SCI) at or above thoracic levels disrupts major regulatory mechanisms for hepatic functions. Work in rodents and humans shows that SCI induces liver pathology, including hepatic inflammation and fat accumulation characteristic of a serious form of non-alcoholic fatty liver disease (NAFLD) called non-alcoholic steatohepatitis (NASH). This hepatic pathology is associated with and likely contributes to indices of metabolic dysfunction often noted in SCI individuals, such as insulin resistance and hyperlipidemia. These occur at greater rates in the SCI population and can negatively impact health and quality of life. In this review, we will: 1) Discuss acute and chronic changes in human and rodent liver pathology and function after SCI; 2) Describe how these hepatic changes affect systemic inflammation, iron regulation and metabolic dysfunction after SCI; 3) Describe how disruption of the hepatic autonomic nervous system may be a key culprit in post-injury chronic liver pathology; and 4) Preview ongoing and future research that aims to elucidate mechanisms driving liver and metabolic dysfunction after SCI.
Collapse
Affiliation(s)
- Matthew T Goodus
- The Belford Center for Spinal Cord Injury, The Ohio State University, Columbus, OH, USA; Department of Neuroscience, Wexner Medical Center, The Ohio State University, Columbus, OH, USA.
| | - Dana M McTigue
- The Belford Center for Spinal Cord Injury, The Ohio State University, Columbus, OH, USA; Department of Neuroscience, Wexner Medical Center, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
406
|
Multi-omics analysis of multiple missions to space reveal a theme of lipid dysregulation in mouse liver. Sci Rep 2019; 9:19195. [PMID: 31844325 PMCID: PMC6915713 DOI: 10.1038/s41598-019-55869-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 11/30/2019] [Indexed: 12/13/2022] Open
Abstract
Spaceflight has several detrimental effects on the physiology of astronauts, many of which are recapitulated in rodent models. Mouse studies performed on the Space Shuttle showed disruption of lipid metabolism in liver. However, given that these animals were not sacrificed on-orbit and instead returned live to earth, it is unclear if these disruptions were solely induced by space stressors (e.g. microgravity, space radiation) or in part explained by the stress of return to Earth. In this work we analyzed three liver datasets from two different strains of mice (C57BL/6 (Jackson) & BALB/c (Taconic)) flown aboard the International Space Station (ISS). Notably, these animals were sacrificed on-orbit and exposed to varying spaceflight durations (i.e. 21, 37, and 42 days vs 13 days for the Shuttle mice). Oil Red O (ORO) staining showed abnormal lipid accumulation in all space-flown mice compared to ground controls regardless of strain or exposure duration. Similarly, transcriptomic analysis by RNA-sequencing revealed several pathways that were affected in both strains related to increased lipid metabolism, fatty acid metabolism, lipid and fatty acid processing, lipid catabolic processing, and lipid localization. In addition, key upstream regulators were predicted to be commonly regulated across all conditions including Glucagon (GCG) and Insulin (INS). Moreover, quantitative proteomic analysis showed that a number of lipid related proteins were changed in the livers during spaceflight. Taken together, these data indicate that activation of lipotoxic pathways are the result of space stressors alone and this activation occurs in various genetic backgrounds during spaceflight exposures of weeks to months. If similar responses occur in humans, a prolonged change of these pathways may result in the development of liver disease and should be investigated further.
Collapse
|
407
|
Oates JR, McKell MC, Moreno-Fernandez ME, Damen MSMA, Deepe GS, Qualls JE, Divanovic S. Macrophage Function in the Pathogenesis of Non-alcoholic Fatty Liver Disease: The Mac Attack. Front Immunol 2019; 10:2893. [PMID: 31921154 PMCID: PMC6922022 DOI: 10.3389/fimmu.2019.02893] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 11/26/2019] [Indexed: 12/15/2022] Open
Abstract
Obesity is a prevalent predisposing factor to non-alcoholic fatty liver disease (NAFLD), the most common chronic liver disease in the developed world. NAFLD spectrum of disease involves progression from steatosis (NAFL), to steatohepatitis (NASH), cirrhosis and hepatocellular carcinoma (HCC). Despite clinical and public health significance, current FDA approved therapies for NAFLD are lacking in part due to insufficient understanding of pathogenic mechanisms driving disease progression. The etiology of NAFLD is multifactorial. The induction of both systemic and tissue inflammation consequential of skewed immune cell metabolic state, polarization, tissue recruitment, and activation are central to NAFLD progression. Here, we review the current understanding of the above stated cellular and molecular processes that govern macrophage contribution to NAFLD pathogenesis and how adipose tissue and liver crosstalk modulates macrophage function. Notably, the manipulation of such events may lead to the development of new therapies for NAFLD.
Collapse
Affiliation(s)
- Jarren R Oates
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States.,Division of Immunobiology, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH, United States.,Immunology Graduate Program, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Melanie C McKell
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States.,Immunology Graduate Program, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH, United States.,Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Maria E Moreno-Fernandez
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States.,Division of Immunobiology, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Michelle S M A Damen
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States.,Division of Immunobiology, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - George S Deepe
- Department of Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Joseph E Qualls
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States.,Immunology Graduate Program, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH, United States.,Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Senad Divanovic
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States.,Division of Immunobiology, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH, United States.,Immunology Graduate Program, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH, United States.,Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| |
Collapse
|
408
|
Systematic Review with Meta-Analysis: The Effects of Probiotics in Nonalcoholic Fatty Liver Disease. Gastroenterol Res Pract 2019; 2019:1484598. [PMID: 31885541 PMCID: PMC6927028 DOI: 10.1155/2019/1484598] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 11/06/2019] [Accepted: 11/18/2019] [Indexed: 01/30/2023] Open
Abstract
Background and Aims Probiotics was considered as a potential therapy for nonalcoholic fatty liver disease (NAFLD) without approval and comprehensive assessment in recent years, which call for a meta-analysis. Methods We performed electronic and manual searches including English and Chinese databases published before April 2019, with the use of mesh term and free text of "nonalcoholic fatty liver disease" and "probiotics." Clinical trials evaluating the efficacy of probiotic therapy in NAFLD patients were included according to the eligibility criteria. With the use of random effects models, clinical outcomes were presented as weighted mean difference (WMD) with 95% confidence interval (CI), while heterogeneity and meta-regression were also assessed. Results 28 clinical trials enrolling 1555 criterion proven NAFLD patients with the use of probiotics from 4 to 28 weeks were included. Overall, probiotic therapy had beneficial effects on body mass index (WMD: -1.46, 95% CI: [-2.44, -0.48]), alanine aminotransferase (WMD: -13.40, 95% CI: [-17.03, -9.77]), aspartate transaminase (WMD: -13.54, 95% CI: [-17.86, -9.22]), gamma-glutamyl transpeptidase (WMD: -9.88, 95% CI: [-17.77, -1.99]), insulin (WMD: -1.32, 95% CI: [-2.43, -0.21]), homeostasis model assessment-insulin resistance (WMD: -0.42, 95% CI: [-0.73, -0.12]), and total cholesterol (WMD: -15.38, 95% CI: [-26.50, -4.25]), but not in fasting blood sugar, lipid profiles, or tumor necrosis factor-alpha. Conclusion The systematic review and meta-analysis support that probiotics are superior to placebo in NAFLD patients and could be utilized as a common complementary therapeutic approach.
Collapse
|
409
|
Diet-Induced Rat Model of Gradual Development of Non-Alcoholic Fatty Liver Disease (NAFLD) with Lipopolysaccharides (LPS) Secretion. Diagnostics (Basel) 2019; 9:diagnostics9040205. [PMID: 31783667 PMCID: PMC6963178 DOI: 10.3390/diagnostics9040205] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 11/19/2019] [Accepted: 11/26/2019] [Indexed: 01/21/2023] Open
Abstract
Background: Non-alcoholic fatty liver disease (NAFLD) is one of the most common liver disorders in industrialized Western countries. The prevalence of the disease is estimated to range from 4% to 46% worldwide. The aim of study was to develop an animal model with gradual NAFLD development. Methods: Sprague-Dawley rats were fed a high-fat and high-cholesterol (HFHCh) diet. The rats from the study and control groups were sacrificed after 2, 4, 8, 12, 16, and 20 weeks of dietary exposure. Results: Analysis of biochemical parameters showed that after only two weeks, ALT and cholesterol concentration in serum were elevated. After 4 weeks, TNF-α and HOMA-IR were significantly higher compared to the control group. NAFLD progression started after 12 weeks of diet-weight gain and increased LPS secretions were noticed. During the experiment, rats induced steatosis (from stage 0/1 after 4 weeks to stage 2/3 after 20 weeks), inflammation (from stage 0/1 after 4 weeks to stage 1/2 after 20 weeks), and fibrosis (from stage 1 after 12 weeks to stage 2 after 20 weeks). Conclusion: We can assume that the presented model based on the HFHCh diet induced gradual development of NAFLD. We confirmed that the animal NAFLD model increases LPS secretions during disease progression.
Collapse
|
410
|
Maciejewska D, Palma J, Dec K, Skonieczna-Żydecka K, Gutowska I, Szczuko M, Jakubczyk K, Stachowska E. Is the Fatty Acids Profile in Blood a Good Predictor of Liver Changes? Correlation of Fatty Acids Profile with Fatty Acids Content in the Liver. Diagnostics (Basel) 2019; 9:E197. [PMID: 31752380 PMCID: PMC6963765 DOI: 10.3390/diagnostics9040197] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 11/15/2019] [Accepted: 11/17/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Existing data show a correlation between the profile of fatty acids, liver, and blood. Therefore, the aim of our study was to investigate the correlation between the fatty acids profile in blood pallets and the liver. METHODS The experiment was performed on 60 eight-week-old male Sprague-Dawley rats. The study group (n = 30, 5 groups, 6 rats each) received a cholesterol diet; the control group (n = 30, 5 groups, 6 rats each) received standard food for laboratory rats. The rats from both the study and control groups were sacrificed after 2, 4, 8, 12, and 16 weeks of dietary exposure. The fatty acids profile was measured using gas chromatography (GC). RESULTS In both the control and study group, the highest correlations were observed in palmitoleic acid (RHO = 0.68), heptadecanoic acid (RHO = 0.65), vaccenic acid (RHO = 0.72), eicosapentaenoic acid (RHO = 0.68), docosapentaenoic acid (RHO = 0.77), and docosahexaenoic (RHO = 0.77). Among liver indexes, the highest correlations were desaturase-18 (0.61). CONCLUSIONS Fatty acids profile is a sensitive marker of the development of potentially pathological changes in the liver. The potential markers of fatty liver are: oleic acid, vaccenic acid, EPA, DHA, docosapentaenoic acid, and desaturase index (SCD-18 index).
Collapse
Affiliation(s)
- Dominika Maciejewska
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, 70-204 Szczecin, Poland; (J.P.); (K.D.); (K.S.-Ż.); (M.S.); (K.J.); (E.S.)
| | - Joanna Palma
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, 70-204 Szczecin, Poland; (J.P.); (K.D.); (K.S.-Ż.); (M.S.); (K.J.); (E.S.)
| | - Karolina Dec
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, 70-204 Szczecin, Poland; (J.P.); (K.D.); (K.S.-Ż.); (M.S.); (K.J.); (E.S.)
| | - Karolina Skonieczna-Żydecka
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, 70-204 Szczecin, Poland; (J.P.); (K.D.); (K.S.-Ż.); (M.S.); (K.J.); (E.S.)
| | - Izabela Gutowska
- Department of Medical Chemistry, Pomeranian Medical University in Szczecin, 70-204 Szczecin, Poland;
| | - Małgorzata Szczuko
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, 70-204 Szczecin, Poland; (J.P.); (K.D.); (K.S.-Ż.); (M.S.); (K.J.); (E.S.)
| | - Karolina Jakubczyk
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, 70-204 Szczecin, Poland; (J.P.); (K.D.); (K.S.-Ż.); (M.S.); (K.J.); (E.S.)
| | - Ewa Stachowska
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, 70-204 Szczecin, Poland; (J.P.); (K.D.); (K.S.-Ż.); (M.S.); (K.J.); (E.S.)
| |
Collapse
|
411
|
Jensen VS, Tveden-Nyborg P, Zacho-Rasmussen C, Quaade ML, Ipsen DH, Hvid H, Fledelius C, Wulff EM, Lykkesfeldt J. Variation in diagnostic NAFLD/NASH read-outs in paired liver samples from rodent models. J Pharmacol Toxicol Methods 2019; 101:106651. [PMID: 31733366 DOI: 10.1016/j.vascn.2019.106651] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 08/26/2019] [Accepted: 11/05/2019] [Indexed: 02/06/2023]
Abstract
INTRODUCTION In animal models of non-alcoholic fatty liver disease (NAFLD), assessment of disease severity and treatment effects of drugs rely on histopathological scoring of liver biopsies. However, little is known about the sampling variation in liver samples from animal models of NAFLD, even though several histopathological hallmarks of the disease are known to be affected by sampling variation in patients. The aim of this study was to assess the sampling variation in multiple paired liver biopsies from three commonly used diet-induced rodent models of NAFLD. METHODS Eight male C57BL/6 mice, 8 male Sprague Dawley rats and 16 female Hartley guinea pigs were fed a NAFLD-inducing high-fat diet for 16 weeks (mice and rats), 20 or 24 weeks (guinea pigs). After the initial diet period, liver sections were sampled and subsequently assessed by histopathological scoring and biochemical analyses. RESULTS Fibrosis was heterogeneously distributed throughout the liver in mice, manifesting as both intra- and interlobular statistically significant differences. Hepatic triglyceride content showed interlobular differences in mice, and both intra- and interlobular differences in guinea pigs (24-week time point) all of which were statistically significant. Also, hepatic cholesterol content was subject to significant intra-lobular sampling variation in mice, and hepatic glycogen content differed significantly between lobes in mice and guinea pigs. DISCUSSION Dependent on animal model, both histopathological and biochemical end-points differed between sampling sites in the liver. Based on these findings, we recommend that sample site location is highly standardized and properly reported in order to minimize potential sampling variation and to optimize reproducibility and meaningful comparisons of preclinical studies of NAFLD.
Collapse
Affiliation(s)
- Victoria S Jensen
- Section of Experimental Animal Models, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Ridebanevej 9, DK-1870 Frederiksberg, Denmark; Global Research, Novo Nordisk A/S, Novo Nordisk Park 1, DK-2760 Maaloev, Denmark.
| | - Pernille Tveden-Nyborg
- Section of Experimental Animal Models, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Ridebanevej 9, DK-1870 Frederiksberg, Denmark.
| | - Christina Zacho-Rasmussen
- Section of Experimental Animal Models, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Ridebanevej 9, DK-1870 Frederiksberg, Denmark.
| | - Michelle L Quaade
- Section of Experimental Animal Models, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Ridebanevej 9, DK-1870 Frederiksberg, Denmark.
| | - David H Ipsen
- Section of Experimental Animal Models, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Ridebanevej 9, DK-1870 Frederiksberg, Denmark.
| | - Henning Hvid
- Global Research, Novo Nordisk A/S, Novo Nordisk Park 1, DK-2760 Maaloev, Denmark.
| | - Christian Fledelius
- Global Research, Novo Nordisk A/S, Novo Nordisk Park 1, DK-2760 Maaloev, Denmark.
| | - Erik M Wulff
- Global Research, Novo Nordisk A/S, Novo Nordisk Park 1, DK-2760 Maaloev, Denmark.
| | - Jens Lykkesfeldt
- Section of Experimental Animal Models, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Ridebanevej 9, DK-1870 Frederiksberg, Denmark.
| |
Collapse
|
412
|
Ji Y, Elkin K, Yip J, Guan L, Han W, Ding Y. From circadian clocks to non-alcoholic fatty liver disease. Expert Rev Gastroenterol Hepatol 2019; 13:1107-1112. [PMID: 31645151 DOI: 10.1080/17474124.2019.1684899] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 10/22/2019] [Indexed: 02/08/2023]
Abstract
Introduction: The circadian rhythm is an integral regulator of various endocrine processes in the body, including sleep-wake cycles, hormonal regulation, and metabolism. In addition to metabolic, genetic, and environmental factors, a dysregulated circadian rhythm resulting from lifestyle changes has been implicated in the pathogenesis of nonalcoholic fatty liver disease (NAFLD). An accumulating body of evidence also supports strong association between NAFLD and metabolic disorder, the pathogenesis of which is related to periodic fluctuations in hormonal homeostasis. It is clear that endocrine and circadian rhythms are tightly interconnected. Generally, the circadian rhythm regulates flux patterns of physiological functions. The present review will discuss the modulation of bodily processes by the circadian rhythm with specific attention to the regulation of NAFLD by leptin and related hormones.Areas covered: PubMed/MEDLINE was searched for articles related to concomitant occurrence of NAFLD and T2DM between January 1995 and September 2019. Areas covered included epidemiological, physiology and pathophysiology aspects.Expert opinion: NAFLD and NASH are increasingly prevalent and may be largely mitigated with effective lifestyle modification and, potentially, circadian rhythm stabilization. Improved knowledge of the specific pathogenesis of NAFLD in addition to enhanced diagnostic screening tools and prediction of future disease burden is imperative.
Collapse
Affiliation(s)
- Yu Ji
- Department of General Surgery, Beijing Luhe Hospital, Capital Medical University, Beijing, China
- Department of Neurosurgery, School of Medicine, Wayne State University, Detroit, MI, USA
- Department of Research & Development Center, John D. Dingell VA Medical Center, Detroit, MI, USA
| | - Kenneth Elkin
- Department of Neurosurgery, School of Medicine, Wayne State University, Detroit, MI, USA
| | - James Yip
- Department of Neurosurgery, School of Medicine, Wayne State University, Detroit, MI, USA
| | - Longfei Guan
- Department of Neurosurgery, School of Medicine, Wayne State University, Detroit, MI, USA
- Department of Research & Development Center, John D. Dingell VA Medical Center, Detroit, MI, USA
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Wei Han
- Department of General Surgery, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Yuchuan Ding
- Department of Neurosurgery, School of Medicine, Wayne State University, Detroit, MI, USA
- Department of Research & Development Center, John D. Dingell VA Medical Center, Detroit, MI, USA
| |
Collapse
|
413
|
Aflatoxin B1 enhances pyroptosis of hepatocytes and activation of Kupffer cells to promote liver inflammatory injury via dephosphorylation of cyclooxygenase-2: an in vitro, ex vivo and in vivo study. Arch Toxicol 2019; 93:3305-3320. [PMID: 31612242 DOI: 10.1007/s00204-019-02572-w] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 09/17/2019] [Indexed: 12/15/2022]
Abstract
Aflatoxin B1 (AFB1), a food contaminant derived from Aspergillus fungi, has been reported to cause hepatic immunotoxicity via inflammatory infiltration and cytokines release. As a pro-inflammatory factor, cyclooxygenase-2 (COX-2) is widely involved in liver inflammation induced by xenobiotics. However, the mechanism by which AFB1-induced COX-2 regulates liver inflammatory injury via hepatocytes-Kupffer cells (KCs) crosstalk remains unclear and requires further elucidation. Here, we established a COX-2 upregulated model with AFB1 treatment in vivo (C57BL/6 mice, 1 mg/kg body weight, i.g, 4 weeks) and in vitro (human liver HepaRG cells, 1 μM for 24 h). In vivo, AFB1-treated mice exhibited NLRP3 inflammasome activation, inflammatory infiltration, and increased recruitment of KCs. In vitro, dephosphorylated COX-2 by protein phosphatase 2A (PP2A)-B55δ promoted NLRP3 inflammasome activation, including mitochondrial translocation of NLRP3, caspase 1 cleavage, and IL-1β release. Moreover, phosphorylated COX-2 at serine 601 (p-COX-2Ser601) underwent endoplasmic reticulum (ER) retention for proteasome degradation. Furthermore, pyroptosis and inflammatory response induced by AFB1 were relieved with COX-2 genetic (siPTGS2) intervention or pharmaceutic (celecoxib, 30 mg/kg body weight, i.g, 4 weeks) inhibition of COX-2 via NLRP3 inflammasome suppression in vivo and in vitro. Ex vivo, in a co-culture system with murine primary hepatocytes and KCs, activated KCs induced by damaged signals from pyroptotic hepatocytes, formed a feedback loop to amplify NLRP3-dependent pyroptosis of hepatocytes via pro-inflammatory signaling, leading to liver inflammatory injury. Taken together, our data suggest a novel mechanism that protein quality control of COX-2 determines the intracellular distribution and activation of NLRP3 inflammasome, which promotes liver inflammatory injury via hepatocytes-KCs crosstalk.
Collapse
|
414
|
Bulutoglu B, Rey-Bedón C, Kang YBA, Mert S, Yarmush ML, Usta OB. A microfluidic patterned model of non-alcoholic fatty liver disease: applications to disease progression and zonation. LAB ON A CHIP 2019; 19:3022-3031. [PMID: 31465069 PMCID: PMC6736752 DOI: 10.1039/c9lc00354a] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) and its progressive form non-alcoholic steatohepatitis (NASH) affect 25% of the world population. NAFLD is predicted to soon become the main cause of liver morbidity and transplantation. The disease is characterized by a progressive increase of lipid accumulation in hepatocytes, which eventually induce fibrosis and inflammation, and can ultimately cause cirrhosis and hepatic carcinoma. Here, we created a patterned model of NAFLD on a chip using free fatty acid gradients to recapitulate a spectrum of disease conditions in a single continuous liver tissue. We established the NAFLD progression via quantification of intracellular lipid accumulation and transcriptional levels of fatty acid transporters and NAFLD pathogenesis markers. We then used this platform to create oxygen driven steatosis zonation mimicking the sinusoidal lipid distribution on a single continuous tissue and showed that this fat zonation disappears under progressed steatosis, in agreement with in vivo observations and recent computational studies. While we focus on free fatty acids and oxygen as the drivers of NAFLD, the microfluidic platform here is extensible to simultaneous use of other drivers.
Collapse
Affiliation(s)
- Beyza Bulutoglu
- Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School and Shriners Hospitals for Children, Boston, MA 02114, USA.
| | | | | | | | | | | |
Collapse
|
415
|
Wang B, Li X, Hu W, Zhou Y, Din Y. Silencing of lncRNA SNHG20 delays the progression of nonalcoholic fatty liver disease to hepatocellular carcinoma via regulating liver Kupffer cells polarization. IUBMB Life 2019; 71:1952-1961. [PMID: 31408278 DOI: 10.1002/iub.2137] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 07/15/2019] [Indexed: 01/18/2023]
Affiliation(s)
- Bin Wang
- Department of Hepatobiliary Surgery, Hubei Key Laboratory of Digestive System DiseaseRenmin Hospital of Wuhan University Hubei China
| | - Xiangpan Li
- Department of OncologyRenmin Hospital of Wuhan University Hubei China
| | - Wenjuan Hu
- Department of AnesthesiologyRenmin Hospital of Wuhan University Hubei China
| | - Yu Zhou
- Department of Hepatobiliary Surgery, Hubei Key Laboratory of Digestive System DiseaseRenmin Hospital of Wuhan University Hubei China
| | - Youming Din
- Department of Hepatobiliary Surgery, Hubei Key Laboratory of Digestive System DiseaseRenmin Hospital of Wuhan University Hubei China
| |
Collapse
|
416
|
Cangelosi D, Resaz R, Petretto A, Segalerba D, Ognibene M, Raggi F, Mastracci L, Grillo F, Bosco MC, Varesio L, Sica A, Colombo I, Eva A. A Proteomic Analysis of GSD-1a in Mouse Livers: Evidence for Metabolic Reprogramming, Inflammation, and Macrophage Polarization. J Proteome Res 2019; 18:2965-2978. [PMID: 31173686 DOI: 10.1021/acs.jproteome.9b00309] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Glycogen storage disease type 1a (GSD-1a) is a rare genetic disease caused by mutations in the catalytic subunit of the enzyme glucose-6-phosphatase-alpha (G6Pase-α). The majority of patients develop long-term complications including renal failure and hepatocellular adenoma/carcinoma. The purpose of this study was to ascertain the proteomic changes in the liver of LS- G6pc-/- mice, a murine model of GSD-1a, in comparison with wild type mice to identify potential biomarkers of the pathophysiology of the affected liver. We used liquid chromatography-tandem mass spectrometry (LC-MS/MS) to analyze liver lysates from a total of 20 LS- G6pc-/- and 18 wild type (WT) mice. We compared the proteomic expression profile of LS- G6pc-/- and WT mice. We identified 4138 significantly expressed proteins, 1243 of which were differentially represented. Network and pathway analyses indicate that LS- G6pc-/- livers display an age-dependent modulation of the expression of proteins involved in specific biological processes associated with increased progression of liver disease. Moreover, we found upregulation of proteins involved in the process of tissue inflammation and macrophage polarization toward the M2 phenotype in LS- G6pc-/- mice with adenomas. Our results identify a metabolic reprogramming of glucose-6-P and a pathologic environment in the liver compatible with tumor development and progression.
Collapse
Affiliation(s)
- Davide Cangelosi
- Laboratorio di Biologia Molecolare , IRCCS Istituto Giannina Gaslini , Via G. Gaslini n. 5 , 16147 Genova , Italy
| | - Roberta Resaz
- Laboratorio di Biologia Molecolare , IRCCS Istituto Giannina Gaslini , Via G. Gaslini n. 5 , 16147 Genova , Italy
| | - Andrea Petretto
- Core Facilities-Proteomics Laboratory , IRCCS Istituto Giannina Gaslini , Via G. Gaslini n. 5 , 16147 Genova , Italy
| | - Daniela Segalerba
- Laboratorio di Biologia Molecolare , IRCCS Istituto Giannina Gaslini , Via G. Gaslini n. 5 , 16147 Genova , Italy
| | - Marzia Ognibene
- Laboratorio Cellule Staminali Post Natali e Terapie Cellulari , IRCCS Istituto Giannina Gaslini , Via G. Gaslini n. 5 , 16147 Genova , Italy
| | - Federica Raggi
- Laboratorio di Biologia Molecolare , IRCCS Istituto Giannina Gaslini , Via G. Gaslini n. 5 , 16147 Genova , Italy
| | - Luca Mastracci
- Department of Surgical and Diagnostic Sciences (DISC), Anatomic Pathology Unit , University of Genova , Viale Benedetto XV n. 6 , 16132 Genova , Italy
- IRCCS Ospedale Policlinico San Martino , National Cancer Research Institute , Largo Rosanna Benzi n. 10 , 16132 Genova , Italy
| | - Federica Grillo
- Department of Surgical and Diagnostic Sciences (DISC), Anatomic Pathology Unit , University of Genova , Viale Benedetto XV n. 6 , 16132 Genova , Italy
- IRCCS Ospedale Policlinico San Martino , National Cancer Research Institute , Largo Rosanna Benzi n. 10 , 16132 Genova , Italy
| | - Maria Carla Bosco
- Laboratorio di Biologia Molecolare , IRCCS Istituto Giannina Gaslini , Via G. Gaslini n. 5 , 16147 Genova , Italy
| | - Luigi Varesio
- Laboratorio di Biologia Molecolare , IRCCS Istituto Giannina Gaslini , Via G. Gaslini n. 5 , 16147 Genova , Italy
| | - Antonio Sica
- Department of Pharmaceutical Sciences , Università del Piemonte Orientale "Amedeo Avogadro" , Largo Guido Donegani n. 2 , 28100 Novara , Italy
- Humanitas Clinical and Research Center , Via Alessandro Manzoni n. 56 , 20089 Rozzano , Italy
| | - Irma Colombo
- Dipartimento di Scienze Farmacologiche e Biomolecolari , Università degli Studi di Milano , Via Balzaretti n. 9 , 20133 Milano , Italy
| | - Alessandra Eva
- Laboratorio di Biologia Molecolare , IRCCS Istituto Giannina Gaslini , Via G. Gaslini n. 5 , 16147 Genova , Italy
| |
Collapse
|
417
|
Gervasoni C, Cattaneo D, Filice C, Galli M. Drug-induced liver steatosis in patients with HIV infection. Pharmacol Res 2019; 145:104267. [PMID: 31077811 DOI: 10.1016/j.phrs.2019.104267] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 05/07/2019] [Accepted: 05/07/2019] [Indexed: 12/22/2022]
Abstract
Drug-induced liver injury (DILI) due to the use of prescription and non-prescription medication by HIV-positive and HIV-negative patients is one of the main causes of acute liver failure and transplantation in Western countries and, although rare, has to be considered a serious problem because of its unforeseeable nature and possibly fatal course. Drug-induced steatosis (DIS) and steatohepatitis (DISH) are infrequent but well-documented types of DILI. Although a number of commonly used drugs are associated with steatosis, it is not always easy to identify them as causative agents because of the weak temporal relationship between the administration of the drug and the clinical event, the lack of a confirmatory re-challenge, and the high prevalence of non-alcoholic fatty liver disease (NAFLD) in the general population, which often makes it difficult to make a differential diagnosis of DIS and DISH. The scenario is even more complex in HIV-positive patients not only because of the underlying disease, but also because the various anti-retroviral regimens have different effects on liver steatosis. Given the high prevalence of liver steatosis in HIV-positive patients and the increasing use of drugs associated with a potential steatotic risk, the identification of clinical signs suggesting liver damage should help to avoid the possible misdiagnosis of "primary" NAFLD in a patient with DIS or DISH. This review will therefore initially concentrate on the current diagnostic criteria for DIS/DISH and their differential diagnosis from NAFLD. Subsequently, it will consider the different clinical manifestations of iatrogenic liver steatosis in detail, with specific reference to HIV-positive patients. Finally, the last part of the review will be dedicated to the possible effects of liver steatosis on the bioavailability of antiretroviral and other drugs.
Collapse
Affiliation(s)
- Cristina Gervasoni
- Gestione Ambulatoriale Politerapie (GAP) Outpatient Clinic, ASST Fatebenefratelli Sacco University Hospital, Milan, Italy; Department of Infectious Diseases, ASST Fatebenefratelli Sacco University Hospital, Milan, Italy.
| | - Dario Cattaneo
- Gestione Ambulatoriale Politerapie (GAP) Outpatient Clinic, ASST Fatebenefratelli Sacco University Hospital, Milan, Italy; Unit of Clinical Pharmacology, ASST Fatebenefratelli Sacco University Hospital, Milan, Italy
| | - Carlo Filice
- Infectious Diseases Department, San Matteo Hospital Foundation, University of Pavia, Pavia, Italy
| | - Massimo Galli
- Department of Infectious Diseases, ASST Fatebenefratelli Sacco University Hospital, Milan, Italy; Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, Milan, Italy
| | | |
Collapse
|
418
|
Hajighasem A, Farzanegi P, Mazaheri Z. Effects of combined therapy with resveratrol, continuous and interval exercises on apoptosis, oxidative stress, and inflammatory biomarkers in the liver of old rats with non-alcoholic fatty liver disease. Arch Physiol Biochem 2019; 125:142-149. [PMID: 29463133 DOI: 10.1080/13813455.2018.1441872] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
CONTEXT Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disorder. OBJECTIVE Effects of combined therapy with resveratrol, interval and continuous exercises on oxidative stress, inflammation, and apoptosis in the liver of rats with NAFLD. METHODS NAFLD rats were organised in patient, saline, resveratrol (RSV), continuous exercise, interval exercise, continuous exercise + RSV, and interval exercise + RSV groups. RESULTS Resveratrol supplementation alone or in combination with interval and continuous training significantly decreased malondialdehyde and TNF-α level (p < .05), while the levels of catalase; superoxide dismutase and IL-10 were significantly increased (p < .05). Although RSV alone significantly decreased the percentage of apoptotic cells (17.12%), its combination with interval (10.74%), and continuous (14.85%) exercise training demonstrated higher anti-apoptotic activity (p < .05). CONCLUSIONS Although resveratrol alone has an antioxidant, anti-apoptotic and anti-inflammatory properties, combined therapy with interval, and continuous training can be more effective to mitigate these abnormalities in NAFLD patients.
Collapse
Affiliation(s)
- Amir Hajighasem
- a Department of Exercise Physiology, Sari Branch , Islamic Azad University , Sari , Iran
| | - Parvin Farzanegi
- a Department of Exercise Physiology, Sari Branch , Islamic Azad University , Sari , Iran
| | - Zohreh Mazaheri
- b Department of Anatomical Sciences, Faculty of Medical Sciences , Tarbiat Modares University , Tehran , Iran
| |
Collapse
|
419
|
Yang J, Fernández-Galilea M, Martínez-Fernández L, González-Muniesa P, Pérez-Chávez A, Martínez JA, Moreno-Aliaga MJ. Oxidative Stress and Non-Alcoholic Fatty Liver Disease: Effects of Omega-3 Fatty Acid Supplementation. Nutrients 2019; 11:E872. [PMID: 31003450 PMCID: PMC6521137 DOI: 10.3390/nu11040872] [Citation(s) in RCA: 180] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 04/12/2019] [Accepted: 04/15/2019] [Indexed: 02/06/2023] Open
Abstract
Aging is a complex phenomenon characterized by the progressive loss of tissue and organ function. The oxidative-stress theory of aging postulates that age-associated functional losses are due to the accumulation of ROS-induced damage. Liver function impairment and non-alcoholic fatty liver disease (NAFLD) are common among the elderly. NAFLD can progress to non-alcoholic steatohepatitis (NASH) and evolve to hepatic cirrhosis or hepatic carcinoma. Oxidative stress, lipotoxicity, and inflammation play a key role in the progression of NAFLD. A growing body of evidence supports the therapeutic potential of omega-3 polyunsaturated fatty acids (n-3 PUFA), mainly docosahaexenoic (DHA) and eicosapentaenoic acid (EPA), on metabolic diseases based on their antioxidant and anti-inflammatory properties. Here, we performed a systematic review of clinical trials analyzing the efficacy of n-3 PUFA on both systemic oxidative stress and on NAFLD/NASH features in adults. As a matter of fact, it remains controversial whether n-3 PUFA are effective to counteract oxidative stress. On the other hand, data suggest that n-3 PUFA supplementation may be effective in the early stages of NAFLD, but not in patients with more severe NAFLD or NASH. Future perspectives and relevant aspects that should be considered when planning new randomized controlled trials are also discussed.
Collapse
Affiliation(s)
- Jinchunzi Yang
- Centre for Nutrition Research, School of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain.
| | - Marta Fernández-Galilea
- Centre for Nutrition Research, School of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain.
- Department of Nutrition, Food Science and Physiology, School of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain.
- IDISNA, Navarra's Health Research Institute, 31008 Pamplona, Spain.
| | - Leyre Martínez-Fernández
- Centre for Nutrition Research, School of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain.
| | - Pedro González-Muniesa
- Centre for Nutrition Research, School of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain.
- Department of Nutrition, Food Science and Physiology, School of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain.
- IDISNA, Navarra's Health Research Institute, 31008 Pamplona, Spain.
- CIBERobn Physiopathology of Obesity and Nutrition, Centre of Biomedical Research Network, ISCIII, 28029 Madrid, Spain.
| | - Adriana Pérez-Chávez
- Centre for Nutrition Research, School of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain.
| | - J Alfredo Martínez
- Centre for Nutrition Research, School of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain.
- Department of Nutrition, Food Science and Physiology, School of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain.
- IDISNA, Navarra's Health Research Institute, 31008 Pamplona, Spain.
- CIBERobn Physiopathology of Obesity and Nutrition, Centre of Biomedical Research Network, ISCIII, 28029 Madrid, Spain.
| | - Maria J Moreno-Aliaga
- Centre for Nutrition Research, School of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain.
- Department of Nutrition, Food Science and Physiology, School of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain.
- IDISNA, Navarra's Health Research Institute, 31008 Pamplona, Spain.
- CIBERobn Physiopathology of Obesity and Nutrition, Centre of Biomedical Research Network, ISCIII, 28029 Madrid, Spain.
| |
Collapse
|
420
|
Fatty Acid Desaturase Involvement in Non-Alcoholic Fatty Liver Disease Rat Models: Oxidative Stress Versus Metalloproteinases. Nutrients 2019; 11:nu11040799. [PMID: 30965590 PMCID: PMC6521187 DOI: 10.3390/nu11040799] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 04/02/2019] [Accepted: 04/03/2019] [Indexed: 12/19/2022] Open
Abstract
We investigated changes in fatty acid desaturases, D5D, D6D, D9-16D and D9-18D, and their relationship with oxidative stress, matrix metalloproteinases (MMPs) and serum TNF-alpha in two rat models of non-alcoholic fatty liver disease NAFLD. Eight-week-old male Wistar rats fed for 3 weeks with methionine-choline–deficient (MCD) diet and eleven-week-old Obese male Zucker rats were used. Serum levels of hepatic enzymes and TNF-alpha were quantified. Hepatic oxidative stress (ROS, TBARS and GSH content) and MMP-2 and MMP-9 (protein expression and activity) were evaluated. Liver fatty acid profiling, performed by GC-MS, was used for the quantification of desaturase activities. Higher D5D and D9-16D were found in Obese Zucker rats as well as an increase in D9-18D in MCD rats. D6D was found only in MCD rats. A negative correlation between D5D and D9-16D versus TBARS, ROS and TNF-alpha and a positive correlation with GSH were shown in fatty livers besides a positive correlation between D9-18D versus TBARS, ROS and TNF-alpha and a negative correlation with GSH. A positive correlation between D5D or D9-16D or D9-18D versus protein expression and the activity of MMP-2 were found. NAFLD animal models showed comparable serum enzymes. These results reinforce and extend findings on the identification of therapeutic targets able to counteract NAFLD disorder.
Collapse
|
421
|
Derkach K, Zakharova I, Zorina I, Bakhtyukov A, Romanova I, Bayunova L, Shpakov A. The evidence of metabolic-improving effect of metformin in Ay/a mice with genetically-induced melanocortin obesity and the contribution of hypothalamic mechanisms to this effect. PLoS One 2019; 14:e0213779. [PMID: 30870482 PMCID: PMC6417728 DOI: 10.1371/journal.pone.0213779] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 02/19/2019] [Indexed: 12/16/2022] Open
Abstract
In diet-induced obesity, metformin (MF) has weight-lowering effect and improves glucose homeostasis and insulin sensitivity. However, there is no information on the efficiency of MF and the mechanisms of its action in melanocortin-type obesity. We studied the effect of the 10-day treatment with MF at the doses of 200, 400 and 600 mg/kg/day on the food intake and the metabolic and hormonal parameters in female C57Bl/6J (genotype Ay/a) agouti-mice with melanocortin-type obesity, and the influence of MF on the hypothalamic signaling in obese animals at the most effective metabolic dose (600 mg/kg/day). MF treatment led to a decrease in food intake, the body and fat weights, the plasma levels of glucose, insulin and leptin, all increased in agouti-mice, to an improvement of the lipid profile and glucose sensitivity, and to a reduced fatty liver degeneration. In the hypothalamus of obese agouti-mice, the leptin and insulin content was reduced and the expression of the genes encoding leptin receptor (LepR), MC3- and MC4-melanocortin receptors and pro-opiomelanocortin (POMC), the precursor of anorexigenic melanocortin peptides, was increased. The activities of AMP-activated kinase (AMPK) and the transcriptional factor STAT3 were increased, while Akt-kinase activity did not change from control C57Bl/6J (a/a) mice. In the hypothalamus of MF-treated agouti-mice (10 days, 600 mg/kg/day), the leptin and insulin content was restored, Akt-kinase activity was increased, and the activities of AMPK and STAT3 were reduced and did not differ from control mice. In the hypothalamus of MF-treated agouti-mice, the Pomc gene expression was six times higher than in control, while the gene expression for orexigenic neuropeptide Y was decreased by 39%. Thus, we first showed that MF treatment leads to an improvement of metabolic parameters and a decrease of hyperleptinemia and hyperinsulinaemia in genetically-induced melanocortin obesity, and the specific changes in the hypothalamic signaling makes a significant contribution to this effect of MF.
Collapse
Affiliation(s)
- Kira Derkach
- Department of Molecular Endocrinology and Neurochemistry, Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| | - Irina Zakharova
- Department of Molecular Endocrinology and Neurochemistry, Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| | - Inna Zorina
- Department of Molecular Endocrinology and Neurochemistry, Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| | - Andrey Bakhtyukov
- Department of Molecular Endocrinology and Neurochemistry, Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| | - Irina Romanova
- Department of Molecular Endocrinology and Neurochemistry, Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| | - Liubov Bayunova
- Department of Molecular Endocrinology and Neurochemistry, Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| | - Alexander Shpakov
- Department of Molecular Endocrinology and Neurochemistry, Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
- * E-mail:
| |
Collapse
|
422
|
Zhang H, Sun D, Wang G, Cui S, Field RA, Li J, Zang Y. Alogliptin alleviates liver fibrosis via suppression of activated hepatic stellate cell. Biochem Biophys Res Commun 2019; 511:387-393. [PMID: 30797555 DOI: 10.1016/j.bbrc.2019.02.065] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 02/12/2019] [Indexed: 02/07/2023]
Abstract
Liver fibrosis occurs in most types of chronic liver diseases. The understanding of the pathogenesis of liver fibrosis has grown considerably, but the effective treatments are still lacking. Alogliptin, a classical Dipeptidyl peptidase-4 (DPP4) inhibitor with great effects on type 2 diabetes, has shown the potential to protect liver, but its effects on the progression of liver fibrosis have not been clarified. Herein, we explored the anti-fibrosis effects of alogliptin. In vitro, we demonstrated that alogliptin suppressed the activation of LX-2 upon transforming growth factor-β (TGF-β) challenge. In vivo, chronic treatment with alogliptin alleviated hepatic steatosis and protected from the liver injury in ob/ob mice, which delayed the progression of liver fibrosis. Furthermore, alogliptin significantly relieved the hepatic fibrosis in CCl4-induced liver fibrosis mouse model. In conclusion, our results demonstrate that negatively modulation of alogliptin on hepatic stellate cell (HSC) activation might contribute to liver fibrosis alleviation. Our research provides the potential possibility of alogliptin on the application for liver fibrosis therapy and suggests that DPP4 may be a novel target for liver fibrosis therapy.
Collapse
Affiliation(s)
- Hanyan Zhang
- School of Pharmacy, Nanchang University, 461 Bayi Road, Nanchang, 330006, China.
| | - Dandan Sun
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| | - Guanzhen Wang
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| | - Shichao Cui
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| | - Robert A Field
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK.
| | - Jia Li
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| | - Yi Zang
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| |
Collapse
|
423
|
Allard J, Le Guillou D, Begriche K, Fromenty B. Drug-induced liver injury in obesity and nonalcoholic fatty liver disease. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2019; 85:75-107. [PMID: 31307592 DOI: 10.1016/bs.apha.2019.01.003] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Obesity is commonly associated with nonalcoholic fatty liver (NAFL), a benign condition characterized by hepatic lipid accumulation. However, NAFL can progress in some patients to nonalcoholic steatohepatitis (NASH) and then to severe liver lesions including extensive fibrosis, cirrhosis and hepatocellular carcinoma. The entire spectrum of these hepatic lesions is referred to as nonalcoholic fatty liver disease (NAFLD). The transition of simple fatty liver to NASH seems to be favored by several genetic and environmental factors. Different experimental and clinical investigations showed or suggested that obesity and NAFLD are able to increase the risk of hepatotoxicity of different drugs. Some of these drugs may cause more severe and/or more frequent acute liver injury in obese individuals whereas others may trigger the transition of simple fatty liver to NASH or may worsen hepatic lipid accumulation, necroinflammation and fibrosis. This review presents the available information regarding drugs that may cause a specific risk in the context of obesity and NAFLD. These drugs, which belong to different pharmacological classes, include acetaminophen, halothane, methotrexate, rosiglitazone and tamoxifen. For some of these drugs, experimental investigations confirmed the clinical observations and unveiled different pathophysiological mechanisms which may explain why these pharmaceuticals are particularly hepatotoxic in obesity and NAFLD. Because obese people often take several drugs for the treatment of different obesity-related diseases, there is an urgent need to identify the main pharmaceuticals that may cause acute liver injury on a fatty liver background or that may enhance the risk of severe chronic liver disease.
Collapse
Affiliation(s)
- Julien Allard
- INSERM, Univ. Rennes, INRA, Institut NUMECAN (Nutrition Metabolisms and Cancer) UMR_A 1341, UMR_S 1241, Rennes, France
| | - Dounia Le Guillou
- INSERM, Univ. Rennes, INRA, Institut NUMECAN (Nutrition Metabolisms and Cancer) UMR_A 1341, UMR_S 1241, Rennes, France
| | - Karima Begriche
- INSERM, Univ. Rennes, INRA, Institut NUMECAN (Nutrition Metabolisms and Cancer) UMR_A 1341, UMR_S 1241, Rennes, France
| | - Bernard Fromenty
- INSERM, Univ. Rennes, INRA, Institut NUMECAN (Nutrition Metabolisms and Cancer) UMR_A 1341, UMR_S 1241, Rennes, France.
| |
Collapse
|
424
|
Rodrigues D, Rowland A. From Endogenous Compounds as Biomarkers to Plasma-Derived Nanovesicles as Liquid Biopsy; Has the Golden Age of Translational Pharmacokinetics-Absorption, Distribution, Metabolism, Excretion-Drug-Drug Interaction Science Finally Arrived? Clin Pharmacol Ther 2019; 105:1407-1420. [PMID: 30554411 DOI: 10.1002/cpt.1328] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 11/25/2018] [Indexed: 12/15/2022]
Abstract
It is now established that a drug's pharmacokinetics (PK) absorption, distribution, metabolism, excretion (ADME) and drug-drug interaction (DDI) profile can be modulated by age, disease, and genotype. In order to facilitate subject phenotyping and clinical DDI assessment, therefore, various endogenous compounds (in plasma and urine) have been pursued as drug-metabolizing enzyme and transporter biomarkers. Compared with biomarkers, however, the topic of circulating extracellular vesicles as "liquid biopsy" has received little attention within the ADME community; most organs secrete nanovesicles (e.g., exosomes) into the blood that contain luminal "cargo" derived from the originating organ (proteins, messenger RNA, and microRNA). As such, ADME profiling of plasma exosomes could be leveraged to better define genotype-phenotype relationships and the study of ontogeny, disease, and complex DDIs. If methods to support the isolation of tissue-derived plasma exosomes are successfully developed and validated, it is envisioned that they will be used jointly with genotyping, biomarkers, and modeling tools to greatly progress translational PK-ADME-DDI science.
Collapse
Affiliation(s)
- David Rodrigues
- ADME Sciences, Medicine Design, Pfizer, Inc., Groton, Connecticut, USA
| | - Andrew Rowland
- College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| |
Collapse
|
425
|
Feng G, He N, Zhou YF, Li XP, Niu C, Liu ML, Zhang KL, Li Y, Li YM, Zheng MH, Mi M. A simpler diagnostic formula for screening nonalcoholic fatty liver disease. Clin Biochem 2019; 64:18-23. [PMID: 30503530 DOI: 10.1016/j.clinbiochem.2018.11.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 11/08/2018] [Accepted: 11/27/2018] [Indexed: 12/24/2022]
Abstract
OBJECTIVE To increase the accuracy of non-invasive diagnosis of nonalcoholic fatty liver disease (NAFLD), clinical and laboratory NAFLD indicators were integrated into a diagnostic formula. METHODS A total of 141 patients with clinically diagnosed NAFLD and 30 healthy controls were enrolled. We collected case history, body weight, height and mass index (BMI), alanine aminotransferase (ALT), aspartate aminotransferase (AST), gamma glutamyl transpeptidase, blood urea nitrogen and blood uric acid (UA), serum creatinine, plasma total cholesterol, triglyceride, low density lipoprotein, glycosylated hemoglobin, fasting plasma glucose, fasting insulin, ultrasonic tests, Fibroscans, and other data. Linear correlation, multiple linear regressions, and receiver operating characteristic (ROC) curve methods were used to process and analyze the collected data. The performance of Fibroscan and our diagnostic formula was compared in reference to the findings of liver biopsy. RESULTS The identified NAFLD diagnostic indices consisted of BMI, ALT, AST and UA. A regression formula was proposed as: CAP = 113.163 + 0.252 * ALT + 6.316 * BMI. Diagnosis of the area under the ROC curve was 0.927, the sensitivity was 87.68%, and specificity was 90%. The cutoff was 277.67 (p < 0.01). The accuracy of the NAFLD diagnosis with the proposed formula was significantly higher than FibroScan (82.6% vs 69.6%; p = 0.005). CONCLUSIONS NAFLD diagnosis with the proposed formula demonstrated both high sensitivity and specificity, and its accuracy was significantly higher than FibroScan. This formula only utilized non-invasive clinical and laboratory findings and the calculation was simple. It can be conveniently used for clinical diagnosis of NAFLD.
Collapse
Affiliation(s)
- Gong Feng
- Xi'an Medical University, Xi'an, China
| | - Na He
- The First Affiliated Hospital of Xi'an Medical University, Xi'an, China
| | - Yi-Fan Zhou
- NAFLD Research Center, Department of Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China; School of the First Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | | | - Chunyan Niu
- Department of Gastroenterology, Xiangan Hospital Affiliated to Xiamen University, Xiamen, China
| | | | - Ke-Lin Zhang
- The First Affiliated Hospital of Xi'an Medical University, Xi'an, China
| | - Ya Li
- The First Affiliated Hospital of Xi'an Medical University, Xi'an, China
| | - Ya-Ming Li
- The First Affiliated Hospital of Xi'an Medical University, Xi'an, China
| | - Ming-Hua Zheng
- NAFLD Research Center, Department of Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China; Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China; Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, Wenzhou 325000, China; Institute of Hepatology, Wenzhou Medical University, Wenzhou, China..
| | - Man Mi
- Xi'an Medical University, Xi'an, China.
| |
Collapse
|
426
|
Li Z, Feng PP, Zhao ZB, Zhu W, Gong JP, Du HM. Liraglutide protects against inflammatory stress in non-alcoholic fatty liver by modulating Kupffer cells M2 polarization via cAMP-PKA-STAT3 signaling pathway. Biochem Biophys Res Commun 2019; 510:20-26. [PMID: 30683312 DOI: 10.1016/j.bbrc.2018.12.149] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 12/20/2018] [Indexed: 12/15/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the second major chronic liver disease world-wide and growing. Current medical treatment of NAFLD is not effective, and there is an urgent need to find new effective drugs. Liraglutide is now the first-line treatment for type 2 diabetes mellitus (T2DM) with promise, according to recent reports, to mitigate the fatty degeneration of the liver. The investigators of the current study discern if liraglutide reduces non-alcoholic fatty liver disease (NAFLD) induced by a high-fat diet using mice via modulating Kupffer cells M2 polarization in the liver. The mice underwent four weeks of intraperitoneal injections of liraglutide (0.6 mg/kg body weight). In the NAFLD model used in this study, the liver index, the body weight, and the serum levels of ALT, AST, total cholesterol, and triglycerides were meaningfully improved. In sections using H&E and Oil Red O staining, hepatic steatosis was significantly improved. Liraglutide decreased liver inflammation and the inflammatory properties of Kupffer cells in the NAFLD mouse model and there was a higher ratio of M2/M1 Kupffer cells. In vitro studies found that Liraglutide treatment modulates Kupffer cells to M2-like activation via the cAMP-PKA-STAT3 signaling pathway. The perilous effects of a high-fat diet were alleviated by liraglutide, including hepatic steatosis, by modulating Kupffer cells M2 polarization via the cAMP-PKA-STAT3 signaling pathway. Liraglutide can indeed reverse the negative effects of NAFLD.
Collapse
Affiliation(s)
- Zhi Li
- Department of General Surgery, The Second Affiliated Hospital of Chongqing University, Yuzhong District, Chongqing, 400010, PR China
| | - Pan-Pan Feng
- Department of General Surgery, The Second Affiliated Hospital of Chongqing University, Yuzhong District, Chongqing, 400010, PR China
| | - Zhi-Bo Zhao
- Department of General Surgery, The Second Affiliated Hospital of Chongqing University, Yuzhong District, Chongqing, 400010, PR China
| | - Wei Zhu
- Department of General Surgery, The Second Affiliated Hospital of Chongqing University, Yuzhong District, Chongqing, 400010, PR China
| | - Jian-Ping Gong
- Department of General Surgery, The Second Affiliated Hospital of Chongqing University, Yuzhong District, Chongqing, 400010, PR China
| | - Hu-Min Du
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, PR China.
| |
Collapse
|
427
|
Qiu Z, Zhong D, Yang B. Preventive and Therapeutic Effect of Ganoderma (Lingzhi) on Liver Injury. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1182:217-242. [DOI: 10.1007/978-981-32-9421-9_9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
428
|
Zhang L, Yao Z, Ji G. Herbal Extracts and Natural Products in Alleviating Non-alcoholic Fatty Liver Disease via Activating Autophagy. Front Pharmacol 2018; 9:1459. [PMID: 30618753 PMCID: PMC6297257 DOI: 10.3389/fphar.2018.01459] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 11/29/2018] [Indexed: 12/14/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common form of chronic liver disease world-wide, and currently therapeutic options for NAFLD are limited. Herbal medicine (HM) may offer an attractive alternative for the treatment of NAFLD. Recent years have witnessed a growing interest in the autophagy-inducing agents, and autophagy activation has been recognized as an efficient strategy in managing NAFLD and related complications. Pharmacological studies have demonstrated certain potential of HM extracts and natural products in inducing autophagy, which might contribute to the efficacy of HM in preventing and treating NAFLD. This review aims to summarize current understanding of mechanisms of HM extracts and natural products in preventing and treating NAFLD. Specially, we focused on mechanisms by which autophagy can target the main pathogenesis events associated with NAFLD, including hepatic steatosis, inflammation, oxidative stress, and apoptosis. It is hoped that this brief review can provide a general understanding of HM extracts and natural products in treating NAFLD, and raise awareness of potential clinical application of HM in general.
Collapse
Affiliation(s)
- Li Zhang
- Institute of Digestive Diseases, China-Canada Center of Research for Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zemin Yao
- Department of Biochemistry, Microbiology and Immunology, Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON, Canada
| | - Guang Ji
- Institute of Digestive Diseases, China-Canada Center of Research for Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
429
|
Abstract
Cell death represents a basic biological paradigm that governs outcomes and long-term sequelae in almost every hepatic disease condition. Acute liver failure is characterized by massive loss of parenchymal cells but is usually followed by restitution ad integrum. By contrast, cell death in chronic liver diseases often occurs at a lesser extent but leads to long-term alterations in organ architecture and function, contributing to chronic hepatocyte turnover, the recruitment of immune cells and activation of hepatic stellate cells. These chronic cell death responses contribute to the development of liver fibrosis, cirrhosis and cancer. It has become evident that, besides apoptosis, necroptosis is a highly relevant form of programmed cell death in the liver. Differential activation of specific forms of programmed cell death might not only affect outcomes in liver diseases but also offer novel opportunities for therapeutic intervention. Here, we summarize the underlying molecular mechanisms and open questions about disease-specific activation and roles of programmed cell death forms, their contribution to response signatures and their detection. We focus on the role of apoptosis and necroptosis in acute liver injury, nonalcoholic fatty liver disease (NAFLD), nonalcoholic steatohepatitis (NASH) and liver cancer, and possible translations into clinical applications.
Collapse
Affiliation(s)
- Robert F Schwabe
- Department of Medicine, Columbia University, New York, NY, USA.
- Institute of Human Nutrition, Columbia University, New York, NY, USA.
| | - Tom Luedde
- Department of Medicine III, Division of Gastroenterology, Hepatology and Hepatobiliary Oncology, University Hospital Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen, Aachen, Germany.
| |
Collapse
|
430
|
Bessone F, Dirchwolf M, Rodil MA, Razori MV, Roma MG. Review article: drug-induced liver injury in the context of nonalcoholic fatty liver disease - a physiopathological and clinical integrated view. Aliment Pharmacol Ther 2018; 48:892-913. [PMID: 30194708 DOI: 10.1111/apt.14952] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 03/25/2018] [Accepted: 07/30/2018] [Indexed: 12/15/2022]
Abstract
BACKGROUND Nonalcoholic fatty disease (NAFLD) is the most common liver disease, since it is strongly associated with obesity and metabolic syndrome pandemics. NAFLD may affect drug disposal and has common pathophysiological mechanisms with drug-induced liver injury (DILI); this may predispose to hepatoxicity induced by certain drugs that share these pathophysiological mechanisms. In addition, drugs may trigger fatty liver and inflammation per se by mimicking NAFLD pathophysiological mechanisms. AIMS To provide a comprehensive update on (a) potential mechanisms whereby certain drugs can be more hepatotoxic in NAFLD patients, (b) the steatogenic effects of drugs, and (c) the mechanism involved in drug-induced steatohepatitis (DISH). METHODS A language- and date-unrestricted Medline literature search was conducted to identify pertinent basic and clinical studies on the topic. RESULTS Drugs can induce macrovesicular steatosis by mimicking NAFLD pathogenic factors, including insulin resistance and imbalance between fat gain and loss. Other forms of hepatic fat accumulation exist, such as microvesicular steatosis and phospholipidosis, and are mostly associated with acute mitochondrial dysfunction and defective lipophagy, respectively. Drug-induced mitochondrial dysfunction is also commonly involved in DISH. Patients with pre-existing NAFLD may be at higher risk of DILI induced by certain drugs, and polypharmacy in obese individuals to treat their comorbidities may be a contributing factor. CONCLUSIONS The relationship between DILI and NAFLD may be reciprocal: drugs can cause NAFLD by acting as steatogenic factors, and pre-existing NAFLD could be a predisposing condition for certain drugs to cause DILI. Polypharmacy associated with obesity might potentiate the association between this condition and DILI.
Collapse
Affiliation(s)
- Fernando Bessone
- Hospital Provincial del Centenario, Facultad de Ciencias Médicas, Servicio de Gastroenterología y Hepatología, Universidad Nacional de Rosario, Rosario, Argentina
| | - Melisa Dirchwolf
- Unidad de Transplante Hepático, Servicio de Hepatología, Hospital Privado de Rosario, Rosario, Argentina
| | - María Agustina Rodil
- Hospital Provincial del Centenario, Facultad de Ciencias Médicas, Servicio de Gastroenterología y Hepatología, Universidad Nacional de Rosario, Rosario, Argentina
| | - María Valeria Razori
- Instituto de Fisiología Experimental (IFISE-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Marcelo G Roma
- Instituto de Fisiología Experimental (IFISE-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| |
Collapse
|
431
|
Rizzatti G, Matteo MV, Ianiro G, Cammarota G, Franceschi F, Gasbarrini A. Helicobacter pylori in metabolic related diseases. MINERVA GASTROENTERO 2018; 64:297-309. [PMID: 29600696 DOI: 10.23736/s1121-421x.18.02490-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Helicobacter pylori is one of the most common gastrointestinal infection affecting humans worldwide. Hp colonizes the stomach with preferential trophism for the antrum. Hp infection is associated with the development of a chronic gastritis and subsequently with several gastric diseases such as peptic disease, gastric carcinoma and MALT lymphoma. Moreover, Helicobacter pylori infection has also been reported in literature to be associated with many other extra-gastric conditions including sideropenic anemia, thrombocytopenia, neurological, liver and cardiovascular diseases. For some conditions the association is supported by solid literature data and also by the identification of the possible physiopathogenetic mechanism involved. In other cases, the link is only reported by association studies often with conflicting results. In this context, diabetes mellitus, cardiovascular disorders and liver steatosis have all been reported to be associated with Helicobacter pylori infection. Interestingly, these conditions share many characteristics and they often overlap as they represent the expression of the so called metabolic syndrome. Aim of the review was to summarize the available data regarding the association between Helicobacter Pylori infection and diabetes mellitus, cardiovascular disorders and liver steatosis.
Collapse
Affiliation(s)
- Gianenrico Rizzatti
- Unit of Internal Medicine, Gastroenterology and Liver Disease, Gastroenterological Area, Department of Gastroenterological-Endocrinometabolic Sciences, Policlinico A. Gemelli Foundation, Sacro Cuore Catholic University, Rome, Italy -
| | - Maria V Matteo
- Unit of Internal Medicine, Gastroenterology and Liver Disease, Gastroenterological Area, Department of Gastroenterological-Endocrinometabolic Sciences, Policlinico A. Gemelli Foundation, Sacro Cuore Catholic University, Rome, Italy
| | - Gianluca Ianiro
- Unit of Internal Medicine, Gastroenterology and Liver Disease, Gastroenterological Area, Department of Gastroenterological-Endocrinometabolic Sciences, Policlinico A. Gemelli Foundation, Sacro Cuore Catholic University, Rome, Italy
| | - Giovanni Cammarota
- Unit of Internal Medicine, Gastroenterology and Liver Disease, Gastroenterological Area, Department of Gastroenterological-Endocrinometabolic Sciences, Policlinico A. Gemelli Foundation, Sacro Cuore Catholic University, Rome, Italy
| | - Francesco Franceschi
- Unit of Internal Medicine, Gastroenterology and Liver Disease, Gastroenterological Area, Department of Gastroenterological-Endocrinometabolic Sciences, Policlinico A. Gemelli Foundation, Sacro Cuore Catholic University, Rome, Italy
| | - Antonio Gasbarrini
- Unit of Internal Medicine, Gastroenterology and Liver Disease, Gastroenterological Area, Department of Gastroenterological-Endocrinometabolic Sciences, Policlinico A. Gemelli Foundation, Sacro Cuore Catholic University, Rome, Italy
| |
Collapse
|
432
|
Wu Q, Liu J, Liu L, Chen Y, Wang J, Leng L, Yu Q, Duan Z, Wang Y. Establishment of an ex Vivo Model of Nonalcoholic Fatty Liver Disease Using a Tissue-Engineered Liver. ACS Biomater Sci Eng 2018; 4:3016-3026. [PMID: 33435021 DOI: 10.1021/acsbiomaterials.8b00652] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The prevalence of nonalcoholic fatty liver disease (NAFLD), a common cause of chronic liver disease, continues to increase in parallel with that of obesity. Currently, there are no preclinical models to study its complex pathogenesis nor to assess candidate therapies. We have established a tissue-engineered (TE) liver by seeding cells into liver-derived matrix scaffolds and then perfusing the scaffolds with a medium that dynamically provides requisite nutrients, vitamins, minerals, and hormones. Liver-specific biomatrix scaffolds, comprised of almost all of the liver's known extracellular matrix (ECM) components and matrix-bound soluble signals (e.g., growth factors/cytokines), were recellularized with human hepatic cell line HepG2 and perfused with a complete medium enabling the cells to form functioning liver tissue. By perfusing the system with medium with a high fat content, the cells established a TE fatty (TEF) liver model paralleling that of livers in NAFLD patients. The high fat medium containing 500 μM of free fatty acids (FFAs) (oleic acid:palmitic acid = 2:1) caused the TEF livers to accumulate 2-times more fat than those in the control medium over an 8 day culture period and significantly influenced the capacity of fatty acid synthesis and metabolism. PDK4, CYP2E1, and CYP7A1 genes associated with NAFLD and other liver diseases were all up-regulated, and the metabolic activity of CYP3A4 was significantly impaired. Excess FFAs also induced alterations in transporters and key enzymes in the lipid biosynthesis pathway. The TEF liver was used to test if an antisteatotic drug, Metformin, used in patients with NAFLD, would be able to provide effects paralleling those observed in some patients. Metformin treatment of the TEF liver model caused reduced cellular triglycerides, activated AMPK molecule, inhibited mTORC1 signaling pathway, which thus affected the synthesis and metabolism of FFAs. Overall, the TEF liver offers a stable and reproducible model to study the NAFLD development process and antisteatotic drug effects.
Collapse
Affiliation(s)
- Qiao Wu
- Artificial Liver Center, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
- Tissue Engineering Lab, Institute of Health Service and Transfusion Medicine, Beijing 100850, China
| | - Juan Liu
- Tissue Engineering Lab, Institute of Health Service and Transfusion Medicine, Beijing 100850, China
| | - Lijin Liu
- Tissue Engineering Lab, Institute of Health Service and Transfusion Medicine, Beijing 100850, China
| | - Yu Chen
- Artificial Liver Center, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Jie Wang
- Tissue Engineering Lab, Institute of Health Service and Transfusion Medicine, Beijing 100850, China
| | - Ling Leng
- Tissue Engineering Lab, Institute of Health Service and Transfusion Medicine, Beijing 100850, China
| | - Qunfang Yu
- Tissue Engineering Lab, Institute of Health Service and Transfusion Medicine, Beijing 100850, China
| | - Zhongping Duan
- Artificial Liver Center, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Yunfang Wang
- Tissue Engineering Lab, Institute of Health Service and Transfusion Medicine, Beijing 100850, China
| |
Collapse
|
433
|
Imran M, Sergent O, Tête A, Gallais I, Chevanne M, Lagadic-Gossmann D, Podechard N. Membrane Remodeling as a Key Player of the Hepatotoxicity Induced by Co-Exposure to Benzo[a]pyrene and Ethanol of Obese Zebrafish Larvae. Biomolecules 2018; 8:biom8020026. [PMID: 29757947 PMCID: PMC6023014 DOI: 10.3390/biom8020026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 05/04/2018] [Accepted: 05/04/2018] [Indexed: 12/11/2022] Open
Abstract
The rise in prevalence of non-alcoholic fatty liver disease (NAFLD) constitutes an important public health concern worldwide. Including obesity, numerous risk factors of NAFLD such as benzo[a]pyrene (B[a]P) and ethanol have been identified as modifying the physicochemical properties of the plasma membrane in vitro thus causing membrane remodeling—changes in membrane fluidity and lipid-raft characteristics. In this study, the possible involvement of membrane remodeling in the in vivo progression of steatosis to a steatohepatitis-like state upon co-exposure to B[a]P and ethanol was tested in obese zebrafish larvae. Larvae bearing steatosis as the result of a high-fat diet were exposed to ethanol and/or B[a]P for seven days at low concentrations coherent with human exposure in order to elicit hepatotoxicity. In this condition, the toxicant co-exposure raised global membrane order with higher lipid-raft clustering in the plasma membrane of liver cells, as evaluated by staining with the fluoroprobe di-4-ANEPPDHQ. Involvement of this membrane’s remodeling was finally explored by using the lipid-raft disruptor pravastatin that counteracted the effects of toxicant co-exposure both on membrane remodeling and toxicity. Overall, it can be concluded that B[a]P/ethanol co-exposure can induce in vivo hepatotoxicity via membrane remodeling which could be considered as a good target mechanism for developing combination therapy to deal with steatohepatitis.
Collapse
Affiliation(s)
- Muhammad Imran
- Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR_S 1085, University of Rennes, F-35000 Rennes, France.
| | - Odile Sergent
- Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR_S 1085, University of Rennes, F-35000 Rennes, France.
| | - Arnaud Tête
- Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR_S 1085, University of Rennes, F-35000 Rennes, France.
| | - Isabelle Gallais
- Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR_S 1085, University of Rennes, F-35000 Rennes, France.
| | - Martine Chevanne
- Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR_S 1085, University of Rennes, F-35000 Rennes, France.
| | - Dominique Lagadic-Gossmann
- Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR_S 1085, University of Rennes, F-35000 Rennes, France.
| | - Normand Podechard
- Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR_S 1085, University of Rennes, F-35000 Rennes, France.
| |
Collapse
|
434
|
Bucher S, Tête A, Podechard N, Liamin M, Le Guillou D, Chevanne M, Coulouarn C, Imran M, Gallais I, Fernier M, Hamdaoui Q, Robin MA, Sergent O, Fromenty B, Lagadic-Gossmann D. Co-exposure to benzo[a]pyrene and ethanol induces a pathological progression of liver steatosis in vitro and in vivo. Sci Rep 2018; 8:5963. [PMID: 29654281 PMCID: PMC5899096 DOI: 10.1038/s41598-018-24403-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 04/03/2018] [Indexed: 02/07/2023] Open
Abstract
Hepatic steatosis (i.e. lipid accumulation) and steatohepatitis have been related to diverse etiologic factors, including alcohol, obesity, environmental pollutants. However, no study has so far analyzed how these different factors might interplay regarding the progression of liver diseases. The impact of the co-exposure to the environmental carcinogen benzo[a]pyrene (B[a]P) and the lifestyle-related hepatotoxicant ethanol, was thus tested on in vitro models of steatosis (human HepaRG cell line; hybrid human/rat WIF-B9 cell line), and on an in vivo model (obese zebrafish larvae). Steatosis was induced prior to chronic treatments (14, 5 or 7 days for HepaRG, WIF-B9 or zebrafish, respectively). Toxicity and inflammation were analyzed in all models; the impact of steatosis and ethanol towards B[a]P metabolism was studied in HepaRG cells. Cytotoxicity and expression of inflammation markers upon co-exposure were increased in all steatotic models, compared to non steatotic counterparts. A change of B[a]P metabolism with a decrease in detoxification was detected in HepaRG cells under these conditions. A prior steatosis therefore enhanced the toxicity of B[a]P/ethanol co-exposure in vitro and in vivo; such a co-exposure might favor the appearance of a steatohepatitis-like state, with the development of inflammation. These deleterious effects could be partly explained by B[a]P metabolism alterations.
Collapse
Affiliation(s)
- Simon Bucher
- Univ Rennes, Inserm, Inra, Institut NUMECAN (Nutrition Metabolisms and Cancer) - UMR_S 1241, UMR_A 1341, F-35000, Rennes, France
| | - Arnaud Tête
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000, Rennes, France
| | - Normand Podechard
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000, Rennes, France
| | - Marie Liamin
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000, Rennes, France
| | - Dounia Le Guillou
- Univ Rennes, Inserm, Inra, Institut NUMECAN (Nutrition Metabolisms and Cancer) - UMR_S 1241, UMR_A 1341, F-35000, Rennes, France
| | - Martine Chevanne
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000, Rennes, France
| | - Cédric Coulouarn
- Univ Rennes, Inserm, Inra, Institut NUMECAN (Nutrition Metabolisms and Cancer) - UMR_S 1241, UMR_A 1341, F-35000, Rennes, France
| | - Muhammad Imran
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000, Rennes, France
| | - Isabelle Gallais
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000, Rennes, France
| | - Morgane Fernier
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000, Rennes, France
| | - Quentin Hamdaoui
- Univ Rennes, Inserm, Inra, Institut NUMECAN (Nutrition Metabolisms and Cancer) - UMR_S 1241, UMR_A 1341, F-35000, Rennes, France
| | - Marie-Anne Robin
- Univ Rennes, Inserm, Inra, Institut NUMECAN (Nutrition Metabolisms and Cancer) - UMR_S 1241, UMR_A 1341, F-35000, Rennes, France
| | - Odile Sergent
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000, Rennes, France
| | - Bernard Fromenty
- Univ Rennes, Inserm, Inra, Institut NUMECAN (Nutrition Metabolisms and Cancer) - UMR_S 1241, UMR_A 1341, F-35000, Rennes, France
| | - Dominique Lagadic-Gossmann
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000, Rennes, France.
| |
Collapse
|
435
|
Hong M, Cai Z, Song L, Liu Y, Wang Q, Feng X. Gynostemma pentaphyllum Attenuates the Progression of Nonalcoholic Fatty Liver Disease in Mice: A Biomedical Investigation Integrated with In Silico Assay. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2018; 2018:8384631. [PMID: 29743925 PMCID: PMC5884411 DOI: 10.1155/2018/8384631] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 01/17/2018] [Accepted: 01/31/2018] [Indexed: 12/16/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common type of liver disease in developed countries. Oxidative stress plays a critical role in the progression of NAFLD. Modern pharmacological study and clinical trials have demonstrated the remarkable antioxidant activity of Gynostemma pentaphyllum (GP) in chronic liver disease. One aim of this study was to explore the potential protective effects and mechanisms of action of GP extract on NAFLD. The in vivo results showed that GP extract could alleviate fatty degeneration and haptic fibrosis in NAFLD mice. For exploring the hepatoprotective mechanisms of GP, we used network pharmacology to predict the potential active components of GP and their intracellular targets in NAFLD. Based on the network pharmacology results, we further utilized biomedical assays to validate this in silico prediction. The results showed that Gypenoside XL could upregulate the protein level of PPARα in NAFLD; the transcription level of several PPARα downstream target genes such as acyl-CoA oxidase (ACO) and carnitine palmitoyltransferase-1 (CPT-1) also increased after Gypenoside XL treatment. The overexpression of ACO and CPT-1 may involve the hepatoprotective effects of GP and Gypenoside XL on NAFLD by regulating mitochondrial fatty acid β-oxidation.
Collapse
Affiliation(s)
- Ming Hong
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, 12 Jichang Road, Guangzhou 510405, China
| | - Zhe Cai
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong
| | - Lei Song
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, 12 Jichang Road, Guangzhou 510405, China
| | - Yongqiang Liu
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, 12 Jichang Road, Guangzhou 510405, China
| | - Qi Wang
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, 12 Jichang Road, Guangzhou 510405, China
| | - Xiangfei Feng
- Department of Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, 665 Kongjiang Rd., Shanghai, China
| |
Collapse
|
436
|
Jarrar YB, Al-Essa L, Kilani A, Hasan M, Al-Qerem W. Alterations in the gene expression of drug and arachidonic acid-metabolizing Cyp450 in the livers of controlled and uncontrolled insulin-dependent diabetic mice. Diabetes Metab Syndr Obes 2018; 11:483-492. [PMID: 30288071 PMCID: PMC6162993 DOI: 10.2147/dmso.s172664] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Diabetic patients have lower capacity to metabolize drugs in comparison to normal people. Therefore, the present study aimed to investigate the alterations in gene expression of drug and arachidonic acid metabolizing cytochrome p450s (cyp450s) in the livers of controlled (CDM) and uncontrolled (UDM) insulin-dependent diabetic mice. METHODS Balb/c mice were treated with single dose of streptozocin (240 mg/kg) to induce diabetes and compared with control group, which was treated with citric buffer (pH =4.5). After 3 days, the blood glucose level was measured to confirm the induction of diabetes. Normalization of blood glucose level in diabetic mice was achieved after 0.1 mL/kg Mixtard® insulin therapy for more 5 days. Then, the mice livers were isolated to extract RNA and convert it to cDNA. The gene expression of 14 genes, which play a major role in drug and arachidonic acid metabolism, were measured using quantitative real-time polymerase chain reaction technique. RESULTS It was found that the gene expression was downregulated (ANOVA test, P-value <0.05) in the livers of UDM mice. The most downregulated genes were cyp4a12, cyp1a2, and slc22a1 with more than 10-fold reduction. The livers of CDM mice showed significantly (P-value <0.05) higher levels of mRNA than UDM mice, but still lower than the non-diabetic mice. CONCLUSION This study concluded that hepatic gene expression of drug metabolizing and arachidonic acid- cyp450 enzymes is reduced in insulin-dependent diabetic mice, which can explain, at least in part, the variation in drug and fatty acid metabolism between normal and diabetic patients.
Collapse
Affiliation(s)
- Yazun Bashir Jarrar
- Department of Pharmacy, College of Pharmacy, Al-Zaytoonah University of Jordan, Airport street, Amman, Jordan,
| | - Luay Al-Essa
- Department of Pharmacy, College of Pharmacy, Al-Zaytoonah University of Jordan, Airport street, Amman, Jordan,
| | - Abdulhasib Kilani
- Department of Pharmacy, College of Pharmacy, Al-Zaytoonah University of Jordan, Airport street, Amman, Jordan,
| | - Mariam Hasan
- Department of Pharmacy, College of Pharmacy, Al-Zaytoonah University of Jordan, Airport street, Amman, Jordan,
| | - Walid Al-Qerem
- Department of Pharmacy, College of Pharmacy, Al-Zaytoonah University of Jordan, Airport street, Amman, Jordan,
| |
Collapse
|